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ABSTRACT

Continuous measurements of solar wind 3He ++ and 4He ++ from August, 1978 to

December, 1981 have been made covering a full range of solar wind conditions.

The average flux ratio <R> derived from these data is 2310 ! 50, in excellent

agreement with the Apollo foil measurements. A probable correlation between <R>

and solar activity has been found; however, an examination of the data during
periods of 3He++-rich solar flares shows no detectable increase in 3He ++ in the

solar wind.

Introduction

Measurements of 4He ++ in the solar wind since its first discovery there

(Neugebauer and Snyder, 1966) have shown its abundance to be highly variable,

however the reason for this variability is not fully understood. Information

=_uuL uuL*uitxonS _H LLle source region can in principle be obtained by studying
the abundance of 3He ++ _e1°_ive to that of 4He++. Since the ^_i_.......... _ difference be-

tween the isotopes is their mass (ionization potentials and charge being identi-

cal)', changes in their relative abundances may prove to be a sensitive probe of

the acceleration and mixing processes operating in the source region. Further-

more_ the low abundance of 3He ++ relative to protons (approximately 1:40,000)

means that it can be considered as a true test particle in the solar wind.

Up to now, studies of 3He q-+ in the solar wind were limited to periods of

low solar wind velocity when the kinetic energy distribution of the dominant so-

lar wind protons was sufficiently narrow so as not to interfere with observations

of 3He++. The iSEE-3 Ion Composition Instrument (ICI), launched in August 1978,

has overcome this limitation by employing velocity as well as energy analysis

(Coplan et al., 1978) with the result the 3He ++ abundances have now been measur-

ed continuously over the full range of solar wind conditions for more than four

years.

In a previous publication (Ogilvie et al., 1980a) we presented a prelimin-

ary account of observations made between August and November, 1978 and _rch and

August 1979. During this period the average 4He++/3He ++ abundance ratio <R> was

reported to be 2.1 + 0.2 x 103 , in excellent agreement with measurements made by

the foil method (Ge_ss et al., 1972). In this paper we present results derived

from a data set covering the period August 1978 to December, 1981. This period

includes the maximum of solar activity cycle 21 which occurred in 1980, as well
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as the occurrence of a number of 3He++-rich solar flares. Here we will concen-

trate on the variation of <R> with solar activity and correlations between 3He q-F

in the solar wind and flares. A more comprehensive analysis will appear else-
where.

Experimental Method and Data Reduction

The ICI has already been described by Coplan et al. (1978). The instrument

obtains mass per charge (M/Q) spectra over the range of 1.4 to 5.6 with a resol-

ution of 30, as long as the solar wind speed is between 300 and 620 km/s. Time

resolution is 15 or 30 minutes depending on the operating mode. The raw data

have been corrected for background (approximately 0.3 counts/sec per observa-

tion) which is primarily due to penetrating high energy particles which excite

the detectors directly. The background is determined separately for each spec-

trum by monitoring a part of the M/Q-V matrix in which no solar wind ions appear.

During solar particle events the background increases by an order of magnitude

and spectra obtained during these periods have been deleted from the data set.

The 4He++/3He ++ abundance ratio is obtained from the corrected data by first

fitting a convected Maxwellian velocity distribution function to the 4He ++ data

taking into account the instrument function. The results of the fitting proce-

dure are values for the velocity, kinetic temperature, density, and flux of

4He ++. Because of the small number of 3He q-F counts, a completely independent

determination of the 3He++ distribution function is not practical. The velocity

of 3He ++ is taken equal to that for 4He ++ and the 3He ++ kinetic temperature is

set equal to 3/4 that for 4He q-F (Ogilvie et al., 1980b). The 3He ++ density and

flux are then calculated from the total corrected 3He ++ counts, using the ins-

trument function and the values of velocity and temperature. The uncertainty in

the ratio of 4He++/3He ++ flux, or density, R depends principally on the statis-

tical uncertainty in the number of 3He+q- counts (typically 14 counts per obser-

vation). Errors associated with the assumed 3He ++ temperatures and velocities

are expected to be small because the density is a rather weak function of these

parameters. Figure 1 shows a plot of 4He++ flux, 3He ++ flux and R for the
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Figure i. 3He++ flux, 4He ++ flux and 4He++/3He ++ flux ratio

as a function of time for the period 16 August 1978 to 27 Decem-

ber 1978. The data are hourly averages. The units of flux are
particles m-2s -I.



period 18 August to 27 December,1978. Hourly averages are shownand data gaps
are crossed by straight line segments. Superposedon the high frequency statis-
tical fluctuations of 3He++ flux are lower frequency fluctuations which correl-
ate well with the fluctuations in 4He++flux, for which the statistical accuracy
is a few percent. The calculated overall correlation coefficient for the two
fluxes for the complete data set is 0.65 indicating that the fluctuations in
3He++fluxare generally physically significant, representing real changes in
the 4He++/3He++ abundanceratio.

Results

Figure 2 is a histogram showing the distribution of values of R , based on
the complete data set. The most probable value, RMp, corresponding to the
maximumin the histogram, is _ 1500 . The average value, <R> , is 2310± 50
and is obtained by summingthe 4He++ fluxes and dividing by the sumof the 3He++
fluxes. This method for obtaining <R>gives a value which can be directly com-
pared with the abundanceratio obtained by the foil technique in which the heli-
umisotopes trapped by the exposed foil over a period of time are desorbed by
heating and measuredin a massspectrometer. The agreement between the results
of the two methods is excellent. Note that this method for calculating <R>is
different from an average obtained by summingindividual R values and dividing
by the numberof values. Weestimate the signal-to-noise ratio for an indivi-
dual measurementto be 2 at R = 3000. Thus, observed increases of R above
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Figure 2. Histogram of 4He++/3He ++ flux ratios, R . The most

probable, RMp , as well as the average value, <R>, of R are
indicated. A value of R corresponding to <R> represents

approximately 14 3He ++ counts.
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5000 which usually represent real physical changes in the abundances, are not
well determined. Values of R well below <R>occur with considerable frequency,
however the persistance of low R values for longer than about 6 hours is rare
in our data. This is in contrast with the observations of GrUnwaldt
(1976) who reported R _ 540 for a period of 48 hours coinciding with a particu-
larly low solar wind speed. Inspection of Figure i shows that such a low ratio
is not particularly rare, but 48 hours is a long period for such a deviation
from the most probable value to persist.

To further examine the relation between R and solar activity we have div-
ided the data set into six-month intervals. The maximumof solar cycle 21 oc-
curred in 1980 and from the data in Table I one can see that <R>for 1980 is
2465! 60 which is to be comparedwith 2310 + 50 for the entire data set. Since
the two averages differ by more than three standard deviations it is reasonable
to conclude that events giving rise to large values of R in the solar wind are
more prevalent around solar maximumthan at other times. Values of R_ for
the six-month periods are also included in Table I.

TABLE I

4Ne/3He Ratios

Period Number of < R > RMp
Days

Aug. 18 - Dec. 31,

1978 136 2320 1600

Jan. i - June 30,

1979 180 2180 1600

July I - Dec. 31,

1979 184 2420 1600

Jan. 17 - June 30,

1980 164 2480 1200

July 1 - Nov. 27,

1980 149 2550 1600

Feb. 19 - June 30,
1981 131 2220 1600

July i - Oct. 18,

1981 109 2300 1700

Average

1978 - 1981 2310 ± 50

Average
1980 2465 ± 60

Among other sources of 3He ++ variability we have investigated a possible

connection between 3He-rich solar flares and solar wind 3He++. The solar flares

of interest are small but result in up to a thousand fold enhancement of 3He ++

at MeV/nucleon energies lasting for a few days (Reames and von Rosenvinge, 1981)

Using a list of 3He++ fluxes in the energy range from 1.3 to 1.7 MeV/nucleon

kindly supplied by Reames (private communication, 1982) we selected seven 3He

events for which there was no coincident solar proton enhancement. If ti is the

time of observation of energetic particles during the ith event, plasma emitted

by the sun at the same time will arrive at 1 AU at about ti+3 days. A super-

posed epoch_analysis was performed to obtain <R(L)>, where <R> is computed over

a period of two days, and L is a variable lag time, taking the values -4, -3,...,
+4 days.
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If the processes responsible for the enhancementof 3He at MeV/nucleon energies
also enhanced 3He++ in the solar wind, wewould expect a decrease in <R>at
zero time, corresponding to a transit time of 3 days. Figure 3 shows the re-
sult; although there is a small decrease in <R>at about the expected lag, it is
less than the standard deviation of the observations. The data are consistent
with the emission by the sunof about 10%more 3Hethan usual. Although estimates
show this is not energetically impossible, we conclude that we did not detect in-
creased 3He in the solar wind at the time of these flares.
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Figure 3. The average value of the 4He++/3He++- flux ratio,

<R>, over the duration of 7 separate _le++-enriched solar flare

events as a function of the time delay between the observation

of the flare and the measurement of solar wind 3He ++ and 4He ++.

The horizontal scale has been chosen so that zero time delay

corresponds to the solar wind transit time of three days. There

is a horizontal dashed line at the position of the average

of the nine values of <R>.
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