General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

AgRISTARS

Made available under NASA sponsorship in the interest of early and wide discomination of Earth Resources Survey Program information and without liability or any use made thereot."

Supporting Research

E84-10042

CR-171 715 C.1

SR-K3-04438

A Joint Program for Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing

AUGUST 1983

A SIMULATION STUDY OF SCENE CONFUSION FACTORS IN SENSING SOIL MOISTURE FROM ORBITAL RADAR

M. C. DOBSON, S. MOEZZI, R. ROTH F. T. ULABY, PRINCIPAL INVESTIGATOR

REMOTE SENSING LABORATORY
THE UNIVERSITY OF KANSAS CENTER FOR RESEARCH, INC.
LAWRENCE, KANSAS

Lyndon B. Johnson Space Center Houston, Texas 77058

(E84-10042) A SIMULATION STUDY OF SCENE CONPUSION FACTORS IN SENSING SOIL MOISTURE FROM ORBITAL RADAR Final Report (Kansas Univ. Center for Research, Inc.) 138 p CSCL 08M G3/43

N84-13635

Unclas 00042

1, Report No, SR-K3-04438	2, Government Accession No.	ි, Hecipient's Catalog	No,
4, Title and Subtitle		5, Report Date	
A SIMULATION STUDY OF SCENE CO	NFUSION FACTORS IN SENSING SOIL	August 1983	
MOISTURE FROM ORBITAL RADAR		6. Performing Organiz	ation Code
7. Author(s)		8. Performing Organiz	ation Report No.
M. C. Dobson, S. Moezzi, F. T.	Ulaby, and E. Roth	RSL 601-1	
		10, Work Unit No.	
9. Performing Organization Name and Address			
Remote Sensing Laboratory		11, Contract or Grant	No.
University of Kansas Center fo 2291 Irving Hill Drive - Campu		NCC 9-6	
Lawrence, Kansas 66045-2969		13. Type of Report an	nd Pariod Covered
12. Sponsoring Agency Name and Address	······································	Final Report	
Dale Browne		<u> </u>	
NASA/Johnson Space Center		14. Sponsoring Agency	Code
Houston, Texas 77058			
15. Supplementary Notes			
· ·			
AB Abrahad			
16. Absn'ect			
	for a 124-km by 108-km test sit		
	mulated radar resolutions are 10		
	re processed with greater than 2 t 4.75 GHz with HH polarization		
of incidence.	t 1175 one with me potation .	and over / und	.,
	urface soil moisture are establi r budget model dependent upon pr		
, , ,	, crop development stage, surfac		
	properties. Within the 23-day p		
	ly corresponding to generally mo		
	r simulations are performed by a		
	model, land-use classification, gh fading, layover, and shadow a		
	h radar resolution, the received		
	ify near-surface soil moisture v		
requiring no ancillary data ab-	out scene characteristics.		
The accuracy of soil-moisture	classification is evaluated for	each sincle-date	radar
	-date detection of relative soil		
general, the results for singl	e-date moisture detection show the	hat 70% to 90% o	f cropland
	within +/- 20% of the true perc		acity. For
17. Key Words (Suggested by Author(s))	18. Distribution Statemen	าเ	
Radar, Soil Moisture, Orbital,	Simulation,		
Classification			
	[
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price*
Unclassified	Unclassified	127	ì

Abstract continued:

a given radar resolution, the expected classification accuracy is shown to be dependent upon both the general soil moisture condition and also the geographical distribution of land-use (field-size distribution and dispersion of categories) and topographic relief. An analysis of cropland, urban, pasture/rangeland, and woodland subregions within the test site indicates that multi-temporal detection of relative soil moisture change is least sensitive to classification error resulting from scene complexity and topographic effects.

The 100 m by 100 m radar resolution is found to yield the most robust classification results, and it is concluded that further degradation of image resolution should be implemented in post-detection processing when and where coarse resolution analysis is warranted.

TABLE OF CONTENTS

																										I	age
LIST	OF	FI	GUR	ES		•				•	•	•	•	•	•	•	•	•			•		•	•			ii
List	OF	TA	BLE	s			•		•	٠	•	-	•	•	•	•	•	•	•	•	•		•		•		v
absti	RACI		•			•	•		•	•		•	•			•	•			-	•	•			•	•	vi
1.0	INT	'RO	סטמ	TIC	ON.	•	•	•	•	•		•	•		•				•					•	•	-	1
2.0	TES	T-	SIT	E I	rac	A.	BA	SE	: .			•					•	•								•	4
	2.1		Ter Cat																		•			•	•	•	6
	2.2	!	Dyn	am.	ics	3 0	f	So	įl	M	οi	stı	1 r e	e [)ie	tr	ik	out	ic	n						•	12
3.0	RAD	AR	IM	AGI	e G	EN	ER	LAI	012	N.	•	•				•								-		•	17
4.0	soi	L	MO I	ST	JRE	: C	LA	ss	IF	IC	АТ	101	J.												•		38
	4.1		Sin Acc																							•	41
	4.2	,	Mul	tic	lat	e	Ch	an	ge	D	et	ect	ic	n	of	S	o i	1	Mo	is	tu	re	٠.				62
5.0	CON	CI.	US I	ONS	3.						•				•												81
6.0	ACK	NO	WLE	DGì	MEN	ITS			•													•				٠	83
REFEF	RENC	ES	•	•					•																		84
APPEN	MD I X	A																									86

LIST OF FIGURES

		Page
Figure 1.	Plowchart of simulation approach	5
Figure 2.	Digital terrain data of the test site showing the positions of the four subregions	7
Figure 3.	Land-use and crop-category distributions on Julian day 141	13
Figure 4.	Map of soil associations for test site	15
Figure 5.	Image presentation of the areal distribution of rainfall within the test site on each Julian date	16
Figure 6.	Distribution of 0-5 cm soil moisture across the test site. Black represents undefined (zero) soil moisture	18
Figure 7.	Cumulative distributions of soil moisture on satellite overpass dates	22
Figure 8.	Radar backscattering σ^0 at 4.75 GHz with HH polarization as a function of local incidence angle for selected moisture conditions	25
Figure 9.	Simulated radar imagery of the test site on Julian day 141	28
Figure 10.	Simulated radar imagery of the test site on Julian day 150	31
Figure 11.	Simulated radar imagery of the test site on Julian day 160	33
Figure 12.	Enlargements of the northwest corner of the simulated 100 m by 100 m resolution radar imager on each overpass date	у 36
Figure 13.	Near-surface soil moisture as estimated for Julian day 141 from simulated radar imagery with a 100 m by 100 m resolution	40
Figure 14.	Soil moisture classification error E_m on Julian day 141 within the woodland subregion resulting from use of the "blind" classifier on 100 m by 100 m radar imagery	43
Figure 15.	Soil moisture classification error \mathbf{E}_m resulting from each radar resolution for all moisture dependent pixels in the test site (excluding	

	woods) on a) Julian day 141, b) Julian day 150, and c) Julian day 160	45
Pigure 16.	Cumulative percent area of all moisture dependent pixels in the test site (excluding woods) as a function of absolute moisture classification error for each radar resolution	
Figure 17.	Distribution of the difference between actual and classified soil moisture for the subregions of the test site as computed from 100-m resolution radar imagery for Julian day 141	e
Figure 18.	Cumulative percent area correctly classified as to soil moisture versus maximum classification error (only moisture-dependent grid cells are compared)	56
Figure 19.	Cumulative percent area of all moisture dependent pixels in each subregion as a function of absolute moisture classification error on Julian day 150	60
Figure 20.	Cumulative percent area of all moisture dependent pixels in each subregion as a function of absolute moisture classification error on Julian day 160	61
Figure 21.	Change in actual soil moisture between Julian days 150 and 160; medium gray indicates no change in soil moisture, bright areas indicate drying over period, and black areas indicate an increase in soil moisture	
Figure 22.	Predicted change in soil moisture between Julian days 150 and 160 based on multidate radar imagery	68
Figure 23.	Distributions of actual ΔM_{fs} and predicted $\Delta \hat{M}_{fs}$ change in soil moisture	70
Figure 24.	change in soil moisture and that predicted from	72
Figure 25.	Magnitude of error in estimates of relative soil moisture change as a function of test site area	75
Figure 26.	Percent of test site area wherein relative change in soil moisture is correctly classified versus	76

LIST OF TABLES

			Page
Table	1	Area Percent of Data Base Assigned to Each Target Class	8
Table	2	Field-Size Distributions for the Agricultural Portions of the Land-Use Subregions	10
Table	3	Relative Percent of County Cropland Devoted to a Given Crop or Pasture/Range [9,10]	11
Table	4	Examples of Class Specific Empirical Backscatter Models Used in Radar Simulations at 4.75 GHz and HH Polarization	23
Table	5	Percent of Moisture Variant Area Correctly Classified to Within +/-20 of True Soil Moisture ($ E_m \le 20$ %)	58
Table	6	Percent Area Correctly Classified to Within +/-20% of the True Change in Soil Moisture M from Julian Day 150 to Julian Day 160	82

- A SIMULATION STUDY OF SCENE CONPUSION PACTORS IN SENSING SOIL MOISTURE FROM ORBITAL RADAR
- M. C. Dobson, S. Moezzi, F. T. Ulaby, and E. Roth Remote Sensing Laboratory University of Kansas Center for Research, Inc. Lawrence, Kansas 66045-2969

ABSTRACT

Simulated C-band radar imagery for a 124-km by 108-km test site in eastern Kansas is used to classify soil moisture. Simulated radar resolutions are 100 m by 100 m, 1 km by 1 km, and 3 km by 3 km; all images are processed with greater than 23 independent samples. The simulated radar operates at 4.75 GHz with HH polarization and over 7° to 17° angles of incidence.

established daily for a 23-day accounting period using a water budget model dependent upon precipitation, potential evaporation, crop-canopy cover, crop development stage, surface slope, antecedent soil moisture, and soil hydrologic properties. Within the 23-day period, three orbital radar overpasses are simulated roughly corresponding to generally moist, wet, and dry soil moisture conditions. The radar simulations are performed by a target/sensor interaction model dependent upon a terrain model, land-use classification, and near-surface soil moisture distribution. Rayleigh fading, layover, and shadow are accounted for by the model. For each overpass date and each radar resolution, the received power and range position of a given pixel is used to classify near-surface soil moisture via a generalized

algorithm requiring no ancillary data about scene characteristics.

The accuracy of soil-moisture classification is evaluated for each single-date radar observation and also for multi-date detection of relative soil moisture change. In general, the results for single-date moisture detection show that 70% to 90% of cropland can be correctly classified to within +/- 20% of the true percent of field capacity. For a given radar resolution, the expected classification accuracy is shown to be dependent upon both the general soil moisture condition and also the geographical distribution of land-use (field-size distribution and dispersion of categories) and topographic relief. An analysis of cropland, urban, pasture/rangeland, and woodland subregions within the test site indicates that multi-temporal detection of relative soil moisture change is least sensitive to classification error resulting from scene complexity and topographic effects.

The 100 m by 100 m radar resolution is found to yield the most robust classification results, and it is concluded that further degradation of image resolution should be implemented in post-detection processing when and where coarse resolution analysis is warranted.

1.0 INTRODUCTION

Simulation techniques have been employed to study the relationship between spatial resolution and the accuracy at which soil moisture can be estimated from orbital C-band radar imagery [1,2]. These studies were based upon the land-use and crop-canopy-cover distributions present within a relatively small agricultural test site (18 km x 19 km) adjacent to the Kansas River in eastern Kansas. Image simulation techniques were used to generate synthetic-aperture radar (SAR) images at a frequency of 4.75 GHz with HH polarization and with angles of incidence between 7° and 22° from nadir. SAB images were produced at three different spatial resolutions: 20 m by 20 m with 12 looks, 93 m by 100 m with 23 looks, and 1 km by 1 km with 230 looks. In addition, simulated real-aperture radar (RAR) imagery was produced with a spatial resolution of 2.6 km x 3.1 km with 363 looks. Analysis of these images demonstrated that for relatively flat agricultural portions of the test site about 90% of the 20-m by 20-m pixel elements can be correctly classified to within +/- 20 percent of field capacity using a generalized soil moisture algorithm. In general, moisture classification accuracy was found to be greatest for coarser resolution imagery due to the increased number of looks; however, the results also showed a distinct classification-accuracy dependence on the complexity of the "true" soil moisture distribution and also upon the spatial

distribution of land-use elements within the test site.

As a consequence, the current study is designed to examine further the effects of the spatial distribution of land-use categories, the agricultural field-size distribution, the crop-canopy mix, and the variability of local topographic relief on the soil-moisture classification accuracy achievable by various orbital radar resolutions at 4.75 GHz, HH polarization, and angles of incidence from 7° to 17°. An area of 124 km by 108 km, including most of the Lawrence, Kansas USGS quadrangle (1:250,000), serves as the test site. The area includes large subregions dominated by urban features, mixed cropland, rangeland and pasture, or deciduous woodland. Simulated radar imagery of this test site at resolutions of 100 m by 100 m, 1 km by 1 km, and 3 km by 3 km are used to classify soil moisture, which is subsequently compared to the input "true" soil moisture. Classification accuracies of each radar resolution are compared for the whole test site and also for each of four subregions related to different mixtures of land-use. the number of processed looks for all resolutions is large (N > 23), the relative classification accuracies of each resolution should be only minimally biased by fading statistics.

The dynamic behavior of each 100 m by 100 m grid cell within the simulation test site is modeled over a 23 day time period with respect to near surface soil moisture, crop canopy cover, crop stage-of-growth, and soil surface

roughness. The input parameters to this model include static conditions such as topography and soil association and also dynamic components consisting of cropping practices and daily meteorological conditions. The cropping parameters are based upon a stochastic treatment of average crop calendar, field size distribution, and crop development while the meteorological data includes daily rainfall and potential evaporation. The output of this model consists of daily updates of near surface (0-5 cm) soil moisture and radar backscatter category which is approximately equivalent to a Level III land-use category [3]. The model is run for a 23 day period and the outputs are saved on 3 dates corresponding to hypothetical orbital overpasses each nine days apart. overpass dates were selected independent of any consideration of orgital mechanics but rather to represent three distinctive soil moisture distributions over the test site: very wet, moist, and dry. The above moisture classifications are very general, however, since the large size of the data base and the late spring time frame of the simulations leads to highly variable regional soil moisture distributions on any given date.

For each orbital overpass, a target-sensor interaction model produces simulated radar imagery for each of the three radar resolutions. The simulation model accounts for the effects of Rayleigh fading and geometric properties such as layover and shadowing [22]. Each simulated radar image is then subjected to a generalized algorithm (requiring only the

amplitude of received power and the range position of a given pixel) which classifies the image into estimated soil moisture. These distributions of estimated soil moisture are subsequently compared with the distributions of actual near-surface soil moisture on a grid-cell basis for each date.

In addition to testing the absolute classification accuracies of each radar resolution for each of the three overpass dates in an instantaneous sense, multi-temporal data from two of the overpasses is used to evaluate the merits of relative change detection of near surface soil moisture as estimated from each of the three simulated radar resolutions. The above process is shown schematically in Figure 1.

2.0 TEST-SITE DATA BASE

In order to quantify the radar backscattering from a given terrain element, certain geometric and dielectric properties of the target scene must be known. First, the three-dimensional cartographic coordinates of each element must be specified relative to the orbital radar in order to compute range, area, and local incidence angle. Secondly, the radar backscattering category must be established; this is roughly equivalent to a level-III land-use classification category [3]. Finally, many land-use categories have backscattering properties that vary as a function of crop-canopy cover, row directionality, and near-surface soil

Figure 1. Flowchart of simulation approach.

1 ...

moisture. A three-tiered digital data base is constructed to describe the spatial distribution of category elements and a dynamic model acts upon this distribution to vary target dielectric and backscattering properties as a function of time. It is assumed that all target properties are laterally homogeneous within a given 100 m by 100 m terrain element.

2.1 Terrain Model and Radar Backscattering Categories

Digital elevation data from the Derense Mapping Agency provide a static model of the terrain geometry. These data are corrected for scanning errors and resampled to yield a mean elevation for each 100-m by 100-m grid element within the 124-km by 108-km test site. An image-format presentation of the digital elevation data is shown in Figure 2.

The specification of radar backscattering category for each 100-m by 100-m grid element involves a three-step process that accurately describes the spatial distribution of the categories shown in Table 1 in a stochastic sense. A two-dimensional digital matrix of Level-II land-use classification is given by USGS land-use and land-cover digital data (LUDA) for the Lawrence, Kansas quadrangle. Level-II categories with similar radar backscattering properties (such as lakes and rivers) are redefined as equivalent backscattering categories. The Level-II LUDA category of cropland is insufficient to specify unique backscattering characteristics; thus a stochastic process is

Figure 2. Digital terrain data of the test site showing the positions of the four subregions.

OF POOR QUALITY

TABLE 1. Area Percent of Data Base Assigned to Each Target Class

				Percent Area	rea		
		Da	Day 141			Day 150	160
Backscattering Category	Test Site	Gronland	 	Rangeland		Whole	Whole
			ne con	rasture	Forest	Test Site	Test Site
Residential	2.00	0.25	23.32	0.42	0.07	2.00	2.00
Buildings (Commercial and Industrial)	0.28	0.04	2.77	0.06	9	28	9 9
Roads	0.88	0.82	5.35	0.08	0.00		07.70
Woodland (Deciduous)	6.44	2.62	3.22	3.22	26.41	77. 4	0.88
Water	1.71	0.03	0.12	0.12	26.11	57.	77.0
Smooth Bare Soil	0.05	0.04	0.06	0.09	01.0	56.0	0.53
Medium Rough Bare Soil*	24.32	27.89	11.61	21 31	20.5	50.0	0.05
Rough Bare Soil	0.54	0.08	2.4.2		06.11	54.12	18.47
Pasture / Rangeland	19.87	60 63		0.0	0.38	0.55	0.56
Theat		50.01	70.77	61.53	30.24	48.61	49.30
	7.53	5.81	2.63	4.02	4.26	5.26	5.33
COIN	0.50	0.79	0.29	0.50	0.20	1.43	1.46
Soybeans	0.0	0.0	0.0	0.0	0.0	1 36	, 52
Sorghuz	0.0	0.0	0.0	0.0	0	200	2.03
Oats	0.50	0.43	0.03	0.38	0.46	70.0	0.02
Alfalfa	8.92	10.37	4.77	8.23	6 67	0.49	0.50
3 80 3- 80 4					5	8.93	90.6

*10% of corm, 0% of soybeans, and 0% of sorghum emergent on Julian day 141; non-emergent cropland is classified as medium rough bare soil.

used to further define the spatial distribution of particular agricultural crops. A random sample of U-2 high-altitude color IR images is used to generate statistics on agricultural field-size distribution for each of the twelve counties within the test site. These statistics are then used to assign random field-boundary networks within each county. The distribution of field sizes is given by county in Table 2.

Specific crop categories and row directions are randomly assigned to each field within a county, based upon an historical enumeration of crop acreage for each county provided by the Kansas State Board of Agriculture and the Missouri Department of Agriculture. These acreages are given by county in Table 3. In addition, since all crops are not grown concurrently, crop calendar data [4] is used to factor planting and harvest into the time history of each field. Within a given crop, planting and crop-development stages established for this area are used to change a given field's backscatter category from bare soil to that of the crop after emergence in a stochasitc fashion. The fields of each crop type are subdivided into ten subgroups each with a distinctive cropping history. Thus, the crop-type distribution will vary locally as a function of time within the 23 day simulation period. The land-use and crop-type distributions for the entire 124 km by 108 km test site are shown in Table 1 for each of the hypothetical orbital overpass dates. The simulation period runs from May 18

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 2. Field-Size Distributions for the Agricultural Portions of the Land-Use Subregions

		Pe	ercen	of	Agri	cu1t	ural .	Area		
		•	F:	ield	Size	in	Acres			
Subregion	10	20	30	40	60	80	100	120	140	160
Urban (Kansas City)	20	18	10	15	7	16	3	2	2	7
Pasture/Rangeland	4	11	6	18	8	28	3	5	3	14
Cropland	20	23	12	19	11	6	2	2	2	3
Woodland	20	23	12	19	11	6	2	2	2	3

TABLE 3. Relative Percent of County Cropland Devoted to a Given Crop or Pasture/Range [9,10]

Group A = Anderson County

Group B = Bates, Douglas, Franklin, Linn, and Miami Counties

Gropu C = Cass, Jackson, and Johnson Counties

		Pe	rcent of	Total A	gricultural	Land	
Group	Wheat	Sorghum	Corn	Oats	Soybeans	Alfalfa	Pasture Hay & Range
A	8.6	7.4	5.7	0.5	21.1	13.7	43.0
В	6.3	9.6	5.5	0.5	15.2	10.3	52.0
C	4.1	5,2	5.8	0.4	11.6	8.2	64.7

Note: Urban Subregion consists of most of Jackson and Johnson Counties

Cropland Subregion consists of parts of Douglas, Franklin, Johnson, and Miami Counties

Pasture/Rangeland Subregion consists of most of Cass County Woodland Subregion consists of a large part of Linn County (Julian day 138) until June 9 (Julian day 160) during which time corn and soybeans are emerging and this is reflected in Table 1. Examples of land-use and crop-category distribution are shown in Figure 3 for Julian day 141.

2.2 Dynamics of Soil Moisture Distribution

The above two components of the data base define the geometric properties of the test site and the distribution of backscattering categories. In addition, it is necessary to model certain dynamic conditions that largely determine the dielectric properties of the scene elements. Of major importance is the near-surface soil moisture of each 100-m by 100-m pixel element as a function of time.

The soil moisture is governed by soil type, local slope, crop canopy cover and stage of growth, antecedent soil moisture, precipitation, and potential evaporation. The distribution of soil types as generalized by soil associations from USDA/SCS county soil surveys is shown in Figure 4. The local crop calendar is derived for this area from historical records [4] and used to establish the daily transpiration rate for a given crop. Daily weather records from each of 25 reporting stations are used to generate digital overlays of daily precipitation (Figure 5) and potential evaporation. A water-budget model is used to update near-surface soil moisture on a daily basis for each grid cell. Finally, a normally distributed random-noise

ORIGINAL PAGE IS OF POOR QUALITY

(a) Land-use: urban features are bright while water and woods are darkest.

Figure 3. Land-use and crop-category distributions on Julian day 141.

ORIGINAL PAGE IS OF POOR QUALITY

(b) Enlargement of upper-left corner shows 51.2 km by 51.2 km of total scene.

(c) Enlargement of 2b shows Kansas River and trees as black, urban features as white, the remainder of the image shows cropland of which soybeans are emphasized to show the presence of both north-south and east-west row directions.

Figure 4. Map of soil associations for test site.

Figure 5. Image presentation of the areal distribution of rainfall within the test site on each Julian date.

component is added to the modeled soil moisture in order to simulate local, within-field variance in true soil moisture [2]. The details of the soil water accounting model and a listing of the computer program are given in Appendix A.

Examples of the 0-5 cm soil moisture distributions produced by the model are shown in Figure 6 for Julian days 141, 150, and 160 in image format. The corresponding cumulative areal distributions are shown in Figure 7a for each date. The influence of crop cover on soil moisture distribution is shown in Figure 7b for Julian day 150. These distributions when combined with the terrain model and the spatial distribution of radar backscatter categories collectively drive the radar image simulations discussed below.

3.0 RADAR IMAGE GENERATION

The average return power \bar{P}_r reradiated from each laterally homogeneous grid ce? ' is given by the radar equation

$$\overline{P}_{r} = \frac{P_{T} G^{2} \lambda^{2} \sigma^{0} A}{(4\pi)^{3} R^{4}}$$
 (1)

where P_T is the average transmitted power, G^2 is the two-way antenna gain, λ is the wavelength, σ^0 is the radar cross section per unit area, A is the grid-cell area, and R is the range. For a given sensor configuration, P_T , G, and λ are

ORIGINAL PAGE IS OF POOR QUALITY,

(a) Julian day 141.

Figure 6. Distribution of 0-5 cm soil moisture across the test site. Black represents undefined (zero) soil moisture.

ORIGINAL PAGE 19 OF POOR QUALITY

(b) Julian day 150.

(c) Julian day 160.

Figure 7. Cumulative distributions of soil moisture on satellite overpass dates.

constant. For each grid cell element, area and range are determined from the static terrain model. In addition, σ^0 varies as a function of local angle of incidence, backscattering category, and near-surface soil moisture; and for the purpose of radar simulation, σ^0 is given by empirical fits to experimental airborne and truck-mounted scatterometer data [6]. Examples of empirical radar backscatter dependence on target category, incidence angle and near-surface soil moisture are given in Table 4. Radar backscattering coefficient σ^0 is shown graphically in Figure 8 as a function of local incidence angle θ for selected categories and soil moisture conditions.

The power actually received at the antenna P_r is dependent upon signal fading and atmospheric scattering and adsorption. At 4.75 GHz the atmospheric losses are assumed to be negligible for most conditions. In addition, signal fading is assumed to be χ -square distributed with 2 N degrees of freedom where N is the number of independent samples for a given range and azimuth radar resolution [7]. Hence,

$$P_{r} = \left(\frac{\overline{P}_{r}}{2N}\right) Y \tag{2}$$

where Y is a random variable with χ -squared distribution and 2 N degrees of freedom.

The radar image simulation model accounts for the geometric effects of layover and shadowing. Examples of simulated orbital radar imagery are shown in Figure 9 for the

TABLE 4. Examples of Class Specific Empirical Backscatter Models Used in Radar Simulations at 4.75 GHz and HH Polarization

A. Targets Modeled as a Function of Soil Moisture

					Algorithm Coefficients	Coeffic	ients		
Taroat	Roughness Class			£(0)				g(θ)	i
Class	Row Direction	fl	£2	$f_{3} \times 10^{-2}$	$f_4 \times 10^{-3}$	81	$g_2 \times 10^{-2}$	$g_3 \times 10^{-3}$	84 × 10 ⁻⁵
Wheat	NA	- 1.932	-2.000	9,336	-1.287	0.114	0.931	-0.914	1,575
Milo	Parallel	- 9.753	-0.262	0.365	-0.002	0.124	~0.492	0.124	-0.101
-	Perpendicular	- 9.753	-0.246	0.865	-0.169	0.124	-0.492	0.125	-0.101
Com	Parallel	- 7.748	-0.395	0.281	-0.054	0.129	-0.330	0.409	-0.029
	Perpendicular	- 7.748	-0.378	0.781	-0.113	0,129	-0.330	0.409	-0.029
Soybeans	Parallel	-10.064	-0.408	0.986	-0.089	0.182	-0.772	0.210	-0.175
	Perpendicular	-10.064	-0.391	1.486	-0.256	0.182	-0.772	0.210	-0.175
Alfalfa	NA	- 1.932	-2.000	9.336	-1.287	0.114	0.931	-0.914	1.575
Pasture	NA	- 1.932	-2.000	9,336	-1.287	0.114	0.931	-0.914	1.575
Bare	Smooth	161.5 -	-1.556	4.617	-0.477	0.182	-0.163	-0.085	0.205
	, Medium Rough	-11.705	-0.434	0.767	-0.033	0.137	0.282	-0,231	0.366
	Rough	-15.154	0.338	-3,160	0.506	0.158	-0.379	0.225	-0.317

 $\sigma^{0}(\theta) = f(\theta) + g(\theta) M_{ES} \text{ for } \theta \le 30^{\circ}$ $f(\theta) = f_{1} + f_{2}\theta + f_{3}\theta^{2} + f_{4}\theta^{3}$ $g(\theta) = g_{1} + g_{2}\theta + g_{3}\theta^{2} + g_{4}\theta^{3}$

· 100 · 100

B. Targets Modeled with no Dependence on Soil Moisture

Target Class	f(θ)
Residential Areas	$13.019 - 1.7550 + 0.640 \times 10^{-1} e^2 - 0.755 \times 10^{-3} e^3$
Water Bodies	$22.820 - 5.1260 + 2.370 \times 10^{-1} 0^2 - 3.973 \times 10^{-3} 0^3$
Roads	$20.000 - 5.550\theta + 2.800 \times 10^{-1} \theta^2 - 4.500 \times 10^{-3} \theta^3$
Deciduous Trees	10 log (10 ^{-1.143} x cose)
Buildings	Constant value 5 dB

Figure 8. Radar backscattering σ^0 at 4.75 GHz with HH polarization as a function of local incidence angle for selected moisture conditions.

(b) Soil moisture is 100% of field capacity.

(c) Soil moisture is 150% of field capacity.

ORIGINAL PAGE IS OF POOR QUALITY

(a) 100 m by 100 m radar resolution.

Figure 9. Simulated radar imagery of the test site on Julian day 141.

ORIGINAL PAGE IS OF POOR QUALITY

(b) 1 km by 1 km radar resolution.

(c) 3 km by 3 km radar resolution.

soil moisture distribution present on Julian day 141 (Pigure 5a) at radar resolutions of 100 m by 100 m, 1 km by 1 km and 3 km by 3 km. These images are ground-range presentations and P_{\star} is scaled in dB to facilitate the presentation of the large dynamic range in P_{μ} across the image swath (\simeq 48 dB). The radar illumination is from the west (left side of images). Due to the relatively steep incidence angles (7 $^{\circ}$ - 17°), the angular decay in $P_{_{T}}$ is readily apparent across the swath from left to right. In general, areas of higher near-surface soil moisture as related to antecendent precipitation appear brighter on the images, and this is most apparent as diagonal stripes related to storm tracks. Also, areas of tree canopy cover and water bodies tend to be dark on the imagery simulated for Julian day 141, while urban features tend to appear bright and are especially noticeable in the far range (right side of images).

The simulated orbital imagery for the three radar resolutions are also shown in Figures 10 and 11 for Julian days 150 and 160, respectively. Julian day 150 represents the wettest overall soil moisture conditions as indicated in Figure 7, and hence the images appear brighter than those for Julian day 141 (Figure 9). In contrast, Julian day 160 is shown by Figure 7 to represent the driest overall soil moisture conditions, and thus the images in Figure 11 appear darker than those for Julian day 141 (Figure 9).

It should be noted that for all of the above simulated images (Figures 9, 10, 11), the number of independent looks

ORIGINAL PAGE IS OF POOR QUALITY

(a) 100 m by 100 m radar resolution.

Figure 10. Simulated radar imagery of the test site on Julian day 150.

ORIGINAL PAGE 19 OF POOR QUALITY

(b) 1 km by 1 km radar resolution.

(c) 3 km by 3 km radar resolution.

OF POOR QUALITY

(a) 100 m by 100 m radar resolution.

Figure 11. Simulated radar imagery of the test site on Julian day 160.

(b) 1 km by 1 km radar resolution.

(c) 3 km by 3 km radar resolution.

is large (N \geq 23). Hence, the variance in P_r within a given portion of the scene is only minimally dependent upon signal fading and is mostly the result of variance in local topographic relief, radar backscatter category, and near-surface soil moisture. In a visual sense, the interaction of relief, category, and moisture yield quite different spatial patterns of P_r on each of the three simulation dates. This is best seen in the 100 m by 100 m radar resolution imagery. Pigure 12 shows enlargements of the northwest (upper-left) quadrant of the 100 m by 100 m imagery for each of the three overpass dates. This quadrant encompasses the test site used in previous orbital radar simulations [1, 2, and 6]. These images illustrate the following:

- l) For nearly uniform soil moisture conditions, the variance in $P_{\mathbf{r}}$ is dominated by local topographic relief and radar backscatter category. This condition is most closely approximated by Julian day 150 in Figure 12b.
- 2) For variable soil moisture conditions, the scene variance in P_r is most closely related to local soil moisture and radar backscatter category which tends to mask variance in P_r related to local topographic effects. This condition is best seen on Julian day 160 (Figure 12c) since an extended period of evapotranspirative losses in soil moisture has enhanced the relative difference in P_r from each radar backscatter category.

The above indicates the potential for achieving certain

ORIGINAL PAGE 19 YTILAUD ROOP TO

(a) Julian day 141

Figure 12. Enlargements of the northwest corner of the simulated 100 m by 100 m resolution radar imagery on each overpass date.

ORIGINAL PAGE IS OF POOR QUALITY

(b) Julian day 150

(c) Julian day 160

mapping objectives not rigorously addressed within the confines of this study. First, the potential exists to classify soil type within relatively flat agricultural portions of the test site from imagery acquired shortly after a nearly uniform and saturating rainfall event. In this case, near-surface soil moisture is high and largely controlled by soil hydraulic properties related to soil type. In addition, for high moisture conditions, the relative uncertainty in P_ related to crop-canopy attenuation and canopy backscatter is expected to be small [5]. Secondly, the potential for crop discrimination from orbital radar imagery can be expected to maximize (for this frequency and angle of incidence) when the differential evapotranspirative dry-down of each crop has enhanced the inter-crop variance in Pr. This condition would exist five or more days after a rainfall event.

4.0 SOIL MOISTURE CLASSIFICATION

In order to classify soil moisture using the simulated radar imagery, a generalized soil-moisture algorithm is derived from all experimental data for bare and vegetation-covered soil conditions (excluding woodlands). The classification algorithm relates estimated soil moisture $\widehat{\mathbf{M}}_{\mathbf{fg}}$ to received power $\mathbf{P}_{\mathbf{r}}$ as a function of incidence angle θ .

$$\hat{M}_{fs} = [P_r - \alpha(\theta)]/\beta(\theta)$$
(3)

where

$$\alpha(\theta) = 9.67 + 0.84\theta - 4.59 \times 10^{-2}\theta^2 + 8.27 \times 10^{-4}\theta^3$$
, and $\beta(\theta) = 0.161 + 9.38 \times 10^{-4}\theta - 4.97 \times 10^{-4}\theta^2 + 1.21 \times 10^{-5}\theta^3$.

In this case, θ is estimated from the range position of a pixel on the radar image, assuming spherical earth geometry and a constant mean elevation of the test site above sea level. Thus, the classification algorithm is "blind" with respect to true local incidence angle and to the actual backscattering category of any given pixel [6]. Application of this algorithm to the received power images yields maps of estimated soil moisture, an example of which is shown in Figure 13 for a radar resolution of 100 m by 100 m on Julian day 141.

Given the above algorithm, orbital radar imagery can be used to classify soil moisture in two ways. First, the imagery obtained at any given radar resolutin on any single overpass date can be passed through the general algorithm (Equation 3) to yield estimates of the absolute soil moisture distribution for that date. The second approach is to make use of the multi-temporal coverage provided by an orbital system to yield estimates of the relative change in soil moisture. The radiometric and geometric stability of the Seasat-A L-band imaging radar has shown that such a procedure is feasible and relatively uncomplicated from the standpoint of image registration [8]. The two approaches are not

ORIGINAL PAGE 19 OF POOR QUALITY

Figure 13. Near-surface soil moisture as estimated for Julian day 141 from simulated radar imagery with a 100 m by 100 m resolution.

mutually exclusive and both will be explored in the ensuing sections with respect to soil moisture classification error as a function of radar resolution and the geographic distributions of local relief and backscatter category.

4.1 Single Date Soil-Moisture Classification Accuracy

The accuracy of soil-moisture classification is examined by evaluating the difference between the true soil moisture M_{fs} and the estimated soil moisture M_{fs} . This is accomplished through registration of the two images (such as Figures 6 and 13) and computation of the difference. Due to the geometric distortion inherent in the radar image-forming process, image registration by simple coordinate translation is only accurate to within about +/- 1.3 pixels (130 meters), and this registration error is proportional to changes in local elevation across the image swath. Hence, a procedural error is introduced into the comparative process which is not related to true classification error. Also, the magnitude of this procedural error is proportional to the local variance in the "true" soil moisture distributions as shown in Figure 6.

In order to examine the effects of various land-use and field-size distributions, four subregions are identified within the test site and relate to an urban area, mixed cropland, pasture and rangeland, or woodland. Figure 2 shows the spatial locations of these subregions, and their land-use

and field-size distributions are tabulated in Tables 1 and 2, respectively. All subregions contain more than 30% pasture, grass, and rangeland, and are distinctive primarily in terms of the percent area occupied by cultural features (residential, buildings, and roads), water, woodland, and crops. In addition, the rangeland/pasture subregion is characterized by a greater percentage of large fields as compared to the other subregions. Finally, Figure 2 shows that the woodland and the rangeland/pasture subregions are located in areas of relatively large local relief.

An example of soil-moisture classification error is shown in Figure 14 for the 100-m by 100-m resolution radar on Julian day 141. Classification error $\mathbf{E}_{\mathbf{m}}$ is defined by

$$\mathbf{E}_{\mathbf{m}} = \mathbf{M}_{\mathbf{f}\mathbf{s}} - \hat{\mathbf{M}}_{\mathbf{f}\mathbf{s}} \tag{4}$$

where

 M_{fs} = true soil moisture, and

 \hat{M}_{fg} = estimated soil moisture.

Figure 14a shows the category classification map for the woodland subregion where wooded areas are black, water is dark gray, cultural features are white, and agricultural land and pasture/rangeland are generally light gray. The difference between actual soil moisture M_{fs} and classified soil moisture \widehat{M}_{fs} is mapped in Figure 14b. E_m is linearly represented by graytone and thus, dark and white areas represent overestimation and underestimation of soil moisture, respectively. The large P_r from cultural features

ORIGINAL PAGE IS

(a) Backscatter category map: woods are black, water bodies are dark gray, cultural features are white, and agricultural areas are light gray.

(b) Soil moisture estimate error $\mathbf{E}_{\mathbf{m}}$: overestimates of soil moisture are dark, underestimates of soil moisture are white, areas with small estimate errors are gray.

Figure 14. Soil moisture classification error $E_{\rm m}$ on Julian day 141 within the woodland subregion resulting from use of the "blind" classifier on 100 m by 100 m radar imagery.

at A leads to an overestimation of moisture, while the low P_r from woodland at B and water at C yields a low estimate of soil moisture. Median gray tones in Figure 14b relate to small estimate errors. A comparison of Figures 14a and 14b shows moisture-estimate errors to be highly correlated with the spatial location of specific land-use categories, especially cultural features, trees, and water. Image registration errors yield white or black rings around specific features. Hence, the spatial organization of such confusion categories largely determines the moisture classification accuracy of a given radar resolution for a given geographic land-use setting.

The single date soil moisture classification error can be examined as a function of radar resolution, general soil moiture condition (overpass date), and geographic subregion.

The soil moisture classification error E_m resulting from radar resolutions of 100 m by 100 m, 1 km by 1 km, and 3 km by 3 km is shown for the entire 124-km by 108-km test site on each overpass date in Figure 15. For all general soil moisture conditions (overpass dates), the distributions of E_m resulting from classification of the 100-m resolution imagery are more peaked and yet have longer tails than the corresponding distributions of E_m for the coarser resolutions. These long tails are related to the presence of confusion categories such as urban features, woodland, and water. The effects of these confusion categories at the coarser resolutions (1 km by 1 km and 3 km by 3 km) are to

(a) Figure 15. Soil moisture classification error E_m resulting from each radar resolution for all moisture dependent pixels in the test site (excluding woods) on a) Julian day 141, b) Julian day 150, and c) Julian day 160.

broaden the error distribution.

The tendency of the coarser resolutions (1 km by 1 km and 3 km by 3 km) to yield bimodal distributions of $\rm E_m$ in Pigure 15 with a secondary peak ranging from -30% to -50% is primarily related to the presence of cultural features which have large scattering cross-sections relative to agricultural and rangeland areas. These overestimates of local soil moisture result from averaging the large $\rm P_r$ from cultural targets over a larger area. Hence, the magnitude of this secondary peak is proportional to both the net area occupied by cultural features and the dispersion of such features within the total scene, and the size of $\rm E_m$ at this peak is proportional to the ratio of $\rm P_r$ cultural to $\rm P_r$ agricultural.

The associated absolute moisture classification accuracies of the three radar resolutions are shown in Figure 16. In general, the 100-m by 100-m resolution is shown to yield the most accurate estimates of soil moisture. For example, use of the "blind" generalized moisture algorithm on Julian day 141 yields \hat{M}_{fs} within +/- 20% of true moisture M_{fs} for 68% of the area using a radar with a 100-m resolution, while only 60% and 58% of the area is classified within this error limit using radar resolutions of 1 km and 3 km, respectively. In Figures 14 and 15, this result is shown to be related to the spatial distribution of land-use confusion categories.

The differences in absolute classification accuracy between the three radar resolutions are also dependent upon

Figure 16. Cumulative percent area of all moisture dependent pixels in the test site (excluding woods) as a function of absolute moisture classification error for each radar resolution.

general soil moisture condition. This effect is seen by comparing the results achieved for different overpass dates in Figure 16a, b, and c for overpasses on Julian days 141, 150, and 160, respectively. The classification accuracy of the coarse resolution sensors (1 km by 1 km and 3 km by 3 km) is seen in Figure 16c to be significantly reduced relative to the classification accuracy achieved with the 100 m resolution radar. The local variance in true soil moisture M_{fg} and local received power P_{r} are seen to be greatest on Julian day 160 in Figures 6 and 12, respectively. As previously stated, this is largely the result of the differential evapotranspirative dry-down rates of the various crop canopies constituting the scene. Thus, the within-scene variance in soil moisture $M_{f\,s}$ is highly correlated with the crop distribution given in Table 1 which is dispersed in agregates given by the field size distribution (Table 2). Hence, at radar resolutions coarser than field size a serious degradation in moisture classification accuracy can be expected for imagery acquired during periods of protracted evapotranspirative loss.

The effects on moisture classification error of varying the local distribution of land-use confusion categories are demonstrated by comparing the error distributions for the four land-use subregions. The error distributions for the urban, pasture/rangeland, cropland, and woodland subregions are compared in Figure 17, based upon the 100-m resolution radar imagery for Julian day 141. When the error

ORIGINAL PAGE 15 OF POOR QUALITY,

Distribution of the difference between actual and classified soil moisture for the subregions of the test site as computed from 100-m resolution radar imagery for Julian day 141. Figure 17.

distribution is plotted for all 100-m by 100-m grid cells within each region (Figure 17a), large overestimates of moisture, primarily in the urban and woodland subregions, are related to the presence of cult all features such as buildings and roads and also related to the presence of water bodies since for these categories soil moisture is undefined and any moisture estimate for these categories is therefore an overestimate. In a similar fashion, large underestimates of M_{fs}, best exemplified by the woodland subregion, are largely related to the presence of deciduous trees, which are assumed to fully attenuate backscattering from the soil at 4.75 GHz.

The exclusion of nonagricultural categories (cultural features, water, and woodland) from the grid-cell comparisons of \hat{M}_{fs} to M_{fs} yields highly peaked distributions centered around ≈ 0 error as shown for each subregion in Figure 17b. The woodland still exhibits a larger area where soil moisture is underestimated than the other subregions and this is largely the result of locally saturated to flooded soil moisture conditions. The radar backscatter model treats fully saturated soil as a near specular surface similar to a water body, and hence P_{r} is low at off nadir indicence angles. As a consequence, soil moisture M_{fs} is generally underestimated. Similar results are obtained for the other two overpass dates.

The absolute classification accuracy for Julian day 141 within each of the four land-use subregions is shown in

Figures 18a and 18b from simulated radar resolutions of 100 m by 100 m and 1 km by 1 km respectively. As expected from the above and from the distributions of land-use categories and field-size given in Tables 1 and 2, Figure 18a shows that the greatest classification accuracy is achieved for the cropland subregion and the poorest for the woodland subregion. upon land-use and field-size distributions alone, one would expect a greater absolute classification accuracy for the pasture/rangeland subregion than for the urban subregion in Figure 18a; however, the greater local topographic variation present within the pasture/rangeland subregion (Figure 1) leads to moisture classification errors related to the variance in local slope, which is unknown to the "blind" classification algorithm. This same effect also suppresses the absolute classification accuracy for the woodland subregion which is also "hilly" in nature.

For a 1-km by 1-km resolution radar, the combined effects of the spatial distribution of land-use categories (the relative mix of categories and their respective size distributions) and topographic relief upon absolute classification accuracy yield the results shown in Figure 18b. For areas where local topographic relief varies over spatial dimensions of hundreds of meters, the 1-km by 1-km radar resolution will tend to average local slope-related variance in P_r, and thus yield absolute classification accuracies greater than those achieved by a finer resolution sensor (such as 100 m by 100 m). This appears to be the case

Cumulative percent area correctly classified as to soil moisture versus maximum classification error (only moisture-dependent grid cells are compared).

for the pasture/rangeland and woodland subregions of the test site. For example, at an absolute accuracy level of +/- 20% of field capacity, Table 5 shows that the percent area correctly classified within this limit from the 100-m resolution radar is 71.3% and 64.1% for the pasture/rangeland and woodland subregions, respectively; and the percent area correctly classified from the 1-km resolution radar increases to 79.4% and 73.3% for the two subregions, respectively.

Conversely, for areas characterized by a large number of dispersed cultural targets (with generally large P_r), the use of a coarse-resolution radar, such as 1 km by 1 km, is shown to degrade absolute moisture classification accuracy relative to that achievable by a 100-m by 100-m resolution sensor; this effect is demonstrated by the urban and cropland subregions. For example, in Figure 18 the effect of dispersed cultural features and field size distribution leads to a decrease in percent of the urban subregion which is correctly classified to within +/- 20% of field capacity from 77.9% (100-m radar resolution) to 70.1% (1-km radar resolution). In a similar fashion, the percent area correctly classified to within +/- 20% of field capacity for the cropland subregion decreases from 82.0% to 75.6% for the 100-m and 1-km radar resolutions, respectively.

The above results for Julian day 141 are not independent of general soil moisture condition and the spatial variability of soil moisture. The absolute soil moisture classification accuracies for each of the four subregions are

TABLE 5. Percent of Moisture Variant Area Correctly Classified to Within +/-20 of True Soil Moisture $(|E_{\rm m}| \le 20\%)$

Julian Day	141			150			160		
Radar Resolution	100 m	1 km	3 km	100 m	1 km	3 km	100 m	1 km	3 km
Subregions		}							
Cropland	§2.0	75.6	74.3	87.5	91.0	91.8	77.4	73.9	75.6
Urban	77.9	70.1	65.0	75.3	83.6	86.9	76.2	63.7	58.5
Rangeland/Pasture	71.3	79.4	80.4	72.5	80.4	82.3	77.0	74.6	77.4
Woodland	64.1	73.3	72.7	72.6	83.6	86.0	68.3	68.5	68.4

shown for Julian days 150 and 160 in Pigures 19 and 20, respectively. In addition, the percent area correctly classified to within +/- 20% of field capacity are also given for each daty and radar resolution in Table 5.

For the generally wet soil conditions prevalent on Julian day 150, comparison of the results shown in Figure 19 and Table 5 as a function of orbital radar resolution indicates that estimate accuracy increases with the additional spatial averaging provided by the coarse resolution radars for all subregions. This is explained by the distribution of soil moisture for this date which is primarily governed by the antecedent rainfall pattern. Since a large quantity of rain fell within most of the test site just prior to the simulated orbital overpass, the local properties of slope, soil texture, and crop canopy condition have not had sufficient time to exert a large influence and vary local soil moisture distributions. As a result, the added spatial averaging provided by the coarser radar resolutions acts to increase classification accuracy by averaging small spatial scale noise effects related to local relief and variance in local radar backscattering category. This is true even for the urban scene; since at very high soil moisture conditions, the P from wet agricultural fields approaches that from the cultural features.

Within the four subregions, the dependence of soil moisture classification accuracy upon radar resolution is shown in Figure 20 and Table 5 for the generally dry and

each subregion as a function of absolute moisture classification error on Julian day 150. Figure 19. Cumulative percent area $lpha {
m f}$ all moisture dependent pixels in

Cumulative percent area of all moisture dependent pixels in each subregion as a function of absolute moisture classification error on Julian day 160. Figure 20.

A STATE OF THE PARTY OF THE PAR

spatially variable $\log 1$ moisture conditions prevalent on Julian day 160. Classification accuracy is shown to be independent of radar resolution for absolute a timate error $|\mathbf{M}_{fs} - \hat{\mathbf{M}}_{fs}|$ less than 20% of field capacity for the cropland, rangeland/pasture, and woodland subregions. However, as radar resolution is degraded the areal percentage of the cropland and woodland subregions with large absolute estimate errors, $|\mathbf{M}_{fs} - \hat{\mathbf{M}}_{fs}| \geq 30$, does increase significantly. This is attributed to the large local variance in true soil moisture \mathbf{M}_{fs} within these subregions on Julian day 160. The most extreme example of local variance in \mathbf{M}_{fs} is given by the urban subregion which exhibits a pronounced decrease in classification accuracy as radar resolution is degraded.

4.2 Multidate Change Detection of Soil Moisture

The preceeding section shows that absolute moisture classification accuracy from a single date orbital radar observation is limited by the presence of scene confusion factors within the imagery and their size and spatial dispersion relative to the radar resolution. Within the present discussion, scene confusion factors are defined both as the presence of scene elements for which soil moisture is unidentified such as buildings, roads, water bodies, etc. and also the occurance of variability in $P_r(\theta)$ from scene elements possessing equivalent soil moisture. The latter results from natural variability in topographic slope, crop canopy type and stage of growth, row direction, and surface

roughness.

In single date sensing and classification of soil moisture, the confusion effects of cultural features and water bodies can be minimized (but not eliminated) by spatial filtering. Two approaches are feasible. First a simple intensity slice of the received power $P_{-}(\theta)$ could be used to roughly define water (dark) and point targets such as buildings (bright) within the image, the remainder of the image could then be subjected to the "blind" moisture classification algorithm. However, this approach cannot be expected to yield consistent results since for very dry soil moisture conditions many agricultural targets can appear similar to water (Figure 8a) or the water may be roughened by wind. In addition, for very wet soil conditions, many agricultural targets will be characterized by P, near nadir similar to that from the point targets (Figure 8c). A second, more satisfactory approach would be to incorporate a priori knowledge of the spatial distribution of such features and filter them from moisture classification. of course, assumes the availability of a Level I land-use classification which could be scaled and rectified to the orbital radar imagery.

In a similar fashion, the moisture classification error related to natural variability within the agricultural portions of the scene could be reduced if the radar data can be registered to topographic and crop distribution data.

This would assume a mechanism for crop discrimination and

classification. In this case, each pixel element in the radar image could be classified as to soil moisture using an algorithm tailored to be crop specific. Obviously, this approach is not currently feasible.

However, since most of the confusion factors are spatially fixed and relatively invariant over short periods of time (excepting wind conditions), their effects on moisture classification accuracy can be minimized more economically by the multi-temporal change detection approach. In this technique, the radar imagery acquired at two dates are coregistered and their ratio yields a map of scene change. This process has been shown to be relatively simple to implement with L-band orbital imagery obtained by Seasat-A [8]. For a constant imaging geometry on the two dates (angle of incidence and azimuth view angle), the backscattered power received from cultural targets should remain approximately constant and that received from water bodies should remain nearly constant depending upon local wind conditions. Hence, these features should display little or no change in the multidate ratio images. On the other hand, all scene elements subject to change in backscatter category (such as planting, harvest, and tillage of agricultural fields) and/or subject to change in near-surface soil moisture status will yield a corresponding change in the multidate ratio images. If the time separation in multi-date observation is short relative to changes in crop development, then changes apparent in the ratio images will reflect relative moisture

change and/or field status change related to tillage operations. Since surface slope is constant over the time interval, row direction is time constant in the absence of tillage, and surface roughness decays only slowly with time, the impact of these confusion factors upon the ratio of multidate received power should be negligible.

The soil moisture distributions and the radar imagery simulated for Julian days 150 and 160 (wet and dry, respectively) are used to evaluate the utility of change detection for monitoring relative change in near-surfce soil moisture. The change in actual soil moisture ΔM_{fs} between the two dates is shown in Figure 21. The graytone values in the image are linearly scaled to the difference function given as:

$$\Delta M_{fs} = M_{fs}(150) - M_{fs}(160)$$
 (5)

where the value in parentheses refers to Julian date. In producing Figure 21, a constant value of 128 (of 255 maximum, was added to ΔM_{fs} , hence medium gray values such as those for the Kansas City area denote no change in soil moisture, bright areas denote considerable drying over the 10 day period, and dark areas denote an increase in near-surface (0-5 cm) soil moisture. In general, Figure 21 shows that drying conditions are prevalent over most of the test site except for scattered areas located primarily in the western portion (left side) due to rainfall (see Figure 5).

Multidate registration of the radar imagery simulated at

ORIGINAL PAGE IS OF POOR QUALITY

Figure 21. Change in actual soil moisture between Julian days 150 and 160; medium gray indicates no change in soil moisture, bright areas indicate drying over the period, and black areas indicate an increase in soil moisture.

each of the three resolutions yields difference images which are scaled to $\Delta \hat{M}_{fs}$ via the blind classification algorithm (Equation 2). Image presentations of predicted change in soil moisture $\Delta \hat{M}_{fs}$ are shown for each radar resolution in Figure 22. In general, the direction (wetting or drying) and the magnitude of the true change in soil moisture observed in Figure 21 are faithfully reproduced for all radar resolutions. A noteable exception to this can be observed at the bottom center of each image in Figure 22. The black area denotes a predicted increase in soil moisture which is not observed in Figure 21. This discrepancy is the consequence of saturated to partially flooded soil conditions on Julian day 150 and moist conditions on Julian day 160 for this area. Hence, actual soil moisture has decreased while that predicted shows an increase since under flooded conditions the radar backscatter models generally yield low values of P, comparable to that from a water body.

The area distributions of actual moisture change ΔM_{fs} and that predicted from the radar imagery $\Delta \hat{M}_{fs}$ are plotted in Figure 23. The sharp spike in the ΔM_{fs} distribution at zero change is related to cultural features and water bodies. In general, it is apparent that the distribution of predicted moisture change $\Delta \hat{M}_{fs}$ as derived from the 100 m resolution radar most closely approximates the actual ΔM_{fs} distribution. The spatial averaging of the coarser radar resolutions causes them to be less sensitive to relatively large local change in ΔM_{fs} and thus the magnitude and extent of such changes tends

ORIGINAL PAGE 19 OF POOR QUALITY

(a) 100 m by 100 m radar resolution.

Figure 22. Predicted change in soil moisture between Julian days 150 and 160 based on multidate radar imagery.

ORIGINAL PAGE IS OF POOR QUALITY

(b) 1 km by 1 km radar resolution.

(c) 3 km by 3 km radar resolution.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 23. Distributions of actual $\Delta M_{\mbox{fs}}$ and predicted $\hat{\Delta M}_{\mbox{fs}}$ change in soil moisture.

to be underpredicted.

The actual and predicted change in soil moisture can be compared on a grid cell basis by registration of the images in Figures 21 and 22. This procedure is, of course, subject to the registration errors discussed earlier for single date moisture classification due to changes in image geometry and position. For each pixel, the error in predicting relative moisture change can be defined as:

$$E_{\Delta M} = \Delta M_{Es} - \Delta \hat{M}_{Es} \tag{6}$$

The spatial distribution of $\mathbf{E}_{\mathbf{A}\mathbf{M}}$ is shown for each radar resolution in Figure 24. The brightest area on the scale bar denotes regions where the absolute magnitude of $\mathbf{E}_{\mathbf{A}\mathbf{M}}$ is within +/- 10% of $\Delta M_{\rm fg}$ and as graytone decreases the areas correspond to $|E_{AM}|$ limits of +/- 20%, +/- 30%, and +/- 40% respectively as shown on the scale bar. For the 100 m resolution radar, 80% of the area is correctly classified to within +/- 20% of ΔM_{fg} and greater than 90% of the area to within +/- 30% of ΔM_{fs} . In addition, most of the residual error is randomly distributed except for some classification error of large magnitude which is related to offsets in mechanical image registration as exemplified by linear features such as roads. For degraded radar resolutions of 1 km and 3 km, the magnitude of classification errors increase and are spatially associated with edges between backscatter categories.

The comparative error in moisture-change extimates $\mathbf{E}_{\mathbf{\Lambda}\mathbf{M}}$

OF POOR QUALITY

(a) 100 m by 100 m radar resolution.

Figure 24. Spatial distribution of difference between actual change in soil moisture and that predicted from multidate radar observation.

ORIGINAL PAGE IS OF POOR QUALITY

(b) 1 km by 1 km radar resolution.

(c) 3 km by 3 km radar resolution.

for the three radar resolutions is shown in Figure 25 for all 1.34 million grid cell comparisons within the test site. The corresponding percent of total area (124 km by 108 km) with absolute classification error less than a given magnitude is plotted in Figures 26a. Obviously, the 100 m resolution radar exhibits superior classification accuracy. However, if only the moisture variant pixels are compared (excludes cultural features, water bodies, and woodland) the distinction between resolutions shown in Figure 26b is not statistically significant; 78% and 89% of the area is correctly classified to within +/- 20% and +/- 30% of ΔM_{fs} , respectively.

The effect of geographic subregion on the above results is shown in Figure 27. For the 100 m resolution radar, the change detection analysis results in superior classification accuracies for areas characterized by gentle topographic relief (cropland and urban subregions). For the coarser radar resolutions shown in Figure 27b and c, two effects are noted. First the influence of edges related to variance in the magnitude of ΔM_{fg} between adjacent backscatter categories causes classification accuracy for all subregions to decrease relative to that for the rangeland/pasture subregion which is characterized by large field sizes. Secondly, the absolute classification accuracy decreases as a function of resolution for all subregions except rangeland/pasture. The large relative field size within the rangeland/pasture subregion and the large percent area occupied by range and pasture

Figure 25. Magnitude of error in estimates of relative soil moisture change as a function of test'site area.

(a) Full test site, 1.34 million grid cell comparisons.

Figure 26. Percent of test site area wherein relative change in soil moisture is correctly classified versus magnitude of classification error.

(b) Moisture dependent categories only, 1.20 million grid cell comparisons, excludes cultural features, water bodies, and woods.

(a) 100 m by 100 m radar resolution

Figure 27. Percent of each subregion wherein relative change in soil moisture is correctly classified versus magnitude of classification error.

(c) 3 km by 3 km radar resolution

(61.5%) is largely responsible for the increase in classification accuracy using 1 km by 1 km radar data relative to that obtained using 100 m by 100 m radar data.

Representative values of classification accuracy within each subregion for an error magnitude of +/- 20% of ΔM_{fs} are shown in Table 6. These values show that 73% to 83% of the area within any subregion can be correctly classified as to within +/- 20% of actual soil moisture change for 100 m by 100 m resolution radar imagery. In addition, these values are generally superior to those obtained for single date moisture classification shown in Table 5.

5.0 CONCLUSIONS

This simulation study reconfirms prior results that relatively high single-date moisture-classification accuracies can be achieved from orbital radar operating at 4.75 GHz with HH polarization and at incidence angles of 7° to 17° relative to nadir. Furthermore, this study shows that classification accuracy is optimized for radar resolutions smaller than the expected field-size distribution of extended targets; a nominal sensor resolution on the order of 100 m by 100 m is found to yield the most robust classification results for the majority of tested conditions. In addition, prior results have been extended to show that expected moisture-classification accuracy for a given sensor resolution is not independent of general soil moisture

TABLE 6. Percent Area Correctly Classified to Within +/- 20% of the True Change in Soil Moisture ΔM_{fs} from Julian Day 150 to Julian Day 160

Subregions	100 m	ll Pixels 1 km	3 km	Moist 100 km	ure Dep. 1 km	Pixels 3 km
Cropland	82.4	71.4	70.8	83.3	74.0	73,6
Urban	83.4	73.9	70.5	80.4	69.8	64.2
Rangeland/Pasture	∬ 73.7	81.77	79.1	74.1	84.8	82.3
Woodlan !	74.7	60.7	52.6	72.8	73.5	73.5
Full Scene	78.3	74.6	72.0	78.3	78.3	76.8

condition or of the geographical mix of land-use, field-size distribution, and local topography. Finally, the use of multi-date radar imagery to estimate relative change in near-surface soil moisture status is shown to substantially reduce classification errors related to the presence of cultural features and water bodies, the presence of variable crop-canopy covers, and local variability in topographic relief.

Based upon this study, a reasonable approach for the purposes of soil-moisture sensing would be to obtain the data at a sensor resolution on the order of 100 m (with a large number of independent looks) and then degrade the resolution where necessary by post-detection processing to average the moisture classification errors associated with local slope in regions of variable topographic relief. In addition, multi-temporal change-detection analyses could also minimize classification errors controlled by topographic relief as well as those errors that are related to intra- and inter-crop variance in radar backscattering [8].

6.0 ACKNOWLEDGMENTS

This research was supported by the National Aeronautics and Space Administration, Johnson Space Flight Center, Houston, Texas, Grant NCC 9-6.

REPERENCES

- [1] Ulaby, F. T., M. C. Dobson, J. Stiles, R. K. Moore, and J. Holtzman, 1982, "A Simulation Study of Soil Moisture Estimation by a Space SAR," Photo. Eng. Rem. Sens., Vol. 48, No. 4, pp. 645-660.
- [2] Dobson, M. C., F. T. Ulaby, and S. Moezzi, 1982,
 "Assessment of Radar Resolution Requirements for Soil
 Moisture Estimation from Simulated Satellite Imagery,"
 RSL Technical Report 551-2, University of Kansas Center
 for Research, Inc., Lawrence, Kansas.
- [3] Anderson, J. R., et al., 1976, "A Land Use and Land Cover Classification System for Use with Remote Sensor Data," Geol. Surv. Prof. Paper 964, U.S. Government Printing Office, Washington, D.C.
- [4] Hodges, T., 1981, "U.S. Crop Calendars in Support of the Earlier Warning Project," LEMSCO-14674, Lockheed Eng. and Management Services Co., Inc.
- [5] Ulaby, F. T., M. C. Dobson, and D. R. Brunfeldt, 1983, "Improvement of Moisture Estimation Accuracy of Vegetation-Covered Soil by Combined Active/Passive Microwave Remote Sensing," <u>IEEE Trans. Geosc. and Rem. Sens.</u>, accepted for publication 1983.
- [6] Ulaby, F. T., M. C. Dobson, J. Stiles, R. K. Moore, and J. Holtzman, 1981, "Evaluation of the Soil Moisture Prediction Accuracy of a Space Radar Using Simulation Techniques," RSL Technical Report 429-1, University of Kansas Center for Research, Inc., Lawrence, Kansas.
- [7] Holtzman, J. C., V. S. Frost, J. L. Abbott, and V. H. Kaupp, 1978, "Radar Image Simulation," <u>IEEE</u>
 <u>Trans. Geo. Elect.</u>, Vol. GE-16, No. 5, pp. 296-303.
- [8] Brisco, B., F. T. Ulaby, and M. C. Dobson, 1983,
 "Spaceborne SAR Data for Land-Cover Classification and
 "hange Detection," <u>Digest of the 3rd IEEE</u>
 Intl. Geoscience and Remote Sensing Symp., San
 Francisco, CA, August 31 September 2.
- [9] Kansas State Board of Agriculture, 62nd Annual Report and Farm Facts, Topeka, Kansas, 1979.
- [10] Missouri Farm Facts, Missouri Crop and Livestock Reporting Service, Columbia, Missouri, April 1982.
- [11] Peck, A. J., R. J. Luxmoore, and J. L. Stolzy, 1977, "Effects of Spatial Variability of Soil Hydraulic Properties in Water Budget Modeling," <u>Water Resources</u>

- Research, Vol. 13, No. 2, pp. 348-354.
- [12] Peak, A. J., R. McQuivey, T. Keefer, E. R. Johnson, and J. Erekson, 1981, "Review of Hydrologic Models for Evaluating Use of Remote Sensing Capabilities," NASA CR 166674, Hydrex Corp., Pairfax, Virginia.
- [13] Hildreth, W. W., 1981, "Comparison of the Characteristics of Soil Water Profile Models," NASA -15700, Lockheed Eng. and Management Services Co., Inc.
- [14] Jackson, R. D., 1972, "On the Calculation of Hydraulic Conductivity," Soil Sci. Soc. Amer. Proc. Vol. 36, pp. 380-382.
- [15] Armstrong, B. L., 1978, "Derivation of Initial Soil Moisture Accounting Parameters from Soil Properties for the National Weather Service River Porecast System," NOA Technical Memorandum NWS HYDRO 37, National Weather Service.
- [16] Eagleman, J. R., 1971, "An Experimentally Derived Model for Actual Evapotranspiration," <u>Agr. Met.</u>, Vol. 8, pp. 385-394.
- [17] Clapp, R. B., and G. M. Hornberger, 1978, "Empirical Equations for Some Soil Hydraulic Properties," Water Res., Vol. 14, No. 4, pp. 601-605.
- [18] Doorenbos, J., and W. O. Pruitt, 1977, "Guidelines for Predicting Crop Water Requirements," FAO Irrigation and Drainage Paper 24, United Nations Food and Agriculture Organization.
- [19] United States Department of Agriculture, 1970, "Irrigation Water Requirements," Technical Release 21, USDA/Soil Conservation Service.
- [20] Hershfield, D. M., 1961, "Rainfall Frequency Atlas of the U.S.," Hydrologic Service Division, Soil Conservation Service, U.S. Department of Agriculture, Washington, D.C.
- [21] Dunin, F. X., 1976, "Its Simulation for Field Conditions," Chapter 8 in J. C. Rodda (ed.): <u>Facts of Hydrology</u>, pp. 199-227, Wiley, London.
- [22] Komp, E. E., V. S. Frost, and J. C. Holtzman, 1983, "Reference Manual for the Radar Image Simulator," RSL Technical Report 581-2, University of Kansas Center for Research, Inc., Lawrence, Kansas.

APPENDIX A

DYNAMIC SOIL WATER ACCOUNTING MODEL

The purpose of a soil water-budget model within the context of realistic radar image simulation is to generate a distribution of near-surface (0-5 cm) soil moisture conditions at the spatial scale of the static terrain data base (100 m x 100 m) which responds to both static conditions (soil type, cover type, and surface slope) and dynamic conditions (crop stage, rain, and potential evaporation) on a time scale relevant to both the dynamics of the process and the orbital mechanics of an imaging satellite (daily basis). While many excellent water-budget models are available for various applications in agronomy and hydrology [11 to 15], no single model meets all the above criteria. Indeed, most such models require more detailed information on soil profile characteristics and weather conditions than is readily available for the simulation area. In addition, most models are designed to operate at a spatial scale much less than field size and over time increments significantly less than one day, or conversely, they are most appropriately applied to very coarse integration times on the order of weeks for a simple set of input parameters and at a macroscopic level much larger than field size.

Because of the large size of the data base

(approximately 1,339,000 grid cells), it is necessary to
tailor a model that emphasizes the surface horizon and
requires a minimum of information as to soil profile and

detailed local weather conditions, and yet is still sensitive to daily variation in soil moisture. A schematic of the final process model is shown in Figure A.1; it consists largely of the following components:

storm model,
surface runoff model,
crop development submodel,
evapotranspiration model, and
and interlayer redistribution model.

When given dynamic inputs of crop type, crop stage of development, rainfall, and potential evaporation, the model acts upon the static terrain model to yield daily projections of 0-5 cm soil moisture for each grid cell. It also governs the redefinition of canopy cover categories based on crop calendar changes or local flooding conditions, and these categories are then used as input to the radar simulation program's target/sensor interaction model.

A.1 Storm Model

Daily rainfall measurements as reported by 25 stations located in and around the test site were used as the basis for the storm model. Figure A.2 shows the location of the test site. Table A.1 shows the daily rainfall reported at each of these stations for the simulation period; May 18 through June 9. A grid map of estimated rainfall, with a resolution of 3 km by 3 km, was produced from measured rainfall data at these irregularly spaced recording stations

Figure A.l. Dynamic Soil Water Accounting Model (SWAM).

C-2

Figure A.2. Test site location.

ONICHVIL FYEND 10 OF POOR QUALITY

MOHVED EN	77	 9-6	2007 2007	1100	8.
E CE	<u> </u>		7		
CLINTON					
•	0.00 1 0.00	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10			
- 07ESSA - 60TON(X33	44 44				
-	4	·	 6nn	: : - ~ : :	
-4s odnadola	100		6,4,4 6,4,4 6,4,4,4,4,4,4,4,4,4,4,4,4,4,		
- APPLETON CITY	800		 	7 7	
ABUTUE	<u> </u>		• • • • • • • • • • • • • • • • • • •		
TECS 5091					
בוורחנדר	200	4			
KANSAS CITY	0.0	87 B		9. 6.	
ruchene -	2				
OLATHE	 	6 m		0.00 0.00 0.00 0.00	
жолив сііх	9,0	4.5	9:		:
#70bd	50 PZ	4P.		2.6 5.6	
31noTAVA20	4.6			 040 080	
ГупвенсЕ	2.2		 	2222	2322
TT3N8AD	0.60	e; 			7.7
AMATTO	7.7	2	, 5º	 8.6.	
MOKDEN	2,54	* **		**************************************	
яна нотиглэ	4.0		";	7	
LECOMPTON	7:	2.3	• •	E - 9	
PHILLIAMSBURG	211.2				
RAG ANONOS	4.0	n 17	:	- 4	
, VANERLY	25.00 0.00		9.50	£ £ £ £	
V0R3J	5.19		1.2	5. 5.	5:1
TOPEKA USPO AF	6	6.0	7	7 7	?
YAG MAIJUL	129	TYTTY	55 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	252	159
i.	FAY 181				

a Epen ! Hean of 11 stations for non-rainy days

Table A.1. Daily reported rainfall at 25 recording stations in and around the test site during the simulation period for 1981.

for every day during the simulation period that all or part of the test site received some rain. Pigures A.3 and A.4 shows the amount of rain reported by each station on Julian day 144, and the estimated rainfall map for that day, respectively. These generated rainfall grid maps made available the total daily rainfall in cm received by each test site data base cell. An image representation of all rainfall grid maps has been shown on Figure 5.

Rainfall intensity is calculated as a daily constant from the minimum recorded daily storm duration according to

Iday = daily constant intensity, cm/hr

D_{dav} = daily minimum recorded duration, hrs.

t = storm type (2-year or 5-year), and

a and b are constant for each storm type.

The constants a_t and b_t are solved from a plot of local rainfall intensity-vs-duration curves for recurrence intervals of 2 or 5 years. For each day of the simulation, a rainfall event is classified as either a 2-year or a 5-year event based upon the maximum recorded rainfall at all gauging stations on that day. If net daily rainfall at any gauge exceeds a critical value M, then that day will be classed as a 5-year event and a_t and b_t will be used from the 5-year intensity-vs-duration curve; otherwise a_t and b_t will be used for a 2-year event. M is defined by

$$M = 10^a * D^{b+1}/(b+1)$$
 (A.2)

Figure A.3. Measured rainfall as reported on Julian day 144 at all stations in and around the data base (maximum rainfall is 4.8 cm).

Figure A.4. Estimated rainfall on Julian day 144 for each 3×3 km area in the data base.

where a and b ame 2-year coefficients. Por the rainfall data given in Table A.1, the maximum net daily rainfall never exceeded M, therefore the 2-year coefficients were used in all precipitation events.

A.2 Surface Runoff Model

The surface runoff model considers only the net effect of local surface slope and does not explicitly account for water retention and impoundment by soil surface roughness, tillage practices, and the presence of terraces. The water available for drainage as lateral surface flow is equal to the sum of standing water remaining from the previous daily accounting period plus the incident rainfall in excess of that which can infiltrate the surface layer and the root layer. The drainage D is computed from remaining standing water and local surface slope by

$$D = SW * (1.1 - 0.8^{\alpha})$$
 (A.3) where

SW = standing water

α = the slope angle of the surface from horizontal in degrees.

The term $1.1 - 0.8^{\alpha}$ is defined as the drainage coefficient and is plotted versus surface slope (in percent) in Figure A.5.

A.3 Evapotranspiration Model

Evapotranspiration is calculated differently for cropped

Variation in drainage coefficient as a function of soil surface slope in the soil water accounting model (SWAM). Figure A.5.

and bare soil surfaces. For bare soil surfaces, the actual evaporation is depleted solely from the soil surface layer, while for vegetated surfaces a static root distribution model removes 30 percent of the actual evapotranspiration from the 0-5-cm layer and removes the remaining 70 percent of actual evapotranspiration from the "root zone." For simplicity, the "root zone" is assumed to be one meter in depth and is treated as a constant with time and for all crops.

For bare soil, actual evaporation, AE, is computed from potential evaporation, PE, as limited by antecedent soil moisture in the surface layer and soil hydraulic properties. Accounting is performed on a daily basis using the mean daily pan evaporation recorded at 11 stations in the study area as shown in Table A.1 for 1981.

An experimental model is used to calculate actual evaporation from potential evaporation PE:

$$AE = PE * k_{soil} * k_{storm}$$
 (A.4)

where

$$k_{\text{storm}} = (24 - T)/24,$$
 (A.5)

k_{soil} = soil limiting coefficient

T = the duration of storm, and

$$PE = k_p * E_{pan'}$$
 (A.6)

where

k_n = pan coefficient, and

E_{pan} = measured pan evaporation.

The soil limiting coefficient $k_{\mbox{soil}}$ is defined by an experimental model [16] dependent upon PE and soil

properties.

$$k_{soil} = A + B(MR) + C(MR)^2 + D(MR)^3$$
 (A.7)

where A, B, C, and D are empirically derived coefficients dependent upon PE, and MR is the moisture ratio. Regression fits to experimental data yield [16]:

$$A = -0.05 + 0.732/PE$$
 (A.8)

$$B = 4.97 - 0.661 PE$$
 (A.9)

$$C = -8.57 + 1.56 PE$$
 (A.10)

$$D = 4.35 - 0.88 PE$$
 (A.11)

The moisture ratio MR is related to soil water retention characteristics via

$$MR = (\theta - WP)/(FC - WP)$$
 (A.12)

where

e = measured soil moisture,

WP = soil moisture at wilting point, and

FC = soil moisture at field capacity.

Assuming wilting point and field capacity to be defined as matric potentials of 15 bars and 1/3 bars, respectively, WP and FC can be defined from soil textural components using the approach of Clapp and Hornberger [17]

$$FC = \theta_{a}(\gamma_{a}/333)^{1/b}$$
, and (A.13)

$$WP = \theta_{s}(\phi_{s}/15,000)^{1/b}$$
 (A.14)

where

 θ_{s} = soil moisture at saturation,

 ψ_{s} = matric potential at saturation, and

b = an empirically derived value related to soil
 texture.

Por a given soil, $\theta_{\rm B}$ is calculated from the soil bulk density profile and $\phi_{\rm B}$ and b are defined by A-horizon soil texture using values given in [17]. Thus, for a given day, the terms in Eq. A.4 are dependent on the antecedent soil moisture and the gross water-retention characteristics of each soil.

For vegetated soil, the actual evapotranspiration, ET_{crop}, is computed by a modification of the Blaney-Criddle formulation used in estimating crop irrigation requirements [18,19]. Although the method is designed for an effective integration period of weeks to months, the simplicity of its input requirements makes this a practical approach for such a large number of coarse grid cells. Basically, crop consumption of water over the rooting depth varies with temperature, length of day, available soil moisture, crop type, crop stage of growth, relative humidity, and windspeed. To simplify the formulation, average measured values of temperature, day length, relative humidity, and windspeed are assumed on a seasonal basis for the simulation area. The resultant expression for ET_{crop} becomes:

ET_{crop} = PE * k_{crop} * k_{storm} (A.15)
where

k_{crop} = crop coefficient.

Crop coefficient as adjusted for mean local climate is plotted in Figure A.6 as a function of number of days after planting for several of the crop covers included in the data base. Crop consumption of the water is seen to be dependent on both crop and stage of crop development. Before the crop

ORDENNA: TRACTION OF POOR QUALITY

planting for several representative crops found within the simulation area. Crop transpiration coefficient as a function of time from Figure A.6.

canopy has attained 20% ground coverage and again after harvest, the soil is treated as bare for both evapotranspiration and also for radar backscatter category.

A.4 Crop Development Model

The length of time required for a given agricultural field in the simulation data base to progress from one crop-development stage to the next is established from data gathered by the Statistical Reporting Service of the United States Department of Agriculture. The simulation area lies at the East Central reporting district of Kansas (No. 6). Figure A.7 presents a summary of mean crop development over a 10-year period as enumerated by AgRISTARS [20] for this crop reporting district. These percentages are used to define crop development stage within the simulation on a field-by-field basis. Thus, each distinct agricultural field in the data base is assigned one of the 10 planting dates. Hence, there are ten different absolute crop calendars possible for each crop type identified in Table 1.

Planting dates are randomly assigned to field codes for a specific crop based upon Figure A.7. This procedure results in the introduction of a significant source of between-field variance of soil moisture within a given crop type due to the effect of crop development stage on evapotranspiration. It also allows for a given field to have its taget classification changed in Table 1, since a medium-rough bare field becomes a cropped field after

	LEGEND
E	Under stage name, indicates rough estimate of date
EMG	Emergence
HED	Heading
HRV	Harvest
INT	Jointing
PLT	Planting
Ħ	Aipr
20	Safr dough
TRN	Turning
FLR	Flowering
C	Cut
TAS	Tasseiing

Figure A.7. Percent of crop are in development stage by specified date for Kansas crop reporting district 6 average crop calendars from 1963 to 1973 [20].

emergence, and finally reverts to bare soil status after harvest. As implemented, this procedure gives the data base a dynamic crop-category mix that can be modified to match regional agricultural practices such as double-cropping or dynamic soil surface roughness conditions.

A.5 Interlayer Water Redistribution

Infiltration of water into the surface layer, percolation of water into the root zone, and capillary recharge of surface layer moisture are controlled by the matric-potential profile as limited by soil structure.

A pixel's infiltration capacity during rainfall is given by [21]

t = duration of rain event, hrs.

 k_g = hydraulic conductivity at saturation

₱s ≈ suction at field capacity

 $\theta_{g} = \text{prosity} = 1 - \rho_{b}/\rho_{g}$

 $\rho_h = \text{soil bulk density, g/cm}^3$

 ho_8 = soil specific density = 2.65 g/cm³ for all soils. After rainfall ceases, infiltration proceeds at a rate defined by $k_8/2$ for the remaining time of the accounting period (24-t) or until all standing water is depleted. Thus, a pixel's infiltration capacity from standing water is defined as

$$i_{gW} = k_g/2 * (24 - t)$$
 (A.17)

and is limited by the amount of standing water. Hence, total infiltration into the surface layer of the soil, i_t , is determined by

$$i_t = i_r + i_{sw}$$
 (A.18) where

ir < total rainfall received by the pixel

i_{sw} < standing water available.

Water will percolate from the surface layer (0-5-cm) into the root zone for all accounting periods where the surface layer's water content after infiltation exceeds the water content at field capacity (as determined by Equation A.13), such that final surface-layer's water content is reduced to less than porosity.

This is accomplished by first allowing excess water to drain from the root zone (5-100 cm depth). One third of the volumetric moisture in excess of root zone field capacity is allowed to drain gravitationally each day and hence is removed from further accounting periods. Then, assuming that the water content in the surface layer exceeds field capacity, the excess is permitted to percolate into the root zone at the minimum of either

$$R_{i} = \frac{T k_{s}}{2\alpha} \tag{A.19}$$

where

 R_i = net percolation into the root zone,

 α = a damping coefficient arbitrarily set to 48, and

T = duration of accounting period = 24 hours or 1/3 of excess water is allowed to percolate

$$R_{i} = (\theta - FC)/3$$
 (A.20)

where 8 and FC are for the surface layer.

When evapotranspirative losses cause surface-layer water content to be reduced below wilting point, capillary recharge of the surface 5 cm of soil is allowed to occur during the night for a duration of 12 hours. The rate of the surface recharge is equal to $k_{\rm g}/2$ and is arbitrarily limited to a maximum of 0.25 cm of water. Furthermore, capillary recharge is not allowed to raise surface layer water content above wilting point.

A.6 Within-Field Variability in Surface Soil Moisture

Prior to radar image simulation, the surface layer soil moisture values determined by the water-budget model for each 100-m by 100-m grid cell are randomized to approximate the natural variability in soil moisture measured within "homogeneous" fields. Randomization was performed on a grid-cell basis by a Gaussian random-number generator with a standard deviation of 6 percent $M_{\rm fg}$ [2].

A.7 Generation of Soil Moisture Distributions

The dynamic soil water accounting model (SWAM) was initialized on Julian day 138 and moisture distribution maps of the test site were produced for every day of the simulation period.

These moisture maps indicated the percent of the 1/3-bar water content ${\rm M_{fs}}$ in the 0-5 cm layer where

 $M_{fs} = 100 \times \theta/FC$ (A.21) where

0 = measured soil moisture

FC = soil moisture at field capacity.

The resultant distributions were then examined and the three most closely approximating moderately dry, moist, and wet soil surface conditions were selected for radar image simulation. Image representation of 0-5-cm soil moisture distribution for Julian day 141, 150 and 160 are shown on Figure 6.

DEFINITIONS

PAUSDATE	An array which contains the Julian days on which the output moisture map needs to be saved.
STRTDATE	Julian day on which the process should begin.
STOPDATE	Julian day on which the process should stop.
RAINDATE	An array containing the Julian dates which all or part of the database received some rain.
ALLINTS	An array containing the mean rain intensity of each rainy day.
RAIN	Amount of rain received by a cell on a certain day in cm.
Inthsity	Intensity of the rain for a cell in cm/hour.
DUR	Duration of the rain for a cell in hours
PERCENTS	In soil data subrostine. An array of percent probability of occurrence of soil bulk density associated with each of eight soil types present in our data base.
SFBULK	Quantized levels of surface layer (0-5 cm) bulk density associated with "PERCENTS".
RTBULK	Quantized levels of root layer (5-100 cm) bulk density associated with "PERCENTS".
В	An array containing b values for all 15 soil textures as estimated from Clapp & Hornberger, 1978.
FSUCTION	An array containing the suction ψ_f (at field capacity) for all 15 soil textures (see Clapp & Hornberger, 1978).
SSUCTION	An array containing the suction ψ_s (at saturation) for all 15 soil textures.
SHYDCOND	An array containing the hydraulic conductivity at saturation \mathbf{k}_{s} for all 15 soil textures.

SATHC Hydraulic conductivity at saturation.

PDATES An array containing ten different planting

dates for each crop type.

STAGEDAY An array containing the number of days after the planting date which the crop

advances to a new crop growth stage (five

different stages) for each crop type.

KEQCONST An array containing two parameters

(slope and intercept) describing the change in K_{CROP} at each stage and for

each crop type.

KCROP Crop transpiration coefficient.

SW Standing water (cm).

SWINF Amount of standing water which

infiltrates to the surface layer (cm).

RAININF Amount of rain which infiltrates

to the surface layer.

MPC Water content expressed as a percent

of field capacity.

DRAIN Amount of excess water which is drained

from the root zone (cm/cm).

SWRUNOFF Amount of water runoff from standing

water (cm).

RECHRG Capillary recharge (cm).

ETO An array containing the potential

evaporation (cm) for every day of the

simulation period.

SWEVAP Amount of evaporation from standing

water.

KSOIL Bare soils evaporation coefficient.

The following variables are prefixed by "SF" or "RT" indicating the surface layer (0-5 cm) or root zone (5-100 cm), respectively.

BD soil's bulk density

PROS soil's porosity

FC soil's water content at field capacity (cm/cm)

wp soil's water content at wilting point (cm/cm)

WC water content (cm/cm)

EVAP amount of evaporation (cm)

```
UNIVERSITY OF KANSAS REMOTE SENSING LAR
     C PROGRAM SUITE : RADAR SIMULATION REF. # 1 RSL REPORT 601-1
           C PROGRAM NAME: SUAM
                                                                         AUTHOR: SAIED MOEZZI DATE: MAY 1983
      C LANGUAGE : FORTRAN ??
     C PURPOSE: THE PURPOSE OF PROGRAM SUAM (SOIL WATER ACCOUNTING MODEL)
C IS TO GENERATE A DISRIBUTION OF NEAR-SURFACE (0-5 CM) SOIL MOISTURE
C CONDITION AT THE SPATIAL SCALE OF THE STATIC TERRAIN DATA BASE WHICH
C RESPONDS TO BOTH STATIC CONDITIONS (SOIL TYPE, COVER TYPE, AND SURFACE
C SLOPE) AND DYNAMIC CONDITIONS (CROP STAGE, RAIN, AND POTENTIAL EVAPO-
C RATION) ON A DAILY BASIS.
10
15
                                                 PARAMETER DEFINITION
16
17
                                                                                           DESCRIPTION
18
19
                           FIRST ROW OF THE INPUT MATRIX TO BE PROCESSED
LAST ROW OF THE INPUT MATRIX TO BE PROCESSED
FIRST COLUMN CELL OF THE INPUT ROWS TO BE PROCESSED
LAST COLUMN CELL OF THE INPUT ROWS TO BE PROCESSED
NUMBER OF CELLS IN EACH OUTPUT ROW
NUMBER OF CELLS IN EACH INPUT ROW
NUMBER OF TIMES THAT PROGRAM SHOULD PAUSE DURING
SIMULATION PERIOD FOR SAVING THE MOISTURE MAP
     C IROU1
20
          IROUZ
          ICOL1
      Č
23
          ICOLZ
24
          IOTCOL
      C NCOL
      Č
          NPAUSE
27
28
29
30
                                               SUBROUTINES REQUIRED
                 NAME
31
                                                                                               DESCRIPTION
32
                                             RETURNS THE AMOUNT OF RAIN (CM), DURATION (HOURS) AND INTENSITY ( CM/HOUR ) FOR A GIVEN CELL ON A SPECIFIED JULIAN DAY.
1THIS ROUTINE CONTAINS ALL 4 WATER ACCOUNTING MODELS LEACH AS A SEARATE ENTRY. THESE ENTRIES ARE & SURFINF.
       C RAINFALL
3S
      C INTRLAYR
36
37
                                             TROOTINF, RUNOFF AND RECHARGE.

ITHIS ROUTINE IS USED FOR INITIALIZATION PROCESS AND

IHAS TWO ENTRIES. THESE ARE: COMMENCE AND DAWN.

ITHIS ROUTINE SIMULATES THE EVAPORATION PROCESS FOR A

IGIVEN CELL ON A SPECIFIED JULIAN DAY.

ITHIS ROUTINE GETS ALL STATIC CONDITIONS OF A GIVEN
BĒ.
      C INITIALZ
39
40
       C EVAPORAT
42
      C CELLDATA
43
                                            IDATA BASE CELL.

ITHIS ROUTINE GETS THE DYNAMIC CONDITIONS OF A GIVEN
IDATA BASE CELL WHICH IS REGISTERED AS A CROP TYPE.

ITHIS ROUTINE GET ALL THE REQUIRED INFORMATION
ITHAT IS BASED ON THE SOIL TYPE FOR A GIVEN CELL.

ITHIS ROUTINE OPENS ALL THE INPUT AN OUTPUT FILES.
ITHIS ROUTINE CONTAINS TWO ENTRIES FOR READING AND
IWRITING INPUT AND OUTPUT RECORDS. THESE ARE: READREC,
45 C CROPDATA
46
      C SOILDATA
 47
 48 C
 49 C GETFILES
      C IOCALLS
                                              IAND WRITDATA.
52 C
53 C UPDTHIST
                                              ITHIS ROUTINE IS USED FOR UPDATING A GIVEN HISTIGRAM. ITHIS ROUTINE IS USED FOR WRITING OUT A GIVEN
       C OTPTHIST
 55 C
                                              IHISTOGRAM.
 56 COPNFIL
                                              TEXTERNAL FUNCTION CALLED BEY 'GETFILES' ROUTINE
 57 C
 58 C +----
 59 C
 60 C
                     PARAMETER ( IROW1-1, IROW2-1077, ICOL1-1, ICOL2-1245, IOTCOL-1245 )
PARAMETER ( NPAUSE-4 , NCOL-1245 )
 61
 62
 63 C
 64 C
                       INTEGER PAUSDATE( NPAUSE ), FC( 14 ), HHMMSS( 3 )
INTEGER WATER, SOIL, ELEU, CATG, CAT, COL, ROW, DATE
STRIBATE, STOPDATE, CROP, FIELD, DAY
KCROP, INTNSITY, MFC
CHARACTER*8 TYPE, TYPENOU
LOGICAL PAUSE
 65
 66
 67
 68
 69
  70
```

OF POOR CUALITY

```
COMMON /BUF3/ MFCOUT( NPAUSE, NCOL ), ICATOUT( NPAUSE, NCOL )
            SPECIAL COMMON BUF3
COMMON /BUF4/ MFCHIST( NPAUSE , 256 ), ICATHIST( NPAUSE , 31 )
72
73
74
            SPECIAL COMMON BUF4
75
76
            COMMON
                      /BLOCK/
          & SATHC, SUCTION, SFPROS, RTPROS, SFFC, RTFC, SFUP,
          & SU. SFUC, RTUC, KCROP,
& DAY, RAIN, DUR, INTHSITY, SLOPE, TYPENOU
COMMON /FILCOD/ FC
77
78
79
            DATA WATER/ 10 /. STRTDATE/ 138 /. STOPDATE/ 160 / DATA PAUSDATE/ 140, 141, 150, 160 /
80
81
82 C
83
84
    Ċ
            URITE(13.101) IROU1, IROU2, ICOL1, ICOL2
85
86
87
             INITIALIZE ALL NECESSARY UARIABLES
88
 89
             CALL COMMENCE
 90
    Ĉ
91
92
    C
             PROCESS EVERY CELL IN THE DATA BASE
 93
             FOR ROW-IROWS, IROWS
 94
    C
 95
    C
             AFTER PROCESSING EVERY 100 RECORDS SEND A MESSAGE TO TO TERMINAL
    ¢
 96
             #F( MOD(ROW,10) .EQ. 0 ) THEN
 97
 98
             GALL TIME (HHMMSS)
 99
             URITE(11,103) ROU, HHMMSS
106
             END IF
101
             FOR COL*ICOL1, ICOL2
102
103 C
             GET REQUIRED INFORMATIONS FOR THE CELL BEING PROCESSED
184 C
105
             CALL CELLDATA( ROW.COL.ELEU.SOIL,CATG.SLOPE,TYPE,CROP,FIELD )
106
             IF( TYPE .EQ. 'NONAGRIC' ) THEN
107 C
             THIS IS NOT AN AGRICULTURAL CELL THEREFORE SHOULD NOT BE TREATED IN MOISTURE COMPUTATION. UPDATE THE OUTPUT ROW AND START WITH NEXT CELL IN THE DATA BASE.
108 C
109 C
110 C
111 C
             FOR IP-1, NPAUSE
MFCOUT( IP , COL ) = 0
ICATOUT( IP , COL ) = CATG
CALL UPDTHIST( 0 , MFCHIST, IP, 0, 250 )
ICAT = CATG / 10
112
113
114
115
116
117
             CALL UPDTHIST( ICAT, ICATHIST, IP, 0, 25 )
118
             END FOR
119
             ELSE
120 C
121 C
122 C
             ELSE THIS CELL IS AN AGRICULTURAL TYPE, START THE MOISTURE
             COMPUTATION AND CONTINUE FOR THE ENTIRE SIMULATION PERIOD.
123 C
124
             GET MORE INFORMATION ABOUT THE UNDERLAYING SOIL
125 C
126
             CALL SOILDATA( SOIL, SFPROS, RTPROS, SFFC, RTFC, SFWP,
127
                               SATHC, SUCTION )
128 C
129 C
             INITIALIZE THIS CELL'S MOISTURE FOR DAY ZERO
130 C
131
             CALL DAWN
132 C
133
             FOR DATE- STRTDATE, STOPPATE
134 C
135
136 C
             DAY . DAY + 1
137 C
             IF IT IS A RAINY DAY, THEN GET AMOUNT, INTENSITY AND THE
138 C
             DURATION OF THE RAINFALL ON THIS GROUND CELL BEING PROCESSED
139 C
140
             CALL RAINFALL( DATE, ROW, COL, RAIN, INTHSITY, DUR )
```

CALLAND TOOK OF TO

```
141 C
142 6
            IF THE GROUND CELL IS REGISTERED AS A CROP THEN GET
143 C
            KCROP AND CROP STAGE
144 C
                                      ') THEN
145
            IF( TYPE .EQ. 'CROP
            CALL CROPDATA( CROP, FIELD, DATE, KCROP, TYPENOU )
146
147
            END IF
148 C
149 C
            PROCESS ALL SOIL WATER ACCOUNTING MODELS
150 C
151 C
152 C
            1: PONDING AND INFILTRATION INTO THE SURFACE LAYER (0 - 5 CM)
153 C
154
            CALL SURFINFL
155 C
            2: PERCOLATION OF WATER INTO THE ROOT ZONE (5 - 95 CM)
156
157 C
158
            CALL ROOTINFL
159 C
            3: STANDING WATER RUNOFF DUE TO LOCAL SLOPE
160 C
161 C
162
            CALL RUNOFF
163 C
164 C
             4: EUAPOTRANSPIRATION
165 C
166
             CALL EVAPORAT
167 C
168 Č
             5: CAPILLARY RECHARGE OF THE SURFACE LAYER
169 C
170
             CALL RECHARGE
171
172
173
    Č
             COMPUTE % OF FIELD CAPACITY OF SOIL MOISTURE BASED ON SURFACE
174
             LAYER'S WATER CONTENT
176
177 C
             MFC = 100.0 # SFUC / SFFC
178
179
             CHECK TO SEE IF THIS IS A PAUSE DAY, IF IT IS THEN RECORD
                  COMPUTED "HFC" AND
180 C
                                         THE REASSIGNED CATEGORY.
             (PAUSE DAY IS THE DAY THAT THE MOISTURE MAP MUST BE SAVED)
181 C
185 C
183
             PAUSE - .FALSE.
             FOR IP+1, NPAUSE
IF( DATE .EQ. PAUSDATE( IP ) )
184
185
                                                   THEN
186
             PAUSE . TRUE.
             GOTO 100
END IF
END FOR
187
188
189
             IF ( PAUSE ) THEN
190
      100
191 C
192 C
             APPLY A GAUSIAN DISTRIBUTION WITH COMPUTED *MFC * AS THE
193 C
             MEAN, AND 6% MFC AS THE STANDARD DIVIATION
194 C
195
             IMFC = NINT( RANN( MFC , 6.0 ) )
196 C
197 C
             SET LOWER LIMIT OF % FIELD CAPACITY TO ONE
198 C
199
             IF( IMFC .LT. 1 ) IMFC=1
200 C
201 C
             SAVE COMPUTED "MFC" FOR THIS PAUSE DAY
505 C
203
             MFCOUT( IP , COL ) . IMFC
204 C
             REASSIGNMENT OF THE REGISTERED_CELL'S_CATEGORY
205 C
             1: CHANGE THE CATEGORY TO WATER IF THERE IS STANDING WATER ON THIS GROUND CELL
206 C
207 C
             2: CHANGE THE CATEGORY TO WATER IF SURFACE LAYER'S WATER CONTENT EXCEEDS THE UNDERLAYING SOIL'S PROSITY
3: IF THERE IS NO STANDING WATER AND CELL IS REGISTERD AS A
208 ¢
569 C
210 C
```

į.

OF POUR QUALITY

```
211 C
                     CROP TYPE, THEN CHANGE THE CATEGORY TO BARE SOIL WHEN
                     BEFORE EMERGENCE OF THE CROP OR AFTER HARVEST
515 C
213 C
                IF( SU .GT. 0 ) THEN CAT - WATER
214
215
§16
                ELSE
                IF( SFUC .LT. SFPROS ) THEN CAT - CATG
217
818
                                               ') .AND.(TYPENOU.EG.'SMTHBARE')) CAT - 210
                IF ( CTYPE . EG . 'CROP
219
                IF ( CTYPE.EQ. 'CROP
                                               ') .AND. (TYPENOU.EQ. 'MEDMBARE')) CAT - 200
888
155
                ELSE
                CAT . WATER
522
                END IF
223
224
                ICATOUT( IP , COL ) = CAT ICAT = CAT / 10
225
226
227 C
228 C
                UPDATE THE HISTOGRAMS
229 C
                CALL UPDTHIST( IMFC, MFCHIST, IP, 0, 250 )
CALL UPDTHIST( ICAT, ICATHIST, IP, 0, 25 )
830
531
535 C
533
                END IF
234
                END FOR
235 C
                 DONE WITH MOISTURE ESTIMATION FOR THIS CELL
237 C
853
                 END IF
239
                 END FOR
240 C
                 DONE WITH ALL THE COLUMNS OF THIS ROW WRITE OUT THE COMPUTED MFC AND THE REASSINED CATEGORIES OF THIS ROW TO THE OUTPUT FILES FOR ALL PAUSE DATES.
 241 C
 242 C
 243 C
 244 C
                 CALL WRITDATA( 1. MFCOUT. IOTCOL )
CALL WRITDATA( 2, ICATOUT, IOTCOL )
 245
 246
 247 C
                 END FOR
 248
 249 C
                 SOIL MOISTURE ESTIMATION IS DONE FOR THE ENTIRE DATA BASE
 250 C
                 WRITE OUT A REPORT OF THE FINAL MOISTURE AND CATEGORY MAPS
 251 C
 252 C
 253
                        IP-1, NPAUSE
                 URITE(13,104) 'MFC ', PAUSDATE( IP CALL OTPTHIST( MFCHIST, IP, 0, 250 )
URITE(13,104) 'CATEGORY', PAUSDATE( IP )
CALL OTPTHIST( ICATHIST, IP, 0, 25 )
                                                       PAUSDATE( IP )
 254
 255
 256
 257
                 END FOR
 258
                 CALL TIME(HHMMSS)
URITE(13,'(* COMPLETED AT URITE(11,'(* COMPLETED AT
 259
                                                          eammhh ('(EAE,"
 260
                                                           *.3A3)') HHMMSS
 261
                 URITE(11,102)
 262
 263
                 WRITE(13,102)
 264
                 STOP
              FORMAT(///, S O I L U A T E R A C C O U N T I N G',

S' P R O G R A M'//, SUAM WAS PROCESSED ON THE DATA BASE'//

ROW'IS, THROUGH ROW'IS, COL'IS' THROUGH COL'IS)

FORMAT(' * * * A L L D O N E * * *')

FORMAT(' P R O C E S S E D T H N O U G H R E C O R D', 5X,
        101
 265
 266
 267
                                                                                    THROUGH COL'IS)
 268
        102
                                                                                   R E C O R D',5X,14,
 269
        103
 270
              (EAE, XE &
 271
                FORMAT(*1*,A8,' H I S T O G R A M FOR JULIAN DAY'IS)
                 END
 272
```

```
Chiano Co
273 C
274 C
                                                יייינילע אטטא אס
275 C----RAINFALL
276 C
277 C
            THIS ROUTINE READS THE RAINFALL DATA AND RETURNS THE AMOUNT
278 C
            OF RAIN, DURATION, AND INTENSITY FOR A GIVEN CELL WITHIN THE DATA BASE ON A SPECIFIED JULIAN DAY.
RAIN IS IN UNITS OF CENTIMETERS, INTENSITY IS IN CM/HOUR,
279 C
280 C
281 C
285 C
            AND DURATION IS IN HOURS.
283 C
284
285
             SUBROUTINE RAINFALL( DATE, DBROW, DBCOL, RAIN, INTHSITY, DUR )
            IMPLICIT INTEGER ( A - 2 )
PARAMETER ( NDAY-13 , NRCOL-42 )
586
287
588
             COMMON /BUF5/ ROURAIN( NRCOL, NDAY), RAINDATE( NDAY)
589
             SPECIAL COMMON BUFS
290
            DIMENSION FC(14)
             COMMON /FILCOD/ FC
291
                  RAIN, DUR, INTHSITY, ALLINTS( NDAY )
RECPTR / 0 /
592
             REAL
593
             DATA
294
                    RAINDATE
             DATA
295
          & / 138,139,143,144,148,149,150,151,153,154,155,159,161 /
296
             DATA ALLINTS
297
          & / 1.2,1.7,1.7,3.6,2.3,2.3,3.6,1.4,3.6,3.6,3.6,2.3,2.3 /
298 C
599 ¢
300 C
301 C
             READ RAINFALL DATA FOR ALL RAINY DAYS FOR THIS GROUND CELL
305 C
             RAINROU - ( ( DBROU - 1 ) / 30
RAINCOL - ( ( DBCOL - 1 ) / 30
303
304
305
             WHILE ( RECPTR .LT. RAINROW )
306
             FOR COL=1, NRCOL
             READ( FC(5), IOSTAT-105) ( ROWRAIN(COL, DAY), DAY-1, HDAY )
307
308
             IF( IOS .NE. 0 ) GOTO 99
             END FOR
309
             RECPTR - RECPTR + 1
310
311
             END WHILE
312 C
313 C
314 C
315 C
             CHECK IF THE DATE GIVEN WAS A RAINY DAY
316 C
317
             FOR DAY-1, NDAY
             IF( RAINDATE( DAY ) .EQ. DATE ) GOTO 10
318
319
             END FOR
350 C
381 C
             NO STORM ON THIS DAY, RETURN TO THE CALLING PROGRAM
355 C
323
             RAIN . 0.
324
325
             INTHSITY . 0.
             DUR - 0.
             RETURN
356
327
             A STORM OCCURED ON THIS DAY, GET THE AMOUNT OF RAIN RECIEVED
358 C
329 Ç
             BY THIS CELL ON THE GIVEN JULIAN DAY
330 C
             RAIN - REAL( ROWRAIN( RAINCOL, DAY ) )/ 10.0
331
333
             INTESTY - ALLINTS( DAY )
             DUR - RAIN / INTHSITY
334
             RETURN
335 ¢
336
337
      99
             URITE(11, '(1x, "ERROR **** WHILE READING RAINFALL ")')
             STOP
338
             END
```



```
339 C
349 C
341 C----INTRLAYR
342 C
343 C
             THIS ROUTINE CONTAINS ALL 4 WATER ACCOUNTING MODELS, EACH
344 C
             AS A SEPARATE ENTRY. THESE ARE 1-SURFACE INFILTRATION, 8-ROOT INFILTARION, 3-RUNOFF, 4-RECHARGE
345 Č
346 C
347 C
348
             SUBROUTINE INTRLAYR
349 C
350
             INTEGER
                             FC( 14 ), DAY
351
             REAL
                             KCROP, INTHSITY, MAXRTINE, MINRTINE
                             TYPENOU
             CHARACTER*8
352
                      /BLOCK/
             COMMON
353
           & SATHC, SUCTION, SFPROS, RTPROS, SFFC, RTFC, SFUP, & SW, SFWC, RTWC, KCROP, & DAY, RAIN, DUR, INTNSITY, SLOPE, TYPEHOW COMMON /FILCOD/ FC
354
355
356
357
358 C
359
             ENTRY SURFINFL
360 C
361
362 C
              COMPUTE AMOUNT OF 'RAIN' WHICH INFILTATES TO SURFACE LAYER
363 C
              IF( RAIN .GT. 0 ) THEN
364
              RI - SORT( DUR ) * SORT( EXSATHCXSUCTIONX( SFPROS-SFUC) ) +
 365
                    SATHC * DUR / 2
 366
 367
              RAININF . AMINIC RAIN
                                          RI )
              SU = SU + ( RAIN - RAININF
 368
              ELSE
 369
              RAININF . 0
 370
 371
              END IF
 372 C
 373 C
374 C
              COMPUTE AMOUNT OF "STANDING WATER" WHICH INFILTRATES TO SURFACE LAYER AFTER RAINFALL CEASES
 375 C
              IF( SW .GT. 0 ) THEN
SWI * SATHC * ( 24 - DUR ) / 2
SWINF * AMINI( SW , SWI )
 376
 377
 378
 379
              SU . SU - SUINF
              ELSE
 380
 381
              SWINF - 0
              END IF
 382
 383 C
              TOTAL AMOUNT OF INFILTRATION TO THE SURFACE LAYER IS THE SUM
 384 C
 385 C
              OF RAIN AND STANDING WATER INFILTARTION
 386 C
 387
              TOTALINF . RAININF + SUINF
 388 C
 389 C
              COMPUTE WATER CONTENT PER CENTIMETER OF SURFACE LAYER
 1190 C
 191
              SFUC . SFUC + TOTALINE / 5.0
 392
              RETURN
 393 C
 394 C
 395
              ENTRY ROOTINFL
 396 C
 397 C
 398 C
              COMPUTE PERCOLATION OF WATER FROM THE SURFACE LAYER INTO
 399 C
             .THE ROOT ZOON ( 5-100 CM )
 400 C
              FIRST DRAIN THE EXCESS WATER OUT OF ROOT LAYER
 401 C
 402 C
              IF( RTUC .GT. RTFC ) THEN DRAIN = (RTUC - RTFC) / 3
 403
 404
 405
              RTUC - RTUC - DRAIN
 406
              END IF
 407
 408 C
              THEN PERCOLATE
```

```
409 C
               IF( SPUC .GT. SFFC ) THEN
410
               SFUCI - SFUC
RTINF1 - 8.25 * SATHC
RTINF2 - (SFUC - SFFC) / 3
411
418
413
               SFUC - AMINI( SFUCI , SFPROS )
SFUC - AMAXI( SFUC-RTINFE , SFUCI-RTINF1 )
RTINF - (SFUCI - SFUC) * 5
414
415
416
               RTUC . RTUC + RTINF/95
417
418
               ELSE
               RTINF . 0
419
               RETURN
420
121
               END IF
422 C
               NOW CHECK THE SURFACE WATER CONTENT, IF IT EXCEEDS THE PROSITY OF THE SOIL TYPE MOVE THE EXCESS WATER TO THE
423
424 C
425 C
               STANDING WATER
426 C
               IF( SFUC .GT. SFPROS ) THEN SWADD - ( SFUC - SFPROS ) * 5
427
428
429
               SFUC - SFPROS
430
               SW . SW + SWADD
               END IF
431
432 C
43.7
               RETURN
13- C
435 C
436
               ENTRY RUNOFF
437 C
438 C
439 C
               COMPUTE RUNOFF CAUSED BY THE SLOPE FOR "STANDING WATER"
440 C
441 C
                IF( SU .GT. 0 ) THEN
SURUNOFF = SU X ( 1.1 - 0.8 **SLOPE )
SU = AMIN1( SU , SW-SURUNOFF )
442
443
445
                ELSE
446
                SURUNOFF . 0.
                END IF
447
448
449 C
 450 C
                ENTRY RECHARGE
 451
452 C
453 C
 454 C
                CAPILLARY RECHARGE IS ALLOWED TO COCURE DURING NIGHT FOR A .
                DURATION OF 12 HOURS
 455 C
 456 C
                IF( SFUC .LT. SFUP ) THEN
 457
                SFUC1 - SFUC
RECHRG - 0.25
SFUC - SFUC1 + RECHRG/5
IF( SFUC .GT. SFUP ) THEN
 458
 459
 460
 461
                SFUC - SFUP
 462
                RECHRG . (SFUC - SFUC1) # 5
 463
 464
                END IF
                RTUC . ( 95 * RTUC - RECHRG ) / 95
 465
 466
                ELSF
                RECHRG - Ø
 467
 468
                END IF
 469 C
                RETURN
 470
 471
                END
```

>


```
472 C
473 C
474 C-----INITIALZ
475 C
476 C
477 C
             THIS ROUTINE IS USED FOR INITIALIZING THE VARIABLES AS WELL
478 C
479 C
             AS INITIAL MESSAGES TO THE TERMINAL AND OUTPUT REPORT FILE.
480
             SUBROUTINE INITIALZ
481 C
482 C
                             DAYTIME( 2 ), DDMMMYY( 3 ), HHMMSS( 3 ), FC(14), DAY
483
             INTEGER
                             KCROP, INTHSITY
TYPENOU
484
             REAL
485
             CHARACTER*8
             COMMON
                      /BLOCK/
486
           & SATHC, SUCTION, SFPROS, RTPROS, SFFC, RTFC, SFWP,
487
          & SU, SFWC, RTUC, KCROP,
& DAY, RAIN, DUR, INTHSITY, SLOPE, TYPENOU
COMMON /FILCOD/ FC
488
489
490
491 C
492 C
493
             ENTRY COMMENCE
494 C
495 C
             AT THE BEGINING WRITE OUT A MESSAGE TO THE TERMINAL AND GET A SEED FOR RANDOM NUMBER GENERATOR FUNCTIONS BASED
496 C
497 C
498 C
499 C
             ON THE COMPUTER CLOCK
500
              CALL DATE( DDMMMYY )
             CALL TIME( HHMMSS )
CALL JDATE( DAYTIME )
501
502
503
              URITE(11,101) HHMMSS, DDMMMYY
              WRITE(13,101) HHMMSS,
PRIMNO - DAYTIME( 2 )
504
                                         DDMMMYY
505
              CALL IRANP( PRIMNO )
RETURN
506
507
508 C
509 C
510 C
511
512 C
              ENTRY DAWN
513 C
              THIS ENTRY INITIALIZES THE MOISTURE CONTENT OF A CELL
514
515 C
              SU - 0
516
              DAY . 0
SFUC - SFFC
517
518
              RTUC - RTFC
519
              RETURN
520
521 C
522
      101
              FORMAT(/// TIME:
                                    '3A3,'
                                                     DATE:
                                                             (EAE'
              END
523
```

ORIGINAL PAGE IS

```
524 C
525 C
526 C-----EVAPORAT
527 C
528 C
              THIS ROUTINE SIMULATES THE EVAPOTRANSPITATION ON A GIVEN
              DAY BASED ON THE DATA GATHERED. BARE SOIL, CANOPY COVERED OR WATER COVERED CELLS ARE EACH TREATED DIFFERENTLY.
529 C
530 C
531 C
532
              SUBROUTINE EVAPORAT
533 C
534
              PARAMETER ( NSDAY= 24 )
535 C
              INTEGER FC( 14 ), DAY
REAL ETO( NSDAY ), MR, KSOIL, KSTORM, KSWEUAP, KCROP, INTNSITY
REAL A( NSDAY ), B( NSDAY ), C( NSDAY ), D( NSDAY )
536
537
538
              LOGICAL FRETCALL
639
540
              CHARACTER#8 TYPENOW
              COMMON /DATA/ SWINF, RAININF, RTINF, SWRUNOFF, RECHRG, SWEVAP, SFEUAP,
541
542
           & RTEVAP
543
544
              COMMON
                        /BLOCK/
           & SATHC, SUCTION, SFPROS, RTPROS, SFFC, RTFC, SFUP, & SU, SFUC, RTUC, KCROP,
545
           & DAY, RAIN, DUR. INTHSITY, SLOPE, TYPENOU COMMON /FILCOD/ FC
546
547
              DATA FRETCALL/ .TRUE. /
548
              DATA ETO / 0.48, 0.22, 0.31, 0.48, 0.61, 0.58, 0.40, 0.46, 0.28, 0.27, 0.23, 0.15, 0.25, 0.25, 0.43, 0.33,
549
550
551
                              0.38, 0.28, 0.31, 0.31, 0.40, 0.68, 0.55, 0.59
552 C
553
              IF( FRSTCALL ) THEN
554
              FRSTCALL . FALSE.
555 C
556 C
              COMPUTE THE CONSTANTST FOR KSOIL'S POLYNOMIAL EQUATIONS
557 C
558
              FOR IDAY+1. NSDAY
              A( IDAY ) = -0.05
B( IDAY ) = 4.97
559
                                          0.732 / ETO( IDAY )
560
                                      -
                                          0.661 * ETO( IDAY
              C( IDAY ) = -8.57
D( IDAY ) = 4.35
561
                                          1.560 # ETO! IDAY
562
                                          0.880 # ETO( IDAY
              END FOR
563
564
              END IF
565 C
              PE - ETO( DAY )
566
              KSTORM = (24 - DUR) / 24.0
567
568 C
569 C
               IF THE GROUND CELL IS A CANOPY THEN COMPUTE EVATRANSPIRATION
              30% FROM SURFACE LAYER AND 70% FROM ROOT ZONE
570 C
571 C
              IF( TYPENOW .EQ. 'CANOPY
EVAP - PE * KCROP * KSTORM
572
                                               / ) THEN
573
              SFEUAP = AMIN1( SFUC*5 , 0.30*EUAP )
RTEUAP = AMIN1( RTUC*95 , 0.70*EUAP )
574
575
576
              SFUC - SFUC - SFEVAP/5
577
              RTUC . RTUC - RTEVAP/95
              IF( SU .GT. 0 ) THEN
SUINF - AMINI( SU , SFEVAP )
SU - SU - SUINF
578
579
580
581
              SFUC - SFUC + SUINF/5
582
              END IF
583
              RETURN
584
              END IF
585 C
               IF THIS CELL IS COVERED BY STANDING WATER THEN COMPUTE
586 C
587 C
               EVAPORATION OF STANDING WATER
588 C
 589
               KSWEVAP . 1
              IF( SW .GT. 0 ) THEN
EVAP - PE * KSTORM
590
591
592
               SUEUAP - AMIN1 ( SU , EUAP )
```

```
SU - SU - SUEVAP
KSUEVAP - ( PE - SUEVAP ) / PE
PE - PE - SUEVAP
283
594
595
596
                             END IF
597 C
598 ¢
                             COMPUTE EUPORATION FOR BARE SOIL
                       IF( PE .GT. 0 ) THEN

MR = ( SFUC - SFUP ) / ( SFFC - SFUP )

IF( MR .LT. 0 ) MR = 0

IF( MR .GT. 1 ) MR = 1

KSOIL = A(DAY) + B(DAY) # MR + C(DAY) # MR#MR +

B D(DAY) # MR#MR#MR

IF( KSOIL .LT. 0.05 ) KSOIL = 0.05

IF( KSOIL .GT. 1.00 ) KSOIL = 1.00

SFEUAP = PE # KSOIL # KSTORM # KSUEUAP

SFEUAP = AMIN1( SFUC#5 , SFEUAP )

SFUC = SFUC - SFEUAP/S

END IF
599 C
600
601
602
603
604
605
606
607
608
609
610
613
615 C
                             RETURN
614
                             END
```

ORIGINAL PAGE IS

```
615 C
616 C
617 C----CELLDATA
618 C
619 C
              THIS SOUBROUTINE GETS ALL THE AVAILABLE AND NECESSARY INFORMATION ABOUT THE REQUSTED DATA BASE CELL.
620 C
621 C
625 C
623 C
              SUBROUTINE CELLDATA( RQUSTROW, RQUSTCOL, ELEV, SOIL, CATG, SLOPE, TYPE, CROP, FIELD )
624
625
              IMPLICIT INTEGER ( A - Z )
626
              PARAMETER ( NCOL-1245 , NFIELD-10 )
DIMENSION CROPCODE( 10 ), FC( 14 )
627
628
                             SLOPE, RESFEET
629
              REAL
630
               CHARACTER#8 TYPE
631
               LOGICAL FRSTCALL
              COMMON /BUF1/ SOILS( NCOL ), ELEUS( NCOL ), CATGS( NCOL)
632
               SPECIAL COMMON BUF1
633
634
               COMMON /FILCOD/ FC
635
                      RESFEET/ 328.08 /
               DATA
              DATA CURNTROW / 0 /, FRSTCALL/ TRUE. /
DATA CROPCODE/ 3, 5, 5, 4, 4, 3, 2, 2, 1, 6/
1-ALFALFA, 2-SOYBEAN, 3-WHEAT & OATS, 4-CORN, 5-SORGHUM, 6-PASTURE
636
637
638 ¢
639 C
640 C
641 C
642 ¢
               WHEN CALLED FOR THE FIRST TIME OPEN ALL INPUT & OUTPUT FILES
643 C
644
645
               IF( FRSTCALL )
                                     THEN
               CALL GETFILES FRSTCALL . FALSE.
646
647
               END IF
648 C
               IF THE ROW WHICH CONTAINS THE REQUESTED CELL IS NOT READ YET, READ THE NEXT RECORD OF ALL THREE DATA BASE MAPS.
649 ¢
650 C
651 C
652
               IF ( CURNTROW .LT. RQUSTROW ) THEN
               CURNTROW - CURNTROW + 1
653
               CALL READREC( FC(2), SOILS, NCOL )
CALL READREC( FC(3), ELEUS, NCOL )
CALL READREC( FC(4), CATGS, NCOL )
654
655
656
657
               END IF
658 C
659 C
               THE ROW WHICH CONTAINS THE REQUSTED CELL IS IN THE MEMORY
660 C
               EXTRACT NECESSARY INFORMATION.
661 C
662
               ELEU = ELEUS( RQUSTCOL )
               SOIL . SOILS( RQUSTCOL
663
               CATG - CATGS( RGUSTCOL
664
665 C
               IF( RQUSTCOL .NE. NCOL ) THEN NEXTELEV - ELEVS( RQUSTCOL+1 )
 666
667
 668
               ELSE
               NEXTELEV . ELEUS( RGUSTCOL-1 )
 669
670
               END IF
               SLOPE - ATAN( REAL( ELEU - NEXTELEU ) / RESFEET )
SLOPE - ABS( SLOPE ) * 57.2958
671
672
 673 C
 674 C
               DETRMINE THE SOIL TYPE FROM SOIL MAP CODES
 675 C
676
677 C
               SOIL - SOIL / 30
               DETEMINE THE TYPE OF THE CATEGORY (NON-AGRICULTURAL .
 678 C
               BRAE SOIL OR CROP). IF IT IS A CROP TYPE FIND CROP.
 679 C
 680 C
 681
               IF( (CATG .GE. 230) .OR. (CATG .LE. 50) ) THEN
               TYPE - 'NONAGRIC'
ELSE IF( (CATG .LT. 230) .AND. (CATG .GT. 150) ) THEN
 685
 683
                TYPE - 'BARESOIL'
 684
```

```
696 C
697 C
698 C-----CROPDATA
699 C
700 C
701 C
               THIS ROUTINE FINDS MORE INFORMATION ABOUT A CELL WHICH IS
               REGISTERED AS CROP, SUCH AS CROP'S PLANTING DATE, CROP CONSTANT K, AND ITS DYNAMIC TYPE BASED ON THE CROP CALANDER.
702 C
703 C
784 C
705 C
               SUBROUTINE CROPDATA( CROP, FIELD, DATE, KCROP, TYPENOW )
706
707 C
               PARAMETER ( NCROP=6 , NFIELD=10 , NSTG=5 )
IMPLICIT INTEGER ( A - Z )
DIMENSION PDATES( NCROP,NFIELD ), STAGEDAY( NCROP,NSTG )
REAL KEGCONST( NCROP, NSTG, 2), M, A, KCROP
708
709
710
711
712
               INTEGER
                             FC( 14 )
               CHARACTERES TYPENOW COMMON /FILCOD/ FC
713
714
715 C
               DATA (( PDATES( IC , IF ), IF-1, NFIELD), IC-1, NCROP)
1-ALFALFA, 2-SOYBEANS, 3-WHEAT & OATS, 4-CORN, 5-SORGHUM, 6-PASTURE
62, 66, 69, 73, 71, 75, 78, 82, 87, 93,
716
717 C
                 718
719
            Ł
                  54, 59, 62, 65, 68, 70, 74, 79, 84, 93, 107, 112, 117, 122, 127, 130, 135, 142, 149, 161,
720
            å
721
                  722
                                 73.
723
                                        73,
724 C
                      ((STAGEDAY( IC, IS ), IS-1, NSTG), IC-1, NCROP), 61, 183, 217, 365,
725
               DATA
726
                  20,
                           49, 102, 139, 365,
727
                    19,
                          67, 105, 117, 365, 72, 122, 166, 365, 68, 112, 140, 365, 61, 183, 217, 365/
728
                    31.
729
                   31,
             Ł
                   28,
730
 731
                    20.
 732 C
             DATA ((( KEQCONST( IC,IS,IK), IK=1,2), IS=1,NSTG), IC=1,NCROP) & / 0.0 , 0.7 , 0.004, 0.627, 0.0 , 0.85 , 8 -0.01 , 2.7 , 0.0 , 0.5
 733
734
 735
                 0.0 . 0.7
-0.016, 2.7
                                  , 0.012, 0.478, 0.0 , 1.05 ,
 736
                                  , 0.0
                                             . 0.45
 737
                 0.0 , 0.7 , 0.01
-0.071, 8.54 , 0.0
0.0 , 0.7 , 0.01
 738
                                   , 0.011, 0.356, 0.0
                                                                , 1.1
                                   . 0.0 , 0.25 ,
. 0.010, 0.398, 0.0
 739
 740
                                                                , 1.1
                                  5, 0.0 , 0.55 , 0.009, 0.455, 0.0
                 -0.013, 2.625, 0.0
 741
                 0.0 , 0.7 , 0.009, 0.455, 0.0
-0.020, 3.25 , 0.0 , 0.5 ,
0.0 , 0.7 , 0.001, 0.68 , 0.0
 742
                                                                . 1.05 .
 743
 744
                                                                . 0.75 .
                 -0.007, 2.1 , 0.0 , 0.5
 745
 746 C
 747 C
 748 C.
749
                PLNTDATE - PDATES ( CROP , FIELD )
 750
                CROPONT - DATE - PLNTDATE
 751 C
 752 C
                DETERMINE THE STAGE OF THIS CROP SUCH AS EMERGED, HARVESTED, ...
 753 C
 754
                FOR STAGE =1, 5
 755
                IF( CROPENT .LT. STAGEDAY( CROP, STAGE ) ) GOTO 10
 756
                END FOR
 757
        10
                M . KEGCONST( CROP, STAGE, 1 )
 758
                 A • KEQCONST( CROP, STAGE, 2 )
 759
                KCROP . A + M * CROPENT
 760 C
 761 C
                TREAT ALL AS MEDIUM ROUGH BARE BEFOR EMERGENCE
 762 C
                IF( STAGE .LT. 2 ) THEN TYPENOW - 'MEDMBARE'
 763
 764
 765
                RETURN
```

ORIGINAL PAGE IS

```
787 C
788 C
789 C----SOILDATA
790 C
791 C
                 THIS ROUTINE FINDS THE BULK DENSITY OF THE GIVEN SOIL BASED ON THE BULK DENSITY DISTRIBUTION WITHIN THAT SOIL, AND RETURNS OTHER REQUIRED INFORMATION ABOUT THE GIVE SOIL SUCH AS WILTING POINT WATER CONTENT, FIELD CAPACITY WATER CONTENT, HYDRAULIC CONDUCTIVITY AT SATURATION, ETC.
792 C
793 ¢
794 C
795
796 C
797 C
                  SUBROUTINE SOILDATA( SOIL, SFPROS, RTPROS, SFFC, RTFC, SFWP, SATHC, SUCTION )
798
799
800 C
801
                  IMPLICIT INTEGER ( A - Z )
802
803 C
                  PARAMETER ( NSOIL * 8 , NBD * 15 )

REAL SFBULK(NBD), B(NSOIL), FSUCTION(NSOIL), ALFA(NSOIL)

REAL RTBULK( NBD ), SSUCTION( NSOIL ), SHYDCOND( NSOIL )

REAL SFPROS, SATHC, SUCTION, SATSUCT, SFUP, SFFC, RTFC
804
805
806
807
                               RTPROS, FBD, RTBD
868
                  REAL
                  LOGICAL FRETCALL
809
810
                  COMMON /BUFZ/ PROBABIL( NSOIL , 100 ), PERCENTS( NSOIL , NBD )
                  SPECIAL COMMON BUFZ
811
815 C
                  DATA ((PERCENTS(IS, IBD), IBD-1, NBD), IS-1,NSOIL)

0, 0, 0, 0, 0, 7, 7, 22, 22, 14, 14, 14, 0, 0, 0, 0, 11, 26, 26, 26, 11, 0, 0, 0, 0, 0, 2, 3, 3, 8, 18, 20, 17, 11, 12, 3, 3, 0,
813
814
815
                                                                                                                  ð,
                                                                                                     0,
                                                                                                            0,
                                                                                                     θ,
                                                                                                            0,
                                                                                                                  0.
816
                                                                                  5,
817
                              0.
                                           9, 22, 25, 14, 11,
                                                                           9,
                                                                                                                   0.
                                    0, 18, 18, 28, 18, 18, 18, 1, 7, 18, 22, 23, 15, 0, 7, 19, 18, 30, 15,
                              0,
                                                                           0,
                                                                                  0.
818
                                                                                                      θ,
                                                                                                            0,
                                                                                                                   0,
                                                                           7,
7,
                                                                                  4.
                                                                                        i,
                                                                                               0,
                                                                                                      0,
                                                                                                            0,
819
                             i,
                                                                                                                   0.
                       ě,
                                    0,
850
                              0,
                                                                                        0,
                                                                                               0,
                                                                                                            0,
                                                                                       31,
821
                                                 0,
                                                        θ,
                                                              0.
                                                                     θ,
822 C
                  DATA SFBULK/ 0.818, 0.888, 0.957, 1.03, 1.10, 1.17, 1.24, 1.30, 1.37, 1.44, 1.51, 1.58, 1.65, 1.72, 1.79 / DATA RTBULK/ 1.10, 1.15, 1.20, 1.25, 1.30, 1.35, 1.40, 1.45,
823
824
               8
825
856
                                          1.50, 1.55, 1.60, 1.65, 1.70, 1.75, 1.80 /
827 C
828
                  DATA
                      9.77,
829
                                 6.66,
                                            7.21, 6.81, 6.22, 6.81, 6.66, 4.26 /
                  DATA FSUCTION
830
331
               8 / 21.49, 13.91, 12.90, 13.18, 16.03, 13.18, 13.91, 3.22 /
                  DATA SSUCTION
832
               & / 31.20, 34.67, 30.76, 33.08, 39.25, 33.08, 34.67, 10.14 / DATA SHYDCOND
833
834
               8 / 0.814, 2.33, 2.02, 2.
DATA FRSTCALL/ TRUE. /
835
                                                        2.31, 2.39, 2.31, 2.33, 58.36 /
836
837
838 C
839 C
                  SET UP THE PROBABILITY ARRAY FOR BULKDENSITY DETERMINATION
                  OF EACH SOIL TYPE. (ONLY AT FIRST CALL)
840 C
841 C
842
                  IF( FRSTCALL ) THEN
                  FRSTCALL . . FALSE.
FOR IS-1, NSOIL
843
844
845
                  ALFA( IS ) = 1 / B( IS )
                  846
847
                  START - 1
848
                  START = 1
STOP = 0
FOR BDCODE=1, NBD
PERC = PERCENTS( IS . BDCODE
IF( PERC .NE. 0 ) THEN
STOP = STOP + PERC
FOR I=START, STOP
PROBABIL( IS, I ) = BDCODE
849
850
                                                     BDCODE )
851
852
853
854
855
856
                  END FOR
```

```
START - START + PERC
END IF
857
858
859
                  END FOR
                  IF( STOP .NE. 100 ) WRITE(11, '(1X, 'STOP-', 14, 16)')STOP, IS
860
861
                  END FOR
862
                  END IF
863 ¢
                  GET THE BULK DENSITY ACCORDING TO THE PROBABILTY FOR THIS SOIL
864 C
865 C
                  FOR BOTH SURFACE LAYER (0-5 CM) AND ROOT LAYER (5-95 CM)
866 C
                  RANDOM - IRAN( 1 , 100 )
BDCODE - PROBABIL( SOIL, RANDOM )
867
868
                  SFBD - SFBULK( BDCODE )
869
                  RTBD. RTBULK( BDCODE )
870
871 C
872 C
873 C
874 C
                  CALCULATE THE WATER CONTENT OF EACH SOIL TYPE AT WILTING POINT AND FIELD CAPACITY. SPECIFIC BULK DENSITY IS 2.65 FOR ALL SOILS
                 SFPROS = 1 - SFBD / 2.65

RTPROS = 1 - RTBD / 2.65

SFFC = SFPROS * ( SSUCTION( SOIL ) / 333.0 ) ** ALFA( SOIL )

RTFC = RTPROS * ( SSUCTION( SOIL ) / 333.0 ) ** ALFA( SOIL )

SFUP = SFPROS * ( SSUCTION( SOIL ) / 15000 ) ** ALFA( SOIL )

SUCTION * FSUCTION( SOIL )

SATHO = SHURGARD ( SOIL )
875
876
877
878
879
888
188
                  SATHC - SHYDCOND( SOIL )
885
                  RETURN
883
                  END
```

ORIGINAL PAGE IS

```
884 C
885 C
886 C-----GETFILES
887 C
             THIS ROUTINE OPENS ALL THE INPUT AND OUTPUT FILES AND
888 C
             ASSIGNS AN AVAILABLE UNIT (FILECODE) ON WHICH THE FILE
889 C
             WILL BE OPENED.
890 C
891 C
892
             SUBROUTINE GETFILES
833 C
894
             INTEGER#1 FILENAME( 17 )
895
             INTEGER
                          FC( 14 ), ERRCODE
                          ERR
             LOGICAL
896
             COMMON /FILCOD/ FC
897
898 C
899 ¢
             URITE(11,104)
900
             READ(12,102) FILENAME
CALL OPN( FC(1), FILENAME, 'OLD', 'FOR', ERRCODE, ERR)
IF( ERR ) THEN
901
902
903
             URITE(11,101) FILENAME, ERRCODE
984
             STOP
905
906
             END IF
             READ(FC(1),*) NUMFILES
FOR I=2, NUMFILES+1
907
908
              READ(FC(1), 102) FILENAME
909
              CALL OPN'FC(I), FILENAME, 'OLD', 'UNF', ERRCODE, ERR)
IF( ERR ) THEN
910
911
912
              WRITE(11,101) FILENAME, ERRCODE
              STOP
914
              END IF
915 C
              URITE(11,103) FILENAME, FC(I)
              END FOR
916
917
              RETURN
              FORMAT(1X, 'ERROR #### WHILE OPENING '17A1, 'ERRCODE-'13)
918
      101
919
              FORMAT(17A1)
      102
           FORMAT(1X,17A1,'WAS ASSIGNED TO'14)
FORMAT(1X,'ENTER NAME OF THE FILE UNICH CONTAINS INPUT',
& 'AND OUTPUT FILE NAMES')
      103
920
921
       104
 922
              END
923
```

```
924 C
925 C
926 C----IOCALLS
927 C
928 C
                THIS ROUTINE HAS TWO ENTRIES USED IN READING AND WRITING
929 C
                FROM AND TO THE I/O FILES
930 C
931 C
                SUBROUTINE IOCALLS
932
933 C
               IMPLICIT INTEGER ( A - Z )
PARAMETER ( NURD +1245 , NPAUSE+3 )
DIMENSION RECORD( NURD ), MATRIX( NPAUSE, NURD )
934
935
936
                           FC( 14 )
937
                INTEGER
                COMMON /FILCOD/ FC
938
939 ¢
940 C
941 C
942
                ENTRY READREC ( FILECODE, RECORD, NUORDS )
943 C
944
945
                BUFFER IN ( FILECODE, RECORD, B, NWORDS, IO ) CALL STATUS( FILECODE )
IF( IO .NE. 2 ) THEN
946
947
                URITE(11,101) FILECODE, 10
948
                STOP
949
                END IF
950
                RETURN
951 C
952 C
953
954
                ENTRY URITDATA ( IDENT , MATRIX, NCOL )
      ¢
955 C
                IF( IDENT .EQ. 1 )
IF( IDENT .EQ. 2 )
956
                                              OTFILE . FC(6)
957
                                               OTFILE = FC(10)
                FOR IP-1, NPAUSE
FOR COL-1, NCOL
RECORD( COL ) - MATRIX( IP , COL )
958
959
960
961
                END FOR
                BUFFER OUT( OTFILE, RECORD, B, NCOL, IO )
CALL STATUS( OTFILE )
IF( IO .NE. 2 ) THEN
URITE(11,102) OTFILE, IO
962
963
964
965
966
                STOP
                END IF
967
                OTFILE - OTFILE + 1
968
969
                END FOR
970
                RETURN
971 C
                FORMAT(1X, 'ERROR **** WHILE READING FROM UNIT'14,'
FORMAT(1X, 'ERROR **** WHILE WRITING TO UNIT '14,'
                                                                                           STATUS', 14)
STATUS - '14)
972
        101
973
        102
974
```

```
975 C
976 C
977 C-----UPDTHIST
 978 C
979 C
980 C
981 C
982
                 THIS ROUTINE UPDATES THE HISTOGRAMS
                 SUBROUTINE UPDTHIST( UAL, HIST, INDEX, MIN, MAX )
IMPLICIT INTEGER ( A - Z )
PARAMETER ( NPAUSE-3 )
DIMENSION HIST( NPAUSE, MAX )
 983
 984
 985
 986 C
987 C
 988 C
989 C
                 UPDATE MIN, MAX VALUES OF DATA
                 HIST( INDEX , 1 ) = MINO( HIST( INDEX , 1 ) , UAL )
HIST( INDEX , MAX-MIN+5) = MAXO( HIST( INDEX , MAX-MIN+5), UAL )
 990
 991
 993 C
                 UPDATE THE TOTAL NUMBER OF VALUES COUNTED
 994 C
 995
                 HIST( INDEX , MAX-MIN+6) . HIST( INDEX, MAX-MIN+6 )+1
 996 ¢
 997 C
998 C
999
                 UPDATE THE FREQUENCY COUNT FOR THIS VALUE
                 UAL = MAXO( MINO( MAX+1 , UAL), MIN-1)
HIST( INDEX, VAL-MIN+3 ) = HIST( INDEX, VAL-MIN+3 ) + 1
1000
1001
                 RETURN
1002
                 END
```

ļ.

```
1003 C
1004 C
1005 C-----OTPTHIST
1006 C
1007 C
                THIS ROUTINE TAKES A GIVEN HISTOGRAM ARRAY CONTAINING THE FREQUENCIES AND URITES OUT THE PERCENTS AND CUMULATIVE PERCENTS FOR EACH DATA VALUE.
1008 C
1009 C
1010 C
1011 C
1012
                 SUBROUTINE OTPTHIST( HIST, INDEX, MIN, MAX )
1013 C
1014
                 IMPLICIT INTEGER ( A - Z )
                 DIMENSION HIST ( 3, MAX )
1015
                 REAL TOTAL, SUM
1016
1017 C
1018 C
                 TOTAL • HIST ( INDEX , MAX-MIN+6 ) SUM • HIST( INDEX , 2 )
1019
1020
1021 C
1055 C
                 WRITE OUT INFORMATION ON DATA POINTS ENCOUNTERED WHICH
1023 C
                 WERE LESS THAN THE INDICATED MINIMUM VALUE
1024 C
1025
                 WRITE(13,100) MIN, HIST( INDEX, 2 ), SUM/TOTAL, SUM/TOTAL
1026 C
                 URITE OUT PERCENTS AND CUM PERCENTS FOR ALL VALUES FROM INDICATED MINNUM VALUE THROUGH MAXIMUM VALUE
1027 C
1028 C
1029 C
                 FOR PTR= 3, MAX-MIN+3
COUNT = HIST( INDEX, PTR )
1030
1031
                 SUM = SUM + COUNT
IF( COUNT .NE. 0 ) THEN
URITE(13,101) MIN+PTR-3, COUNT, COUNT/TOTAL, SUM/TOTAL
1032
1033
1034
1035
                 END IF
                 END FOR
1036
1037 C
                 WRITE OUT INFORMATION ON DATA POINTS ENCOUNTERED WHICH
1038 C
                 WERE LARGER THAN THE INDICATED MINIMUM VALUE
1039 C
1040 C
                 COUNT - HIST( INDEX, MAX-MIN+4 )
SUM - SUM + COUNT
1041
1042
1043
                 WRITE(13,102) MAX, COUNT, COUNT/TOTAL, SUM/TOTAL
1044
                 WRITE OUT TOTAL NUMBER OF VALUES, MIN VALUE AND MAX VALUE
1945 C
1046 C
                 THAT WAS ENCOUNTERED
1047 C
                 WRITE(13,103) TOTAL, HIST( INDEX , 1 ), HIST( INDEX , MAX-MIN+5)
1648
1849
1050 C
              FORMAT(/9X,'RANGE',14X'COUNT',7X,'PERCENT'10X'CUM PERCENTS', & //5X,'<'17,5X,'-',5X,18,5XE14.7,5XE14.7)
FORMAT(7X,16,5X,'-'5X,18,5XE14.7,5X,E14.7)
FORMAT(5X,')',17,5X,'-',5X,18,5XE14.7,5XE14.7)
FORMAT(2XF10.1,' TOTAL VALUES COUNTED'5X'MIN AND MAX VALUES'
& 'ENCOUNTERED = '19,2XI9)
1051
        100
1052
1053
        101
1054
         192
1055
         103
1056
                 END
1057
```