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ABSTRACT 

A systematic procedure for constructing semidiscrete, second order 

accurate, variation diminishing, five point band width, approximations to 

scalar conservation laws, is presented. These schemes are constructed to also 

satisfy a single discrete entropy inequality. Thus, in the convex flux case, 

we prove convergence to the unique physically correct solution. For 

hyperbolic sYBtems of conservation laws, we formally use this construction to 

extend the first author's first order accurate scheme, and show (under some 

minor technical hypotheses) that limit solutions satisfy an entropy 

inequality. Results concerning discrete shocks, a maximum principle, and 

maximal order of accuracy are obtained. 

presented. 
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*Research supported by the National Aeronautics.and Space Administration under 
NASA Contract No. NASl-17070 while the author was in residence at the 
Institute for Computer Applications in Science and Engineering, NASA Langley 
Research Center, Hampton, VA 23665. Additional support by NSF Grant No. Mes 
82-00788, ARO Grant No. DAAG 29-82-K-·0090, and NASA Grant No. NAG-1-270. 

** Research supported under NASA Grant No. NAG-1-269. 

i 



o. Introduction 

Recently a number of new shock capturing finite difference approximations 

have been constructed and found to be very useful in shock calculations, e.g. 

[3], [4], [16]. In addition to conservation form, these schemes are usually 

constructed to have as many as possible of the following properties: 

(1) Stable and sharp discrete shock solutions 

(2) ~mit solutions which satisfy a geometric and/or analytiC entropy 

condition. 

(3) A bound on the variation of the approximate solutions, at least in 

both the scalar, and linear systems, case. 

(4) Second. order accuracy in regions of smoothness, (with certain 

isolated exceptional pOints, as described in Sect:ton II below). 

In this paper we shall present a general procedure for constructing schemes 

with a flve point band width satisfying all of the above. We shall then 

prove a eonvergence theorem for a wide class of approximations to any scalar 

convex conservation laws in one space dimension, using recent uniqueness 

results of DiPerna [5]. 

Our convergence proof involves the follOwing simple steps: 

(a) We first obtain a variation bound for a wide class of second order 

accurate approxj.mations. This implies that, for any sequence of mesh widths 

approach:Lng zero, a subsequence of approximate solutions converges to a weak 

solution of the Cauchy problem. 

(b) Next, we obtain a single discrete entropy inequality for a large 

sub-class of the approximations mentioned above. Then all limit solutions 

in this Bubclass satisfy the inequality. 
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(c) We finally invoke the uniqueness results of DiPerna to prove 

convergence to the solution to the Cauchy problem, as the mesh width goes to 

zero, for the subclass mentioned in (b). 

Earlier, Majda and Osher [20], modified the Lax-Wendroff scheme, keepirg 

its essential properties, so that an entropy inequality was obtained. DiPerna 

(private communication) has proven L2 convergence of this modification 

(again approximating convex conservation laws) using the theory of compensated 

compactness. No variation bound is possible for this second order accurate 

approximation. 

From a practical point of View, this lack of variation bound means that 

conventional schemes such as Lax-Wendroff, when approximating hyperbolic 

systems of conservation laws, even with an entropy modification, suffer from 

a lack of robustness in computing complex flows with shock waves and steep 

gradients. While such schemes have been widely used in a variety of problems, 

(see [2] for references), that list of solved problems does not include flows 

with strong shocks (say Mach 5 upstream, normal to the shock), when the shocks 

are captured. 

A main drawback of most finite-difference schemes is that discontinuities 

are approximated by discrete transitions, that when narrow, usually overshoot 

or undershoot, or when monotone, usually spread the discontinuity over many 

grid points. 

Upwind schemes have been designed and used over the years, largely 

because of their success in treating this difficulty. Those based on solving 

the Riemann problem either exactly (Godunov's method [10]) or approximately 

e.g. (Osher's [24], or Roe's [28] with an entropy fix [34], [22]), have 

been extremely successful, especially when made second order accurate, [3], 

[4], or [16]. 
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We should particularly mention the early investigations of van Leer [32], 

[33]. There he introduced the concepts of flux limiters, and higher order 

Riemann solvers. Recently, Harten [16], using an argument also used in 

[1], [31] and [29], obtained simple sufficient conditions compatible with 

second order accuracy, which guarantee that a scalar one dimensional approxi

mation is TVD - total variation diminishing. He constructed a scheme having 

that property, and formally extended it to systems, using a field-by-field 

limiter, and Roe's decomposition. 

Using any e)f the three nonlinear d.ecompositions (Godunov's, Osher's, 

or Roe's) one can obtain field-by-field limiters for systems, as described 

in Section VI below. Peter Sweby, [30], has investigated the properties 

of various limiters, and clarified their application considerably. The notation 

used in Sections III-VI below is due to him. 

We Bhall use the now introduced term" high resolution scheme" to mean 

a formal extenston to systems via a field-by-field decomposition, of a scalar, 

second order acC!urate, variation diminishing scheme as in [16]. These schemes 

do not, in general, satisfy the entropy condition - e.g. expansion shocks 

exist as stable solutions of high resolution schemes based on Roe's (unmodified) 

scheme. In Section VI, we use Osher's decomposition and certain limiters, 

to prove. that under technically reasonable hypotheses, limit solutions of 

certain high resolution schemes do satisfy the entropy condition for hyper

bolic systems of conservation laws. 

Fundamental to our work is a formula measuring the discrete entropy in 

a cell for any :scheme, obtained in [22]. See equations (4.2), (4.3), and (4.!~) 

below. In [221, a class of approximat:tons called E schemes was shown to 

be convergent, even for nonconvex, but scalar flux functions. This seems to 

be the widest known class of convergent schemes in this general case, but 
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unfortunately the approximations are, at most, ~irst order accurate. 

All the results in this paper are ~or semi-discrete (continuous in time) 

approximations, and thus can serve as guideline ~or a wide variety o~ time 

discretizations, both implicit and explicit. One o~ the principal applications 

o~ this theory has been in supersonic and transonic aerodynamiCS, where 

phenomena close to steady state are often studied. As an important example, 

one might mention the enormous advantage ~ound when algorithms used to solve 

the transonic small disturbance equation, bas.ed on traditional Murman [21] 

(Roe's unfixed for scalar equations) di~~erencing were replaced by using the 

E schemes of Engquist and Osher [12], [7], and later Godunov [13]. This 

minimal coding change, based on an entropy ~ix, increased the robustness 

o~ production codes by an order of magnitude, or more. 

Goodman and leVeque, [11], have recently obtained a rather depressing 

result - two space dimenSional, scalar approXimations, cannot be TVD, and 

still be more than ~irst order accurate, i~ the associated ~lux ~unctions 

are reasonably smooth. Nevertheless, two dimensional schemes based on 

dimension by dimension high resolution di~~erencing, do per~orm extremely 

well, even ~or complex configurations, with very strong shocks. See [4], 

[16], [3], and Section VII below. This phenomenon remains to be justified 

analytically. 

The format of this paper is as follows. In Section I, we review the 

relevant theory of weak solutions ~or hyperbolic systems of conservation 

laws. In Section II, we do the same for the theory of approximate solutions, 

and rederive results about bounding the variation in Lemma (2.1). We then obtain 

a maximum (minimum) principle and a nonlinear saturation result - Lemmas (2.2) 

and (2.3). In Section III, we develop a systematic procedure used to obtain 

high resolution schemes, based on any three point first order accurate TVD , 
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scheme. We use second order" upwinding," together with flux limiters to do 

this. In Sect:lon IV, we show how to obtain an entropy inequality, and hence 

convergence, which is our main result, Theorem (4.1). We use artificial 

compression or rarefaction operators (ACR). Harten introduced the notion 

of artificial compression in [15]. Here we use the compression part to firm 

up shocks, and contacts, and the rarefaction part to enforce an entropy 

condition. Rather precise admissible bounds on the ACR term are given. 

Section V is concerned with existence of steady discrete shocks for certain 

high resolution schemes. In Section 'VI, we construct our high resolution 

scheme for systems, and then prove an entropy inequality: Theorem (6.2). 

Finally, Section VII gives numerical evidence demonstrating the utility 

of these schemes, as well as SOme results illustrating a few theoretical 

points made throughout this paper. See also [3]. 

Acknowledgement: The authors would like to thank Peter Sweby and Bram van Leer 

for some very valuable conversations concerning flux limiters. 

I. Review of Theory of Weak Solutions 

We shall consider numerical approximations to the initial val ue problem 

for noruinear hyperbolic systems of conservation laws 

(1.1) = 0, t > 0, -1 < x < 1, 

wi th periodic boundary conditions: 

w(x + l,t) ; w(x,t), 
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and initial conditions w(x,O) = wO(x). 

Here w(x,t) is an m-vector of unknowns, and the flux function, few), 

is vector valued, having m components. The system is hyperbolic when the 

Jacobian matrix has real eigenvalues. 

It is well known that solutions of (1.1) may develop discontinuities 

in finite time, even when the initial data are smooth. Because of this, we 

seek a weak solution of (1.1), i.e., a bounded measureable function w, such 

that for all ~ € CO(R X R+), 

(b) 

f f (w~t + f(w)~)dxdt = ° 
RxR+ 

lim Ilw(x, t) - wo(x)1I 1 = ° 
t~o L 

Solutions of (1.2) are not necessarily unique. For physical reasons, 

the limit solution of the viscous equation, as viscosity tends to zero, 

is sought. In the scalar case, this solution must satisfy, for all ~ € C~(R X R+), 

~ ~ 0, and all real constants c: 

(1.3) (a) lfc 1w - clcpt + sgn(w - c)(f(w) - f(c»~)dxdt <.:: 0. 

This is equivalent to the statement: 

(1.3) (b) 
d " 

dt Iw - cl + ~ ((f(w) - f(c»)sgn(w - c» ~ 0, 

in the sense of distributions. 

Such solutions are called entropy solutions. Kruzkov has shown·in [18], 

that two entropy solutions satisfy:-

(1.4 ) 

for all tl ~ to. Hence, condition (1.3) guarahtees the uniqueness of solutions 
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to the scalar version of (1.2). Existence was also obtained in [18]. 

For systems of' equations, Lax has def'ined an entropy inequality [19], 

with the help of an entropy function V(w) for (1.1), defined to have the 

following properties: 

(i) V satisfies 

V f = F w w w 

where F is some other function, called the entropy flux. 

(ii) V is a convex function of w. 

It follows from (1.1), upon multiplication by Vw' that every smooth 

soluti.on of (1. 1) also satisfies: 

(1. 6) 

It was also shown in [19], that if w is the bounded a.e. limit of 

soluti.ons to the regularized equation, then the limit satisfies, in the weak 

sense, the following inequality: 

Vt + F < O. x-

Inequali.ty (1.3)(b), for scalar equations, is just (1. 7), with V(w) = 

\w - e\. 
JCnequal:i.ties (1.3) and (1.7) have important geometric consequences for 

piece.rise continuous solutions. Suppose w(x, t) is such a solution having a 

jump discontinuity, wL(t), wR(t) moving with speed s(t). Then (1.2) 

implies the well known jump condi tioJ13 

(1.8) 

In the scalar case, (1.3) is equivalent to Oleinikl s condition E across 

the shock 
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(1.9 ) 

for all w between wL and wR• 

If f is convex, then (1.9) is e~uivalent to the statement that character-

istics flow into the discontinuity, as t increases. Also, for scalar 

convex f, ine~uality (1.7) for a single fixed convex V is e~uivalent to 

(1.3) for all constants c, if the solution is of bounded variation. This 

is a conse~uence of the recent results of DiPerna [5]. Thus uni~ueness in 

this case is a conse~uence of Kruzkov's results [18]. This fact is crucial 

to our convergence proof in Section IV. 

For hyperbolic systems of e~uations, the Jacobian of f, denoted by dr, 

has real eigenvalues, which are usually assumed to be distinct: 

... < A , m 

corresponding to right eigenvectors: rl,r , ••• ,r • 
2 m 

Lax [19], then defines 

the kth field to be linearly degenerate if 

\l A·r == o. w k k 

He also defines the field to be genuinely nonlinear if 

For genuinely nonlinear fields, a k shock moving with speed s, is 

defined to be a discontinuity of w, such that m + 1 characteristics 

flow into the shocks, and 

This geometric condition is e~uivalent to (1. 7) for weak shocks [19]. 
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II. Preliminary Theory of Approximate Solutions 

We consider a semi-discrete, method of lines, approximation to (1.1). 

We break the interval [-1,1) into subintervals 

J. = {xl (j - ~.)6 < x < (j + .~)6}, 
J -

I~t x. = j6, be the center of each interval J., with end points 
J J 

X. h Xj 1. 
J""2 +'2 

Define the step function for each t:> 0, as 

for x € J
j

• 

'l!he initial data is discretized. via the averaging operator T6 , 

For ar~ step function, we define the difference operators: 

A method of lines, conservation form, discretization of (1.1), is a system 

of differenti.al equations: 

d 
""U:"' u

J
' + D h. 1 = 0, J = O,"_rl, ••• ,+_N 

en; + J-'2 

Here, the numerical flux defined by: 

for x € J .• 
J 



10 

h. 1 = h( U. k 1'···' u. k)' J -"2 J+ - J-

for k ~ 1, is a Lipschitz continuous function of its arguments, satisfying 

the consistency condition: 

h(w,w, ••• ,w) = few). 

It is well known that bounded a.e. limits, as 6 - 0, of approximate 

solutions, converge to weak solutions of (1.1), i.e. (1.2)(a) is astisfied. 

However, this does not also imply that the limit solutions will satisfy 

any of the entropy conditions mentioned above, e.g. [8], [9]. Some restrictions 

on h are required. 

A simple class of flux functions h, for which (2.2) converges to the 

(Xl 1 
unique entropy solution in L (L (R);[O,T]), ~s 6 ~ 0, for any T > 0, 

are scalar II~' schemes, [22]. Such schemes satisfy the followi ng : 

Definition (2.1). A consistent scheme whose numerical flux satisfies 

for all u between u. 1 and 
J-

is said to be an E scheme. 

It is easy to see that this class includes the widely known class of 

three point monotone schemes, i.e. those for which 

h. 1 = h(u.,u. 1) 
J~ J J-

with h. 1 nonincreasing in its first argument, nondecreasing in its second. 
J-"2 

Partial derivatives of a numerical flux, when needed, will be denoted 

via: 
(J 
~ h(u. k'···'u., ••• ,u. k 1) = h • 
QU. J+ J J - + Y 

J+Y 
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Thus a. C
1 

three poi nt scheme is monotone iff: 

One particular three point monotone scheme is due to Godunov [10], and 

has a special significance to this theory. The flux for Godunov's scalar 

scheme can be defined by 

G . 
f( u), h. 1 = hG(U.,u. 1) = min if u. 1 < u. 

J--:2 J J-
u. 1<U<U' 

J- - J 
J- - - J 

= max f( u), if u. 1 > U .• 
u. l>U>U' 

J- J 
J- - - J 

Thus, one can characterize E schemes as precisely those for which 

(2.6) (a) G 
if u. 1 < u. h. 1 < h. 1 

J--:2 - J-2" J-. J 

(b) G 
if > u. 1. h. 1 > h. 1 U

j J --:2 - J-2 J-

It follows from [22], Lemma (2.1), that these approximations are at most 

first order accurate. 

Together with an entropy inequality, a key estimate involved in many 

convergence proofs, is a bound on the variation. We present an argument 

origlnally d.ue to Sanders for monotone schemes, [29], used to obtain this 

bound. 

For any fixed t > 0, the x variation of u
6

(x,t) is: 

Let 

B(U6 ) =:L: \6+uj (t)\. 

j 

X. 1 = 1, if 6 u. > 0 
J+2" + J -

X. 1 = ··1, if 6 U., < o. 
J+2" + J 
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Then: 

if' we can write 

(c) 

= ~ "" (X. 1 - X. 1)6. h. 1 < 0, 
L..l L.J J+2 J ~ + J ~ -

j 

6. h. 1 = - [C. 16. U. - D. 16. U.] 
+ J ~ J+2 + J J ~ - J 

c. 1 > 0 
J+2 -

D. 1 > o. 
J~ -

In the case of' E (or 3 point monotone) schemes, this f'ollows by 

defining: 

(

h. 1 - f(U.») _ 
J+2 J c. 1 = -

J+2 6. U. 
+ J 

as in [22]. 

Harten in [16], pointed out for explicit methods, that a variation bound 

could be obtained for schemes which-are higher order accurate. In our present 

method of lines context, it involves a five point consistent approximation 
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(a) 
dUo 

ot-= 1 
- A 6. h. 1 = c. 16. U. .- D. 16. U. 

w + J""2 J+2" + J J""2 - J 

with (b) c. 1 = C ( U • , U. l' U • , U. 1) > 0 
J+2" J+2 J+ J J'- -

and (c) D. 1 = D( uj l' U • , U. l' U. 2) > 0 
J""2 + J J- J- -

both Lipschitz continuous functions of their arguments. (See also van Leer 

We have thus proven for schemes of type (2.8). 

We also have the maximum and minimum principles: 

Let max U. ( 0) = M, min U. ( 0) = m. Then, fo r 0 < t 
J J 

and eaeh j: 

m<u(t)<M. 
- ~l -

Moreover, if c. 1 :> 0, and U. (t) :: M, then u. l(t) = M. If D. 1 < 0 
J+2" J J+ J""2 

and u. ( t) = In, then u. l( t) = m. 
J J-

Proof. ~I'he proof is trivial if the initial data is constant. Otherwise, 

we let (u~(t»)~=_N' satisfy 

:for E; > 0, 

~ u
J
: = (C. 1 + e:)6. u: - (D. 1 + e:)6. u: 

en:; J+2" + J J -"2 - J 

with the initial data u~(O) == u.(O). 
J J 

Suppose the maximum of u:(t),_ for 0 < t < T, occurs for 
J - -

with to > O. Then (2.8), (2.9), imply that u:{-to) == u: (to). 
J J O 

u~(t) == constant, for 0 < t < T. This is a contradiction. Thus: 
J 
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Let e.r. o. It follows that u. (t) < M for each j, t. 
J -

The remainder of the proof follows analogously. 

Next, we prove a limit on the possible accuracy of approximations (2.8). 

Lemma (2.3). Approximation (2.8) is at most first accurate at nonsonic 

critical points of u. 

(A sonic point u is one such that ft (u) = 0.) 

Proof. ~or any C2 function u(x), we let C. l(U(X + 26),u(x + 6),u(x), 
J+2" 

u(x - 6» be denoted by C. b C. l(U(X),u(x),u(x),u(x») be denoted by 
J+"2 J+"2 

and similarly for D. 1. 
J~ 

Then 

1 . 
- A 6 h.(u(x + 26),u(x + 6),u(x),u(x - 6)) 

u - J 

6 = (C. l(U) - D. l(U»U + - U (C. leU) + D. leU»~ 
J+"2 J ~ x 2 xx J+"2 J ~ 

+ U (C. 1 - C. l(U) - D. 1 - D. l(U» 
x J+"2 J+"2 J~ J~ 

+ 0(6). 

Consistency implies: 

C. I ( U) - D. I ( U) = _ft (U), 
J+"2 J~ 

while second order accuracy at critical points means 

(2.12 ) 

Solving (2.11), (2.12), gives us: 
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C
j 

l(U) = -~ fl (U) 
+2" 

D . 1 ( u) = ~ fl (U). 
J""2 

Thus one of inequalities (2.8)(b), (c) must fail at nonsonic u. 

Thus, although schemes of the type (2.8) can "be made to be as high as 

third order accurate, Lipschitz continuity of C. 1, D. 1 implies a local 
J+2" J""2 

degeneracy to first order accuracy at smooth maxima and minima. This local 

degeneracy, together with some results on initial boundary value problems in 

[14], indicate strongly that overall second order accuracy is the best 

possfble. 

III. Total Variation Diminishing, Second Order Accurate, Scalar Approximations 

vie now describe a systematic procedure used to construct second order 

methods of the form (2.8) from three point, first order methods of the same 

type. 

live begin with a three point scheme 

(3.1) 

for 
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(1) 
( 

h( u. l' u.) - f( u. ) ) 
C = _ J+ J J > 0 
j+~ 6 u -

+ j 

(1) (f(U.) - h(u., u. 1)) 
D. 1 = J J J- >0 
J-2 6 u. -

- J 

These quantities are both nonnegative for E schemes. Moreover, the 

entropy inequality was shown to be valid in [22] for this class. Thus, using 

Lemmas (2.1), (2.2), and a standard argument, e.g. [29], we have convergence 

to the unique entropy solution, as 6 ~ 0; for this class. 

However, the nonnegativi.ty of these functions, by itself, need not imply 

convergence, since the entropy conditions may fail, as it does for Murman's 

(Roe's) scheme. See e.g. [34]. We do assume nonnegativity of 

in what follows, as well as Lipschitz continuity of h(u,v). 

Our first attempt at constructing a higher order accurate scheme comes 

from a simple upwind type of hybridization: 

dUo 1 (1) 1 (1) 
---..J.. = A (1 - ~ 6 )C

j 
16 u. - A (1 + ~ 6 )D. 16 u. at u + +"2 + J U - J ~ - J 

with the numerical flux satisfying: 

(3.3) ~. 1 = h(u.,u. 1) - ~ (h(u. l'u.) - f(u.)) + ~ (f(u. 1) - h(u. l,uj )) 
J -"2 J J - J+ J J J - J - -2 

= ~ (f(u.) + feu. 1)) - ~ 66 h(u., u. 1). 
J J- + - J J-

(Throughout this work we shall often use the fact that consistency is equi-

valent to the statement: 

h(u,u) = f(u).) 

This scheme is, within second order accuracy, just the central difference 
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algorithm, and is thus, always second order accurate. It can not, by Lemma 

We can define the associated qllantities SO that 

where, in this case: 

(3.4 ) 1 
- "2 

(h(ll. 2,ll. 1) - hell. I,ll. 1)) ) J+ J+ J+ J+ 1 

(h(ll. I,ll.) - hell.,ll.» +"2 
J+ J J J 

It; is clear that the two quantities on the right above may become negative 

if the nontrivial ratios above become suffiCiently large. 

One possible remedy is to employ a flllX limiter, using the notation of 

Sweby [30]. (See also van Leer [32], for very original related work. ) 

Let: 

f(ll.) - h(ll.,ll. 1) 
R+ = J J J-

j f(llj 1) - hell. I,ll.) 
+ J+ J 

h(u. I,ll.) - f(ll.) 
R- - ~+ J_ J 

j - h(llj,ll. 1) - fell. 1) • 
J- J-

Our TVD approximation will be of the form 

dUo 1 
(3.6) ~ = '.7\ [h(u. l'u,) - h(ll.,ll.) -! 6. «ljr(R

j
- l)(h(U. I,ll.) - h(ll.,ll.))) at £..:> J+ J J J - + J+ J J J 

+ h(UJ.,llJ') - h(ll.,U. 1) +!6. «$(R~ l)(h(ll.,ll.) - h(ll.,ll. ])))]. 
J J'. + J- J J J J-. 

This scheme is easily seen to be second order accurate away from critical 

points, (i.e. points where the denominators in [3.5) approach z~ro), if the 
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Lipschitz continuous function, W(R), satisfies W(l) = 1. 

The resulting quantities C. 1, D. 1 are required to be positive: 
J+2" J;2' 

C. 1 = 
J+2" 

D. 1 = 
J;2' 

(
h(U. l'u.) - h(Uj'U'») [ [$(R~) _]] _ J+ J J 1 + 1.. __ J_ _ $(R. ) :> 0 

6. u. 2 - J+l-
+ J R. 

J 

(
h(U.,u.) - h(u.,u. 1») [ [W(R~) J J J J - 1 + 1.. __ J__ 

6. U 2 + 
- j R. 

J 

We thus have the required inequalities for $(R~): 

[ 
W(R~) J 

1 +! __ J_ - w(R~ 1) > 0 
- J+-R. 

(3.8) (a) 

J 

(b) [ W(R~) ~ 
1 +! __ J_ - w(R~ 1) > o. 

+ J--R. 
J 

Various slope limiters have been developed. See Sweby [30], for a 

numerical and theoretical analysis of their properties. As an example, we 

may take 

W(R) == 0 if R < 0 

W(R) == R, if' 0 < R < k for 1 < k < 2 

Ijr(R) == k, if R > k. 

Let the numerical flux defined from (3.1)-(3.8) be called 

i. 1 = $feu. 1,Uj,Uj l'u, 2). 
J;2' J+ - J-

Its precise definition is 

(3.10) i(u. l'u"u, l'u, ) = h(u.,u. 1) 
J+ J J - J -2 J J -

1 
- 2" 

+ ! 

W(R~)(h(u.,u. 1) - h(u. l'u. 1» 
J J J- J- J-

w(R~ l)(h(u.,u.) - h(u.,u. 1». 
J- J J J J-
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We thW:1 have the following: 

Theorem (3. 1). The approximai; ion den ned through 

(3. 11 ) 

with Wo € 1,1 n L n BV, defines ul:,.(x,t) having the property, that as 

D. .... 0, there exists a converging subsequence UN (x, t) which converges in 

ex> '1 
L (L' (R), [O!.T]), to a weak solution of (1.1). 

The proof is a routine consequence of Lemmas (2.1) and (2.2). See, 

e.g. [29]. 

Theorem (3.2). The approximation (3.10) is second order accurate, 

exce:pt at iBolated zeros of hl (w, w )w x' or hO (w, w )w x. 
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IV. High Resolution Schemes and the Entropy Condition for Scalar Approximations 

Following recent tradition, we christen the schemes constructed in the 

last section high resolution schemes - namely they are second order accurate 

(with the usual exceptional points), variation diminishing, and have a five 

point bandwidth. The question remains - is it true that limit solutions 

satisfy the entropy condition? For first order non E schemes, variation 

diminishing is not enough. The perennial example is Murman's (Roe's) scheme 

with fll (u) > ° and 

(4.1) hM(U. l'u.) = ~ (f(u. 1) + f(u.» 
J+ J J+ J 

1 
- 2" 

6. f( u. ) 
+ J 6. u 
6. u. + j 
+ J 

Given an entropy violating shock L R 
u < u , with R f( u ), 

well known that 

L 
u. - u for j ~ 0, 
J 

R 
u. - u , 

J j > ° 

it is 

is a steady solution to (3.1). Moreover, since L R 
h( u. l' u.) == f( u ) == f( u ) == h( u., u. ), 

J+ J J J 

in this case, then any of our high resolution schemes (3.11), will have entropy 

violating solutions, if h(u. l'u.) = hM(u. l'u.). 
J+ J J+ J 

Let V(w) be any convex function. In [22], Section III, it was sham 

for any solution of (2.2), that 

dwV' (W)[h. 1 - few)], 
J+2" 

where the approximate entropy flux is defined through: 



21 

(4.3 ) FA(U.) = F(u.) + VI (u.)[h. 1 •• f(u.)]. 
J J J J~ J 

Thus, a sufficierrtcondition that any limit solution satisfy (1.6), for 

a fixed. V, is that 

(4.4) fu
uj +l 

V"(W)[h. 1 
J+u. 2 

J 

- few) ]dw ~ o. 

In order that the above inequality be valid for all convex V, it is 

necessary and sufficient that h. 1 correspond to an E scheme, and hence 
J+"2 

that the approximation be at most first order accurate, [22]. Thus we shall 

only obtain OUI entropy inequality for a single V( w), say V( w) = ~ J2. 

This iE; suffic:ient for convergence, if f is convex, as will be shown in 

Section IV. 

We now proceed to modify the flux difference quantities, to ensure that 

(4.4) is valiet, and, moreover, to sharpen discrete shock profiles. We shall 

do thiB by ustn~ the notion of artificial compression introduced by Harten 

[15], ef also [16]. We also add negative artificial compression (= artifici.al 

rarefadion), if f' (u.) < f' (u. 1) , 
J J+ 

and a certain amount of (positive) 

artifieial compression if f' (u.) ,. f' (u. 1). The high resolution properties 
J J+ 

are preserved). and (4.4) is shown to be valid. 

n is known that too much artificial compression can cause expansion 

shocks to develop. We shall obtain fairly preCise bounds on the amount allowed. 

Once aga:ln, we define 

hl (u,v) 
d = du h(u,v) 

() 
= CiV h(u,v). 

We shall also use two Lipschitz continuous functions of u
j
+

l
' u

j
' 
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denoted by a~ 1, a~ 1 and defined below. Our scheme is an artificially 
J+2 J '-2 

compressed or rarefied version of (3.6). 

We first modify our flux differences via the following: 

(4.5) (a) (h(u. l'u,) - h(u.,U.)m 
J+ J J J 

.. m 
(h(u. l'u, 1) - h(u. l'u,» J+ J+ J+ J 

[ 
(ho(U' l' u. 1) - ho(U" u.» ] = (h ( U . , U. ) - h ( U . , U. » 1 - a -: 1 .,..,,.......-=J+_......,,.,J..;..+'T"_-:-r---"J'--"'-J_ ...... 

J+l J+l J+l J J+2 (h(U. l'u, 1) - h(u. l'u,» J+ J+ J+ J 

Here a~ 1 are both positive numbers, chosen first so the quantities in 
J+2 

brackets in (4.5) (a,b) are both always between 0 and 2, i.e. we must 

have: 

(4.6) (a) 
(h(u. l'u,) - h(u.,u.» 

I - (h (u ) h (u » I < _ J+ J J J a. 1 1 . l' u. 1 - 1 ., u. - f::, U J+? J+ J+ J J + j 

h(u. l'U' 1) - h(u. l'U') 
I a -: 1 (ho( u. l' u. 1) - hOC u., U. » I ~ J+ J+ f::, U. J+ J 

J+2 J+ J+ J J + J 

We now let: 

m (h(u.,u.) - h(u.,u. l»m 
R.+ = ____ ~J~J~ ____ ~J~~J_-~ __ __ 

J (h(u. l'u, 1) - h(u. l,u.»m 
J+ J+ J+ J 

. m 
m = (h(Uj +l , uj ) - h(Uj , Uj » 

R. 
J (h(u.,u. 1) - h(u. l'u, l»m 

J J- J- J-

Our scheme, which uses ACR (artificial compression-rarefaction) is: 
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Cll. 1 m 
(4.7) ""'tJ = - ~ [h(UJ.+l,u

J
.) - h(u.,u.) - ~ D. (W(R.--L)(h(U. l'u,) - h(u.,u.»m) 

a l'}' J J - J+- J+ J J J 

m 
+ h(u.,u.) - h(u.,u. 1) + ~ D. «W(R.+l)(h(U.,u.) - h(U.,u. _L»m)] 

J J J J - + J - J J J J -, 

where we take W(R) to be as defined in (3.4), with k = 1. 

We let the numerical flux defined through (4.5), (4.6), (4.7) be denoted 

.... ac 
by H. 1-

J-"2' 
It is precisely defined by (3.10), with the superscript m 

attached. to both R:!;. and the two flux differences. 
J 

Now', for TVD, we must have: 

m 

(

h(U. l'u.) - h(U.,U.»)[ (h(u. l'u.) - h(u.,u.»m o <... _ J+ J J J 1 + ~. J+ J J J 
- D. u. {h(u. l'u.) - heu.,u.» [

W(R.-) m J] 
m~ - W(Rj~l) 

+ J J+ J J J R. 
J 

m m+ 

( 
h( U., u.) - h( u., u. 1») [ (h( U., u.) - h( u., u. 1) [Ij/(R.) 

J J J J- 1 + 1.. .1 J < t J- J 
f:!. U. 2 Ui ( u. l' u.) - h U., u. ) ) m 

- J J+ J J J R.+ 
0< 

J 

which iEi valid., because h satisfies (2.7), and 'because of (4.5), (4.6) 

and (3.10). Theorems (3.1) and (3.2) are also valid. for this ACR version of 

our scheme, but our real goal is to choose the a:!;. 1 so that the inequality 
J+"2 

(4.8) 
u. 1 

(J+ ac J IJ [:»j+~ - f(w)]dw ~ 0 
u

j 

is valid, i. e. to enforce inequality (4.4), with v(w) = ~ w2 • 

It is easy to see that 

(4.9) i
Uj+l 

.- f ( w ) dw = ~ D. u. [f ( u. -L) + f ( u. ) ] 
u. + J J+- J 

J 

i
Uj+l 

+ ~ [(~(D. u.»2 - (w - ~(u. 1 + u.»2]f"(w)dw. 
u. - + J J+ J 
J 
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Substituting this into (4.8), gives us the equivalent, desired inequality 

(4.10) .1. r Uj
+

l 
[(.1. /:). u.)2 _ (w - i(u. 1 + u.))2]f"(w)dw 

2) I' 2 + J J+ J U. 
J m 

+ i /:). u. [(h(u. l' u.) - h(u., u.) )m(l - ~(R. -1)) 
+ J J+ J J J J+ 

- a: l(hl(U. l'u. 2) - hl(U.,U.»)b. u.)] 
J+~ J+ J+ J J + J 

m 
+ i(/:). u.)[(h(u. l'u.) - h(u. l'u. l)m(l - W(R.+)) 

+ J J+ J J+ J+ J 

+ - --
- a. l(ho(U' l'u. 1) - ho(U"U')/:). u.] < o. 

J+~ J+ J+ J J + J -

From (4.5), (4.6), and the fact that h is an E flux, it suffices to 

prove (after cancelling the factor i) 

/

u' l J+ 
(4.11) f"(w)dw[(i /:). u.)2 

u. + J 
J 

We thus have: 

- (w - i( u . 1 + u.))2] 
J+ J 

- a: I (/:). u.)2 [hl ( u. l' u. 1) - hl ( u., u. )] 
J+~ + J J+ J+ J J 

- a~ l(/:). u.)2[hO(U. l'u. 1) - hO(U"U.)] < O. 
J+~ + J J+ J+ J J -

Lerruna (4.1). Any solution to (1.1) which is the limit of a subsequence 

of approximate solutions ~/:).' as /:).' ~ 0 of 

(4.12 ) 
duo 
~= 

11 -u.(o) = E WO(s)ds, 
J J. 

J 

satisfies the entropy inequality (1.6), provided that inequalities (4.6) 

and (4.11) are valid. 
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As mentioned in the introduction, for scalar convex conservation laws 

where solutions lie in BV, a single entropy inequality implies uniqueness 

of solu.tions. This follows from the recent results of DiPerna [5]. We know 

that if w( x, 0) E BV, then the function 'tJ ~ (x, t ) has x variation bounded 

by that. of w(x,O), for any fixed t. In particular 

(4.13 ) 

for any t > 0, ~ > 0, h :> o. 

The dominated convergence theorem then guarantees that any limit solution 

w( x, t ) will :have x variation bounded by w( x, 0), uniformly in t. Cons ider 

the interval 0 ~ t ~ T, for any T > o. Then 

1 fl . {T I (i"rt-h d'tJ~ I 
= h -1 dx) 0 dt ) t ds (x,s)ds 

where M is the Lipschitz constant in: 

1 

1l:l(Uj+l,Uj,Uj_l,Uj_2) - l:l(Vj+l,Vj'V'j_l,Vj"2)\ ::: M L \uj+l' - vj+rl 

r=-2 

for any pair of vectors [U.}, (v.}. 
J J 
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Thus the dominated convergence theorem implies that any limit solution 

w(x,t) will have bounded variation in x and t. This together with Lemma 

(4.1) and the above mentioned uniqueness result gives our 

Theorem (4.1). (Convergence) The sequence of approximate solutions U
6 

converges a.e. as 6 ~ 0 to the unique solution of the scalar convex 

conservation law (1.1) provided that the initial data is in BV and that 

inequalities (4.6) and (4.11) are valid. 

For simplicity, we exemplify this theory by considering semi-discrete 

versions of the following three monotone schemes. 

(4.15) (a) Lax-Friedrichs: 

with ° < k chosen so that If' (u)1 ~ ke, for some e with 

0< e < 1. 

(b) Engquist-Osher: 

EO i Uj
+

l
., fUj 

h (u. l'u.) = mln(f (s),O)ds + max(f' (s),O)ds - f(O) 
J+ J 0 0 

= f (u. 1) + f (u.) - f(O). 
- J+ + J 

(c) Godunov: 

G 
h (u. l' u.) = 

J+ J 
min feu) 

u.<u<u. 1 J- - J+ 

if u. < u. 1 
J J+ 

= max feu) if 
u.>u>u. 1 J- - J+ 

u. > u. 1. 
J J+ 

For Lax-Friedrichs, (4.6)(a) and (b) become 
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(4.16) 
(f(u. ) - f(u.» 

l a~ l(f' (u. 1) - fl (u. »1 < k + J+1 6 II J 
J+- J+ J - - . 

2 + J 

while (4.11) :Ls valid if: 

(4.17) 
(uj +1 [(A u.)2 J u f'" (w)dw D+2 J 

j 

< min a+: 1(6 ll. )2(fl Cll. 1) - fl (u. ». 
- J+-2 + J J+ J +,- -

Clearly these ine~ualities are compatible if e is sufficiently small. 

Moreover, if f is convex, then (4.16) becomes 

(4.18) Ca) :If ll. < u. 1 J J+ 
(rarefaction) 

u. 1 A 2 r J+ [( D U. ) J II f'" (w )dw ....72 J 

j 

(6 u.)2 (fl (u. 1) - fl (u. ) ) 
+ J J+ J 

(b) :If u. > u. 1 (shock) 
J J+ 

{U
j
+

1 
:r" (w )dw [( '\ uj ) 2 _ (w _ :\c( "j+l + "j»2 ] 

+" JUj 
a. 1 < --"~--------------------

J+;2 - (6 u.)2(f! (u. ) - fl Cu.» 
+ J J+l J 

The right side of (4.18) is always positive for convex f. For example, 

for few) = t~, the right side is ~. 

The precise restrictions for this case become 

(4.19) Burgers I e~uation 

(a) 1 a:!; l6 u.l +-~IU'l+ u.\ <k 
J+~ + J J+ J 

and 
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(b) + 1 
sgn(u. 1 - u.)(a-:- 1 - -6) > O. 

J+ J J+~ -

Thus the high resolution scheme based on LF is a convergent approximation 
+ 

to Burgers' equation if e is small enough and the a~ 1 are then chosen as 
J+~ 

above. 

For the Engquist-Osher scheme, (4.6)(a) and (b) become: 

- 'F(f(u. )-f(u.» 
la~ l(f' (u. ) - f' (u.»)1 < F J+l F J 

J+- - J+l - J - t::,. u. 
2 + + + J 

while (4.11) is valid if: 

I
U' l ,,2 

J+ [(u. u. ) 
(4.21) u. :f'~(W)dW +2 J 12J - (w - ~(u. 1 + u.» 

J+ J 
J 

Inequalities (4.20) and (4.21) are obviously compatible for convex f, 

for certain bounded a~ 1, if It::,. u.\ is suffiCiently small (i.e. in a 
J+~ + J 

region of smoothness). They are also compatible for It::,. u.1 bounded away 
+ J 

from zero. This follows since we may take in (4.20) 

+ +" (t::,. f u.) 
= + 'F J 

aj+! Ct::,. u.)(t::,. fl Cu.)) 
+ J + -+ J 

It now remains to prove that (4.21) is valid, i.e. 

- (w - !(u. 1 + u.»2l+ (t::,. f.,...(u.»).6 u. < 0 
J+ J J - +,. J + J -

or equivalently 



(f (u.) - f (w»dw < o. 
+ J + -

These last are obvious facts. 

In the case few) = ~ ~, then (4.21) becomes 

(4,.25) (Burgers' equation) 

(a) if 

(i) 

(ii) 

u. < u. 1 
J J+ 

(rarefaction), then: 

- .. 1 a. 1 .,> -
J+'2 -- 6 

+ a. 1 ,. 0 
J+'2.-

+ 1 a. 1 > 7" 
J+'2 .- 0 

if u. 1 < 0 
J+ -

if u. > 0 
J 

2 2 
1 1 

( 
3u. 1 + U. ) - J+ J 

aj+~ ~ 4" - 12 (6 u.)2 --

(iii) + J 
2 2 

1 1 
( 

3u. 1 + U. ) 

if u. 1 > 0 > U. 
J+ J 

(b) if 

(1) 

(ii) 

+ > J+.) a.l --+.- -
J+'2 - 12 12 (6 u.)2 

u. > u. 1 
J - J+ 

+ J 

(shock), then 

- 1 a. 1 <
J+'2 - 6 

+ a. 1 < 0 
J+'2 -

+ 1 
a. 1 < -6 

J+'2 -

if u. < 0 
J 

if u. 1 > 0 
J+ -

29 
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(iii) 

Moreover, if 

- 1 a. 1 < r. 
J+"2 - If 

2 2 
1 1 

(
3U.+U·1) + J J+ a. 1 < - - + -

J+2" - 12 12 (6 u.)2 
+ J 

if u. 1 < 0 < U., 
J+ J 

la~ 11 < l (which is admissible from (4.25), then (4.20) 
J+"2 - 2 

is no restriction at all. 

Thus, the E-O scheme incorporated into H~C1 yields a convergent high 
J+"2 

resolution scheme for any convex f, and any initial datum having bounded 

+ variation, provided the a~ 1 are judiciously chosen. 
J+"2 

A tedious calculation yields the analogous results for Godunov's scheme. 

v. steady Discrete Shocks 

We now check for the existence of discrete, steady, shock solutions to 

the high resolution, entropy condition satisfying schemes constructed in the 

previous section, based on the Engquist-Osher flux. Since the scheme satisfies 

Lemma (2.1), the profiles must be monotone. We shall also show that they are 

sharp. 

Let L R 
u , u , be the left and right states for a physically correct 

steady shock, i.e. 

f(UL) = f(uR), 

feu) < f(uL) for all u between uL and R 
u • 

A steady, discrete shock [u. } will satisfy: 
J 

(5.1) lim L u. = u 
j-+ ...00 

J 

lim u. R 
= u 

j_ ...ooJ 
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""'ac L ~. 1 == f (u) for all j • 
J+"2 

For simpHcity, we assume f" (u) > 0, wi th f' (0) = ° and f( 0) = 0. 

The numerical f'lux becomes 

~~Cl = f (u. 1) + f (u.) 
J+"2 - J+ + J 

1. 
- 2" 

+ ]~ 
2 

M_ M 
~(R. l)(f (u

j 
1) - f (u.)) 

J+ - + - J 
M+ M 

$(R. )(f (u. 1) - f (u.)) • 
J + J+ + J 

If we take k = 1 in (3.9), we have 

(5.3) (a) 
M_ M 

$(1\. l)(f (u. 1) -f (u.)) 
J+ - J+ - J 

:= -6 u. max [0, min ([6 f (u. ) -+- a~ 1 (6 f' (u. )6 u. ](-6 u. r1)] 
+ J ° 1 + - J+r J+"2+r + - J+r + J+r + J r= , 

(b) 
M 

$(H.+)(f (u. 1) - f (u. ))M 
J + J+ + J 

We shall seek steady discrete shocks of the same general form obtained in 

[8] for the E-,O scheme. 

These are 

L 
j < -1 u. - u , 

J -
R 

j >2 u
j - u , 

For the first order scheme, Uc) can be viewed as a smooth function of 

~, satisfying the above and 

f(UO) + f(ul ) = f(u
L

). 
, 
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For the present scheme, we shall get a different one parameter family of 

intermediate states. 

It follows for all j f 0, () "'ac ( L) that 5.3 implies: &I. 1 == f u • 
J+"2 

For j = 0, we have the following equation: 

f(UR)-f(ul)+a3/2(fl (uR)_fl (ul)(uR-u~~ 
Uo - ~ 

-f( u ) - a+ 1 (_f' (u »)( u.. - u ) ] o -"2 0 J. 0 ( ) = G ul ' Uo • ~ - Uo 

One special solution is, again, R . 
~ = u , Uo = Q. We have 

dG R 3 R 
a~ (u ,0) = 2 fl (u ) < 0 

dG . R 
~ (u ,0) = 0 Uo 

~G (uR 0) = (2.. _ 1. a - )fll (uR ) > 0 dui' 2 2 3/2 

~G R 
d d (u ,0) = 0 

Uo ~ 

~G = ~ f" (0) > o. 
dU2 

o 

A simple application of the implicit function theorem gives us: 

Theorem.(5.l). There exists a family of sharp, discrete, shock solutions 

to (4.12) of the type (5.3), with u
l 

a smooth function of Uo and 0 < Uo 
small enough. By symmetry, the same is true with Uo a smooth function of 

~, and -u
l 

small enough. 



33 

VI. Systems of' Conservation Laws 

We shall now build a second order accurate scheme approximating (1.1) 

f'or systems: m > 1 and verif'y some of' the desirable properties mentioned 

above. Our basic three point first order scheme will be the one devised 

by the first author [24], with Solomon [26], and analyzed jointly by us in 

[2]1, [25]. 

The numerical flux for this scheme is constructed as follows. First, 

we define a piecewise smooth, continuous path in phase space, connecting 

w. to w. l' made up of m subpaths. Along subpath k, we have 
J J+ 

(6 .. 1) 

with the eigenvalue of drew) corresponding to eigenvalue Ako 

(Here Al < A <... < A .) 
2 m 
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On such a subpath, the m - 1 independent Riemann invariants, corresponding 

to field k, are constants. Our ordering is as follows. We begin at w 

with k = m, stop at some endpoint, use k = m - 1, etc., arriving at 

w. 1 with the subpath corresponding to 
J+ 

k = 1. We call each such subpath 
1 

Y r. 1, 
J+:2 Y = m,m - 1, ••• ,1. There exists exactly one such path r. 1 = U r: 1, 

J +-2 J+-y=m 2 

1'or \ w. 1 - w.\ 
J+ J 

sufficiently small (actually, for physical systems such 

as Euler's equations, the construction works in the large, as long as 

cavitation does not take place [26]). 

We de1'ine the numerical 1'lux to be 

h? 1 = ! [1' (w. 1) + l' (w .) - f
r

. 1 \ dE' ( w ) \ dW] • 
J+2 J+ . J Jr 

J+2 

Here \ \ denotes the absolute value of a diagonalizable matrix. 

This algorithm yields a closed form expression for a h. 1 1'or various 
J+2 

physical systems, including Euler's equations 1'or compressible, inviscid, 

gas dynamics, [26], [3], because their Riemann invariants can be easily 

tabulated, and because all fields are either linearly degenerate, or genuinely 

nonlinear. We assume this property throughout the remainder of this paper, 

for (1.1). 

On such a k subpath, the integral in (6.2) is given by a simple 

expression involving ±.f(w) at endpoints of the subinterval, and, in the 

genuinely nonlinear case, it may also involve ±.2f(w), where w is the 

unique sonic point for which Ak(W) ~ o. 
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The full algorithm can be interpreted, geometrically, as solving the 

incoming Riemann problem in phase space, using only rarefaction, compression, 

or contaet waves, then averaging the resulting multivalued solution, in 

physical space, as in Godunov1 s method [3~.]. 

The first order scheme may be written so as to yield a field by f:Leld 

decomposition: 

(6.3 ) 

w'ith 

(6.4) 

Here 

1 ° 0' - A (h (w. l' w .) - h (w., w . ) ) 
w J+ J J J 

1 ° ° - 7\ (h (w.,w.) - h (w.,w. 1»' 
w J J J J-

(dr)+ = ~ « di') + I di'l ) 

(di')- = ~ «di') - I di'1). 

For a linearly degenerate k field, we have ~ 

and henee: 

k 
constant on r. 1, 

J+2 

(6.5) lk (di')+dw = X(A~+~)[f(WU) - f(wL
)] 

r. 1 
J+2 lk (di') -dw = (1 - X(A~+~) )[f(wu) - f(wL

)] 

rj+~ 

'where x.(x) == 1 if x:> 0, X(x) == ° if x::: 0, u L and w, w are the upper 

and lower limits of integration. . 
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(6.8) 2M 1 
crt = - E 

1 

( " (1 - ! /::; )Nk- . 1. + £..J + ,J+2 
k=m 

37 
1 

2J"' +) (1 + ! /::; )Nk . 1 • 
- ,J~ 

k=m 

This differencing, although formally second order accurate, again leads 

to overshoot, undershoot, and occasionally nonlinear instability. 

To remedy this, we limit the flux differencing, as in the scalar case, 

exeept that we do this separately in each field. We shall use the entropy 

function, discussed in the first section, in the construction of the scheme. 

We remark, that although the existence of a convex V(w) follows only if 

the overdetermined system 

has a convex solution, the fact is that most of the equations of physiCS are 

endowed with such an entropy. See [6] for further details. 

The entropy gradient will be used to construct a linear functional 

applied to vectors w. This is correct dimensionally, as pointed out by 

Harten-Lax in [17]. 

We first define 

(6.9) 

The ;~l,lgorithm in each field will involve the quantities 

(6.10) + Rk,j 

~,j 

for each field k = l, ••• ,m. 
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Here (, ) denotes the usual inner product in Rm. 

Using any flux limiter of the type described in Section III (i.e. W(R) 

satisfies (3.8), with ~(l) == 1), we define a second order accurate, TVD 

type discretization: 

(6.11) 
dw m 
J = - ~ (L (Nk- . .1. - ~ 6 (W(R- . l)Nk- . .1.» at L1 ,J+2 - -K,J+ ,J+2 

k=l 

We now show that for linear systems, this nonlinear scheme decouples 

to a second order accurate variation diminishing algorithm, and hence 

approximate solutiOns converge, as 6 ~ 0, to the unique solution of (1.1). 

(See also [16], for the first proof of such a result. ) 

We have 

with: 

and 

dr(w) = A = RL\L, 

L= 

Im 

, 

the constant matrices made up of left and right eigenvalues of A, suitably 

normalized so that 

( I- . , r.) == ° if i =I j 
J. J 

== 1 if i ==, j, 



and 

Then 

A= 

N~,j ~ = Uk,6._Wj )max(~.,o)rk 

N~,j+~ = (£k,6.+wj)min(~,o)rk. 

Moreover, since the entropy is just def'ined by V(w) = ~ (w,w) f'or 

linear systems, then 

6.(j,k)V = (£ 6. w)r • 
+ w k' + k 

Thus, if' we take the inner product of' (6.11 ) with £k' and denote 

(£k!'wj ) by w3
k

), we obtain 
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This Bcheme is of' the type (:3.6)-(3.8), and hence is TVD. Thus we have 

the variat:lon bound for each w~k) , as in Section II, as well as the maximum 
J 

(minimum) :principles stated there. We thus have the simple: 

Theorem (6.1). The approximation to the linear hyperbolic system (1.1), 

defined by (6.11), with initial data in 11 f") L n BV, converges as 6. ..... 0 

00 1 
in 1 (1 (H), [0, T]), to the unique solution of (1.1). 

Next, in order to sharpen shocks and contacts, and to enforce a discrete 

entropy condition f'or systems, we use ACR, as in the scalar case. We again .. 
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(as in the scalar case) require that W(R) be defined by (3.4), with k = 1. 

In order to add ACR, we use the k eigenvalue difference along a 

k subpath. This is defined by 

(6.12) max(Ak(wj+l_(k_l/m»)'O) - max(Ak(wj+l_(k/m))'O) = 6~j,k)A+ 

min(Ak(wj+l_(k_l/m)'O) - min(Ak(wj+l_(k/m))'O) = 6i
j
,k)A_. 

(6.13 ) 

for genuinely nonlinear k fields, and 

(b) NM+ N+ (1 ~+. (6 (j,k)w 6 (j,k)V )!) 
k . 1 = k . 1 + , J+-21 + ' + w ,J+"2 ,J+"2 

for linearly degenerate fields. 

Analogously, we define 

(6.14 ) (a) :k-. 1 = Nk- . 1(1 + 
,J+"2 ,J+"2 

for genuinely nonlinear fields, and 

for linearly degenerate fields. 

We make the following restriction on the Lipschitz continuous functions 

+ • a. . 1. 
K, J+"2 

Restriction (6.1). The values of the coefficients multiplying 

in (6.13) and (6.14) are always strictly between ° and 2. 

+" 
Nk . 1 ,J+"2 
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, M±. 
We now defJ..ne I\: ' 

,J 
+ 

as in (6.10), replacing ~k ' 1 by these compressed 
,J+2" 

or rarIfied flux differences. The TVD and ACR scheme is constructed as follows: 

00-, 
otl =: 

M M 
(Nk- , 1 - ~ 6 (~(R -, l)Nk-, 1)) 

,J+"2 - -K,J+ ,J+"2 

k=l 

We shall now prove our last result. 

Theorem ~. There exists values of + 
~ J'+l' , 2 

for each j, k, so 

that if the solutions to (6.15) with the usual initial data have, for 6 

small enough, (a) sufficiently small OSCillation, and (b) the property that 

eigenvalues :\: corresponding to linearly degenerate fields stay bounded 

away f'rom zero, then bounded a. e. limits of the approxinate solution satisfy 

the entropy ine~uality (1.7). 

Proof. It was shown in [22] that it suffices to obtain the ine~uality 

(6.16) 

for all j, under the given bypotheses. 

An integration by parts and rearrangEment of terms gives us an e~ui valent 

problem: 
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-~(l:, V (w.), 
+ w J 

+ ~fcl:,v (w.)), 
~ + w J 

+ ~ (l:, V (w.), 
+ W J 

m 

" (Nk- • 1 -N
M

k -. 1)) < O. L.J , J+2' , J+2' 
k=1 

Let k' denote indices corresponding to genuinely nonlinear fields, and 

k" denote the remaining fields (which are all linearly degenerate). 

Then 

(6.18) 

+ 
(Notice that the ~" . 1 are not dimensionless quantities - they 

K ,J+2' 
.1. + 

have dimension inverse to that of (V)2. The a-i . 1 are normalized to 
K ,J+2' 

be dimensionless.) 

+ 
Irk' . 1 ,J+2' 

Using the argument (and notation) in [22], Section III, it is easy to 

show that 

m s sk 

+ ~" r \) dS! d.t(v (w(s,))r (w(s)) _ V (wo(t)r (w(t)))T 
L.,., J 0 0 ww \) wvr \) 
\)=1 

·I~(w(t)) I r \)(w(t) )dt. 



43 

let E.= \6 w.\ be sui'ficiently small. Then our assumption about the 
J + J 

fields, the argument in [22], together with (6.20) and Rest:riction (6.1) 

guarantees that the second and third terms in (6.17) are non-positive. More

over, regarding the last two terms, 'we have, us ing (6.18), and letting 

C > 0 be a universal constant: 

(1: ( + ( (j, kll ) , ,j- ) - ( (j, kll ) - ) ) 
+ (1 - CE

J
.) -akll . 1 6 V ,Nkll . 1 + akll . 1 6 Vw,Nkll J' .1. 

,J+'2' + w ,J+'2 ,J+'2 + , +2 
k" 

recalling again, that the kt are the genuinely nonlinear, and the kll are 

the linearly degenerate, fields. 

Here we have taken 

(6.21) (a) 

(b) 
+ a.." . 1 < o. 1C ,J+'2 -

'!'his means that we have added only expansion, not compression, to our 

scheme. The freedom to add compression at shocks or contacts is lacking, 

only 1)ecause of technical points in our proof. 

The integral in (6.17) can be rewritten as: 
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(6.22 ) ~ fr.. 1 (f
r

. 1 «dV)TVWW(V»&(W)dW») 
J+2 J+2'W, U 

+! J;. 1 (h. 1 «dV)\",(V»&(W)dW»). 
J+2 J+2,w,L 

Here, r. 1 U is that part of r. 1 which starts at wand ends at 
J+2' w, J+2 

w. l' r. 1 L starts at w, and ends at w. Thus r. 1 = r. 1 L u r. 1 u. 
J+ J+2'W, J+2 J+2'W, J+2'W, 

Using the arguments of [22], Section III, we can show that the sum of all 

the integrals along subsegments is 

except, perhaps for a term: 

Let t = sk - t' in the second integral. Using our hypotheses about 

the fields, easily gives us an upper bound 

for this integral, where the Dk are certain universal positive constants. 

Comparing (6.23), (6.24) to the right side of (6.20) shows that we may 
+ 

choose each constant a-k . 1 subject to Restriction (6.1), and sufficiently 
,J+2 

large in magnitude, (if Ej i.s sufficiently small) so that (6.17) is valid. 



45 

VII. Results. of Numerical Experiments 

Since our preceding theory concerned only semidis.crete, continuous in 

time, approximations, we begin by describing the time discretizations used 

for all calculations pres.ented here. ~rhat was. a two step time differencing 

found in Richtmyer and Morton [27]. In one s.pace dimens.ion it can be written 

as 

(a) n+1.. n .6t w 2 = W - ~ (first order approximation to 

Wn+l __ wn _ A't(fl'rst d . t· t u or er approxlma lon 0 

~ n } - -2- [" upwind" approximation to +f using flux l:lmiters • - xx 

The resulting explicit algorithm is not, in general, truly variation 

diminishing, but still works. well, even in multidimensional calculations. 

We begin b;y computing a solution to inviscid Burgers' equation which is 

a shock moving with speed !. The results. are shown in Figure 1. Next we 

compute a s.olution to the s.teady s.tate Burgers' equation baving an inhomogeneous. 

right hand side, and compare the res.ult with the known exact s.olution - Figure 2. 

Both of thes.e s.calar experiments. were done using the flux limiter in 

(3.9), with k:= 1, and with the high res.olution s.cheme bas.ed on Engquis.t-

Osher first order differencing. 

Next we compute s.olutions to Euler's. equations. of compres.s.ible gas 

dynamics, using the schemes cons.tructed in the previous section. See [2], 

[3], for the precise equatiOns, and algorithm used here. Figure 3 shows 

the results. of quas.i-one-dimens.ional Laval nozzle flow. Reference [2] has 

the equation with precise s.ource term. 
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We next consi~er the case of an oblique shock reflecting from a flat 

plate, in two space dimensions. Figure 4a shows a cartesian grid with 

61 X 21 points. Figure 4b shows a first order accurate solution, 4c was 

obtained using a non-TVD second order extension, and 4d shows the contours 

obtained using the TVD second order accurate scheme. Figure 4b has highly 

smeared inCident, and reflected shocks, 4c has thick profiles because of 

undershoots and overshoots near the shock, and 4d has relatively sharp, 

nonoscillatory profiles. 

In Figure 5, we present the computational grid to be used for a blast 

wave problem solved as an unsteady problem. In Figure 6, we give the computed 

pressure contours using the TVD, second order scheme, at time T = 0.469. 

In Figure 7, we show a finer computational mesh, and in Figure 8, we present 

the pressure contours using the TVD, second order scheme at time T = 0.459. 
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