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Finite field arithmetic logic is central in the implementation of Reed-Solomon coders
and in some cryptographic algorithms. There is a need for good multiplication and
inversion algorithms that can be easily realized on VLSI chips. Massey and Omura
recently developed a new multiplication algorithm for Galois fieids based on a normal
basis representation. In this paper, a pipeline structure is developed to realize tkhe
Massev-Omura multiplier in the finite field GF{2™ ). With the simple squaring propertv of
the normal-basis representation used together with this multiplier, a pipeline architecture
is also developed for computing inverse elements in GF{2™ ). The designs developed for
the Massey-Omura multiplier and the computation of inverse elements are regular, simple,
expandable and, therefore, naturally suitable for VLSI implementation.

l. Introduction

Recently. Massey and Omura (Ref. 1) invented a multipher
which obtains the product of two elements in the finite field
GF(2m). In their invention. they utilize a normal basis of form
{a. @2 a®.---, a2™ '} to represent elements of the field
where a is the root of an jrreducible polynomial of degree m
over GF(2). In this basis each element 1 the field GF1 2™ ) can
be represented by m binary digits.

In the normal-ba:is representation the squaring of an ele-

ment in GF(2™) 1s readily shown to be 2 simple cychic shift of
its binary digits. Multiplication in the normal basis representa-
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tions requires for any one product digit the same logic cir-
cuitry as it does for any other product digit. Adjacent
product-digit circuits differ only in their inputs which are
cyclically shifted versions of one another. In this paper. a
pipeline architecture suitable for VLSI design 1s developed for
a Massey-Omura multiplier on GF(2™).

The conventional method for finding an inverse element in
a finite field uses either table look-up or Euclid’s algonthms.
These metheds are not easily realized in a VLSI circuit. How-
ever, using a Massey-Omura multiplier. a recursive. pipeline.
inverston circu't 1s developed. This structure consists of four
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sets of shift registers, one parallel-type Massey-Omu: 4 multr
plier and two control signals. Such a design is regular, simple
and expandable and, hence, naturallv suit. ble for VLSI imple-
mentation.

lIl. Squaring and Multiplying in a Normal
Basis Representation

In this section, the work originally described by Massey and
Omura (Ref. 1) 15 reviewed. 1t is well known that there always
exists a normal basis in the finite field GF(2™ ) (Ref. 2) for all
positwve integers, m. That is, one can find a field element a
such that N= {a. a2, a®.---. a2 D} is a basis set of
GR(2™). Thus every field element § € GF(2™ ) can be uniqueiy
expressed as

(m-1)
g = boa+blaz+bzaa+---+bm_la2 (1)

where by, b,. by, -
mod-2 addition.

. b,,_, are binary digits and addition is

Three useful properties of a finite field GF(2™) are stated
here without proof (for proofs see, for example, Ref. 2). These
properties are:

(1) Squanng 1n GF(2™) 1s a linear operation, That is. given
any two elements a and § 1n GF(2™),

(a+f)? = o+ (2

(2) For any element a of GF(2™).
at =« (3)

(3) If a 1s a root of any wreducible polynomial P(x) of
degree »» ¢y (/F(2), the powers, a. a?, a%. - -
a2t i &'F 2ty and constitute a comple” set

e g

of roci, o PU}

With regard to prope.: (1 foceison and Weldon (Ref. 3) list
a set of irreducit) po!s noneals of degree 7 < 34 over GF(?)
for which the roo!s @ a¢. a%, - . a2(m=1)} are hnearly
independent. These iinear wdependent roots clearly form a
normal basis of GF(2™).

Suppose that {a. a?,a* -- -.a2™ Y} is a normal basis of
GF(2™). By (2) and (3) the square of (1) 1s

2(m—1)+ m
a b, .«

2 a B4y
B2 = byl +b ot +ba®+ o tb

b atbyat+bat+ b a2 (4)

Thus, if § 1s represented as a vector of components of the
normal basis elements of GF(2™) n the form 3= |b,, b,
by - byl thenf2=1[b, |, by b,.- -.b,_,| Inthe
normal basis representation §2 is a cyclic shift ot . Hence
squaring in GF(2™) can be realized physically by logic cur-
cuitry which accomplishes cyclic shifts in a binary register.
Such squaring circuntry is lustrated 1n block form in Fig. 1.

By (2) and (3) it is readily seen that 1 =a +a’ + ottt
2D for any element « in GF(2™). This imphes that the
normal basis representation of 1is (1, 1. 1.---.1).

Let B=1{by. by.---. b, ;] and v={cg ¢;." - .cm_lj
be two elements of GF(2™) in a normal basis representation.
Then the last termd, | of the product,

§=p-v=[d,d,.--.d,_I (5)

m-1
1s some binary funcuion of the components of 8 and 7, t.e.,

d . =f(bo'b1"”’bm-1" Cor €v € )

m m-1

(6)

Since squaring means a cyclic shift of an element 1n a normal
basis representation. one has

§2 =247 \
= [bm_l,bo,bl.--~.bm_2]
(N
g GO Y RSRRRY
= [dm—l’do'dl’“"dm—2]

Hence the last componentd,, _, of 82 is obtained by the same
function f in (6) operation on the components of $? and 2.
That is. d,_5= f(b,,_y, by, by, " . b5t €y Co.
€y." " .Cp_7) By squanng & repeatedly, it 1s evident that

)

dpy =Flbg bys i by 5Cg €t h 6 )
dm-2 =f(bm—l' bO' bl’ o ’bm—2:
€1 Cor € G a) >(3)

-
.
.

dy =feby. byt by L by

m-1" "0

cl,cz"".cm_l,co) )
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The equations in (8) define the Massey-Omura multiplier.
In the normal basis representation this multiplier has the
property that the same logic function f which is used to find
.the last component of d, _, of the product § can be used to
find sequentially the remaining components d,,_a.
d, .. dy of the product. This feature of the product
operation requires only one logic function f of the 2m compo-
nents of § and ¥ to sequentially compute the m components of
the product.

Figure 2 illustrates the logic diagram of the above-desciibed
sequential-type Massey-Omura multiplier on GF(2™). Alter-
nately, for parallel operation this feature permits the use of m
identical logic functions, f. for calculating simultancously all
components of the product. In the latter case, the inputs to
the m logic functions f are connected directly to the compo-
nents of § and . The only difference in the connectio. s to the
components of § or 7y to a function fis that they are cyclically
shifted verstons cf one another. Figure 3 shows the structure
of the parallel-type Massey-Omura multiplier for the simple
case of m =4. The extension of this type of structure to a
general case of GF(2™) is straightforward.

lil. A Pipeline Structure for Implementing
Massey-Omura Multiplier

A deta'ed design of a Massey-Omura multiplier is now
developed for the finite field GF(2*). As illustrated in Figs. 2
and 3, the design of either the sequential-type or parallel-type
Massey-Omura multiplier must focus on the product func-
tion f.

The design of f begins with the selection of an irreducible
polynomial P(x)= x* + x3 + 1 of degree m =4 over GF(2).
This particular polynomial function has linearly indcpendent
roots, namely. a. o?. o* and a®. Hence, the set of roots {a.
o?. o®, a®} constitutes a normal basis of GF(24). Any two

elements § and v in GF(2%) can be expressed as

B =boa+bla2+b2a4+b3a8
{9)
¥ =c()o:+cl012+c2¢x“+c30z8
By (9) the product of fand 715
6 =By =(byatb o +b,a*+b a?)
. (c‘oa+cla2+c2a“+c3a8) (10)

2 4 8
+
doa dla +d2a +d3a
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By (10) and the fart that ot =a®+ 1, one obtains
aV3 = b202 + b3c2 + b2c3 + b3cl + blc3

+hoo + + +
bycg ¥ bocy tbycy t by,

= + +
dy =bc tbye, vbic, v bycy+bye,

+ b203 + b302 + boc3 + ba"o
> 1)
dl = boc0 + blc0 + bocl + blc3 +bscl

+ + + +
blc2 bzcl b3c2 b2c3

= + + +
do b:cj bo(‘3+b3cO boc2 bzc0

+ bocl tbc,tbye th e,
Comparing (11) with (8). the function f'is given by
f(bo, b,. b, byt ey €€y Cy)
= bzc2 tbyc,tbye,thie th e,

+ + o+
b3c0 bccs+b1"o bocl

(12)

Since the mod-2 sum in (12) can be implemented by the
“exclusive or”” operation (XOR), the structure of the product
functuion f can be represented by the logic circuit in Fig. 4.
Thes circuit consists of two portions; the left half is an AND
plane which computes each term of (12), while the right haif is
XOR plane which computes the mod-2 sum. The inputs to the
AND plsne are the complements of the components of § and
7. This is due to the fact that the AND operation in the AND
plane is obtained by the NOR operation on the complements
of the two digits being ANDed, i.e., xy = (x + ¥) where X is the
complement of x.

A pipeline structure of a Massey-Omura multiplier for
GF(2%) is shown in Fig. 5. This structure has a sequential type
of operation. For each of the two mnputs, corresponding to 8
and 7. to the f function, an inverter, two sets of shift registers,
B and R, and 11 gate transistors are utilized. Note that regis-
ters B and R have an identical circuit structure.

In Fig. § during the first three clock cycles. when signal

LD =0, the complements of by, b, b andc,, c,, c, arefed
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sequentilly into three buffer flip-flops B, for (k=1. 1, 3). At
the fourt clock cycle, when Ld =1, the values of 233 b2, él
and ¢ <y Cz' ¢,. previously stored in buffer regisiers B, andb

and ¢, are shnf'ed into the second set of registers R, .or
(k=1,2.3,4). Then the R-registers are cyclically shifted
Such a cyclic-shift operation is needed to sequentially yield
the product componeits dy, d,, d, 1nd d, of 6. While the
R-registers are cyclically shifting the components of 8 (or ).
the components of another elemen: 1n GF(2%) following 8
(or 7) can be fed into the buffer B-registers. Therefore, the
structure 1n Fig. 5 provides a pipeline operation in which no
time 1s lost except for an initial fixed time delay. The VLSI
layout of a Massey-Omura muitiplier for GF(2*) is shown in
Fig. 6.

Figure 7 illustiates a system structure of a pipelined
Massey-Omura multiplier for GF(2™). For this general case
over GF(2™), the buffer and the cyciic shift mechanism in
Fig. 7 have m- 1 and m stages, respectively. Each stage con-
sists of a shift register and a gate transistor. The product
function f is a mod-2 sum of AND products ¢f the compo-
nents of the two inputs being multiplied. Such a circuit for
function f consists of an AND programmed logic array (PLA)
(Ref. 4) followed by an XOR sequential.PLA. In the XOR
sequential-PLA there are several levels of XORs. At each level,
the inputs, pair-by-pair. are fed sequentiaily one-by-one inte
an XOR as shown in Fig. 4.

Let n{j) be the number of XOR circuits at the j-th level of
the XOR sequential-.PLA. Then n(j + 1) = [n(j)/2] where
[x] is the smallest integer greater than x and wkere initially,
n(0) = total number of terms to be XORed in product func-
tion f. At the last level, there is only one XOR circuit and the
output is the value of f. In general. if k denotes the number
of levels required in the XOR sequential-PLA, k = [log,n(0)].

It should be noted that as m gets large. the rumber of
mod-2 sums in the function f becomes large. In this case. more
XORs and as a consequence more levels i the XOR sequen-
tial-PLA are required. To maximize the pipeline operation
speed. shift registers are required between the XOR levels in
order to store the XOR outputs of the intermediate levels.

Another approach to the realization of product function ;

is to use a standard AND-GR PLA (Ref. 4). This is possible
since x t v =Xy vxy where v denotes inclusive OR. In general,
although the design of f by the use of such a PLA is tedious.
the prodact function f can be accomplished in less than one
cleck cycle. One trade-off for such a design is the large chip
area required. The required area for such a PLA increases
dramatically with m. Hence. a design utihzing a standard
AND-OR PLA to realice fis practical only for small m.

iV. A Pipeline Structure for Computing an
inverse Element in the Finite Field
(GF(2m))

For any « in the finite rield GF(2™). a2™ = a. Hence the
inverse of a is o~} = a2™-2. Let 2™ - 2 be decomposed as
24224234 -4+ 2m=1 thena~! can be expressed as

= @) @) ) @™ (13)
As discussed in Section 11, if a 15 represented 1n 3 normal basis,
squaring can be realized by a cychc shift cperation. a2’ is the
J-th cyclical shift (CS) of a. Thus, the inverse element o ! can
be obtained by using successive cyclic-shift operations and a
Massey-Omura muluiplier. The algonthm for o' 15 the

following:

(1) Obtain the cyclic shift of a, ie.. a* = CS(a) where CS
denotes the cylic shift function. Let B= CS(a) and

C=1. Letk=0.

(2) Multiply B and C to obtain the product. D= B + C. Set
k=k+t1.

(3) fk=m-1,a ' =D.Stop. If k<m~- 1.let B=CS(B)
andC=D.

{4) Go back to (2).
Figure 8 shows a flow chart diagram of this procedure.

This recursive algonthm for computing an inverse element
in GF(2*) can be realized using the circuit shown in Fig. 9. In
this circuit the parallel-type Massey-Omura multiplier shown in
Fig. 3 with the circuit for the product function f shown in
Fig. 4 is utilized.

To illustrate. let Ld, and Ld, be two control signals with
pertod of four clock signals as shown in Fig. 9. Also let the
normal basis representation of a be (¢, a,, a,, a,). At the end
of the third clock pulse, the valuesa al, a2 a3 are stored in the
nput buffer flip-flops B,, B,, B,. respectively. During the
four clock cycle. a,, g, al and a, are simultaneously shifted
to R, R,, R, and R . respectively. With the appropnate
conneutlons among the lnput buffer flip-flops B, and flip- ﬂops
R, . the cyclic shift ofo:—(a0 a,,4a, a,). 1e a2 = (a,, a,

a,, a,)1s obtained in R. At the fourlh «,lock pulse R, R, R
Ry are also fed the value “0”. These four Lomplementary
introduce the element 1 1 GF(2%).

I3}

values of *‘]

As it was discussed in Section 1. a parallel-type GF(2%)
Massey-Omura multiplier simultaneously yie'ls four product
components d,, d,, d,, d,. Therefore. during the next three

clocks threc 5u“essxve multlphmtmns ie.. B =1 -a° B
ﬁl « a* and B B are performed tor the inversic.
When the thlrd multlphuatlon is completed, Ld, = 1. Thus
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the output product digits, which together represent the
mverse element a”!, are fed into the output buffer flip-flops
B, . Finally these are sequentially shifted from the inversion
circuit.

The above technique for computing the inverse of an ele-
ment in GF(2%) takes four clock cycles. During these four

clock cycles, the circuit in Fig. 9 allows the bits of the next
elerent (following a) to be fed into it and the bits of the
previous element to be shifted out of it, simultaneously. This
type of circuit provides a full pipeline capability. A VLSI
layout of the pipeline inversion circuitry for GF(2%) is pre-
sented in Fig. 10. Figure 11 shows the system structure of an
inversion circuit for the general finite field FG(2™).
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Fig. 1. The sqvaring operation for a normal-basis representation over GF(2™)
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Fig. 2. System-logic diagram of a sequential-type Massey-Omura multiplier over GF{2™)
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Fig. 3. Architecture of parallel-type Massey-Omura multiplier over GF(24)
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Fig. 7. System structure of a pipeline Massey-Omura muitiplier for GF{2™)
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Fig. 9. Pipetline structure of computing the inverse element in GF(24)
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Fig. 10. Layout of the inversion clrcult for GF(2 Y
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Fig. 11. System structure of a pipeline inversion circuitry for GF(2™)



