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ABSTRACT

An update and review of the research performed at Virginia

Tech in the accuracy assessment of remotely sensed data during the

past three years is given. This oesearch included the use of

discrete multivariate analysis techniques for the assessment of error

matrices, the use of computer simulation for assessing various

sampling strategies, and an investigation of spatial autocorrelation

techniques.
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1.0 Introduction

This report is an update and review of the research that was

conducted at Virginia Tech in accuracy of remotely sensed data over

the past three years. The majority of the report will briefly review

the use of discrete multivariate analysis for assessing the accuracy

of remotely sensed data. Wherever appropriate, a citation where more

detailed information can be found will be given. The remainder of the

report will discuss our continuing research in sampling simulation for

accuracy assessment and the effects of spatial autocorrelation on

accuracy. Wherever possible, preliminary results will be given.

.
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2.0 Discrete Multivariate Analysis Techniques for Accuracy Assessment

Three discrete multivariate analysis procedures are used in

the accuracy assessment of remotely sensed data. All three procedures

operate on error matrices. An error matrix (Figure 1) is a square

array of numbers set out in rows and columns which express the number

of cells assigned as a particular land cover type relative to the

actual cover type as verified in the field. The columns usually repre-

sent the reference data (ground verified) and the rows indicate either

the Landsat classification or the photo interpretation.
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2.1 Review of the Normalization Procedure

The normalization proceaure is a method of standardizing each

error matrix so that a direct compar •,son of individual cell values

is possible.	 It is an iterative process (Bishop et al. 	 1915) by which -	 1

the rows and columns of the matrix are successively balanced until

each row and column sums to a given value (marginal). 	 Therefore, each

cell value is Influenced by the omission and commission errors for

that particular land cover category.	 After normalization, the cell

values in corresponding positions of two or more error matrices can

be compared without regard for differences in sample size between

matrices.

A FORTRAN computer program called MARGFIT can be used for per-

forming the normalization process (Congalton et al. 	 1981).	 For details

and examples of this technique see Congalton (1981). r
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2.2 Review of the Test of Agreement Procedure

The test of agreement procedure is a method of testing the

•	 similarity or agreement between two or more error matrices (Bishop

•	 et al. 1981). This me&sure of agreement, called KHAT, is based on

the difference between the actual agreement of the classification

(i.e., agreement between the remote sensor data and the reference

data) indicated by the diagonal cell value and the chance dgreement

which is indicated by the row and column marginals.

KHAT values are calculated for each matrix and reflect how

well the remote sensor data agrees with the reference data. A test

can then be performed between two independent KHAT values in order

to determine if they are significantly different, i.e., if one matrix

is significantly different from another. The equations, more details,

and examples can be found in Congalton (1981) and Congalton and Mead

(1983). Also a FORTRAN computer program called KAPPA can be used to

perform this test of agreement procedure (Congalton 1981).
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2.3 Review of the Multi-factor Comparison Procedure

The multi-factor comparison procedur_ allows more than one

factor affecting the classification accuracy to be examined at

the same time. Appendix I contains a detailed explanation of this

approach as weal as a fully worked out example. For more examples

and the APL computer program, CONTA9LE, used to perform the

computations see Congalton (1981).

AM
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3.0 Sampling Simulation for Accuracy Assessment

Monte Carlo computer simulation techniques were used to test

the effects of various sampling schemes on the accuracy assessment

of remotely sensed data. Three data sets of varying spatial com-

plexity were used: a forested area, a rangeland area, and an agricul-

tural area. Each area had two classified data gets associated with

it. One of the data sets (usually photointerpretation) was assumed

correct and the other was the Landsat classification. A difference

image was then created for each area by comparing, pixel by pixel,

the assumed correct data set with the Landsat classification. A

difference image is a matrix of zeros and ones in which the zeros

indicate agreement between the data sets ane the ones indicate disagree-

ment. In other words, the difference image is indicative of the

pattern of error occurring in the classification. The population

parameters (mean and variance) were computed from a total enumeration

of each difference image and were used to compare with the sample

statistics from the sampling simulations.

For a more detailed description of the data sets, as well as

pictures of the difference images, see Congalton et al. (1982).
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3.1 Preliminary Results

Simulations have been run for simple random sampling and

cluster sampling. Testing of other sampling schemes is yet to

be done.

3
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3.1.1 Intra-cluster Correlation Coefficients

Intra-cluster correlation coefficient, ROH, is a measure of

the homogeneity of the cluster. The more homogeneous the cluster,

•	 the greater the value of ROH. In order to maximize the given infor-

mation within a cluster, one would wish the cluster to be as hetero-

geneous as possible. Therefore, one would try to make ROH approach

zero. Figure 2 shows a plot of average ROH vs. cluster size for each

of the vegetation environments.

  -
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3.2 Conclusions

Visual inspection of the difference images yielded different

levels of homogeneity or spatial complexity in the three vegetation

environments. As expected, the agricultural area was most homo-

geneous while the forested area was most diverse. This result was

also demonstrated in the p lot of ROH vs. cluster size. Given that

a large ROH means greater homogeneity notice that for each cluster

size, the agricultural environment had the largest ROH, while the forest

had the smallest.

Also demonstrated in the plot of ROH vs. cluster size were some

guidelines for cluster size determination. Despite the theoretical

statement that ROH should go to zero, it is apparent from this plot

that this is not always practically feasible. Note from the plot that

between 0 and 20 pixels/cluster, ROH decreases rather quickly while

after this point, the line levels off. It can be concluded from this

result that large clusters taken to reduce ROH may not be gaining

significantly 4n information while costing excessive time and money.
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3.3 Further Work

Research is continuing at Virginia Tech in sampling simula-

tion as well as in the spatial autocorrelation analysis techniques

that will to discussed next.

3
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4.0 Spatial Autocorrelation Analysis

Spatial autocorrelation analysis is a technique by which the

pattern of a spatially distributed attribute can be investigated.

In other words, if the presence of a given attribute in a certain

location makes its presence in surrounding locations more or less

likely, then the attribute is said to exhibit spatial autocorrelation

(Cliff and Ord 1973).

Spatial autocorrelation analysis can be used to investigate

the pattern of error in the difference images created from a Landsat

classification and an assumed correct reference set. In this

situation, the discrete binary classification applies. Each pixel has

either been classified correctly or incorrectly and therefore a technique

called join count statistics may be used to measure the spatial auto-

correlation. A join is defined if any two pixels have a boundary of

positive non-zero length in common (Cliff and Ord 1973).

In the case of a difference image, there are three possible

joins, 0-0 (correct-correct), 1-1 (incorrect-incorrect), and 0-1 or 1-0

(correct-incorrect, incorrect-correct). The method that is used to

test if the pattern of error in the difference image differs significantly

from random is to use the fact that the join count statistics are asymptotically

normal. The mean and variance (first and second moments) are obtained using
i

the equations in Appendix II and are compared with the observed counts

to test for significance.

i
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There are two possible sampling schemes from which the statistics

can be derived. These are free sampling (i.e., sampling with replace-
.

ment) or non-free sampling (i.e., sampling without replacement). In the

case of a difference image, non-free sampling is employed since we

assume that each pixel has the same a priori probability of being

right or wronq (Cliff and .Ord 1973).

Combining the results of the spatial autocorrelation analysis

with the results of the sampling simulations allows better interpre-

tation of when to use which sampling scheme. By being able to examine

the spatial pattern of the errors within the difference image, the

results of the sampling simulation can be better explained.

D
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The research conducted at Virginia Tech over the last three

•	 years has contributed significantly to the accuracy assessment of

remotely sensed data. The application of discrete multivariate

analysis to accuracy assessment has provided a new technique for

analyzing accuracy. The research in sampling simulation and spatial

autocorrelation is yet to be completed. However, it is felt that

combining the results of sampling simulation with the knowledge gained

from spatial autocorrelation will yield better recommendations for

which sampling schemes to use when.



16

6.0 literature Cited

Bishop, Y., S. Fienberg, and P. Holland. 19

variate Analysis: Theory and Practice. MIT Press:Cambridge,

Massachusetts. 575 pp.

Cliff, A. D. and J. K. Ord. 1973. Spatial Autocor; ,elation. Pion:

London. 178 pp.

Congalton, Russell G. 1981. The Use of Discrete Multivariate Analysis

Techniques for the Assessment of Landsat Classification Accuracy.

Unpublished M.S. Thesis. Virginia Polytechnic Institute and

State University, Department of Forestry, Blacksburg, Virginia

24061. 111 pp.

Congalton, Russell G. and Roy A. Mead. 1983. A quantitative method to

test for consistency and correctness in photo interpretation.

Photogrammetric Engineering and Remote Sensing. Vol. 49, No. 1.

pp. 69-74.

Congalton, Russell G., Richard G. Oderwald, and Roy a Mead. 1982.

Accuracy of remotely sensed data: sampling and analysis procedures.

AGRISTARS Report. Nationwide Forestry Applications Program.

Cooperative Agreement No. 13-1134. 83 pp.

Congalton, Russell G., Roy A. Mead, Richard G. Oderwald, and Joel T.

Heinen. 1981. Analysis of forest classification accuracy.

AGRISTARS Report. Nationwide Forestry Applications Program.

Cooperative Agreement No. 13-1134. 85 pp.

F



11

Moran, P. A. P. 1948. The interpretation of statistical maps.

Journal Royal Statistical Society, Series B. Vol. 10.

"	 pp. 243-251.

r

•

a A
s



Appendix I

Multi-factor Comparison Example

18



19

The Use of Two Model Fitting Procedures for

Determining Associations Between Four Spatial Variables

ABSTRACT: This study describes the use of the log-linear and

logit model fitting procedures which yield the best fitting modal for

determining associations between four spatially defined variables.

These variables include (1) interspersion, (2) cover type, (3) aspect,

and (4) elevation.

Introduction

A great deal of information has been generated concerning

interactions of physical variables such as aspect and elevation on

biotic variables such as cover type (Barbour et al. 1980). Knowledge

of such interactions can be used as predictive tools in forestry and

wildlife habitat analysis. Statistical procedures have been developed

which can be used to determine associati^j-„s between cross-classified

categorical variables (Fienberg 1980; Bishop et al. 1975). Since most

spatial variables may be readily grouped into categories (such as low,

medium, and high elevations, or south vs. north facing slopes, etc.),

these statistical procedures represent important analytic tools fir

resource managers.

The purpose of this study was to determine associations between

four such spatially defined variables. These included interspersion,

1
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cover type, aspect, and elevation. The interspersion index used i

this study was described by Meld et ai. (1981). It nsay be used as

index of habitat quality for any selected species. Thus, using the

statistical procedures outlined here, associations between habitat

quality, elevation, aspect, and cover type may be determined.

Study Area

The study area included 1542 acres situated in the northwest

section of the Rampart Hills Quadrangle in the San Juan National Forest,

Colorado. This area was chosen because recent cover type information

was available and it has been used in previous habitat studies.

Methods and Procedures

Dbta Acquisition

The cover type information w:s provided by the Forest Service,

and was originally ;.erived from Lands . t imagery, The one acre Landsat

pixels were grouped into three acre sampling units for the purpose of

cover type mapping. This work was completed by the Lockheed Corporation

under Forest Service contract. The 19 categories presen t in the original

work were collapsed into seven categories which represent impor^ant

habitat components for mule deer (4docoileus hemionus). This collapsing

procedure followed recommendations of Forest Service personnel (Conk,

AW
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personal communication). Of these seven categories, four were present

in the study area. These included (1) conifer, (2) oak, (3) aspen,

and (4) other. Categories which do not form critical habitat components

for the species of interest were grouped into the fourth category.

Interspersion was calculated for each cell (3-acre sampling unit)

in the study area. The method of calculation was described by Mead et al.

(1981) and by Heinen et al. 0381). Two categories of interspersion

were used in this study. These included low (0 to 0.5) and high (>0.5

to 1.0).

A grid representing each cell in the study was drawn directly onto

a copy of the U. S. Geological S —vey 7-1/2 minute Rampart Hills Quadrangle.

The elevation and aspect information for each cell was then obtained

directly from this map by following the contour lines. Two categories

for each variable were used. The categories used for the elevation

variable included low (<8920 ft) and high (>8920 ft). This arbitrary

cutoff point was chosen because this contour line roughly divided the

study area into two equal parts. The use of only two elevational categories

is justified because there is only an approximate	 1400 foot range in

.	 elevation over the entire study area. In many cases the 8920 foot contour

transected individual cells. In these cases, a judgment was made as to

whether more than one-half of the cell was above or below the cutoff

point, and then categorized accordingly.
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Each cell was grouped into one of two categories of aspect. These

included south and north facing slopes. These two categories were chosen

because of their ecological significance (Spurr, Barnes, 1973), and also

because the ridges in the study area are oriented approximately from

southwest to northeast. This topography greatly facilitated the categori-

zation of aspect for each cell.

The data set is presented in Table I. For the purposes of the

statistical notation (explained below) the number assigned to each variable

is important. These are (1) interspersion, (2) cover type, (3) aspect,

and (4) elevation. Numbers are likewise assigned to each category within

each variable. Variable 1 (interspersion) has two categories, (i) low

and (ii) high, and variable 2 has four categories denoted as (i) conifer,

(ii) oak, (iii) aspen, and (iv) other. Variables 3 (aspect) and 4 (elevation)

each have two categories. In the case of the former these include (i) north-

faring slopes, and (ii) south-facing slopes. In the case of the latter

these include (i) low elevation (<8900 ft) and (ii) high elevation (>8900

ft). The number designated in each cell on Table I indicates the total

number of cells in the study area which fall into that particular combin g -.

tion of variable categories. For example, a total of nine cells in the

study area had low interspersion and were dominated by conifer on north-

facing slopes at elevations at or below 8920 feet.
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Table I.	 The number of cells in the study area described in each of

32 possible combinations of the four categorical variables.

As pect	 3

North Sou .h
' Elevation (4) Elevation (4)

Interspersion (1) Cover Type (2) Low	 High Low High

Conifer (i) 9	 0 15 4

Low (i)
Oak	 (ii) 23	 24 38 40

Aspen	 (iii) 5	 6 40 11

Other (iv) 3	 3 7 50

Conifer (i) 6	 3 13 7

High	 (ii)
Oak	 (ii) 10	 21 23 33

Aspen	 (iii) 10	 12 23 13

Other (iv) 3	 13 9 27

Statistical Procedures

The logit and log-linear model fitting procedures were both used in

this study. In each case the objective is to determine the simplest best

fitting model which explains-the data. Each procedure is outlined here.

Log-linear Model Fitting

The first step in this procedure is to test all uniform models.

These may be defined as models which contain all n-way interactions where

n ranges from one to the number of variables (Fienberg 1980). The uniform

J
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order model is denoted by T*. If T* - 3, for example, this indicates

that all 3-way interaction terms are present in the model. All lower

order terms are also present by default. Thus in the example above,

all 2-way and 1-way terms would also be included in the model.

After all uniform order models are tested, one of the stepwise

model fitting procedures may be used. These are the forward and the

backward procedures. In the case of the former, the researcher chooses

the uniform order model which provides a poor fit (p <.05) where the

next higher uniform order model provides a good fit (p > .05). In this

study, for example, T* = 1 (no interaction terms) provided an extremely

poor fit (p < .005), T* = 2 provided a poor fit (p < .025), and T* = 3

provided a good fit(.5 > p > .25). Thus T* = 2 was chosen to begin the

forward stepwise model building procedure. The next step involves

adding the next higher order interaction terms to the model one by one

and the resulting model which yields the highest p-value is chosen. This

is repeated until all significant terms are included in the model. In

each case, the criteria for testing models is based on the Likelihood

Ratio (G2 ) which is an asymptotic *. 2 distribution. The critical value

for testing each model may therefore be obtained from a T 2 table using

the proper degrees of freedom.

The backward selection procedure begins with the uniform order model

which provides a good fit (p > .05) where the next lower uniform order

model provides a poor fit (p < .05). In this study the uniform order model
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T* = 3 was chosen to begin the backward procedure. Successive 3-way

interaction terms are then dropped from the model. Each resulting

model is again tested with the G2 statistic.

Logit Fitting Procedure

When using the logit model fitting procedure, the researcher

first assumes that there is one response variable, and all other variables

are explanatory. The term denoting the interaction of all explanatory variables

is therefore present in every model tested. In this study it was

assumed that interspersion is a response of cover type, aspect, and

elevation. Thus the term denoting the interaction of variables 2, 3, and

4 was present in every model tested. Choosing the proper uniform order

model when using the logit procedure is similar to that described for

the log-linear procedure as is the forward and backward model selection.

a
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All model selection procedures described here were conducted

using an interactive APL computer program written by Dr. S. K. Lee of

the Department of Statistics, VPI & SU. See Fienberg (1980) and

Bishop et al. (1975) for a more thorough description of these statistical

procedures.

Results and Discussion

Using forward and backward stepwise model selections for both the

log-linear and logit procedures, the best fitting model is as follows:

[1 2 3]	 [2 3 41	 [1 4]

This indicates that variables 1 (interspersion), 2 (cover type),

and 3 (aspect) all interact jointly. Variables 2 (cover type), 3 (aspect),

and 4 (elevation) also interact jointly. The addiLional 2-way interaction

term of variables 1 (interspersion), and 4 (elevation) is also a signifi-

cant feature of the model. Thus, all possible 2-way interaction terms

are present by default in this model.

In order to analyze the particular associations represented by

each individual interaction term, tables were prepared for each term by

summing across the variable(s) not present in that term (Tables 2, 3,

and 4). In preparing the table for the [1 2 3] interaction term (Table 2),

for example, the raw data presented in Table I was summed across variable

4, which is not present in that term. The numbers W- wined by this

summation were then converted into proportions by dividing each Onto the

sum of all numbers on the table. In this way, the type of association

between variables may be readily determined by comparing the proportions.

c
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Table 2. The observed frequencies describing the [1 2 3] interaction

term.

Low Interspersion 	 High Interspersion

North	 South	 North	 South

	

.26	 .74	 .35	 .65

Table 2 indicates a general trend toward lower interspersion on

south than north facing slopes. Lower interspersion values also tend to

be associated with oak stands, whereas higher interspersion values tend

to be associated with conifer and aspen stands. However, aspen, as well

as cells designated as other tend to be associated with low interspersion
	 :M

values on south-facing slopes.

Table 3. Observed frequencie ,. describing the [2 3 4] interaction term.

	

pow Elevation	 High Elevation

	

North	 South	 North	 South

	

Slopes	 Slopes	 Slopes	 Slopes

Conifer	 .06	 .12	 .18	 Conifer	 .01	 .04	 .05

Oak	 .14	 .26	 .40	 Oak	 .11	 .27	 .44

Aspen	 .06	 .27	 .33	 Aspen	 .07	 .09	 .16

Other	 03	 .06	 .09	 Other	 1	 .06	 .29	 .35

	.29	 .71	 .31	 .69
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Table 3 indicates that conifer and aspen are more prevalent

at low elevations, while oak and the "other" category are more

prevalent at higher elevations. The conifer and aspen are more common

on south vs. north facing slopes in these lower elevations. Cover type

4 (other) is more common at higher elevations on south vs. north-facing

slopes. It must be pointed out that we may expect different trends for

different conifer species. Spruce and fir, for example, may be expected

to grow more readily at higher elevations on north-facing slopes. The

data base used here, however, collapsed categories according to the

habitat requirements of mule deer, and thus all conifers were included

in one category. Trends for different conifer species could be readily

determined using the same procedures had these categories not been

collapsed.

Table 4. Observed frequencies describing the [1 4] interaction term

Low Interspersion	 High Interspersion

Low Elevation	 .28	 .19	 .47

High Elevation	 .27	 .26	 .53

	

.55	 .45

Table 4 indicates that higher interspersion is generally associatEd

with higher elevations, and low interspersion is more common at low

elevations.



29

The information obtained from the model building procedures

presented here has utility as a predictive tool. Managerial decisions

may be based in part on such information. For example, clearcuts or

prescription burns could be placed more appropriately within specific

eievational and slope regimes to achieve a generally higher inter-

spersion index throughout and area'if this is desirable.

Of particular interest in this scenario is the interaction of

interspersion with the other variables. Knowledge of specific inter-

actions can be used to stratify areas according to its habitat potential

for a selected species resulting from the effects of cover type, elevation,

and aspect. One important point is that the model which resulted in this

case can only be applied to this area and to this species (mule deer).

This is because of the cover type collapsing procedure. If such informa-

tion is desired for other areas or species, a different collapsing pro-

cedure may be necessary.

One major advantage of this technique is that, after initial data

generation, the model building procedure itself is a rather rapid process

when using an interactive program. The entire process of fcrward and

backward log-linear and logit model selection procedures took only 1-112

hours to complete on the computer terminal. This time would vary depending

on the experience of the researchers with interactive programs, as well

as on the number of factors to be analyzed in the model, but it is

generally a rapid process.
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Other spatial variables of interest could easily be tested.

Some of these may include water availability, slope (steepness) or

human disturbances. These could easily be categorized appropriately 	 ,

and used as additional dimensions in the multi-way classification

in determining the effects of each on habitat quality. Such procedures

are thus readily expandable and can easily test the simultaneous

effects of any number of variables which may affect the aspects of

habitat quality analyzed here.



31

Literature Cited

Bishop, Y., S. Fienberg, and P. Holland. 1975. Discrete Multivariate

Analysis: Theory and Practice. MIT Press:Cambridge, Mass. 575

PP.

Barbour, M. D., J. H. Burke, and W. D. Pitts. 1980. Terrestial Plant

Ecology. Benjamin Cummings Publishing Co.

Cook, D. 1981. Personal Communication. Wildlife Biologist, U.S.F.S.,00	 9
a

San Juan National Forest, Colcrado.

Fienbe rg, S. E. 1980. The Analysis of Cross-Classified Categorical

Data. MIT Press:Cambridge, Mass. 198 pp.

Heinen, J. T., R. A. Mead, and J. L. Smith. 1981. Site-specific maps

of juxtaposition and interspersion. S.A.F. National Workshop. In-

Place Resource Inventories: Principles and Practices. Orono, Maine.

Mead, R. A., T. Sharik, S. P. PrisleY , and J. T. Heinen. 1981. A

computerized spatial analysis system for assessing wildlife habitat 	 j

from vegetation maps. Can. J. Rem. Sens. 7(1):34-40. 1
Spurr, S. and B. Barnes. 1973. Forest Ecology (2nd Edition). The Ronald

Press Co., New York, NY.

I



Appendix II

Spatial Autocorrelation Statistics for the

Non-free Sampling Binary classification Case*

*Moran, P.A.P. 1948. The interpretation of statistical maps.

Journal Royal Statistical Society, Series B. Vol. 10.

pp. 243-251.
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Autocorrelation

Non-free sampling
binary classificat'on

like join 	 (1-1) = 1 /2 t E 6 i J xi Xi
ij

X1(2)

nT'j

	

An, (2)	 2Dn (3)
	

(A(A-1)-20)n (4) _ rM1 (2)^ 2

	

42
 (1-1) _ —- + —-- +	 1	 --^

	

n	 n	 n
(4)	 n J

	unlike join (1-0) = 1/2 E Z 6	 (Xi - 
Xi)2

i j ij

2Anln2

n

•	 '[Ann	 4(A(A-1)-20)n (2) n (2)

n	 n

2
	+ 2DnIn2(nI+n2-2) - 4

	
Anin2

n	 nT'T
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Notation

ui(X) - The first moment of X about the origin, the expected

value of X.

u2 (X) = The second moment of X about the mean, the variance

of X.

	

n (i)	 n (n-1) ... (n - i + 1)

	

n	 The total number of individuals in the population.

n 1 = The number of individuals in the population with the

characteristic of interest.

	

n2 	The number of individuals in the population without the

characteristic of interest.

	

L i 	The number of individuals joined with the i th individual.

A=1/2ELii
D = 1/2ELi (Li -1)i

5iJ = 1, if i th and J th areas are 3oir,tl

0, otherwise

Xi = 1, if i th area is correctly classified
0, otherwise
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