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ABSTRACT

Solar-wind plasma data from the ISEE-3 and Helios 2 spacecraft have been

examined in order to explain a uniquely rapid I0° turning of the plasma tall of

comet Bradfield 19791 on 1980 February 6. An earlier study conducted before the

availability of in sltu solar-wlnd data (Brandt et al., 1980) suggested that the

tail position angle change occurred in response to a solar-wind velocity shear

across which the polar component changed by ~50 km s-I. The present

contribution confirms this result and further suggests that the comet-tall

activity was caused by non-corotatlng, disturbed plasma flows probably
associated with an Importance IB solar flare.

Introduction

It is widely believed that most (if not fully all) rapid and large-scale

changes in the plasma tails of comets are caused by structures and disturbances

in the solar wind (Biermann and L_st, 1963; Brandt and Mendis, 1979: Niedner and

Brandt, 1980). This coupling is a result of the strong interaction which takes

place between the magnetized solar wind and the sunward cometary ionosphere via

mass loading of the solar wind by CO+ and other cometary molecular ions. The

basic picture of the plasma tail is of a magnetic flux tube consisting of swept-

up interplanetary magnetic field (IMF) and guiding ions initially created in the

head region in a small (4103 km) production zone (Alfv_n, 1957). Thus, the tail

is formed in a manner similar to that of the Venusian magnetotail (cf. Russell

et al., 1982). The detailed physics of the comet/solar-wind interaction have

recently been summarized for the head region by Schmidt and Wegmann (1982) and

by Ip and Axford (1982), and for the tail region by Brandt (1982; also see Ip

and Axford, 1982).

The branch of cometary study which examines associations between comet-tail

transients and solar-wind structures is a dual one in the sense that in situ

solar-wind measurements are often necessary to establish the cause of a

particular plasma-tail disturbance, whereas classes of tail transients whose

solar-wind cause(s) are generally well known may be used as solar-wlnd probes

when in situ coverage is lacking. This latter aspect--the use of comets as

interplanetary probes--is especially important for high-latitude solar-wind

studies and examples are the use of tail orientations as diagnostics of the

global solar-wind velocity structure over many solar cycles (e.g., Brandt et
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al., 1972), and plasma tall disconnection events as probable sector boundary
markers (Niedner, 1982).

The I0° turning (on the plane of the sky) of the inner plasma tail axis of
comet Bradfield 19791 which occurred on 1980 February 6, and which was reported
by Brandt et al. (1980), is primarily an example of the first kind of
cometary/solar-wlnd associations. The comet was a low ecliptic latitude (-593)
object less than 0.5 AU from Earth--geometric circumstances ideal for
establishing a solar-wind assoclation--but the unavailability of interplanetary
solar-wind measurementsat the time of the original study (Brandt et al., 1980)
restricted the analysis to a general wlndsock approach in which the observed
tail position angle variation yielded an infinite set of vector solar-wlnd
velocity solutions (due to the 2-D nature of the photographs). The explanation
considered most likely by Brandt et al. was that the comet encountered a ~50 km
s-I shear in the polar component of the solar-wlnd speed in ,30 minutes. The
reader is referred to Brandt et al. (1980) for additional details.

The purpose of the present commentis to report an updated analysis based
on recently available ISEE-3 and Helios 2 plasma data (Helios 2 data were kindly
made available by H. Rosenbauer and R. Schwenn through the National Space
Science Data Center, Greenbelt, MD). The study confirms and extends someof Le
Borgne's (1982) conclusions based on the samecometary and spacecraft data.

Spacecraft Observations

The relative positions of comet Bradfield, Helios 2, and ISEE-3 at the time
of the tail turning on 1980 February 6.1UT are shownin Figure i.

HELLOS 2 _ (ISEE_)

r=- 0._ AU _ COM_ BRADFIELD

bc- --_

Figure I. Ecliptic plane projection of comet Bradfleld and the three

spacecraft--ISEE-3, Helios 2, and Helios 1--whlch were making solar-wlnd

measurements near the time of the comet-tail disturbance on 1980 February 6.1

UT. The cited latitudes are ecliptic.
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Although the position of Helios 1 is also shown, the present paper will address

only plasma data from Helios 2 and ISEE-3. It is important to note that the

comet was observed at the low ecliptic latitude of -593 and that Helios 2 was

< I° off the Sun-comet llne (in longitude). Specifically, Helios 2 was 0.15 AU

almost directly upstream of the comet and hence should have observed, some short

time (,0.5 days) earlier, whatever solar-wind feature created the comet-tail

disturbance. The relatively small separation of the comet and ISEE-3

(longitudinal separation ~ 25 °) also favored the observation of any associated

solar-wind structure by ISEE-3.

Data from the Helios 2 plasma detector (H. Rosenbauer, PI) are shown in the

top five panels of Figure 2. The data are one-hour averages. The feature of
maximum interest is the _W = 300-500 km s-I increase in the bulk speed which

took place in less than 2 hours on ~February 5.6 UT. By its steep slope, this

feature looks more llke an interplanetary shock (see Figure I of Borrini et al.,

1982) than the (much more slowly changing) leading edge of a corotating high-

speed stream (see Figure I of Gosling et al., 1978), but a feature of this

structure which is distinctly unlike both shocks and streams is the lack of a

density spike or compression region accompanying the velocity rise (R. Schwenn,

private communication). Le Borgne (1982) has discussed this interesting aspect

and 3 further commented on the region of exceptionally low proton density (Np ,I
cm- ) preceding the velocity rise.

The lower two panels of Figure 2 show, respectively, the Helios 2 bulk

velocity data shifted to the comet on the assumption of radial propagation at

approximately constant wind speeds of 600 km s-l, and theoretical comet-tail

position angles calculated from the wlndsock theory (Brandt and Rothe 1976) and

the shifted Helios 2 flow angles. The asterisks are position angles measured

from the three photographs presented in Brandt et al. (1980). Note the very

close agreement between the predicted arrival time of the velocity feature at

the comet and the time of the tall disturbance. Also significant is the very

close match-up of the observed position angle variation with a steep, predicted

variation caused mainly by a ~20 ° change in the polar flow angle immediately

following the velocity increase.

Figure 3 shows 5-mlnute averaged data for the same time period from the Los

Alamos plasma instrument on ISEE-3. The format is similar to Figure 2 except

for the last panel, which gives the fractional helium abundance Na/N p. Despite
the presence of a _4h40 TM data gap, a ~150 km s-I velocity rise can be seen

starting early on February 6. An associated storm sudden commencement (ssc),

shown on the abscissa of the velocity panel, occurred at 3h20 m _T. Although of

lesser amplitude and smaller maximum speed (600 vs. >800 km s-_), the velocity

feature seen by ISEE-3 is almost certainly the same structure as was observed by
Helios 2 ~12 hours earlier.

Definitive resolution of the question of origin of the velocity feature is

not possible here, but it is noteworthy that the 12 hr. time delay, when

combined with the ~25 ° longitude separation between Helios 2 and ISEE-3, is

incompatible with a corotating stream hypothesis ($ = 50_4/day, P = 7.1 days).

At the present time we favor a flare origin for this feature although the lack

of a density spike prevents its classification as an interplanetary shock. The

candidate flare is the same as that mentioned by Le Borgne (1982): 1980

February 3, ~13:28 UT, SI5EI5, Importance IB, with associated Type IV radio

emission (Le Borgne actually quotes the Solar Geophysical Data Prompt Reports
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position of N18EI3, which was in error; the group llne average for the same
flare in the Comprehensive Reports is S15E15). It should be pointed out that

probably not all five days of elevated solar-wind speed at Helios 2 (Figure 2)

contain actual flare ejecta; as discussed by Borrlni et al. (1982), the general

persistence of high-speed wind for several days during flare-lnduced

interplanetary disturbances may be due to a magnetic re-arrangement of the
corona at and near the flare site.

The projected flare meridian is shown in Figure 1 as the Sun-centered

linear arrow. Note its close proximity to the Sun-comet/Hellos 2 line (A_ =

7?5) and the larger distance to ISEE-3 (A_ = 1795). If it had a flare origin as

tentatively suggested here, then the larger amplitude and maximum speed of the

velocity structure at Helios 2 is qualitatively in agreement with many models of

flare-generated interplanetary disturbances (e.g., DeYoung and Hundhausen, 1973;

D'Uston et al., 1977 ; Borrlni et al., 1982) which predict maximum plasma speeds

and minimum transit times at or near the flare longitude. Assuming

identification with the above-mentloned flare, the mean transit speeds between

the Sun and spacecraft were 815 km s-I (Helios 2) and 662 km s-I (ISEE-3); the

resulting longitudinal gradient of ~15 km s-I deg -I is approximately double the

values resulting from D'Uston et al.'s (1981) models.

Summary

In summation:

I.) A solar-wind disturbance seen in both the Helios 2 and ISEE-3 plasma data

was found which produced the tail turning event in comet Bradfleld. Theoretical

tail position angles generated from the in situ data showed that the tall event

was probably caused by an observed shear in the polar speed component

immediately behind a large rise in the bulk speed (AW = 300-500 km s-I), thus

confirming the earlier study by Brandt et al. (1980).

2.) Observations of the feature's arrival times at ISEE-3 and Helios 2

strongly suggest a non-corotating trajectory. Although the lack of a density

enhancement prohibits classfication of this system as an interplanetary shock

ensemble, a plausible solar flare origin for the feature is proposed (as first
suggested by Le Borgne, 1982).

3.) The study clearly underscores the sensitivity of cometary plasma tails to

sudden large-scale changes in the bulk flow of the solar wind.
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