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TECHNOLOGY EVALUATION OF 

MAN-RATED ACCELERATION TEST EQUIPMENT 

FOR VESTIBULAR RESEARCH 

I. Taback, R. L. Kenimer, 
and A. J. Butterfield 

The Bionetics Corporation 
Hampton, VA 23666 

SUMMARY 

Vestibular experiments which involve linear cyclic motions require 

test equipment which does not generate any cyclic spurious acceleration 

pulses or noises which can be sensed by the test subject as "cues" to the 

applied motion. Acceleration cues coincident with the change in the 

direction-of-motion are a principal concern. This study establishes some 

design limits for acceleration cues, identifies the noise sources and levels 

in some of the present items, and describes some technical approaches to 

noise free systems which could be used in both ground and shuttle testing. 

The establishment of the design limits for acceleration cues was 

based upon published experimental measurements for human thresholds of per­

ception to linear cyclic motion. The design limit shows O.Olg (0 to peak) at 

0.04 Hz and drops to 0.0003g (0 to peak) at 3 Hz. The limit is constant to 

10 Hz where it begins to increase and reaches O.OOlg (0 to peak) at 100 Hz. 

The published measurements indicate that humans show a maximum sensitivity to 

motion or acceleration effects over the range of 3 Hz to 10 Hz. 
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The identification of noise sources and levels were based upon 

measurements from existing vestibular research sleds. Horizontal systems 

based upon linear ball bearings and tensioned, wrapped-cable drives encounter 

non-linear friction effects and hysteresis effects which will result in 

motion-reversal cues up to 0.039 (0 to peak). These values exceed the 

thresholds for human perception. The motion reversal transients have been 

eliminated in a hydraulically-driven vertical system; however, such massive 

units are not compatible with shuttle flights. 

The technical approaches to a low noise system involve the use of 

air bearings for the carriage supports and either linear induction motors or 

metal belts for the drive. Moving coil linear induction motors operating at 

the lowest practical frequency (i.e. 10 Hz) offer the most attractive option. 

Metal belts running on air bearing pulleys present the other achievable 

option. 

The conduct of th~ study identified a number of testing techniques 

which could be employed for preliminary type investigations, and some of 

these approaches are compatible with testing in the mid-deck of the shuttle. 

These are discussed in the appendix in terms of pendulums, linear motion 

devices and adaptations of commercial air bearing tables. 

1.0 INTRODUCTION 

The technical evaluations of man-rated test equipment and the 

related technology stemmed from a potpntial NASA need for a flight sled which 

could provide low frequency oscillatory motions with all extraneous 

acceleration excitations (spurious noises) held below the thresholds for 

human perceptions. The operating concern focused upon the elimination of 

acceleration noises in the system which could cue a test subject such that 

the measurements obtained reflected more than just the desired otolith/ 



vestibular response to the accelerations applied or velocities attained. The 

elimination of spurious excitation cues coincident with zero velocity 

(change-of-direction for motion), appeared as a requirement for the operation 

of the sled during oscillatory tests. Ground test operations with sleds have 

shown that spurious excitations do occur coincident with change-of-direction 

and these noises have been associated with such sources as friction in 

bearings and hysteresis in drive cables. 

The evaluation began with a review of published measurement data 

for thresholds of human perception to linear oscillatory motions. These 

measurements served to define the limits for spurious noises and acceleration 

cues. A series of measurements performed on eXisting sleds identified the 

sources and defined the existing excitation levels for spurious noises and 

acceleration cues. The evaluations of technology identified the improvements 

required or approaches to designs necessary to keep spurious noises and any 

acceleration cues below the levels of perception. The sections which follow 

present the results and findings from each of these areas in the order 

described. In the course of the technical evaluations, concepts for test 

equipment arose which could support preliminary or screening type of 

experimentation. These concepts were based upon pendulums, flexures and 

industrial air bearing tables. They could offer an investigator a means for 

early identification of an effect such that he could either define a more 

comprehensive approach to the research or avoid an unproductive course. The 

Appendix presents a descriptive compilation and discussion of these concepts. 

The authors wish to acknowledge the dedicated cooperation and 

support they received during the conduct of this study: The NASA/Ames 

Research Center provided the instrumentation, data analysis equipment, and an 

operating team of Mr. Robert Mah (ARC) and Mr. Howard Mensch of the Syscon 
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Corporation. Their efforts produced the definitive measurements and data for 

existing sleds and for air bearings which were necessary for the effective 

conduct of the evaluation. The cooperation and support extended by Dr. 

lawrence Young and his associates in the Man Vehicle Laboratory at the 

Massachusetts Institute of Technology provided the opportunity for obtaining 

the detailed measurement needed to identify and define the particular sources 

of acceleration cues. The cooperation and support extended by Dr. William H. 

Bush and his associates in the Life Sciences Laboratory at the NASA/Lyndon B. 

Johnson Space Center provided the opportunity to obtain the baseline dynamic 

data pertinent to evaluating the operation of a man-rated research sled. 

, -: 
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2.0 SYMBOLS 

Cross-sectional area of a metal belt, m2, A = wt 

Acceleration m/sec2 

Modulus of elasticity for material, Pa 

Force, N 

Coeficient of friction 

Acceleration due to earth gravity, 9.8 m/sec2 
(n) 9 maximum vibrational acceleration in term of earth gravity units 

Vibration acceleration, root mean square 
(0.707){g max) 

Radius of a drive drum 

Stress, Pa 
Tension Force, N 

Thickness of a belt, m 

Width of a belt, m 

Angle defining the wrap of a belt around a driving drum, radians 

Small angular increment radians 

Local strain, m/m 

Radius of curvature, m 

Strain energy in a unit length of belt Nm --m 

SUBSCRIPTS 

max Maximum value 

min minimum value 

u useful 

5 
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3.0 THRESHOLD OF PERCEPTION MEASUREMENTS AND DEFINITION OF LIMITS 

The requirement for an acceleration test facility in which the test 

subject would not feel any acceleration cues implied a knowledge of the 

thresholds for human perception across the entire spectrum of frequencies 

which could be encountered in a testing situation. Therefore, in a corrolary 

assumption, a survey of published measurement data would provide the basis 

for defining a practical limit for use as a design criteria. Accordingly, 

the survey of measurement data contained three elements, the extraction of 

usable data, an assessment of pertinence, and the construction of a practical 

limit. 

3.1 Literature Survey, Data Sources 

A substantial body of published research data addresses human and 

non-human responses to acceleration environments. Within that body a recent 

compilation by Gundry (ref. 1) summarizes the measurements from research 

studies involving thresholds-of-perception for periodic linear motion. This 

compilation plus some subsequent measurements represented the source data to 

construct a design limit characteristic for spurious noise excitations or 

acceleration cues in man-rated vestibular research equipment. In reviewing 

the data, some of the original papers referenced by Gundry were obtained (and 

translated) as an aid toward understanding the details of the experimental 

techniques employed. In surveying the literature on threshold measurements, 

the largest portion appeared to address the sensitivities of air crews to 

vibrations. Other bases for measurement included the general study of human 

body responses to vibration (von Bekesy, ref. 2) and the definition of limits 

for the movement of buildings (Chen and Robertson, ref. 3). The compilation 

by Gundry was part of a general dissertation on human responses; the data 

presented included steady state linear motion and latency responses, as well 



as responses to cyclic motion. For cyclic motions, the discussion addressed 

the effects of visual cues on thresholds, effects of partial accelerations 

(feet on an unmoving floor, etc.) and estimated the mode or portion of the 

body which provided the principal sensory response to vibration in terms of 

the applied frequency. While responses to cyclic motion were the common 

feature for the data presented, the defining of a design limit from the 

compilation of measurements had to make a selection of measurements 

considered pertinent to such a determination. The criteria for selection 

became: 

1. The measurements should be limited to just whole body 

responses. Thresholds that involved visual cueing or 

acceleration of only a portion of the body were excluded. 

2. The measurements should represent a group of individuals tested 

without any previous conditioning or opportunity to "learnll the 

system. 

3. The measurements should involve test subjects in ordinary 

positions such as standing, sitting, prone, etc., and have the 

direction of the acceleration parallel to one of the axes 

defined for the body according to aircraft conventions. 

These concepts are further described in Section 3.2 below; the data extracted 

from Gundry and subsequent measurements are listed in Table 3-1. The 

measurements corresponding to each "Data Point" listing appear in figure 3-1 

which is an extraction from Gundry (ref. 1, figure 1). For sources taken 

directly from Gundry, the references also include his listing [e.g., Chaney 

(4)]. Sources which were individually analyzed or translated have separate 

references. 

7 



DATA 
POINT 

1 

2 

3 
4 

5 
6 
7 

8 

9 

10 

11 
12 

13 

14 
15 
16 
17 

18 

19 

SOURCE 

Chaney 1(4) 

Chaney 1(5) 
Chen and 
Robertson 3 

Chen and 
Robertson 3 

Goril and 
Snyder 1(8) 
Gurney 1 (12) 

Landsberg 1 (18) 
Richer and 
Meister 1(22) 

von Bekesy 2 

Halsh 1(24) 

Walsh 1(26) 
Benson 

Bionetics 
at Miami U.4 

TABLE 3-1. SUMMARY OF THRESHOLD-OF-PERCEPTION DATA SOURCES 

TEST RIG 

Vertical Axis Shaker 

Vertical Axis Shaker 
Closed room on a 
platform with 2-axis 
horizontal motion 
Closed room on a 25m 
pendulum 

Vertical Axis Shaker 

Vertical circular arc 
3.26m radius 
3.6m Pendulum 
Platform driven by 
eccentric mass 
vibrator 
2m Horizontal 
circular arc 
1.55m Pendulum 

Vertical circular arc 
Vertical hydraulic 
driven oscillator 
4m Pendulum 

TEST SUBJECTS/ACCOMMODATIONS 

10 males, seated with lap belt restraint and footrests. 
Each subject makes 4 determinations at 4 frequencies 
(8 measurements for each frequency data point). 
5 males, standing, feet attached to moving platform. 
2 subjects at each frequency, standing. 

10 subjects sitting. 
10 subjects sitting. 
20 subjects standing. 
6 males (air crew) seated in a cockpit simulation. 

3 subjects sitting blindfolded (seesaw). 

Subjects lay face-down and face-up. 
10 subjects in five positions; Standing, X-X, Z-Z; 
lay face-up X-X, Y-Y, Z-Z. (12 is X-X face up only.) 

2 subjects seated 

4 to 7 subjects each test point. Lay face-up, face­
down, on sides. 8 measurements for each subject. 

7 males, 4 measurements each, 8 times. Lay face-up. 
6 males, 4 females in an aircraft ejection seat. 

2 males lay face-down, series of measurements at one 
frequency. 

ACCELERATION/ 
DIRECTIONS ON 
TEST SUBJECT 

Z-Z 

Z-Z 
3 X-X 
4 Y-Y 

5 X-X 
6 Y-Y 
7 X-X 

Z-Z 

Z-Z 

Z-Z 
11, All 
12, X-X 

Y-Y 

14, X-X 
15, Y-Y 
16, Z-Z 

X-X 
Z-Z 

Y-Y 
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Figure 3-1. Threshold-of-Perception Measurements and a Design Limit for 
Spurious Accelerations 
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A review of the measurements data as presented in figure 3-1 shows 

a consistent pattern across the range of frequencies applied. The upper 

frequency limit of 100 Hz is somewhat arbitrary. Within the human system the 

mode for sensing oscillation begins to involve more than the vestibular 

elements as frequencies increase beyond about 1 Hz (ref. I). At 100 Hz, 

sensing appears to have become almost entirely a skin (tactile) response and 

100 Hz appears to be a practical upper limit for much of the test equipment 

utilized (hydraulic shakers and mechanical-arm links). At the lower 

frequencies, test equipment also effectively limits the cyclic forces which 

can be applied. For very low frequencies pendulum rigs require lengths 

beyond the capability of most buildings (e.g., Chen - 25 meters). Other low 

frequency oscillating systems are not available (testing at 0.01 Hz involves 

a movement through 50 meters to apply a sinusoid acceleration of O.Olg). 

Within such limitations, the data sources listed in Table 3-1, and their 

corresponding measurements shown in figure 3-1, are considered the best 

available for defining a spurious noise or acceleration cue design limit for 

threshold-of-perception sensitive test equipment. 

3.2 Data Assessment, Validity 

The assessments for validity of the data considered the frequency 

dependence of human responsps to linear accelerations, the effects of the 

earth imposed gravity field and the need for data which appeared to have 

statistical consistency relative to the method-of-test and the population 

measured. 

3.2.1 Human Responses to Frequency of Accelerations 

Research reported in the literature has proposed analytical models 

to describe human responses as a function of the frequency for applied 

accelerations. The principal area which appears unresolved involves the 

conditions associated with the change from linear-sustained to linear-



sinusoidal (frequency range 0 to 0.1 Hz). The models presented however are 

all single-valued in terms of responses and frequencies; no model postulates 

a discontinuity. The construction of a design limit therefore is governed by 

that concept. The limit must be a continuous and single valued function of 

frequency. Some of the measurements indicate a localized change in threshold­

of-perception (figure 3-1 Chaney 1,2, Walsh 17) however none of the local 

effects involve as much as an order of magnitude (a factor of 2 covers most). 

These local effects still remain within the context of single-valued and 

continuous with frequency. 

From these measurements it appears that if an individual is 

subjected to a complex wave which contains all frequencies at the same 

relative level, then he will sense that complex wave at the frequency for 

which he has the lowest threshold. In corrolary, if an individual is 

subjected to a complex wave that contains discrete frequencies at different 

levels, he will sense that wave at the specific discrete frequency which 

first exceeds his threshold for that specific frequency. These response 

considerations suggest that a design limit characteristic can be defined in a 

manner which follows the overall response pattern for humans but maintains a 

realistic margin below measured thresholds. 

3.2.2 Earth Gravity Field 

The entire body of thresholds data may be considered in terms of 

the vector addition of a small, cyclicly varying force plus the gravity field 

of the earth. The variable vector associated with the applied force remains 

less than 10 percent of that imposed by gravity. The measurement data 

considered for definition of limits includes four cases for such vector 

addition which summarize in order of decreasing total vector sum as: 

a) Vertical oscillations; The applied accelerations either add or 

subtract directly from the gravity force. The maximum vector difference is 
11 
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two times the applied peak acceleration (Data Points 1, 2, 8, 9, 11, 12, 17, 

and 18). 

b) Circular Arcs from the Vertical (Gravity Driven Pendulums): For 

these measurements, the peak applied accelerations are considered 

perpendicular to the gravity force; however, at the bottom of the swing, a 

centrifugal (velocity) acceleration adds to the gravity vector (Data Points 

5, 6, 7, 10, 14, 15, 16, and 19). 

c) Circular Arcs in a Horizontal Plane (Driven Horizontal Arm 

Suspended by Flexures): In this mode, both the applied and centrifugal 

accelerations are in the horizontal plane and perpendicular to the gravity 

vector (Data Point 13). 

d) Horizontal Linear Motions: In this mode the applied 

acceleration is always perpendicular to the gravity field with no secondary 

effects (Data Points 3 and 4). 

The measurements from each type of testing overlap and the differences 

between individual subjects during a measurement sequence appears as great as 

any difference due to the direction of the applied excitation. Consequently 

for human subjects, a threshold-of-perception limit can be based upon any of 

the techniques described and apply to any direction of excitation. 

3.2.3 Test Subjects and Population 

It appears reasonable to postulate that each person has an 

individual threshold-of-perception characteristic, and the population as a 

whole would show some type of statistical distribution. The definition of a 

design limit needs to identify the lower edge of that statistical 

distribution. Therefore, useable data must represent a population of test 

subjects. In a further consideration, the literature surveyed included 

measurements which addressed changes in thresholds after some pre-condi-



tioning or acceleration exposure (ref. 4); none of the measurements showed 

thresholds of perception lower than those measured from "unconditioned" test 

subjects. Consequently, data from unconditioned test subjects were selected 

for defining a desgin limit. 

The survey of literature also included studies which address 

vestibular responses along the principal axes of vestibular sensitivity and 

these directions do not coincide with the types of motion associated with 

most flight-related activities. The usual mode for sensing of accelerations 

or motions by human subjects appears to be a combined or shared response 

within the elements of the vestibular systems. The positions which humans 

could assume in conducting flight operations or similar on-board activities 

became the basis for selection of measurement data and relative to the head 

they followed the established convention (ref. 5). 

Axis X-X Forward - backward, in the direction of the nose and eyes. 

Axis v-v Side to side - in the direction of the ears. 

Axis Z-Z Up and down - in the direction of the top of the head. 

In these motions, the only requirement on the position of the body 

was a straight spine. Sitting, standing or laying down were considered 

acceptable. The summary of measurements does not show any significant 

differences which can be associated with a preferential axis or position of 

the body. 

3.2.4 Population Statistics 

The surveying of measurement data recognized that thresholds-of­

perception determination could often be a portion of a larger research study. 

Such measurements are inherently usable regardless of source. The 

measurements considered most useful appear where a good population of 

subjects has been tested and the measurements repeat. Such measurements can 

be used to establish limits for particular frequencies, the balance of the 
13 
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data then serves to define the trend for the threshold limit characteristic. 

In reviewing the source data, the work of Chen and Robertson (Data Points 5, 

6, and 7) appears to offer measurement repeatability with statistical 

consistency. In the long radius pendulum measurements at 0.1 Hz, the number 

of subjects was statistically significant. The mode of testing required the 

subjects to actively focus their attention on an object (art); and, they were 

isolated from any other excitation except motion (by means of a closed room). 

These conditions resulted in measurements of consistent high quality. The 

work of Chen is considered the most definitive for linear motion at 0.1 Hz. 

The measurements by Von Bekesy (Data Point 13) carry a similar value of 

definition accuracy. The use of the driven horizontal circular-arc pendulum 

allowed precise control of frequency and showed good repetition between 

subjects. Measurements by Von Bekesy over the range 0.8 to 8 Hz are 

considered to be the definitive data for that range. The correlation offered 

by Richer and Meiser (Data Points 11, 12) for the range 1 Hz to 40 Hz confirm 

the observations. 

3.3 Definition of a Spurious Excitation Design Limit 

The limit for spurious acceleration noise applicable to the design 

of man-rated vestibular test equipment appears as the heavy line so-identified 

in figure 3-1. The generation of the characteristic utilized the following 

premises or assumptions: 

1. Frequency Range 3 Hz to 10 Hz. Humans appear to have their 

most sensitive thresholds-of-perception over this range of 

excitation frequencies. The design limit level has been placed 

at a value of 0.0003g, O-to-peak (0.00021 grms) and provides a 

factor of 3 margin below the lowest measured thresholds over 

that frequency range. 

,. 



2. Frequency Range 10 Hz to 100 Hz. The slope (roll up) at 1.53 

db/octave from 10 Hz to 100 Hz was configured to provide an 

order-of-magnitude margin for excitations above 25 Hz. The 

frequency range 10 Hz to 100 Hz was considered to include the 

majority of the potential acceleration cues or spurious noises~ 

consequently, the margin has been increased. 

3. Frequency Range 0.004 Hz to 3 Hz. The slope (roll off) at 1.73 

db/octave has been based upon a factor of 3 margin below the 

lowest measurements by Chen and Robertson (Data Point 6), a 

factor of two margin below the measurements by Walsh (Data 

Point 16) and to remain below any measurements by Von Bekesy 

(nata Point 13). The margin is considered conservative; for 

frequencies below 1 Hz, sources of equipment-related accelera­

tion cues are not obvious. 

15 
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4.0 EVALUATION OF EXISTING ACCELERATION SLEDS 

The evaluation of existing man-rated acceleration test sleds for 

acceleration noises and their corresponding levels of dynamic response 

proceeded as a companion effort to the review of published literature. A 

number of existing sleds were candidates for evaluation however only four 

received attention. The candidates and the types of evaluations performed 

are summarized in Table 4-1. The results from the evaluations are described 

in the order presented in the table; the first series of measurements were 

obtained from the sled at JSC which was not a completed unit at the time. 

These results were considered as pathfinders to permit a s~lective focusing 

for the evaluations at MIT which provided the more definitive data. 

4.1 Measurements from the Acceleration Test Sled at MIT 

The measurements obtained from the MIT Sled concentrated upon three 

principal effects or considerations pertinent to the control of motion. 

Specifically, the measurements sought data to define: : 

1. The effects produced by the bearings during rolling friction, 

during starting (or stopping) friction and measurements of the 

discontinuity during reversals of motion. 

2. The effects produced by the tensioned cable drive system in 

terms of both the frequency and magnitude of induced vibration 

plus any effects caused by a change in direction-of-motion. 

3. Sources and levels of other noises or disturbances such as 

off-axis responses and responses transmitted from the building 

itself. 



TABLE 4-1. SUMMARY OF MAN-RATED ACCELERATION TEST SLIDES 
CONSIDERED FOR EVALUATIONS 

SLED LOCATION-DESCRIPTIONS 

1. Massachusetts Institute of Technology 
Man Vehicle Laboratory, Cambridge, MA 
Horizontal; Round Steel Rails; Carriage 
on Linear Steel Ball Bearings; Tensioned, 
Wrapped, Steel Cable Drive. 

2. NASA, JSC, Houston, TX 
Life Sciences Laboratory 
Horizontal; Round Steel Rails; Carriage on 
Linear Plastic Ball Bearings; Tensioned, 
Wrapped, Steel Cable Drive. 

3. European Space Agency 
Research Technical Center, 
Noordwijk, Netherlands 
Horizontal; Flat Metal Rails; Carriage 
on Opposed Wheels; Tensioned, Wrapped, 
Steel Cable Drive. 

4. Royal Air Force Institute of Aviation 
Medicine, Farnborough, UK 
Vertical; Hydraulic Driven Platform 

5. National Center for Scientific Research 
Neuro-psycho1ogy Laboratory, Paris, France 
Horizontal; Carriage on Conventional 
Bearings; Linear Induction Motor Drive. 

ACTION-COMMENT 

Comprehensive Series of 
Dynami c ~'easurements* 
Obtained, Definitive Data 
for Responses and Transient 
Effects. 

Engineering Copy of MIT 
Sled. Series of Dynamic 
Measurements Obtained on 
Incompleted Sled.* 

Sled Intended for Flight 
in Long Module Spacelab. 
Acceptance Test Report 
Data Reviewed in Comparison 
with Measurements From MIT 

New Facility, Review of 
Operating Test Data. 

No Published Description 
of Facility. No Action. 

* Instrumentation consisted of crystal type accelerometers with a 2 X 10-5g 
threshold of sensitivity; data recorded and processed on a standard-to­
industry dynamic analyzer. 
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4.1.1 MIT Sled and Test System Configuration 

The general configuration for the MIT Sled is shown by figure 4-1. 

At the time of the measurements the sled was configured to apply an 

acceleration profile to a seated human subject with the acceleration 

direction in the V-V axis (through the ears). The sled included structural 

supporting members to carry experiment fixtures which enclosed the head of 

the test subject. The carriage rides on three-quarter circle precision 

linear ball bearings and travels along a set of precision-ground, hard­

polished, steel rounds as rails 6.4m long and 2.54cm diameter. The rails 

have continuous support from the base structure. The drive cable was 

statically tensioned to 4000N and required 4 complete wraps around the 

driving sheave to assure transmittal of the acceleration forces. As a 

consequence, the driving segment of the cable moves across the drive sheave 

in relation to the position of the carriage along the rails. Therefore, the 

driving force applied to the carriage deflects through a small angle as the 

carriage moves along the rails. 

The measurement sequence involved operations with the cables 

disconnected (movement by hand), operations with the drive system unpowered 

and operations with power from the driving motor with control of the force 

profile provided by means of a function generator (a practical consideration 

used for implementing the acceleration profiles pertinent to the evaluation 

of acceleration noise). 

4.1.2 Measurement of Friction and Bearing Related Forces 

The evaluation of friction forces and bearing related effects began 

with individual measurements on the carriage and drive system. The carriage 

was disconnected from the drive cables and nudged into motion with a human 

subject aboard; figure 4-2 shows the force profile to overcome the static 
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friction of the four linear ball bearings. At the breakaway from static 

friction, the force amounted to 20N. A force measurement by pulling on the 

drive sheave showed a friction force of 15.3N; figure 4-3 shows the 

force-time profile to complete two revolutions of the drive sheave. This 

force represents the bearing drag within the motor as it would be sensed by 

the carriage (motor leads disconnected, no electrical drag). The combination 

of the two effects predicts a coast down acceleration of 0.023g for the total 

system. A coast-down measurement with the drive cables in-place and 

tensioned appears in figure 4-4 and shows a drag force of 0.025g. The 

agreement is considered good since the total system includes some loss due to 

the bearings in the idler pulley and flexing in the cable. The friction 

coast-down drag plus the effect of electrical dynamic braking were measured 

by accelerating the empty carriage- to about 1 m/sec (0.2g for 0.5 sec) and 

allowing the system to coast to a stop. The motion showed a friction and 

dynamic braking drag essentially proportional to velocity and independent of 

either the location on the track or the direction of motion. Figure 4-5A, B 

and C show the force profiles recorded. The abrupt stop represents the 

effect of static friction. The indicated value of 0.04g as the step at the 

end of the coasting deceleration for an unloaded carriage agrees with the 

0.025g measured for the coasting case with a human subject aboard. 

These measurements indicated that static friction effects at the 

zero velocity point could produce a detectable cue. The effect was confirmed 

by operation; figure 4-6 shows the responses measured with a human subject on 

the carriage subjected to alternating square-wave accelerations of 0.02g 

applied for 5 seconds. A bump transient occurs at the midpoint in each of 

the accelerations and corresponds to the zero velocity point for the 

carriage. The data shows a reversal transient of ± O.Olg maximum amplitude 
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occurring over a period of 0.2 seconds (5 Hz); the test subject sensed the 

transient. There is some evidence of a higher peak for this transient 

corresponding to a higher frequency however O.Olg is well above measured 

thresholds-of-perception at 5 Hz (see figure 3-1, Data Points 13, 17). 

These measurements and results confirm the technical difficulties 

presented by static friction in bearings to a system which has to apply 

oscillating motion without acceleration cues. On the other hand, once static 

friction has been broken, the drag forces are relatively small and constant; 

the bearings and drives utilized in this system do not compromise any 

measurements involving continuous accelerations or continuous motion. 

4.1.3 Drive Cable Related Effects 

The tensioned drive cable has the capability to introduce 

vibrations into the carriage as it moves along the track. Each of the three 

elements of cable span represents a potential vibration frequency defined in 

terms of the span length, the tension applied and the material properties of 

the cable. Two of these frequencies are related to the position of the 

carriage along the track. The evaluation for cable-induced noises consisted 

of vibration measurements on an unoccupied carriage while it moved at 

constant velocities of O.lm/sec and 0.5m/sec. In both cases the carriage 

showed a complex-wave vibratory response. At a velocity of O.lm/sec, the 

response was approximately 0.002grms. For a velocity of 0.5m/sec, the 

vibration showed a linear increase to O.Olgrms. A spectral content analysis 

for the vibration at O.lm/sec appears as figure 4-7 and does show a number of 

response peaks. The major peak near 12 Hz correlates with the predicted 

vibrating-string fundamental for the 6.4 meter len~th of cable between the 

drive sheave and the idler pulley. 
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The other higher peak (e.g., 24 Hz) could be an harmonic or the 

combination of two near-equal cable resonances corresponding to a half-stroke 

position for the carriage. (The 10 second run for the spectral analysis 

involved about 1 meter of travel near mid-stroke.) The companion measurement 

performed at 0.5m/sec (figure 4-8) shows a pattern of discrete frequency 

peaks out to nearly 100 Hz; cable harmonics can account for some of the 

frequencies. The peaks show magnitudes 3 to 5 times greater than those 

measured at the lower velocity, and these peaks begin to approach the 

measured values for thresholds at their frequencies (see figure 3-1, Data 

Points 11, 13). 

Wrapped cable drive systems with static tension will excite 

vibration due to the inherent geometry of the configuration; figure 4-9 shows 

the two sources of vibratory excitation. A wrapped sheave (figure 4-9A) 

driving a tensioned cable forces a small angular bend at the points of entry 

and exit. The combination of cable twist and side force against the groove 

in the sheave produces a condition relatable to a continuous "bowing" with a 

rough edge. In both this case and its musical equivalent, the result is 

vibrating "noise". Wire rope has an inherent resistance to bending, the 

individual strands have to move relative to each other to accommodate the 

difference in wrap-length around a sheave. In the case of the tensioned 

cable drive, these friction-hysteresis effects change sign coincident with 

the reversal of motion. The net effect is an impulse which serves to excite 

vibrations and can also appear as an acceleration cue to a test subject (see 

figure 4-6). 

Thus, the application of tensioned, wrapped wire-rope cables to 

drive systems has to recognize an inherent condition for causing vibratory 

excitations. Vibration free operation cannot be reasonably expected. For 
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man-rated equipment, the impulse transient coincident with motion reversal 

presents a technical compromise which has no obvious means for elimination. 

4.1.4 Other Noises 

The operation of the sled was evaluated for acceleration noises 

transmitted through structure and acceleration noises generated from other 

sources in the system. Such effects would be a concern if they correlated 

with the motion. An effective evaluation of sled-originated noise had to be 

assured that building responses and other environmentally applied excitations 

were eliminated either as a source or by extraction from the data. Building 

and environmental effects appeared negligible and not correlated with the 

motion. Figure 4-10 shows the background excitations present at the sled. 

All these excitations are considered compatible with the design limit shown 

in figure 3-1. In observation, a degree of care in the location and 

construction of the foundation elements can eliminate a potential source of 

extraneous noise. The operation of the sled showed vertical excitations with 

peaks ranging from 0.001g to 0.03g. Figure 4-11 shows the response content 

at the point of support for the test subject, however, these resonances do 

not provide any cues to the test subject. An additional structural resonance 

at 25 Hz appeared to exist between the input to the test subject and the 

mounting point for the head enclosure. Measurements in the horizontal 

direction perpendicular to the direction of motion appeared less than 0.001g 

and were considered negligible. The evaluation showed that the carriage as 

an element of the system did not have resonances or noises which were 

considered significant contributors to the total noise content or to the 

generation of acceleration cues. In assessing these measurements, it appears 

that the design of a carriage should be governed by frequency criteria 

(figure 3-1) as the means to avoid generating any extraneous sources for 

acceleration cues. 
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4.2 Measurements From the JSC Sled 

The acceleration test sled at the NASA JSC is an engineering copy 

of the unit installed at MIT. The principle modifications introduced were 

the use of plastic balls in the bearings and 5.1 cm diameter precision steel 

rounds for the rails. The sled was not completed at the time of the 

measurement, the drive system employed an interim 60 Hz supply instead of the 

2kHz unit intended. The measurements were intended as pathfinders and 

addressed structural resonances, drive system effects, friction effects and 

ride Quality. The principal findings are summarized in Table 4-2 below. 

TABLE 4-2. SUMMARY OF MEASUREMENT RESULTS AT JSC 

Parameter Measurement or Result 

Structural Resonances 

Cable Drive Resonances 

Overall Coefficient 
of Friction 

Contribution From Rails 
and Bearings 

Contribution From Cable 
and Drive 

Other Effects 

Carriage, 37 Hz Lowest. Principal 

Resonances at 151 Hz and 202 Hz 

7.75 Hz Fundamental Plus Harmonics 

0.03 

0.02 

0.01 

Motor Harmonics of 60 Hz up to 180 Hz 

The ride quality measurements showed contributions from the 

carriage at 37 Hz, the cable at 7.75 Hz, plus the motor harmonics. The 60 Hz 

harmonics disappeared with the installation of the 2kHz supply. A friction 

coefficient of 0.03 during motion reversal generates the same value of 

acceleration force expressed in terms of "gil and such levels are above most 

of the measured thresholds of perception. 



4.3 Review of the ESA Sled Acceptance Test Data 

The ESA acceleration test sled was configured for compatibility 

with a long module Spacelab installation in the Shuttle. The principal 

dimensional constraints were the 5.4m length and 0.6m width. The drive 

system utilizes a tensioned, wrapped cable to move a carriage riding on four 

sets of opposed wheels. Each wheel turns in a pair of radial ball bearings 

at the axle support. The description and data from the acceptance testing 

(ref. 6) show evidence of non-linear friction effects coincident with the 

times of motion reversal for the carriage. Figure 4-12 shows the 

acceleration and velocity measurements obtained from the carriage for 

operation at a 0.2 Hz cyclic application of O.Olg accelerations. The 

response measurements show an acceleration-interrupt coincident with zero 

velocity which approximates an 0.008 9 half sine at 0.75 Hz. The velocity 

trace shows a corresponding hesitation at each zero crossing. These 

responses are above perception thresholds. The further analysis of the data 

estimates 0.02g as the measured maximum for the reversal-transient effect. 

These measurements are the summation of static friction plus the reversal of 

running friction. The frequency and magnitude of the response are functions 

of the servo response characteristics coupled with the elasticity of the 

cable drive and structure up to the point of the measurement location. 

4.4 Review of Description,RAF Vertical Oscillating System 

The measurements from tests and description of the design for a 

IIlarge-stroke oscillator ll installed in an RAF research laboratory indicates a 

system which will operate without presenting spurious acceleration cues to 

the test subject. The hydraulically driven unit operates in the vertical 

direction to provide strokes up to 2 meters over the frequency range 0.05 Hz 

to 30 Hz and at sinusoidal excitation levels ranging from O.OOlg to 3.0g into 
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a test load of 200 kg. The design of the control system and the innovative 

application of hydraulics resulted in data which to quote the evaluators 

"revealed a commendable waveform fidelity and low spurious noise. 1I The 

analysis of data showed that for measurements in the threshold range (O.Olg) 

spurious excitation content was of the order O.OOlg. These values are 

consistent with elimination of acceleration cues. 

The design of the system employs continuous flowing hydraulics and 

a pneumatic balance of the gravity force to achieve the noise-free operation; 

figure 4-13 shows the general configuration. The features which serve to 

eliminate spurious noise at reversals of motion are: 

1. The plenum chamber at the bottom operates at a pressure (~3 

times atmosphere) sufficient to balance the gravity load of the 

column, platform and test subject. The plenum volume does not 

experience an appreciable change throughout the length of the 

stroke. 

2. The upper and lower bearings for the column utilize a radial 

inflow of hydraulic fluid to center the column and prevent any 

mechanical contact or drag forces. (Hydraulic fluid 

continuously weeps into the plenum and is continuously 

scavenged from around the top bushing.) 

3. The piston does not contact the walls; the side faces of the 

piston have conical reliefs from each end toward the middle 

such that the hydraulic fluid moves along a tapering passage to 

produce a centering action. There is a continuous fluid flow; 

the piston has bleed holes in the middle face and fluid 

exhausts into the hollow column and, thereby, to the plenum for 

recirculation. 
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The concept eliminates those elements which tend to generate hysteresis 

forces during a motion reversal. The reversal of the driving forces is 

achieved by modulating the flow of fluid; however, such changes occur at the 

time of maximum kinetic energy in the moving elements, and thereby minimize 

any perturbing effects. The installation represents a large national 

facility and long-stroke hydraulic systems do not appear compatible with 

flight. (The diameter of the column is listed as 200mm and the operation 

requires a 160 kw hydraulic system.) 

4.5 Summary of Findings From Sleds 

The summary of measurements and reviews of published results show 

that systems can be configured which will operate without spurious 

acceleration cues above the thresholds of perception. On the other hand, 

sled carriages riding on conventional bearings will experience a non-linear 

friction effect coincident with reversal of motion. The measured levels for 

high quality bearings show typical values of 0.02g which is above most of the 

measured thresholds for perception. The use of a tensioned, wrapped 

wire-rope cable to impart the accelerating force must contend with resonance 

vibrations associated with the free-string length of the cable runs and 

continuous vibratory excitations. The use of tensioned wire rope also 

introduced a measurable hysteresis effect stemming from flexing-induced 

friction. Cable and drive system hysteresis can apply forces of O.Olg to a 

carriage during a motion reversal. Careful design can minimize the effects, 

however no obvious means has appeared which will reduce the effects to levels 

below perception thresholds for a system based upon conventional bearings and 

driven by a wire rope. 
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5.0 EVALUATION OF TECHNOLOGY FOR APPLICATION TO LOW NOISE SLEDS 

The measurements of static and dynamic friction forces in existing 

mechanical sleds showed that the levels were too high and produced 

acceleration cues well above perception limits. Methods of lowering these 

effects were investigated. Some of these were the use of wheels with large 

wheel-diameter to bearing-diameter ratios, wheels supported by belt­

constraints (no bearings) and air bearings. Air bearings appeared clearly 

superior, the friction levels are negligible, and the disturbing torques are 

below perception limits. Evaluations of alternatives to the tensioned, 

wrapped wire rope drive appeared as an application of linear induction motors 

and as metal belts running on air bearing supported pulleys. The evaluations 

which are described below indicate that a low noise sled acceptable to both 

ground and flight operation appears achievable. The sled would utilize air 

bearings to support the carriage and employ a drive system based upon a 

linear induction motor or as an alternate a flat metal belt. A drive system 

utilizing metal belts also would need to employ air bearings for all of the 

pulley and tensioning elements. 

5.1 Air Bearing Systems 

Air bearing devices are well understood, covered in detail in many 

texts, and are widely applied to existing mechanical equipment. Two 

commercial systems were investigated as to noise level, availability, and 

cost. One commercial bearing element was investigatpd regarding its 

potential use as a linear motion constraint for a Shuttle mid-deck 

experiment. The characteristics of these devices are described in the 

following paragraphs. The data gathered ranged up to 400 Hz, however, only 

the results below about 100 Hz are of concern. Shock mounts or foam pads are 

considered effective isolators for vibrations above 100 Hz. 



The airflow required to support a test subject on earth and in the 

Shuttle environment was also investigated. A computation for worst case 

conditions evaluated support pads requiring differential pressure of 6.89 x 

105 Pa (100 psi). For 10 pads, each using 0.00425m3/sec the overall 

requirement was less than 165 watts. The actual requirements in a Shuttle 

environment should be smaller because the air bearing pads would only carry 

moment loads and not have to support the carriage, chair and subject. 

Residual thrusts caused by the air exhausting from the pads were also 

computed and found to be negligible. The largest disturbing torques which 

could be encountered are those which may be caused by angular inclinations of 

the support pad. The disturbing angular accelerations are directly 

proportional to the inclination of the pad. To achieve torques which produce 

lower than perception level accelerations it is necessary to provide the 

support pads with a self-aligning capability. Angular misalignments must be 

kept below 0.0003 radians in the direction of the motion. These conditions 

present no difficulty with well-designed pads. In the commercial items 

evaluated, the overall bearing clearances were between 0.007mm and 0.015mm 

total, an angular misalignment of 0.0003 radians does not appear achievable. 

5.1.1 Measurements and Evaluation of Performance for a Commercial 

Precision Measurement Unit 

A precision coordinate measuring unit produced by a U.S. 

manufacturer has been installed as part of the inspection equipment inventory 

at the NASA Ames Research Center (ARC). This unit was instrumented to 

measure vibration and acceleration responses to provide typical 

characteristics. Units of similar design are available in standard platform 

sizes ranging from approximately 1 meter by 1 meter up to 3 meters by 6 

meters. The-unit installed at the ARC is based upon a granite slab 3 meters 
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long, 1.5 meters wide and 30 cm thick weighing 3800 kg. The unit is 

supported by isolation footings. The active portion of the measuring system 

utilizes a movable carriage weighing about 340 kg floated on air pads; figure 

5-1 shows the general configuration of the unit. The individual air pads in 

this unit are hard-faced (air fed by drilled holes) 7.62cm squares. 

The results from a series of measurements showed that the floor 

moves with a maximum amplitude of O.OOOlg in the frequency range 22 Hz to 30 

Hz, apparently in response to other local machinery. The slab moves with 6 

degrees of freedom and does amplify the floor vibrations by factors as much 

as two. The carriage follows the motion of the slab to within 5 x 10-5g at 

frequencies up to 100 Hz. Above 100 Hz the carriage shows additional 

response; figure 5-2 shows the measured responses. The linear deflections 

between the carriage and the slab remain below 0.15 micrometers; at all 

frequencies up to 400 Hz, these levels are small and can be readily 

attenuated. The results from these measurements conclusively showed that the 

noise levels associated with air bearings remain below the design limit 

defined for thresholds of perception avoidance in test equipment (ref. figure 

3-1). In a follow-up discussion with the manufacturer, the cost quotations 

and times for delivery led to suggesting the use of these tables as one of 

the alternate test configurations describpd in the Appendix. 

5.1.2 Evaluation of Air Bearing Pads Using Porous Metal 

A comparison set of measurements were obtained from an alternate 

precision profile measuring unit which utilized air bearing pads formed from 

porous metal (air supply over the entire pad face area). Figure 5-3 shows a 

comparison of the slab vibrations with the responses measured on the carriage. 

The relative accelerations between the carriage and the supporting slab are 

less than 2 x 10-5g at all frequencies up to 400 Hz. The porous metal 
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bearing faces appear to more closely follow the motion of the supporting slab 

than do hard-face units with discrete-feed holes. Attempts to measure the 

coefficients of static and sliding friction were not successful with either 

of the systems. The friction forces were below the 2 x 10-5g sensitivity 

threshold for the accelerometers. These measurements indicate that an air 

bearing system will operate without any noise sources which could produce 

acceleration cues above the design limits shown in figure 3-1. 

5.1.3 Other Configurations 

A limited series of test measuremp.nts were obtained from a bearing 

configuration that included piston-type compensators which accommodate minor 

variations in the alignment of the supporting tracks. The single-pad 

configuration was tested under a load of 18.2 kg operating with supply 

pressures of 138000 Pa (20 psi) and 207000 Pa (30 psi). The measurements 

showed vibration levels less than 2.5 x 10-5g for frequen~ies below 100 Hz. 

The reviews of commercial air bearin~data and available 

configurations led to the particular evaluation of a bearing-and-track unit 

which could be applied to a single-track sled configuration compatible with 

preliminary experiments conducted within the mid-deck of the Shuttle. Figure 

5-4 shows the test concept. The air bearing and square-tube rail are a 

commercially available unit; the bearing element measures about 0.4m in 

length and would provide a stroke of 0.5 meters. The lightweight folding 

structure accommodates the test subject; springs or elastomers provide the 

drive system. When not in use (during launch, meals, and landing), the unit 

dismounts and folds for storage elsewhere in the cabin. The data supplied by 

the manufacturer shows the following test capability: 
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Load 

Pitch Moment 

Roll Moment 

Air Supply Pressure 

Compressor Delivered Flow 

Compression Delivered Power 

450 kg 

62 Nm 

37 Nm 

550,000 Pa 

0.00075m3/sec 

150 watts 

The power requirements are within the capabilities of the Shuttle supplies; 

the air bearing units are catalog items with delivery times compatible with 

experiments-of-opportunity scheduling for the Shuttle. 

5.1.4 Air Bearing Data Summary 

The conclusions of the air bearing investigations show that the 

bearings are sufficiently noiseless to be used as sled supports, are 

commercially available, and that the compression horsepower required is 

reasonably small. The friction and disturbance torques introduced by the 

airflow are negligible. Therefore concepts for a sled which expects to keep 

acceleration noises below threshold of perception limits should consider air 

bearings as the available option. 

5.2 Linear Induction Motors 

Linear induction motors offer an attractive option for a low noise 

drive system. For application to a sled, the installation would take the 

general form as indicated in figure 5-5. The carriage would carry the moving 

coils and operate with a stationary reaction plate. The alternate 

configuration of electronically switched stationary coils and a moving 

reaction plate (armatures of ordinary electric motors are moving reaction 

members) could be employed in a ground test sled, however, practical 

considerations dictate that the coils contain iron, the weight penalty for 

non-moving coils appears incompatible with a flight sled. The theory and 
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design of linear induction motors has been well established for industrial 

use (ref. 7) and no inherent problems have appeared which precludes their 

application to the drive system for a sled. The study into the application 

addressed some of the operating requirements as they relate to the electrical 

performance and the removal of heat. For discussion reference, the operating 

concept for a linear induction motor is presented in figure 5-6. The pole 

pieces of the motor follow conventional practice of coil-wound laminated 

iron. The reaction plate is a composite bar with an iron core surrounded by 

some readily coolable metal such as copper or aluminum. In operation, the 

individual pole pieces are energized by one of the phases of a multiphase 

electrical current (3 phase alternating current). The relative magnetization 

from pole-to-pole sets up countering magnetic fields within the reaction 

plate such that a net thrust will exist driving either the poles along the 

reaction plate (as in a sled) or the reaction plate along the poles (as in an 

industrial actuator system). In a three-phase system, interchanging the 

relative sequence of any two phases will change the direction of the thrust. 

In figure 5-6, if a 1-2-3 sequence causes a force in one direction then a 

1-3-2 sequence will reverse the direction. The concerns for a drive system 

application become the relative efficiency in transferring electrical energy 

into thrust, the system for switching to achieve motion reversal and the 

ability to remove heat from the reaction plate since the electrical energy 

which does not appear as motion must be dissipated as heat. 

5.2.1 Performance Efficiency 

A linear induction motor applied to a sled drive will generally 

have to operate in a regime of low electrical efficiency. The need to 

operate at near-stall and to reverse thrust at maximum velocities (motor 

essentially driven backwards) diverge from the most efficient operating range 
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which relates to a sustained optimum velocity. As an example, for 60 Hz 

operation of a motor with poles on 5cm centers, the most efficient velocities 

occur above 5 meters per second; sled carriages are not expected to 

experience such velocities during ordinary operations. 

A survey of present industrial units showed that a general rule 

equates 10 volt/amperes to 1 Newton of force. Industrial applications 

generally modulate the applied voltage as the means for controlling thrust, 

which is most effective since the thrust corresponds to the square of the 

applied voltage. While a thrust efficiency of 10 vaIN appears acceptable for 

in~ustry, an improved efficiency would benefit applications to sleds. Since 

all sled systems will need a voltage control and flight sleds would need a 

dedicated converter for the alternating current, the system could be designed 

for any frequency and this consideration offers a means to improve the 

efficiency. Studies performed by laithwaite et ale in Britain (ref. 8) show 

that for operations near stall or at low velocities a lower frequency of 

alternation will improve the efficiency of the magnetic coupling which 

produces the thrust. A comparison evaluation is shown below as Table 5-1. 

The selection of 756N for the thrust generated represented an acceleration of 

0.5g applied to a 150Kg carriage. The design of a moving coil system must 

accommodate the weight of the coils as part of the accelerating mass. 

Industrial specifications show that moving coil configurations can generate 

thrust forces up to twice the weight of the coils (e.g., a thrust-to-weight 

ratio of 2). 
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Case 

1 

2 

3 

Hz 

60 

15 

5 

TABLE 5-1. COMPARISON OF OPERATING CAPABILITIES 

Max 
Volts 

300 

165 

150 

Watts 
Consumed 

10k 

5.1k 

3.4k 

Thrust 
Generated N 

756 

756 

756 

v-a rr 
13.1 

6.74 

4.49 

Case 1 represents actual measurements from a commercial unit operated at low 
velocities and through stall (motion reversal). The system efficiency 
degrades about 30 percent compared to operation at optimum velocities. 

Case 2 represents an analytic prediction based upon both the measurements and 
the data developed in the low frequency evaluations (ref.S). 

Case 3 represents practical lower limit for operation. A system configured 
for flight should consider the advantages offered by operating at the lowest 
practical frequency. 

The requirements for reversing the direction of force dictate that 

the control system for the motor be capable of interchanging two of the 

phases applied to the coils. Fortunately, interchanges occur coincident with 

a zero force requirement. The techniques for zero-crossing switching have 

been developed for alternating current machinery. The configuration of the 

power control for a sled must include a high-speed switching technique that 

can accommodate the current requirements for the motor coils which may range 

from 10 to 50 amperes. 

5.2.2 Cooling Requirements 

The design of a linear induction motor which operates through a 

low-speed, high-force change in direction of motion must accommodate a heat 

dissipation in the reaction plate totaling 80 percent of the power applied. 

For the sled system evaluated, the cooling requirement became an 8000 watt 

dissipation from the reaction plate in the volume contained between the 

coils. Fortunately 8000 watts corresponds to a 20°C rise in a water flow 



of 6 liters/minute. These flow rates in a cooling passage of 12.5mm diameter 

will keep the operating temperature of the reaction plate within ordinary 

acceptable limits. Cooling of the reaction plate and the coils does not 

appear to present any technical obstacles to the use of linear induction 

motors. 

5.2.3 System Considerations 

The use of a moving-coil linear induction motor coupled with air 

bearings for the sled carriage offers an attractive approach to a sled system 

which could be identical in both ground and flight configurations. The 

design of the sled system must address the need to have air hoses and 

electrical power leads connected to the carriage in such a manner they do not 

introduce an unwanted friction or drag effect. The concept of an auxiliary 

servo-carriage appears as an option. The second carriage would employ a 

follower servo which kept a close distance to the experimental carriage such 

that the power, air (and instrumentation) leads could make a short flexible 

connection between the two units. The drive for the auxiliary does not 

require either the power or noise isolation associated with the experiment 

carriage. In addition, the design of a sled system may want to include a 

moving cover (a roll-sock or bellows) to protect the precision rails from 

contamination or harm; a follower carriage would provide the means for 

extension or control of a protective cover. 

5.3 Metal Belt Drives 

Metal belts have well-developed applications to industrial 

operations particularly where precision transfer functions must be 

accomplished in an automated assembly or processing line. Metal belt 

materials are available in aluminum, steel and beryllium copper. The 

corrosion resistant "stainless" steels are well utilized in handling 
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materials moving through corrosive processes. In general the manufacture of 

metal belt materials focuses on the development of high tensile strength 

(through work hardening or heat treatment), the precise control of thickness 

and the production of high quality surfaces. In application to the drive 

system of a sled, the use of a wide (20-30cm), thin (0.05-0.4mm) belt would 

avoid most of the dynamic problems inherent with a tensioned, wrapped cable 

(e.g., resonance frequencies, flexing losses, sheave induced noises, etc.). 

The evaluation of metal belts consisted of analytic studies of a 

steel belt which indicated that such a configuration can provide adequate 

force with less than one complete turn around the driving pulley. The 

analysis addressed the following potential sources of acceleration noise: 

1. Friction losses caused by bending of the belt around the 

pulley. 

2. Friction losses caused by partial slipping of the belt on the 

pulley. 

3. Disturbances caused by transverse oscillations of the belt at 

its fundamental and harmonic frequencies. 

Each of these is addressed below. 

5.3.1 Internal Friction Losses (Bending Hysteresis) 

The evaluation of the hysteresis losses associated with the 

bending-unbending around the pulleys analyzed a sled configuration with the 

same driving system dimensions as those of the MIT and JSC units. Internal 

friction (hysteresis) for metals shows an upper limit which equals 0.2 

percent of the total strain energy stored in the configuration. In a drive 

system, as the belt becomes tangent to the sheave and bends to conform, the 

stresses change from pure tension to a combined bending and tensile stress 

with the maximum stress at the outer fibers. When the belt leaves the 



sheave, the stresses return to pure tension. The energy loss is therefore 

the dissipated internal energy connected with just the bending of the belt. 

The illustrative comparison example considers a belt 0.127mm thick, 

254mm wide operating around a drive drum 0.204mm in diameter with a tension 

loading of 4000N (same as the MIT-JSC drive systems using cables). In such a 

configuration, the maximum fiber stress due to the combined tension and 

bending becomes: 

S - Et + T 
~x -n ~ 
For a steel belt (E = 2.06 x 1011 Pal 

8 Smax = 2.52 x 10 Pa 

(5-1) 

Steel belt materials show elastic limits three times the calculated Smax; a 

steel belt would have a conservative operating margin relative to its elastic 

limits in this application. In considering the bending energy associated 

with the wraps around the pulleys, the contribution to the total stress from 

the Et/2p term amounts to 1.28 x 108 Pa. 

The elastic energy stored in stressed metal is the sum of all the 

local stresses (force) times the local strains (distance moved). At any 

local point the stresses and strains are related by Hookes Law (S = £E). 

For the case of bending as in a belt wrapped around a drive pulley, the 

energy involves an integral expression which is shown derived in figure 5-7. 

The integral expression takes the form: 

T - 1 S £ wt - ~ max max (Fig. 5-7-d) 

The value for the strain £max may be calculated from the bending term for the 

maximum stress and Hookes Law: 

£ _ t _ 0.127(10-3) 
- ~ - 2(0.102) = O.000622m/m 

(5-2) 
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r-z.-------r--~r_----_ + Y max 

t 

o Neutral Axis 

~ Y
max 

In bending the maximum stress occurs at the inner and the outer fibers. 

The force at a distance Y from neutral axis can be expressed as: 

- Y F y - w Smax ~ dy 
max 

(a) 

The force acts through a distance equal to the local strain 
Y 

E: = E: Y max Ymax 
(b) 

The energy stored per unit length of belt is the summation 

i Ymax j[ Ymax 

T = 2 F yEy dy = W SmaxEmax [<aJ 2 dy 

o 0 

Thus T = t Smax E: max wY max 

S• Y - t , nce max - '2" 

(d) 

Figure 5-7. Bending Energy Stored In A Wrapped Belt 



Therefore, substituting in the energy equation (5-7. d) and considering the 

loss fraction, 0.2(10-2); the maximum lost energy becomes: 

lost Energy = ~(108)(0.000622)(0.254)(0.127)(10-3)(0.002) 

= 0.00337 Nm Max. (5-3) -m 

This energy is contained in a half-wrap around each pulley and would equate 

to a force which generated that much work in a half turn, the equivalent. 

Friction force would have this magnitude for each pulley in the system. Thus 

for a two pulley system: 

F = 2(0.00337N) = 0.0067N 

If this force were applied to a carriage of a 150Kg total mass, then 

F = rna, a = 0.0067 = 0.449 X 10-4m/sec2 = 0.449 X 10-5g (5-4) 
150 

These levels are more than an order of magnitude below the design limits for 

thresholds of perception. 

5.3.2 Slippage losses Between the Belt and the Pulley 

The geometrical considerations which govern slippage losses and the 

derivation of the exact expression for predicting such losses are presented 

in figure 5-8. The expression shows that slippage losses are directly 

related to the useful (dynamic) stress levels in the belt. From the 

derivation, the loss ratio is: 

l R t · Tu ass a 10 = ~E (5-8,h) 

If the useful tension force applied by the belt causes an acceleration of 

0.5g to a 150kg carriage the tension force is: 

T u = rna = 150 (0.5)( 9.8) 

T u = 735N 

substituting for the case of the steel belt described in 5.1.1 above: 
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rfj,X 

x = 0 

Under no acceleration load the belt tension force is T1 • During acceleration 

the belt tension force rises to a value T2 where the belt difference, T2 - Tl 

provides the useful work. The wrap angle to the point of no slip at X = 0 is 

defined by Tz/T 1 = efX • The work lost due to belt elasticity is (T2 - T1)rfj,X 

where rfj,X is the stretch in the belt caused by the acceleration loading. 

At any X the local useful belt tension force Tu = (T2 - T1 ) is 

Tu = T1 (efX - 1) (a) 

The strain E:, per unit length 

(b) 

And the differential strain 

d E: = * (e fX - 1) rdX (c) 

Integrating to X2 from X = 0 will define the stretch 

rM = W-l X(~fX - l)dX = W- [e;X - X J ~' 
= :~ r [ e;X , _ X, _ ~ + 0} :~ r [ e fX: - 1 _ X ] 

(d) 

rfj,X = :~~ [e
fX2 

- (1 + X2f)] 

Figure 5-8. Derivation of Slippage Losses for a Metal Belt 



The series expansion for an exponetial: 

efXz = 1 + fX1 + (fXz)1 + (fX1)! + 

2 6 

From (a): 

Tu = T2 - Tl 

+ ••• ] (e) 

The stretch may be expressed in terms of Tu by dividing the two series 

expansions thus; 

[( fX.>' (fX,) , ] + + 

The Stretch = ~ 
2 6 

AEf 

[fX' + 
(fX2)z (fX 2)! .. .] 

2 +---0-+ 

And using only the first term of the resulting series 

rX 2Tu 
Stretch = 2AE 

The useful motion is a rotation equal to rX 2 

Thus Stretch = Tu = loss ratio 
Useful Motion 2AE 

(f) 

(g) 

(h) 

The relative error using only the first term from the series for fX = 0.2 

;s less than 0.5 percent. 

Figure 5-8. Concluded, Derivation of Slippage Losses for a Metal Belt 
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Tu 735 -5 Loss Ra ti 0 = - = -----'-...:;..;..---------.-..--- = 5.51 x 10 
2wt 2(0.254)(0.000127)(2.06 x 1011) 

This ratio would determine the magnitude of the motion reversal transient 

since it is proportional to the useful (e.g., acceleration) force. In a 

limit case for an acceleration of 0.5g applied to a 150K9 carriage, the 

reversal transient becomes: 

Reversal Transient = 5.51(10-5)(150)(0.5)(9.8) 

Transient = 0.0396N 

This force equates to an acceleration transient less than 10-4g which is 

below any of the measurements for threshold-of-perception. 

5.3.3 Transverse Vibrations and Residual Friction Force Considerations 

Transverse vibrations of the flat belt cannot be easily analyzed, 

however, it is believed that the disturbance levels will be orders of 

magnitude less than the present cable drive because of lower input 

disturbances and greater air damping. In addition, if it is necessary to add 

vibration damping devices these can be spaced on the outside of the one-turn 

belt without interference. 

The remaining source of friction considered was that produced by 

motor brushes. An estimate of these forces indicates that the drive motor 

should use electronic commutation, and this technique has been developed and 

is commercially available. 

5.3.4 System Considerations for Metal Belt Drives 

The utilization of a metal belt drive carries a number of system 

design implications which must receive consideration. To avoid cueing 

responses at the times of motion reversal, all the moving elements of the 

sled must ride on air bearings; for a metal belt drive system the air support 

requirements are shown in figure 5-9. The particular considerations are 

summarized below. 
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Figure 5-9. System Considerations For a Metal Belt Drive 
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1. Carriage Support. The requirement for air bearings to support 

and guide the carriage are described in 5.1 above. 

2. Drive Pulley and Motor. These units must rotate in air bearing 

journals. Some tensile preload will be necessary to prevent a 

slack belt at extremes of acceleration: Air bearings must 

accept both the preload and the acceleration forces. Limits on 

static tension may not permit sufficient driving friction and 

require an auxiliary air bearing to apply such a load to the 

belt. 

3. Idler Pulley. The idler pulley must apply the preload tension 

and accommodate any runout or tolerance buildup effects. The 

preload bearing must be sized to provide the necessary tension 

while allowing the system sufficient latitude of motion 

to accommodate manufacturing run-out tolerances in the 

thickness of the belt and taper in the drums. Metal belt 

drives must run flat, the conventional technique of crowning 

the pulleys to generate a centering force on the belt cannot be 

used; such centering forces imply residual slipping friction 

effects which will exceed the threshold limits. There will be 

some side motions of the belt and there will be some motions of 

the idler pulley relative to the track due to alignment and 

stretch of the belt; these motions must be accommodated. One 

potential alternative would be to use a half-circle air bearing 

as the idler sheave; it could eliminate the need for rotating 

journals. A second option would introduce lateral freedom in 

the belt attachment to one end of the carriage (a whiffletree). 



In summary, a metal belt drive system offers an approach to a low 

noise configuration. The system will need to run in air bearings which, 

thereby, introduce the corresponding complexities. Metal belts and precision 

drive drums will have a low tolerance for particulate contaminants. A metal 

belt drive system may need to run enclosed to avoid the effects of particle 

contamination of the running surfaces. 
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6.0 SUMMARY AND CONCLUSIONS 

The technology evaluations of man-rated acceleration test equipment 

for vestibular research has provided the data and concepts to support the 

designs of low noise systems intended for both ground and flight operations. 

In addition, the study has identified some additional configurations which 

are compatible with preliminary evaluations or limited scale vertification 

testing which are discussed in the Appendix. The specific conclusions or 

findings from this study are as follows: 

6.1 Design Limits for Spurious Noises in Sled Systems 

A survey of existing published test measurements for thresholds of 

human perception has permitted the generation of a design limit charac­

teristic. The characteristic is single valued and continuous showing a 

change with frequency that follows the results obtained from research. The 

characteristics may be described thus: 

a. 0.04 Hz to 3 Hz. Roll off at 1.73 db/octave 

From O.Olg (0.00707 grms) at 0.4 Hz to 0.0003g 

(0.00021 grms) at 3 Hz. 

b. 3 Hz to 10 Hz. Level at 0.003g (0.00021 grms). 

c. 10 Hz to 100 Hz. Roll up at 1.53 db/octave 

From 0.00039 (0.00021 grms) at 10 Hz to 0.001g 

(0.000707 grms) at 100 Hz. 

The establishment of this limit provides a margin below the measured 

threshold-of-perception values for humans on earth subjected to linear cyclic 

motion without any visual or other external cues. 

6.2 Existing Sleds 

Most of the existing horizontal sleds have carriages riding on ball 

bearings and are driven by tensioned cables with a multiple wrap around the 



driving sheave. The configuration generates cueing transients of up to 0.03g 

(above threshold) coincident with a change in direction of motion. The 

forces which generate the transients arise from non-linearities in the 

bearing friction at zero velocity and from friction hysteresis losses in the 

wrap-unwrap of the cables. There is no obvious way to reduce the transient 

to a subthreshold level. 

A vertical motion sled has been developed which avoids such 

transients. In this sled, the driving actuator is centered and moved by a 

continuous-flow hydraulic system such that there are no bearing frictions or 

sliding contacts in the system. 

6.3 Low Noise Sleds Technical Features 

The evaluations of technology features produced approaches to the 

design for low noise sled. The features are: 

a. The carriage must be supported and guided by means of air 

bearings. Commercially developed units have the combinations 

of load carrying capability and stiffness (motion restraint) to 

function as support bearings. In addition, measurements have 

shown that the vibration introduced by the flowing air and the 

coefficient of friction for the bearings remain below the 

design limit established for acceleration noise free operation. 

In addition, evaluations of the air supply pressures and flows 

show values within the capabilities of small compressors 

compatible with Shuttle flights. The power requirements for 

air bearing compressors are also well within the capabilities 

of the Shuttle. 

b. Linear induction motors provide a means for driving the 

carriage of a sled. Some of the inherent inefficiencies 

of near-stall motor operations can be reduced by operating the 
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linear induction motor at the lowest practical frequency. The 

combination of a linear induction motor drive and air bearings 

appear to offer the most promising approach to a low noise sled 

system which could have identical units for both ground and 

flight testing. 

c. Metal belts operating over air supported drive pulleys and 

drums offer an optional means for propelling a sled. The use 

of metal belts will add mechanical complexities to the sled 

system, however, a belt driven system could be built with 

identical ground and flight units. 
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SYMBOLS APPEARING IN THE APPENDIX 

C Linear Force Characteristic for a Spring, N/m 

Cs Linear Force Characteristic for a System of Multiple Springs 

E Linear Extension of a Spring, m 

F Frequency of Oscillation, Hz 

9 Acceleration Due to Earth Gravity, 9.8 m/sec2 

I Mass Moment of Inertia, kg m4 

K General Force Constant Term, N/m, N/radian 

L Length, m 

M Mass, kg 

R Radius From a Center of Rotation to an Attachment Point, m 

r Radius of Gyration for a Mass Distribution About the Center of Mass, m 

T Tension, N 

W Gravitational Weight, N 

e Angular Displacement for a Pendulum, radians 

e d2e /dt2, Angular Acceleration, radians/sec2 

K Logarithmic Decay Coefficient, l/seconds 

w Angular Velocity, radians/sec 
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APPENDIX 

ALTERNATE TESTING TECHNIQUES, INTRODUCTION 

In addition to the techniques for obtaining low-noise operations 

for long-stroke sleds, the study effort identified and evaluated a series of 

alternate techniques which could provide some portion of the testing 

capability associated with a sled. Such testing could be utilized to verify 

the existence of an effect and establish the range or bounds for an 

environment. The testing would proceed either as a precursor or companion to 

investigations which needed the long.stroke capabilities. Such alternate 

techniques appeared as pendulums, as linear motion devices and as an 

adaptation for industry-used air-bearing 'tables. Some of the alternates 

could be configured in a manner which would permit use in a "carry-on" type 

of experiment for investigations conducted on the mid-deck of the· Shuttle. 

PENDULUM CONFIGURATIONS 

Pendulums present well established straightforward experimental 

approaches to low-level, low-frequency experimentation. Gravity driven 

pendulums on earth have provided some of the best measurements available for 

thresholds-of-perception and can be utilized effectively in almost any 

configuration which receives the proper attention to detail during the course 

of design. Pendulums can be applied to a weightless environment; in such 

cases, the cyclic motion must be mechanically applied, however, the results 

of the study indicated that useable data can be obtained with a configuration 

based upon ordinary (i.e., commercially available) wound-wire springs. 

Gravity Pendulums Performance Considerations . 
Gravity driven pendulums provide an effective testing technique for 

applying sinusoidal oscillating motions over the frequency range 0.20 Hz to 
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1.0 Hz. The portion of the vestibular response measurement regime compatible 

with pendulum measurements appears outlined in figure 1. The features and 

advantages offered by a pendulum can be summarized as follows: 

Sinusoidal Motions 

Gravity driven pendulums provide sinusoidal motion in the 

horizontal direction within the limits of the approximate equation of motion 

e + fe= 0 Solved e= eocos wt (1) 

where w =-4 
The approximation introduced assumes e = sine e and at an angular 

displacement of 0.3 radians (17 degrees), the error is less than 2 percent. 

For any length of pendulum the horizontal "sinusoidal" component of the 

motion shows the relationship that the angular deflection in radians is 

numerically equal to the" maximum acceleration expressed in terms of "g" 

(i.e., an angular deflection of 0.1 radian corresponds to a maximum 

acceleration of O.lg). A point on a moving pendulum fol·lows a circular arc, 

therefore the acceleration vector associated with the movement of a pendulum 

includes a component parallel to the gravity field which represents the 

velocity-induced centrifugal force. Consequently, the acceleration vector 

associated with the motion of a pendulum never sees a zero magnitude. The 

horizontal component of the acceleration has a maximum at the extremes of 

angular displacement and changes sign two times for each cycle (i.e., each 

time the pendulum passes through zero angular deflection). The centrifugal 

acceleration component has zero values at the extreme angular deflection 

points and achieves its maximum at the zero deflection point. Thus, the 

vertical component is always in the same direction, with two maximums per 

cycle occurring precisely at mid-phase (zero-point) for the horizontal 

acceleration. The maximum for the vertical component is also directly 
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related to the maximum angular deflection and has a numerical value equal to 

the square of the maximum deflection also expressed in terms of "g" (i.e., a 

pendulum with 0.1 radian maximum deflection will have a maximum horizontal 

component of acceleration of O.lg, and a maximum vertical component of 

O.Olg). Thus, the magnitude of the acceleration vector in pendulum motions 

can be described as a variable with a range in "g" numerically equal to 8 

in radians as a maximum and 82 in radians as a minimum. These motion and 

acceleration considerations appear summarized graphically in figure 2 for the 

particular case of a 2-meter pendulum. 

Pendulum Suspended Test Platforms 

If three or more equal-length vertical members form the pendulum 

support to a horizontal plane, any pendulum motion will keep the plane 

perpendicular to the gravity field. Any point on the plane or rigidly 

attached to the plane will move in a circular arc which has a radius equal to 

the length of the suspension members and a center of rotation directly above 

that point. 

A test subject attached to the plane of such a pendulum experiences 

no rotational excitations beyond that associated with the movement of the 

pendulum itself. This feature makes a multiple suspension system (multifilar 

pendulums) attractive to investigators. Figure 3 shows an example in which 

an extensive investigation utilized a 4 wire, 4-meter pendulum rig as the 

excitation source (ref. 4). In the motions of pendulums, the principal 

parameters of interest relate to the angular deflection, therefore a 

multifilar pendulum rig is compatible with a variety of linear or angular 

displacement measuring devices. 
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Frequency Limits 

Practicalities define the effective frequency range for gravity 

driven pendulums. The natural frequency (F) for a pendulum is defined by its 

length (L) such that 

F = 1 Ii "21T -y t 
(2) 

Thus, the upper frequency limit of 1 Hz corresponds to a length of 0.248m 

which becomes a practical limit for short support members. Measurements in 

the deflection range 0.001 to 0.1 radian (equivalent accelerations in "g") 

correspond to double amplitude displacements of 0.50mm to 50mm and require 

precision measuring equipment. For testing at low frequencies, the length of 

the pendulum faces practical limits imposed by ceilings in laboratories. For 

0.25 Hz the length becomes 3.97m and this dimension approaches the limits 

imposed by most standard buildings. Access to high bays can extend the 

operation to lower frequencies; a frequency of 0.2 Hz requires a length of 

6.2 meters. The pendulum measurements at 0.1 Hz by Chen (ref. 3) involved a 

pendulum length of 24.8m (25 meters) and reauired the equivalent to an 

eight-story building. (The installation appeared to use an elevator shaft.) 

For long pendulums, the larger displacements permit the use of less critical 

instrumentation. At 25m lengths, O.OOlg corresponds to a double amplitude 

displacement of 50mm and O.lg results in a double amplitude of 5 meters. 

Building practicalities limit the opportunities for long pendulums in an 

enclosed (e.g., environmentally controlled) situation, however, the NASA has 

facilities which would permit enclosed pendulum lengths of up to 150m (KSC 

and LeRC) and pendulum testing at 0.04 Hz could be proposed; measurements to 

O.OOOlg could be achievable. 
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Motions and Restraints 

A mass hanging from an unrestrained suspension member will 

experience the same restoring force when moved in any direction, therefore, 

the frequency of the oscillation is independent of direction. A platform in 

a multifilar pendulum suspension can be considered free to move in any 

direction (simultaneous motion along two orthogonal axes with the same 

frequency and phase but not necessarily to the same amplitude). 

In addition, a multifilar pendulum platform has a rotational frequency which 

also depends upon the length of the suspension members. In the rotational 

mode the simplified fundamental equation of motion can be shown to take the 

form 

I ~ e + RWe = 0 
(3) 

This simplified expression makes the same angular deflection assumptions as 

the pendulum equation (1) plus the additional simplifying assumption that the 

arcs in the horizontal plane described by the attachment points can be 

approximated by a straight line. Since W = Mg, the frequency for oscilla-

tions becomes 

(4) 

The moment of inertia may be considered as a circumferentially uniform 

distribution of the mass at some characteristic radius r (radius of gyration) 

from the center of mass. Substituting! = r2M permits expressing the 

frequency as: 

F - 1 R ro -Trrr-Vt 
(4a ), 

In practice, the radius of gyration nrn will be less than nRn, such that this 

ratio will be greater than 2 but rarely exceed 3. Real pendulums can have 

their rotational frequencies very close to their translation frequencies. In 



any case, for an unrestrained platform, any misalignment in the application 

of a driving force will excite both the axes of linear oscillations plus the 

rotational oscillation. Each of the pendulum experiments cited in the 

literature has addressed the techniques for application of forces and the 

means for avoiding or restraining unwanted motions. Skill-of-the­

experimenter has been one technique for attaining single mode excitation; 

positive restraint by means of auxillary wheels controlled the off-axis 

motions for Chen's 25 meter pendulum system. Redundant diagonal restraints 

appear as the attainable positive-acting technique for eliminating both the 

off-axis and rotational modes. For simple pendulums based upon wire rope 

suspensions, a 4-member main support with redundant diagonals will constrain 

motion to one direction. The use of diagonals as "Vees" or "X" braces 

restrains motion by forcing the platform to follow a more sharply curved 

upward path than the circular arc described by the simple pendulum; response 

frequencies are increased in all but the direction-of-intent. 

Damping of extraneous motions tends to become configuration­

specific; however, one potentially useful technique has been experimentally 

evaluated which provides positive damping to extraneous motions without 

measurably changing any of the characteristic frequencies. The technique 

employs a system of diagonal restraints working in conjunction with an 

elastomerically loaded damper; figure 4 shows the concept. The diagonal ties 

are brought together at the center of the span and pass between two 

elastomerically-loaded cylindrical friction surfaces. The combination as 

illustrated provides a means for uniformly tensioning each section of the 

diagonal restraint. The system is nearly inactive for motion in the 

direction intended, however, any torsional excitations or any off-axis 

lateral deflection will force the diagonals to move relative to the central 
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restraint and result in a positive damping force. The evaluations performed 

utilized a 2.1 meter pendulum (frequency 0.38 Hz) with a platform of 30kg 

that showed an unrestrained torsional frequency of 0.75 Hz. The damping 

system used , ... ooden dowels (19111T1 dia.) and eliminated the torsional responses 

in less than 2 cycles. 

Ampl itude Decay, Energy Input Requi rements 

A pendulum test rig deflected and released will follow a course in 

time which has the form of a damped oscillation: 

e - Kt - = 8 0 e . cos (1l t (5) 

The damping term II K I! includes the friction losses in the moving elements plus 

a contribution due to aerodynamic drag. and none of the contributions may be 

considered insignificant in testing for threshold-of-perception data. 

Friction data has been compiled. and the losses associated with pendulums 

operating in an enclosed volume of air have been addressed by the 

manufacturers of clods (ref. 9). These data are hel pful. however the "KI! 

value for a particular rig needs to be determined experimentally. An average 

decay per cycle: 

K = 0.002 

has been observed for one meter pendulums in air. and this value suggests the 

level of force needed to maintain a constant amplitude. For threshold 

determinations. the application of forces imposes some particular 

constraints. In general. the measurements are desired for both the case of 

increasing amplitude and decreasin9 amplitude (e.g., sense the onset of 

motion and also sense the stopping of motion). The decay term provides a 

means to detect cessation of motion, give it a push and let it coast down. 
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On the other hand, the increasing function requires care to achieve. For 

long pendulums where the thresholds will occur at generous amplitudes, hand 

excitation will provide the needed controls (Chen, ref. 3). Fortunately for 

the shorter pendulum systems the forces required (O.OOlg to O.Olg) tend to 

fall within the ranges and displacements offered by commercially available 

solenoids. A cyclically driven solenoid exciter is considered an achievable 

configuration for an experimental operation. 

A pendulum test rig will also need a means for releasing the 

platform without imparting motion. (,I1.n auxiliary platform support is 

generally required while the test subject boards and readies for measure­

ment). The release usually transfers the load into the support wires in 

preparation for movement. A slow-release hydraulic jack under the platform 

offers one approach, and such jacks are ordinary items of automotive service 

equipment. 

Auxiliary Force Driven Pendulums 

Auxiliary restoring forces can be applied to the oscillating system 

of a pendulum rig by means of springs or other elastic members. If the 

restoring force is linear the equation of motion for the oscillating system 

can be expressed 

e + [r + #] 0) = 0 
(6) 

where M is the mass in the oscillating system and K is the force constant in 

terms of the angle of deflection The frequency for such a system 

becomes: 

(7) 

In the presence of a gravity field, an auxiliary restoring force provides a 

means to selectively increase the frequency of the system. The auxiliary 



forces associated with changing frequencies are related to the geometry of 

the pendulum system, however, for modest sized systems they are readily 

obtained. The following examples are offered as illustrations. 

Frequency Changes in a Gravity Field 

As a basis for showing attainable frequency changes, consider a 

pendulum system with a length of 3 meters and an oscillating mass of 150 Kg. 

The natural frequency for such a pendulum is 0.287 Hz. If the frequency is 

to be raised by a factor of 1.5 to 0.431 Hz, then from equation (7) the 

contribution from the auxiliary restoring force must be 

~ = 4.09, thus K = 4.09M to satisfy ;/r + ~ 
If the restoring force is supplied by a spring acting in the path of the 

pendulum, the spring characteristic becomes: 

C - K, - r thus C = j.09(150) = 204.5 N/m (8) 

This value falls close to those measured for the commercial wire-wound units 

intended for household screen-door closures: 

C measured = 170 N/m 

Pendulums in the Absence of a Gravity Field 

Springs can be used to drive a pendulum in the absence of a gravity 

field. The frequency of the system then becomes a function of the restoring 

force characteristics and the mass within the oscillating system. For 

pendulums, practical considerations dictate the application of a force that 

has a component which will place a tension load on the platform supports. 

Therefore considerations pertinent to the application of springs will be 

described in terms of two examples. The configurations to be considered are 

diagrammed in figure 5. A pendulum length of 2 meters with a platform mass 
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of 150 Kg has been selected such that the entire system is compatible with 

operation in the mid-deck of the Shuttle. The evaluation will consider a 

system which would oscillate at the same frequency as a 2-meter gravity 

driven unit (0.352 Hz). Table 1 summarizes the geometrical considerations 

pertinent to each of the two configurations. 

Configuration 1. Paired Side Springs 

A drive system based upon paired side springs would provide a 

restoring force which would be a linear function of displacement if there 

were no change-in-length for the spring elements. The cosine-related change­

in-length introduces an element of nonlinearity which is parabolic relative 

to the displacement of the platform. The spring constant for the system is 

determined by the degree of divergence from linear which can be accepted 

within the system. For this example, 10 percent has been arbitrarily 

selected, therefore, at a displacement of 0.2m the contribution to the 

restoring force from change-in-length must not exceed 14.7N in the direction 

of motion. Since this is a component of the spring tension, the system force 

may be expressed as 

Cs 0 Sin ~ = 14.7 N/m 

Solving for Cs 

Cs = 3682 N/m 

h S · ~ 0.2 were ln = 1.052 
(9) 

= O.021m (Change in lengtn 
for a displacement of O.2m) 

Since the system involves paired springs each side must provide half. For a 

two spring configuration, the individual spring characteristic becomes 

1841N/m. Commercial wound-wire springs are available with these 

characteristics (i.e., consider ganging 10 screen-door closers). The tension 

in each spring element with no deflection will be equal to: 

T = ~ = 347N 
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TABLE 1. GEOMETRICAL CONSIDERATIONS FOR SPRING DRIVEN PENDULUMS 

CONFIGURATION 1. PAIRED SIDE SPRINGS 

ASSUMPTIONS 
Pendulum Length· 
Platform Mass . 
Frequency 
Restoring Force Constant 

GEOMETRICAL LENGTHS 

2m 
150kg 
0.352 Hz 
735N/m 

Spring Element Length No Deflection 
Spri ng E1 ement Length Full Oefl ecti on 
Change in Length ( 0 ) 

SPRING AND LOAD VALUES 

Dimensions, Figure 6-3 
A = 1 meter 

1.D31m 
1.052m 
0.021m 

D = 0.2m 
H = 0.25m 
Lift = O.Olm 

Spring Characteristics Total 3682N/m Individual 1841N/m 
Spring Extension at "0" Deflection 0.189m (equivalent) 
Static Tension in Each Sprin9 Element 347N 
Total Load Applied to Supports 168.3N 

CONFIGURATION 2. PAIRED AXIAL SPRINGS 

ASSUMPTIONS 
Pendulum Length 
Platform Mass 
Frequency 
Restoring Force Constant 

GEOMETRICAL LENGTHS 
Spring Element Length No Deflection 
Spring Element Length Maximum 
Spring Element Length Minimum 
Change in Length Each Spring 

2m 
150kg 
0.352 Hz 
735N/m 

Change in Length From "0" Deflection Point 

SPRING AND LOAD VALUES 
Spring Characteristics 
Spring Extension at "0" Deflection 
Static Tension in Each Spring Element 
Total Load Applied to Supports 

(Both Springs) 

Dimensions, Figure 6-3 
A = 1.5m 

1.52Dm 
1. 718m 
1.323m 

.395m 

.198m 

1880N/m 
0.248m 
466.4N 
153.4N 

D = 0.2m 
H = 0.25m 
lift = .D1m 



since the force exerted upon the support wires is defined by the sine of the 

angle subtended by the height of the platform above the anchor point and 

including the contribution of the paired system. The force applied to the 

support members becomes 

Tension Force = 168.3N 

This example shows an achievable configuration in that wound-wire extension 

springs are designed to operate with working extensions between 15 and 50 

percent of their unloaded length and this case shows a 25 percent extension. 

The use of commercial screen door closers would require multiple units; 

however, surveys of commercial supplies show that springs of this type are 

available and are used in furniture or items of other household equipment. 

Thus, the system, as described, could be readily configured to replicate the 

motion of a ground test in a "zero gil environment. 

Configuration 2. Paired Axial Springs 

A system of paired axial springs offers an alternate. In such a 

configuration, the difference between the axial components of tension 

generated by each of the springs becomes the restoring force. If the forces 

within the springs are not allowed to become zero (some preload at minimum 

extension), then the force balance becomes (see Configuration 2, Figure 5): 

C( t; + <5 )cos ex - C(~- <S)cos 13 = 735N (10) 

If the system has been configured such that the total motion of the pendulum 

does not change the cosine terms more than 10 percent from the value for zero 

deflection, then this nonlinearity may be accepted and the expansion 

performed in terms of the cosine values for zero deflection. Therefore 

2C 0 = 1.520 (735N) 
1.5 

o = 0.198m (Change in length 
from 0 deflection point) 
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The change in length is that associated with a displacement of O.2m, thus 

C = 1880N/m 

If the springs are designed to operate with a maximum extension equal to 35 

percent of the unloaded length, then a maximum extension of 1.718m is 1.35 

times the unloaded length, therefore: 

Unloaded length = 1.272m 

This value allows calculation of the tension within each spring element and 

the loading placed upon the pendulum supports (as shown for case 2, Table 1). 

An axial spring system could be achieved using essentially the same 

springs as for the paired-side ~onfiguration if the spring configuration did 

not involve significant preloading as part of the forming operation. (In 

general, all wound-wire springs formed with their individual windings in 

contact, such as screen-door closers, will show some degree of a preload 

threshold before an extension.) 

The nonlinearity of the example shows in the actual difference of 

forces generated at a deflection of O.2m. 

The Long Spring Component is 829.6N. 

The Short Spring Component is 94.2N. 

The Difference is 735.4N. 

Non-Linear Component O.4N. 

Other Pendulum Concepts 

The discussion and examples cited are intended to show the 

versatility of pendulum test rigs for both ground or spaceflight 

investigations. Pendulums are not limited to just their gravitationally 

driven frequencies, and auxiliary drives by springs can be adapted to fit the 

needs of the experimenter. The examples cited do not exhaust the possibili­

ties for frequency or motion controls; rather they are considered points-of-



departure for an innovative investigator. One option not detailed has been 

the technique for slowing the frequency of a pendulum in a gravity field. 

Frequency slowing by mass-tuning has received consideration. Figure 6 shows 

a concept for a mass-tuned test rig. Mass tuning utilizes the 

counterbalancing effect of a mass above a pivot to neutralize the gravity­

driven restoring force associated with a mass suspended below the pivot and 

thereby slow the natural frequency of the system. In the concept shown by 

figure 6, the test subject moves across the top of a circle; a compromise 

accepted for system stability. Analyses and experiments showed that 

significant frequency tuning occurs when the moments above the pivot exceed 

75 percent of the moments below the pivot. Mass-tuning adds weight to the 

system, and places severe requirements upon both the pivot bearings and the 

bending stiffness of the support members. The wrapped-axle concept shown for 

the pivot bearings and retentions are more fully described in a later section 

(see Linear Motion by Rolling Friction). For this application the concept 

allows the use of right circular cylinders as bearings rather than knife 

edges. 

As an additional alternative, the study addressed pendulums 

supported by metal belts. In such cases the pivots become right circular 

cylinders joined by endless metal belts (see Figure 7). The concept takes 

advantage of the very low energy losses in flexing metal belts to achieve 

smooth motion and the configuration does provide an inherent resistance to 

off-axis motions. Measurements on such a pendulum showed decay coefficients 

comparable to those introduced by aerodynamic drag for clock pendulums. The 

energy loss contribution from the metal belt could not be identified. 
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LINEAR MOTION DEVICES 

The studies of alternate techniques included the evaluation of two 

concepts which utilized the inherent low noise characteristics associated 

with metal belt materials or rolling friction. 

Flexure Supported Driven Platform 

The combination of flexure suspensions and countermoving rotations 

in supporting arms permits the configuration of a system which will impart a 

true linear motion; figure 8 shows the concept. In the system, four 

equal-arm, Vee-shaped pantograph links provide the attachments between the 

experiment bed and the ground supports. A system of push-rods, tie-rods and 

an idler-arm provides a linkage interconnection between the pivots on the 

experiment bed and the pivots at the apex of each pantograph Vee. The 

combination thus formed is structurally stable. 

If the push rods are attached to the idler arm in a manner which 

moves the experiment bed just two times the distance moved by the pivot point 

at the Vee in the pantograph arms, then the circular arcs described by the 

two pantograph arms will cancel such that the platform moves along a straight 

line. For angular deflections of the idler arm in the range where e = sine 

holds as a valid approximation, the motion is correspondingly linear and 

straight. Those straight-line conditions are satisfied when the spacing 

between the attachment points on the idler arm is equal to the length of the 

individual members of the pantograph arms and the lower push rod attaches to 

the midpoint of the idler arm. (The ratio of radii is 1:2 along the idler 

arm). The effective linear stroke for such a system is effectively defined 

by the length of the individual pantograph arms moving through an angular 

deflection of 0.3 radians away from the vertical for each member. Thus, 
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Stroke = 4(arms)(0.3 rad.)(Arm Length) 

Stroke = 1.2 (Arm Length) 

Therefore, a 1 meter stroke implies an arm length of 0.83 meters. 

(11) 

The development of a test rig based upon this concept must address 

noise-free pivots and the control of alignments within the moving elements. 

The concept has a potential value for carry-on types of experiments. As an 

example, a platform with the dimensions of an ordinary chair (seat height of 

0.45m) could show a linear travel of 0.24m if configured with linkages of 

0.2m length (corresponds to O.OOlg at 0.045 Hz from a 120m pendulum). In the 

design of the experiment the location of the idler arm is not critical; an 

underseat location can be configured. 

The concept can also be modified to produce motions which will 

follow circular arcs if the positions of the push rods are shifted along the 

idler arm. In such cases the two pantograph arms do not deflect through 

exactly the same angles which results in a perpendicular component of motion 

throughout displacement of the platform. Lowering the attachment point for 

the lower push rod will reduce the angular deflection at the apex of the Vee, 

and the platform will travel along an arc with the high point at the center 

(top of a circle). Lowering the attachment point for the upper push rod will 

reduce the angle of deflection for the pantograph member attached to the 

platform, and the motion will take the form of an arc with the low point at 

the center of motion (bottom of a circle). This feature allows the design of 

a test rig which can duplicate the motion of long radius pendulums. 

Linear Motion with Rolling Friction 

A linear motion system can be configured which takes advantage of 

the low noise associated with rolling friction and metal belt materials. 

Figure 9 outlines such an approach. The test rig has the appearance of a 
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four-wheeled cart with solid axles. The concept of half-turn opposed-wraps 

of metal belt material in tension provides the system stability to keep the 

platform in proper position relative to the wheels. In oscillation, the 

platform moves a distance equal to the arc length around the wheel plus the 

arc length around the axle. The unit does offer straight line motion within 

a modest sized package. For example, a platform based upon wheels of 0.3m 

diameter with axles of 50mm diameter could provide a translation of I.75m. 

If the distance between the axles was maintained at 0.6m, the envelope 

dimensions of the rig would remain less than a meter. In practical terms, 

the achievable stroke will probably be defined by the drive system rather 

than the rolling limits. A drive system based upon a pair of long springs 

appears to offer an approach to a maximum stroke configuration. The wrapped 

axle concept takes advantage of a property inherent in tensioned metal belts. 

A uniformly tensioned belt at stress levels within the elastic range for the 

material offers an effective zero resistance to motion through a wrapped type 

of bending. At the same time the belt provides a stiff resistance against 

any lateral forces. Therefore if a cylinder has two sets of counter-wrapped 

belts (e.g., one set at each end), the cylinder will be free to roll but 

restrained against any axial motion or skewing forces. The rolling motion 

will occur with just rolling friction losses. For polished hard steel 

rolling on polished hard steel, the coefficient of rolling friction ranges 

from 0.0002 to 0.0004 (ref. 10,). These values correlate to reversal 

transients below the threshold design limits. 

INDUSTRIAL EQUIPMENT ADAPTATIONS 

Some of the precision profile measuring equipment produced for 

industrial use utilize air bearings to support their moving carriages. These 

items offer a source for obtaining a relatively long-stroke linear 



oscillating test rig for ground usage; figure 10 shows a conceptual 

application. The industry requirements for precision dictate a straight line 

linear movement of the carriage with tolerance limits expressed in 

micrometers. The level of precision is entirely compatible with the type of 

motion desired for a vestibular test rig. At the present time at least two 

manufacturers within the U.S. produce equipment with air bearings 

incorporated in the carriages, and they are available with stroke lengths 

ranging from 1 meter up to about 5 meters. In general, each item is 

manufactured in response to an individual order with the unit configured 

about one of the catalogue-standard sizes and carrying a selection from the 

catalogue of options which makes a best-fit to the intended use. A unit 

could be ordered in a configuration intended for oscillatory testing. The 

cost of such items are in the range associated with machine tools, but are 

considered modest since they do not have to include the complexities of 

drives and controls associated with metal cutting systems. The concept 

illustrated envisions motion in a single axis with oscillations driven by a 

flat-plate type of spring. The accommodations for the test subject would be 

bolted to the carriage (accommodations not shown). The driving spring and 

the driving link are assumed to employ flexure type joints. In addition they 

would provide the attachments and supports for the air supply lead to the 

bearings which support the carriage. Table 2 summarizes the performance and 

pertinent design features for a ground-test rig based upon one of the smaller 

catalogue size options. In the example the mass assumed for oscillation 

includes the carriage plus an estimate for a fixture and a human test 

subject. The data shows an achievable system. The drive spring requirements 

fall within the capabilities of the carbon steels produced for spring 

applications. 
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To summarize, the air bearing carriages utilized in precision 

profile measuring systems provide a means to obtain a controlled linear 

motion suitable for vestibular evaluations. A drive system based upon 

springs appears attainable, and leaves from automotive springs could be 

evaluated as part of a detail design. The test unit would be suitable for 

ground use only, the stability and precision required for the table are 

achieved by heavy bases of either stone (granite) or cast iron. Finally, the 

physical location for such a unit needs some care in the selection process. 

These types of equipment have no tolerance for tilt. Their foundations have 

to be both stiff and stable. 

TABLE 2. AIR BEARING TABLE GROUND TEST SYSTEM 

PERFORMANCE CAPABILITIES 
Stroke 
Acceleration Max. 
Frequency (Equal to Pendulum (L = 5m) 

SYSTEM DIMENSIONS 
Table Length 
Table Width 
Carriage Mass 
Spring Characteristic 

1 meter 
O.lg 
0.222 Hz 

2m 
1m 
350Kg 
686N/m 

SPRING DIMENSIONS (FLAT PLATE CANTILEVER SPRING) 
Flexing Length 1.4m 
Tip Deflection 0.5m 
Deflected Force 343N 
Width of Spring 0.213m 
Thickness of Spring 6.3mm 

Maximum stress is compatible with "Hard Service" for carbon steel spring 
materials such as SAE 1070 or SAE 1085. 
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