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SUMMARY 

This   paper   descr ibes   an  evaluat ion of a s e n s o r   t h a t  measures the   t o t a l   ene rgy  
rate o f   an   a i rp l ane   r e l a t ive   t o   t he   a i r s t r eam.  The sensor   consis ts   of  two cyl in-  
d r i c a l   p r o b e s   i n   t h e  airstream. Each probe  has a small o r i f i c e   l o c a t e d  on t h e  down- 
s t ream  s ide of the   cy l inder ,   an   in - l ine   acous t ic   f i l t e r ,   and  a pressure-sensing 
a l t i t ude - ra t e   t r ansduce r .  A sensor  using  just   one  probe w a s  originally  developed  and 
f l i g h t - t e s t e d   f o r   a p p l i c a t i o n  t o  soar ing   f l igh t ,   and   has   a l so   been   eva lua ted   for  
powered f l igh t   wi th   the   p robe  mounted  on a boom i n   t h e   f r e e   a i r s t r e a m .  For t h i s  
evaluat ion,  two probes were loca ted  on the  forward  fuselage  of a small commercial je t  
t ransport   and w e r e  subjec ted  t o  body-induced  flow  disturbances. 

A p o t e n t i a l   a p p l i c a t i o n   f o r   t h e   s e n s o r  is  in   display  and  control   systems 
designed t o  reduce  glide-slope  deviations  during  wind-shear  penetration. Time- 
history  data  comparisons  between  the measured da ta   and   ca lcu la ted   va lues  show s u f f i -  
c i e n t l y  good agreement t o  war ran t   r e sea rch   i n to   po ten t i a l   app l i ca t ions .  

Sect ions of this   paper   include  the  sensor   descr ipt ion  and  experimental   config-  
ura t ion ,   f requency   response   t es t s ,   ana ly t ica l   sensor  model development,  and f l i g h t -  
t es t  r e s u l t s   i n   t h e  form  of t i m e - h i s t o r y   p l o t s   f o r   s e v e r a l   a i r c r a f t  maneuvers. 

I N T R O D U C T I O N  

A senso r   t ha t  measures t h e  rate of  change  of a i r p l a n e   t o t a l  energy  with  respect 
to   the  a i rs t ream  has   previously  been  developed  and  analyzed.  A main component of 
t h i s   s e n s o r  i s  a c y l i n d r i c a l   p r o b e   t h a t  i s  i n s e r t e d   i n t o   t h e   a i r s t r e a m .  The probe 
contains  a small o r i f i c e   l o c a t e d  on t h e  downstream side of the  cyl inder ,   and  thus 
provides a p re s su re   sou rce   s ens i t i ve   t o   bo th   s t a t i c   and  dynamic pressure.  The rela- 
t i onsh ip  of t he   p re s su re  measurement t o   t o t a l  energy   (po ten t ia l   p lus   k ine t ic )  i s  
shown i n   t h e  appendix. 

References 1 t o  5 p re sen t   i n fo rma t ion   r e l a t ing   t o   t he   cons t ruc t ion   and   ana lys i s  
of the  probe  and  to  a p o t e n t i a l   s o a r i n g   f l i g h t   a p p l i c a t i o n   f o r   u s i n g   t h e   p r o b e   t o  
measure t o t a l  energy  rate.  The i n i t i a l   t o t a l   e n e r g y - r a t e   s e n s o r  combined the  probe 
with a variometer,  which  produced  an e l e c t r i c a l   s i g n a l   p r o p o r t i o n a l   t o   t h e   t i m e   r a t e  
of  change  of input  pressure,   and w a s  t e s t e d  on a s a i l p l a n e   ( r e f s .  1 and 3). The 
s implici ty   of   this   sensor   and i t s  a b i l i t y   t o  measure t h e  change i n  energy  with 
r e s p e c t   t o   t h e  airstream l e d  t o  f u r t h e r  interest  f o r   a p p l i c a t i o n   t o  powered a i r c r a f t  
f l igh t .   S ince  wind shear   causes   changes  in   a i rspeed,   and  hence  changes  in   kinet ic  
energy,   one  potent ia l   appl icat ion i s  t o   u s e   t h e   s e n s o r   o u t p u t   f o r   d i s p l a y   o r   c o n t r o l  
systems  designed t o  r educe   t he   e f f ec t s  of  wind shear  on  f inal   approach.  Typical 
a i rc raf t   devices   tha t   have   been   used  t o  d e t e c t  wind shear  are reported i n  r e f e r -  
ences 6 t o  8. In   re fe rence  6, it is  concluded t h a t   t h e   o u t p u t   o f  a t o t a l   ene rgy- ra t e  
sensor  could  be  displayed  on a t o t a l   e n e r g y - r a t e   i n d i c a t o r ,   i n  a f l i g h t   d i r e c t o r ,   o r  
i n  an  e lectronic   a t t i tude-director   indicator .   Furthermore,   the   sensor   might   be  used 
as p a r t  of   an  automatic   f l ight   control   system  s ince  the  sensor   provides   leading  indi-  
cat ions  of   changes  in   descent  ra te  or  f l i gh t -pa th   ang le   i n   r e sponse   t o  wind shears .  
These  appl icat ions are considered as follow-on  research  and are n o t   p a r t  of t h i s  
paper. 



The sa i lp l ane   s enso r  w a s  modified t o   i n c l u d e   a n   i n - l i n e   a c o u s t i c   f i l t e r   a n d  w a s  
evaluated  on a D e  Havilland DHC-6 Twin Otter a i r p l a n e   ( r e f .  9 ) .  The energy  probe w a s  
mounted on a nose boom, where it was r e l a t ive ly   f r ee   f rom body-induced f low-field 
e f f e c t s .  The a i rp l ane  was in s t rumen ted   w i th   an   i ne r t i a l   p l a t fo rm,   an  a i r  da t a  sys-  
t e m ,  body-rate  sensors,  and a data  recording  system. The recorded   var iab les  were 
used t o  make an   independent   ca lcu la t ion   of   the   a i rp lane   to ta l   energy   ra te .   Exce l len t  
comparisons  between calculated  and measured values  of t o t a l   ene rgy- ra t e  were 
obtained. 

Elements  of t h e   s e n s o r   e v a l u a t i o n   d e s c r i b e d   i n   t h i s   p a p e r   ( f i g .  1) inc lude   the  
p robe ,   an   i n - l i ne   acous t i c   f i l t e r ,  and   an   a l t i tude- ra te   t ransducer ,  as opposed t o  a 
var iometer   as   used   in   the  Twin Otter   sensor   evaluat ion.  The a l t i t ude - ra t e   t r ansduce r  
s e n s e s   t h e   f i l t e r e d   p r o b e   a b s o l u t e   p r e s s u r e ,   c o n v e r t s   t h e   p r e s s u r e   i n t o   a n   e l e c t r i c a l  
s i g n a l   r e p r e s e n t i n g   a l t i t u d e  by using a standard  atmosphere  function,  and  produces 
the  t ime  ra te   of   change  of   this   s ignal  as an  output. The output  is  thus   p ropor t iona l  
t o   t o t a l  energy  rate. 

The Twin O t t e r  f l i g h t - t e s t  results demonstrated  the  sensor  measuring  capabili ty 
w i t i i  t he   p robe   l oca t ed   i n   t he   f r ee   a i r s t r eam.   In   t he   cu r ren t   r e sea rch ,  however,  an 
ob jec t ive  was to   eva lua te   t he   capab i l i t y   o f   t he   s enso r  t o  measure t h e   t o t a l  energy 
ra te   dur ing   f l igh t   wi th   the   p robes   loca ted  on the   fu se l age  of a small commercial 
t ranspor t   a i rp lane ,  where they  are  exposed  to  body-induced  flow  disturbances.  For 
th i s   eva lua t ion ,  one  probe was mounted on each  s ide of t h e   a i r p l a n e ,  and the   p re s -  
su res  were e i t h e r  combined t o  make one  measurement o r   u s e d   t o  make  two independent 
simultaneous  measurements f o r  comparison. 

The evaluation  approach  described i n  t h i s   r e p o r t  was t o  judge   qua l i ta t ive ly  
whether t h e  measured sensor   values  of to ta l   energy   ra te   and   the   ca lcu la ted   va lues   o f  
t o t a l  energy r a t e   de r ived  from  independent  instrument  systems on the   a i rp l ane  compare 
wel l  enough to   warran t   fur ther   research   in to   poss ib le   appl ica t ions .   This   approach  
allowed  time-varying  comparisons  during a number of f l i g h t  maneuvers. A determina- 
t i o n  of specif ic   sensor   accuracy numbers was not  a goa l   o f   th i s   research .  

Various  airplane maneuvers  performed i n  t he   s enso r   eva lua t ion   a r e   desc r ibed   i n  
t h i s  paper.   Other  sections  of  the  paper  include  the  physical   description of t h e  
system, the   ca l ibra t ion   procedure ,   the   ana ly t ica l  model, a n d   f l i g h t - t e s t   r e s u l t s ,  
with  comparisons  of  the total   energy-rate   data   with  energy rate der ived by ca lcu la-  
t ions  using  data   recorded by the  instrumentat ion.  

SYMBOLS 

C 
P 

d 
a 

g 

Hk 

k 

A kf 

p re s su re   coe f f i c i en t  

l a t e r a l   d i s t a n c e  from x - z  plane of a i r p l a n e   t o  a vane   (pos i t i ve   t o  
r i g h t )  , m 

acce lera t ion  due t o   g r a v i t y ,  m/s  

specif ic   kinet ic   energy,   or   kinet ic   energy  per   uni t   weight ,  m 

2 

s p e c i f i c   t o t a l  energy  rate,  m/s  

f i l t e r e d  time r a t e  of  change  of spec i f i c   k ine t i c   ene rgy ,  m/s  

2 



A a i r p l a n e   a l t i t u d e  rate derived  from complementary f i l t e r ,  m/s  

H f i l t e r e d  t i m e  rate of  change  of spec i f i c   po ten t i a l   ene rgy ,  m / s  

P 

Pf 

h a l t i t u d e ,  m 

h a l t i t u d e  rate, m / s  

h perpendicular  distance  from x-y plane of a i r p l a n e   t o  $ vane 
B ( p o s i t i v e  down), m 

1 l ong i tud ina l   d i s t ance  from a i rp l ane  y-z p lane  t o  a vane a (pos i t ive   forward) ,  m 

IB 
l ong i tud ina l   d i s t ance  from a i rp l ane  y-z plane t o  vane 

(pos i t ive   forward) ,  m 

M Mach nmber  

'e un f i l t e r ed   p re s su re  measurement on energy  probe, Pa 

s e a - l e v e l   s t a t i c   p r e s s u r e ,  Pa 

measured s t a t i c   p r e s s u r e ,  Pa pS 

AP1,AP2,AP3 pres su re  measurements used during  checkout, Pa 

P 

9 
- 
q 

9, 

r 

S 

TO 

TS 

T ( s )  

Tt 

vo 

Vx,b 

vx,o 

V x, w 

measured r o l l   r a t e ,   r a d / s  

measured p i t c h   r a t e ,   r a d / s  

dynamic pressure ,  Pa 

measured  impact  pressure, Pa 

measured  body-axis yaw rate ,   rad/s   in   equat ions,   deg/s  i n  f i g u r e s  

Laplace  variable,  s- 1 

sea - l eve l   s t a t i c   a i r   t empera tu re ,  K 

s t a t i c   t e m p e r a t u r e   a t   a l t i t u d e ,  K 

t r a n s f e r   f u n c t i o n   f o r   s e n s o r   f i l t e r i n g  

t o t a l   a i r   t e m p e r a t u r e  measurement, K 

t rue   a i r speed ,  m / s  

i n e r t i a l   v e l o c i t y ,   l o n g i t u d i n a l   a x i s ,  m / s  

longi tudina l  component  of t rue   a i r speed ,  m / s  

wind ve loc i ty ,   longi tudina l   ax is ,  m / s  
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cha rac t e r i s t i c   f r equenc ie s   r ep resen t ing   a l t i t ude   r a t e   t r ansduce r   and  
a c o u s t i c   f i l t e r ,   r a d / s  

angle of a t tack,   deg 

measured angle of a t tack ,   rad  

airplane  angle  of a t tack ,   rad ians  i n  equations,   degrees i n  f i gu res  

angie of s ides l ip ,   deg  

measured angle of s i d e s l i p ,   r a d  

airplane  angle  of s ides l ip ,   r ad ians  i n  equations,   degrees i n  f i gu res  

spec i f i c -hea t   r a t io  of a i r ,  1.4 

recovery  factor  of total   temperature ,  1.0 

measured p i t c h   a t t i t u d e  of  airplane,  deg 

ro t a t ion  of energy  probe i n  y-z plane,  rad 

sea- level   densi ty ,  kg/m3 

measured s t a t i c   a i r   d e n s i t y ,  kg/m 

measured r o l l   a t t i t u d e  of airplane,   deg 

3 

Superscripts: 

L l e f t  energy  probe 

R r ight  energy  probe 

S E N S O R   D E S C R I P T I O N  AND EXPERLMENTAL  CONFIGURATION 

The total   energy-rate   sensor  was evaluated on  a t r a n s p o r t   a i r p l a n e   t h a t  was 
being  used  for  terminal-area-operations  research. The a i r p l a n e  was instrumented  for 
recording  f l ight   condi t ions  and  other   necessary  parameters .  

A s  shown i n  f igu res  2 and 3, energy  probes  were  mounted  on the  back  of t he  
lower- lef t   and  upper-r ight   Pi tot-s ta t ic   tube mounts. The probes  have a v e r t i c a l  
separat ion of approximately 61 cm. The probes  are   or iented Z O O  from t h e   p l a n e   t h a t  
is  normal to   t he   a i r s t r eam.  These loca t ions  were  chosen  because ( 1 )  flow  asymmetries 
should  cancel when t h e  diametr ical ly   opposi te   probes  are   vented  together ;  and ( 2 )  t h e  
d u a l   P i t o t - s t a t i c   t u b e   s e t  was instrumented on the   a i rp l ane .  Wind-tunnel da ta  i n d i -  
cated  that ,   with  the  energy  probes mounted a s   desc r ibed ,   t he   e f f ec t s  on the  accuracy 
of the   a i r speed   and   a l t i t ude  measurements ob ta ined   f rom  the   P i to t - s ta t ic   tube  were 
negl igible .  

A de ta i l ed   ana lys i s  of t h e   t o t a l  energy  probe i s  contained i n  references 1 t o  5. 
The total-energy-probe measurement i s  a function  of a coef f ic ien t   o f   p ressure  
T h i s  coe f f i c i en t  is  def ined   as   the   d i f fe rence  between  measured  and s t a t i c   p r e s s u r e  cP' 
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normalized by t h e  dynamic pressure  (see  appendix),   and i s  c h a r a c t e r i z e d   i n   t h e  above 
references as a measure  of  performance.  References 3 and 5 conta in   da ta  from various 
wind-tunnel  experiments.  Plotted  results show t h e   v a r i a t i o n   i n  C as a func t ion  of 
probe  forward sweep angles   and   s ides l ip   angles ,   and   as  a func t ion  Rf phys ica l  param- 
eters   such  as   probe  diameter ,   or i f ice   diameter ,   probe  length,   d is tance  f rom  center  of 
o r i f i c e  t o  t h e  t i p  of  the  probe,  and  various  bent-probe  configurations. 

The r e fe rence   da t a  show t h a t  a probe  forward sweep angle  of  approximately 20° 
with respect t o   t h e   f l o w   d i r e c t i o n   i n s u r e s   r e l a t i v e   i n s e n s i t i v i t y  of C t o  changes 
i n   a i r p l a n e   a n g l e  of a t t ack .  For t h i s  forward sweep angle,  C i s  near ly   cons tan t  
(-1.0)  around  the a f t   s i d e   o f   t h e   c y l i n d e r   o v e r  a wide range oe Reynolds numbers. 
The most c r i t i c a l  dimension is  the   d i s t ance  from t h e   o r i f i c e   c e n t e r   t o   t h e  t i p  of t h e  
probe. S e t t i n g   t h i s   d i s t a n c e  t o  twice the  probe  diameter   has   given  the  best  results. 
A typical   range  for   the  probe  diameter  i s  between 0.48 c m  (3/16  in.)  and 0.64 c m  
(1/4 in.  ). 

P 

Figure 4 is a schematic  diagram  of  the  instrumentation  package  installed on t h e  
t e s t   a i rp l ane ,   and   f i gu re  5 i s  a photograph  of the  instrumentation  package. Two 
system  configurations  were  studied - a separate  probe  configuration  and a combined 
probe  configurat ion.   Ei ther   configurat ion  could  be  selected by the  appropriate   posi-  
t i o n  of a solenoid  selector   valve.  In  the  separate   configurat ion,   the   energy  probes 
were independent. Each probe  had i t s  own f i l t e r  volume and a l t i t ude - ra t e   t r ansduce r .  
In   the combined conf igura t ion ,   the   p ressures  from b o t h   r e s t r i c t o r s  were d i r ec t ed  by 
t h e   s o l e n o i d   s e l e c t i o n   v a l v e   t o   t h e   r i g h t   f i l t e r  volume. Therefore ,   the   output   s ig-  
n a l  from t h e   r i g h t   a l t i t u d e - r a t e   t r a n s d u c e r  was a combination  of  the l e f t  and r i g h t  
probe  pressure  inputs.  For t h i s   c o n f i g u r a t i o n ,   t h e   l e f t   f i l t e r  volume and a l t i t u d e -  
r a t e   t r ansduce r  were inac t ive .  

To obta in   accura te   p ressure  measurements f o r   u s e   i n   p o s t f l i g h t   c a l c u l a t i o n s  of 
t o t a l  energy  rate  using  independent  sensors,  two pressure  transducers  with  an  accu- 
racy of f l  Pa and a range  of 100 0 0 0  Pa were  used  on the  instrumentation  package. 
One t ransducer  measured t h e   s t a t i c   p r e s s u r e  p, sensed by t h e  two P i t o t - s t a t i c   t u b e s  
on  which t h e  energy  probes w e r e  mounted,  and the   o the r   t r ansduce r  measured t h e  impact 
pressure gc sensed by the   l ower   l e f t   P i to t - s t a t i c   t ube .  Both of t hese  measurements 
were  used to   ca lcu la te   a i r speed .   Other   p ressure   t ransducers  were  included on t h e  
instrumentation  package to   r eco rd   aux i l i a ry   p re s su re   da t a .  These da ta  were not  
needed for   the   independent   ca lcu la t ion  of t o t a l  energy r a t e ,   b u t  were  needed f o r  
possible   use  in   ident i fying  sources   of   malfunct ion  or   unexplained  data   anomalies .  
The auxi l ia ry   da ta   inc luded   the   l e f t   unf i l te red   energy   probe   pressure  Pk, t h e   d i f -  
f e r e n t i a l   p r e s s u r e  between t h e   l e f t  and  r ight   probes APg, and  the  pressure  drops 
ac ross   t he  two a c o u s t i c   f i l t e r s  AP1 and ~ p ~ .  An a n a l y s i s  of t h e   a u x i l i a r y   d a t a  
was n o t   r e q u i r e d   f o r   t h i s   r e p o r t ,  so no further  mention of it w i l l  be made. 

Other  airplane  sensors  and  systems  (not  part  of the  instrumentation  package  of 
f i g .  5, b u t   u s e d   f o r   t h e   p o s t f l i g h t   c a l c u l a t i o n  of t o t a l  energy rate) include body- 
ra te   gyros,   a lpha  and  beta   vanes,   an  iner t ia l   p la t form,   and  the a i r  da t a  computer. 
Roll, pitch,   and yaw r a t e  measurements were obtained  from  the  gyros,   the  angle of 
a t t ack   and   s ides l ip  from the   vanes ,   and   t he   t o t a l   a i r   t empera tu re  from t h e  a i r  da t a  
computer. A measure  of t h e   v e r t i c a l   v e l o c i t y  l? was obtained  from a complementary 
f i l t e r   i n   t h e   f l i g h t   c o n t r o l  computer. %e f i l t g r   i n p u t s  were ba romet r i c   a l t i t ude  
r a t e ,  from t h e  a i r  da t a  computer,  and v e r t i c a l   a c c e l e r a t i o n ,  from t h e   i n e r t i a l  
platform. 
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For the   ana lys i s   o f  maneuvers  which  encountered  wind-shear  disturbances,  addi- 
t i o n a l  measurements were used. These  measurements were ro l l ,   p i tch ,   and   t rue-heading  
a t t i t u d e  from t h e   i n e r t i a l   p l a t f o r m ,   a n d   n o r t h   a n d   e a s t   i n e r t i a l   v e l o c i t i e s  computed 
in   t he   i ne r t i a l   nav iga t ion   sys t em.  

Barometr ic   a l t i tude  f rom  the a i r  da t a  computer was u s e d   f o r   d a t a   p l o t s   i n   t h i s  
r epor t  as a n   a i d   i n   i l l u s t r a t i n g   t h e   t e s t  maneuvers  of t h e   a i r p l a n e ,   b u t  w a s  not   used 
i n  any ca lcu la t ions .  

The sensors   a re   par t   o f   the   a i rp lane   research   sys tem  be ing   used  t o  develop 
advanced  displays  and  automatic  f l ight  controls.  The measurements  obtained  from 
these   sensors   a re   genera l ly  of be t t e r   qua l i t y   t han   t hose   ob ta ined  from e x i s t i n g  
t ranspor t   a i rp lanes .  However, t h e r e  i s  n o  precise measurement a v a i l a b l e   t h a t  i s  
t r a c e a b l e   t o   t h e   N a t i o n a l  Bureau  of  Standards,  such a s   t h e  measurement  of  weight  and 
length.  Air da ta   sensors   such   as   the   P i to t - s ta t ic   tubes   and   vanes   a re   subjec t   to  
flow  disturbances  over  the  fuselage which can   i n t roduce   e r ro r s   i n to   t he  measurements. 
In   addi t ion,   the   angle-of-at tack  sensor   accuracy i s  dependent  on a i r p l a n e   f l a p  
s e t t i n g ,   b u t   t h i s  measurement  should  have  only a s m a l l   e f f e c t  on t h e   r e s u l t s  of t h e  
ca l cu la t ions .  

FREQUENCY  RESPONSE T E S T S  

A frequency  response t e s t  was conducted on the   t o t a l - ene rgy-p robe   s enso r   t o  
determine a r ep resen ta t ive   t r ans fe r   func t ion   fo r   u se  i n  t h e   a n a l y t i c a l  model. Oscil- 
l a t i ng   p re s su res   gene ra t ed  by a small  speaker were amplif ied by a combination  of 
f l u i d i c   a m p l i f i e r s   a n d  were appl ied  t o  t h e  energy  probes.   Electr ical   s ignals   cor-  
responding to   bo th   t he   i npu t   p re s su res   and   t he   a l t i t ude - ra t e   t r ansduce r   ou tpu t s  were 
recorded on a mult ichannel   osci l lograph.  B y  employing the   so lenoid   swi tch   ( f ig .  4 )  , 
both   the   l e f t   and   r igh t   sensors   could   be   t es ted   independent ly ,   o r   the   p ressures   could  
be  applied  simultaneously t o  both  probes t o  tes t  t h e  combined sensor. 

Two osc i l la t ing   p ressure   ampl i tudes  were used i n  each  configurat ion,   s ince  pre-  
v ious   l abo ra to ry   t e s t s  showed tha t   t he   acous t i c - f i l t e r   b reak   f r equenc ie s  changed  with 
the  input   s ignal   ampli tude.  The peak-to-peak sinusoidal  amplitude  €or  the  low-level 
pressure   input  was approximately 40 Pa,  and t h e  peak-to-peak  high-level  pressure 
input  was 660 Pa. A t  sea   l eve l ,   these   p ressures   cor respond  to   a l t i tude   changes   o f  
3 . 4  m and 50  m, respec t ive ly .   Transfer   func t ions   for   each   of   the   four   condi t ions  
described were constructed by approximating  break  frequencies  from  the  frequency 
response plots obtained from the  data   recorded  on  the  osci l lograph.   These  t ransfer  
funct ions T (  s) a r e   a s   f o l l o w s :  

Low l e v e l  

Separate   systems 

High l e v e l  

( 5  + 0 . 6 2 5 ) ( s  + 2 . 3 2 ) ( s  + 6 . 4 9 )  
9 . 4 2 s  

( s  + 0 . 4 0 0 ) ( s  + 2 . 5 0 ) ( s  + 9 . 5 2 )  
9 . 5 2 s  

I Combined sys tems  

( s  + 1 . 2 5 )  ( s  + 2 . 6 5 ) ( s  + 3 . 7 5 )  
12.4s 

( s  + l .OO)(s  + 2 . 1 5 ) ( s  + 4 . 8 5 )  
10.4s 

where s represents   the  Laplace  var iable .  

6 



The lowest  frequency  pole i n   t h e  above func t ions  i s  cont r ibu ted  by t h e   a c o u s t i c  
f i l t e r ,  and t h e  two h igher - f requency   po les   and   the   d i f fe ren t ia tor  t e r m  are cont r ib-  
u ted  by the   a l t i tude- ra te   t ransducer .  All gains  have  been  normalized i n   t h e  
expressions.  

A s ingle   approximate   t ransfer   func t ion   for   each   sensor   conf igura t ion  was 
desired.  The highest   frequency  pole was d i s c a r d e d   t o   s i m p l i f y   t h e   f i l t e r  approxima- . 

t ion,   because it w a s  expected t o  have a n e g l i g i b l e   e f f e c t  on t h e   s i g n a l s  of i n t e r e s t .  
The approximate  t ransfer   funct ion was then  determined  for   the combined system  using 
the  average  value of t h e  two remaining  corresponding  poles  of  the  high-  and  low-level 
t r ans fe r   func t ions .  For the  separate-system  approximate  model,   the  alt i tude-rate 
t ransducer   pole  was s e l e c t e d   t o   b e   t h e  same v a l u e   a s   t h a t   u s e d   i n   t h e  combined sys- 
t e m ,  b u t   t h e   a c o u s t i c - f i l t e r   p o l e  w a s  se lec ted   to   be   ope-ha l f   tha t  of t h e  combined 
sys t em,   s ince   t he   pa ra l l e l   r e s t r i c to r s  are now separated.  

The approximate  t ransfer   funct ion  used i n  t h e   a n a l y t i c a l  model s ec t ion  i s  

with  f requencies  w1 ,w2 shown i n   t h e   f o l l o w i n g   t a b l e :  

w l ,  rad/s  w2, rad/s  

Combined system 
2 .40  56 Separate  sys tem 
2.40 1.13 

Figures 6 and 7 show a comparison  of the  t ransfer   funct ion  approximation  with 
t h e  measured  data. Figures 6 ( a )  and  6(b)  contain  the  amplitude  and  phase  responses, 
respect ively,   for   the  separate-system  Configurat ion,   and  f igures   7(a)   and  7(b)   repre-  
s e n t   t h o s e   f o r   t h e  combined  system. The experimental   data   are   plot ted  both  with  and 
wi thou t   t he   d i f f e ren t i a to r .  The d i f f e ren t i a to r   t e rm i s  extracted  because it does  not 
a f f ec t   t he   cha rac t e r i s t i c   equa t ion .  Only t h e  low s igna l - leve l   da ta  are presented, 
bu t   s imi l a r  results can  be shown fo r   t he   h igh   s igna l - l eve l   ca ses .  The worst-case 
differences  appear  a t  the  higher   f requencies   and are p a r t i c u l a r l y   e v i d e n t   i n   t h e  
phase-angle  plots.  This is  because  of   the  delet ion  of   the  high  f requency  pole   in   the 
t ransfer   funct ion  approximation.  

SENSOR  ANALYTICAL MODEL 

The eva lua t ion   technique   used   in   re fe rence  9 and i n   t h i s   p a p e r  i s  t o  compare t h e  
sensor  t o t a l  energy-rate measurement with  an  independent  calculation  of  total  energy 
rate. The necessary  var iables  w e r e  measured in- f l igh t   and  were combined i n   p o s t -  
f l i g h t   p r o c e s s i n g  t o  make t h e   c a l c u l a t i o n   u s i n g   t h e   a n a l y t i c a l  model developed i n  
t h i s   s e c t i o n .  To make va l id   t ime-h is tory   compar isons ,   the   ana ly t ica l  model must have 
t h e  same f i l t e r i n g   c h a r a c t e r i s t i c s  as the  sensor.  This is  accomplished by us ing   t he  
t ransfer   func t ions   deve loped   in   the   p receding   sec t ion .  A secondary  reason  for  the 
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a n a l y t i c a l  model developnent is  the  use of t h e   a n a l y t i c a l  model for   po ten t ia l   fo l low-  
up appl icat ions.  

Equat ions  that  model t h e  combined  system are   s impler   than   those   for   the   separa te  
system,  because  flow i r r e g u l a r i t i e s   r e s u l t i n g  from l a t e ra l   a i rp l ane   mo t ions   t end   t o  
o f f s e t  each  other  since  pressure  sources  from  opposite  sides  of  the  airplane  are  tied 
together.  As expected,  the  separate-system  configuration was found t o  be  very  sensi- 
t i v e   t o   s i d e s l i p   a c t i v i t y .   T h e r e f o r e ,  an  approximation  has  been  added t o   t h e  equa- 
t i ons   t o   accoun t   fo r   s ides l ip .  

Combined-System Equations 

Aircraf t  measurements  of s t a t i c   p r e s s u r e  Ps, impact   p ressure   qcr   and   to ta l   a i r  
temperature Tt a re   used  i n  the   ca lcu la t ion  of t rue   a i r speed  Vo. The equations 
used are   as   fol lows:  

- Tt 
Ts - 1 + (y+)qM2 

To ps 
’ s  Ts Po 
-” - 

PO 

where M is  the  Mach number, Ts i s  t h e   s t a t i c   t e m p e r a t u r e   a t   a l t i t u d e ,  q i s  the 
total-temperature  probe  recovery  factor  (approximately 1.0 from r e f .   l o ) ,  To i s  the  
sea- leve l   s ta t ic   a i r   t empera ture ,  P, i s  the   s eae l eve1   s t a t i c   p re s su re ,  po i s  the  
sea-level  density,  and y i s  t h e   r a t i o  of s p e c i f i c   h e a t  of a i r  (1 .4 ) .  Values f o r  
To, Po, and po are   taken f rom reference 11. 

The longi tudinal  component of t rue   a i r speed  V, was ca lcu la ted  by using mea- 
surements  of  angle  of  attack  am and angle of s i d e s l i p  pm, w i t h  co r rec t ions   fo r  
sensor   locat ions.  These cor rec t ions   a re   usua l ly   negl ig ib le ,   bu t  have  given  slightly 
bet ter   t ransient   responses   during some of t he  maneuvers. The equat ions  leading  to  
t h e   c a l c u l a t i o n   f o r  Vx,o a r e   a s   fo l lows   ( r e f .  12)  : 
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Vxl0 = V cos  a. cos  Po 
0 

In  equations ( 6 )  t o  (8), p, q, and r r ep resen t   t he  measured a i rp l ane  roll, p i t ch ,  
and yaw body-axis rates; I, h,  and d represent  moment arms from t h e   v e h i c l e  cen-. 
ter  of g rav i ty   i n   t he   l ong i tud ina l ,   ve r t i ca l ,   and  la teral  d i rec t ions ,   respec t ive ly ;  
t he   subsc r ip t s  0, a, and f3 r e f e r   t o   t h e   c e n t e r  of grav i ty   and   the  a and p 
vanes;  and  the  subscript  m r e f e r s   t o   t h e  measured angles.  

Kinetic  energy Hk r e l a t i v e   t o   t h e   a i r s t r e a m  i s  a - f u n c t i o n  of t rue   a i r speed  
Vo. In  reference 9, Vx,o w a s  used  s ince  the t o t a l  energy  probe is  f i x e d   t o   t h e  
a i r p l a n e   a n d   s i n c e   t h i s   q u a n t i t y  shawed b e t t e r  comparison  with  the  measured  signal 
for   l a rge   va lues   o f  a and Bo. 

0 

S i m i l a r   r e s u l t s  were found in   the   p resent   t es t - f l igh t   eva lua t ion ,   and   even  
though the   d i f f e rence  i s  i n s i g n i f i c a n t  i n  most cases ,  V x l 0  i s  used i n   t h e   a n a l y t -  
i c a l  model a s  

where g r ep resen t s   t he   acce le ra t ion  due to   g rav i ty .   Equat ion  ( 9 )  i s  a ca l cu la t ion  
for   spec i f ic   energy ,   o r   energy   per   un i t   weight ,   and   has   un i t s  of he ight   ( see  
appendix). In t h i s   p a p e r ,   a s   i n   r e f e r e n c e s  6 and 9, energy  and  energy  height  are 
used synonymously. 

There a r e  two f i r s t - o r d e r   f i l t e r s   t h a t   r e q u i r e  modeling, as   descr ibed  i n  t h e  
sec t ion  "Frequency  Response Tests." One f i l t e r   r e p r e s e n t s   t h e   a l t i t u d e - r a t e   t r a n s -  
ducer, which has  a po le  w2 a t  2.4 rad/s. The o t h e r   f i r s t - o r d e r   f i l t e r   r e p r e s e n t s  
the  acoustic-fi l ter   (restrictor-volume)  combination,  which,  for  the combined system, 
has  a po le  w1 a t  1.13  rad/s,   and  for  the  separate  system i s  one-half t ha t   va lue  
(0.56 rad /s ) .  

The e q u a t i o n   f o r   f i l t e r e d   k i n e t i c  energy r a t e  i s  

w w s  

kf (S + W 1 )  (s  + w ) k 
1 2  f i =  H 

2 

A similar equat ion i s  used t o  c a l c u l a t e   t h e   f i l t e r e d   p o t e n t i a l - e n e r g y  rate fi A 
d i f f e r e n t i a t i o n  i s  n o t   r e q u i r e d   s i n c e   t h e   i n p u t  w a s  derived  from a conplementary f i l -  
ter  on t h e   a i r c r a f t   ( r e f .   1 3 ) .  The equa t ion   fo r   f i l t e r ed   po ten t i a l - ene rgy  rate i s  

Pf ' 
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and t h e  t o t a l  energy rate A i s  t h e  summation  of equat ions ( 10)  and ( 1'1) as follows: 

i r = i S E f  + i r  
Pf 

(12) 

Separate-System  Equations 

An approximation  has  been made t o  Vx,o i n   equa t ion  (8) t o  account   for  sideslip 
sens i t i v i ty   and   t he   angu la r   o r i en ta t ion  of  each  energy  probe.  Changing t h e   n o t a t i o n  
in   equat ion  (8) t o  v the  modified  equation  for V becomes 

- 
x, 0 X, 0 

- 
vx,o = V ( 1  - 0.5  s i n  p s i n  @ ) 

x 10 0 

Using supe r sc r ip t  L f o r   t h e   l e f t   p r o b e  ( p  = -90° ) and  superscr ipt  
probe ( p  = 9001, 

V 
R 
x,o 

- - - 
vx ,o ( 1  - 0.5  s i n  Po) 

R f o r   t h e  

(13)  

r i g h t  

(14b) 

The c o e f f i c i e n t  0.5 i s  an   empir ica l   va lue   tha t  was found to   g ive   r easonab le  dynamic 
r e s u l t s   f o r   t h e   a i r c r a f t  maneuvers considered in   t h i s   pape r .   K ine t i c   ene rgy  i s  c a l -  
culated  for   each  probe  separately by subs t i tu t ing   equat ions   (14a)   and   (14b)   in to  
equation ( 9 ) .  All other   equat ions are i d e n t i c a l   t o   t h o s e   f o r   t h e  combined systems. 

F L I G H T  TESTS 

The purpose of t h e   t e s t   f l i g h t s  was t o   g a t h e r   d a t a  which could  be used t o  com- 
pa re   t he   t o t a l   ene rgy- ra t e   s enso r  measurements with  those computed  from independent 
measurements of t he  onboard  instrumentation. The purposes   o f   the   p rescr ibed   a i rc raf t  
maneuvers  were t o  produce  desired  energy  changes,  such a s  a p o t e n t i a l   a n d   k i n e t i c  
exchange,  and t o   e s t a b l i s h  flow  conditions  that   could  conceivably  cause  erroneous 
o u t p u t s  from t h e  energy  probe,  especially i n  the  separate-system  configuration. The 
maneuvers were accomplished by means of  manual p i l o t   c o n t r o l  and  automatic  control 
modes on the   r e sea rch  tes t  a i r c r a f t .  The automatic modes employed  were c a l i b r a t e d  
airspeed  hold ( C A S ) ,  ve loc i ty   con t ro l  wheel s t e e r i n g  (VCWS), which is  cont ro l   about  
t h e  command a i rp l ane   ve loc i ty   vec to r ,   a t t i t ude   con t ro l  wheel s t e e r i n g  (ATTCWS), which 
i s  control  about  the command p i t c h  and r o l l   a t t i t u d e s ,  a n d  f l igh t -pa th   angle   ho ld  
( F P A )  . Data  were ga the red   fo r   e igh t   spec i f i ed  fiest maneuvers  which are summarized i n  
t a b l e  1. The conditions  achieved  and maneuvers performed i n  f l i gh t   dev ia t ed   on ly  
s l i g h t l y  from those  of t he   t ab l e .  
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TABLE 1. - SmMARY OF TEST M A N E W E R S  

Test 
maneuver 

" ~ 

Take-of f 

Po ten t i a l  
and   k ine t ic  
exchange 

Kine t ic  
change 

Potent ia l  
change 

Roll 

Pitch 

S ides l ip  

Landing 

- ~- 

This   sec t ion  

-~ . . 

I n i t i a l  
a i rspeed,  

m / s  
.. -. . 

~~ ~ 

0 

67 

129 

77 

67 

67 

67 

64 

.- 

:I I n i t i a l  
a l t i t u d e ,  

m 
. .  

0 

914 

762 

914 

762 

762 

762 

457 

F l a p / i n i t i a l  
con t ro l  modes 

15°/manual 

25O/CAS, XWS 

0 O /CAS, FPA 

1 5O /CAS, KWS 

4 Oo /KWS 

4 Oo/ATTCWS 

40°/ATTCWS 

4 00/manual 

. ~- 
~~ ~ 

RESULTS 

Notes 

Standard  take-off t o  762 m 

Disengage CAS;  command 
30° descent f l igh t -pa th   angle  
followed by 30 climb 

Decrease  speed t o  69 m/s  
with  speed  brakes;   increase 
with  speed  brakes down; f l a p s  
selected  according t o  
schedule 

While i n  CAS hold,   begin  with 
5O descent f l igh t -pa th   angle ;  
a t  305 m go t o  5O climb 

Left ( - 3 0 ° )  t o   r i g h t  (30O) r o l l  
a t   l e v e l   a l t i t u d e  

P i tch  up  from t r i m  by  100 
followed by -5O p i t c h  

Half-rudder  inputs t o   f u l l -  
rudder   inputs   l e f t   and   r igh t  

Manual landing;  approximately 
5555 m f i n a l  

- 

conta ins  a d i scuss ion   of   the   t ime  h i s tory   p lo ts  of each   f l i gh t - t e s t  
maneuver f o r   t h e  combined system  and  the  separate  system. Comparisons are made 
between the   to ta l   energy-ra te   va lues   recorded   f rom  the   sensor   dur ing   the   f l igh t  tests 
and the   pos t f l i gh t   ca l cu la t ed   va lues .  The ca lcu la ted   va lues  were determined  from 
independent  measurements  recorded  during  the  flight tests us ing   the   equat ions  
desc r ibed   i n   t he   s ec t ion  "Sensor  Analytical Elode1.O' 

Figures 8 t o  16 r e p r e s e n t   r e s u l t s  from t h e  combined-system  maneuvers. Each 
f igu re   con ta ins   p lo t s  of t h e   v a r i a t l e s   s j - n i f i c a n t - t o   t h a t  test .  The bottom t h r e e  
p lo ts   in   each   f igure   a lways  show H f ,  H ~ ~ ,  and H. Calculated  values  of + are 
shown  by a solid  l ine,   and  measuredPvalues of fi a r e  shown by a dashed  l ine.  The 
a l t i t u d e  h p l o t s  show step  changes  of  approximately 25  m due t o  the   da t a   r eco rde r  
resolut ion.   This   plot  i s  shown o n l y   t o   h e l p   i l l u s t r a t e   t h e   f l i g h t - t e s t  maneuver,  and 
t h e   d a t a  on t h i s   p l o t  were no t   u sed   i n  any  of t h e   a n a l y t i c a l  model ca lcu la t ions .  



Take-Of f 

Figure 8 r ep resen t s  a take-of f   wi th   the   da ta   s ta r t ing   approximate ly  4 
t o  5 seconds p r i o r   t o   l i f t - o f f .  The l i f t - o f f  time is  i l l u s t r a t e d   i n   b o t h   t h e  h and 
t h e  H p l o t s .  A t  t h e   i n i t i a l  t i m e ,  t h e   p i t c h   r o t a t i o n   h a s   a l r e a d y  begun a s   i l l u s -  
t r a t e d P i n   t h e  8 plot .   Airspeed  increased  f rom  an  ini t ia l  60 m/s  t o  115 m/s when 
da ta   record ing  w a s  terminated. The a l t i t ude - ra t e   t r ansduce r   has  a l i n e a r   s i g n a l  ' 

range of +16 m / s  and is  s e e n   t o   s a t u r a t e  a t  appro+nate ly  7 seconds  into  the  run.  A 
good comparison  between calculated  and measured H s igna ls   can   be   seen   dur ing  $he 
f i r s t  7 seconds. A t  s eve ra l   i n t e rva l s   du r ing   t he  60:second run,  the  measured H 
dropped  below the   s a tu ra t ed   l eve l .  The ca l cu la t ed  H a lso  decreased below t h e  sat- 
u ra t ed   l eve l   du r ing   t he  same t i m e  periods,  although much more than   t he  measured 
va lue .   Larger   d i f fe rences   occur red   in   th i s  t i m e  period,  possibly  because  of  sensor 
s a tu ra t ion ,   bu t   t he   t r ends  of the   sensor   and   ca lcu la ted   va lues   a re   the  same. 

Potent ia l   and  Kinet ic  Energy  Exchange 

Figure 9 represents  a poten t ia l   and   k ine t ic   energy  exchange. t h r i n g   t h i s   r u n ,  
v0 increased from 66 t o  97 m / s ,  r e s u l t j n g   i n  a p o s i t i v e  and h decreased  from 
9 0 0  t o  555 m, r e s u l t i n g   i n  a negat ive H Total energy  remains  relatively  constant 
d u r i n g   t h e   f i r s t  50 seconds of t h e  maneuver, a s   i n d i c a t e d  by the  near-zero  average 
value of A .  During t h e  las t  4 0  seconds  of t h i s   run ,   t he re   a r e   i nc reased  wind gus ts ,  
with a poss ib l e  wind shear   taking  place  a t   approximately 6 0  seconds;  the wind shear  
is  discussed i n  more d e t a i l   l a t e r   i n   t h i s   s e c t i o n .  The p l o t  shows t h a t   t h e  wind 
disturbance  upsets  the  energy exchange maneuver and   gene ra l ly   r e su l t s   i n  a loss of 
t o t a l  energy.  In  spite of the  gusts, a good c o r r e l a t i o n   e x i s t s  between  measured  and 
ca l cu la t ed  fi values.  A t  times, t h e   c a l c u l a t e d  fi appears  t o  have a s l i g h t l y   f a s -  
t e r  response  than  the  measured k ;  t h i s  i s  a l s o   e v i d e n t  on some of t he   o the r   p lo t s .  
The d i f f e rences   i n   t he   cu rves   sugges t   t ha t   t he   t ime   cons t an t  and  phase  lag  of  the 
approximated  transfer  function were s l i gh t ly   sma l l e r   t han   t hose  of the  sensor.  

ii[kf' 
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Kine t ic  Energy Change 

Figure 1 0  r e p r e s e n t s   t h e   r e s u l t s  of a kinetic  energy  change maneuver. The a i r -  
speed  decreased  from 130 m/s,to 72  m / s ,  and a l t i t u d e  was he ld   r e l a t ive ly   cons t an t  by 
t h e   a u t o p i l o t ,   a s  shown  by H A t  approximately 9 0  s e c o n d s ,   t h e   p i l o t  advanced t h e  
t h r o t t l e s   f o r  maximum t h r u s t  and  manually  lowered the  speed  brakes,   causing Vo t o  
increcse.  Some change i n   p o t e n t i a l   e n e r g y   o c c u r r e d   a t   t h i s   p o i n t ,   a s   i l l u s t r a t e d   i n  
t h e  H p l o t ,  mainly  because  of  the  sudden  increased l i f t  due t o  lowering  the  speed 
b rakes   ( spo i l e r s ) .  

Pf '  

Pf 

During t h e   l a s t  13 seconds,   the   level  of a i rp lane   acce le ra t ion   resu l ted   in   sen-  
so r   s a tu ra t ion .  Agreement between t h e  ; t i m e  h i s t o r i e s  i s  n o t   a s  good a s  it i s  i n  
most of t h e   o t h e r   t e s t s .  The l a rge r   d i f f e rences  may be  due t o   l a r g e r   e r r o r s   i n   t h e  
P i t o t - s t a t i c  measurements  because  of t he   l a rge r   ang le s  of a t tack   encountered   for   th i s  
maneuver. A t  77 t o  78 seconds, a was a t   s t a l l   a n g l e  of   a t tack;  however, t h e  gen- 
e ra l  t r e n d  between calculated  and measured appears  to  be  maintained. 0 
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P o t e n t i a l  Energy Change 

A potential  energy  change is i l l u s t r a t e d  i n  f i g u r e  11. During t h i s   r u n ,   t h e  
p i l o t  commanded a 5 O  descen t   ang le   t o   t he   au top i lo t ,   c aus ing  h t o  decrease a t  a 
rate of  approximately  3.5 m / s ,  and   the   au topi lo t  w a s  commanded t o  maintain a cons tan t  
ca l ibra ted   a i r speed .  A t  approximately 48 seconds,   the Vo p l o t  shcws a sudden 
decrease   in   the   a i r speed   and   then  a gradual   increase as t h e   a u t o p i l o t  attempts t o  
maintain  the commanded airspeed. The sudden  decrease i n   a i r s p e e d  was caused by a 
poss ib le  wind shear  and i s  d i s c u s s e d   i n  more d e t a i l  la ter  i n   t h i s   s e c t i o n .  Although 
there   appears   to   be   d i f fe rences   in   the   phase   and   response   charac te r i s t ics   o f   the  
calculated  and  measured fi curves,   their   shapes are i n  good agreement f o r   t h i s  
maneuver, i nc lud ing   t he  t i m e  of t h e  sudden  decrease in   a i r speed .  

Roll and Pi tch  Maneuvers 

A r o l l  maneuver and a p i t ch  maneuver a r e   i l l u s t r a t e d  i n  f i gu res  1 2  and 13, 
respec t ive ly .  For t h e   r o l l  maneuver, t h e   p i l o t  commanded bank a t t i t u d e s  of f30° 
using  the  autopi lot ,  which was a l s o  commanded-to main ta in   l eve l   f l igh t .   Level   f l igh t  
w a s  essent ia l ly   maintained,  as shown  by the curve, and the  desired bank angles 
were achieved. For the   p i tch  maneuver, t h e   p i   o t  commanded a 15O pitch-up  followed 
by a So pitch-down..  Both commands were r e l a t i v e   t o   l e v e l - f l i g h t   a t t i t u d e  
( = 3 O  p i t c h ) .  The H curves show  good cor re la t ion   for   bo th  maneuvers i n  s p i t e  of 
possible  flow-field  changes  caused by the  airplane  motions.   Larger  differences i n  
H are  generally  noted when s i d e s l i p  B is  l a rge r   fo r   t he   ro l l  maneuver and when 
the  angle of a t t ack  a is  l a rge r   fo r  ghe p i t ch  maneuver. 

HPf 
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Sides l ip  Maneuver 

The s i d e s l i p  maneuver was executed by the   p i lo t   us ing  manual rudder  inputs and 
is  i l l u s t r a t e d  i n  f i gu re  1 4 .  The maneuver deviated from the   t e s t   p l an ,   bu t   su i t ab le  
data  were still recorded  for  analysis.  The 8, curve shows s ides l ip   angles  up t o  
6.4O dur ing   t he   i n i t i a l  and f ina l   po r t ions  of the   p lo t ,  and a s i d e s l i p  of -9.7O 
during  the 60- t o  70-second  time interval.   Airspeed Vo and a l t i t u d e  h were r e l a -  
t i ve ly   cons t an t  and the bank angle Q (not  shown) was held  near  zero by the  auto- 
p i lo t   dur ing   th i s   run .  The yaw rate r i s  included i n  t h i ?   f i g u r e   t o   h e l p   i l l u s -  
t r a t e  time r a t e s  of change i n  . The average  values of H are  near  zero,   as 
i l l u s t r a t e d  by both  the  calculated and measured curves. As is shown subsequently i n  
the  discussion of the  separate-system results, the  individual  energy  probes are very 
s e n s i t i v e   t o   s i d e s l i p   a c t i v i t y .  For the  most pa r t ,   t he  combined system tends  to 
a v e r a g e   o u t   s i d e s l i p   s e n s i t i v i t i e s  of the  individual   probes.  The good agreement  of 
t h e  fi curves   fo r   t h i s   run   sugges t s   t ha t   t he   l a rge r   d i f f e rences ,   no ted   fo r   t he  r o l l  
maneuver  where s i d e s l i p  was present ,  may be  due t o   r o l l   a t t i t u d e  and r o l l   r a t e ,  
r a the r   t han   s ides l ip .  

BO 

Landing 

Figure 15  shows r e s u l t s  of a completely manual landing maneuver. The run starts 
whi l e   t he   a i rp l ane  is banked a t  -26O (I$ curve) t o  c a p t u r e   t h e   l o c a l i z e r .  A t  
16 seconds,   the   local izer  i s  captured  and  the  airplane  proceeds down the   g l ide   s lope  
a t  a s ink  rate of approximately 3 t o  4 m/s .  Airspeed Vo dec reases   s l i gh t ly  between 
25  and 60 seconds,  and  an  average loss i n   k i n e t i c  energy i s  shown  by t h e  k p l o t  
d u r i n g   t h i s  t i m e .  kf 
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As i l l u s t r a t e d  by t h e  8 p l o t   i n   f i g u r e  15, f l a r e  starts a t  approximately 
120 seconds. The main  wheels  touch t h e  ground a t  approximately 135 seconds,  and  the 
a i r c r a f t   p i t c h e s  down with  the  nose  gear   touching  about  5 seconds later.  During t h e  
f i n a l  20 seconds   o f   the   run ,   the   a i rc raf t  i s  lo s ing   a i r speed  as it proceeds down t h e  
runway. Overall, t he   ca l cu la t ed   and  measured values  of $I show very good agreement 
except when t h e   a i r p l a n e  i s  banked a t  approximately 10 seconds  into  the  run.  The 
larger   discrepancy  while  banked is  i n  agreement  with t h e   r e s u l t s  of t h e   r o l l  maneuver 
and the   sugges t ed   r e su l t s  of t h e   p r e v i o u s   s i d e s l i p  maneuver discussion. 

Wind-Shear Analysis 

The Vo and fi p l o t s  i n  f i g u r e s  9 and 11 i n d i c a t e   p o s s i b l e  wind-shear  encoun- 
t e r s   a t   t h e   p o i n t  where a sudden  decrease  occurs  in Vo. A d i f f e r e n t   s e t  of a l t i t u d e  
da t a   t han   t ha t   p lo t t ed   fo r   t he   p rev ious   d i scuss ions  was used   to   inves t iga te   and   ana-  
lyze  these  possible  wind-shear  encounters.  Although t h e s e   a l t i t u d e   d a t a   h a d  more 
reso lu t ion ,   they  were not   used  or iginal ly   because  they were more d i f f i c u l t   t o   o b t a i n  
from the   r eco rded   f l i gh t .  Also, a l t i t u d e   d a t a  were n o t   r e q u i r e d   f o r   t h e   a n a l y t i c a l  
model; t h e r e f o r e ,   t h e   s o u r c e   e a s i e s t   t o   o b t a i n  was used i n  t he   p r io r   ana lyses .  The 
approach  used t o  determine  whether wind shear  w a s  p re sen t  w a s  t o   f i n d   t h e   d i f f e r e n c e  
between i n e r t i a l   a n d   a i r s p e e d  components r e f e r e n c e d   t o   t h e   a i r p l a n e  body axes. The 
body-axis  longitudinal component of i n e r t i a l   v $ l o c i t y  Vx was determined by r o t a t -  
ing  the  Earth-referenced  veloci ty  components (H and   no r th   and   ea s t   ve loc i t i e s )   t o  
t h e  body axes  using  an E u l e r  t ransformat ion   and   recorded   a t t i tude   da ta .  The wind 
component V i s  then   ca lcu la ted  by s u b t r a c t i n g   t h e   i n e r t i a l  and  airspeed compo- 
nents  of ve loc l ty   as   fo l lows:  

P 

XI w 

v = v  - v  
x,w x,b x10 

where Vxlo  is  c a l c u l a t e d   a s  i n  equation ( 8 ) .  

Figure 16 shows t h e   v e l o c i t y  components Vx b, Vx o, and Vx and a l t i -  
tude h.  The p l o t s  on the   l e f t -hand   s ide  show t h e  50-  to 70-secona  time  period  from 
f i g u r e  9. The da ta  shaw t h a t   t h e  sudden  decrease i n   a i r s p e e d  i s  due t o  a decreased 
head wind a s   t he   a l t i t ude   dec reased .  This decreased  a i rspeed  resul ted i n  a decreased 
k i n e t i c  energy  rate. The p l o t s  on the  r ight-hand  s ide  of   f igure 16 r ep resen t   t he  40- 
t o  60-second time  period of f i g u r e  1 1  and a l s o  show tha t   t he   dec reased   a i r speed  i s  
due t o  a decreased  head wind. When the   decrease  i n  a i r speed   occu r s ,   t he   au top i lo t  
a d v a n c e s   t h e   t h r o t t l e   t o   r e t u r n   t h e   a i r s p e e d   t o   t h e  commanded value. This ana lys i s  
i n d i c a t e s   t h a t  wind shears   d id   occur   and   tha t   the   to ta l   energy-ra te   sensor  measured 
t h e  change i n   t o t a l  energy  result ing  from  their   presence.   Analysis  of  these  test  
r e s u l t s   s u g g e s t s   t h a t   f u r t h e r   i n v e s t i g a t i o n s   i n t o   a p p l i c a t i o n s  of the   sensor   in   au to-  
mat ic   cont ro l   sys tems  des igned   to   a l lev ia te   adverse   e f fec ts   o f  wind shear  should  be 
conducted. 

Separate  Systems 

Figures 17 t o  23 show r e s u l t s  of  the  separate-system  runs.   Curves  on  the  left-  
hand s i d e  of each   f igure   represent   se lec ted   a i rp lane   var iab les  (ao, Bo, Vol h, 

8, r,  and $); curves on the  r ight-hand  s ide  represent   calculated  values  of Hpf 
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The separate-system  configuration shows s e n s i t i v i t y  t o  s i d e s l i p  maneuvers. 
Figure 22 i l l u s t r a t e s   t h e   r e s u l t s  as f3, is  va r i ed  between 6.3O and -8.5O. During 
each  change i n  magnitude  of s i d e s l i p ,   a s  shown i n   t h e  Po and r da ta ,   the  two 
senso r s   i nd ica t e  t o t a l  energy-ra te   changes   tha t   a re   oppos i te   in   d i rec t ion   wi th  

approximately  the same magnitude as shown  by t h e  fiL and fiR data.  These t es t  da t a  
c l e a r l y   i l l u s t r a t e   t h e   s i d e s l i p   s e n s i t i v i t y  of the  separate-sensor   configurat ion  and 
show why t h e  combined system i s  r e l a t i v e l y   i n s e n s i t i v e   t o   s i d e s l i p   ( f i g .  1 4 ) .  The 

ca lcu la t ed  fiL and ffR c u r v e s   i n   f i g u r e  22 i l l u s t r a t e   t h a t   t h e   a n a l y t i c a l - m o d e l  
s ides l ip   approximat ion   in   equa t ion  ( 1 4 )  allows a rough prediction  of  each  sensor 
measurement. 

Figure 23 shows a 70-second  time  period  during  landing. A t  approximately 
40 seconds,  the d a t a   i n d i c a t e   i n c r e a s i n g   a l t i t u d e .  The reason i s  t h a t   t h e   a i r -  
p lane  was below t h e   g l i d e   s l o p e ;   t h e r e f o r e ,   t h e   p i l o t  commanded a pitch-up maneuver 

t o   r e c a p t u r e   t h e   d e s i r e d   f l i g h t   p a t h .  As shown i n  t h e  H and H p l o t s  , both 
enerqy  probe  sensors show reasonably good comparison  with  calculated  values. 

HPf 

.L .R  

I n   gene ra l ,   t he   co r re l a t ions  between  measured  and ca lcu la ted   va lues  of fi a r e  
not  as good a s   t h o s e   f o r   t h e  combined  system,  and i n  t h e   c a s e  when dynamic changes 
a re   occu r r ing   i n   t he   s ides l ip ,   t he   l e f t   and   r i gh t   p robe   ou tpu t s   can   be   qu i t e   d i f f e r -  
ent.  The use  of a sepa ra t e  sys tem €or  a control   system  appl icat ion may be poss ib l e  
i f   t h e  measurement i s  not  of prime importance i n   t h e   a p p l i c a t i o n  and i f  reduced  per- 
formance i s  to le rab le .  The separa te   sensor  is  not  recommended f o r   p o t e n t i a l   a p p l i -  
ca t ions ,   except   to   poss ib ly  fill t h e   r o l e  as a backup senso r   i n   ca se   one   s ide  of t h e  
combined sys t em  f a i l s .  

CONCLUSIONS 

A f l i g h t  tes t  has  been made t o   e v a l u a t e   t h e   c o n f i g u r a t i o n  and  operation  of a 
to ta l   enercg- ra te   sensor  on a t ranspor t   a i rp lane .  me probe was located  on  each  s ide 
of the   a i rp lane   fuse lage   wi th  a 20°  forward sweep angle.   Evaluations were made of 
two separate  systems  and  one combined  system tha t   u ses   t he   ave rage  of the  probe  pres-  
sures.  The eva lua t ions  were made under   condi t ions  of   several   a i rplane maneuvers. 
Analyt ical  models , developed for   bo th   separa te   and  combined systems , w e r e  used t o  
ca l cu la t e   t o t a l   ene rgy- ra t e   va lues ,   de r ived  from  independent  airplane  measurements, 
f o r  comparison  with  data  measured by the  total   energy-rate   sensor .   Specif ic   conclu-  
sions,   based upon f l i g h t  tes t  eva lua t ion ,   a re   as   fo l lows:  

1. Comparisons  between  sensor-measured to ta l   energy-ra te   da ta   and   ca lcu la ted  
va lues   fo r   t he  combined system show s u f f i c i e n t l y  good resul ts  t o  warrant  investiga- 
t i ons   and   r e sea rch   i n to   po ten t i a l   app l i ca t ions  of the  sensor.  

2. F l i g h t - t e s t   r e s u l t s   o b t a i n e d   f o r   t h e  combined-system configurat ion  are   supe-  
rior t o  those  of the  separate-systems  configuration. For t h e  mounting l o c a t i o n .  
chosen,  the  separate-system  measurements were shown t o  be   genera l ly   unsa t i s fac tory  
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because   o f   s ides l ip   s ens i t i v i ty .   The re fo re ,   t he i r   u se   i n   po ten t i a l   app l i ca t ions  i s  
not  recommended, e x c e p t   t o   p o s s i b l y   f i l l   t h e  role as a backup  sensor in   ca se   one   s ide  
of a combined system  fails .   Success  in  such a role would  depend  on the  importance  of 
t he   s enso r   i n   t he   app l i ca t ion   and   t he  amount of  performance  degradation  that i s  
to l e rab le .  

3. A n  i n v e s t i g a t i o n   i n t o  two of t h e  test maneuvers  shows t h a t   t h e   t o t a l  energy- 
rate system  responds t o  energy  changes  due t o  wind shear .  These r e s u l t s   s u g g e s t   t h a t  
f u r t h e r   i n v e s t i g a t i o n s   i n t o   a p p l i c a t i o n s  of the  sensor   in   automatic   control   systems 
designed t o   a l l e v i a t e   a d v e r s e   e f f e c t s  of wind shear  should  be  conducted. 

Langley  Research  Center 
National  Aeronautics  and  Space  Administration 
Hampton, VA '23665 
September 13, 1983 
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APPENDIX 

RELATIONSHIP BETWEEN TOTAL ENERGY RATE AND I N P U T  PRESSURE 

The equat ion   for   to ta l   energy  E is  t h e  sum of the   po ten t ia l   energy   and   k ine t ic  
energy 

E = mgh 

where m is t h e  
a l t i t u d e ,  and V 
t h e  airstream is  
energy  or  energy 

H = h +  

a i r p l a n e  m a s s ,  g is t h e   a c c e l e r a t i o n   d u e   t o   g r a v i t y ,  h is t h e  
i s  t h e   a i r s p e e d   o f   t h e   a i r p l a n e   s i n c e   k i n e t i c   e n e r g y   r e l a t i v e   t o  

being measured.  Normalizing by the   a i rp l ane   we igh t ,   t he   spec i f i c  
per u n i t  weight i s  

and t h e  t i m e  r a t e  of  change  of s p e c i f i c  energy i s  

2 = h + w / g  

where V i s  t h e  t i m e  r a t e  of  change of V. Flow a t   t h e   o r i f i c e  of t h e   t o t a l  energy 
probe i s  charac te r ized  by a c o e f f i c i e n t  of pressure   def ined   ( re fs .  1 t o  6)  a s  

'e - 's c =  
P 9 

- 

where- Pe i s  t h e   p r e s s u r e   a t   t h e  energy  probe  orifice,  Ps i s  t h e   s t a t i c   p r e s s u r e ,  
and q i s  t h e  dynamic pressure.  Wind-tunnel tests ( r e f s .  3 and 5) have  es tabl ished 
tha t   t he   va lue   o f  C i s  approximately -1.0 a round   t he   a f t   s ide  of t he   p robe   fo r   t he  
range  of  Reynolds number and  alignment  angles  used i n  t he   app l i ca t ion  of t h e   p r o b e   t o  
cur ren t   f l igh t   parameters .  With C = -1.0,  equation ( A 4 )  i s  w r i t t e n   a s  

P 

P 

P e = P  - q  
- 

S 

Sta t i c   p re s su re   va r i e s   non l inea r ly   w i th   a l t i t ude ;  however, for   smal l   a l t i tude   changes  
the   t ime   r a t e   o f   change   i n   s t a t i c   p re s su re   can   be   r ep resen ted   a s  

Ps = -p*gh 
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APPENDIX 

where i s  t h e  s t a t i c  a i r  densi ty .  The dynamic p res su re   va r i e s  as  the   square   o f  
t h e   a i r s p e e d  PS 

- 1 2  q = - p v  
2 s  

and   t he  time rate of change i n  dynamic pressure i s  

s = psv+ 

Subs t i tu t ing   equat ions  ( A 6 )  and ( A 8 )  i n t o   t h e   d e r i v a t i v e  of equation (A5) y i e l d s  

he = -psgli - p s v t  

and  normalizing by 
( t o t a l  energy ra te)  

-psg r e s u l t s   i n   t h e  time ra te  of change of specif ic   energy 
shown ' in   equat ion ( A 3 )  . 
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Figure 5. - Instrumentation  package. 
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Figure 7.- Frequency response  for combined system. 
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Figure 10 .  - T e s t  data for combined system during  kinetic  energy  change. 
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Figure 15. - Concluded. 
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