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ABSTRACT

The evidence for and against the reality of a solar wind variation in the

period range of 60-100 year is re-examined. Six data sets are reviewed;

sunspot numbers, geomagnetic variations, two auroral data sets and two 14C data

sets. These data are proxies for several different aspects of the solar wind

and the presence or absence of 60-100 year cyclic behavior in a particular data

set does not necessarily i_ply the presence or absence of this variation in

other sets. We conclude that two different analyses of proxy data for a

particular characteristic of the hellospheric solar wind yielded conflicting

results. This conflict can be resolved only by future research. We also

definitely confirm that proxy data for the solar wind in the ecliptic at 1A.U.

undergo a periodic variation with a period of approximately 87 years. The

average amplitude and phase of this variation as seen in eleven cycles of proxy

data are presented.

INTRODUCTION

The existence of a solar variation with a period in the range of 60 to I00

years has been the subject of controversy for many years. Data on the

amplitudes of the sunspot cycle, auroral frequencies, 14C, the weather, tree

rings and the thickness of varves in Australian rocks (Williams, 1981) have

been cited for or against the existence of a periodic variation in this time

range. The suspected variation has been called, among other things, the

Gleissberg variation, the Long Cycle, the 87 year cycle and the secular

variation.

In this paper we take a much more restricted view of the proposed

phenomenon. We note that many of the data sets used in the past refer to

aspects of the solar wind rather than the sun itself and so we here confine our

study to a review of data concerning variations of the solar wind with

characteristic times in the 60-100 year range. Because the solar wind has been

observed in situ for less than 2 eleven year solar cycles, we will have to rely

on a data base that gives indirect information on the solar wind, that is,

proxy data will be used. We will further restrict our study to proxy data for

which the relationship between the observed quantities and the solar wind is

understood at least in principle. For this reason no data involving solar

weather relationships will be examined. In section 1 of this paper the 6 data

sets used will be introduced briefly. We then discuss each set, its relation

to other sets and the evidence it gives as to the reality of a long period

variation in the solar wind. The results of the review are brought together in

section 2 where it is concluded that there is conflicting evidence concerning a

possible heliospheric-wide solar wind periodicity in the period

range of interest but there is extremely good evidence for a long cycle of

about 87 years in the solar wind in the vicinity of the earth. The amplitude

and phase of the variation are displayed.
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SECTION 1 - THE DATA

The six data sets to be used and the time periods they cover are shown

schematically in figure I. The sunspot number record starting in about 1700

provides proxy data for certain aspects of the sources of the solar wind since

the beginning of the 18th century. The next three data sets, aa, Swedish

auroras and medieval auroras, are proxy data for the solar wind in the vicinity

of the earth since that wind drives the aurora and geomagnetic activity. The

aa denotes the geomagnetic indices scaled by Mayaud (1973) from existing
observatory records for the period since 1868. The Swedish auroral data set

was constructed by Rubenson (1882) from reports from observers throughout

Sweden and covers the period from 1721 to 1876. The data set denoted as

"medieval aurora" are taken from the review by Siscoe (1980) who gives the

number of auroras reported per decade in Europe and/or the Orient from 450 A.D

to 1450 A.D. The bottom two data sets of 14C are proxy data for the solar wind

throughout the heliosphere since the 14C abundance in the earth's atmosphere is

indirectly determined by the cosmic ray intensity, which is in turn modulated

by the heliospheric solar wind. The differences between the two 14C data sets

will be described when they are discussed in detail below.

In the remainder of this section the data sets in fig. I are reviewed,

their reliability assessed and some comments made on intercalibration with

other data sets. Each set is then examined separately to see what evidence it

gives concerning the existence of a periodic solar wind variation in the 60-100

year period range. Each data set will be assigned to one of three categories,

1 - shows periodicity in the 60-100 year period range

2 - does not show periodicity

3 - is compatible with a periodicity but too short to be

considered a member of category 1

There were no data sets that would belong to the 4th logical category, i.e. not

compatible with a 60-100 year periodicity but too short to be considered a

member of category 2. Before proceeding it is important to emphasize that

since the data sets are proxy for three different aspects of the solar wind;

the sources, the solar wind in the vicinity of the earth and the solar wind

throughout the heliosphere, a periodicity in any one of these quantities does

not necessarily imply a periodicity in the other two. The data sets will be

discussed in the order shown in figure 1 except that the medieval auroras will
be reviewed last.

Sunspot Numbers

The sunspot number is defined somewhat arbitrarily as the number of

individual spots plus i0 times the number of spot groups (c.f. Gibson, 1973).

Considering this definition it would be rather remarkable if the daily sunspot

number had a very high correlation with any other physical quantity. The

reliability of data on sunspots has been reviewed by Eddy (1976) during the

course of his work establishing the reality of the Maunder minimum. Eddy

concluded that sunpsot data have been very reliable for more than the last

hundred years but that the reliability of the data declines for earlier

periods. However, since perhaps the beginning of the 18th century the
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approximate amplitude and time of the eleven year solar cycle variation of the
yearly averaged sunspot number is quite well established. Recently a great
deal of work has been done on deducing sunspot numbersduring the 17th century
Maunderminimum, but the relative amplitudes of the sunspot cycles described
for that period can not be determined becauseof the rarity of spots and of
systematic observations. For this reason the 17th century sunspot data will
be omitted from this study.

The relationship between the sunspot numberand the parameters of the
solar wind is not close and in general neither daily nor yearly average sunspot
numbers can be used to predict velocities or magnetic fields of the solar wind
near the earth (c.f. Gosling et al. 1977). However, the sunspot number does
yield someinformation on the sources of the solar wind since the number of
sudden commencementsof geomagnetic storms arriving at earth each year is
correlated to annual sunspot numberwith a correlation coefficient of 0.85, as
shown by Mayaud(1975) using I00 years of data. Suddencommencements(i.e.
sudden world wide increases in the horizontal intensity of the geomagnetic
field observed at low and midlatitude magnetic observatories) are usually
caused by solar wind shocks due to suddenejections of high velocity solar
wind, and so the numberof sudden solar ejections is proportional to the
sunspot number. In this sense the sunspot numbergives information on the
sources of one type of solar wind disturbance.

Fig. 2 (adapted from Eddy, 1976) gives the annual meansunspot number from
1610 to 1975. The Maunderminimumis shownon the top panel. The second and
third panels show the data used in this review; i. e. the data that give
evidence concerning a 60-100 year variation in solar wind sources. The
envelope of the II year sunspot cycle shows three relative minimums, circa
1755, circa 1810, and a broad minimumfrom 1880 to 1930. If we adopt a
criterion that to be counted as a minimumcycle, the sunspot number can not
exceed 70, then two minimumperiods remain, one at the beginning of the 19th
century and the other at the end of the 19th or the beginning of the 20th
century. These minimumsare weak evidence in favor of a 60-100 year period in
solar wind sources since they are compatible with such a period. From this
view the appearance of the minimumto be expected in the early 18th century
would have been obscured by the general rise caused by the ending of the
Maunderminimum. On the basis of this admittedly weak argument this data set
is put in category 3; that is, it is compatible with a 60-100 year variation in
properties of the sources of the solar wind but too short to be used as
evidence for any such periodic behavior.

aa Indices

The second data set to be considered is the I00 years of aa indices
produced by Mayaudin 1973 from the original magnetogramsfrom Greenwich
Observatory and the antipodal Australian stations. In contrast to the more
familiar indices such as EKpor C9, aa is a real physical quantity. The data
set consists of half daily values of the range of geomagnetic disturbances
measured in nanoteslas. It covers the period from 1868 to the present but can
be considered a modern data set because, within the last i0 years, the actual
traces of the magnetometerpens were used to produce it. This is in contrast to
the case of, for example, sunspot data in which we have only the record of what
the observer reports as having been seen and no hard copy record of the
observations themselves that could be re-examined using modernmethods.
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If we consider the magnetosphereas a solar wind detector and magnetic
and/or auroral activity as read-out parameters, the aa indices, shownin fig.
3, form a data set that refers to the solar wind at 1A.U. and in the ecliptic
plane. The relationship between the sunspot data and the aa index has been the
subject of several studies in the last few years (c.f. Legrand and Simon 1981,
Feynman, 1982). In examining the relationship it should be kept in mind that
both sunspot numberand aa are accurate and reliable for the period since 1868
and the differences in their long term behavior must be caused by their being
measures of two different phenomena. It is clear in figures 2 and 3 that
geomagnetic activity remains strong during the declining phase of the II year
sunspot cycle. In fact the level of aa during the declining sunspot number
phase is so strongly related to the maximumsunspot number in the next cycle,
about 6 years later, that aa has successfully been used to predict the value of
the annual average sunspot numberat the next maximum(Ohl 1976, Sargent,
1978). This strong relationship verifies that both the sunspot numberand aa
are reliable and have a physical meaning.

Evidence for a long period variation in the solar wind at earth is seen in
figure 3 in the general rise of aa at sunspot minimumbetween 1900 and 1954
(Feynmanand Crooker, 1978, Feynman1982). This rise is not present in the
sunspot number at minimumbut is present in the 14C data (Stuiver and Quay,
1980). The annual average aa is related to somecombination of average solar
wind velocity and southward interplanetary magnetic field (c.f. Crooker et al.
1977) and the extrapolations of the empirical relations derived from in sltu
solar wind data imply a very low annual average velocity or southward
interplanetary field near the turn of the century, minimizing about 1901
(Svalgaard, 1977, Feynmanand Crooker 1978, Gringaus, 1981). A further
analysis of aa was interpreted as showing a systematic intensification of
variations associated with the II year cycle from 1900 to 1960 which was
ascribed to a Gleissberg variation (Feynman, 1982). These studies of the aa
index indicate the solar wind variations are consistent with a Long Cycle
variation minimizing about 1900. This phase is of course consistent with the
broad minimumseen in sunspot number cycle amplitude, but in the aa data the
time of minimumcan be more firmly determined. The aa data, then, are also
placed in category 3.

Swedish Auroras

Swedish auroral observations from 1720 to 1882 were catalogued by the
Director of the Central Meteorolgical Institute of Sweden,Robert Rubenson
(1882). The data were collected from a variety of sources in all parts of
Sweden. Rubenson's catalogue includes the geographical positions at which the
observations were made. The yearly numbersof auroras seen in all Swedenand
in the regions north and south of 61° 30" are available and have been restudied
for their relavance to the long cycle variation (Silverman and Feynman,1980,
Feynmanand Silverman 1980).

The Swedish auroral observations and the aa both refer to the solar wind
in the vicinity of the earth but they are measurementsof somewhatdifferent
phenomena. Both annual averages are available for the 9 years from 1868 to
1876 and the relationship between them shown in figure 4 (Silverman and
Feynman, 1980) is remarkably close. Although the overlap of the two sets is
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small, they are so closely proportional to one another that the figure gives
confidence in the accuracy of the Swedish auroral observations, as well as
reaffirming the well known relation between the range of geomagnetic
disturbances and the latitude at which auroras are seen.

The numberof auroras reported for Swedensouth of 61° 30" is shownin
Fig. 5. There is an impressive minimumin the 2nd decade of the 19th century.
There are six years from 1809 to 1814 during which fewer than three auroras
were reported each year. The number of auroras did not recover until sometime
after 1825. The existence of a world-wide minimumin solar-terrestrial
relationships at this time is confirmed by observations madein the United
States (Feynmanand Silverman, 1980). This solar wind minimumof 1809-1814
took place about 90 years before the solar wind minimumof 1901 implied by the
aa data. Merging these two data sets would result in a solar wind proxy data
set going through two minimums, with a period of something like 90 years.
Considering either the Swedish auroral data set or the merged aurora-aa set,
these data are placed in category 3.

Carbon 14 Data Sets

The next two data sets to be discussed are derived from 14C in tree rings
(Linet al. 1975; Stuiver and Quay, 1981). 14C is indirectly produced by
galactic cosmic rays which, in turn, are modulated by the interplanetary
medium. Interaction with the solar wind throughout the hellosphere modifies the
cosmic ray flux which arrives at the earth's atmosphere. Changesin the cosmic
ray flux cause changes in neutron production rate. The production of 14C
depends on interactions of the neutrons with atmospheric nitrogen. The 14C
then mixes into the atmosphere and is incorporated into living organisms. When
life processes stop, the 14C in the organism is no longer exchangedwith the
atmospheric 14C.

Although 14C production rate is dependent on the heliospheric solar wind
in a very complex way, studies of 14Chave been madefor manyyears and methods
of analysis are well advanced and sophisticated. The major changes in 14C
levels during the last few milleniums are caused by known changes in the
earth's main field (Creer, 1981) but these can be accounted for. There is also
a small residual variation of a few percent from the long-term trend. This
residual is due to heliospheric cosmic ray modulation. The data set labeled
14C anomoly data in fig. 1 consists of these residual variations and covers
8,000 years. The solar-terrestrlal mini_m around 1810 and major solar
terrestrial events such as the Maunderand Sporer minimiums are clearly seen in
the 14C residual record (Stuiver and Quay, 1980). Linet al., (1975)
calculated the autocovarlance function using this data set and their results
are shownin fig. 6. There appears to be a 350 year variation but since that
is out of the period range of interest here it will not be discussed further.
There is also a general rise in the autocovariance at periods between 20 and
150 years. Superposedon this general rise is added power at about 80 years.
Lin et al. (1975) interpret this in terms of a periodic variation in the range
from 60 to i00 years. This data set then will be assigned to category I since
it shows a periodicity.

Recently another analysis of 14C data has been carried out by Stulver and
co-workers. Stuiver and Quay (1980) increased the temporal precision of the
14Cdata by constructing counters which could measure the 14C activity in tree
rings with a precision of 1.5 to 2 parts per million. Then, instead of using
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the 14C anomoly data directly, they calculated the production rate of 14C using

a complex model in which the 14C was stored in the earth's atmosphere before it

interacted with the biosphere. The residence time of the 14C in the atmosphere

was an adjustable parameter. The 14C production rates from 300 AD to 1900 AD

were calculated using a 20 year and a 60 year atmospheric residence time and

the results for the 60 year residence time is shown in fig. 7 (Stuiver and

Quay, 1980). Maximums in about 1450, 1650 and 1810 correspond to the Sporer,

Maunder and 19th century solar-terrestrial minimums. Stulver and Quay compared

the behavior of the 14C production rates to the aa series and the sunspot

numbers for the last i00 years and concluded that the 14C production behaves

more llke the aa index than llke the sunspot numbers. They found that the

correlation coefficient between the 14C production rate and the annual average

aa was 0.67, which is quite high considering the aa is related to the solar

wind at earth whereas [4C probes the entire hellosphere.

Stuiver (1980) has carried out a power spectral analysis of the post 700

A.D. 14C production rates shown in fig. 7. He does not find any increase of

power in the 60 to i00 year frequency range so that this 14C production data

set must be placed in category 2, i.e. it does not shown any periodic behavior

in the period range of interest here. Both the 14C anomaly data and the 14C

production data will be discussed further in section 2.

Medieval Auroras.

The final data set to be discussed is derived from reports of auroras seen

in Europe and the Orient from 450 A.D. to 1450 A.D. and will be referred to as

medieval auroras. This data set was reviewed by Siscoe (1980) who, following

Kelmatsu (1976), investigated the accuracy of auroral report data by comparing

the number of auroras per century reported from China and Europe separately as

shown in fig. 8. Not only are the envelopes of the two frequency distributions

almost the same but the actual number of reports from both areas are remarkably

close. These results give confidence in the accuracy of the data. Slscoe

(1980) also presented the thirty year running averages of the number of auroras

seen per decade in the combined European-Orlental data set as shown in fig. 9.

These data, like the Swedish auroras and aa are proxy for the solar wind at 1

A.U. in the ecliptic plane. The minimums circa 600-700 A.D., 1050 A. D., and

1350 A. D., are reflected in the 14C data as is the maximlmum from ii00 to 1200

(Stuiver & Quay, 1980).

As Siscoe points out and as has often been suggested before, (see review

by Siscoe, 1980), this data set appears to show a periodic variation with a

mean period of about 87 years. In order to test the validity of this

observation in a more objective way the data will be analysed here by a

modified superposed epoch method. The zero times of the epochs are chosen to

make the average interval length 87 years. Since the data consist of the

number of auroras per decade, it is not possible to use intervals of exactly 87
years each. Instead each interval consists of 9 decades of data but the zero

time is adjusted so that the last decade of a few intervals is also used as the

first decade of the next interval. A second modification must be made to the

usual superposed epoch method because of the large amplitude of variations with

characteristic times longer than I00 years, i.e. The Maunder and Sporer type

minimums and the 12 th century medieval maximum. If a standard superposed epoch

analysis were carried out the results would be dominated by these events. To
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prevent this, the number of auroras observed in each interval was normalized to
one, and the fractional number of auroras in each bin calculated. The
resulting data were arranged to perform the superposed epoch analysis shownin
the upper panel of fig. I0. Each point represents the ratio of the numberof
auroras reported for a decade to the total number of auroras reported for the
90 year interval. The average of all the values is 0. II, shownby a bar in the
figure. The data appear to be very systematically distributed about the
average. For example almost all the points in the 3rd and 4th bins are above
the average whereas almost all the points in the 2nd to last and last bins are
below average. In order to test the validity of the method the analysis was
repeated for several other choices of cycle length and the results for a 70
year cycle are shownin the lower panel of fig. I0. These results are typical
of those for the other cycle periods tested. Here, although there is perhaps a
hint of somesystematic behavior within each of the bins, the distributions of
points about the average of 0.14 does not appear to deviate significantly from
chance.

The top panel of fig. I0 then is interpreted as demonstrating 1000 years
of an 87 year period in the frequency of auroras at mldlatitudes. This implies
a variation of the solar wind at 1A. U. in the ecliptic with a period of about
87 years. The uncertainty in the period is about a year or two. The period
can not be determined more precisely by the superposed epoch method because a
change of a year or two in the interval length will not makea statistically
significant difference in the data distributions.

The amplitude and phase of the variation can also be determined reasonably
accurately. The points in fig. II give the averages of the data in each bin of
the upper panel of fig. I0. The first and last points in the figure are the
sameand are the bin 9 average. The dashed llne is a simple sine function that
was chosen to approximately fit the data. The phase of the curve was also
chosen to give the best fit. The horizontal line is the average of the entire
data set as in fig. i0. The minimumphase is about two decades before the
first bin so the statistical minimumcorresponds to about 435 A. D. (before
the fall of Rome). On the average in a cycle, 2 1/2 times as many auroras will

be seen at midlatitudes for cycle maximum as for cycle minimum. Due to

uncertalnties2inhPeriod0t length and phase we can not meaningfully extrapolate tothe 19th and centuries.

The medieval auroral data set is assigned to category I.

TABLE 1

proxy for number of

data set solar wind at ______c_cles cateor_p=___

sunspot number sources 2 3

aa indices earth 1 3

Swedish auroras earth 1 3

14C anomoly heliosphere ~I00 1

14C production heliosphere ~16 2

medieval auroras earth II i
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SECTION 2. THE CONCLUSIONS

The results of this review are gathered together in table I. Since the

data sets refer to three different aspects of the solar wind, a long period

variation of one of these aspects does not require or imply a long period

variation in either of the other aspects. Disagreements exist among the

results only when two analyses of proxy data for the same aspect of the wind

result in conflicting results. From table i:

I). We have insufficient evidence to tell whether or not the annual

sunspot number, and therefore the annual number of shocks in the

solar wind, changes with the Long Cycle, but what data we have are

comparable with such a change.

2). All of the proxy data for the solar wind at earth either show a

definite long period variation or are compatible with such a

variation. This finding is discussed further below.

3). A single type of proxy data for the solar wind in the heliosphere

has been analyzed by two seperate groups and the results are

conflicting, one being interpreted as showing a Long Cycle and the

other as ruling a Long Cycle out.

The resolution between the two analyses of the 14C data is not at all

clear at this time. There are several possibilities. For example, the

increase in the autocovariance function at about 80 years may not be

statistically significant, or, conversely, it may be that the variation is very

weak and I00 cycles of data are needed in order to be apparent in a power

spectral analysis. It may also be possible that the long period variation was

suppressed when the 14C production data were derived from the 14C residual

anomoly data. The data set for which Stuiver (1980) ran the power spectral

analysis used a 60 year atmospheric residence time in calculating the

production rate from the residual anomolles. This may have significantly

lowered the intensity of an already weak variation. Stuiver and Quay (1980)

show both the production data with a 20 year residence time and with a 60 year

residence time for the period around 1811-1813 when we know that solar

terrestrial phenomena in general were weak. Although both data sets show a

variation of the expected sign for that time, the signal is relatively

suppressed for the 60 year residence time data set. However, all that can be

said now is that two analyses of 14C data disagree. Until that disagreement is

resolved we can not come to any conclusion concerning the existence of a long

period variation in the properties of the heliospheric solar wind that modulate

atmospheric 14C.

The situation is quite different for proxies of the solar wind at earth.

Here there is no conflict of results. Swedish auroras and geomagnetic activity

are easily consistent with a long period, and they agree with each other in

phase, i. e. the minimums are about 87 years apart. The medieval auroras form

a long enough data set so that the cycle is clearly seen in a modified

superposed epoch analysis and the average amplitude during the 1,000 years from

450 A. D. to 1450 A. D. was such that more than twice the number of auroras

were seen at maximums as at minimums.
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Even if the controversy concerning the heliospheric solar wind were to be

settled against the long cycle appearing in that data, it would not constitute

any contradiction with the data on the solar wind at earth. It might imply

that the solar wind had an 87 year cycle in some local property. As one

example, the neutral sheet might rock relative to the ecliptic plane. However,

the hypothesis of a local change is not required by the observations at this

time.

It is concluded that we have definitely observed a long period variation

in the solar wind at earth for at least 1,000 years and probably 1,500.

The existence of a Long Cycle expressed in auroral frequency would not

necessarily be obvious to individual observers. Fig. 9 shows that the slower

changes, such as those associated with the medieval maximum can be much larger

than those of the 87 year type. Furthermore, the minimums and maximums are

separated by forty years and few people are likely to keep records that long.

Even when auroras are the subject of much interest and speculation, changes on

that time scale are likely to be discounted. For example, space sciences

graduate students of the 1970's may well have taken their professor's

descriptions of the magnificent auroras of 1935-1959 with a grain of salt.
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