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ABSTRACT

Type III radio storms are observed by the radio experiment on board ISEE-3

out to 0.5-0.8 AU from the Sun, at a rate of 2 to 3 storms per solar rotation

near solar maximum. They correlate with the type I and type III radio storms

observed at higher frequencies, originating closer to the Sun. They are asso-

ciated with an almost continuous injection of suprathermal electrons into the

interplanetary medium. Some of the properties of the regions where the particles
propagate are discussed, using the radio emission as a tracer.

Storms of type III solar radio bursts are frequently observed by the radio

instrument on board ISEE-3. This experiment (Knoll etal., 1978) monitors the

solar radio phenomena in the interplanetary medium over the height range from

about 0.05 AU (10 solar radii) to I AU. The interplanetary type III radio storms

(hereafter IP storms) consist of many thousands of type III radio bursts emitted

per day. They last from I to 12 days. About 100 IP storms have been observed

during the first four years of observation of ISEE-3, and up to 3 storms were

observed per solar rotation near solar maximum. The IP storms are related to

other solar radio emissions at all levels of the corona.

Figure I shows the intensity profiles at several frequencies during a typical

interval. Each point is a 30 minute average. An IP storm is clearly seen from May
31 to June 6, as well as the formation of another storm near June 10. In this

case we see a progressive delay in the peak of the storm, probably due to direc-
tivity effects.

Figure 2 shows 16.5 months of data from ISEE-3 along with ground based solar
data which describe solar activity originating at much lower coronal levels. It

is clear that radio emissions from individual storms can be followed through all

ranges of elevations, from tens of solar radii, at ISEE-3 frequencies, down to

well below 2 solar radii (heliocentric). The IP storms represent the interpla-
netary extension of solar active regions.

The ISEE-3 radio instrument has the capability of accurately determining the

arrival direction (solar elongation) of the storm radio sources in the ecliptic
plane. Figure 3 shows the solar elongation measured at a variety of frequencies

during a typical IP storm. For each frequency we can see the East to West motion

of the storm region as it crosses the llne-of-sight to the Sun. The different
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Figure I - Typical IP storm. Each point is a 30 minute average and may hence

represent many individual storm bursts. The flux increase that precedes the storm
at the lower frequencies is attributed to earth's radiation (TKR).
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Figure 2 - Time history of a few ground-observed radio fluxes, of a few indices
describing the radio storm activity in the lower corona and of a few TSEE-3 radio
fluxes. Each point is a daily average (after Bougeret et al., 1982a).
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slopes are due to a foreshortening effect. The sources which are closer to the

observer (at lower frequencies) cross the line-of-sight with a higher angular

velocity than the distant ones (at higher frequencies). This geometrical effect

allows us to locate the distance from the spacecraft to the emission region with

very few assumptions. In other words, we are able to determine the emission

levels directly from the measurement of the slopes of the solar elongation pro-

files. In addition, we observe that the time of central meridian crossing is
later at lower frequencies. This progressive delay is a direct measurement of the

time it takes the solar wind to progress between levels we determined from the

slope analysis. These results are summarized for one IP storm in Figure 4. Each

point results from one frequency of observation. We can see _at the data are
consistent with an average solar wind speed of about 250 km s from 25 to 125

solar radii. Since we are using all data within one or two days around central

meridian passage, the earth moves only by a few degrees and we are viewing the

same solar wind portion as it moves outward.

In situ observations show that within a few d_ys of the arrival of this storm
at I AU the velocity ranges from 300 to 400 km s- . This apparent discrepancy may

be due t_iseveral reasons. (i) The storm analysis yields a solar wind speed of

250 km s In the range 25 to 125 solar radii only; the solar wind may have

accelerated between 125 and 215 solar radii. For instance fitting to the 4 last

points in Figure 4 implies a higher velocity than is measured otherwise. (ii)

This technique averages the solar wind speed over the radio source region and

tracks structures that may extend out of the ecliptic plane, thus contributing to
speeds different from those observed at I AU.

The fluctuations of the observations around the model shown in Figure 4 may

suggest a kink or irregularity in the overall magnetic field. This particular

storm is one for which these undulations are the most conspicuous. However, we

cannot exclude that this is due to large scale refraction and scattering of radio

waves (Steinberg, 1972) and at this point we prefer to consider only the average

behavior shown by the curve in Figure 4 as significant.

Figure 5 shows the emission frequency versus the heliocentric distance. A

slope of -I on this frequency scale corresponds to -2 in electron density. The

heavy black line are levels deduced from the first radio storm observed by RAE-I

(Fainberg and Stone, 1970a,b; 1971). These results were derived by a completely

separate technique -from an analysis of the centre-to-limb variation of drift

rates. The levels studied by RAE-I were from 12 to 40 solar radii. The ISEE-3

data from 4 storms are superimposed and show excellent agreement. We also show a

four year average of in-situ plasma density measurement from HELIOS (Bougeret,

King, and Schwenn, 1983). We see that the radiation in the storm regions is very

likely the harmonic of the plasma frequency -a result discussed often in the
past. In addition the fall-off is generally faster than R--. Each storm on this

log-log plot is roughly a straight line and can be described by two parameters: a

coefficient and an exponent (slope of the emission level scale). Figure 6 shows

the results of 16 storms, with each storm described by a value of k (the log of

the coefficient) and a value of the exponent alpha. There seems to be a relation

between the value of k and alpha. The higher the enhancement the more rapid the

fall-off. The implication of these results is that by about 60-100 solar radii

the enhanced density regions merge with the average solar wind densities. It is

likely that these structures will not be visible at I AU.

We have seen that the IP storms are associated with density enhancements in
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Figure 3 - Time variation of
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Figure 5 - Emission levels of 4

IP storms observed by ISEE-3. The

RAE model is also shown (heavy

line), as well as observations of IO0
type III and type I storms at MHz
higher frequencies and in-situ

measurements by HELIOS I and 2 z
(after Bougeret et al., 1982b). g
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Figure 6 - Diagram of log k vs.

alpha for 16 IP storms. The

frequency scale of each IP storm

was fitted to :

log f = log k + (alpha) log R .

A slope of -I in this frequency

scale corresponds to -2 in

density.
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the interplanetary medium. We have also shown (Figure 2) that they correlate with

solar active regions and especially with the type I and type III storm activity

in the lower corona (Bougeret et al., 1982a). Type III bursts are produced by

packets of energetic electrons which propagate along open field lines. There is

some direct evidence that they are associated with white light streamers (Kundu

etal., 1983). Hence we suggest that the IP storms trace the extension of

streamers into the interplanetary medium.

Our findings can be summarized as follows. The IP storm radiation occurs in

regions of enhanced density at levels of 10-170 solar radii (0.05-0.8 AU). These

regions are most likely the extension of streamers into the i_terplanetary

medium. The density in these enhancements falls off faster than R-_. Regions of

higher density fall off faster, so that there is apparently a merging to the

average solar wind density by about 60-100 solar radii. We have also measured the

velocity of the solar wind in these regions, and our technique actually follows

the same region of solar wind plasma during its transit outward. Finally, in

cooperation with R.P. Lin (University of California experiment on-board ISEE-3),

we find that these IP storms are usually associated with fluxes of low energy

electrons observed at I AU.
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