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Finite field arithmetic logic is central in the implementation of Reed-Solomon coders 
and ik some cnptoqaphic algorithms. There is a need for good multiplication and 
inversion clgorithms thct can be easily realized on VISI chips. Massey and Omura 
recent& developed a new multiplication algorithm for Galois fie;ds based on a normal 
basis representation In this paper, a pipeline structure is developed to realize t!:e 
hlassey-Omura multiplier in the finite field CF(19" ). With the simple squaring property of 
the normal-basis representation used togerher with this multiplier, a pipeline architecture 
is also developed for computing inverse elements in GF(Zm). The desipis developed .for 
the Masse).-Omura multiplier and the computation of inzerse elements are reguk, simple, 
expandable and, therefore, natural& suitable for VLSI implementation 

1. introduction 
Recently. Masse); and Omura (Ref .  I )  invented a multiplier 

which obtains the product of two elements in the finite field 
G F ( 2 m ) .  In their invention. they utilize a normal basis of form 
{a, a2. a4 . .  . . , a2"-'] t o  represent elements of  the field 
where a is the roo: of  an irreducible polynomial of degrre m 
over GF(2).  In this basis each element In the field G'fl Zm,l can 
be reprebented hy m binary digits. 

In the norrnal-balrs representation the sqiuriny o f  an  ele- 
ment in GF(Zm) is readily shown to be simple cyclic shift (if 
its binary digits. Multiplication in the irurnial basis representa- 

tions requires for any one product digit the same logic cir- 
cuitry as it does for any other product digit. Adjacent 
product-digit circuits differ only in their inputs which are 
cyclicaliy shifted versions of one another. In this paper. a 
pipeline architecture suitable for VLSl design is developed for 
a Massey-Orniira multiplier on GF( Zm ). 

The conventional method for finding an inverse element in 
a finite field uses either table look-up or Euclid's Jlgorithms. 
These rrlethcds are not easily realized in a VLSI circuit. How- 
ever, usirig a Massey-Omura multiplier. a recursive. pipeline. 
inverbion circu'! is developed. This structure consists of four 
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sets of shift registers. one parallel-type Massey-Omll:d niulti- 
plier 2nd two control signals. Such a design is regular. simple 
and expandable and, hence, naturallv suit, ble for VLSl imple- 
menta tion. 

II. Squaring and Multiplying in a Normal 
Basis Representation 

In this section. the work originally described by Massey and 
Omura (Ref. 1 1  is reviewed. It is well known that there always 
exists a normal basis in the finite field ) (Ref. 2 )  for all 
positive integers, m. That is. one can find a field element a 
such that N =  {a, a2 ,  a4, .  . . , CYZ(~- ' ) )  is a basis set of 
G f l P  1. Thus every field element E GF(2,) can be uniqueiy 
expressed as 

Thus, if 0 is represented as a vector of components of :he 
normal basis elements of GF(?,)  in the form p =  [bo. b , ,  
b , . - ~ - , b , ~ i ~ , t h e n ~ 2 = [ b , ~ i , b o . b i . ~  . .bm-21.1nthe  
normal basis representation p2 is a cyclic shift of p. Hence 
squaring in GF(2"') can be realired physically by logic cir- 
cuitry which accomplishes cyclic shifts in a binary register. 
Such squaring circuitry is dlustrated in block form in Fig. I .  

By ( 2 )  and (3)  it is readily seen that 1 = a +  a' t a4 t . . . 4- 
for any element a in GF(?). This implies that the 

normal basis representation of I is(1,  1. 1. . . . . 1 ) .  

L e t p = ( b o ,  b , ; . . ,  bm- i ]  andy=[c , , c , :  '.c,-~] 
be two elements of CF(2'") in a normal b m s  representation. 
Then the last term d,-l of the product, 

where bo, b, .  b,. . . . . bm-i are binary digits and addition is 
mod-? addition. 

Three useful properties of a finite field GF(2" ) are stated 
here without proof (for prciofs see, for example, Ref. 2). These 
properties are: 

(1) Squaring in GF(?) :sa linear operation. That is. givzn 
any two elements a and P in GF( lm) .  

( 2 )  For any element a of GF(?".). 

(3) If a is a root of any irreducible polynomial P ( x )  of 
degree v c%-:*- t;F(2), the powers. a. a,. a4. .  . . . 
az("- ; ! ,  -.re :,? YF' 3' '> dnd constitute d comp!e' set 
of roc\. P' Dt-:: 

With regard to p:.->e;:;. i,:.; .?'.ceison and Weidon (Ref. 3) list 
a set of irreducll - i.c!; r.c.-wds of degree VI Q 34 over GF( ?) 
for which the roo:s La, c'. a4, .  . . . a ~ ( ~ - ' ) }  are linearly 
independent. These h e a r  iridependent roots clearly form 3 

normal basis of GF(2'"). 

Suppose that {a. a*,  a4 . . . . a2(m-i)} is a normal basis of 
GF( 2"). By (2) and (3) the square of (1) is 

p2 = b o d  + b, a4 + b2a8 + .  . + ? -  b,-2 + bm-la2m 

is some binary funciion of the components of 0 and y, i.e., 

- d m - ,  - f(bo, b , ,  . . .  , bm-l ;  co. C1' .  ' ' X,-J 

( 6 )  

Since squaring means a cyclic shift of an element in a normal 
basis representation. one has 

6 2  = p2 . yz 

J 
Hence the last component d, - ,  of 6, is obtained by the same 
function f i n  (6) operation on the components of p2 and 7'. 
That is. d m - , =  f(b,-,, bo, b , ; . .  . h m - 2 :  c,-~, co. 
c l ,  . . . . c,-~). By squaring 6 repeatedly, it is evident that 
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The equations in (8) define the Massey-Omura multiplier. 
In the normal basis representation this multiplier has the 
pioperty that the same logic function f which is used to find 
.the last component of dm-l of the product S can be used to 
find sequentially the remaining components d,-,,  
dm-, ,  . . . , do of the product. This featurc of the product 
operation requires only one logic functionfof the 2m compo- 
nents of fl and y to sequential!? compute the rn components of 
the prod-lct. 

By (10) and the fact that a4 =a3 + I ,  one obtains 

d, = b2c2 + b,c, + b,c, + b3c, + blc3 

+ b3r0 + boc, + blco + bocl 

d, = b,c,  + b,c, + Clc2 + b,co + bOc2 

+- b2c3 + b,c2 + boc3 + b3co 
Figure 2 illustrates the logic diagram of the above-desciibed 

sequential-type Massey-Omura mdtiplier on GF( ?). A:ter- 
nately, for parallel operation this feature permits the use of m 
identical !ogic furrctions, f. for calculating simultaneously all 
components of the product. In the latter case, the inputs to 
the rn logic functions f a r e  connected directly to the compo- 
nents of /3 and y. The only difference in the conni-Ltio. s to  the 
components of 0 or y to a functionfis that they are cyclically 
shifted versions cf one another. Figure 3 shows the structure 
of the parallel-type Massey-Omura multiplier for the simple 
case of rn = 4. The extension of this type of structure to a 
general case of GF(Zm) is straightforward. 

d, = boco + b,co + bocl + blc3  + b,c, 

+ b,c, + b2c1 + b3c2 + b,c, 

do = b,c, + bor, + b,co + boc, + b2co 

+ b c + b,co + b2cl + b,c, 
0 1  

Comparilig (1 1) with (8). the functionfis given by 

111. A Pipeline Structure for Implementing fCb,. b,. b,, b,; cor el, c,, c,) 
Massey-Omura Multiplier 

A deta.’ed design of a Massey-Omura mdtiplier is now 
developed for the finite field GF(24). As illustrated in Figs. 2 
and 3. the design of either the seqtiential-type or parallel-type 
Massey-Omura multiplier must focus on the product func- 
tion f: 

= b2c2 + b3c2 + b2c, + b3c1 + b1c3 

-+ b3co + bCc3 + blcO + bocl (12) 

The design o f f  begins with the sele2tion of an irreducible 
polynomial P( .x l=  x4 + x3 + 1 of degree rn = 4 over GF(2).  
This particular polynomial function has linearly indcpendent 
roots, namely. a. a 2 ,  a4 and a’. Hence. the set of roots {a, 
a*. a4, a’} constitutes a normal basis of CF(24). Any two 
eieinents /3 and y in GF(7,4) can be expressed as 

/3 = bo a f b, a’ + b, a4 t b, a’ 

( 9 )  
y = co a + c1 a2 + c2 a4 + c, a’ 

Since the mod-2 sum in ( 1 2 )  can be implemented by the 
“exclusive or” operation (XOR). the structure of the product 
funcrion f can be represented by the logic circuit in Fig. 4. 
T h s  circuit consists of two portions; the left half is an AND 
plane which computes each term of ( 12), while the right half is 
XOR plane which computes the mod-2 sum. The input5 to  the 
AND p h e  are the complements of the components of /3 and 
y. This is due to the fact that the AND operation in the AND 
plane is obtained by the NOR operation on the complements 
of the two digits being ANDed, Le., xy = (X + 7) where X is the 
complement of X. 

A pipeline structure of a Massey-Omura multiplier for 
GF(,Z4) is shown in Fig. 5. This structure has a sequential type 
of operation. For each of the two inputs. corresponding to /3 
and 7. to theffunction, an inverter. two sets of shift registers, 
B and R ,  and 1 1  gate transistors are utilized. Note that regis- 
ters B and R have an identical circuit structure. 

By (4 )  the product of p and y IS 

( 

In Fig. 5 during thc first three clock cycles. when signal 
LD = 0, the complements of 5,, b,, 6, and c,, c,, c1 are fed 

6 = * y = (bo a + b, a’ + b, a4 + b, a’) 

* (cc a + c1 a* + c2 u4 + c3 a’) 

= do a + d ,  a2 + d, a4 + d3 a’ 
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sequenti. Ily into three buffer flipflops B ,  for ( k  = I ,  2 ,  3). At 
the fourt I clock cycle, when Ld = 1. the idlues of z,, b2, 
and 7,. F2, T , ,  previously stored in buffer registers B,  aild bo 
and Fo are ihif!ed into the second set of registeis R, for 
( k  = 1, 2. 3,  4). Then the R-registers are cyclically shifted 
Such a cyclic-shift operation is needed to sequentially yield 
the product components d,, d,. d, 2nd do of 6. While the 
R-registers are cyclically shifting the components of 0 (or y). 
the components of another elemen: in CF(Z4) following 0 
(or 7 )  can be fed into the buffer B-registers. Therefore, the 
structure in Fig. 5 provides a pipeline operation in which no 
time is lost except for an initial fixed time delay. The VLSl 
layout of a Massey-Omura multiplier for GF(24) is shown in 
Fig. 6. 

Figure 7 illustiates a system structure of a pipelined 
Massey-Omura multiplier for GF(zm) .  For this ger,eral case 
over GF(2m),  the buffer and the cyclic shift mechanism in 
Fig. 7 have m -  1 and m stages, respectively. Each stage con- 
sists of a shift register and a gate transistor. The product 
function f is a mod-2 sum o i  AND products of the compo- 
nents of the two inputs being multiplied. Such a circuit for 
function fconsists of an AND programmed logic ariay (PLA) 
(Ref.4) followed by an XOR sequential-PLA. In the XOR 
sequential-PLA there are several levels of XORs. At each level, 
the inputs, pair-by-pair, are fed sequentiaiiy one-by-one into 
an XOR as shown in Fig. 4. 

Let n ( j )  be the number of XOR circclits at thej-th level of 
the XOR sequential-PLA. Then n ( j  + 1 )  = [ n ( j ) i Z ]  where 
[x] is the smallest integer greater than x and wbere initially. 
n(0) = total number of terms to  be XORed in product func- 
tion f. At the last level. there ib only one XOR circuit and the 
output i s  the value o f f .  In general. it" k denotes ?he number 
of levels required in the XOR scquential-PLA, k = [log2n(0)j. 

It should be noted that as m gets large. the mmber o f  
mod-:! sums in the functionfbecomes large. In this case. more 
XORs and as a consequence more levels iri the XOR sequen- 
tial-PLA are required. To maximize thz pipeline operation 
speed. shift registers are required between the XOR levels in 
order to  store the XOR outputs of the intermediate levels. 

Another approach to the realization of product function 
is to  use a standard ANDGR PLA (Ref. 4). This is possible 
since x 7 v = Xy v xu where v denotes inclusive OR. In general, 
although the design o f f  by the use of such a PLA is tedious. 
the prodx! function f can be accomplished in less than one 
clr,:k cycle. One trdde-off for such a design is the  large chip 
area required. The required area for such a PLA increases 
dramatically with m. Hence. d design utiliiing a standard 
AND-OR PLA to  realuefis practical only for small m. 

IV. A Pipeline Structure for Computing an 
Inverse Element in the Finite Field 
W ( 2 m ) )  

For any a in the finite i:eld GF(2m),  drn = a. Hence the 
Let 2m - 2 be decoiiiposed as inverse of a is a-' = 

2 + 2, + Z3 + . . . + 2 m - 1 ,  then a-' can be expressed as 

2 3 
a-' = ( a ' ) .  (a2 ) * (a2 ) * . . . * (azm-') (13) 

As discussed in Section 11. if a is represented in a normal basis, 
squaring can be realized by a cyclic shift cpeiation. az' is the 
j-th cyclical shift (CS) of a. Thus. the inverse e!ement a-' can 
be obtained by using successive cyclic-shift operations and a 
Massey-Omura mu!tiplier. The zlgorithm fc;r a-' is the 
fol I o w i ng : 

(1) Obtain the cyclic shift of a,  :.e.. a' = CS(a) where CS 
denotes the cylic shift function. Let B =  CS(a) and 
C = l . L e t k = O .  

( 2 )  Multiply B 2nd C to obtain the product. D =  B * C .  Set 

( 3 )  If k =  m - I ,  a-' = D. Stop. If k < m  - 1. let B = C S ( B )  
and C = D. 

(4) Go back to ( 2 ) .  

k = k + l .  

Figure 8 shows a flow chart diagram of this procedure. 

This recursive algorithm for computing an inverse element 
in GF(2,)  can be realized using the circuit shown in Fig. 9. In 
this circuit the parallel-type Massey-hurd multiplier shown in 
Fig. 3 with the circuit for the product function f shown in 
Fig. 4 is utilized. 

To illustrate. let L d ,  and Ld, be two control signals with 
period of four clock signals as shown in Fig. 9. Also let the 
normal basis representation of a be (ao,  a , ,  a,, a,). At the end 
of the third clock pulse. the valuesa,, 5,. a J. are stored in the 
input buffer flipflops B , ,  B,, B , .  respectively. During the 
four clock cycle. i3, a,,, Zi and ii, are simultaneously shifted 
to R , ,  R,, R, and R,. respectively. With the appropriate 
connections among thc input buffer flip-flops B, and flip-flops 
Rk, the cyclic shift of 6 = (uo, a,. a,, u, ) .  i.e.. (r2 = (a 3' a 0 '  

a,, a,! is obtained inR .  At the fourth clock pulse R , ,  R, ,  R,, 
R ,  are also fed the value "0". These four complementary 
values of " I "  introduce the element 1 in GF(24) .  

As i t  was discussed in Section 11. a parallel-type CF(?)  
Massey-Omura multiplier simultaneously y1e't.k four product 
components do. d,, d2, d, .  Therefore. during the next three 
clocks three successive multiplicdtions. i.e.. 0, = 1 * a'. 0, = 
0, a4 and 0, = 0, * a* are performed for the irlversioi1. 
When the third multiplication is completed. Ld, = I .  Thus 
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the output product digits, which together rrpreient the clock cycles, the circuit ir. Fig. 9 allows the bits of the next 
inverse element CY-' ,  are fed into the output buffer flip-flops eiei lent (following a) to be fed into it and the bits of the 
B Finally these are sequentially shifted from the inversion previous element to be shifted out of it. simultaneously. This 

type of circuit provides a full pipeline capability. A VLSl circuit. 
layout of the pipeline inversion circuitry for CF(2*) is pre- 
sented in Fig. 10. Figure 1 1  shows the system structure of an 
inversion circuit for the general finite fieldFG(2m). 

k '  

The above technique for computing the inverse of an el* 
ment in C F ' ( ~ ~ )  takes four clock cycles. During these four 
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Flg. 1. The sqvarlng operation for a nomal-basis repmsenwion over OF(29  

Fig. 2. Systemlogic diagram of a sequeMlal-type Massey-Omura multiplier over 6 4 2 3  
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Flg. 3. Archltechrm of parallel-type Mas8ey-Omura multlpller over ~ ~ ( 2 4 )  
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