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Abstract continued:

a given radar resolution, the expected classification accuracy is shown to be
dependent upon both the general soil moisture condition and also the geographical
distribution of land-use (field-size distribution and dispersion of categories)
and topographic relief. An analysis of cropland, urban. pasture/rangeland, and
woodland subregions within the test site indicates that multi-temporal detection
of relative soil moisture change is least sensitive to classification error resulting
from scene complexity and topographic effects.

The 100 m by 100 m radar resolution is found to yield the most robust classification
results, and it is ..oncluded that further degradation of image resolution should be
implemented in post-detection processing when and where coarse resolution analysis
is warranted.
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A SIMULATION STUDY OF SCENE CONFUSION FACTORS IN
SENSING SOLI, MOISTURE FROM ORBITAL RADAR

M. C. Dobson, S. Moezzi, F. T. Ul.aby, and E. Roth
Remote Sensing Laboratory

University of Kansas Center for Research, Inc.
Lawrence, Kansas 66045-2969

ABSTRACT

Simulated C-band radar imagery for a 124-tan by 108-km

teat site in eastern Kansas is used to classify soil

moisture. Simulated radar resolutions are 100 m by 100 m, 1

,	
km by 1 km, and 3 Ian by 3 Ian; all images are processed with

greater than 23 independent samples. The simulated radar

operates at 4.75 GHz with HH polarization and over 7 0 to 170

angles of incidence.

Distributions of actual near-surface soil moisture are

established daily for a 23-day accounting period using a

water budget model dependent upon precipitation, potential

evaporation, crop-canopy cover, crop development stage,

surface slope, antecedent soil moisture, and soil hydrologic

properties. Within the 23-day period, three orbital radar

overpasses are simulated roughly corresponding to generally

moist, wet, and dry soil moisture conditions. The radar

simulations are performed by a target/sensor interaction

model dependent upon a terrain model, land-use

classification, and near-surface soil moisture distribution.

Rayleigh fading, layover, and shadow are accounted for by the

model. For each overpass date and each radar resolution, the

received power and range position of a given pixel is used to

classify near-surface soil moisture via a generalized

Vi



algorithm requiring no ancillary data about scene

characteristics.

The accuracy of soil-moisture classification is

evaluated for each single-date radar observation and also for

multi-date detection of relative soil moisture change. in

general, the results for single-date moisture detection show

that 70% to 90% of cropland can be correctly classified to

within +/- 20% of the true percent of field capacity. For a
5

given radar resolution, the expected classification accuracy

is shown to be dependent upon both the general soil moisture

condition and also the geographical distribution of land-use

(field-size distribution and dispersion of categories) and

topographic relief. An analysis of cropland, urban,

pasture/rangeland, and woodland subregions within the test

site indicates that multi-temporal detection of relative soil

moisture change is least sensitive to classification error

resulting from scene complexity and topographic effects.

The 100 m by 100 m radar resolution is found to yield

the most robust classification results, and it is concluded

that further degradation of image resolution should be

implemented in post-detection processing when and where

coarse resolution analysis is warranted.

Vii
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1.0 INTRODUCTION

Simulation techniques have been employed to study the

relationship between spatial resolution and the accuracy at

which soil moisture can be estimated from orbital C-band

radar imagery (1,21. These studies were based upon the

land-use and crop-canopy-coves distributions present within a

relatively small agricultural test site (18 km x 19 km)

adjacent to the Kansas River in eastern kaneas. Image

simulation techniques were used to generate

synthetic-aperture radar (SAR) images at a frequency of 4.75

GHz with HH polarization and with angles of incidence between

7 0 and 22 1 from nadir. S	 images were produced at three

different spatial resolutions: 20 m by 20 m with 12 looks,

93 m by 100 m with 23 looks, and 1 km by 1 km with 230 looks.

In addition, simulated real-aperture radar (RAR) imagery was

produced with a spatial resolution of 2.6 km x 3.1 km with

363 looks. Analysis of these images demonstrated that for

relatively flat agricultural portions of the test site about

901 of the 20-m by 20-m pixel elements can be correctly

classified to within +/- 20 percent of field capacity using a

generalized soil moisture algorithm. In general, moisture

classification accuracy was found to be greatest for coarser

resolution imagery due to the increased number of looks=

however, the results also showed a distinct

classification-accuracy dependence on the complexity of the

"true" soil moisture distribution and also upon the spatial

1
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distribution of land-use elements within the test site.

As a consegv,vnce, the current study is designed to

examine further the effects of the spatial distribution of

land-use categories, the agricultural field-size

distribution, the crop-canopy mix, and the variability of

local topographic relief on the soil-moisture classification

accuracy achievable by various orbital radar resolutions at

4.75 CHz, HH polarization, and angles of incidence from 7 0 to

17 0 .	 An area of 124 km by 108 km, 	 including most of the

Lawrence, Kansas USCS quadrangle (1:250, 000), 	 serves as the

test site.	 The area includes large subregions dominated by

urban features, mixed cropland, rangeland and pasture, or

r.r. deciduous woodland.	 Simulated radar imagery9	 Y of this test

site at resolutions of 100 m by 100 m, 1 km by 1 km, and 3 km

by 3 km are used to classify soil moisture, which is

subsequently compared to the input "true" soil moisture.

Classification accuracies of each radar resolution are
i

compared for the whole test site And also for each of four

subregions related to different mixtures of land-use. 	 Since

the number of processed looks for all resolutions is large (N

E
> 23), the relative classification accuracies of each

resolution should be only minimally biased by fading

statistics.

The dynamic behavior of each 100 m by 100 m grid cell

^'
within the simulation test site is modeled over a 23 day time	 I

I

r
period with respect to near surface soil moisture, crop

jcanopy cover, crop stage-of-growth, and soil surface

2
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roughness. The input parameters to this model include static

conditions such as topography and soil association and also

dynamic components consisting of cropping practices and daily

meteorological conditions. The cropping parameters are based

upon a stochastic treatment of average crop calendar, field

size distribution, and crop development while the

meteorological data includes daily rainfall and potential

evaporation. The output of this model consists of daily

updates of near surface (0-5 cm) soil moisture and radar

backscatter category which is approximately equivalent to a

Level III land -use category [3]. The model is run for a 23

day period and the outputs are saved on 3 dates corresponding

to hypothetical orbital overpasses each nine days apart. The

overpass dates were selected intiependent of any consideration

of ^-rs;%tal mechanics but rather to represent three

distinctive soil moisture distributions over the test site:

very wet, moist, and dry. The above moisture classifications

are very general, however, since the large size of the data

base and the late spring time frame of the simulations leads

to highly variable regional soil moisture distributions on

any given date.

For each orbital overpass, a target-sensor interaction

model produces simulated radar imagery for each of the three

radar resolutions. The simulation model accounts for the

effects of Rayleigh fading and geometric properties such as

layover and shadowing [ 22]. Each simulated radar image is

then subjected to a generalized algorithm (requiring only the

3
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amplitude of received power and the range position of a given

pixel) which classifies the image into estimated soil

moisture. These distributions of estimated soil moisture are

subsequently compared with the distributions of actual

near-surface soil moisture on a grid-cell basis for each

date.

In addition to testing the absolute classification

accuracies of each radar resolution for each of the three

overpass dates in an instantaneous sense, multi-temporal data

from two of the overpasses is used to evaluate the merits of

relative change detection of near surface soil moisture as

estimated from each of the three simulated radar resolutions.

The above process is shown schematically in Figure 1.

2.0 TEST-SITE DATA BASE

In order to quantify the radar backscattering from a

given terrain element, certain geometric and dielectr4c

properties of the target scene must be known. First, the

three-dimensional cartographic coordinates of each element

must be specified relative to the orbital radar in order to

compute range, area, and local incidence angle. Secondly,

the radar backscattering category must be established; this

is roughly equivalent to a level-III land-use classification

category [3]. Finally, many land-use categories have

backscattering properties than vary as a function of

crop-canopy cover, row directionality, and near-surface soil

4

do



0^

or RooR QUALM

\^	 § )

FI-4

! \ §)
§ 7§)§

()$

§ ^ \(

%§ 2 \b\

§\ \§\ / (

}
) §± §m

^ \̂

2 ^]

,

_	 ....	 .^...^^.^...	 ^
^	 ..^	 »z }



lTJ	 0
11

moisture. A three-tiered digital data base is constructed to

describe the spatial distribution of category elements and a

dynamic model acts upon this distribution to vary target

dielectric and backscattering properties as a function of

time. It is assumed that all target properties are laterally

homogeneous within a given 100 m by 100 m terrain element.

2.1 Terrain Model and Radar Backscattering Categories

Digital elevation data from the Defense Mapping Agency

provide a static model of the terrain geometry.	 These data

are corrected for scanning errors and resampled to yield a

mean elevation for each 100-m by 100-m grid element within

the 124-km by 108-km test site. 	 An image-format presentation

of the digital elevation data is shown in Figure 2.
i

The specification of radar backscattering category for

1

each 100-m by 100-m grid element involves a three-atep

process that accurately describes the spatial distribution of

the categories shown in Table 1 in a stochastic sense.	 A
P

two-dimensional digital matrix of Level-II land-use

classification is given by USGS land-use and land-cover 	 j

hR^

digital data (LUDA) for the Lawrence, Kansas quadrangle.
!n

Level-II categories with similar radar backscattering

properties (such as lakes and rivers) are redefined as

equivalent backscattering categories.	 The Level-II LUDA

kcategory of cropland is insufficient to specify unique 	 j

backscattering characteristics; thus a stochastic process is

6
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Urban

Rangeland / Pasture
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Figure 2. Digital terrain data of the test site showing the positions
of the four subregions.
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used to further define the spatial distribution of particular

agricultural crops. A random sample of U-2 high-altitude

color IR images is used to generate statistics on

agricultural field-size distribution for each of the twelve

counties within the test site. These statistics are then

used to assign random field-boundary networks within each

county. The distribution of field sizes is given by county

in Table 2.

Specific crop categories and row directions are randomly

assigned to each field within a county, based upon an

historical enumeration of crop acreage for each county

provided by the Kansas State Board of Agriculture and the

Missouri Department of Agriculture. These acreages are given

by county in Table 3. In addition, since all crops are not

grown concurrently, crop calendar data [4] is used to factor

planting and harvest into the time history of each field.

Within a given crop, planting and crop-development stages

established for this area are used to change a given field's

backscatter category from bare soil to that of the crop after

emergence in a stochasitc fashion. The fields of each crop

type are subdivided into ten subgroups each with a

distinctive cropping history. Thus, the crop-type

distribution will vary locally as a function of time within

the 23 day simulation period. The land-use and crop-type

distributions for the entire 124 km by 108 km test site are

shown in Table 1 for each of the hypothetical orbital

overpass dates. The simulation period runs from May 18

9
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TABLE 2. Field-Size Distributions for the Agricultural Portions
of the Land-Use Subregions

is

F.r.,

r.

Subregion

Percent of Agricultural Area

Field Size in Acres

10 30 40 60 80 100 120 140 160

Urban (Kansas City) 20

r23

10 15 7 16 3 2 2 7

Pasture/Rangeland 4 6 18 8 28 3 5 3 14

Cropland 20 12 19 11 6 2 2 2 3

Woodland 20 1	 23 1	 12 1	 19 11 6 2 2 2 3

C

4
L
E

ti
L'
h,

Y

41

I

1

10

3
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TABLE 3. Relative Percent of County Cropland
Devoted to a Given Crop or Pasture/Range (9,10]

Group A m Anderson County
Group B - Bates, Douglas, Franklin, Linn, and Miami Counties
Gropu C - Cass, Jackson, and Johnson Counties

Percent of Total Agricultural Land

Pasture
Group Wheat Sorghum Corn Oats Soybeans Alfalfa Hay b Range

A 8.6 7.4 5.7 0.5 21.1 13.7 43.0

B 6.3 9.6 5.5 0.5 15.2 10.3 52.0

C 4.1 5.2 5.8 0.4 11.6 8.2 64.7

Note: Urban Subregion consists of most of Jackson and Johnson Counties

Cropland Subregion consists of parts of Douglas. Franklin, Johnson.
and Miami Counties

Pasture/Rangeland Subregion consists of most of Cass County

Woodland Subregion consists of a large part of Linn County

k
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(Julian day 138) until June 9 (Julian day 160) during which

time corn and soybeans are emerging and this is reflected in

Table 1. Examples of land-use and crop-category distribution

are shown in Figure 3 for Julian day 141.

2.2 Dynamics of Soil Moisture Distribution

The above two components of the data base define the

geometric properties of the test site and the distribution of

backecattering categories. In addition, it is necessary to

model certain dynamic conditions that largely determine the

dielectric properties of the scene elements. Of major

importance is the near-surface soil moisture of each 100-m by

100-m pixel element as a function of time.

The soil moisture is governed by soil type, local slope,

crop canopy cover and stage of growth, antecedent soil

moisture, precipitation, and potential evaporation. The

distribution of soil types as generalized by soil

associations from USDA/SCS county soil surveys is shown in

Figure 4. The local crop calendar is derived for this area

from historical records [4] and used to establish the daily

transpiration rate for a given crop. Daily weather records

from each of 25 reporting stations are used to generate

digital overlays of daily precipitation (Figure 5) and

potential evaporation. A water-budget model is used to

update near-surface soil moisture on a daily basis for each

grid cell. Finally, a normally distributed random-noise
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Figure 3. Land-use and crop-category distributions on Julian day 141.
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emphasized to show the presence of both north-south
and east-west row directions.
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Figure 4. Map of soil associations for test site.
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Figure 5. Image presentation of the areal distribution of
rainfall within the test site on each Julian date.
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component is added to the modeled soil moisture in order to

simulate local, within-field variance in true soil moisture

[2]. The details of the Boil water accounting model and a

listing of the computer program are given in Appendix A.

Examples of the 0-5 cm soil moisture distributions

produced by the model are shown in Figure 6 for Julian days

141, 150, and 160 in image format. The corresponding

cumulative areal uistributions are shown in Figure 7a for

each date. The influence of crop cover on soil moisture

distribution is shown in Figure 7b for Julian day 150. These

distributions when combined with the terrain model and the

spatial distribution of radar backscatter categories

collectively drive the radar image simulations discussed

pp

	 below.

r

3.0 RADAR IMAGE GENERATION

c

	

	
The average return pcv:dr P r reradiated from each

laterally homogeneous grid ce;` is given by the radar
f

equation

	

_	 P G2 X2 a^ A

	

^	

T	
(1)	 I

	

r	 (41T)' R'

where PT is the average transmitted power, G 2 is the two-way

antenna gain, X is the wavelength, °° is the radar cross
L

section per unit area, A is the grid-cell area, and R is the

range. For a given sensor configuration, P T , G, and a are

v	 17
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(a)	 Julian day 141.	 r.'

Figure 6. D i s
tribution of 0-5 cm soil moisture across the test site.

Black repi^sents undefined (zero) soil moisture.
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constant. For each grid cell element, area and range are

determined from the static terrain model. In addition, o°

varies as a function of local angle of incidence,

backscattering category, and near-surface soil moisture; and

for the purpose of radar simulation, a o is given by empirical

fits to experimental airborne and truck-mounted scatterometer

data [6]. Examples of empirical radar backscatter dependence

on target category, incidence angle and near-surface soil

moisture are given in Table 4. Radar backscattering

coefficient ao is shown graphically in Figure 8 as a function

of local incidence angle B for selected categories and soil

moisture conditions.

The power actually received at the antenna P r is

dependent upon signal fading and atmospheric scattering and

adsorption. At 4.75 CHz the atmospheric losses are assumed

to be negligible for most conditions. In addition, signal

fading is assumed to be x-square distributed with 2 N degrees

of freedom where N is the number of independent samples for a

given range and azimuth radar resolution (7]. Hence,

Pr b(

P

2Vr) Y

where Y is a random variable with x-squared distribution and

2 N degrees of freedom.

The radar image simulation model accounts for the

geometric effects of layover and shadowing. Examples of

simulated orbital radar imagery are shown in Figure 9 for the

22
v
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B. Targets Modeled with no Dependence on Soil Moisture

Target Class	 '	 f(e)

Residential Areas 13.019 - 1.7559 + 0.640 x 10-1	6 2 - 0.755 x 10-3 63

Water Bodies 22.820 - 5.1266 + 2.370 x 10-1	0 2 - 3.973 x 10-3 03

Roads 20.000 - 5.550e + 2.800 x 10 -1	6 2 - 4.500 x 10-3
e3

Deciduous Trees 10 log (10
-1.143 

x cose)

Buildings Constant value 5 dB

24
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(a) 100 m by 100 m radar resolution.

Figure 9. Simulated radar imagery of the test site on Julian
day 141.

28

0



PJ'

(^F F'U^.,{	
L1 i'Y

a

•	 h 	 #4/

(b) 1 km by 1 km radar resolution.

•

If

(c) 3 km by 3 km radar resolution.

29



i

u

i

soil moisture distribution present on Julian day 141 (Figure

5a) at radar resolutions of 100 m by 100 m, 1 km by 1 km and

3 km by 3 km. These images are ground-range presentations

and Pr is scaled in dB to facilitate the presentation of the

large dynamic range in P r across the image swath (d 48 dB).

The radar illumination is from the west (left side of

images). Due to the relatively steep incidence angles (7 0 -

17°), the angular decay in P r is readily apparent across the

swath from left to right. In general, areas of higher

near-surface soil moisture as related to antecendent

precipitation appear brighter on the images, and this is most

apparent as diagonal stripes related to storm tracks. Also,

areas of tree canopy cover and water bodies tend to be dark

on the imagery simulated for Julian day 141, while urban

features tend to appear bright and are especially noticeable

in the far range (right side of images).

The simulated orbital imagery for the three radar

resolutions are also shown in Figures 10 and 11 for Julian

days 150 and 160, respectively. Julian day 150 represents

the wettest overall soil moisture conditions as indicated in

Figure 7, and hence the images appear bi: ,.ghter than those for

Julian day.141 (Figure 9). In contrast, Julian day 160 is

shown by Figure 7 to represent the driest overall soil

moisture conditions, and thus the images in Figure 11 appear

darker than those for Julian day 141 (Figure 9).

It should be noted that for all of the above simulated

images (Figures 9, 10, 11), the number of independent looks

30
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(a) 100 m by 100 m radar resolution.

Figure 10. Simulated radar imagery of the test site on Julian
day 150.
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(b) 1 km by 1 km radar resolution.

(c) 3 km by 3 km radar resolution.
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(a) 100 m by 100 m radar resolution.

Figure 11. Simulated radar imagery of the test site on Julian day 160.
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(b) 1 km by 1 km radar resolution.
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is large (N > 23). Hence, the variance in P r within a given

portion of the scene is only minimally dependent upon signal

fading and is mostly the result of variance in local

topographic relief, radar backscatter category, and

near-surface soil moisture. In a visual sense, the

interaction of relief, category, and moisture yield quite

different spatial patterns of P r on each of the three

simulation dates. This is best seen in the 100 m by 100 m

radar resolution imagery. Figure 12 shows enlargements of

the northwest (upper-left) quadrant of the 100 m by 100 m

imagery for each of the three overpass dates. This quadrant

encompasses the test site used in previous orbital radar

simulations [1, 2, and 61. These images illustrate the

following:

1) For nearly uniform soil moisture conditions, the

variance in Pr is dominated by local topographic relief and

radar backscatter category. This condition is most closely

approximated by Julian day 150 in Figure 12b. 	
I

2) For variable soil moisture conditions, the scene

variance in Pr is most closely related to local soil moisture

and radar backscatter category which tends to mask variance

in Pr related to local topographic effects. This condition

is best seen on Julian day 160 (Figure 12c) since an extended

period of evapotranspirative losses in soil moisture has 	 l

enhanced the relative difference in P r from each radar

backscatter category.

The above indicates the potential for achieving certain

35
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(a) Julian day 141

Figure 12. Enlargements of the northwest corner of the simulated 100 m
by 'rj m resolution radar imagery on each overpass date.
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(c) Julian day 160
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mapping objectives not rigorously addressed within the

confines of this study. First, the potential exists to

classify soil type within relatively flat agricultural

portions of the test Bite from imagery acquired shortly after

a nearly uniform and saturating rainfall event. In this

case, near-surface soil moisture is high and largely

controlled by soil hydraulic properties related to soil type.

In addition, for high moisture conditions, the relative

uncertainty in P r related to crop-canopy attenuation and

canopy backscatter is expected to be small (5). Secondly,

the potential for crop discrimination from orbital radar

imagery can be expected to maximize (for this frequency and

angle of incidence) when the differential evapotranspirative

dry-down of each crop has enhanced the inter-crop variance in

Pr . This condition would exist five or more days after a

rainfall event.

4.0 SOIL MOISTURE CLASSIFICATION

In order to classify soil moisture using the simulated

radar imagery, a generalized soil-moisture algorithm is

derived from all experimental data for bare and

vegetation -covered soil conditions (excluding woodlands).

The classification algorithm relates estimated soil moisture
n
Mfs to received power Pr as a function of incidence angle B.

Mfs	 [Pr — a(e)l/9(e)
	

(3)

L	
38
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where

a(B) - 9.67 + 0.840 - 4.59 x 10-20 2 + 8.27 x 10-4 e 3 . and

5(9) = 0.161 + 9.38 x 10 -4 e - 4.97 x 10 4 9 2 + 1.21 x 10 -5 e 3.

In this case, 6 is estimated from the range position of a

pixel on the radar image, assuming spherical earth geometry

and a constant mean elevation of the test site above sea

level. Thus, the classification algorithm is "blind" with

respect to true local incidence angle and to the actual

backscattering category of any given pixel [6]. Application

of this algorithm to the received power images yields maps of

estimated soil moisture, an example of which is shown in

Figure 13 for a radar resolution of 100 m by 100 m on Julian

day 141.

Given the above algorithm, orbital radar imagery can be

used to classify soil moisture in two ways. First, the

imagery obtained at any given radar resolutin on any single

overpass date can be pssed through the general algorithm

(Equation 3) to yield estimates of the absolute soil moisture

distribution for that date. The second approach is to make

use of the multi-temporal coverage provided by an orbital

system to yield estimates of the relative change in soil

moisture. The radiometric and geometric stability of the

Seasat-A L-band imaging radar has shown that such a procedure

is feasible and relatively uncomplicated from the standpoint

of image registration ( 8]. The two approaches are not

4
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mutually exclusive and both will be explored in the ensuing

sections with respect to soil moisture classification error

as a function of radar resolution and the geographic

distributions of local relief and backscatter category.

4.1 Single Date Soil-Moisture Classification Accuracy

The accuracy of soil-moiuture classification is examined

by evaluating the difference between the true soil moisture
A

Mfe and the estimated soil moisture M fe . This is

accomplished through registration of the two images (such as

Figures 6 and 13) and computation of the difference. Due to

the geometric distortion inherent in the radar image-forming

process, image registration by simple coordinate translation

is only accurate to within about +/- 1.3 pixels (130 meters),

and this registration error is proportional to changes in
i

local elevation across the image swath. Hence, a procedural

error is introduced into the comparative process which is not

related to true classification error. Also, the magnitude of

this procedural error is proportional to the local variance

in the "true" soil moisture distributions as shown in Figure

6.

In order to examine the effects of various land-use and

field-size distributions, four subregions are identified

within the test site and relate to an urban area, mixed

cropland, pasture and rangeland, or woodland. Figure 2 shows

the spatial locations of these subregions, and their land-use

r
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and field-size distributions are tabulated in Tables 1 and 2,

respectively. All subregions contain more than 30% pasture,

grass, and rangeland, and are distinctive primarily in terms

of the percent area occupied by cultural features

(residential, buildings, and roads), water, woodland, and

crops. In addition, the rangeland/pasture subregion is

characterized by a greater percentage of large fields as

compared to the other subregions. Finally, Figure 2 shows

that the woodland and the rangeland/pasture subregions are

located in areas of relatively large local relief.

An example of soil-moisture classification error is

shown in Figure 14 for the 100-m by 100-m resolution radar on

Julian day 141. Classification error E m is defined by

F,
Em a Mfs - Mfs	 (4)

where

Mfs = true soil moisture, and
A
Mfs = estimated soil moisture.

Figure 14a shows the category classification map for the

woodland subregion where wooded areas are black, water is

dark gray, cultural features are white, and agricultural land

and pasture/rangeland are generally light gray. The

difference between actual soil moisture Mfs and classified
n

soil moisture Mfs is mapped in Figure 14b. Em is linearly

represented by graytone and thus, dark and white areas

represent overestimation and underestimation of soil

moisture, respectively. The large P r from cultural features

42
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(a) Sackscatter category map: woods are black. water bodies are dark gray,
cultural features are white. and agricultural areas are light gray.
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(b) Soil moisture estimate error E m : overestimates of soil moisture are
dark, underestimates of soil moisture are white, areas with small
estimate errors are gray.

Figure 14. Soil moisture classification error E m on Julian day 141 within the
woodland subregion resulting from use of the "blind" classifier on
100 m by 100 m radar imagery.
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at A leads to an overestimation of moisture, while the

low Pr from woodland at B and water at C yields a low

estimate of soil moisture. Median gray tones in Figure 14b

relate to small estimate errors. A comparison of Figures 14a

and 14b shows moisture-estimate errors to be highly

correlated with the spatial location of specific land-use

categories, especially cultural features, trees, and water.

Image registration errors yield white or black rings around

specific features. Hence, the spatial organization of such

confusion categories largely determines the moisture

classification accuracy of a given radar resolution for a

given geographic land-use setting.

The single date soil moisture classification error can

be examined as a function of radar resolution, general soil

moiture condition (overpass dat(r), and geographic subregion.	
F

The soil moisture classification error E m resulting from

radar resolutions of 100 m by 100 m, 1 km by 1 km, and 3 km

by 3 km is shown for the entire 124-km by 108-km test site on

each overpass date in Figure 15. For all general soil

moisture conditions (overpass dates), the distributions of

Em resulting from classification of the 100-m resolution

imagery are more peaked and yet have lon ger tails than the

corresponding distributions of Em for the coarser

resolutions. These long tails are related to the presence of

confusion categories such as urban features, woodland, and

water. The effects of these confusion categories at the

coarser resolutions (1 km by 1 km and 3 km by 3 km) are to
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Figure 15. Soil moisture classification error Em resulting from
each radar resolution for all moisture dependent pixels
in the test site (excluding woods) on a) Julian day 141,
b) Julian day 150, and c) Julian day 160.
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between the three radar resolutions are also dependent upon

48
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broaden the error distribution.

The tendency of the coarser resolutions (1 km by 1 km

and 3 km by 3 km) to yield bimodal distributions of E m in

Figure 15 with a secondary peak ranging from -30% to -50% is

primarily related to the presence of cultural features which

have large scattering cross-sections relative to agricultural

and rangeland areas. These overestimates of local soil

moisture result from averaging the large P r from cultural

targets over a larger area. Hence, the magnitude of this

secondary peak is proportional to both the net area occupied

by cultural features and the dispersion of such features

within the total scene, and the size of E m at this peak is

proportional to the ratio of P r cultural to P r agricultural.

The associated absolute moisture classification

accuracies of the three radar resolutions are shown in Figure

16. In general, the 100-m by 100-m resolution is shown to

yield the most accurate estimates of soil moisture. For

example, use of the "blind" generalized moisture algorithm on
A

Julian day 141 yields Mfe within +/- 20; of true

moisture Mfs for 68; of the area using a radar with a 100-m

resolution, while only 60% and 58% of the area is classified

within this error limit using radar resolutions of 1 km and 3

Jan, respectively. In Figures 14 and 15, this result is shown

to be related to the spatial distribution of land-use

confusion categories.

The differences in absolute classification accuracy



-- lnnm Y inn m

ORiGfKAL .`:': ' .
OF POO'< Q U i,L1 1

-•

100

90

80

70

a^
60

0 50r.

40

30

20

10

0

i

i

i
i

0	 10	 20	 30	 40

I M fs — Mfsl

(a)
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absolute moisture classification error for each radar
resolution.
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general soil moisture condition. This effect is seen by

comparing the results achieved for different overpass dates

in Figure 16a, b, and c for overpasses on Julian days 141,

150, and 160, respectively. The classification accuracy of

the coarse resolution sensors (1 km by 1 km and 3 km by 3 )an)

is seen in Figure 16c to be significantly reduced relative to

the classification accuracy achieved with the 100 m

resolution radar. The local variance in true soil moisture

Mfs and local received power P r are Seen to be greatest on

Julian day 160 in Figures 6 and 12, respectively. As

previously stated, this is largely the result of the

differential evapotranspirative dry-down rates of the various

crop canopies constituting the scene. Thus, the within-scene

variance in soil moisture Mfe is highly correlated with the

crop distribution given in Table 1 which is dispersed in

agregates given by the field size distribution (Table 2).

Hence, at radar resolutions coarser than field size a serious

degradation in moisture classification accuracy can be

expected for imagery acquired during periods of protracted

evapotranspirative loss.

The effects on moisture classification error of varying

the local distribution of land-use confusion categories are

demonstrated by comparing the error distributions for the

four land-use subregions. The error distributions for the

urban, pasture/rangeland, cropland, and woodland subregions

are compared in Figure 17, based upon the 100-m resolution

radar imagery for Julian day 141. when the error
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CD

distribution is plotted for all 100-m by 100-m grid cells

within each region (Figure 17a), large overestimates of

moisture, primarily in the urban and woodland subregions, are

related to the presence of cult al features such as

buildings and roads and also related to the presence of water

bodies since for these categories soil moisture is undefined

and any moisture estimate for these categories is therefore

an overestimate. In a similar fashion, .large underestimates

of Mfs , best exemplified by the woodland subregion, are

largely related to the presence of deciduous trees, which are

assumed to fully attenuate backscattering from the soil at
0-

4.75 OHz.

The exclusion of nonagricultural categories (cultural

features, water, and woodland) from the grid-cell comparisons
n

Of Mfe to Mfs yields highly peaked distributions centered

around m 0 error as shown for each subregion in Figure 17b.

The woodland still exhibits a larger area where soil moisture

is underestimated than the other subregions and this is

largely the result of locally saturated to flooded soil

moisture conditions. The radar backscatter model treats

fully saturated soil as a near specular surface similar to a

water body, and hence P r is low at off nadir indicence

angles.	 As a consequence, soil moisture Mfs is general^y j

underestimated.	 Similar results are obtained for the other
t.-

I

two overpass dates.

EThe absolute classification accuracy for Julian day 141

within each of the four land-use subregions is shown in !
^ I54
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Figures 18a and 18b from simulated radar resolutions of 100 m

by 100 m and 1 km by 1 km respectively. As expected from the

above and from the distributions of land-uee categories and

field-size given in Tables 1 and 2, Figure 18a shows that the

greatest classification accuracy is achieved for the cropland

subregion and the poorest for the wo odland subregion. Based

upon land-use and field-size distt:ihutior.s alone, one would

expect a greater absolute classification accuracy for the

pasture/rangeland subregion than for the urban subregion in

Figure 18a; however, the greater local topographic variation

present within the pasture/rangeland subregion (Figure 1)

leads to moisture classification errors related to the

variance in local elope, which is unknown to the "blind"

classification algorithm. This same effect also suppresses

the absolute classification accuracy for the woodland

subregion which is also "hilly" in nature.

For a 1-km by 1-km resolution radar, the combined

effects of the spatial distribution of land-use categories

(the relative mix of categories and their respective size

distributions) and topographic relief upon absolute

classification accuracy yield the results shown in Figure

18b. For areas where local topographic relief varies over

spatial dimensions of hundreds of meters, the 1-km by 1-km

radar -resolution will tend to average local elope-related

variance in Pr , and thus yield absolute classification

accuracies greater than those achieved by a finer resolution

sensor (such as 100 m by 100 m). This appears to be the case
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for the pasture/rangeland and woodland subregions of the test

site. For example, at an absolute accuracy level of +/- 208

of field capacity, Table 5 shows that the percent area

correctly classified within this limit from the 100-m

resolution radar is 71.3% and 64.18 for the pasture/rangeland

and woodland subregions, respectively; and the percent area

correctly classified from the 1-km resolution radar increases

to 79.48 and 73.38 for the two subregions, respectively.

Conversely, for areas characterized by a large number of

d;...persed cultural targets (with generally large P r ), the use

of a coarse-resolution radar, such as 1 km by 1 km, is shown

to degrade absolute moisture classification accuracy relative

to that achievable by a 100-m by 100-m resolution sensor;

this effect is demonstrated by the urban and cropland

subregions. For example, in Figure 18 the effect of

dispersed cultural features and field size distribution leads

to a decrease in percent of the urban subregion which is

correctly classified to within +/- 208 of field capacity from

77.98 (100-m radar resolution) to 70.18 (1-km radar

resolution). In a similar fashion, the percent area

correctly classified to within +/- 208 of field capacity for

the cropland subregion decreases from 82.0% to 75.68 for the

100-m and 1-km radar resolutions, respectively.

The above results for Julian day 141 are not independent

of general soil moisture condition and the spatial

variability of soil moisture. The absolute soil moisture

classification accuracies for each of the four subregions are
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TABLE 5. Percent of Moisture Variant Area Correctly
Classified to Within t/-20 of True Soil Moisture

(JEm1 < 207)

Julian Day 141 150	 11 160

Radar Resolution 100 m I km 3 km 100 m 1 km I 3 km 100 m 1 km 3 km

Subregions

Cropland 2,0 75.6 74.3 77.4 73.9 75.6

Urban 77.9 70.1 65.0 [75.3 76.2 63.7 58.5

Rangeland/Pasture 71..3 79.4 80.4 77.0 74.6 77.4

Woodland 64.1 73.3 72.7 68.3 68.5 68.4
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shown for Julian days 150 and 160 in Figures 19 and 20,

respectively. In addition, the percent area correctly

classified to within +/- 20% of field capacity are also given

for each dato and radar resolution in Table 5.

For the generally wet soil conditions prevalent on

Julian day 150, comparison of the results shown in Figure 19

and Table 5 as a function of orbital radar resolution

indicates that estimate accuracy increases with the

add,l tional spatial averaging provided by the coarse

resolution radars for all•eubregione. This is explained by

the distribution of soil moisture for this date which is

primarily governed by the antecedent rainfall pattern. Since

a large quantity of rain fell within most of the test site

just prior to the simulated orbital overpass, the local

properties of elope, soil texture, and crop canopy condition

have not had sufficient time to exert a large influence and

vary local soil moisture distributions. As a result, the

added spatial averaging provided by the coarser radar

resolutions acts to increase classification accuracy by

averaging small spatial scale noise effects related to local

relief and variance in local radar backscattering category.

This is true even for the urban scene, since at very high

soil moisture conditions, the P r from wet agricultural fields

approaches that from the cultural features.

Within the four subregions, the dependence of soil

moisture classification accuracy upon radar resolution is

shown in Figure 20 and Table 5 for the generally dry and
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spatially variable co;: moisture conditions prevalent on

Julian day 160. Classif+.cation accuracy is shown to be

independent of radar resolution for absolu, • r i— timate error

IMfe - 9fsI less than 20% of field capacity for the cropland,

rangeland/pasture, and woodland subregions. However, as

radar resolution is degraded the areal percentage of the

cropland and woodland subregions with large absolute estimate 	 ~
A

errors, IMfs - MfeI ) 30, does increase significantly. This

is attributed to the large local variance in true soil

moisture Mfs within these subregions on Julian day 1.60. The

most extreme example of local variance in Mfs is given by the

urban subregion which exhibits a pronounced decrease in

classification accuracy as radar resolution is degraded.

4.2 Multidate Change Detection of Soil Moisture

The preceeding section shows that absolute moisture

classification accuracy from a single date orbital radar

observation is limited by the presence of scene confusion

factors within the imagery and their size and spatial

dispersion relative to the radar resolution. Within the

present discussion, scene confusion factors are defined both

as the presence of scene elements for which soil moisture is

unidentified such as buildings, roads, water bodies, etc. and

also the occurance of variability in P r (B) from scene

elements possessing equivalent soil moisture. The latter

results from natural variability in topographic slope, crop

canopy type and stage of growth, row direction, and surface
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roughness.

In single date sensing and classification of soil

moisture, the confusion effects of cultural features and

water bodies can be minimized (but not eliminated) by spatial

filtering. Two approaches are feasible. First a simple

intensity slice of the received power P r (8) could be used to

roughly define water (dark) and point targets such as

buildings (bright) within the image, the remainder of the

image could then be subjected to the "blind" moisture

classification algorithm. However, this approach cannot be

expected to yield consistent results since for very dry soil

moisture conditions many agricultural targets can appear

similar to water (Figure 8a) or the water may be roughened by

wind. In addition, for very wet soil conditions, many

agricultural targets will be characterized by P r near nadir

similar to that from Che point targets (Figure 8c). A
i'

second, more satisfactory approach would be to incorporate
i

a priori knowledge of the spatial distribution of such
1

features and filter them from moisture classification. This, 	 i

of course, assumes the availability of a Level I land-use

classification which could be scaled and rectified to the

orbital radar imagery.

In a similar fashion, the moisture classification error

related to natural variability within the agricultural

portions of the scene could be reduced if the radar data can

be registered to topographic and crop distribution data.

This would assume a mechanism for crop discrimination and
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classification. in this case, each pixel element in the

radar image could be classified as to soil moisture using an

algorithm tailored to be crop specific. Obviously, this

approach is not currently feasible.

However, since most of the confusion factors are

spatially fixed and relatively invariant over short periods

of time (excepting wind conditions), their effects on

moisture classification accuracy can be minimized more

economically by the multi-temporal change detection approach.

In this technique, the radar imagery acquired at two dates

are coregistered and their ratio yields a map of scene

change. This process has been shown to be relatively simple

to implement with L-band orbital imagery obtained by Seasat-A

(8j. For a constant imaging geometry on the two dates (angle

of incidence and azimuth view angle), the backscattered power

received from cultural targets should remain approximately

constant and that received from water bodies should remain

nearly constant depending upon local wind conditions. Hence,

these features should display little or no change in the

multidate ratio images. On the other hand, all scene

elements subject to change in backscatter category (such as

planting, harvest, and tillage of agricultural fields) and/or

subject to change in near-surface soil moisture status will

yield a corresponding change in the multidate ratio images.

If the time separation in multi-date observation is short

relative to changes in crop development, then. changes

apparent in the ratio images will reflect relative moisture
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change and/or field status change related to tillage

operations. Since surface slope is constant over the time

interval, row direction is time constant in the absence of

tillage, and surface roughness decays only slowly with time,

the impact of these confusion factors upon the ratio of

multidate received power should be negligible.

The soil moisture distributions and the radar imagery

simulated for Julian days 150 and 160 (wet and dry,

respectively) are used to evaluate the utility of change

detection for monitoring relative change in near -surfce soil

moisture. The change in actual soil moisture AMfe between

the two dates is shown in Figure 21. The graytone values in

the image are linearly scaled to the difference function

given as:

I

t	 '^

AMfS = MfS ( 150) - Mfs(160)
	

(5)

where the value in parentheses refers to Julian date. In

producing Figure 21, a constant value of 128 ( of 256 maximum)

was added to AMfs , hence medium gray values such as those for

the Kansas City area denote no change in soil moisture,

bright areas denote considerable drying over the 10 day

period, and dark areas denote an increase in near -surface

(0-5 cm) soil moisture. In general, Figure 21 shows that

drying conditions are prevalent over most of the test site

except for scattered areas located primarily in the western
i

portion (left side) due to rainfall ( see Figure 5).

Multidate registration of the radar imagery simulated at
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Figure 21. Change in actual soil moisture between Julian days I50 and 160;
medium gray indicates no change in soil moisture • bright areas
indicate drying over the period, and black areas indicate an
increase in soil moisture.
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each of the three resolutions yields difference images which
A

are scaled to AMfe • via the blind classification algorithm

(Equation 2).	 Image presentations of predicted change in
A

soil moisture AMfe are shown for each radar resolution in

Figure 22.	 In general, the direction (wetting or drying) and

the magnitude of the true change in soil moisture observed in

Figure 21 are faithfully reproduced for all radar

resolutions.	 A noteable exception to this can be observed at j

' the bottom center of each image in Figure 22. 	 The black area

denotes a predicted increase in soil moisture which is not

in	 21.	 discrepancyobserved	 Figure	 This	 is the consequence

of saturated to partially flooded soil conditions on Julian

day 150 and moist conditions on Julian day 160 for this area.
x	

s

Hance, actual soil moisture has decreaaod while that
Y-

predicted shows an increase since under flooded conditions

the radar backscatter models generally yield low values 1

i^
of Pr comparable to that from a water body.

The area distributions of actual moisture change AN

and that predicted from the radar imagery AMfe are plotted in

Figure 23.	 The sharp spike in the AMfe distribution at zero

" change is related to cultural features and water bodies.	 In

general, it is apparent that the distribution of predicted

moisture change AM fs as derived from the 100 m resolution

c radar most closely approximates the actual AM fe distribution.

The spatial averaging of the coarser radar resolutions causes

them to be less sensitive to relatively large local change in

( AM f3and thus the magnitude and extent of such changes tends
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(a) 100 m by 100 m radar resolution.

Figure 22. Predicted change in soil moisture between Julian da y s 150 and
160 based on multidate radar imagery.
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(c) 3 km by 3 km radar resolution.
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to be underpredicted.

The actual and predicted change in soil moisture can be

compared on a grid cell basis by registration of the images

in Figures 21 and 22. This procedure is, of course, subject

to the registration errors discussed earlier for single date

moisture classification due to changes in image geometry and

position. For each pixel, the error in predicting relative

moisture change can be defined as:

q

EAM = DMfs - AM
fs
	

(5)

The spatial distribution of EAM is shown for each radar

resolution in Figure 24. 	 The brightest area on the scale bar

denotes regions where the absolute magnitude of E 15 is within

+/- 10% of AMfe and as graytone decreases the areas

correspond to IEAM I limits of +/- 20%, + /- 30%, and +/- 40%

respectively as shown on the scale bar. 	 For the 100 m

resolution radar, 90% of the area is correctly classified to

t within +/- 20% of AM faand greater than 90% of the area to

within +/- 30% of 4M f,*	 In addition, most of the residual

jz error is randomly distributed except for some classification

error of large magnitude which is related to offsets in

mechanical , image registration as exemplified by linear

features such as roads.	 For degraded radar resolutions of 1

4 km and 3 km, the magnitude of classification errors increase

and are spatially associated with edges between backscatter

^L
categories.

The comparative error in moisture -change extimates EAM
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(a) 100 m by 100 m radar resolution.

Figure 24. Spatial distribution of difference between actual change
in soil moisture and that predicted from multidate radar

observation.
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for the three radar resolutions is shown in Figure 25 for all

1.34 million grid cell comparisons within the test site. The

corresponding percent of total area (124 km by 108 km) with

absolute classification error less than a given magnitude is

plotted in Figures 26a. Obviously, the 100 m resolution

radar exhibits superior classification accuracy. However, if

only the moisture variant pixels are compared (excludes

cultural features, water bodies, and woodland) the

distinction between resolutions shown in Figure 26b is not

statistically significant, 78% and 89% of the area is

correctly classified to within +/- 20% and +/- 30% of Amfs'

reepectively.

The effect of geographic subregion on the above results

is shown in Figure 27. For the 100 m resolution radar, the

change detection saalysis results in superior classification

accuracies for areas characterized by gentle topographic

relief (cropland and urban subregions). For the coarser

radar resolutions shown in Figure 27b and c, twu effects are

noted. First the influence of edges related to variance in

the magnitude of AM fa between adjacent backscatter categories

causes classification accuracy for all subregions to decrease

relative to that for the rangeland/pasture subregion which is

characterized by large field sizes. Secondly, the absolute

classification accuracy decreases as a function of resolution

for all subregions except rangeland/pasture. The large

relative field size within the rangeland/pasture subregion

and the large percent area occupied by range and pasture
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Figure 26. Percent of test site area wherein relative change in
soil moisture is correctly classified versus magnitude of
classification error.
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(61.5%) is largely responsible for the increase in

classification accuracy using 1 km by 1 )an radar data

relative to that obtained using 100 m by 100 m radar data.

Representative values of classification accuracy within

each subregion for an error magnitude of +/- 20% of AM faare

shown in Table 6. These values show that 73% to 83% of the

area within any subregion can be correctly classified as to

within +/- 20% of actual soil moisture change for 100 m by

100 m resolution radar imagery. In addition, these values

are generally superior to those obtained for single date

moisture classification shown in Table S.

5.0 CONCLUSIONS

This simulation study reconfirms prior results that

V!.

	

	 relatively high single -date moisture-classification

accuracies can be achieved from orbital radar operating at

4.75 GHz with HH polarization and at incidence angles of 70

to 17 0 relative to nadir. Furthermore, this study shows that

classification accuracy is optimized for radar resolutions

smaller than the expected field -size distribution of extended

targets; a nominal sensor resolution on the order of 100 m by

100 m is found to yield the most robust classification

	

^? k	

results for the majority of tested conditions. In addition,

prior results have been extended to show that expected

moisture-classification accuracy for a given sensor
P

	

it
	 resolution is not independent of general soil moisture

	

tl
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TABLE 6. Percent Area Correctly Classified to Within +/- 20%
of the True Change in Soil Moisture AMfs from

Julian Day 150 to Julian Day 160

Subregions 100 m
All Pixels

1 km 3 km
Moisture

100 km

83.3

Dep.
I km

74.0

Pixels
3 km

73,6Cropland 82.4	 71.4	 70 . 8	 I

Urban 83.4 73.9 70.5	 If 80.4 69.8 64.2

Rangeland, /Pasture 73 . 7 81.77 79.1 74 . 1 84.8 82.3

Woodlan! 74.7 60.7 52.6 72.8 73.5 73.5

Full Scene 78.3 74.6 72 . 0 78.3 78.3 76.8
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condition or of the geographical mix of land -use, field-size

distribution, and local topography. Finally, the use of

multi-date radar imagery to estimate relative change in

near-surface soil moisture status is shown to substantially

reduce classification errors related to the presence of

cultural features and water bodies, the presence of variable

crop-canopy covers, and local variability in topographic

relief.

Based upon this study, a reasonable approach for the

purposes of soil-moisture sensing would be to obtain the data

at a sensor resolution on the order of 100 m (with a large

number of independent looks) and then degrade the resolution

where necessary by post -detection processing to average the

moisture classification errors associated with local slope in

regions of variable topographic relief. In addition,

multi -temporal change -detection analyses could also minimize

classification errors controlled by topographic relief as

well as those errors that are related to intra- and

inter -crop variance in radar backscattering (8].
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APPENDIX A

DYNAMIC SOIL WATER ACCOUNTING MODEL

The purpose of a soil water-budget model within the

context of realistic radar image simulation is to generate a

distribution of near-surface (0-5 cm) soil moisture

conditions at the spatial scale of the static terrain data

base (100 m x 100 m) which responds to both static conditions

(soil type, cover type, and surface slope) and dynamic

conditions (crop stage, rain, and potential evaporation) on a

time scale relevant to both the dynamics of the process and

the orbital mechanics of an imaging satellite (daily basis).

While marry excellent water-budget ?Ciodal.a are available for

various applications in agronomy and hydrology (11 to 151, no

single model meets all the above critar.ia. Indeed, most such

models require more detailed information on soil profile

characteristics and weather conditions than is readily

available for the simulation area. In addition, most models

are designed to operate at a spatial scale much less than

field size and over time increments significantly less than

one day, or conversely, they are most appropriately applied

to very coarse integration times on the order of weeks for a

simple act of input parameters and at a macroscopic level

much larger than field size.

Because of the large size of the data base

(approximately 1,339,000 grid cells), it is necessary to

tailor a model that emphasizes the surface horizon and

requires a minimum of information as to soil profile and
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detailed local weather conditions, and yet is still sensitive

to daily variation in soil moisture. A schematic of the

final process model is shown in Figure A.1; it consists

largely of the following components:

storm model,

surface runoff model,

crop development submodel,

evapotranspiration model, and

and interlayer redistribution model.

When given dynamic inputs of crop type, crop stage of

development, rainfall, and potential evaporation, the model

acts upon the static terrain model to yield daily projections

of 0-5 cm soil moisture for each grid cell. It also governs

the redefinition of canopy cover categories based on crop

calendar changes or local flooding conditions, and these

categories are then used as input to the radar simulaion

program's target/sensor interaction model.

A.1 Storm Model

Daily rainfall measurements a9 renort.od Ay 25 stations

located in and around t6o test Bite were used ae the basis

for the storm model. Figure A.2 shows the location of the

test site. Table A.1 shows the daily rainfall reported at

each of these stations for the simulation period; May 18

through June 9. A grid map of estimated rainfall, with a

resolution of 3 km by 3 km, was produced from measured

rainfall data at these irregularly spaced recording stations
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Figure A. l.. Dynamic Soil Water Accounting Model (SWAM).
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for ;very day during the simulation period that all or part

of the test site received some rain. Figures A.3 and A.4

shows the amount of rain reported by each station on Julian

day 144, and the estimated rainfall map for that day

respectively. These generated rainfall grid maps made
i
i	 available the total daily rainfall in cm received by each
i

test site data base cell. An image representation of rkll

`	 rainfall grid maps has been shown on Figure S.

Rainfall intensity is calculated as a daily constant

from the minimum recorded daily storm duration according to

I day = 10	 Dday

where

Iday daily constant intensity, cm/hr

Dday daily minimum recorded duration, hrs.

t	 = storm type (2-year or 5-year), and

a and b are constant for each storm type.

The constants at and b  are solved from a plot of local

rainfall intensity-vs-duration curves for recurrence

intervals of 2 or 5 years. For each day of the simulation, a

rainfall event is classified as either a 2-year or a 5-year

event based upon the maximitm recorded rainfall 
at 

allall gauging

stations on that day. If net daily rainfall at any gauge

exceeds a critical value M, then that day will be classed as

a 5-year event and at and b  will be used from the 5-year

intensity-vs-duration curve; otherwise a t and b  will be used

for a 2-year event. M is defined by

M = 10a * Db+l/(b+l)	 (A.2)
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Figure A.3. Measured rainfall as reported on Julian day 144 at all stations
in and around the data base (maximum rainfall is 4.8 cm).

Figure A.4. Estimated rainfall on Julian day 144 for each 3 x 3 km area
in the data base.
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where a and b a-e 2-year coefficients. For the rainfall data

given in Table A.1, the maximum net daily rainfall never

exceeded M, therefore the 2-year coefficients were used in

all precipitation events.

A.2 Surface Runoff Model

The surface runoff model considers only the net effect

of local surface slope and does not explicitly account for

water retention and impoundment by aoil surface roughness,

tillage practices, and the presence of terraces. The water

available for drainage as lateral surface flow is equal to

the sum of standing water remaining from the previous daily

accounting period plus the incident rainfall in excess of

that which can infiltrate the surface .layer and the root

layer. The drainage D is computed from remaining standing

water and local surface slope by

D = SW = (1.1 - 0.8 a )	 (A.3)

where	
i

SW = standing water

a = the slope angle of the surface from horizontal in

degrees.

The term 1.1 - 0.8a is defined as the drainage coefficient

and is plotted versus surface slope ( in percent) in Figure

A.5.

A.3 Evapotranspiration Model

Evapotranspiration is calculated differently for cropped
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and bare soil surfaces. For bare soil surfaces, the actual

evaporation is depleted solely from the soil surface layer,

while for vegetated surfaces a static root distribution model 	
I

removes 30 percent of the actual evapotranspiration from the

0-5-cm layer and removes the remaining 70 percent of actual

evapotranspiration from the "root zone." For simplicity, the

"root zone" is assumed to be one meter in depth and is

treated as a constant with time and for all crops.

For bare soil, actual evaporation, AE, is computed from

potential evaporation, PE, as limited by antecedent soil

moisture in the surface layer and soil hydraulic properties.

Accounting is performed on a daily basis using the mean daily

pan evaporation recorded at 11 stations in the study area as

shown in Table A.1 for 1981.
p	 ^

An experimental model is used to calculate actual

evaporation from potential evaporation PE:

AE - PE * ksoil * kstorm	 (A.4)

where

kstorm = (24 - T)/24, 	 (A.5)

ksoil ° soil limiting coefficient

T	 = the duration of storm, and

PE = ]cp * Epan,	 (A.6)

where

kp = pan coefficient, and

Epan = measured pan evaporation.

The soil limiting coefficient ksoil is defined by an

experimental model ( 161 dependent upon PE and soil
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properties.

ksoil ' A + B(MR) + C(MR) 2 + D(MR)3	 (A.7)

where A, B, C, and D are empirically derived coefficients

dependent upon PE, and MR. is the moisture ratio. Regression

fits to experimental data yield [16):

A ® -0.05 + 0.732/PE	 (A.8)

B = 4.97 - 0.661 PE	 (A.9)

C a -8.57 + 1.56 PE	 (A.10)

D s 4.35 - 0.88 PE	 (A.11)

The moisture ratio MR is related to soil water retention

characteristics via

MR m (9 - WP)/(FC - WP)	 (A.12)

where

9 - measured soil moisture,

WP = soil moisture at wilting point, and

PC - soil moisture at field capacity.

Assuming wilting point and field capacity to be defined as

matric potentials of 15 bare and 1/3 bars, respectively, WP

and PC can be defined from soil textural components using the

approach of Clapp and kornberger [17)

PC m 9a (ys /333) 1/b , and	 (A.13)

WP - 8e (1►e/15,000) 1/b	(A.14)

where

as = soil moisture at saturation,

the = metric potential at saturation, and

b - an empirically derived value related to soil

texture.
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For a given soil, B s is calculated from the soil bulk density

profile and ►s and b are defined by A-horizon soil texture

using values given in (17). Thus, for a given day, the terms

in Eq. A.4 are dependent on the antecedent soil moisture and

the gross water-retention characteristics of each soil.

For vegetated soil, the actual evapotranspiration,

ET crop' is computed by a modification of the Blaney-Criddle

formulation used in estimating crop irrigation requirements

(18,19]. Although the method is designed for an effective

integration period of weeks to months, the simplicity of its

input requirements makes this a practical approach for such a

large number of coarse grid cells. Basically, crop

consumption of water over the rooting depth varies with
P

temperature, length of day, available soil moisture, crop

type, crop stage of growth, relative humidity, and windspeed.

To simplify the formulation, average measured values of

temperature, day length, relative humidity, and windspeed are

assumed on a seasonal basis for the simulation area. The

resultant expression for ET cropbecomes:

ET crop° FE * kcrop r ketorm	 (A.15)

where

kcrop ° crop coefficient.

Crop coefficient as adjusted for mean local climate is

plotted in Figure A.6 as a function of number of days after

planting for several of the crop covers included in the data

base. Crop consumption of the water is seen to be dependent

on both crop and stage of crop development. Before the crop
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canopy has attained 20% ground coverage and again after

harvest, the soil .e treated as bare for both

evapotranspiration and also for radar backscatter category.

A.4 Crop Development Model

The length of time required for a given agricultural

field in the simulation data base to progress from one

crop-development stage to the next is established from data

gathered by the Statistical Reporting Service of the United

States Department of Agriculture. The simulation area lies

at the East Central reporting district of Kansas (No. 6).

Figure A . 7 presents a summary of mean crop development over a

-.

	

	 10-year period as enumerated by AgRISTARS [201 for this crop

reporting district. These percentages are used to define

crop development stage within the simulation on a

field -by-field basis. Thus, each distinct agricultural field

in the data base is assigned one of the 10 planting dates.

Hence, there are ten different absolute crop calendars

Possible for each crop type identified in Table 1.

Planting dates are randomly assigned to field codes for

a specific crop based upon Figure A.7. This procedure

results in the introduction of a significant source of

k

	

	 between-field variance of soil moisture within a given crop

type due to the effect of crop development stage on

evapotranspiration. It also allows for a given field to have

its taget classification changed in Table 1, since a

medium-rough bare field becomes a cropped field after

99
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Figure A.7.	 Percent of crop are in development stage by specified date
for Kansas crop reporting district 6 average crop calendars
from'1963 to 1973	 [20],
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emergence, and finally reverts to bare soil status after

harvest. As implemented, this procedure gives the data base

a dynamic crop-category mix that can be modified to match

regional agricultural practices such as double-cropping or

dynamic soil surface roughness conditions.

A.5 Interlaver Water Redistribution

Infiltration of water into the surface layer,

percolation of water into the root zone, and capillary

recharge of surface layer moisture are controlled by the

matric-potential profile as limitod by soil structure.

A pixel's infiltration capacity during rainfall is given

by (21]

i t = t 1/2 (2 k  1►f (0a - B)) 1/2 + ks c/2	 (A.16)

where

t - duration of rain event, hrs.

ke a hydraulic conductivity at saturation

its = suction at field capacity

Bs prosity = 1 - Pb/ps

Pb = soil bulk density, g/cm3

ps = soil specific density = 2.65 g/cm 3 for all soils.

After rainfall ceases, infiltration proceeds at a rate

defined by ks/2 for the remaining time of the accounting

period (24-t) or until all standing water is depleted. Thus,

a pixel's infiltration capacity from standing water is

defined as

E
	

isw	 ks /2 * (24 - 0	 (A.17)

s	 101



^J

and is limited by the amount of standing water. Hence, total

infiltration into the surface layer of the soil, i t , is

determined by

it 	i t + isw
	 (A. 18)

where

i t 4 total rainfall received by the pixel

Law < standing water available.

Water will percolate from the surface layer (0-5-cm)

into the root zone for all accounting periods where the

surface layer's water content after infiltation exceeds the

water content at field capacity (as determined by Equation

A.13), such that final surface-layer's water content is

reduced to less than porosity.

This is accomplished by first allowing excess water to

drain from the root zone (5-100 cm depth). One third of the

volumetric moisture in excess of root zone field capacity is

allowed to drain gravitationally each day and hence is

removed from further accounting periods. Then, ase•uming that

the water content in the surface layer exceeds field

capacity, the excess is permitted to,percolate into the root

zone at the minimum of either

T k

i - 2a
	 (A.19)

where

R i net percolation into the root zone,

a	 a damping coefficient arbitrarily set to 48, and
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T . duration of accounting period m 24 hours

or 1/3 of excess water is allowed to percolate

R  a (6 - FC)/3
	

(A.20)

where B and PC are for the surface layer.

When evapotranspirative losses cause surface-layer water

content to be reduced below wilting point, capillary recharge

of the surface 5 cm of soil is allowed to occur during the

night for a duration of 12 hours. The rate of the surface

recharge is equal to ks/2 and is arbitrarily limited to a

maximum of 0.25 cm of water. Furthermore, capillary recharge

is not allowed to raise surface layer waiver content above

wilting point.

A.6 Within-Field Variability in Surface Soil Moisture

Prior to radar image simulation, the surface layer soil

moisture values determined by the water-budget model for each

100-m by 100-m grid cell are randomized to approximate the

natural variability in soil moisture measured within

"homogeneous" fields. Randomization was performed on a

grid-cell basis by a Gaussian random-number generator with a

standard deviation of 6 percent M fs (2].

A.7 Generation of Soil Moisture Distributions

The dynamic: soil water accounting model (SWAM) was

initialized on Julian day 138 and moisture distribution maps

of the test site were produced for every day of the

simulation period.
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These moisture maps indicated the percent of the 1/3-bar

water content Mfs in the 0-5 cm layer where

Mfs	 100 x a/FC	 (A.21)

where

0	 measured soil moisture

PC	 soil moisture at field capacity.

The resultant distributions were there examined and the three

most closely approximating moderately dry, moist, and wet

soil surface conditions were selected for radar image

simulation. Image representation of 0-5-cm soil moisture

distribution for Julian day 141, 150 and 160 are shown on

Figure 6.

v
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DEFINITIONS

PAUSDATE An array which contains the Julian days
on which the output moisture map needs
to be saved.

STRTDATE	 Julian day on which the process should
begin.

STOPDATE	 Julian day on which the process should
stop.

RAINDATE	 An array containing the Julian dates which
all or part of the database received some
rain.

ALLINTS	 An array containing the mean rain intensity
of each rainy day.

RAIN	 Amount of rain received by a cell on a
certain day in cm.

INTNSITY	 Intensity of the rain for a cell in cm/hour.

DUR	 Duration of the rain for a cell in hou-rs

PERCENTS In soil data subro;itine.	 An array of
percent probability of occurrence of soil
bulk density associated with each of
eight soil types present in our data base.

SFBULK Quantized levels of surface layer (0-5 cm)
bulk density associated with "PERCENTS".

RTBULX Quantized levels of root layer (5-100 cm) bulk
density associated with "PERCENTS".

B An array containing b values for all
15 soil textures as estimated from Clapp 6
Hornberger,	 1978.

FSUCTION An array containing the suction ^ f (at field
capacity) for all 15 soil textures (see Clapp b
Hornberger,	 1978).

SSUCTION An array containing the suction *s(at
saturation) for all 15 soil textures.

SITYDCOND An array containing the hydraulic
conductivity at saturation k s for all 15 soil
textures.

h
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14

SAT14C

PDATES

STAGEDAY

KEQCONST

KCROP

SW

SWINF

RAININF

MFC

DRAIN

SWRUNOFF

RECHRG

ETO

SWEVAP

KSOIL

Hydraulic conductivity at saturation.

An array containing ten different planting
dates for each crop type.

An array containing the number of days
after the planting date which the crop
advances to a new crop growth stage (five
different stages) for each crop type.

An array containing two parameters
(slope and intercept) describing the
change in K CROP at each stage and for
each crop type.

Crop transpiration coefficient.

Standing water (cm).

Amount of standing water which
infiltrates to the surface layer (cm).

Amount of rain which infiltrates
to the surface layer.

Water content expressed as a percent
of field capacity.

Amount of excess water which is drained
from the root zone (cm/cm).

Amount of water runoff from standing
water (cm).

Capillary recharge (cm).

An array containing the potential
evaporation (cm) for every day of the
simulation period.

Amount of evaporation from standing'
water.

Bare soils evaporation coefficient.

I
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The following variables are prefixed by "SF" or "RT"
indicating the surface Layer (0-5 cm) -jr root zone (5-100
em), respectively.

BD	 soil's bulk density

PROS	 soil's porosity

FC	 soil's water content at field capacity (cm/cm)

WP	 soil's water content at wilting point (cm/cm)

WC	 water content (cm/cm)

EVAP	 amount of evaporation (cm)
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--------------------- --- ----- -------- ----- --------------------
C	 UNIVERSITY OF KANSAS REMOTE SENSING LAB
C ------------------------------------------------ ft - ------'-----------
C PROGRAM SUITE ) RADAR SIMULATION 	 REF. • S RSL REPORT 601-1
C---------------------------------------- ----- --------.--_-__-_-
C PROGRAM NAMES SWAM	 AUTHORS SATED MO£ZZI	 DATES MAY 1903
C LANGUAGE	 S FORTRAN 77
C___	 -_ _ _ ------------------------------ ------- ---- 	 _
C PURPOSE I	 THE PURPOSE OF PROGRAM SWAM (SOIL WATER ACCOUNTING MODEL)
C IS TO GENERATE A DISRIBUTION OF NEAR-SURFACE (0-S CM) SOIL MOISTURE
C CONDITION AT THE SPATIAL SCALE OF THE STATIC TERRAIN DATA BASE WHICH
C RESPONDS TO BOTH STATIC CONDITIONS (SOIL TYPE, COVER TYPE, AND SURFACE
C SLOPE) AND DYNAMIC CONDITIONS (CROP STAGE. RAIN. AND POTENTIAL EVAPO-
C RATION) ON A DAILY BASIS.
C
C---------
C
C NAME
C ---------
C IROW1
C IROU2
C ICOLI
C ICOL2
C IOTCOL
C NCOL
C MPAUSE
C
C
C ---------
C
C	 NAME
C ---------
C RAINFALL
C
C
C INTRLAYR
C
C
C IMITIALZ
C
C EVAPORAT
C
C CELLDATA
C
C CROPDATA
C
C SOILDATA
C
C GETFILES
C IOCALLS
C
C
C UPDTHIST
C OTPTHIST
C
COPNFIL
C
C
C
C

PARAMETER ( IROW1-I,IROW2 . 1077,ICOLI-I,ICOLZ-1245,IOTCOL-1245 )
PARAMETER ( NPAUSE-4 , NCOL-1245 )

INTEGER	 PAUSDATE( NPAUSE ), FC( 14 ), HHMMSS( 3 )
INTEGER	 WATER, SOIL, ELEV, CATG, CAT, COL, ROU, DATE
INTEGER	 STR7DATE, STOPDATE, CROP, FIELD, DAY
REAL	 KCROP, INTNSITY, MFC
CHARACTERSS TYPE, TYPENOW
LOGICAL	 PAUSE

108

PARAMETER DEFINITION
DESCRIPTION

---------------------------------------------------
FIRST ROW OF THE INPUT MATRIX TO BE PROCESSED
LASTROU OF THE INPUT MATRIX TO BE PROCESSED
FIRST COLUMN CELL OF THE INPUT RODS TO BE PROCESSED
LAST COLUMN CELL OF THE INPUT RODS TO BE PROCESSED
NUMBER OF CELLS IN EACH OUTPUT ROW
NUMBER OF CELLS IN EACH INPUT ROW
NUMBER OF TIMES THAT PROGRAM SHOULD PAUSE DURING
SIMULATION PERIOD FOR SAVING THE MOISTURE MAP

SUBROUTINES REQUIRED
1	 DESCRIPTION

IRETURNS THE AMOUNT OF RAIN (CM). DURATION (HOURS) AND
(INTENSITY ( CM/HOUR, ) FOR A GIVEN CELL ON A SPECIFIED
(JULIAN DAY.
ITHIS ROUTINE CONTAINS ALL 4 WATER ACCOUNTING MODELS
1EACH AS A SEARATE ENTRY. THESE ENTRIES ARE t SURFINF.
IROOTINF, RUNOFF AND RECHARGE.
(THIS ROUTINE IS USED FOR INITIALIZATION PROCESS AND
(HAS TWO ENTRIES. THESE ARES COMMENCE AND DAUM.
(THIS ROUTINE SIMULATES THE EVAPORATION PROCESS FOR A
IGIUEN CELL ON A SPECIFIED JULIAN DAY.
(THIS ROUTINE GETS ALL STATIC CONDITIONS OF A GIVEN
IDATA BASE CELL.
ITHIS ROUTINE GETS THE DYNAMIC CONDITIONS OF A GIVEN
(DATA BASE CELL WHICH IS REGISTERED AS A CROP TYPE.
ITHIS ROUTINE GET ALL THE REQUIRED INFORMATION
(THAT IS BASED ON THE SOIL TYPE FOR A GIVEN CELL.
ITHIS ROUTINE OPENS ALL THE INPUT AN OUTPUT FILES.
ITHIS ROUTINE CONTAINS TWO ENTRIES FOR READING AND
(WRITING INPUT AND OUTPUT RECORDS. THESE ARES READREC,
LAND WRITDATA.
ITHIS ROUTINE IS USED FOR UPDATING A GIVEN HISTIGRAM.
ITHIS ROUTINE IS USED FOR WRITING OUT A GIVEN
IHISTOGRAM.
(EXTERNAL FUNCTION CALLED BEY 'GETFILES' ROUTINE
1
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71 COMMON /BUF31 MFCOUTt NPAUSE, NCOL ), ICATOUT( NPAUSE, hCOL )
72 SPECIAL COMMON BUF3
73 COMMON /BUF4/ MFCHIST( NPAUSE .-25fi	 ),	 ICATHIST( NPAUSE 	 31	 )
74 SPECIAL COMMON BUF4
75 COMMON	 /BLOCK/
76 & SATHC, SUCTION, SFPROS, RTPROS, SFFC, RTFC, SFUP,
77 6 SW. SFUC, RTWC, KCROP,
78 6 DAY, RAIN, DUR, INTMSITY, SLOPE, TYPENOU
79 COMMON /FILCOD/ FC
Be DATA	 WATER/ 10 /. STRTDATE/ 138 /. STOPDATE/ 160
8'. DATA	 PAUSDATE/ 140,	 141.	 150,	 160
82 C
83 C
84 C
85 WRITE(13.101) IROU1,	 IROW2,	 ICOL1,	 ICOL2
86 C
87 C INITIALIZE ALL NECESSARY VARIABLES	 ..^
88 C
89 CALL COMMENCE
90 C
91 C PROCESS EVERY CELL IN THE DATA BASE
92 C
93 FOR	 ROU • IROWI,	 IRCU2
94 C
95 C AFTER PROCESSING EVERY 100 RECORDS SEND A MESSAGE TO TO TERMINAL
Be C
97 IF(	 MOD(ROU,tO)	 .EQ.	 0	 ) THEN
98 CALL TIME(HHMMSS)
99 WRITE(11,103) ROW, HHMMSS
100 END IF
101 FOR	 COL • ICOL1. ICOL2
102 C
103 C GET REQUIRED INFORMATIONS FOR THE CELL BEING PROCESSED
104 C
105 CALL CELLDATA( ROW.COL.ELEV,SOIL,CATG,SLOPE,TYPE,CROP,FIELD 	 )

Ì
106 IF( TYPE .EQ.	 'NONAGRIC'	 ) THEN
107 C
108 C THIS I5 NOT AN AGRICULTURAL CELL THEREFORE SHOULD MOT BE
109 C TREATED IN MOISTURE COMPUTATION. UPDATE THE OUTPUT ROU AND
lie C START WITH NEXT CELL IN THE DATA BASE.
111 C
112 FOR	 IP-1, NPAUSE
113 MFCOUT(	 IP	 COL )	 0
114 ICATOUT(	 IP , COL )	 CATG
115 CALL UPDTHIST( 0	 MFCHIST. IP, 0, 250 )
116 ICAT • CATG / 10
117 CALL UPDTHIST(	 ICAT,	 ICATHIST,	 IP, 0, 25	 )
118 END FOR
119 ELSE
120 C
121 C ELSE THIS CELL IS AN AGRICULTURAL TYPE, START THE MOISTURE

•	 122 C COMPUTATION AND CONTINUE FOR THE ENTIRE SIMULATION PERIOD.
123 C
124 C GET MORE INFORMATION ABOUT THE UNDERLAYING SOIL
125 C
126 CALL SOILDATA( SOIL, SFPROS, RTPROS, SFFC, RTFC, SFUP,
127 6	 SATHC, SUCTION )
128 C
129 C INITIALIZE THIS CELL'S MOISTURE FOR DAY ZERO
130 C
131 CALL	 DAUM
132 C
133 FOR	 DATE- STRTDATE, STOPDATE
134 C
135 DAY • DAY 4 i
136 C
137 C IF IT IS A RAINY DAY, THEN GET AMOUNT, INTENSITY AND THE
138 C DURATION OF THE RAINFALL ON THIS GROUND CELL BEING PROCESSED
139 C

> 140 CALL	 RAINFALL( DATE, ROU, COL, RAIN,	 INTMSITY, OUR )

109
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141 C
142 C IF THE GROUND CELL IS REGISTERED AS A CROP THEN GET
143 C KCROP AND CROP STAGE
144 C
14S IFC TYPE	 .EQ.	 'CROP	 )	 THEN
146 CALL CROPDATAC CROP, FIELD, DATE, KCROP, TVPEHOW )
147 END IF
148 C
149 C
150 C PROCESS ALL SOIL WATER ACCOUNTING MODELS
151 C
152 C It PONDING AND INFILTRATION INTO THE SURFACE LAVER (0 - S CM)
153 C
154 CALL SURFINFL
155 C
156 C Si PERCOLATION OF WATER INTO THE ROOT ZONE CS - 95 CM)
157 C
158 CALL ROOTINFL
159 C
160 C 31	 STANDING WATER RUNOFF DUE TO LOCAL SLOPE
161 C
162 CALL RUNOFF
163 C
164 C 43 EVAPOTRANSPIRATION
165 C
166 CALL EVAPORAT
167 C
168 C St CAPILLARY RECHARGE OF THE SURFACE LAVER
169 C
170 CALL RECHARGE
171 C
172 C
173 C COMPUTE % OF FIELD CAPACITY OF SOIL MOISTURE BASED ON SURFACE
174 C LAYER'S WATER CONTENT
176 MFC • 100.0 S SFWC i SFFC
177 C
178 C
179 C CHECK TO SEE IF THIS IS A PAUSE DAY, IF IT IS THEN RECORD
180 C THE	 COMPUTED • MFC • AND	 THE REASSIGNED CATEGORY.
181 C (PAUSE DAY IS THE DAY THAT THE MOISTURE MAP MUST BE SAVED)
182 C
183 PAUSE •	 .FALSE.
184 FOR	 IP • 1, NPAUSE
185 IFf DATE	 .EQ. PAUSDATEC	 IP	 )	 )	 THEN
186 PAUSE •	 .TRUE.
187 COTO	 100
188 END IF
189 END FOR
190 100 IF( PAUSE	 ) THEN
191 C
192 C APPLY A GAUSIAN DISTRIBUTION WITH COMPUTED 'MFC' AS THE
193 C MEAN, AND 6% MFC AS THE STANDARD DIVIATION
194 C
195 IMFC • NINTt	 RANHC	 MFC ,	 6.0	 )	 )
196 C
197 C SET LOWER LIMIT OF % FIELD CAPACITY TO ONE
198 C
199 IF(	 IMFC	 .LT.	 1	 )	 IMFC•1
200 C
201 C SAVE COMPUTED *MFC* FOR THIS PAUSE DAY
202 C
203 MFCOUTC IP , COL	 )	 IMFC
204 C
205 C REASSIGNMENT OF THE REGISTERED CELL'S CATEGORY
206 C It CHANGE THE CATEGORY TO WATER IF THERE IS STANDINNG WATER
207 C ON THIS GROUND CELL
208 C 21 CHANGE THE CATEGORY TO WATER IF SURFACE LAYER'S WATER
209 C CONTENT EXCEEDS THE UNDERLAYING SOIL'S PROSITY
210 C 3t IF THERE IS NO STANDING WATER AND CELL IS REGISTERD AS A

k
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211 C	 CROP TYPE, THEN CHANGE THE CATEGORY TO BARE SOIL WHEN
212 C	 BEFORE EMERGENCE OF THE CROP OR AFTER HARVEST
213 C
214	 IF( SU .GT. 0 ) THEN
21S	 CAT • WATER
216	 ELSE
217	 IF( SFUC .LT. SFPROS ) THEN
218	 CAT • CATG
219	 IF((TYPE.EO.'CROP	 ') .AND.(TYPEHOU.EO.'SMTH8ARE 1 )) CAT • 210
220	 IF((TYPE.EO.'CROP	 ) .AND.(TYPENOU.EO.'MEDMBARE')) CAT • 200
221	 ELSE
C22	 CAT • WATER
223	 END IF
224	 END IF
22S	 ICATOUT( IP	 COL )	 CAT
226	 ICAT • CAT / 10
227 C
228 C	 UPDATE THE HISTOGRAMS 	 —+
229 C
230	 CALL UPDTHIST( IMFC, MFCHIST, IP, 0, 250 )
231	 CALL UPDTHIST( ICAT. ICATHIST, IP, 0, 25 )
232 C
233	 END IF
234	 END FOR
23S C
236 C	 DONE WITH MOISTURE ESTIMATION FOR THIS CELL
237 C
238	 END IF
239	 END FOR
240 C
241 C	 DONE WITH ALL THE COLUMNS OF THIS ROU
242 C	 WRITE OUT THE COMPUTED MFC AND THE REASSIHED CATEGORIES OF THIS
243 C	 ROW TO THE OUTPUT FILES FOR ALL PAUSE DATES.
244 C
245	 CALL URITDATA( 1. MFCOUT. IOTCOL )
246	 CALL URITDAtA( 2, ICATOUT. IOTCOL I
247 C
248	 END FOR
249 C
250 C	 SOIL MOISTURE ESTIMATION IS DONE FOR THE ENTIRE DATA BASE
251 C	 WRITE OUT A REPORT OF THE FINAL MOISTURE AND CATEGORY MAPS
252 C
253	 FOR IP-1, NPAUSE
254	 URITE(13,104) ' MFC	 ', PAUSDATE( IP )
255	 CALL OTPTHIST( MFCHIST, IP, 0, 250 )
256	 URITE(13,104) 'CATEGORY', PAUSDATE( IP )
257	 CALL OTPTHIST( ICATHIST, IP, 0. 25 I
258	 END FOR
259	 CALL TIME(HHMMSS)
260	 URITE(13,'(' COMPLETED AT	 ',3A3) 1 ) HHMMSS
261	 WRITE(11,'(' COMPLETED AT	 ',30)') HHMMSS
262	 WRITE(11,102)
263	 WRITE(13,102)
264	 STOP
265 101	 FORMAT(///,' S 0 1 L 	 U A T E R	 A C C O U N T I N G',
266	 6 '	 P R 0 G R A M'//,' SUAM WAS PROCESSED ON THE DATA BASE'//
267	 6 ' ROW'I5,' THROUGH ROUTS,'	 ,	 COLTS' THROUGH COL'IS)
268 102	 FORMAT(' S/ t A L L	 D 0 N E t V t')
269 103	 FORMAT(' P R 0 C E S S E D	 THROUGH	 REC0RD',SX,I4,
270	 6 3X,3A3)
271 104	 FORMAT( 0 1',AS,' H I S T O G R A M 	 FOR JULIAN DAY'IS)
272	 END
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274 C
275 C------RAINFALL
276 C
277 C
278 C	 THIS ROUTINE READS THE RAINFALL DATA AND RETURNS THE AMOUNT
279 C	 OF RAIN, DURATION, AND INTENSITY FOR A GIVEN CELL UITHIN THE
280 C	 DATA BASE ON A SPECIFIED JULIAN DAY.
281 C	 RAIN IS IN UNITS OF CENTIMETERS , INTENSITY 15 IN CM/HOUR,
282 C	 AND DURATION IS IN HOURS.
283 C
284 C
285	 SUBROUTINE RAINFALL( DATE, DBROU, DBCOL, RAIN. INTNSITY, OUR )
286	 IMPLICIT INTEGER ( A - 2 )
287	 PARAMETER ( NDAY • 13	 NRCOL • 42 )
289	 COMMON /DUFS/ ROURAIN( HRCOL,NDAY), RAINDATE( NDAY)
289	 SPECIAL COMMON BUF5
290	 DIMENSION FC(14)
291	 COMMON /FILCOD/ FC
292	 REAL	 RAIN, DUR. INTNSITY, ALLINTS( NDAY )
293	 DATA RECPTR / 0
294	 DATA	 RAINDATE
295	 6 / 138,139,143,144,148,149,150,151,153,154,155,159,161
296	 DATA ALLINTS
297
298 C
299 C
300 C
301 C READ RAINFALL DATA FOR ALL RAINY DAYS FOR THIS GROUND CELL
302 C
303 RAINROU -	 (	 (	 DOROU -	 1	 ) / 30	 +	 1	 )
304 RAINCOL -	 (	 (	 DDCOL - 1	 ) / 30	 +	 1	 )
305 WHILE(	 RECPTR	 .LT. RAINROU )
306 FOR COL'1, NRCOL
307 READ(	 FC(5),	 IOSTAT • IOS)	 ( ROURAIN(COL,DAY),	 DAY-1,	 NDAY	 )
308 IF(	 IDS	 .NE.	 0	 )	 GOTO 99
309 END FOR
310 RECPTR - RECPTR + 1
311 END WHILE
312 C
313 C
314 C
31S C	 CHECK IF THE DATE GIVEN WAS A RAINY DAY
316 C
317	 FOR DAY-1, NDAY
318	 IF( RAINDATE( DAY ) .EQ. DATE ) GOTO 10
319	 END FOR
320 C
321 C	 NO STORM ON THIS DAY. RETURN TO THE CALLING PROGRAM
322 C
323 RAIN - 0.
324 INTNSITY ' 0.
325 DUR	 - 0.
326 RETURN
327 C
328 C	 A STORM OCCURED ON THIS DAY, GET THE AMOUNT OF RAIN RECIEVED
329 C	 BY THIS CELL ON THE GIVEN JULIAN DAY
330 C
331 10	 RAIN - REAL( ROWRAIN( RAINCOL, DAY ) )/ 10.0
332	 INTNSITY - ALLINTS( DAY )
333	 DUR • RAIN / INTNSITY
334	 RETURN
335 C
336 99	 URITE(11,'(SX,'ERROR SSIS WHILE READING RAINFALL 'I')
337	 STOP
338	 END
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342 C
343 C
344 C	 THIS ROUTINE CONTAINS ALL 4 WATER ACCOUNTING MODELS, EACH
345 C	 AS A SEPARATE ENTRY. THESE ARE i-SURFACE INFILTRATION,
346 C	 8-ROOT INFILTARION, 3-RUNOFF, 4-RECHARGE
347 C
348	 SUBROUTINE INTRLAYR
349 C
350	 INTEGER	 FC( 14 ), DAY
351	 REAL	 KCROP, INTHSITY, MAXRTINF, MINRTINF
352	 CHARACTERIS TYPENOU
353	 COMMON /BLOCK/
354	 ! SATHC, SUCTION, SFPROS, RTPROS, SFFC, RTFC, SFUP,
355	 S SU, SFWC, RTUC, KCROP,
356	 6 DAY, RAIN, BUR, INTNSITY, SLOPE, TYPEHOU
357	 COMMON /FILCOD/ FC
358 C
359	 ENTRY SURFINFL
360 C	 ---------------
361 C
362 C COMPUTE AMOUNT OF 'RAIN • WHICH INFILTATES TO SURFACE LAYER
363 C
364 IF(	 RAIN	 .GT. 0	 ) THEN
365 RS - SORT(	 DUR	 ) I SORT(	 2ISATHCZSUCTIONI(	 SFPROS-SFUC)	 )
366 A	 SATHC S OUR / 2
367 RAININF - AMINS( RAIN , 	 RI	 )
368 SW - SW ♦ 	 ( RAIN - RAININF	 )
369 ELSE
370 RAININF - 0
371 END IF
372 C
373 C COMPUTE AMOUNT OF -STANDING WATER- WHICH INFILTRATES TO SURFACE
374 C LAYER AFTER RAINFALL CEASES
375 C
376 IF( SW	 GT. 0	 ) THEN
377 SWI - SATHC I ( 24 - OUR	 > / 2
378 SUINF - AMINS(	 SW ,	 SUI	 I
379 SU - SU - SUINF
380 ELSE
381 SWINF - 0
382 END IF
383 C
384 C TOTAL AMOUNT OF INFILTRATION TO THE SURFACE LAYER IS THE SUM
38S C OF RAIN AND STANDING WATER INFILTRRTION
386 C
387 TOTALINF - RAININF t SUINF
388 C
389 C COMPUTE WATER CONTENT PER CENTIMETER OF SURFACE LAYER
;190 C
:191 SFWC - SFWC ♦ 	 TOTALINF	 S.0
392 RETURN
393 C
394 C
395 ENTRY	 ROOTINFL
396 C -------------°
397 C
398 C	 COMPUTE.PERCOLATION OF WATER FROM THE SURFACE LAYER INTO
399 C	 THE ROOT ZOON ( S-100 CM )
400 C
401 C	 FIRST DRAIN THE EXCESS WATER OUT OF ROOT LAYER
402 C
403	 IF( RTWC .GT. RTFC ) THEN
404	 DRAIN - (RTUC - RTFC) / 3
40S	 RTUC - RTUC - DRAIN
406	 END IF
407 C
408 C	 THEN PERCOLATE
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409 C
410
411
418
41.3
414
41S
416
417
418
419
420
421
422 C
423 C
424 C
485 C
426 C
427
428
429
430
431
432 C
431
!3• C
435 C
436
437 C
438 C
439 C
440 C
441 C
442
443
444
44S
446
447
448
449 C
450 C
4S1
452 C
453 C
454 C
455 C
456 C
457
458
459
460
461
462
463
464
46S
466
467
468
469 C
470
471

IF( SFUC .GT. SFFC ) THEN
SFUC%	 SFUC
RTIHFI	 0.25 t SATHC
RTINF2	 (SFUC - SFFC) / 3
SFUC • AMIN1( SFUC1 , SFPROS )
SFUC • AMAX1( SFUC-RTINF2 , SFWCI-RTINFI
RTINF • (SFUC% - SFUC) t S
RTUC • RTUC + RTINF/95
ELSE
RTINF	 0
RETURN
END IF

NOU CHECK THE SURFACE WATER CONTENT, IF IT EXCEEDS THE
PROSITY OF THE SOIL TYPE MOUE THE EXCESS UATER TO THE
STANDING WATER

IF( SFUC .GT. SFPROS ) THEN
SWADD • ( SFWC - SFPROS ) 1 5
SFWC • SFPROS
SW • SU + SUADD
END IF

RETURN

ENTRY RUNOFF

COMPUTE RUNOFF CAUSED BY THE SLOPE FOR 'STANDING WATER•

IF( SU .GT. 0 ) THEN
SURUNOFF	 SU 1 . ( 1.1 - A.R 12SLOPE I
SU • AMIN1( SU	 SW-SU RUNOFF )
ELSE
SURUNOFF • 0.
END IF
RETURN

ENTRY RECHARGE

CAPILLARY RECHARGE IS ALLOWED TO SCCURE DURING NIGHT FOR A .
DURATION OF 12 HOURS

IF( SFUC .LT. SFUP ) THEN
SFWCI	 SFUC
RECHRG	 0.25
SFUC • SFWC1 + RECHRG/5
IF( SFUC GT. SFUP ) THEN
SFUC • SFUP
RECHRG	 (SFUC - SFWC%) X S
END IF
RTUC	 l 95 2 RTUC - RECHRG )	 95
ELSE.
RECHRG	 0
END IF

RETURN
END
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472 C
473 C
474 C ------ INITIALZ
475 C
476 C
477 C THIS ROUTINE I9 USFD FOR INITIALIZING THE VARIABLES AS WELL
478 C AS INITIAL MESSAGES TO THE TERMINAL AND OUTPUT REPORT FILE.

C480 SUBROUTINE INITIALZ
481 C
482 C
483 INTEGEP	 DAYTIME( 2	 ), DDMMMYY(	 3	 ), HHMMSS( 3	 ),	 FC(14), DAY
484 REAL	 KCROP, INTNSITY j
485 CHARACTERYS	 TYPENOW
486 COMMON	 /BLOCK/
487 6 SATHC,	 SUCTION, SFPROS, RTPROS, SFFC, RTFC, SFWP, ^.
488 6 SW, SFWC, RTWC, KCROP,
489 i DAY, RAIN,	 BUR,	 INTNSITY, SLOPE, TYPENOU
490 COMMON /FILCOD/ FC
491 C
492 C
493 ENTRY	 COMMENCE

' 494 C ---------------
495 C
496 C AT THE BEGINING WRITE OUT A MESSAGE TO THE TERMINAL AND
497 C GET A SEED FOR RANDOM NUMBER GENERATOR FUNCTIONS BASED
498 C ON THE COMPUTER CLOCK
499 C
500 CALL DATE( DDMMMYY )
501 CALL TIME( HHMMSS )
502 CALL JDATE( DAYTIME	 )
S03 WRITE(11,101) HHMMSS,	 DDMMMYY
SO4 WRITE(13,101) HHMMSS, 	 DDMMMYY
605 PRIMNO • DAYTIME( 2 )
506 CALL IRANP( PRIMMO >
507 RETURN
508 C
509 C
510 C

.
511 ENTRY	 DAWN
532 C -----------
513 C

t: 514 C THIS ENTRY INITIALIZES THE MOISTURE CONTENT OF A CELL
515 C
516 SW	 0
517 DAY • 0
518 SFWC	 SFFC
519 RTUC	 RTFC 1
520 RETURN
521 C

r 522	 101 FORMAT(//'	 TIME(	 '3A3,'	 DATEf	 13A3)
' 523 END
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528 C	 THIS ROUTINE SIMULATES THE EVAPOTRANSPITAION ON A GIVEN
529 C	 DAY BASED ON THE DATA GATHERED. BARE SOIL, CANOPY COVERED
530 C	 OR DATER COVERED CELLS ARE EACH TREATED DIFFERENTLY.
531 C
532	 SUBROUTINE EVAPORAT
533 C
534	 PARAMETER ( NSDAY- 24 )
53S C
536	 INTEGER FC( 14 ), DAY
537	 REAL	 ETD( NSDAY ), MR, KSOIL, KSTORM, KSWEUAP, KCROP, IMTNSITY
538	 REAL	 A( NSDAY ), D( NSDAY ), C( MSDAY ), D( NSDAY )
539	 LOGICAL FRSTCALL
540	 CHARACTERI8 TYPENOU
541	 COMMON /DATA/ SWINF,RAININF,RTINF,SWRUNOFF,RECHRG,SUEVAP,SFEVAP,
542	 6 RTEVAP
543	 COMMON /BLOCK/
544	 6 SATHC, SUCTION, SFPROS, RTPROS, SFFC, RTFC, SFUP,
54S	 & SU, SFUC, RTWC, KCROP,
546	 6 DAY, RAIN, DUR, INTNSITY, SLOPE, TYPENOW
547	 COMMON /FILCOD/ FC
548	 DATA FRSTCALL/ .TRUE.
549	 DATA ETD / 0.48, 0.22, 0.31, 0.48, 0.61, 0.58, 0.40, 0.46,
550	 6	 0.28, 0.27,-0.23, 0.15, 6.2S, 0.35, 0.43, 0.33,
551	 6	 0.38, 0.28, D.E. 0.31, 0.40, 0.68, 0.55, 0.59
652 C
5S3	 IF( FRSTCALL ) THEN
554	 FRSTCALL - .FALSE.
555 C
S56 C	 COMPUTE THE CONSTANTST FOR KSOIL'S POLYNOMIAL EQUATIONS
S57 C
558	 FOR IDAY-1. NSDAY
559	 A( IDAY ) - -0.05 + 0.732 / ETD( IDAY )
560	 O( IDAY ) - 4.97 - 0.661 1 ETD( IDAY )
S61	 O( IDAY ) - -8.57 + 1.560 1 ET01 IDAY )
562	 It IDAY )'- 4.35 - 0.880 1 ETD( IDAY )
563	 END FOR
S64	 END IF
565 C
566	 PE - ETD( DAY )
567	 KSTORM - (24 - DUR) / 24.0
568 C
569 C	 IF THE GROUND CELL IS A CANOPY THEN COMPUTE EVATRANSPIRATION
570 C	 30% FROM SURFACE LAYER AND 70% FROM ROOT ZONE
571 C
572	 IF( TYPENOU .EQ. 'CANOPY	 ) THEN
573	 EVAP - PE 1 KCROP 2 KSTORM
574	 SFEVAP - AMINS( SFWCIS	 0.301EVAP 1
575	 RTEVAP - AMINS( RTWC195	 0.70XEVAP I
S76	 SFUC - SFUC - SFEVAP/5
577	 RTUC - RTWC - RTEVAP/95
578	 IF( SW .GT. 0 ) THEN
579	 SWINF - AMINS( SU , SFEVAP I
580	 SU - SW - SWINF
581	 SFUC - SFUC + SWINF/S
$82	 END IF
583	 RETURN
584	 END IF
585 C
586 C	 IF THIS CELL IS COVERED BY STANDING WATER THEN COMPUTE
587 C	 EVAPORATION OF STANDING WATER
588 C
S89	 KSWEVAP • i
590	 IF( SW GT. 0 ) THEN
591	 EVAP - PE 1 KSTORM
592	 SFEVAP - AMINI ( SW , EVAP )
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S93 SU - SU - SUEVAP
594 KSUEVAP • ( PE - SUEVAP ) i PE
SOS PE - PE - SUEVAP
596 END IF
597 C
598 C COMPUTE EVPORATION FOR BARE SOIL
599 C
600 IF(	 PE GT. 0 ) THEN
601 MR •	 ( SFUC - SFUP ) i ( SFFC - SFUP )
602 IF( MR .LT.	 0	 ) MR- 0
603 IF( MR .GT.	 1	 ) MR	 -	 1
604 KSOIL • A(DAY)	 +	 B(DAY) R MR	 +	 C(DAY) 8 MR$MR
605 6 D(DAY) t MRIMRXMR
606 IF(	 KSOIL .LT.	 0.05	 ) KSOIL	 0.05
607 IF(	 KSOIL .GT.	 1.00	 ) KSOIL	 1.00
608 SFEVAP • PE t KSOIL t KSTORM X KSUEVAP
609 SFEVAP - AMINI( SFUCi5 . SFEVAP	 )
610 SFUC - SFUC - SFEVAP/S
611 END IF
612 C
613 RETURN
614 END

4
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616 C
617 C ------ CELLDATA
618 C
619 C
620 C THIS SOUBROUTINE GETS ALL THE AVAILABLE AND NECESSARY
621 C INFORMATION ABOUT THE REGUSTED DATA BASE CELL.
622 C
623 C
624 SUBROUTINE CELLDATA( ROUSTROW, ROUSTCOL, ELEV, SOIL, CATG,
625 6	 SLOPE, TYPE, CROP, FIELD )
626 IMPLICIT INTEGER ( A - 2	 )
627 PARAMETER ( MCOL • 1245 , NFIELD • 10	 )
628 DIMENSION	 CROPCODE(	 10	 ),	 FCC	 14	 )
629 REAL	 SLOPE,'RESFEET
630 CHARACTER#8 TYPE
631 LOGICAL FRSTCALL
632 COMMON /BUF1i	 SOILS( NCOL	 ), ELEVS( NCOL	 ), CATGS(	 NCOL)
633 SPECIAL COMMON BUFI
634 COMMON /FILCOD/ FC
635 DATA	 RESFEET/ 328.08 i
636 DATA CURNTROU i 0 i, FRSTCALL/ .TRUE.
637 DATA	 CROPCODE/ 3,	 S.	 5,	 4,	 4,	 3.	 2.	 2,	 1,	 6i
638 C i-ALFALFA. 2-SOYBEAN, 3-WHEAT 6 OATS, 4-CORN, 5-SORGHUM, 6-PASTURE
639 C
640 C
641 C
642 C WHEN CALLED FOR THE FIRST TIME OPEN ALL INPUT 6 OUTPUT FILES
643 C
644 IF( FRSTCALL	 )	 THEN
645 CALL GETFILES
646 FRSTCALL •	 .FALSE.
647 END IF
648 C
649 C IF THE ROW WHICH CONTAINS THE REQUESTED CELL IS NOT READ
650 C YET, READ THE NEXT RECORD OF ALL THREE DATA BASE MA('S.
651 C
652 IF( CURNTROU .LT. ROUSTROW	 ) THEN
653 CURNTROU • CURNTROU i 1

654 CALL	 READREC( FC(2), SOILS, HCOL	 )
655 CALL	 READREC( FC(3), ELEVS, NCOL	 )
656 CALL	 READREC( FC(4), CATGS,	 NCOL	 )
657 END IF
658 C
659 C THE ROW WHICH CONTAINS THE REGUSTED CELL IS IN THE MEMORY
660 C EXTRACT NECESSARY INFORMATION.
661 C
662 ELEV • ELEVS( ROUSTCOL )
663 SOIL • SOILS( ROUSTCOL )
664 CATG • CATGS( ROUSTCOL )
665 C
666	 IF( ROUSTCOL NE. NCOL ) THEN
667	 NEXTELEV • ELEVS( ROUSTCOLr1 )
668	 ELSE
669	 NEXTELEV • ELEVS( ROUSTCOL-1 )
670	 END IF
671	 SLOPE • ATAN( REAL( ELEV - NEXTELEV ) i RESFEET )
672	 SLOPE • ABS( SLOPE ) # 57.2958
673 C
674 C	 DETRMINE THE SOIL TYPE FROM SOIL MAP CODES
675 C
676	 SOIL • SOIL i 30
677 C
678 C DETEMINE THE TYPE OF THE CATEGORY (NON-AGRICULTURAL .
679 C BRAE SOIL OR CROP). IF IT IS A CROP TYPE FIND CROP.
680 C
681 IF( (CATG	 .GE. 230) .OR.	 (CATG	 I.E.. 	 50)	 ) THEN
682 TYPE •	 'NONAGRIC'.
683 ELSE IF(	 (CATG	 I.T.. 230)	 .AND.	 (CATG	 .GT.	 150)	 ) THEN
684 TYPE •	 'BARESOIL'

a
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685 ELSE IF(	 (CATG .GE. 50	 )	 .AND.	 (CATG .LE.	 150)	 ) THEN
686 TYPE • 'CROP
687 IC + CATG i 10 - 5
688 CROP • CROPCODE( IC )
689 FIELD • MOD( CATG , (CATG/10 t 10 1	 1	 +	 1
690 CATO • CATG i10 3 10
691 END IF
692 C
693 C
694 RETURN
695 END
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696 C
697 C
698 C ------ CROPDATA
699 C
700 C
701 C	 THIS ROUTINE FINDS MORE INFORMATION ABOUT A CELL WHICH IS
702'C REGISTERED AS CROP, SUCH AS CROP'S PLANTING DATE, CROP
703 C	 CONSTANT K. AND ITS DYNAMIC TYPE BASED ON THE CROP CALANDER.
704 C
705 C
706 SUBROUTINE CROPDATA( CROP, FIELD, DATE, KCROP, TYPENOU	 )
707 C
708 PARAMETER ( NCROP •6 , NFIELD • 10	 NSTG-5	 )
709 IMPLICIT	 INTEGER ( A - 2	 )
710 DIMENSION PDATES( NCROP,HFIELD	 ), STAGEDAY( NCROP,NSTG 	 )
711 REAL	 KEGCONST( NCROP, NSTG, 2), M. A, KCROP
712 INTEGER	 FC(	 14	 )
713 CHARACTER18 TYPENOU ...
714 COMMON /FILCOD/ FC
715 C
716 DATA	 ((	 PDATES(	 IC	 ,	 IF	 ),	 IF • 1,	 NFIELD),	 IC-1,	 NCROP)
717 C	 1-ALFALFA.2-SOYBEANS,3-WHEAT 8 OATS,4-CORN5-SORGHUM,6-PASTURE
718 6 i	 62,	 66,	 69,	 73,	 71,	 75,	 78,	 82,	 87,	 93.
719 6	 126,	 134,	 142,	 149,	 155,	 158,	 162,	 167,	 173,	 186.
720 &	 54,	 59,	 62.	 65,	 68,	 70,	 74,	 79,	 84,	 93,
721 6	 107.	 112,	 117,	 122,	 127,	 130.	 135,	 142,	 149,	 161,
722 6	 120,	 129,	 134,	 138,	 143.	 149,	 155,	 161.	 169,	 181,
723 6	 73,	 73.	 73,	 73,	 73.	 73,	 73,	 73,	 73,	 73
724 C	 f

6,' 72S DATA	 ((STAGEDAY(	 IC,	 IS	 ),	 IS-1, NSTG),	 IC-1, NCROP)
L 726 6 i	 20,	 61,	 183,	 217,	 365,

727 6	 19.	 49,	 102.	 139,	 365,
V 728 6	 31.	 67,	 105.	 117,	 365,

729 6	 31,	 72,	 122,	 166,	 365,
730 6	 28,	 68,	 112.	 140.	 365.
731 S	 20,	 61,	 183, 217, 365/ i
732 C
733 DATA	 f<f KEGCONST(	 IC,IS,IK), IK-1,2).	 IS • I.NSTG),	 2C-I,NCROP)
734 6 / 0.0	 , 0.7 ,	 0.004, 0.627, 0.0 ,	 0.85	 ,
735 6 -0.01 2.7 ,	 0.0	 , 0.5	 .
736 8 0.0 0.7 ,	 0.012, 0.478, 0.0 ,	 1.05	 ,
737 6 -0.016, 2.7 ,	 0.0	 , 0.45 ,
738 6 0.0	 , 0.7 ,	 0.011, 0.356, 0.0 ,	 1.1	 .
739 6 -0.071, 8.54 ,	 0.0	 , 0.25	 ,
740 6 0.0	 , 0.7 ,	 0.010, 0.398, 0.0 ,	 1.1	 ,
741 6 -0.013, 2.625, 0.0	 , 0.55	 ,
742 6 0.0	 , 0.7 ,	 0.009, 0.455, 0.0 ,	 1.05	 ,
743 6 -0.020, 3.25 ,	 0.0	 , 0.5	 ,
744 6 0.0	 . 0.7 ,	 8.001, 0.68	 , 0.0 ,	 0.75	 ,
745 6 -0.007, 2.1 ,	 0.0	 , 0.5	 i
746 C
747 C
748 C.
749	 PLNTDATE	 PDATES ( CROP , FIELD )
750	 CROPCNT DATE - PLNTDATE
751 C
752 C	 DETERMINE THE STAGE OF THIS CROP SUCH AS EMERGED, HARVESTED, ...
753 C
754	 FOR STAGE-1, 5
755	 IF( CROPCNT .LT. STAGEDAY( CROP, STAGE ) ) GOTO 10
756	 END FOR
757 10	 M • KEGCONST( CROP, STAGE, 1 )
758	 A - KEGCONST( CROP, STAGE, 2 )
759	 KCROP - A + M i CROPCNT
760 C
761 C	 TREAT ALL AS MEDIUM ROUGH BARE BEFOR EMERGENCE
762 C
763	 IF( STAGE .LT. 2 ) THEN
764	 TYPENOU - 'MEDMBARE'
765	 RETURN
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766 END IF
767 C
768 C IF CROP STAGE IS AFTER EMERGENCE AND BEFOR HARVEST
769 C THEN TREAT IT AS A CANOPY
770 C
771 1F( STAGE . LT. S ) THEN
772 TYPENOW • 'CANOPY
773 RETURN
774 END IF
775 C
776 C AFTER HARVEST TREAT WHEAT. OATS AND ALFALFA AS SMOOTH BARE
777 C AND TREAT ALL OTHERS AS MEDIUM ROUGH BARE
778 C
779 IF(	 (CROP	 .EO.	 1)	 OR.	 (CROP	 .Ea.	 3) ) THEN
780 TYPENOW -	 'SMTHDARE'
781 ELSE
782 TYPENOW • 'MEDMBARE'
783 END IF -^
784 C
785 RETURN
786 END

.
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787 c
788 C
789 C ------ SOILDATA
790 c
791 C
792 C THIS ROUTINE FINDS THE BULK DENSITY OF THE GIVEN SOIL
793 C BASED ON THE BULK DENSITY DISTRIBUTION WITHIN THAT
794 C SOIL, AND RETURNS OTHER REQUIRED INFORMATION ABOUT THE GIVE
795 C SOIL SUCH AS WILTING POINT WATER CONTENT, FIELD CAPACITY
796 C WATER CONTENT, HYDRAULIC CONDUCTIVITY AT SATURATION, ETC.
797 C
798 SUBROUTINE SOILDATA( SOIL, SFPROS, RTPROS, SFFC, RTFC,
799 6	 SFUP, SATHC, SUCTION	 )
800 C
801 C
802 IMPLICIT INTEGER ( A - 2	 I
803 C
804 PARAMETER (	 NSOIL- 8 , NBD-	 15	 )
805 REAL	 SFBULK(NBD),	 B(NSOIL),	 FSUCTION(NSOIL), ALFA(NSOIL)
806 REAL	 RTBULK( NBD	 ),	 SSUCTION( NSOIL	 ),	 SITYDCOND(	 NSOIL	 )
807 REAL	 SFPROS. SATHC, SUCTION, SATSUCT, SFUP, SFFC, RTFC
808 REAL	 RTPROS, FBD, RTBD
SOS LOGICAL FRSTCALL
810 COMMON /BUF2/	 PROBABIL( HSOIL ,	 100	 ),	 PERCENTS( NSOIL ,NBD I
811 SPECIAL COMMON BUF2
812 C'
813 DATA	 ((PERCENTS(IS,	 IBD),	 IBD-1,	 NBD),	 IS-i,NSOIL)

- 814 ! /	 0,	 0,	 0,	 10,	 0,	 7,	 7,	 22,	 22,	 14,	 14,	 14,	 0,	 0, 0,
815 6	 0,	 0,	 0,	 11,	 26,	 26,	 26,	 11 1	0 1	01	0,	 0,	 0,	 0 1 0,

► 816 6	 2,	 3,	 3,	 B.	 18,	 20,	 17,	 11,	 12,	 3,	 3,	 0,	 0,	 0, 0,
t; . 817 &	 0,	 0,	 1,	 9,	 22,	 25,	 14,	 11,	 9.	 S.	 2,	 2,	 0,	 0, 0,

818 6	 0,	 0,	 0,	 18,	 18,	 28,	 i8.	 18,	 0,	 0,	 0,	 0,	 0,	 0, 0,
^.- 019 6	 1,	 1,	 1,	 7,	 18,	 22,	 23,	 I5,	 7,	 4,	 1,	 0,	 0,	 0, 01

820 6	 0,	 0,	 0,	 7,	 19,	 18,	 30,	 15,	 7,	 4,	 0,	 0,	 0,	 0, 0,
821 6	 0,	 0,	 0,	 0.	 0,	 0,	 0,	 0,	 0,	 15,	 31.	 23,	 8,	 15, B

- 822 C
"• 823 DATA	 SFBULK/ 0.818,	 0.888,	 0.957,	 1.03,	 1.10,	 1.17,	 1.24, 1.30,

824 6	 1.37	 .	 1.44	 ,	 1.51	 ,	 1.58,	 1.65,	 1.72.	 1.79 /
825	 - DATA	 RTBULK/	 1.10,	 1.15.	 1.20,	 1.25,	 1.30,	 1.35,	 1.40,	 1.45,
826 6	 1.50,	 1.55,	 1.60,	 1.65,	 1.70,	 1.75,	 1.80
827 C
828 DATA	 8
829 6 /	 9.77,	 6.66,	 7.21,	 6.81,	 6.22,	 6.81,	 6.66,	 4.26

t 830 DAT4	 FSUCTION

c 331 6	 / 2:.49,	 13.91,	 12.90,	 13.18,	 16.03,	 13.18,	 13.91,	 3.22
832 DATA	 SSUCTION
833 6 / 31.20,	 34.67,	 30.76,	 33.08,	 39.25,	 33.08,	 34.67,	 10.14
834 DATA	 SITYDCOND
83S 6 / 0.814,	 2.33,	 2.02,,	 2.31,	 2.39,	 2.31,	 2.33,	 58.36

PPP 836 DATA	 FRSTCALL/ .TRUE.
837 C
838 C
839 C CET SIP THE PROBABILITY ARRAY FOR BULKDENSITY DETERMINATION
840 C OF EACH SOIL TYPE. 	 (ONLY AT FIRST CALL)
841 C
842 IF( FRSTCALL	 ) THEN!¢.
843 FRSTCALL -	 .FALSE.

' 844 FOR	 IS-1, NSOIL
845 ALFA(	 IS	 l	 1	 / B(	 IS	 )
846 END FOR.
847 FOR	 I5-1, NSOIL
848 START - 1
849 STOP - 0
850 FOR	 BDCODE-1, NBD
851 PERC - PERCENTS( IS I BDCODE	 )
852 IF( PERC	 .NE. 0	 ) THEN
853 STOP - STOP + PERC

I' 854 FOR	 I-START, STOP
855 PROBABIL(	 IS.	 I	 )	 BDCODE
856 END FOR
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START * START ♦ PERC
END IF
END FOR
IF( STOP .HE. 100 ) WRITE(11,'(IX,4STOP*0,I4,I6)')STOP,IS
END FOR
END IF

GET THE BULK DENSITY ACCORDING TO THE PROBABILTY FOR THIS SOIL
FOR BOTH SURFACE LAYER (0-5 CM) AND ROOT LAYER (S-9S CM)

RANDOM -IRAN( 1 , 100 )
BDCODE * PROBABIL( SOIL, RANDOM )
SFBD * SFBULK( BDCODE )
RTBD* RTBULK( BDCODE )

CALCULATE THE WATER CONTENT OF EACH SOIL TYPE AT UIL71HG POINT
AND FIELD CAPACITY. SPECIFIC BULK DENSITY IS 2.6S FOR ALL SOILS

SFPROS * 1 - SFBD i 2.65
RTPROS * 1 - RTBD i 2.65
SFFC * SFPROS * ( SSUCTION( SOIL ) i 333.0 ) ** ALFA( SOIL )
RTFC * RTPROS * ( SSUCTION( SOIL ) i 333.0 ) ** ALFA( SOIL )
SFUP * SFPROS * ( SSUCTIOH( SOIL ) i IS000 ) It ALFA( SOIL )
SUCTION * FSUCTIOH( SOIL )
SATHC * SITYDCOND( SOIL )
RETURN
END

.^

{

123

B



.,

M
1	 t

URi' MIAL PAG-4E IS

OF POUR QUALITY,

884 C
885 C
886 C ------ CETFILES
887 C
888 C	 THIS ROUTINE OPENS ALL THE INPUT AND OUTPUT FILES AND
889 C	 ASSIGNS AN AVAILABLE UNIT (FILECODE) ON UHICH THE FILE
890 C	 UILL BE OPENED.
891 C
892	 SUBROU7IHE CETFILES
893 C
894	 INTECER11 FILENAME( 17 )
895	 INTEGER	 PC( 14 ), ERRCODE
896	 LOGICAL	 ERR
897	 COMMON /FILCOD/ PC
898 C
899 C
900	 URITE(L1.104)
901	 READ(32,102) FILENAME
902	 CALL OPN( FC(1), FILENAME,'OLD','FOR',ERRCODE.ERR)
903	 IF( ERR ) THEN
904	 URITE(11,101) FILEHAME, ERRCODE
905	 S70P
906	 END IF
907	 READ(FC(1),E) NUMFILES
908	 FOR I.2,NUMFIL£Sri
909	 READ(FC(1).102) FILENAME
910	 CALL OPN(FC(i),FILENAMB,'OLD'.'UNF',ERRCODE,ERR)
911	 IF( ERR ) THEN
912	 WRITE(11.101) FILENAME, ERRCODE
913	 STOP
914	 END IF
915 C	 URIM 11.103) FILENAME, FC(I)
916	 END FOR
917	 RETURN
918 101	 FORMAT(1X,'E0ROR GEES UHILE OPEHINIG 'L7A1,'ERRCODE-'I3)
919 102	 FORMAT(17A1)
920 103	 FORMAT(IX.17A1.'WAS ASSIGNED TO'I4)
921 104	 FORMAT(1X,'ENTER NAME OF THE FILE UHICH CONTAINS INPUT',
922	 6 ' AND OUTPUT FILE NAMES')
923	 END
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IOCALLS

THIS ROUTINE HAS TWO ENTRIES USED IN READING AND URITING
FROM AND TO THE 1/0 FILES

SUBROUTINE IOCALLS

IMPLICIT INTEGER ( A - 2 )
PARAMETER ( HURD • 1245 , NPAUSE • 3 )
DIMENSION RECORD( HWRD ), MATRIX( NPAUSE, NWRD )
INTEGER FC( 14 )
COMMON /FILCOD/ FC

ENTRY READREC ( FILECODE, RECORD, NUORDS )

BUFFER IN ( FILECODE, RECORD, B, NUORDS, IO )
CALL STATUS( FILECODE )
IF( IO NE. 2 ) THEN
URITE(11,101) FILECODE, IO
STOP
END IF
RETURN

ENTRY URITDATA ( IDENT , MATRIX, MCOL )'

IF( IDENT .EQ. i )	 OTFILE•FC(6)
IF( IDENT .EQ. 2 !	 OTFILE-FC(10)
FOR IP • 1, NPAUSE
FOR COL-1, NCOL
RECORD( COL )	 MATRIX( IP	 COL I
END FOR
BUFFER OUT( OTFILE, RECORD, B, NCOL, IO )
CALL STATUS( OTFILE )
IF( IO NE. 2 ) THEN
URITE(11,102) OTFILE, 10
STOP
END IF
OTFILE • OTFILE + i
END FOR
RETURN

FORMAT(IX,'ERROR **22 UHILE READING FROM UNIT'I4,' STATUS',14)
FORMAT(IX,'ERROR 2112* WHILE WRITING TO UNIT 'I4,' STATUS•1I4)
END

4-

1-

E,
L
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975 C
976 C
977 C ------UPDTHIST
978 C
979 C
980 C THIS ROUTINE'UPDATES THE HISTOGRAMS
981 C
982 SUBROUTINE UPDTHIST( UAL, MIST,	 INDEX, MIN, MAX )
983 IMPLICIT INTEGER ( A - 2	 )
984 PARAMETER( NPAUSE-3 >
985 DIMENSION	 MIST( NPAUSE, MAX	 )
986 C
987 C
988 C UPDATE MIN, MAX VALUES OF DATA
989 C
990 MIST(	 INDEX	 ,	 I	 I	 MINO(	 MIST(	 INDEX ,	 1	 >	 UAL	 >
991 MIST(	 INDEX ,	 MAX—MIN+S) • MAXO( MIST( 	 INDEX	 MAX-MIN+S), VAL	 )
992 C -^
993 C UPDATE THE TOTAL NUMBER OF VALUES COUNTED
994 C
995 MIST(	 INDEX , MAX —MIN+6) • HIST(	 INDEX, MAX —MIN+6	 )+I
996 C
997 C UPDATE THE FREQUENCY COUNT FOR THIS VALUE
998 C
999 UAL • MAXO( MIMO( MAX+	 VAL), MIN-1)
1000 HIST(	 INDEX, VAL —MIN+3	 )	 MIST(	 INDEX, VAL —MIN+3	 ) + 1
1001 RETURN
1002 END
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1003 C
1004 C
1005 C ------ OTPTHIST
1006 C
1007 C

0RjQ,.jqr,!- PuAZ IdOF POOR C1

1008 C THIS ROUTINE TAKES A GIVEN 415YOG14AM ARRAY CONTAINING THE
1009 C FREQUENCIES AND URITES OUT THE PERCENTS AND CUMULATIVE
tole C PERCENTS FOR EACH DATA VALUE.
Sell C
1018 SUBROUTINE OTPTHISTI MIST, INDEX, MIN, MAX	 )
1013 C
1014	 IMPLICIT INTEGER ( A - 2 )
1015	 DIMENSION MIST( 3, MAX lLots
	 REAL TOTAL, SUM

1017 C
101E C
1019	 TOTAL - MIST ( INDEX , MAX-MIN+6
1020	 SUM - MIST( INDEX , 2 )
1021 C
1022 C WRITE OUT INFORMATION ON DATA POINTS ENCOUNTERED WHICH
1023 C UERE LESS THAN THE INDICATED MINIMUM VALUE
1024 C
1025 WRITE(13,100) MIN, MIST(	 INDEX, 2	 ), SUM/TOTAL,	 SUM/TOTAL
1026 C
1027 C WRITE OUT PERCENTS AND CUM PERCENTS FOR ALL VALUES FROM
1028 C INDICATED MINMUM VALUE THROUGH MAXIMUM VALUE
1029 C
1030 FOR	 PTR- 3, MAX-MIN+3
1031 COUNT - MIST(	 INDEX, PTR >
1034 SUM - SUM + COUNT
1033 IF( COUNT	 -ME. 0 ) THEN
1034 URITE(13,101) MIN+PTR-3, COUNT, COUNT/TOTAL, SUM/TOTAL
1035 END IF
1036 END FOR
1037 C
1038 C WRITE OUT INFORMATION ON DATA POINTS ENCOUNTERED WHICH
1039 C WERE LARGER THAN THE INDICATED MINIMUM VALUE
1040 C
1041 COUNT - MIST( INDEX, MAX-MIN+4 )
1042 SUM	 - SUM + COUNT
1043 URITE(13,102) MAX, COUNT, COUNTiTOTAL, SUMITOTAL
1044 C
1045 C URITE OUT TOTAL NUMBER OF VALUES, MIN VALUE AND MAX VALUE
1046 C THAT WAS ENCOUNTERED
1047 C
1048	 WRITE(13,1031 TOTAL, MIST( INDEX , 1 ), MIST( INDEX , MAX-MIN+S)
1049	 RETURN
1050 C
1051 100	 FORMAT(i9X,'RANGE',14X'000NT',7X,'PERCENT'10X'CUM PERCENTS',
1052	 6 '/SX.1<'17,SX.'-',$X.18,5XE14.7,SXE14.7)
1053 lot	 FORMAT(7X,I6,SX,'-'SX,I8,SXE14.7.SX,E14.7)
1054102	 FORMAT(5X,'>'.I7,SX,'-',SX,I8,5XE14.7,SXE14.7)
1055103	 FORMAT(2XF10.1.' TOTAL VALUES COUNTED'SX'MIN AND MAX VALUES'
1056	 6 ' ENCOUNTERED - 1I9,2XI9)
1057	 END

NASA•JSC
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