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Abstract continued:

a given radar resolution, the expected classification accuracy is shown to be
dependent upon both the general soil moisture condition and also the geographical
distribution of land-use (field-size distribution and dispersion of categories)

and topographic relief. An analysis of cropland, urban, pasture/rangeland, and
woodland subregions within the test site indicates that multi-temporal detection

of relative soil moisture change is least sensitive to classification error resulting
from scene complexity and topographic effects.

The 100 m by 100 m radar resolution is found to yield the most robust classification
results, and it is .oncluded that further degradation of image resolution should be
implemented in post-detection processing when and where coarsz resolution analysis
is warranted.
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A SIMULATICON STUDY OF SCENE CONFUSION FACTORS IN
SENSING S0IL, MOISTURE FROM ORBITAL RADAR

M. C, Dobson, 8. Moezzi, F. T. Ulaby, and E. Roth
Remote Sensing Laburatory
University of Kansas Center for Research, [nc.
Lawrence, Kansas 66045-2969
ABSTRACT

Simulated C-band radar imagery for a 124-lon by 108-km
test site in eastern Kansas is used to classify soil
moisture. Simulated radar resolutions are 100 m by 100 m, 1
km by 1 lan, and 3 km by 3 km; all images are processed with
greater than 23 independent samples. The simulated radar
operates at 4.75 GHz with HH polarization and over 7° to 17°
angles of incidence.

Digtributions of actual near-surface soil moisture are
established daily for a 23-day accounting period using a {
water budget model dependent upon precipitation, potential .
evaporation, crop-canopy cover, crop development stage,
surface slope, antecedent soil moisture, and soil hydrologic
properties. Within the 23-day period, three orbital radar
overpasses are Simulated roughly corresponding to generally
moist, wet, and dry scil moisture conditions. The radar
aimulations-gre performed by a target/sensor interaction
model dependent upon a terrain model, land-use
classification, and near-surface soil moisture distribution.
Rayleigh fading, layover, and shadow are accounted for by the
model. For each overpass date and each radar reseclution, the
received power and range position of a given pixel is used to

classify near-surface soil moisture via a generalized
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algorithm requiring no ancillary data about scene
characteristics.

The accuracy of soil-moisture classification is
evaluated for each single-date radar observation and also for
multi-date detection of rela%.:ve soil moisture change. In
general, the results for single-~date moisture detection show
that 70% to 90% of cropland can be correctly classified to
within +/- 20% of the true percent of field capacity. For a
given radar resolution, the expected classification accuracy
is shown to be dependent upon both the general scoill moisture
condition and also the gecgraphical distribution of land-use
(field-size distribution and dispersion of categories) and
topographic relief. An analysis of cropland, urban,
pasture/rangeland, and woodland subregions within the test
gite indicates that multi~temporal detection of relative soil
moisture change is least sensitive to classification error
resulting from scene complexity and topographic effects,

The 100 m by 100 m radar resclution is found to yleld
the most robust classification results, and it is concluded
that further degradation of image resclution should be
implemented in post-detection processing when and where

cearse resolution analysis is warranted.
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1.0 INTRODUCTION

Simulation techniques have been employed to study the
relationship between spatial resolution and the accuracy at
which soil moisture can be estimated from orbital C-band
radar imagery (1,2). These studies were based upon the
land-use and crop-canopy-cover distributions present within a
relatively small agricultural test site (18 km x 19 km)
adjacent to the Kansas River in eastern Kansas. Image
simulation technigques were used to generate
synthetic-aperture radar (SAR) images at a frequency of 4.75
GHz with HH polarization and with angles of incidence between
7° and 22° from nadir. SA" images were produced at three
different spatial resolutions: 20 m by 20 m with 12 looks,
93 m by 100 m with 23 looks, and 1 km by 1 km with 230 looks.

N B

In addition, simulated real-aperture radar (RAR) imagery was
produced with a spatial resolution of 2.6 Jm x 3.1 km with
363 looks. Analysis of these imagrs demonstrated that for %
relatively flat agricultural portions of the test site about
90% of the 20-m by 20-m pixel elements can be correctly
classified to within +/- 20 percent of field capacity using a
generalized soil moisture algorithm. In general, moisture
classification accuracy was found to be greatest for coarser
resolution imagery due to the increased number of looks;
however, the results also showed a distinct
classification-accuracy dependence on the complexity of the

"true” soil moisture distribution and also upon the spatial
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distribution of land-use elements within the test site.

As a conseq:wnce, the current study is designed to
examine further the effects of the spatial distribution of
land-uee categories, the agricultural field-size
distribution, the crop-cancpy mix, and the variability of
local topographic relief on the soil-moisture classification
accuracy achievable by various orbital radar resolutions at
4.75 GHz, HH polarization, and anglea of incidence from 7° to
17°. An area of 124 km by 108 km, including riost of the
Lawrence, Kansae USGS quadrangle (1:250,000), serves as the
test site. The area includes large subregions dominated by
urban features, mixed cropland, rangeland and pasture, or
deciduous woodland. Simulated radar imagery of this test
site at resolutions of 100 m by 100 m, 1 km by 1 km, and 3 km
by 3 km are used to classify soil moisture, which is
subsequently compared to the input "true" soil moisture.
Classification accuracies of each radar resolution are
compared for the whole test site and alsoc for each of four
subregions related to different mixtures of land-use. Since
the number of processed looks for all resolutions i{s large (N
2 23), the relative classification accuracies of each
resolution should be only minimally biased by fading
atatistics.

The dynamic behavior of each 100 m by 100 m grid cell
within the simulation test site is modeled over a 23 day time
period with respect to near surface soil moisture, crop

canopy cover, crop stage-of-growth, and soil surface
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roughnees. The input parametere to thies model include static
conditions such as topography and soil assocliation and also
dynamic components coneisting of cropping practices and daily
meteorological conditions. The cropping parameters are based
upon a stochastic treatment of average crop calendar, field
aize distribution, and crop development while the
meteorological data includes dally rainfall and potential
evaporation. The output of this model consists of daily
updates of near surface (0-5 cm) 5011 moisture and radar
backscatter category which is approximately equivalent to a
Level [I] land-uee category [(3]). The modsel is run for a 23
day period and the outputs are saved on 3 dates corresponding
to hypothetical orbital overpasses each nine days apart. The

overpass dates were selected independent of any consideration

PR Y

of uri-.tal mechanics but rather to represent three
distinctive soil moisture distributions over the test site:
very wet, molst, and dry. The above moisture classifications
are very general, however, since the large size of the data .
base and the late spring time frame of the simulations leads
to highly variable regional soil moisture distributions on
any given date.

For each orbital overpass, a target-sensbr interaction
model produces simulated radar imagery for each of the three
radar resolutions. The simulation model accounts for the .
eftactas of Rayleigh fading and geometric properties such as
layover and shadowing [22]. Each simulated radar image is

then subjected to a generalized algorithm (requiring only the
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amplitude of received power and the range position of a given
pixel) which classifies the image into estimated soil
moisture. These distributions of estimated soil moisture are
subseguent.ly compared with the distributions of actual
near-surface soll moisture on a grid-cell basis for each
date.

In addition to testing the absolute classification
accuracies of each radar resoclution for each of the three
overpass datese in an instantaneous sense, multi-temporal data
from two of the overpasses {e used to evaluate the merits of
relative change detection of near surface soil moisture as
estimated from each of the three simulated radar resolutions.

The above process is shown schematically in FPigure 1.

s~ wewskrd

2.0 TEST-SITE DATA BASE

In order to guantify the radar backscattering from a
given terrain element, certain geometric and dielectric
properties of the target scene must be known. First, the
three-dimensional cartographic coordinates of each element
must be spucified relative to the orbital radar in order to
compute range, area, and local incidence angle. Secondly,
the radar backscattering category must be sstablisghed; this
is roughly equivalent te a level-II! land-use classification
category [3]. Finally, many land-use categories have
backscattering propertiss tha: vary as a function of

crop-canopy cover, row directionality, and near-surface soil
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moisture, A three-tiered digital dnta base is constructed to
deacribe the spatial distribution of category elements and a
dynamic model acts upon this distribution to vary target
dielectric and backscattering properties as a function of
time. It is assumed that ali target properties are laterally

homogeneous within a given 100 m by 100 m terrain element.

2.1 Terrain Model and Radar Backscattering Categories

Digital eglevation data from the Defense Mapping Agency
provide a static model of the terrain geometry. These data
are'corrected for scanning errors and resampled to yleld a
mean elevation for each 100-m by 100-m grid element within
the 124-km by 108-km test site. An image-format presentation

of the digital elevation data is shown in Figure 2.

T

Tre specification of radar backscattering category for
each 100-m by 100~m grid element involves a three-step
process that accurately describes the spatial distribution of
the categories shown in Table 1 in a stochastic sense. A
two-dimensional digital matrix of Level-I1 land-use
classification is given by USGS land-use and land-cover
digital data (LUDA) for the Lawrence, Kansas gquadrangle.
Level~-1] categorieé with similar radar backscattering
properties (such as lakes and rivers) are redefined aé
eguivalent backscattering categories. The Level-I1 LUDA .
category of cropland is insufficient to specify unigque

backscattering characteristics; thus a stochastic process is

h o )
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Cropland
Rangeland / Pasture

Woodland

Figure 2. Digital terrain data of the test site showing the positions
of the four subregions.
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used to further define the spatial distribution of particular
agricultural crops. A random sample of U-2 high-altitude
coler IR images is usad to generate atatistics on
agricultural field-size distribution for sach of the twelve
counties within the test site. These statistics are then
used to assigh randem field-boundary networks within each
county. The distribution of field sizes is given by county
in Table 2.

Specific creop categories and row directions are randomly
assgigned éo each field within a county, based upon an
historical enumeration of crop acreage for sach county
provided by the Kansas State Board of Agriculture and the
Missouri Department of Agriculture. These acreages are given
by county in Table 3. In addition, since all crops are not
grown concurrently, crop calendar data [4] is used to factor
planting and harvest into the time history of each field.
Within a given crop, planting and crop-development stages
established for this area are used to change a given field's
backscatter category from bare scil to that of the crop after
emergence in a gtochasitec fashion. The fields of each crop
type are subdivided into ten subgroups each with a
distinctive cropping history. ‘Thué, the crop?type
distribution will vary locally as a function of time within
the 23 day simulation period. The land-use and crop-type
distributions for the entire 124 km by 108 km test gite are
shown in Table 1 for each of the hypothetical orbital

overpass dates. The simulation period runs from May 18
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TABLE 2. Field-Size Distributions for the Agricultural Portions

of the Land-Use Subregions

Percent of Agricultural Area

Field Size in Acres

Subregion 10 ] 20{ 30| 40160 |80 [ 100 |120 | 140 [160
Urban (Kansas City) 20 | 18 { 10| I15] 7 1|16 3 2 2 7
Pasture/Rangeland 4 |11 6 | 18] 8|28 3 5 30 14
Cropland 20| 23 {12 19{11] 6 2 2 2 3
Woodland 20 | 23112119111 6 2 2 2 3

io
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TABLE 3. Relative Percent of County Cropland
Devoted to a Given Crop or Pasture/Range [9,10]

Group A = Anderson County

Group B = Bates, Douglas, Franklin, Linn, and Miami Counties
Gropu C = Cass, Jackson, and Johnscon Counties

Percent of Total Agricultural Land
' Pasture
“proup Wheat Squhum Soybeans Alfalfa | Hay & Range
A B.6 7.4 21.1 13.7 43.0
B 6.3 9.6 15.2 10.3 52.9
c 4,1 5.2 11.6 8.2 64,7

Note: Urban Subregion consists of most of Jackson and Johnson Counties

Cropland Subregion consigsts of parts of Deouglas., Franklin, Johnson,
and Miami Counties

Pasture/Rangeland Subregion consists of most of Cass County

Woodland Subregion consists of a large part of Linn County

11
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(Julian day 138) until June 9 (Julian day 160) during which
time corn and soybeans are emerging and this is reflected in
Table 1. Examples of land-use and crop-category distribution

4re shown in Figure 3 for Julian day 141.

2.2 Dynamics of Soil Moisture Distribution

The above two components of the data base define the
geometric properties of the test site and the distribution of
backacattering categories. In addition, it is necessary to
model certain dynamic conditions that largely determine the
dielectric properties of the scene elements. Of major
importance is the near-surface soil moisture of each 100-m by
100-m pixel element as a function of time.

The soil moisture is governed by solil type, local slope,

A wm—-

crop canopy cover and stage of growth, antecedent soil
moisture, precipitation, and potential evaporation. The
distribution of soil types as generalized by soil
assoclations from USDA/SCS county soil surveys is shown in
Figure 4. The local crop calendar is derived for this area
from historical records {4] and used to establish the daily
transpiration rate for a given crop. Daily weather records
from each of 25 reporting stations are used to generate
digital overlays of daily precipitation (Figure 5) and
potential evaporation. A water-budget model is uased to
update near-gsurface soil moigsture on a daily basis for each

grid cell. Finally, a normally distributed random-noise !

12
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Lawrence Kansas City

(a) Land-use: urban features are bright while water and woods
are darkest.

Figure 3. Land-use and crop-category distributions on Julian day 141.

13



ORIGINAL PACE S
OF POOR QUALITY

(b) Enlargement of upper-left corner shows 51.2 km by
of total scene.

(c) Enlargement of 2b shows Kansas River and trees as
black, urban features as white, the remainder of
the image shows cropland of which sovbeans are
emphasized to show the presence of both north-south
and east-west row directions.
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Figure 4, Map of soil associations for test site.
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Figure 5. Image presentation of the areal distribution of

rainfall within the test site on each Julian date,.
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component is added to the modeled soil meisture in order to
simulate local, within-field variance in true soil moisture
[2]. The details of the soil water accounting model and a
listing of the computer program are given in Appendix A.
Examples of the 0-5 cm soil moisture distributions
produced by the model are shown in Figure 6 for Julian days
141, 150, and 160 in image format. The corresponding
cumulative areal uistributions are shown in Figure 7a for
each date. The influence of crop cover on soil moisture
distribution is shown in Figure 7b for Julian day 150. These
distributions when combined with the terrain model and the
spatial distribution of radar backscatter categories
collectively drive the radar image simulations discussed

below.

3.0 RADAR [IMAGE GENERATION

The average return pewer P reradiated from each

¥

laterally homogenecus grid ce’’ is given by the radar

equation

Py G2 A2 d% A
r = 3 Yy (l>
(4m)* R :

rn[

wherea PT ls the average tranamitted powser, G2 is the two-way
antenna gain, \ is the wavelength, a® is the radar cross
section per unit area, A 18 the grid-cell area, and R is the

range. For a given sensor configquration, PT' G, and A are

17
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CUMULATIVE PERCENT OF THE DATA BASE
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OF POOR QUALITY
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{(a) Net distribution for each date,

Figure 7, Cumulative distributione of soil moisture on satellite
overpass dates.
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constant. Por each grid cell element, area and range are
determined from the static terrain model. In addition, o°
varies as a function of local angle of incidence,
backscattering category, and near-surface soil moisture; and
for the purpose of radar simulation, o is given by empirical
fits to experimental airborne and truck-mounted scatterometer
data [6]. Examples of empirical radar backscatter dependence
on target category, incidence angle and near-surface goil
moisture are given in Table 4. Radar backscattering
coefficient 0% is shown graphically in Figure B as a function
of local incidence angle 6 for selected categories and soil
inoisture conditions.

The power actually received at the antenna P, is
dependent upon signal fading and atmospheric scattering and
adsorption. At 4.75 GHz the atmospheric losses are assumed
to be negligible for most conditions. In addition, signal
fading is assumed to be x—-square distributed with 2 N degrees

of freedom where N is the number of independent samples for a

given range and azimuth radar resolution [(7]. Hence,
P
P =(—r- Y (2)
LAV

where Y is a random variable with x-squared distribution and
2 N degrees of freedom.

The radar image simulation model accounts for the
geomebric effects of layover and shadowing. Examples of
gimulated orbital radar imagery are shown in Figure 9 for the

22
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o
B. Targets Modeled with no Dependence on Soil Moisture
Target Class f(a)
-1 2 -3 3
Residential Areas 13,019 - 1.,7558 + 0,640 x 10 ~ & ~ 0.755x 10 ™ ¢
Water Bodies 22.820 - 5.1266 + 2.370 x 107 ¢% - 3,973 x 107> o°
-1 .2 -
Roads 20.000 - 5.5508 + 2.800 x 107} &2 - 4,500 x 107> &3
Deciduous Trees 10 log (10"1'1“3 % cos8)
Buildings Constant value 5 dB
[
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Figure 8, Radar backscattering o at 4.75 GHz with HH polarization
as a function of local incidence angle for selected moisture
conditions,
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(a) 100 m by 100 m radar resolution,

Figure 9, Simulated radar imagery of the test site on Julian
day 141.
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1 km by 1 km radar resolution.

(b)

3 km by 3 km radar resolution.

(e)
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soil moisture distribution present on Julian day 141 (Figure
5a) at radar resolutions of 100 m by 100 m, 1 km by 1 km and
3 km by 3 km. These images are ground-range presentatijons
and Pr is scaled in dB to facilitate the presentation of the
large dynamic range in P across the image swath (= 48 dB).
The radar illumination is from the west (left side of
images). Due to the relatively steep incidence angles (7° -
17¢), the angular decay in P: is readily apparent acroses the
swakth from left to right. In general, areas of higher
near-surface soil moisture as related to antecendent
precipitation appear brighter on the images, and this is most
apparent as diagonal stripes related to storm tracks. Also,
areas of tree canopy cover and water bodies tend to be dark
on the imagery simulated for Julian day 141, while urban
features tend to appear bright and are especially noticeable
in the far range (right side of images).

The simulated vrbital imagery for the three radar
resolutions are alsc shown in Figures 10 and 11 for Julian
days 150 and 160, respectively. Julian day 150 represents
the wettest overall soil moisture conditions as indicated in
Figure 7, and hence the images appear bu'ghter than those for
Julian day .141 (Figure 9). In contrast, Julian day 160 is
shown by Figure 7 to represent the driest overall soil
moisture conditions, and thus the images in Figure 1l appear
darker than those for Julian day 141 (Figure §).

1t should be noted that for all of the above simulated

images (Figures 9, 10, 11), the number of independent looks

30
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(a) 100 m by 100 m radar resolution.

Figure 10, Simulated radar imagery of the test site on Julian
day 150.
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(b)

(c)

ORIGHNAL PACE T
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1 km by 1 km radar resolution.

3 km by 3 km radar resolution.
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(a) 100 m by 100 m radar resolution,

Figure 11, Simulated radar imagery of the test site on Julian day 160,
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1 km by 1 km radar resolution.

(b)

3 km by 3 km radar resolution.

(e)
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is large (N > 23). Hence, the variance in P, within a given
portion of the scene is only minimally dependent upon signal
fading and is mostly the result of variance in local
tepegraphic relief, radar backscatter category, and
near-surface so0il moisture. In a visual sense, the
interaction of relief, category, and moisture yield guite
different spatial patterns of P, on each of the three
simulation dates. This is best seen in the 100 m by 100 m
radar resolution imagery. Figure 12 shows enlargements of
the northwest (upper-left) quadrant of the 100 m by 100 m
imagery for each of the three overpass dates. This gquadrant
encompasses the test site used in previous orbital radar
gsimulatiens {1, 2, and 6). Thegse images illustrate the
following:

1) For nearly uniform soll moisture conditions, the
var iance in P. is dominated by local topographic relijef and
radar backscatter category. This condition iz most closely
approximated by Julian day 150 in Figure 1l2b.

2) For variable scil moisture conditions, the scene
variance in Pr is most closely related to local sovil moisture
and radar backscatter category which tends to mask variance
in Pt related to local topographic effects. This condition
is best seen on Julian day 160 (Figure 1l2c¢) since an extended
period of evapotransapirative losses in soil moisture has
enhanced the relative difference in Pr from each radar
backscatter category.

The above indicates the potential for achieving certain

35
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(a) Julian day 141

Figure 12, Enlargements of the northwest corner of the simulated 100 m
by '7J m resolution radar imagery on each overpass date.
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Julian day 150
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(b

Julian day 160
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mapping objectives not rigorously addressed within the
confinea of this study. First, the potential sexists to
classify soil type within relatively flat agricultural
portions of the test site from imagery acquired shortly after
a nearly uniform and saturating rainfall event. In this
cagse, near-surface soil moisture is high and largely
controlled by soil hydraulic properties related to soil type.
In addition, for high moisture conditions, the relative
uncertainty in P related to crop-canopy attenuation and
canopy backascatter is expected to be small {5]. Secondly,
the potential for crop discrimination from orbital radar
imagery can be expected to maximize (for this frequency and
angle of incidence) when the differential evapotranspirative
dry~down of each crop has enhanced the inter-crop variance in

Pr' This condition would exist five or more days after a

PR O

rainfall event.

4.0 SOIL MOISTURE CLASSIFICATION

In order to classify soil moisture using the simulated
radar imagery, a generalized soil-moisture algorithm is
derived from all experimental data for bare and
vegetation-covered soil conditions (excluding woodlands).
The classification algorithm relates estimated soil moisture

~
M., to received power P as a function of incidence angle 8.

-~

Meo = [P - a(8)1/8(B) (3

38
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where

a(8) = 9.67 + 0.848 - 4.59 x 10”282 + 8.27 x 10~%8°, and

B(8) = 0.161 + 9.38 x 10™%8 - 4.97 x 10™%6% + 1.21 x 10"°8°,

In this case, & is estimated from the range position of a
pixel on the radar image, assuming spherical earth geometry
and a constant mean elevation of the test site above sea
level. Thus, the classification algorithm is "blind" with
respect to true local incidence angle and to the actual
backscattering category of any given pixel [6]. Application
of this algorithm to the received power images yields maps of
estimated soil moisture, an example of which is shown in
Figure 13 for a radar resolution of 100 m by 100 m on Julian
day 141.

2y AN .

Given the above algorithm, orbital radar imagery can be
used to claesify soil moisture in two ways. First, the
imagery obtained at any given radar resolutin on any single
overpass date can be pssed through the general algorithm
(Equation 3) to yield estimates of the absolute soil moisture
distribution for that date. The second approach is to make
use of the multi-temporal coverage provided by an orbital
system to yield estimates of the relative chahge in soil
moisture. The radiometric and geometric stability of the
Seasat-A L-band imaging radar has shown that such a procedure
is feasible and relatively uncomplicated from the standpoint

of image registration [8]. The two approaches are not
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mutually exclusive and both will be explored in the ensuing
sections with respect to soil moisture classification srror
as a function of radar resolution and the geographic

distributions of local relief and backscatter category.

4.1 Single Date Soil-Moisture Classification Accuracy

The accuracy of soil-mojsture classification is examined
by evaluating the difference between the true soil moisture

. A
Mfa and the estimated soil moisture M This is

fs*
accomplished through registration of the two images (such as
Pigures 6 and 13) and computation of the difference. Due to
the geometric distortion inherent in the radar image-forming

processa, image registration by simple coordinate translation

AR S

is only accurate to within about +/- 1.3 pixels (130 meters),
and this registration error is propeortional to changes in
local elevation across the image swath. Hence, a procedural
error is introduced into the comparative process which is not
related to true classification error. Also, the magnitude of
thie procedural error is proportional to the local variance
in the "true® soil moisture distributions as shown in Figure
6.

In order to examine the effects of various land-use and .
field-gsize distributions, four subregions are identified
within the test site and relate to an urban area, mixed
cropland, pasture and rangeland, or woodland. Figure 2 shows

the spatial locations of these subregions, and their land-use

23
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and field-size distributions are tabulated in Tables 1 and 2,
respectively. All subregions contain more than 30% pasture,
grass, and rangeland, and are distinctive primarily in terms
of the percent area occupied by cultural features
(rvesidential, buildings, and roadse)}, water, woodland, and
cropa. In addition, the rangeland/pasture subreglon is
characterized by a greater percentage of large fielde as
compared to the other subregions. Finally, Figure 2 shows
that the woodland and the rangeland/pasture subregions are
located in areas of relatively large local relief.

An example of soil-moisture classification error is
shown in Figure 14 for the l100~m by 100-m resolution radar on

Julian day 141. <Classification error Em is defined by

-

E, = Mg = M (4)

i e

where

Mfs = true soil moisture, and

ﬁfs = ggtimated soil moisture.
Figure l4a shows the category classification map for the
woodland subregion where wooded areas are black, water is
dark gray, cultural features are white, and agricultural land
and pasture/rangeland are generally light gray. The

difference between actual soll moisture M and claasified

fa

~
80il moisture MEB is mapped in Figure 1l4b. E_ is linearly

m
represented by graytone and thus, dark and white areas
repregent overestimation and underestimation of soil

moisture, respectively. The large P: from cultural features

42
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(a) Backscatter category map: woods are black, water bodies are dark gray,
cultural features are white, and agricultural areas are light gray.

(b) Soil moisture estimate error E;: overestimates of soil moisture are
dark, underescimates of soill moisture are white, areas with small
estimate errors are gray.

Figure 14. Soil moisture classification error Ep on Julian day 141 within the
woodland subregion resulting from use of the "blind" classifier on
100 m by 100 m radar imagery.
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at A leads to an overestimation of moisture, while the

low Pr from woodland at B and water at C ylelds a low
estimate of soil moisture. Median gray tones in Pigure 1l4b
relate to small estimate errors. A comparison of Pigures l4a
and 1l4b shows moisture-estimate errors to be highly
correlated with the spatial location of apecific land-use
categories, especially cultural features, trees, and water.
Image registration errors yield white or black rings around
specific features. Hence, the spatial organization of such
confusion categories largely determines the molsture
classification accuracy of a given radar resolution for a
given geographic land-use setting.

The single date soil moisture classitfication error can
be examined as a function of radar resolutiocn, general seoil
moiture condition (overpass date), and geographic subregion.

The soil moisture clagsification error EL resulting from
radar resolutions of 100 m by 100 m, 1 Jam by 1 km, and 3 km
by 3 km is shown for the entire 124~k by 1l08-km test site on
each overpass date in Figure 15. For all general soil
moisture conditions (overpass dates), the distributions of
Em resulting from classification of the 100-m resolution
imagery are more peaked and yet have longer tails than the
corregponding distributions of Em for the‘coarsei
reaolutiongs. These long tails are related to the presence of
confusion categories such as urban features, woodland, and

water. The effects of these confusion categories at the

coarser resolutiong (1l km by 1 km and 3 km by 3 km) are to

ik
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broaden the error distribution.

The tendency of the coarser resolutions (1l km by 1 km
and 3 km by 3 km) to yield bimodal distributions of Em in
FPigure 15 with a secondary peak ranging from -30% to -50% is
primarily related to the presence of cultural features which
have large scattering cross-sections relative to agricultural
and rangeland areas. These overestimates of local soil
moisture result from averaging the large Pr from cultural
targyets over a larger area. Hence, the magnitude of this
secondary peak is proportional to both the net area occupied
by cultural features and the dispersion of such features
within the tetal scene, and the size of Em at this peak is
proportional to the ratio of P[ cultural to P, agricultural.

The associated absolute moisture classification
accuracies of the three radar resolutions are shown in Figure
16. In general, the 100-m by 100-m resolution is shown to
yield the meast accurate esEimates of soil moisture, For
example, use of the "blind" generalized moisture algorithm on

~
Julian day 141 yields M s within +/- 20% of true

€
moisture Mfs for 68% of the area using a radar with a.loo-m
resolution, while only 60% and 58% of the area is classified
within this error limit using radar regolutions of 1 km and 3
km, respectively. In Figures 14 and 15, this result is shown
to be related te the spatial distribution of land-use
confusion categories.

The differences in absoclute classification accuracy

between the three radar resolutions are also dependent upon
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general soil moisture condition. This effect is seen by
comparing the results achieved for different overpass dates
in Figure l6a, b, and c¢ for overpasses on Julian days 141,
150, and 160, respectively. The clasgification accuracy of
the coarse rescolution sensors (1 km by 1 km and 3 km by 3 km)
is seen in Figure l6c tﬁ be significantly reduced relative to
the classification accuracy achieved with the 100 m
resclution radar. The local variance in true soil moisture
Mfs and local received power Pr are seen to be greatest on
Julijan day 160 in Figures 6 and 12, respectively. As
previously stated, this is largely the result of the
differential evapotranspirative dry-down rates of the various
crop canopiles constituting the scene. Thus, the within-scene
variance in soil moisture Meo ig highly correlated with the
crop distribution given in Table 1 which is dispersed in
agregates given by the field size distribution (Table 2).
Hence, at radar resolutions coarser than field size a serions
degradation in moisture classification accuracy can be
expected for imagery acquired during periods of protracted
evapotranspirative loss.

The effects on moisture classification error of varying
the local distribution of land-use confusion categories are
demonstrated by comparing the error distributions for the
four land-use subregions. The error distributions for the
urban, pasture/rangeland, cropland, and woodland subregions
are compared in Figure 17, based upon the 100-m resolution

radar imagery for Julian day 141l. When the error
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distribution is plotted for all 100-m by 100-m grid cells
within each region (Figure 17a), large overestimates of
moisture, primarily in the urban and wnodland subregions, are
related to the presence of cult al features such as
buildings and roads and also related to the presence of water
bodies gince for these categories soll moisture 1s undefined
and any moisture estimate for these categories is therefore
an overestimate. In a similar fashion, large underestimates
of Mfa' best exemplified by the woodland subregion, are
largely related to the presence of deciduous trees, which are
agsumed to fully attenuate backscattering from the soil at
4.75 GHz.

The exclusion of nonagricultural categories (cultural
features, water, and woodland) from the grid-cell comparisons
of ﬁfa to Mfs yields highly peaked distributions centered
around « 0 error as shown for each subregion in Figure 17b.
The woodland still exhibits a larger area where soil moisture
ig underestimated than the other subregions and this is
largely the result of locally saturated to flcoded soil
moisture conditions. The radar backscatter model treats
fully saturated soil as a near specular surface similar to a
water body, and hence P {s low at off nadir indicence
angles. As a consequence, 8oil moisture Mfs is general.y
underestimated. Similar results are obtained for the other
two overpass dates.

The absolute clagssification accuracy for Julian day 141

within each of the four land-use subregions is shown in

g4
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Figures l8a and 18b from simulated radar resclutions of 100 m
by 100 m and 1 Jan by 1 km respectively. As expected from the
above and from the distributions of land-use categnries and
field-size given in Tables 1 and 2, Figure 18a shows that the
greatest classification accuracy is achieved for the cropland
subreglon and the poorest for the woodland subregion. Based
upon land-use and field-size dist:ihutiors alone, one would
expect a greater absolute classification accuracy for the
pasture/rangeland subregion than for the urban subregion in
FPigure l8a; however, the greater local topographic variation
pregsent within the pasture/rangeland subregion (Figure 1)
leads to moisture classification errors related to the
variance in loczl slope, which is unknown to the "bling"
classification algorithm. This same effect alsc suppresses
the absolute classification accuracy for the woodland
subregion which is alsoc "hilly" in nature.

For a l-km by l-km resolution radar, the combined
effects of the spatial distribution of land-use categories
(the relative mix of categories and their respective size
distributions) and topographic relief upon absclute
classification accuracy yield the results shown in Figure
18b. For areas where local topographic relief varies over
spatial dlivensions of hundreds of meters, the l-km by l-km
radar resolution will tend to average local slope-related
variance in Pr' and thus yield absolute classification
accuracies greater than those achieved by a finer resolution

gensor (such as 100 m by 100 m). This appears o be the case
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for the pasture/rangeland and woodland subregions of the test
seite. For example, at an absolute accuracy level of +/- 20%
of field capacity, Table & shows that the percent a:eé
correctly classified within this limit from the 120-m
resolution radar is 71.3% and 64.1% for the pasture/rangeland
and woodland subregions, respectively; and the percent area
correctly classified from the l-km resolution radar increases
to 79.4% and 73.3% for the two subregions, respectively.

Conversely, for arsas characterized by a large number of
d..persed cultural targets (with generally large P ), the use
of a coarse-~resolution radar, such as 1 km by 1 km, is shown
to degrade absclute moisture classification accuracy relative
to that achiévable by a 100-m by l00-m redolution sensor;
this effect is demonstrated by the urban and cropland
subregions. For example, in Figure 18 the effect of
dispersed cultural featurese and field size distribution leads
to a decrease in parcent of the urban subregion which is
correctly classified to within +/- 20% of field capacity from
77.9% (100~m radar resolution) to 70.1% (l-km radar
resolution). In a similar fashion, the percent area
correctly classified to within +/- 20% of field capacity for
the cropland subregion decreases from 82.0% bb 75.6% for the
100-m and l-km radar resolutions, respectively.

The abovelresulta for Julian day 141 are not independent
of general scoil hoisture condition and the spatial
variability of soil moisture. The absoclute soil moisture

clasgification accuracies for each of the four subregions are
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TABLE 5.

Percent of Moisture Variant Area Correctly

Classified to Within +/-20 of True Soil Moisture
([Em] < 20%)

Julian Day 141 150 160
Radar Resolution 100 n lkm [ Jknlll00 m({ Lk | Ikm{{100 m!| 1km{ I ko
Subregions

Cropland 54,0 75.6 | 74.31187.5 (91,01 91.8{|72.4 | 73.9 75,6
Urban 77.8 70,1 [ 65.0]]175.3 83.6 | 86.9(|76.2 63.7 | 58.5
Rangeland/Pasture (| 71,3 79.4 [ BO.4 72,5 [80.4 |82,3([77.0 | 74.6 [77.4
Woodland 64.1 73.3172.71]72.6 83.6 | 86.01}]68.3 68,5 | 68.4
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shown for Julian days 150 and 160 in Pigures 19 and 20,
respectively. In addition, the percent area correctly
classified to within +/- 20% of field capacity are also given
for each dat+ and radar resolution in Table 5.

For the generally wet soil conditions prevalent on
Julian day 150, comparison of the results shown in Figure 19
and Table & as a function of corbital radar resolution
indicates that estimate accuracy increases with the
add!tional spatial averaging provided by the coarse
resolution radars for all subregions. This is explained by
the distribution of soll moisture for this date which is
primarily governed by the antecedent rainfall pattern. Since
a large quantity of rain fell within most of the test site
just prior to the simulated orbital overpass, the local
properties of slope, soil texture, and crop canopy condition
have not had sufficient time to exert a large influence and
vary local soil moisture distributions. As a result, the
added spatial averaging provided by the coarser radar '
resolutions acts to increase classification accuracy by
averagling small spatial scale noise effects related to local
relief and variance in local radar backscattering category.

This is true even for the urban scene; since at very high
s0il moisture conditions, the Pr from wet agricultural fields
approaches that from the cultural features.

Within the four subregions, the dependence of soil
moiskure classification accuracy upon radar resolution is
shown in Figure 20 and Table 5 for the generally dry and
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spatially vartiable wo. . moisture conditions prevalent on
Julian day 160. Classification accuracy is shown to be
independent of radar resolution for absolu.: :-timate error
M, - M.,) less than 20% of field capacity for the cropland,
rangeland/pasture, and woodland subregiona. However, as
radar resolution is degraded the areal percentage of the
cropland and woodland subregions with large absclute estimate
errors, IM__ - Mg ) 2 30, does increase significantly. This
- is attributed to the large local variance in true soil
moisture Mfs within these subregions on Julian day .60. The
most extreme example of local variance in Mfs is given by the

urban subregion which exhibits a pronounced decrease in

classification accuracy as radar resolution is degraded.

4.2 Multidate Change Detection of Soil Moisture

The preceeding section shows that absolute moisture
classification accuracy from a single date orbital radar
obhgervation is limited by the presence of scene confusion
factors within the imagery and their size and spatial
dispersion relative to the radar resoiution. Within the
present discussion, scene confusion factors are defined both
as the presence of scene elements for which goil moisture is
unidentified such as buildings, roads, water bodies, etec. and
also the occurance of variability in Pr(O) from scene
elements possessing equivalent soil moisture. The latter
results from natural variability in topographic slope, crop

canopy type and stage of growth, row direction, and surface
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roughness.

In single date sensing and classification of soil
moisture, the confusion effects of cultural features and
water bodies can be minimized (but not eliminated) by spatial
filtering. Two approaches are feasible. First a simple
intensity slice of the received power Pr(a) could be used to
roughly define water (dark) and point targets such as
buildings (bright) within the image, the remainder of the
image could then be subjected to the "blind®" moisture
classification algorithm. However, Lhis approach cannot bhe
expected to yield consistent results since for very dry sgil
moistyre conditions many agricultural targets can appear

similar to water (Figure 8a) or the water may be roughened by

.,..‘.

wind. In addition, for very wet soil conditions, many
agricultural targets will be characterized by P: near nadir
similar to that from the point targets (Figure 8c). A
second, more satisfactory approach would be te¢ incorporate

a priori knowledge of the spatial distribution of such
features and filter them from moisture clagsification. This,
of course, assumes the availability of a Level I land-use
classification which could be scaled and rectified to the
orbital radar imagery.

In a similar fashion, the moisture classification error
related to natural variability within the agricultural
portions of the scene could be reduced if the radar data can
be registered to topographic and crop distribution data.

This would assume a mechanism for crop discrimination and
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classification. In thig case, each pixel element in the
radar image could be classified as to soil moisture using an
algorithm tailored to be crop specific. Obviously, this
approach is not currently feasible.

However, since most of the confusion factors are
gpatially fixed and relatively invariant over short periods
of time (excepting wind conditions), their effects on
moisture classification accuracy can be minimized more
economically by the multi-temporal change detection approach.
In this technigue, the radar imagery acquired at two dates
are coregistered and their ratio yields a map of scene
change. This process has been shown to be relatively simple
to implement with L-band orbital imagery obtained by Seasat-a

[8]. For a constant imaging geometry on the two dates {angle

P

of incidence and azimuth view angle), the backscattered power
received from cultural targets should remain approximately
constant and that received from water bodies should remain
nearly constant depending upon local wind conditions. Hence,
these features should display little or no change in the
multidate ratio images. On the other hand, all scene
elements subject to change in backscatter category {such as
planting, harvest, and tillage of agriculturai fields) and/or
subject to change in near-surface soil moisture status will
yield a corresponding change in the multidate ratio images.
If the time separation in multi-date observation is shorﬁ
relative to‘changes in crop development, then changes

apparent in the ratio images will reflect relative moisture
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change and/or field astatus change related to tillage
operations. Since surface glope 1ls constant over the time
interval, row direction is time constant in the absence of
tillage, and surface roughnese decays only slowly with time,
the impact of these confusion factors upon the ratio of
multidate received power should be negligible.

The soil moisture distributions and the radar imagery
simulated for Julian days 150 and 160 (wet and dry.
respectively) are used to evaluate the utility of change
detection for monitoring relative change in near-surfce soil

moisture. The change in actual soil moisture AM g between

f
the two dates is shown in FPigure 21. The graytone values in
the image are linearly scaled to the difference function

given as:

M, = Mfs(150) - Mf5(160) (5)

fs

where the value in parentheses refers to Julian date. In
producing FPigure 21, a conatant value of 128 (of 256 maximum;

-

was added to AMfB, hence medium gray values such as those for
the Kansas City area denote no change in soil moisture,
bright areas denote considerable drying over the 10 day
period, and dark areas denote an increase in hear-surface
(0-5 cm) soil moisture. In general, Figure 21 shows that
drying conditions are prevalent over most of the test site
except for scattered areas located primarily in the western

portion (left side) due to rainfall (see Figure 5).

Multidate registration of the radar imagery simulated at
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each of the three regolutions yields difference images which

are scaled to Aﬁ B-via the blind classification algoxrithm

£
(Equation 2). Image presentations of predicted change in

s0il moisture Aﬁ are shown for each radar rescolution in

ts
Figure 22, In general, the direction (wetting or drying) and
the magnitude of the true change in soil moisture observed in
Figure 21 are faithfully reproduced for all radar
resolutions. A noteable exception to this can be observed at
the bottom center of each image in Figure 22. The black area
denotes a predicted increase in goil moisture which is not
observed in Figure 21. This discrepancy is the consequence
of saturated to partially flooded soil conditions on Julian
day 150 and moist conditions on Julian day 160 for this area.
Hence, actual soil moisture has decreascd while that
predicted shows an increase since under flooded conditions
the radar backscatter models generally yield low values
of Pr comparable to that from a water body.

The area distributions of actual moisture change AMfs
and that predicted from the radar imagery Aﬁfs are plotted in

Figure 23. The sharp spike in the AM s distribution at zero

£
change is related to cultural features and water bodies. In
general, it is apparent that the disbribution_of predicted
moisture change Aﬁfs as derived from the 100 m resolution

radar most closely approximates the actual aM s distribution.

£
The spatial averaging of the coarser radar resclutions causes
them to be less sensitive to relatively large local change in

AM and thus the magnitude and extent of such changes tends

£a
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Figure 22. Predicted change in soil moisture between Julian days 150 and
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(c)

"

3 km by 3 km radar resolution.
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to be underpredicted.

The actual and predicted change in soil mojsture can be
compared on a grid cell basis by registration of the images
in Pigures 21 and 22. This procedure is, of course, subject
to the registration errors discussed earlier for single date
moisture classification due to changes in image geometry and
position. For each pixel, the error in predicting relative

moisture change can be defined as:

"

B = Mgy - AM (6)

The spatial distribution of EAM is shown for each radar
resolution in Figure 24. 7The brightest area on the scale bar

denotes regions where the abso]lute magnitude of E is within

oM
+/~- 10% of AMfs and as graytone decreases the areas
correspond to 'EAM' limits of +/- 20%, +/- 30%, and +/- 40%
respectively as shown on the scale bar. For the 100 m
regsolution radar, 30% of the area is correctly classified to
within +/- 20% of AMfﬂ and greater than 90% of the area to

within +/- 30% of AM In addition, most of the residual

£a”
error is randomly distributed except for some classification
error of large magnitude which is related to offsets in
mechanical image registration as exemplified by linear
features such as roads. For degraded radar resolutions of 1
km and 3 km, the magnitude of classification errors increase
and are gpatially associated with edges between backscatter

categories.

The comparative error in moisture-change extimates Em
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(a) 100 m by 100 m radar resolution.

Figure 24, Spatial distribution of difference between actual change
in soil moisture and that predicted from multidate radar
observation.
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for the three radar resolutions is shown in Figure 25 for all
1.34 million grid cell comparisons within the teat site. The
corresponding percent of total area (124 Jkm by 108 km) with
absoluts classification error less than a given magnitude is
plotted in Figures 26a. Obviously, the 100 m resolution
radar exhibits superior classification accuracy. However, if
only the molsture variant pixels are compared (excludes
cultural features, water bodies, and woodland) the
distinction between resolutions shown in Figure 26b is not
statistically significant; 78% and 89% of the area is
correctly classified to within +/~ 20% and +/- 30% of aM._,
respactively.

The effect of geographic subregion on the above results
is shown in Figure 27. For the 100 m resolution radar, the
change detection snalysis results in superior classification
accuracies for areas characterized by gentle topographic
relief (cropland and urban subregions). [for the cocarser g
radar resolutions shown in Figure 27b and &, twu effects are
noted. First the influence of edges related to variance in

the magnitude of AM between adjacent backscatter categories

fa
causes classification arcuracy for all subregions to decrease
relative to that for the rangeland/pasture subregion which is
characterized by large field sizes. Secondly, the absolute
clasgification accuracy decreases as a function of resolution
for all subregions except rangeland/pasture. The large

relative field size within the rangeland/pasture subregion

and the large percent area occupied by range and pasture
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(61.5%) is largely respongible for the increase in

clasaification accuracy uging 1 km by 1 lkm radar data

relative to that obtained using 100 m by 100 m radar data.
Representative values of classification accuracy within

each subregion for an error magnitude of +/- 20% of &M are

£a
shown in Table &. These values show that 73% to 83% of the
area within any subregion can be correctly classified as to
within +/- 20% of actual soil moisture change for 100 m by

100 m resclution radar imagery. In addition, these values

are generally superior to those obtained for single date

moisture classification shown in Table §&.

5.0 CONCLUSIONS

This simulation study reconfirms prior results that
relatively high single-date moisture-classification
accuracies can be achieved from orbitsl radar operating at
4.75 GHz with HH pelarization and at incidence anglss of 7°
to 17° relative to nadir. Furthermore, this study shows that
classification accuracy is optimized for radar resolutions
smaller than the expected field-size distribution of extended
targets; a nominal sensor resolution on the order of 100 m by
lbO m ia found to yield the most robust classificatiqn
results for the majority of tested conditions. In additien,
prior resulis have been extended to show that expected
moisture-classification accuracy for a given sensor

resolution is not independent of general soil moisture
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TABLE 6. Percent Area Correctly Classified to Within +/- 207
of the True Change in Soil Moisture AMg o from
Julian Day 150 to Julian Day 160

All Pixels Moisture Dep, Pixels
Subregions 100 m 1 km 3 km 100 km 1 km I km
Cropland 82.4 7L.4 70.8 B3.3 74,0 73.6
Urban 831.4 73.9 70.5 BO .4 69.8 64 .2
Rangeland/Pasture 73.7 81,77 79.1 74.1 84.8 82.3
Woodlan! 74,7 60,7 52.6 72.8 73.5 73.5
Full Scene 78.3 74.6 72.0 | 78.3 78.3 76.8
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condition or of the geographical mix of land-use, field-size
distribution, and local topography. Finally, the use of
multi-date radar imagery to estimate relative changs in
near-surface soll molsture status is shown to substantially
reduce classification errors related to the presence of
cultural features and water bodies, the presence of variable
crop-canopy covers, and local variability in topographic
relief.

Based upon this study, a reasonable approach for the
purposes of soil-moisture sensing would be to obtain the data
at a sensor resolution on the order of 100 m (with a large
number of independent looks) and then degrade the resolution
where necessary by post~detection processing to average the
moisture classification errors asscclated with local slope in
regione of variable topographic relief. In addition, i
multi-temporal change-detection analyses could alsec minimize
clasgification errors controlled by topographic relief as
well as those errors that are related to intra- and

inter-crop variance in radar backscattering [8].
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APPENDIX A
DYNAMIC SOIL,_WATER ACCOUNTING MODEL

The purpose of a scil water-budget model within the
context of realistic radar image simulation is to gensrate a
distribution of near-surface (0~5 cm) soil moisture
conditions at the spatial scale of the static terrain data
base (100 m x 100 m) which responds to both static conditions
{soil type, cover type, and surface slope) and dynamic
conditions (crop stage, rain, and potential evaporation) on a
time scale relevant to both the dynamics of the process and
the orbital mechanics of an imaging satellite (daily basis).
While mary excellent water-budget models are available for
various applications in agroncmy uand hydrology [ll to 15], no
single model meets all the abovs criteria. Indeed, most such
models require more detailed information on soil profile
characteristics and weather conditions than is readily
available for the simulation area. In addition, most models
are designed to operate at a spatial scale much leass than
field size and over time increments significantly less than
one day, or conversgsely, they are most appropriately applied
to very coarse integration times on the order of weeks for a
aimple set of input parameters and at a macroécopic level
much larger than field size.

Because of the large size of the data base
(approximately 1,339,000 grid cells), it is necessary te
tailor a model that emphasizes the surface horizon and

requires a minimum of information as to soil profile and
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detalled local weather conditions, and yet is still sensitive
to daily variation in soil molsture. A schematic of the
final process model is shown in Figure A.l; it consists
largely of the following components:

storm model,

surface runoff model,

crop development submodel,

evapotranspiration model, and

and interlayer redistribution model.
When given dynamic inputs of crop type, crop stage of
development, rainfall, and potential evaporation, the model
acts upon the static terrain model to yield daily projections
of 0-5 em soil moisture for each grid cell. It also governs
the redefinition of cancpy cover categories based on crop
calendar changes or local flooding conditions, and these :
categories are then used as input to the radar simulition

program's target/sensor interaction model.

A.1 Btorm Modsl
Daily rainfall measurements as reportaed by 25 stations
located in and around L hesit site were used az the basis
for the storm model. Figure A.2 shows the location of the
test site. Table A.l shows the daily rainfall reported at ' i‘
each of these stations for the simulation period; May 18
through June 9. A gfid map of estimated rainfall, with a
resolution of 3 km by 3 km, was produced from meaaured

rainfall data at these irregularly spaced recording stations
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v/

for overy day duving the simulation period that all or part
of the test site recelved some rain. Figures A.3 and A.4
shows the amount of rain reported by sach station on Julian
day 144, and the estimated rainfall map for that day .
respectively. These generated rainfall grid maps made
available the total daily rainfall in cm received by each
test site data base cell. An image repregentation of nll
rainfall grid maps has been shown on Figure 5.

Rainfall intensity is calculated as a daily constant

from the minimum recorded daily storm duration according to

= 102t bt
Iday 10 * Dday (A.1)
where
Iday = daily constant intensity, cm/hr
Dday =~ daily minimum recorded duration, hrs.

t = gtorm type (2-year or 5-year), and

a and b are constant for each storm type.
The constants ay and bt are solved from a plot of local
rainfall intensity-vs-duration curves for recurrence
intervale of 2 or § ysars. For each day of the simulation, a
rainfall event is classified as either a 2-year or a 5-year
event based upon the maximun recorded rainfall abt all gauging
gstations on that day. If net daily rainfall ét any gauge
exceeds a critical value M, then that day will be classed as
a S5-year event and a, and bt will be used from the S5-year
intensity-vas-duration curve; otherwise a and bt will be used
for a 2-year event. M is defined by

M = 102 « pP*l/(pe1) (A.2)
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Figure A.3,

Figure A.4,

S,

Clegaund, VAL T

OF, POOR QUALITY

s
P

Measured rainfall as reported on Julian day 144 at all stations
in and around the data base (maximum rainfall is 4.8 cm).

Estimated rainfall on Julian day 144 for each 3 x 3 km area
in the data base,
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where a and b ave 2-year coefficlentas. For the rainfall data
given in Table A.]l, the maximum net dailly rainfall never
exceeded M, therefore the 2-year coefficlients were used in

all precipitation events.

A.2 Surface Runnff Model

The surface runoff model crnsiders only the net effect
of local surface slope and does not explicitly account for
water retention and impoundment by scil surface roughness,
tillage practices, and the presence of terraces. The water
available for drainage as lateral surface fiow is egual to
the sum of standing water remaining from the previous daily
accounting period plus the incident rainfall in excess of
that which can inflltrate the surface layer and the root
layer. The drainage D is computed from remaining standing
water and local surface slope by

D=8W=* (1.1 - 0.8%) (A.3)
where

SW = standing water

a = the slope angle of the surface from horizontal in

degrees.
The term 1.1 - 0.8% is defined as the drainage coefficient
and is plotted versus surface slope (in percent) in Figure

A.B.

A.3 Evapotrangapiration Model

Evapotranspiration is calculated differently for cropped
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and bare soil surfaces. For bare soil surfaces, the actual
evaporation is depleted solely from the soil surface layer,
while for vegetated surfaces a static root distribution model
removes 30 percent of the actual evapotranspiration from the
0-5-cm layer and removes the remaining 70 percent of actual
evapotranspiration from the "rocot zone." For simplicity, the
"root zone" is assumed to be one meter in depth and is
treated as a constant with time and for all crops.

For bare soil, actual evaporaticn, AE, is computed from

‘potential evaporation, PE, as limited by antecedent soil

moisture in the surface layer and eoil hydraulic properties,
Accounting is performed on a daily basis using the mean daily
pan evaporation recorded at 1l stations in the study area as
shown in Table A.l for 1981.

An experimental model is used to calculate actual

PR R R

evapocration from potential evaporation PE:

AE = PE * k.41 * Katorm (A.4)
where

Katorm = (24 - T)/24, | (A.S) o

kaoil = gpil limiting coefficient

T = the duration of gtorm, and

PE = k_ * E , .

P “pan (A-6) |

where R

kp = pan coefficient, and
Epan = measured pan evaporation.
The soil limiting coefficient keoil is defined by an

experimental model [16] dependent upon PE and soil
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properties.
2 3
ksoil = A + B(MR) + C(MR)™ + D(MR)". (A.7)
whers A, B, C, and D are empirically derived coefficients
dependent upon PE, and MR (s the moisture ratio. Regression

fits to experimental data yield [16]}:

A= -0.05 + 0.732/PE (A.B)
B=4.97 - 0.661 PE (A.9)
C= -8.57 + 1.56 PE (A.10)
D = 4,35 - 0.88 PE (A.11)

The moisture ratio MR is related to soil water retention
characteristics via

MR = (& ~ WP)/(FC - WP) (A.12)
where

€@ = measured soll moisture,

WP = soil moisture at wilting point, and

FC = soll moisture at field capacity.
Assuming wilting point and field capacity to be defined as
matric potentials of 15 bars and 1/3 barg, respectively, WP
and FC can be defined from soil textural components using the

approach of Clapp and Hornberger [17]

Fc = o_(»,/333)1P, ana (A.13)
WP = o_(y_/15,000)/P (A.14)
whera
g = soil moisture at saturation,
's = matric potential at saturation, and
b = an empirically derived value related to soil

texture.
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For a given soil, BB is calculated from the soil bulk density
profile and ’s and b are defined by A-horizon soil texture
using values given in [17). Thus, for a given day, the terms
in Eq. A.4 are dependent on the antecedent soil moisture and
the gross water-retention charsgteristics of each solil.

For vegetated soil, the actual evapotranspiration,

ET is computed by a modification of the Blaney-Criddle

crop’
formulation used in estimating crop irrigation requirements
{18,.19]. Although the method is designed for an effective
integration period of weaks to months, the simplicicy of its
input requirements makes this a practical approach for such a
large number of coarse grid cells. Basically, crop
congumption of water over the rootiny depth varies with
temperature, length of day, available soil moisture, crop
type, crop stage of growth, relative humidity, and windspeed.
To simplify the formulation, average measured values of
temperature, day length, relative humidity, and windspeed are
assumed on a seasonal basis for the simulation area. The
resultant expression for ET becomes:

crop

ET = PE * k * kK

crop crop storm (A.15)

where

kcrop = crop cecefficient.
Crop coefficient as adjusted for mean local climate is
plotted in Figure A.6 as a function of number of days after
planting for several of the crop covers included in the data

base. Crop consumption of the water is seen to be dependent

on both crop and stage of crop development. Before the crop
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¢anopy has attained 20% ground coverage and again after
harvest, the soil s treated as bare for both

evapotranspiration and also for radar backscatter category.

A.4 Crop Development Model

The length of time required for a given agricultural
field in the simulation data base to progress from one
crop-development stage to the next is established from data
gathered by the Statistical Reporting Service of the United
States Department of Agriculture. The simulation area lies
at the East Central reporting district of Kansaas (No. 6§).
Figure A.7 presents a summary of mean crop development over a
10-year period as enumerated by AgRISTARS [20] for thie crop
reporting district. These percentages are used to define
crop development stage within the simulation on a
field-by-field basis. Thus, each distinct agricultural field
in the data base is assigned one of the 1N planting dates.
Hence, there are ten different absolute crop calendars
poesible for each crop type identified in Table 1.

Planting dates are randomly assigned to field codes for
a specific crop based upon Figure A.7. This procedure
results in the introduction of a significant source of
between-field variance of seil moiscure within a given crop
type due to the effect of crop development stage on
evapotranspiration. It also allows for a given field to have
its taget classification changed in Table 1, since a

medium~rough bare Field becomes a cropped field after
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o
emergence, and finally reverts to bare soil status after
harveat. As implemented, this procedure givea the data base
a dynamic crop-category mix that can bes modified to match
regional agricultural practices such as double-cropping or
dynamic soil surface rouchness conditions.
A.5 Intsrlayer Water Redistribution o

Infiltration of water into the surface layer,
percolation of water into the root zone, and capillary .
recharge of surface layer moisture are controlled by the
matric~potential profile as limitnd by soil structure.

A pixel's infiltration capacity during rainfall is given
by [21]

1, = 132 v (0, - )12 + k_ vs2 (A.16)
where
t = duration of rain event, hrs.

k., = hydraulic conductivity at saturation

¥_ = suction at field capacity

@_ ~ prosity = 1 - pb/ps

Py © 20il bulk density, g/cm3

p. = 8oll specific density = 2.65 g/cm3 for all soils.
After rainfall ceases, infiltration proceeds at a rate

def ined by ks/Z for the remaining time of the accounting
period (24-t) or until all standing water is depleted. Thus,
a pixel's infiltration capacity from standing water is

defined as

isw = ks/Z * (24 -~ ) (A.17)
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and ig limited by the amount of standing water. Hence, total
infiltration into the asurface layer of the soil, 1t' is
determined by

i, =i+ i (A.18)

i € total rainfall received by the pixel
tﬁw § standing water available.

Water will percolate from the surface layer (0-S5-cm)
into the root 2zone for all accounting pericds where the
surface layer's water content after infiltation exceeds the
water content at field capacity (as determined by Equation
A.13), such that final surface-layer's wabter content is
reduced to less than porosity.

This is accomplished by first allowing excess water to
drain from the root zone (5~100 cm depth). One third of the
volumetric moisture in excess of root zone field capacity is
allowed tn drain gravitationally each day and hence is
removed from further accounting periods. Then, aszuming that
the water content in the surface layer exceeds field

capacity, the excess is permitted to percolate into the root

zone at the minimum of either

k .
R, = — 58 (A.19)
2a
where
R1 = net percolation into the rcot zone, j

a = a damping coefficient arbitrarily set to 48, and
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T = gduration of accounting perliod = 24 hours
or 1/3 of excess water is allowed to percolate

R, = (6 - FC)/3 (A.20)
where 8 and FC are for the surface layer.

When évapotranspirative losses cause surface-layey water
content to be reduced below wilting point, c¢apillary recharge
of the surface 5 cm of soil ias allowed to occur during the
night for a duration of 12 hours. The rate of the surface
recharge is equal to ks/z and is arbitrarily limited to a
maximum of 0.25 cm of water. Furthermore, capillary recharge
is not allowed to raise surface layer walier content above

wilting point.

A.6 Within-Field Variability in Surface Soil Moisture

Prior to radar image simulation, the surface layer soil

e

moisture values determined by the water-budget model for each
100-m by 100-m grid cell are randomized to approximate the
natural variability in soil moisture measured within
"homogeneous" fields. Randomization was performed on a
grid-cell basis by a Gaussian random-number generator with a

standard deviation of & percent Mfs [2}.

A.7 Generation of Soil Moisture Distributions

The dynamic soil water accounting model (SWAM) was
initialized on Julian day 138 and moisture distribution maps
of the test site were produced for every day of thsz

gimulation period.
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These moisture maps indicated the percent of the 1/3-bar
water content Mfs in the 0-5 cm layer where

Mfa = 100 x &/FC (A.21)
where

8 = measured scoll moisture

FC = soil moisture at field capacity.
The resultant distributions were ther examined and the three
most closely approximating moderately dry, moist, and wet
s8oil surface conditions were Belected'for radar image
gimulation. Image representation of 0-5-cm goil moisture

distribution for Julian day 141, 150 and 160 are shown on
Figure b.

e e
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PAUSDATE

STRTDATE

STOPDATE

RAINDATE

ALLINTS

RAIN

INTNSITY
DUR

PERCENTS

SFBULK

RTEBULX

FSUCTION

SSUCTION

SHYDCOND

DEF INITIONS
An array which contains the Julian days
on which the output moisture map needs
to be saved.

Julian day on which the process should

begin.

Julian day on which the process should

stop.

An array containing the Julian dates which

all or part of the database received some -
rain.

An array containing the mean rain intensity
of each rainy day.

Amount of rain received by a cell on a
certain day in cm.

Intensity of the rain for a cell in em/hour.
Duration of the rain for a cell in hours

In gsoil data subroiitine. An array of
percent probability of occurrence of soil
bulk density associated with each of
elght soil types present in our data base.

Quantized levels of surface layer (0-5 cm)
bulk density associated with "PERCENTS".

Quantized levels of root layer (5-100 cm) bulk
density associated with "PERCENTS".

An array contalning b values for all |
15 soil textures as estimated from Clapp & !
Hornberger, 1978.

An array containing the suction ¥, (at field
capacity) for all 15 seil textures (see Clapp & .-
Hornberger, 1978). .

An array containing the suction y; (at
saturation) for all 15 soil textures.

An array containing the hydraulic

conductivity at saturation k, for all 15 soil }
textures. .

L amse®
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SATHC

PDATES

STAGEDAY

KEQCONST

KCROP
sw

SWINF
RAININF
MPC
DRAIN
SWRUNOFF
RECHRG
ETO
SWEVAP

KSCIL

Hydraulic conductivity at saturation.

An array contalning ten different planting
dates for each crop type.

An array containing the rnumber of days
after the planting date which the crop
advances to a new crop growth stage (five
different stages) for each crop type.

An array containing two parameters
(slope and intercept) describing the
change in K cpop at each stage and for
each crop type.

Crop transpliration coefficient.
Standing water (cm).

Amount of standing water which
infiltrates to the surface layer (cm).

Amount of rain which infiltrates
to the surface layer.

Water content expressed as a percent
of field capacity.

Amount of excess water which is drained
from the root zone {(ecm/cm).

Amount of water runoff frem standing
water (em).

Capillary recharge (cm).
An array containing the potential

evaporation (cm) for every day of the
aimalation peried.

. Amount of evaporatiocn Jrom standing:

water.

Bare soils evaporation coefficient.
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The following variables are prefixed by "SF" or "RT"

indicating the surface layer (0-5 em) »r root zone (5-100
€m), respectively.

B i

BD soil's bulk density
PROS goil's porosity
FC soil's water content at field capacity (ecm/cm)
we 80il's water content at wilting point (em/cm)
we water content (cm/cm) ‘ -
EVAP amount of evaporation (cm)
!
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PROGRAM SUITE ¢ RADAR SIMULATION REF. 8 1 RSL REPORT 601~

PROCGRAM NANMES SUAR AUTHOR: SAIED MOEZZI DATES ﬂﬁ; ;555--‘
LaNGUAGE i FORTRAN 77
PURPOSE 1 THE PURPQOSE OF PROGRAN Suafl (SOIL UATER RCCOUNYIQE-EBBEE;
1S TO GENERATE A DISRIBUTIQN OF NEAR-SURFACE (0-5 CM) SOIL MOISTURE
CONDITION AT THE SPATIAL SCALE OF THE STATIC TERRAIN DATA BASE WHICH
RESPONDS TO BOTH STATIC CONDITIONS (SQIL TYPE, COUER TYPE, AND SURFACE

SLOPE) AND DYNAMIC CONDITIONS (CROP STAGE, RAIN, aND POTENTIAL EVAPO-
RATION) ON A DAILY BASIS.

o e ol o S s W S D W e D S A e S e Sy e e S g o S T W e o o

PARANETER DEFINITION

NAME ! DESCRIPTION

IROUY ! FIRST ROU OF THE INPUT MATRIX TO BE PROCESSED

IROUZ ! LAST ROV OF THE 1INPUT MATRIX TO BE PROCESSED

1¢0L ! FIRST COLUMN CELL OF THE IMPUT ROUS TO BE PROCESSED
1coLa { LAST COLUMN CELL QF THE IMPUT RQUS TQ BE PROCESSED
I0TCOL | NUMBER OF CELLS IN EACH OUTPUT RGUY

NCOL I NUMBER OF CELLS IN EACH INPUT ROUW

NPAUSE : NUMBER OF TIMES THAT PROGRAM 3HOULD PAUSE DURING

l SINULATION PERIOD FOR SAVING THE MOISTURE NMAP

SUBROUTINES REGQUIRED
NAME } DESCRIPTION

T R S e U o e A T S T S A S S T B T e A e

RAINFALL IRETURNS THE AMOUNT QF RAIN (CM), DURATION (HOURS) AND
PINTENSITY ( CPM/HMOUR ) FOR A GIVEN cELL ON A SPECIFIED
IJULIAN DAY.

INTRLAYR 1THIS ROUTINE CONTAINS ALL 4 UATER ACCOUNTIANG MODELS
{CACH AS A SEARATE ENTRY., THESE ENTRIES ARE t SURFINF,
IROOTINF, RUNOFF AND RECHARGE.

INITIALZ ITHIS ROUTINE IS USED FOR INITIALIZATION PROCESS AND
IHAS TWC ENTRIES. THESE AREt COMMENCE AND DAUN.
EVAFORAT ITHIS ROUTINE SIMULATES THE EVAPORATION PROCESS FOR A
JGIVEN CELL ON A SPECIFIED JULIAN DAY,
CELLDATA ETHIS ROUTINE GETS ALL STATIC COMDITIONS OF A GIVEN
IDATA BASE CELL.
CROPDATA ITHIS ROUTINE GETS THE DYNAMIC CONDITIONS OF A GIVEN
IDATA BASE CELL WHWICH IS5 REGISTERED AS A CROP TYPE.
SOILDATA {THIS ROUTINE GET ALL THE REGUIRED INFORMATION
ITHAT 1S5 BASED QN THE SQIL TYPE FOR A GIVEN CELL.
GETFILES ITHIS ROUTINE OPENS ALL THE INPUT AN QUTPUT FILES.
IoCalLLS ITHIS ROUTINE CONTAINS TWO ENTRIES FOR READING AND

IWRITING INPUT AND OUTPUT RECORDS. THESE AREY READREC,
1AND WRITDATA.

UPDTHIST ITHIS RQUTINE IS USED FOR UPDATING @ GIVEN HISTIGRAM.

OTPTHIST {THIS ROUTINE 15 USED FOR WRITING OUT A GIVEN
IHISTOGRAM.

PNFIL 1EXTERNAL FUNCTION CALLED BEY ‘GETFILES’ ROUTINE

!

ol e A P S A Y Y S D g e ¥ R 8 i N S S D R g S v iy R S S S

. PARAMETER ( IROUW1s1,IROLE*1077,IC0L1w1,ICOLE8e1245,I0TCOL 1245 )
PARANETER ( NPAUSE=4 , NCOL#1245 )

INTEGER PAUSDATE( NPAUSE ), FC{ 14 ), HHMASS{ 3 )
INTEGER WATER, S0IL, ELEV, CATG, CAT, COL, ROU, DATE
INTEGER STRTDATE, STOPDATE, CROP, FIELD, DAY

REAL KCROP, INTNSITY, MFC

CHARACTERX8 TYPE, TYPENOQU

LOGICAL PRUSE
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COMMON /BUF3/ MFCOUTU KPAUSE, NCOL 3, ICATOUT( NPARUSE, NCOL )
SPECIAL COMMON BUFJ

CQNMON /BUF4/ MFCHIST( NPAUSE , 856 ), ICATHIST( NPAUSE , 31 )

SPECIAL COMMON BUF 4

COMMON  #BLOCK/

SATHC, SUCTION, SFPROS, RYPROS, SFFC, RTFC, SFUP,
§W, SFUC, RTWC, KCROP,

DAY, RAIN, DUR, INTHNSITY, SLOPE, TYPENQU

CommoN ,FILCQDs FC

paTA UATERs 1@ s, STRTDATE/ 138 s, STOPDATE/ 160 -
DATA PAUSDATE, 140, 141, 159, 6@ -

URITE(13,104) IROUS, IROUE, IcCOLL, ICOL2
INITIALIZE ALL NECESSARY UARIABLES

CALL COMMENCE

PROCESS EVERY CELL IN THE DATA BASE

FOR ROUW=IROWS, IRQUZ

AFTER PROCESSING EVERY 10@ RECORDS SEND A MESSAGE T0 TO TERMINAL

1F¢ MOD(RQW,10) .EQ. @ ) THEN
GALL TIME(HHRMNSS )
WRITE(11,803) ROU, HHAMSS

END IF

FOR COLsICOL1, ICCL2

GET REQUIRED INFORMATICNS FOR THE CELL BEING PROCESSED

CALL CELLDATA( ROW,CQOL,ELEV,S0IL,CATG,SLOPE, TYPE,CROP,FIELD )
IFC TYPE .EQ. ’NONAGRIC* ) THENM

THIS IS HOT AM AGRICULTURAL CELL THEREFORE SHOULD NOT BE
TREATED IN MOISTURE COMPUTATION. UPDATE THE QUTPUT ROU AND
START WITH NEXT CELL IN THE DATA BASE.

FOR IP={, NPAUSE

NFCOUT. IP , COL ) = @

ICATOUTC 1P , COL ) « CATG

CALL UPDTHIST( @ , MFCHIST, IP, @, 25Q

ICAT = CATG ~/ 10

CALL UPDTHIST( ICAT, ICATHIST, IP, @, 25 )

END FOR
ELSE

ELSE THIS CELL IS AN AGRICULTURAL TYPE, START THE MOISTURE
COMPUTATION AND CONTINUE FOR THE ENTIRE SIMULATION FERIOD.

GET MORE INFORMATION ABOUT THE UNDERLAYING SOIL

CALL SOILDATAC SOIL, SFPROS, RTPROS, SFFC, RTFC, SFUP,
SATHC, SUCTION

INITIALIZE THIS CELL’S MOISTURE FOR DAY 2ERO
CALL DAUN

FOR DATE« STRTDATE, STOPDATE

DAY = DAY + 1

IF 1T 1S A RAINY DAY, THEN GET AMQUNT, INTENSITY AND THE
DURATION OF THE RAINFALL ON THIS GROUND CELL BEING PROCESSED

CALL RAINFALLC DATE, ROW, COL, RAIN, INTNSITY, DUR )
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145
146
147
148
149
150
152
152
153
154
185
156
157
158
159
168
161
162
163
164
165
166
167
168
169
17¢
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173
174
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177
178
179
18@
18%
182
183
184
185
188
187
188
189
190
194
192
193
154
195
188
197
198
199
200
gel
geg
293
204
205
206
2e7
ges
ae9
219
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IF THE GROUND CELL IS REGISTERED AS A CROP THEN GEY
KCROP AND CROP STAGE

IF( TYPE .EQ. ‘CRAP ‘) THEN

CALL CROPDATA( CROP, FIELD, DATE, KCROP, TYPEHOU )
END IF

PROCESS ALL SOIL WATER ACCOUNTING MODELS

14 PONDING AND INFILTRATION INTO THE SURFACE LAYER (@ -~ § CM)
CALL SURFINFL

Bt PERCOLATION OF WATER INTO THE ROOT ZONE (5 =~ 95 CM)

CALL ROOTINFL

3: STANDING WATER RUNOFF DUE TO LOCAL SLOPE

CALL RUNOFF '

4: EVAPOTRANSPIRATION

CALL EVAPORAT

6t CAPILLARY RECHARGE OF THE SURFACE LAYER

CALL RECHARGE

COMPUTE % OF FIELD CAPARCITY OF SOIL MOISTURE BASED QN SURFACE

LAYER’S WATER CONTENT
MFC = §G0.8 ® SFUC ~ SFFC

CHECK TO SEE IF THIS 1S A PAUSE DAY, IF 1T IS5 THEN RECORD
THE COPMPUTED *RMFC* AND THE REASSIGNED CATEGORY.
(PAUSE DAY IS THE DAY THAT THE MOISTURE MAP MUST BE SAVED)

PAUSE = .FALSE.

FOR IP=1, NPAUSE

IF¢ DATE .EG. PAUSDATE( IF } )  THEN
PAUSE = .TRUE.

GOTO 100

END IF

END FOR

IFC PAUSE ) THEN

APPLY A GAUSIAN DISTRIBUTION WITH COMPUTED *MFC® AS THE
MEAN, AND 6% MFC AS THE STANDARD DIVIATION

INFC =« NINT( RANN( MFC , 6.2 ) )
SET LOWER LIMIT OF X FIELD CAPACITY TO ONE
IFC IMFC .LT. 1 ) IMFCey

SAVE COMPUTED “*MFC* FOR THIS PAUSE DAY

MFCOUT( IP , COL ) =« INFC

REASSIGNMENT OF THE REGISTERED CELL‘’S CATEGORY

1t CHANGE THE CATEGORY TO WATER IF THERE IS STANDINNG WATER
ON THIS GROUND CELL

2! CHANGE THE CATEGORY TO WATER IF SURFACE LAYER'S WATER
CONTENT EXCEEDS THE UNDERLAYING SOIL’S PROSITY

3t IF THERE IS5 MO STANDING WATER AND CELL IS REGISTERD AS A
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CROP TYPE, THEN CHANGE THE CATEGORY TO BARE SQIL WHEN
BEFQRE EMERGENCE OF THE CROP OR AFTER HARVEST

IF{ SU ,GT. @ ) THEN

CAT = WATER

ELSE

IF¢ SFUC LT. SFPROS ) THEN

CAT » CATG

IFC(TYPE.EDQ. ‘'CROP *) AND.(TYPENOW.EG. *SPMTHBARE’)) CAT « 210
é{éé?VPE.EO.‘CROP ’) +AND.(TYPENOU.EQ.’MEDMBARE’)) CAT » 200
CAT » UATER

END IF

END IF

ICATOUT( IP , COL ) = CAT

ICAT = CAT ~ 10

UPDATE THE HISTOGRAMS

CALL UPDTHIST( IMFC, MFCH!ST, IP, @, 25@ ) '
CALL UPDTHIST( ICAT, ICATHISY, IP, @, 85 )

END IF
END FOR

DONE WITH MOISTURE ESTIMATION FOR THIS CELL

END IF
ENL: FOR

DONE WITH ALL THE COLUMNS OF THIS ROUW
URITE QUT THE COMPUTED MFC AND THE REASSINED CATEGORIES OF THIS
ROW TQ THE OUTPUT FILES FOR AlLL PAUSE DATES.

CALL URITDATAC 1. MFCOUT. QTCOL )
CALL URITDATAC( 2, ICATOUT, IOTCOL )

END FOR

SOIL MOISTURE ESTIMATION IS DONE FOR THE ENTIRE DATA BASE
WRITE QUT A REPORT OF THE FINAL MOISTURE AND CATEGORY MAPS

FOR IP=1, NPAUSE

URITE(13,104) * NMFC *, PAUSDATE( IP )

CALL OTPTHIST( MFCHIST, IP, o, 25@

URITE(13,104) ‘CATEGORY’, PAUSDATE: IP )

CALL OTPTHIST( ICATHIST, IP, @, 85 )

END FOR

CALL TIME(HHNMMSS)

URITE(L13,’(" COMPLETED AT *,3R3)*) HHMMSS

URITEC11, (" COMPLETED AT *,3R3)') HHMMSS

URITE(11,102)

URITE(13,102)

STOP

FORMAT(/¢7,” SO I L UWATER ACCOUNTTING’,

' PROGRARN/,” SUAN WAS PROCESSED ON THE DATA BASE’/~/

‘ ROY’15,’ THROUGH ROW’IS,’ P COL/IS’ THROUGH COL‘IS)

FORMAT(* £ XX ALL DONE 22x12x)

ggRgR;(‘ PROCESSED THRODUGH RECORD',SX, 14,
«3A3)

FORMAT(*1*,A8,” HI STOGRAM FOR JULIAN DAY/I5)

END
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THIS ROUTINE READS THE RAINFALL DATA AND RETURNS THE AMOUNT
OF RAIN, DURATION, AND INTENSITY FOR A GIVEN CELL UITHIN THE
DATA BASE ON A SPECIFIED JULIAN DaY.

RAIN IS IN UNITS OF CENTIMETERS , INTENSITY I5 IN CM/HOUR,
AND DURATION IS5 IN HOURS.

SUBROUTINE RAINFALL( DATE, DBROU, DBCOL, RAIN, INTNSITY, DUR )

INPLICIT INTEGER ( A = 2 )

PARAMETER ( NDAYs13 , NRCOLe42 )

COMMON ~#BUFS/ ROURAIN( NRCOL,NDAY), RAINDATE( NDAY)

SPECIAL COMMON BUFS

DIMENSION FC(14)} ey
conmon <FILCOD, FC -
REAL  RAIN, DUR, INTNSITY, ALLINTS( NDAY )

DATAR RECPTR 7 @

DATA  RAINDATE

/ 138,139,143,144,148,149,150,151,153,154,155,188,16! ~
DATA  ALLINTS
/4.8,4.7,1.7,3.6,2,3,2.3,3.6,1.4,3.6,3.6,3.6,2.3,2.3 7

READ RAINFALL DATA FOR ALL RAINY DAYS FQR THIS GROUND CELL

RAINROYW = ( ( DBROW - § ) 7 30 +
RAINCOL = ( ( DBCOL - 1 ) ~/ 30 +
UHILE( RECPTR .LT. RARINROU )

FOR COL»=1, NRCOL

READC FCiB), IOSTAT#I05) { ROWRAIN(COL,DAY), Davel, NDAY )
IF( 105 .NE. @ )} GOTO 99

END FOR

RECPTR = RECPTR + 1

END WUHILE

1)
1)

CHECK IF THE DATE GIVEN WAS A RAINY DAY

FOR DAvY=1, NDAY
IFC RAINDATEC( DAY ) .EG. DATE ) GOTO 1@
END FOR

NO STORM ON THIS DAY, RETURN TQ THE CALLING PROGRAM

RAIN = @, '
INTNSITY = 2,

DUR =« @,

RETURN

A STORM OCCURED ON THIS DAY, GET THE AMOUNT OF RAIN RECIEVED
BY THIS CELL ON THE GIVEN JULIAN DAY

RAIN = REAL( ROURAIN( RAINCOL, DAY ) )/ 10.0
INTNSITY = ALLINTS( DAY )

.DUR = RAIN ¢ INTNSITY

RETURN

g%gsm,'ux.-ennon 2312 UHILE READING RAINFALL *)¢)
END '
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ase
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353
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368
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364
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363
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C=~==--INTRLAYR

THIS ROUTINE CONTAINS ALL 4 WATER ACCOUNTING MODELS, EACH
45 A SEPARATE ENTRY. THESE ARE 1-SURFACE INFILTRATION,
8~RO0T INFILTARION, J-RUNQFF, 4-RECHARGE

SUBROUTINE INTRLAYR

INTEGER FC( 14 ), DAy

REAL KCROP, INTHSITY, NAXRTINF, MINRTINF
CHARACTEREIB TYPENOU :

conmonN  #BLOCK~/

SATHC, SUCTION, SFPROS, RTPROS, SFFC, RTFC, SFUP,
W, SFUC, RTUC, KCROP,

DAY, RAIN, DUR, INTNSITY, SLOPE, TYPENOUW

COMMON /FILCOD/ FC

ENTRY SURFINFL

0 O0O00000

o= o o

COMPUTE AMQUNT OF *RAIN' WHICH IHFILTATES TO SURFALE LAYER
IF{ RAIN .GT. @ ) THEN

OO0 O

tl » SORT( DUR ) % SQRT( Z2XSATHCISUCTIONEZ( SFPROS-SFUC) ) +

5 SATHC % DUR ~ 2
. RATNINF « AMINIC RAIN , RI )
W = S5W + ( RAIN = RAININF )

LAYER AFTER RAINFALL CEASES

IF{ SW .GT. @ ) THENM

SUI « SATHC X ( 284 - DUR ) » B
SUINF » AMINLC SV , SUI )

SU = SU - SWINF

ELSE

SUINF = @

END IF

QOO0

OF RAIN AND STANDING WATER INFILTARTION
TOTALINF = RAININF + SUINF
COMPUTE WATER CONTENT PER CENTIMETER OF SURFACE LAYER

SFWC = SFUC + TOTALINF ~ 5.0
RETURN

’

OO0 OO0

ENTRY ROOTINFL

COMPUTE .PERCOLATION OF WUATER FROM THE SURFACE LAYER INTO
.THE ROOT 200N ({ 5-10@ CM )

QOOOO00 OO0

FIRST DRAIN THE EXCESS WATER OUT OF ROOT LAYER
IF( RTWC .GT. RTFC ) THEN

DRAIN = (RTUC = RTFC} » 3

RTUC = RTWC - DRAIN

END IF

c THEN PERCOLATE

1}3

COMPUTE ARNOUNT OF *STANDING WATER® WHICH INFILTRATES TO SURFACE

TOTAL AMOUNT OF INFILTRATION TO THE SURFACE LAYER 1S5 THE sum
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[IF{ SFUC .GT. SFFC ) THEH

SFUCY » SFUC

RTINFYL « 3,80 8 SATHC

ATINFR « (SFUC =~ SFFGC) + 3

SFUC « AMINLC( SFUCL , SFPROS )

SFUC » ANMAXL( SFUC-RTINFEZ , SFUCLI-RTINFL )
RTINF = (SFUC) -~ SFUC) 2 B

RTUC = ATUC + RTINF/9E

HOW CHECK THE SURFACE WATER COMTENT, IF IT EMCEEDS TME
PROGITY OF THE SOIL TYPE PMOUE THE EXCESS WATER Y10 THE
STANDING WATER

IF¢ SFUC .GT. SFPROS ) THENM -
SUADD = & SFWC - SFPROS ) X 5

SFUC » SFPROS

SW = SW + SUADD

END IF

RETURN N

ENTRY RUNQFF

e o -

COMPUTE RUNOFF CAUSED BY THE SLOPE FOR *STANDING UATER®
IF( sU .GT. @ ) THEN

SURUMOFFE = 54 ¥ ( .1 -~ Q.0 225LOPE ) )
GV « ANINLC SW , SW=~SURUNOFF )

ELSE ;
SURUNOFF = &, '
END IF -
RETURN

ENTRY RECHARGE

CAPILLARY RECHARGE IS ALLOWED TO ZCCURE DURIMG NIGHT FOR A .
DURATICON OF f2 HOURS

IFt SFUC .LT. SFUP ) THEN :
SFUCL = SFUC -
RECHRG » @.25

SFUC = SFUCI + RECHRG/S \
IF( SFUC_.GT. SFUP ) THEN

SFUC = SFUP

RECHRG = (SFUC = SFUCL) I S

END IF

RTUC » ( 95 X RTUC - RECHRG ) ~ S5

ELSE

RECHRG = @

END IF

"RETURN . '

END
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473 ¢
474 C------INITIALZ
i

7 ¢ YHIS ROUTINE 1S USED FOR INITIALIZING THE UARIA
: BLES
478 ¢ AS INITIAL MESSAGES TO THE TERMINAL AND OUTPUT PEFoRT FILE"
480 SUBROUTINE INITIALZ
8¢
INTEGER DAYTIME( 2 ), DDMAMYY( 3 ) '
424 REAL KCROP, INTNSITY » HHANSSC 3 3, FCC14), DAy
485 CHARACTERES  TYPENOU .
486 COMMON  /BLOCK/
487 b SATHC, SUCTION, SFPROS, RTPROS, SFFC, RTFC, SFUP,
489 2 oy “rasn. oue. oTeet -
’ ] NTNS ! »
i 4se COMMON +FILCOD/ FC T¢. SLOPE, TYPENOU
452 €
493 ENTRY COMMENCE
, 3 -
496 C AT THE BEGINING WRITE OUT A MESSAG
497 C GET A SEED FOR RANDOH NUMB GTon FUNCTIONS BRSED.
15 ¢ GET A SEED FOR_RANDON NUMBER GENERATOR FUNCTIONS BASED
500 CALL DATE( DDFMMYY »
501 CALL TIME( HHMMSS )
g0z CALL JDATEC DAYTIME )
s03 WRITE(11,101) WHMMSS, DDRMMMYY
504 URITE(13.104) HHMASS. DORAMYY
506 Aot TR A AT
¢ PRI
sor RETURN no ) L
509 ¢ E
51e ¢ .
si1 ENTRY DAWN '
543 C o
S4 ¢ THIS ENTRY INITIALIZES THE MOISTURE CONTENT OF A CELL
16 SU - @
617 DAY » :
518 SFUC = SFFC :
519 RTUC = RTFC
sz RETURN
) 522 101 FORMAT(//’ TIME® * ,
= FOR IMET ‘3A3,’ , DATEr *3A3)

115



. ikt ! SR

ORIGINAL PAGE 18
OF POOR QUALITY

Co==u==EUAPQRAY

QOO0

OO0

OO0

;o

- o

THIS RQUTINE SINULATES THE EVAPOTRANSPITAIOGN ON A GIVEN
DAY BASED ON THE DATA GATHERED. BARE S01IL, CANOPY COUERED
OR UATER COUERED CELLS ARE EACH TREATED DIFFERENTLY.

SUBROUTINE EVAPORAT
PARAMETER ( NSDAY= 24 )

INTEGER FCU 14 ), DAY

REAL ETet NSDAY ), MR, KSOIL, KSTORM, KSWEUAP, KCROP, INTNSITY
REAL Al NSDAY ), Bt NSDAY ), C( NSDAY ), DU NSDAY )

LOGICAL FRSTCALL

CHARACTEREE8 TYPENOU

ngHON /DATAs SWINF,RAININF, RTINF SURUNOFF ,RECHRG, SUEVAP, S5FEVAP, e
RTEVAR

CGHMON  /BLOCK/

SATHC, SUCTION, SFPROS. RYPROS, SFFC, RTFC, SFUP,
SW, SFWC, RTUWC, KCRO

DAY, RAIN, DUR. INTNSITV, SLOPE, TYPENOUY
COMMON sFILCOD/ FC
DATA FRSTCALLs .TRYE. /
DATA ETe - 0.48, 0.22, @.31, 9.48, 9,61, 9.58, a.4@, @,46,
?.28, @.27?,~a.23, 9.15, 4.25, 2.35, 2.43, .33,
. e'aap eiaB' @-31. @-3!. 01400 0!68. 0!55; 0-59 /

IF(C FRSTCALL ) THEN
FRETCALL = .FALSE.

CONMPUTE THE CONSTANTST FOR X50IL‘S POLYNOMIAL EQUATIONS
FOR IDAY=1, NSDAY

Al IDAY ) = ~9.95 + 9.732 /7 ETO( 1DAY )
Bl IDAY » = 4.97 -~ 8.68% ¥ ETOU IDAY )
CC IDAY } » «B.,57 + 1.56@ 3 ETO( 1DAY )
Dt IDAY )= 4,35 = 0.882 2 ETO( 1DAY )
END FOR

END IF

PE = ETO( DAY )
KSTORM = (24 - DUR) 7 24.9

IF THE GROUND CELL IS A CANCPY THEN COMPUTE EVATRANSPIRATION
30% FROM SURFACE LAYER AND 70X FROM ROOT 2Z0NME

IFC TYPENOU .EQ. ‘CANOPY 4 ) THEN
EVAP « PE £ KCROP X KSTORNM

SFEVAP = AMINL( SFUCKS , O.30FEVAP )
RTEVAP = AMINL( RTUCXSS , Q. ?G*EURP )
SFUC = SFUC - SFEVAP/S

RTUC = RTUC ~ RTEUAP/9H

IF( SW .GT. @ ) THEN

SUINF » AMINLC SU , SFEVAP )

SU « SY - SYINF

SFUC = SFUC + SUINF/S

END IF

RETURN

-END IF

IF THIS CELL 15 COVERED BY STANDING WATER THEN COMPUTE
EVARORATION OF STANDING WATER

KSUEVAP » 1}
IF{ SU GT. @ ) THEN

EVAP ¢ PE x KSTORM
SWEVAP = AMINL ( SW , EVAP )
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593 SU = SU - SUEUAP
594 KSUEVAP = { PE - SWUEVAP ) 7 PE
598 PE = PE ~ SUEVAP
586 END IF
597 ¢
gsg g COMPUTE EUPQRATION FOR BARE SQIL
9
600 IFC PE .GT. @ ) THEN
6ot MR = ( SFUC ~ SFUP ) 7 ( SFFC - SFUP )
662 IF¢ MR LT. @ ) MR- @
603 IFC MR .GT. 1 ) MR » 1|
604 KSOIL « A(DAY) + B(DAY) T MR + C(DAY) & MRIMR +
605 A& D(DAY) X MRIMRXMR
606 IF{ KS50IL .LT. 9.05 ) KSOIL » 0.05
6a? IF{ KSoIL .GT. 1.00 ) KSQIL = 1.00
608 SFEVAP = PE T KSOIL X KSYORM X KSUEUAP
89 SFEVAP » AMINi( SFUCEXS , SFEVAP )
610 SFUC = SFUC - SFEVAP/S
6l END IF
612 ¢
' 613 RETURN
)614 END
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615 C
616 C
617 Cm=~~~=CELLDATA
618 €
619 C
6ao C THIS SOUBROUTINE GETS ALL THE AVAILABLE AND KECESSARY
ggé g INFORMATION ABOUT THE REQUSTED DATA BASE CELL.
623 ¢
624 SUBROUTINE CELLDATA{ RGUSTROW, ROUSTCOL, ELEV, SOIL, €ATG,
625 SLOPE, TYPE, CROP, FIELD }
626 IMPLICIT INTEGER ( A - 2 )
827 PARAMETER ( NCOL=1245 , NFIELDei0 )
628 DIMENSION CROPCODEC 12 ), FC( 14 )
629 REAL SLOPE, RESFEET
630 CHARACTERXS TYPE
631 LOGICAL FRSTCALL
632 COMMON ~#BUF1/ SOILS¢ NCOL ), ELEWS( NCOL )}, CATGS( NCOL) —
633 SPECIAL COMMON BUF1
634 COMMON /FILCODs FC N
835 PATA HRESFEET./ 328.08 s .
638 DATA CURNTROW - © +, FRSTCALL/ .TRUE. ~
637 DATA CROPCODE-, 3, 5, 5, 4, 4, 3, 2, 8, 1, 67
ggg g t-ALFALFA, 2-SOYBEAN, 3-UHEAT & 0ATS, 4~CORN, S~50RGHUM, E-PASTURE
640 C
641 ¢ :
g:g g WKEN CALLED FOR THE FIRST TIME OPEN ALL INPUT & OQUTPUT FILES
644 IFC FRSTCALL ) THEN
645 CaLL GETFILES
646 FRSTCALL = ,FALSE.
647 - END IF
648 C
649 ¢ IF THE ROW WHICH CONTAINS THE REGUESTED CELL IS NOT RERD
gg? g YET, READ THE NEXT RECORD OF ALL THREE DATA BASE NalS.
€52 IF( CURNTROU .LT. RQUSTROW ) THEN
653 CURNTROW = CURNTROU + 1
654 CALL RERDREC( FC(21), SOILS, MHCOL )
655 call READREC{( FC(3), ELEVUS, NCOL )
656 CALL READREC( FC(4}, CATGS, NCOL
887 END IF
658 ¢
659 C THE ROW WHICH CONTAINS THE REGQUSTED CELL IS IN THE MEMORY
220 g EXTRACT NECESSARY INFORMATION.
1
662 ELEV = ELEVS( RGUSTCOL )
663 SoIL = SOILS( RAUSTCOL )
664 CATG = CATGS( RGUSTCOL )
665 C
£66 IF{ ROUSTCOL .NE. NCOL ) THEN "
&87 NEXTELEV » ELEVS( RGUSTCOL+1 )
668 ELSE
669 NEATELEV » ELEVS( RGQUSTCOL-1 )
670 END IF
671 SLOFE » ATAN( REAL( ELEV - NEXTELEV ) - RESFEET )
g;g c SLOPE = ABS({ SLOPE ) x 57.2958
23; g DETRMINE THE SOIL TYPE FROM SOIL MAP CODES ’
676 SOIL = SOIL ~ 30
677 C
678 C DETEMINE THE TYPE OF THE CATEGORY (NON-AGRICULTURAL ,
ggg g BRAE SOIL OR CROP). IF IT IS A CROP TYPE FIND CROP.
681 IF( (CATG .GE. 23@) .CR. (CATG .LE. 5@) ) THEN
ga2 TYPE » ‘NONAGRIC’
683 ELSE IF({ (CATG .LT. 230 .AND. (CATG .&T. 315@) ) THEN
684 TYPE « ‘BARESQIL’
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685
686
134
688
689
698
694
692
€93
694
695

ELSE IF( (CATG .GE. SO ) .AND. {CATG .LE. 152) > THEN

TYPE « ‘CROP ‘
I « CATG » 1@ - §©
CROP = CRGPCODE( IC )

ORIGINAL PRGE 13
OF POOR QUALITY

FIELD = MODC CATG , (CATGA10 X 10 ) ) + 1

CATG » CATG 710 ¥ 10
END IF

RETURN
END
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THIS ROUTINE FINDS MORE INFORMATION ABOUT A CELL WHICH IS
REGISTERED AS CROP, SUCH AS CROP’S PLANTING DATE, CROP
CONSTANT K, AND ITS DYNAMIC TYPE BASED ON THE CROP CALANDER. !

SUBROUTINE CROPDATALt CRCP, FIELD, DATE, KCROP, TYPENOW )

PARAMETER ( NCROP=§ , NFIELD'IO + NSTG=S )

IMPLICIT INTEGER { A - 2

DIMENSION PDATES( NCROP, HF!ELD ), STAGEDAY( NCROP,NSTG )

REAL KEGCONST( NCROP, NSTG. 2), M, A, KCROP

INTEGER FC{ 14 )

CHARACTERIZ TYPENQU o
common sFILCOD, FC

DATA (( PDATES( IC , IF ), IFe!, NFIELD), ICe={, NCROP)
{-ALFALFA,2~50YBEANS,3~-WHEAT & OATS,4~CORN,5-50RGHUM, 6~PASTURE
s ke, 66, 69, 73, 7, %8, 78, 82, 87, 853,

128, 134, 142, 149, 155, {88, te2, 167, 173, 186,

&4, 69, 628, 65, 68, 70, 74, 79, B84, 93,

1e7, 112, 1t7, 122, 187, 130, 135, 142, 149, (61,

120, 1289, 134, 138, 143, 1439, 155, 161, 1695, 181,

73, 73, 73.. 73, 93, 73, 3, T3, 13, V3 -

DATA ((STQGEDRV( IC, IS ), ISw»t, NSTG), ICsl, NCROP)
¢~ 20, 61, 183, 217, 2365,

19, 49, 108, 139, 385,

31, &7, 165, 117, 3&S5,

1, w2, 122, iee, 3868,

a8, €8, 112, 149. 365,

2e, 6%, 183, a1?, 365~

DATA (¢ XKEQCONST( IC,IS5,IK), IK=1,28), IS=1,NSTG), ICs!,NCRCP}

/ 8.8 , .7 , e.e04, 2.627, 0.0 , 0.85 ., '
-0.0! » 2.7 » G.B . 0-5 » ks
9. , 0.7 , 9.012, 0.478, 8.0 , 1.0% , .
'e.ers, 207 » 006 F] 3-45 » .
9.0 , &.7 , 0.01%, 0,356, 0.0 , 1.1 .,
-00071, 8.54 . 0-0 » 0.25 »
0.8 , 0.7 , 0.0t1e, 2.398, 0.0 , 1.1 ,
-9,013, 2.62%, @.0 , 0,55 ,
e.8 , 0.7 , 0.009, 0.455, 0.0 , 1.05 ,
-¢.e20, 3.85 , 0.0 , 0.5 ,
e.0 , 0.7 , 2,001, 0.68 , 9.9 , 9.75 ,
-00037. Ell » 0.0 » 0.5 /’

PLNTDATE = PDATES ( CROP , FIELD )
CROPCNT = DATE - PLNTDATE

DETERMINE THE STAGE OF THIS CROP SUCH AS EMERGED, HARMESTED, ...

FOR STAGE=1, § '
IF{ CROPCNT ,LT. STAGEDAY{ CROP, STAGE )} ) GOTO i@

.END FOR .

M » KEQCONST( CROP, STRGE, 1 )
A v KEQCONST( CROP, STAGE, 2 )
KCROP = A + M x CROPCNT

TREAT ALL AS MEDIUM ROUGH BARE BEFOR EMERGENCE ?
IF( STAGE .LT. 2 ) THEN

TYPENOW = °*MZDMBARE’ !
RETURN
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END IF

IF CROP SYAGE 1S5 AFTER EMERGENCE AND BEFOR HARVEST

ORIGINAL Phl (8
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THEN TREAT IT RS A CANOPY

IF( STAGE
TYPENOL =
RETURN
END IF

AFTER HARVEST TREAT WHEAT, OATS AND ALFALFA AS SMOOTH DARE

AND TREAT

IF( (CROP
TYPENOU «
ELSE
TYPENOY =
END IF

RETURN
END

+LT. § ) THEN
‘CANORY

ALL OTHERS AS MEDIUM ROUGKH BARE

+£0. 1} JOR. (CROP
’SPTHBARE

‘MEDNBARE’

«£0. 3) ) THEM
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THIS RQUTINE FINDS THE BULK DENSITY OF THE GIVEN SOIL

BASED ON THE BULK DENSITY DISTRIBUTION WITHIN THAT

SOIL, AND RETURNS OTHER REGUIRED INFORMATION ABOUT THE GIVE
SOIL SUCH AS UILTING POINT UWATER CONTENT, FIELD CAPACITY
WATER CONTENT, HYDRAULIC CONDUCTIVITY AT SATURATION, ETC.

SUBROUTINE SOILDATA( SOIL, SFPFROS, RTPROS, SFFC, RTFC,
SFWP, SATHC, SUCTION )

IMPLICIT INTEGER ( A - 2 )

PARAMETER ( NSOIL» 8 , NBDe {5 )

REAL SFBULK(NBD), B(NSQIL), FSUCTION(NSOIL), ALFA(NSOIL)
REAL RTBULK( NBD ), SSUCTIOR( NSQIL }, SHYDCOND( NSOIL )
REAL SFPROS, SATHC, SUCTION, SATSUCT, SFUP, SFFC, RTFC

REAL RTPROS, FBD, RTEBD

LOGICAL FRSTCALL

COMMON /BUF2, FPROBABIL( NSOQIL , 108 ), PERCENTS( NSOIL ,MBD )
SPECIAL COMMON BUF2

DATA ((PERCENTS(IS, IBD), IBDe={, NBD), IS=i,NSOIL)
4 . ,» 8, 9, 0, . 7, 22, B2, 14, 14, 14, 0O, 0, 8,
o, o, 9o, 14, 26, 26, 26, 11, 9, 9, o,
e, 3, 3, B, 18, g9, 17, 11, 12, .
e, e, i, 9,22 25, 14, 11, 9, S5, 2, & e, 9, o,
el 0' e’ ‘8. 18, EB. 18' 18‘ a, 0, e’ ea eo el el
1, %, 1, 7,18, 22, B3, 18, 7, 4, i, o, 2, @9, 0,
e, e, o, . 19, 18, 30, 15, 7, 4, @6, r
e, @, @, e, @, o, @, o, @, {5, 3¢, 23, 8, t5, 8 -

DATA SFBULK-/ 2.818, ©.888, ©.557, 1.93, 1.19, 1,17, 1.24, 1,30,
1.37 , 1.44 , 1,51 , 1.58, 1.65, 1.72, 1.79 ~

DATA RTBULK-, 1.1, 1.15, 1.20, {.285, 1.3@, 1,35, 1.40, .45,
1.5¢, .55, 1.60, 1.65, 1.70, £.75, 1.80 ~

baTa B

s §.7?, €6€.66, 7.21, 6,8, 6.22, 6.8, 6£.66, 4.28 ¢
DAT4 FSUCTION

s 2..49, 13.8¢, 12.99, 13.18, 16.03, 13.18, 13.91, 3.22 v
DATA SSUCTION

< 31.20, 34,67, 30.76, 33.08, 39.25, 33.08, 34.67, 10,14 ~
DATA SHYDCOND

s/ ©,814, &2.33, 2.02, =2.31, 2.39, 2.3t1, &2.33, 58.36 s
DATA FRSTCALL” .TRUE. ~

€ET UP THE PROBABILITY ARRAY FOR BULKDENSITY DETERMINATION
OF EACH SOIL TYPE. (ONLY AT FIRST CALL)

IF¢ FRSTCALL ) THEN
FRSTCALL = .FALSE.

FOR 15«1, NSOIL ’
ALFA( IS ) = 1 ~» B( IS5 )
END FOR.

FOR IS=i, NSGQIL

START » 1

STOP = @

FOR BDCODE=1, NBD

PERC = PERCENTS( IS , BDCODE )
IF{ PERC .NE. @ ) THEN

STOP = STOP + PERC

FOR I=START, STOP

PROBABIL( IS, I ) = BDCODE

END FOR
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START = START « PERC

END IF

END FOR

IFC STOP .NE. 100 ) WRITE(31,°’(1X,*5TOP=*,14,16)’)6T0P,IS
END FOR

END 1F

GET THE BULK DENSITY ACCORDING TO THE PROBABILTY FOR THIS SOIL
FOR BOTH SURFACE LAYER (@=8 CM) AND ROCT LAYER (S5-95 CM)

RANDON sIRANC &t , 100 )
BDCODE = PROBABIL( SQIL, RANDOM )
SFBD « SFBULK( BDCODE
RTBD» RTBULK( BDCODE )

CALCULATE THE WATER CONTENT OF EACH SOIL TYPE AT UILTING POINT
AND FIELD CAPACLTY, SPECIFIC BULK DENSITY IS 2.865 FOR ALL SQILS

SFPROS = § - G&FBD / 2.65

RTPROS = § « RYBD » 2.65

SFFC = SFPROS & ( SSUCTIONC SOIL ) ~ 333.0 ) rt ALFAC SQIL )
RTFC « RTPROS X ( SSUCTIONC SOIL ) ~ 333.0 ) 2x ALFAC SOIL )
SFUP = SFPROS & { SSUCTIONC SOIL ) ~ 15000 ) 3% ALFA( SO0IL )
SUCTICN » FSUCTION( SOIL )

SATHC = SHYDCOND( SOIL )

RETURN

END
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Cm=====GETFILES

THIS ROUTINE OPENS ALL THE INPUT aND QUTPUT FILES aNd
ASSIGNS AN AVAILABLE UNIT (FILECODE) OM WHICH THE FILE
WILL BE QPENED.

SUBROUTINE GETFILES

INTEGERRL FILENAREC( 17 3
INTEGER FC{ 14 )}, ERRCODE
LOGICAL ERR

connen /FILCGDs FC

URITE(LL,104)

READ(12,102) FILENAME

CALL 0PNt FCt1), FILENAME, OLD’,'FOR’,ERRCODE,ERR?
IF( ERR } THEN :
ggé;E(ll.i@tl FILENAME, ERRCODE

END IF

READ(FC(L)Y, 2] NUMFILES

FOR 122, NUMFILES+{

READ(FC(1),182) FILENAME

CALL OPN(FC(I),FILENAMG, *OLD’, 'UNF/ ,ERRCODE,ERR)
IFt ERR ) THEN

g?g;Etli.lBll FILENARME, ERRCODE

END IF

URITE(11,103) FILENANE, FC(I)

END FOR

RETURN ,

FORMAT{1X, ‘ERROR XE5¥ WHILE OPEMINIG ‘17At, ERRCODEs’I3)
FORMAT(17A1)

FORMAT(1X, 17A1, ‘UAS ASSIGNED TO’I14)

FORMAT( 1X. ENTER NAME OF THE FILE UNICH CONTAINS INPUT’,
* AND OUTPUT FILE NAMES’)

END

. wmem——
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THIS ROUTINE HAS TuO ENTRIES USED IN READING AND WRITING
FRON AND TO THE I/0 FILES

SUBROUTINE IOCALLS

IMPLICIT INTEGER ( 4 =~ 2 )

PARAMETER ( NURD «1245 , NPAUSE=3 )

DIMENSION RECORD( NURD ), MATRIXC NPARUSE, NWRD ) )
INTEGER FCL 14 )

GCOMMON #FILCOD/ FC

BUFFER IN ¢ FILECODE, RECORD, B, NUWORDS, 10 )
CALL STATUS( FILECODE )

IFt 10 .NE. @ ) THEN

URITE(it1,10e8) FILECODE, IO

STOP

END IF

RETURN

ENTRY WRITDATA ( IDENT , MATRIX, NCOL )

IF¢ IDENT .EQ. § ) OQTFILE«FC(B)
IF( IDENT .EQ. 2 ) QTFLILE=FC(1Q)
FOR 1IP=1, NPAUSE

FOR COLe1, NCOL

RECCRD( COL } « MATRIX( IP , COL )
END FOR

BUFFER OUT( OTFILE, RECORD, B, NCOL, IO )
CALL STATUSt OTFILE »

IFC 10 .NE. 2 ) THEN

URITE(11,1@2) OTFILE, IO

STOP

END IF

OTFILE = OTFILE + |

END FOR

RETURN

FORMAT(1X, 'ERROR 2XXX WHILE READING FROM UNIT’'I4,’ STATUS’,I4)
EOgNRT(lX,‘ERROR RXXX WHILE WRITING TO UNIT ‘4, STATUS«'I4)
N .
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975 ¢

876 C

877 C-=—===UPDTHIST

978 ¢

978 ¢

989 ¢ THIS ROUTINE 'UPDATES THE HISTOGRAMS

§81 C

882 SUBROUTINE UPDTHIST( VAL, H!ST. INDEX, MIN, RAX )

983 IMPLICIT INTEGER ( & « 2

884 PARAMETER ( NPAUSE=3 )

985 DIMENSION MIST( NPAUSE, MAX )

986 C

887 €

888 g UPDATE MIN, MAX VALUES OF DATA

89

g5e HIST( INDEX , 1 ) = MIN@C HISTC INDEX , ¢t ) , VAL )
ggé c MIST( INDEX , MAX-MIN+G) « MAX@( HIST( INDEX . MAX=MIN+S), VAL }
gga g UPDATE THE TOTAL NUMEER OF VALUES COUNTED

4

ggg ¢ HIST( INDEX , PMAX~-MIN+E) » HIST( INDEX, MAX-MIN+G )+%
ggg g UPDATE THE FREGUENCY COQUNT FOR THIS VALUE

999 VAL = MAXQ( MINOC MAX+L , UAL), MIN=1) '
1000 HIST( IMDEX, VAL-MIN+43 ) = HIST{ INDEX, VAL=-MIN+3 ) + 1
1001 RETURN
;002 END
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o0 G GOOAaO0

OO OO0

QAOO0

o000
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199

11
1928
ie3

THIS ROUTINE TAKES A GIUEN H1STOGRAM ARRAY CONTAINING THE
FREQUENCIES AHD URITES OUT THE PERCENTS AND CUNMULATIVE
PERCENTS FOR EACH DATA VALUE,

SUBROUTINE OTPTHIST( HIST, INDEX, MIN, MAX )

IMPLICIT INTEGER ¢( A - 2 )
DIMENSTIOH HIST( 3, fAX )
REAL TOTAL, SUR

TOTAL = HIST ( INDEX , MAX-NIN+E )
UM = HIST( INDEX , 2 ) o

WRITE OUT INFORMATION ON DATA POINTS ENCOUNTERED WHICH
VERE LESS THAN THE IHDICATED MINIMUM VALUE

URITE(13,100) MIN, HIST( INDEX, 2 ), SUM/TOTAL, SUM/TOTAL

YRITE QUT PERCENTS AND CUR PERCENTS FOR ALL VALUES FROM
INDICATED PMINWUM VALUE THROUGH MAXIMUM VALUE

FOR PTR= 3, MAX=NIN+3

COUNT = HIST( INDEX, PTR )

SUM = SUM + COUNT

IF( COUNT .NE. @ ) THEN

gﬁ;?%;lﬁ.tetl MINSPTR=3, COUNT, COUNT/TOTAL, SUN/TOTAL
END FOR

URITE OUT INFORMATION ON DATA POINTS ENCOUNTERED UHICH
WERE LARGER THAN THE INDICATED MINIMUR valug

COUNT » HIET( INDEX, MAX«NMIN+4 )
SUlt = SUM + COUNT
WRITE(13,102) MAX, COUNT, COUNT-/TOTAL, SUM/TOTAL

URITE OUT TOTAL NUMBER OF VALUES, MIN UALUE AND MAX VALUE :
THAT UAS ENCOUNTERED

22;75(13.163) TETAL, HIST( INDEX , § ), HISTC INDEX , MAX=MIN4S)
URN

FORMAT(79%, 'RANGE * , 14X COUNT* ,?X, 'PERCENT 10X/ CUN PERCENTS,
/8%, ¢ 17,54, '~ ,6X,IB,5XE14,7,5KE14.7)
FORMAT(7X,16,5%,’-/5X,18,54E14,.7,5%,E14.7)

FORMAT(SX, '>’,17,5%,’=’,6X,I8,5XE14.7,5XE14.7)
FORMAT({2XF108.1,’ TOTAL VALUES COUNTED’SX‘MIN AND MAX VALUES®

& / ENCOUNTERED » ‘19,2XI9)

END

NASA-JSC
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