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Abstract

An asymptotic technique is developed for analysing the
propagation and dissipation of wave-like eolutions to finite
difference equations. It is shown that for each fixed
complex frequency there are usually several wave solutions
with different wavenumbers and the slowly varying amplitude
of each satisfies an asymptotic amplitude equation which
includes the effects of smoothly varying coefficients in the
finite difference equations. The local group velocity
appears in this equation as the velocity of convection of
the amplitude. Asymptotic boundary conditions coupling the
amplitudes of the different wave solutions are also derived.

A wavepacket theory is developed which predicts the
motion, and interaction at boundaries, of wavepackets,
wave-like disturbances of finite length. Comparison with
numerical experiments demonstrates the success and
limitations of the theory.

Finally an asymptotic global stability analysis is
developed which gives results which agree with other
stability analyses and which can be applied to a wider range
of problems.
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1. Introduction

Consider the following very simple problem and

numerical solution. The partial differential equation is

9
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where ¢ is a positive constant. The domain

considered is 0<x<1 . The initial condition is

u(x,0) = exp[=200(x=0.5)?] cos(kx) t1.2)

with k=80. This form of distribution is usually
called a wavepacket. The cos(kx) term defines the
oscillation of a group of waves and the exp[=-200(x-0.5)%]

term is an amplitufs 'envelope'.

The upstream condition is

u(0,t) =0 (1.3)

The solution of this problem is
u(x=-ct,0) ct < x < 1

u(x,t) = (1.4)
0 0 < x < ct

The numerical solution uses a uniform grid with

computational domain 0<j<200 and a trapezoidal scheme.

n+1 n ) n+1 n n+1 n
- T + - - = ~
Uj Jj 4[(Uj+1 + Uj+1) (Uj-1 + Uj«10 0 (1.5)
where r = L (1.6)
Ax
In this example r=1. The initial condition is
v’ = u(x,,0) (1.7)
3 L

and the upstream boundary condition is



s

U =0 (1.8)

In addition a numerical boundary condition is
required at the downstream boundary. For this condition
space extrapolation is used.

n n
Y00 = Y199 : REE L

Figure 1 shows the numerical solution at intervals
of 60 time steps with each plot drawn to the same scale.
The first two plots show the initial wavepacket travelling
downstream in the direction of the physical characteraistic.
Corresponding wavecrests are labelled a-e and it can be seen
that the propagation velocity for the wave crests is greater
than for the amplitude envelope. Note for example that the
amplitude maximum lies approximately midway between crests b
and 4 at n=60 but at n=120 the maximum is clearly nearer
crest b. At n=180 the numerical disturbance is interacting
with the downstream boundary. The solution appears to be
the sum of two waves, one with the original wavelength , and
one with a very much shorter wavelength. At n=240 there is
a reflected wavepacket of wavelength slightly greater than
2. and the plots at n=300,360 show that this wavepacket
travels back up the domain at approximately the same speed
as the origina. wavepacket. This solution is clearly
numerical and not physical since the analytic, physical
solution moves from left to right across the domain and then
out the downstream boundary. The analytic equation does not
have any solutions with waves travelling from right to left.
At n=420 the wavepacket is interacting with the upstream
boundary, and at n=480 there is a reflected wavepacket with
the original wavelength. This completes one cycle. If the
solution was continued the wavepacket would travel down to

the downstream boundary and then reflect again into a
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n=300 The Wavepacket
Travels Upstream.

n= 360 The Wavepacket
Continues To Travel Upstream.

n=420 The Wavepacket is
Interacting With the Upsireom
Boundary.
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Has the Same Wavelength os
the Original Wavepacket.
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FIGURE 1, NUMERICAL SOLUTION OF CONVECTION EQUATION
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wavepacket with short wavelength, and a decreased amplitude,

travelling upstream.

The qualitative and gquantitative prediction of the
behaviour of numerical solutions in problems such as the
above is one of the two objectives of this parer. The
second objective is a global stability analysis
incorporating boundary conditions and smootialy varying
coeff.~ients and predicting both stability and accurate

asymptotic estimates of convergence rates.

To achieva these aims a technique is developed to
Analyse the approximate time evolution of an amplitude
modulated wave, i.e. a wave with fixed frequency and a
slowly varying amplitude. Chapter 2 derives the theory for
partial differential equations, while chapter 3 derives the
theory for finite difference equations incorporating
smoothly varying coefficients and boundary conditions. In
the case of dispersive, non-dissipative wave propagation, it
is found that the amplitude is convected at the local group
velocity, a principle which is well understood in partial

differential equations.

Chapter 4 applies the theory to the motion of
wavepackets which are wave-like disturbances of finite
length and constant frequency such as in the earlier
example. Chapters 5 and 5 derive global stability analyses
with different levels of asymptotic approximation. Chapters
7-9 develop further topiﬁs and examples including
comparisons between numerical experiments and theoretical

predictinns.

Throughout this paper a finite operator notation is

used which greatly simplifies analysis and is a neccessity
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for general proofs. Since there is no universally accepted

standard nocation Appendix 1 details the notation used.

Very little previous work appears to have Lbeen done
along the lines of this paper. The concept of group velocity
in partial differential equations is well understood and is
explained in many texts 12, The asymptotic approach of
chapter 2 is not common due to the advantages of other
methods but is discussed by Whitham . Kentzer 3 has
discussed the use of group velocity 1in analysing finite
difference equatioqs but does not derive a general eguation
for the amplitude or calculate the gquantitative effects of
boundary conditions. Vichnevetsky and Bowles 4 derive the
the group velocity 1n finite differe.ce equations using an
approach which is valid only for constant coefficients.
They also derive amplitude reflection coeffficients at

boundaries and discuss some of the examples given in this

paper.



2. Amplitude Analysis of Partial Differential Equacions

2.1 Fourier Analysis

Consider a homogeneous partial differential equation

L!

u(x,t) = 0 - < x < =» , t >0 (2.1)

where L is a constant linear differential operator

defined by,

3 Ym (3 \n
T

(~—’ r \
= =1 -_ 2
- 2“ Cmn (3 x/ 3tJ ( 2)

and the coefficients Cmn are cornstants.

An eigenfunction of the operator L is a function

u(x,t) satisfying
L u= }lu (2.3)
where A is a constant called the eigenvalue.

An eigenmode is a solution cf the homogeneous

equation (2.1) i.e. it i1s an eigenfunction with eigenvalue
zero.

ét expli{kx=-ut)] = ik exp[i(kx=-ut)] (2.4a)
3 . ; .

e exp(i(kx-ut)] = =ju exp(i(kx=-ut)] (2.4Db)
3 “Mf3 \n ) ) m n )

T At exp{i(kx=-wt)] = (ik) (=1iw) exp(i(kx=-ut)] (2.4c¢c)
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e (3_\“[2_)“ cat)] =
Cmnkaxj it exp (L {Xx=ut]]

L
m,n
) m ) n 2
E: Cmn (ik) (-iw) exp[i(kx=-wt)] (2.44)
m,n
Thus exp[i(kx=-wt)] is an eigenfunction of
3 3 /3 \mr3 \n
3 a_ a ) a_ ; - ’ s
e T \ax) Lat} and L with eigenvalues ik , iw ,
o B, B 5" ..m_ . .n ‘
(ik) (=-iw) , and /. C mn(lk) (=iw) respectively
m,n
Hence ,
u(x,t) = expli(kx=-ut)] (2%5)

is an exact solution of (2.1) provided

;ﬂ ¢ (ik)® (-iu)™ = 0 (2.6)
/_ "mn

m,n

This relation between k and w is called the
dispersion relation.

Examples of dispersion relations are ;

Surface waves on deep water w? = | gk| (2.7a)
Acoustic waves w? = c?k? (2+7hH)
Waves prcpagating along a waveguide w? = c?(k? + ki) (2.7¢c)
where g , ¢ aad k, are constants.

A general solution of (2.1) is a superposition of
eigenmodes which in the case of a partial differential
egquation is expressed as an integral over all the
wavenumbers k of the sum of all the eigenmodes with

wavenumber k.

An(k) exp[i(kx-unt)] dk (2.8)

W)=
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If the dispersion relation is of order N in w , i.e.

. 3 N
it contains powers of w up to w , then

Wylk) 5, walk) 4 ceeeee UN(k)

are the N values of w which satisfy the dispersion relation

for a given value of k and the An(k) are the corresponding

constant amplitudes of those eigenmodes.

If An(k) is non-zero for all k,n then a neccessary and
sufficient condition for u(x,t) to remain bounded and not

increase exponentially is that each eigenmode must remain

bounded. Splitting w 1nto its real and imaginary components

gives ,
W = uR - qu (2.9)
exp[-iuvt] = exp[-iuRt - uIt] (2.10)

Thus the condition that every eigenmode remain

bounded, and hence a general solution remain bounded, is

uI < 0 for all k.,n.

This analysis is lacking in three respects. The
first is that in some situations the initial disturbance is
zero except for a finite region and one wants to know the
time evolution of this disturbance, in particular the
propagation velocity for the energy. The second failing is
that when the initial-value problem is replaced by an
initial-value / boundary=-value problem with boundary

conditions at x = 0,1 there is no easy way to include the

effect of the boundary conditions in this stability analysis.

The third failing is that exp(i(kx-wt)] is an eigenfunction

of L only when the coefficients cmn are constant. The

analysis breaks down when the coefficients are non-constant.
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The resolution of these problems requires the analysis of a
wave of constant frequency with an amplitude which varies
over a characteristic length scale much greater than the

wavelength.
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2.2 Asymptotic Amplitude Eguation

The problem now being considered is
L(x) u(x,t) = 0 - < x < ®» , t >0 (2+11)

where L(x) is a non-constant linear differential operator

defined by,
3 \®(a N
L(x) = E: Cmn(x) (3;) [;E) (2.12)
m,n

and the coefficients Cmn(x) are slowly varying functicons of

X

The theory calculates the approximate evolution of a
wavetrain with waves of a constant frequency w and a slowly

varying amplitude, so u(x,t) is written as ,
u(x,t) = A(x,t) exp(i¥(x,t)] (2.13)

where A(x,t) is the slowly varying amplitude and
¥(x,t) is the phase of the wave which is related to the

frequency w ani wavenumber k by

Y
Tt-- - () (2-14)
R4
= = k (2 15)

The frequency w is constant but the wavenumber k

will vary slowly with x because of the slowly varying

coefficients Cmn(x) so the above relations can be integrated

to give ,

b 4
Y(x,t) -[ k() df - wt (2.16)
0
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To explain the asymptotic approximacions which are

made two characteristic length scales L, and LA and one

k
characteristic time scale 'rA are defined. Lk is the length
scale for variations in k, LA is the length scale for

variations in the amplitude A, and TA is the time scale for

variations in A. Numerical values for Lk' LA and TA are

are given by ,

L = min [k //15] (2.17a)
k x
! 3A :
LAsmzn[A/ax) (2.17b)
h
; A %
TA = min [A,//a:] (2a17¢)
The asymptotic appreximations used in this theory are
> -1 -y > -}
Lk > k LA >> k TA w

which imply

.3_k<< kl E_A.<< Ak L&(( Aw
. ax X it

A Taylor series expansion of A and Y about a point

(xq,ty) gives ,

@
»

A(x,t) = A, + = (x-%,) +
X

(t-ta) + HoOoT (2.18)

v

to

X
Y(x,t) = ¥, - w(t-t,) +_[ k() af
X

x
= ¥, = w(t=-t,) +‘f (kg + %f (E=%x4) + H.O.T ] 4%
°
X
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28 I |
1 3k \
= ,0 - U(t-to) + k.(x-x°) L g (x x ) + H.O0.T. (2'19)
2 3x,

Subscript , denotes terms evaluated at (x,,t,).
The H.O0.T. , higher order terms, includes terms like

3z a alp 3tk
ax? ' at? ' ax?

-1 -2 -2
A which are O{A(LAk) 'A(TAU) ,A(ka) }

and are neclected in this asymptotic approximaticn.

exp[i¥(x,t)] =

= exp|i¥, + ik, (x-x,) = iw(t-t,) + % %E (x=-x,)% + H.O0.T
Xo
. . . ( i3k 2
= exp(i¥y, + iky(x-%x,) = iw(t-t,)] 1 + S B (x=-%,) |
\ X o J
+ H.O0.T. (2.20)
Hence ,
" ; ; i 3k 2
u(x,t) = exp(i¥, +ik, (x=-x,) =-iw(t-t,)] 1 + 2 % (x=x%,)
0

JA dA
[A, + E;U(x-x,) + Ezo(t-t.) ) + H.O0.T.

= exp(i¥, + ik, (x=-x,) = iw(t=-t,)]

R 2A i Ik
. e - — - - —— - 2
(A, + ax°(x X,) + at°(t L) * > A, axo(x X,y ) )
+ H.O0.T. (227)

To evaluate derivatives of u(x,t) at (x,,t,) a

two=variable version of Leibnitz's rule is used.

(3_ \ma\

ax) [3—J [ £(x,t) g(x,t) ] =

m n. —_ -
T nt [L"a_\“f a )"\
/. p!(m-p)! q!(n=-q)! ax) (3t ax at g
p=0 g=0
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f(x,t) = exp(1

g(x,t) =

Then,

[[%:J ) kel q‘] :

and all other

are zero. Hen

&) (&) e
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Y. +* ik‘(x-x.)

@

3A
Ix,

A

(x-x°) 2 a—t'.

derivatives of g(x,t)

ce ,

t)
0

= exp[i?,] °

(t=t,) + % A,

OF POOR (QUALIL

- iw(t=-t,)]

ak
Ix

(ik,)p (=iw)? exp(i¥,]

evaluated at

(x=-x,)?2
0

(2.22)

(2+.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

[A,(ik,)m(-iu)n +m %ﬁ tikeI™ pesud® % 0 22 (ak, (a1
X it,
+ 4 51%111 A, %E (ike )™ 2(-1u)® + H.O.T. (2.30)

and so ,
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L(x) u(x,t) = exp(i?] E: Cmn { A(ik)m(-iu)n +

m,n
22 ™ Veto)? ¢ 0 22 (k=103 o
Ix it
iﬂi%:ll A %% ek ™ Y edn )@ ] + H.0.T. (2.31)

To satisfy the homogeneous equation (2.12) the

amplitude A(x,t) must satisfy ,

a,(k,w,x) A + a,(k,w,x) %—: + a,(k,u,x) ;—: + a,(k,w,x) A %
= 0 + K‘OO-T- (2-32)
b
where ,
a,(k,0,x) = E: Cpp (%) (ik) ™ (=10)" (2.33a)
m,n
a,(k,u,x) = E: Copn(X) n (1k)™(=10)"""
m,n
= 3 18 (2.33b)
Iw
a(k,w,x) = E: Cap(X) m (ik)m—1(-iU)n
m,n
da,
i3x (2.33¢c)
and a,(k,w,x) = Z Cop (%) 1 !-n-(—l;il (i)™ 2 (-1a0) ™
m,n
- o 13la, (2.334)
2 ak? ’

Because of the asymptotic assumptions ,

3A A 3k
»> g~ 2= -y O -2 ——
A W t ’ k ix ! k A ™

so (2.32) can only be satisfied if
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a,(k,u,x) = 0 (2.34)

This is the dispersion relation between k and uw.
k is now a slowly varying function of x due to the slow
variation in the coefficients. Thus the characteristic

length scale L, is related to some characteristic length

k
scale Lc for variations in the coefficients.

Neglecting the H.0.T. and dividing by a, gives the

asymptotic amplitude equation.

3A 3A

Tt + cq ™ € A (2.35)

where cg = a, / a, (2.36)
3k

and € = - a, 3% / a, (2437)

1 & cq is real the left hand side of (2.35) is a
Lagrangian-type total time derivative with respect to an
observer moving with velocity cg. If the coefficients cmn
are all constant, k is constant, ¢ = 0 and so the amplitude
A is constant along rays moving with velocity cq. In a
wavepacket individual wavecrests move with phase velocity
w/k , usually denoted cp , but the wavepacket, or amplitude
'envelope' , moves with velocity cq. For this reason cq is
called the group velocity.

Because the group velocity is the propagation
velocity for the amplitude and energy of the wavepacket the
group velocity is often more important than the phase
velocity. One example is the Sommerfeld radiation condition
which states that the waves generated by a fixed source have

a group velocity directed away from the source. In some
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unusual cases the phase velocity of the waves is actuall;
directed towards the source. A second example is that the
group velocity never exceeds the speed of light which is the
limiting speed of propagation of information while the phase
velocity can exceed the speed of light , as happens in wave

propagation along an electromagnetic waveguide.

To link this derivation of group velocity to other
derivations the dispersion relation (2.34) is differentiated

with x held constant.

- 28, 2a,
da, 7% dk + 330 du
= 0 (2.38)
(2w - - 33 / 3a,
ERaEs lak]x const 3 dw
= a, / a,
= ¢ (2.39)

g

The most common method of showing that (12)
. dk)x const

is the group velocity uses the method of stationary phase
which is well explained in the available literature [1,2].
The usual approach is to combine the dispersion relation ,
the definition of the group velocity and some physical
principle suc: as energy coqserva:ion to calculate the
propagation of energy. The approach given above is not
usually used partly because sometimes the exact partial
differential equation is not known and the dispersion
relation has been determined by asymptotic methods (e.g.
water waves) or from empirical data (e.g. seismic waves).
This approach is however suited to analysing finte
difference schemes in which the exact finite difference

equations are known and there is no general equivalent to



23

the principle of energy conservation.
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3. Amplitude Analysis of Finite Difference Equations

3.1 Fourier Analysis

Consider a homogeneous finite difference equation
LU, =0 (3.1)

As explained in the appendix A.1, L can always be

expressed as a sum of step operators,

L = Z.cmp e X (3.2)
m,p

where the coefficients cmp are constants, but it is
often more simply expressed as a polynomial of finite

difference operators written symbol.cally as,
L = P(EleXIUXlEtrstlut) {3:3)

The eigenfunctions and eigenmodes of L are defined
exactly as in §2.1. The finite operators all have the same
eigenfunctions, exp(i(je=-n)]. ¢ and Q2 are related to the
wavenumber k and frequency w of the physical wave being

modelled by,

» = kix (3.4)
Q = it (3-5)

As shown in the appendix A.1

Ex exp(i(jo=-nQ)] = exp(i9o) exp(i(3jo=-nQ))] (3.6a)
éx exp(i(joe=-nR)] = 2i sin(¢/2) exp(i(je=-nQ)] (3.6b)
i exp(i(je-nR)] = cos(9/2) exp[i(jo-nQ)] (3.6¢)
E_ exp(i(jo-nf)] = exp(=-il) exp(i(jo-nQ))]) (3.64)
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6t exp(i(je=-nQ)] = =2i sin(Q/2) exp(i(je=-nQ)] (3.6e)
. exp(i(jo-nQ))] = cos(R/2) exp(i(je-nQ)] (3.5€F)
me Ept exp(i(je=-nQ)] = exp(i(me=-pfR)] exp(i(jo=-nQ)] (3.69)
Thus exp(i(jo=-nfl)] is an eigenfunction of

h .
E , § , uw, E , 6:' ut and me !pt with eigenvalues

exp(i¢), 2i sin(¢/2), cos(¢9/2), exp(=-iQ), =2i sin(0/2),
cos(Q/2), exp(i(mo=-pQl)] respectively, and L has eigenvalue
Z cmp exp(i{moe=-pR)] or

m,p

Plexp(io),2i sinf9/2),cos(9/2),
exp(=-iQ),=-2i sin(Q/2),cos(02/2)]

depending which expression for L is used.

u; = expli(je=nQ)) (3.7)
is an exact solution of (3.1) provided
2: Cmp exp(i(me=-pR)] = 0 (3.8)
m,p

This is the dispersion relation between ¢ and Q.

Since exp[2nwi] = 1 for all integers n, ¢ + 2nw is
equivalent to 9 so only solutions in the ranges

-7" < Re(¢9) < 7w

-7 < Re(Q) < w

need be considared.

If L involves P+1 time levels and M+1 spatial nodes
the dispersion relation is a polynomial of degree P in
exp(=il) and of degree M in exp(i¢). Thus for &« given ¢

there are P corresponding values of 2, and for a given Q
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there are M correspondiiag values of ¢.

A general solution of (3.7) for periodic boudary

conditions is a superposition of eigenmodes.

U; = z: }:: Ap(o) oxp[i(jo-nnp)] {1.9)
? p=1
The ¢ summaticn is a summation over all the values
of ¢ which satisfy the periodicz boundary conditions, and
the p summation is over the P values of Q corresponding to

each value of 9.

p 4 < AP(O) is non-zero for all ¢,p ther a necessary and
sufficient condition fcr U? to remain bounded and not
increase exponentially is that each eigenmode must remain

bounded. Splitting Q@ into its real and imaginary components
gives,

Q= Q_ + iQ (3.10)

exp(=infi] = cxp[-inﬂR + nQ_) (3.11)

I

Thus the condition that every eigenmode remain
bounded , and hence a general solution remain bounded , is

QI <0 for all o¢,p.

This analysis is lacking in the same three respects
as the analysis of partial differential equations by
eigenmode expansion in the last chapter. The analysis
gives no informatioﬁ about the movement of an initially
localised disturbance, cannot incorporate boundary
conditions or arnalyse schemes with non-constant

coefficients.



3.2 Asymptotic Amplitude Eguation

In this section the coefficients cmpin the
definition of L (3.2) are assumed to be slowly varying

functions of j. The analysis is performed in computational
space with coordinates (j,n) in whicn the grid spacing is
Aj=1, An=1. Variations in mesh spacing in physical
coordinates are incorporated directly into the variable

coefficients of the finite difference equations.

The theory calculates the approximate evolution of a

wavetrain with waves of a constant frequency Q@ and a slowly

- n . :
varying ampliitude , so Uj is written as ,

c'j‘ = A(j,n) exp(i¥(j,n)] (3.12)

where A(j,n) is the slowly varying amplitude and
¥(i,n) is the phase of the wave and is related to the

frequency 2 and waven _ sber ¢ by

¥ - (3.13)
an
ii = 9 (3.14)
Ch
which can be integrated to give,
3
*(3,n) = [ e(%) a& - na (3.15)

0
As in §2.2 two characteristic length scales, LO for
variations in ¢, and LA for variations in the amplitude A
and one characteristic time scale TA for variations in the
amplitude A , can be defined with numerical values beiug

given by,
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L, = min (1 /1%) (3.16a)
Lp = min (A //%%] (3.16b)

. 3A
Ta = min (A// 3n) (3.16¢c)
The asymptotic approximations are
Ly >> 1 Lp >> 1 Ta 2> 1
which imply
33 << 1 33 << A LE. << A
3j 33 an

A Taylor series expansion of A and ¥ about a point

(jorny) gives,

A(jo+m,n,+p)

+ H.O.T (3-17)

]
»
-
+
- |
I
+
o
I

jo+m

¥(jo+m,n,+p) = ¥, - pQ +‘[ o(g) dg

32a

3o
Jo+m
30 -
= ¥, - p + ‘[ [¢6, + 3? (§-3,) + H.O.T ] 4§
: 0

Jo

-V, ~pd +me, + X L& , 4o0.7 (3.18)
L] p 0 2330 «Uel o o

Subscript , denotes terms evaluated at (j,,n,).

The H.0.T. , higher order terms, includes terms like

32a 3y

3j?

' A which are O{ALpr~"%,AT,~? ,AL,"?} and are
an? ' 342 A & ’

neglected in this asymptotic approximation.
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exp(i¥(j,+m,n,+p)]
imd
= axp( i¥, - ipQl + ime, + i% i% + H.O.T ]
0
. im? 3¢
= exp( i¥, = ipo + ime,] 1 + == 35 + H.O.T. (3.19)
0
Hence ,
Nn,+ X im? o
j:+P = exp[i¥,] exp(i(mo,=-pR)] [ = 3;0)
3A 3 A
[A, +m 33, - n ] + H.O.T.
, . 3A 3A  im? 39
= exp(i¥,] exp[i(meé,=-pR)] [A, + m —30 +p 3;0 = A, 3;0]
+ B.0.7. (3020)
Hence,

Lj'Ug = exp(iY¥] E: cmp(j) exp[i(mo=pR)] o

m,p
3A 3A im* 3¢
[A *®iTep gt 7 A j] + H.O.T. (3.21)

To satisfy the homcgeneous equation (3.1) the

amplitude A(j,n) must satisfy,

a,(4,2,3) A + a;(9,8,3) 25 + a,(¢,2,3) 3& + a,(9,2,3) A 1&
an j 3
= 0 + H.0.T. (3.22)
where ,
ag(‘rarj) - Z Cmp(j) exp[i(m@-pﬂ)] (3.23a)
m,p
a,(¢,2,3) = E: Cip(j) P exp(i(mé=-pQ)]
m,p
- 138 (3.23b)
3 $,j const :
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gl

a (e,9,3) p(j) m exp[(i(mé=-pQ)]

8

2,4 const (3.23¢)

and a,(e,2,3) exp(i(me-pQ)]

im
2

u
8
g
0
8
o
o
|

if3ata,
- 2(30’ )Q,j const k- sant

In the above derivat:ion of a,,a, ,a,,a, the general

shift operator expression for L, (3.2) is used. 1In

3

applications it is more convenient to use the finite
operator polynomial expression (3.3). a, is obtained by
replacing each operator with its corresponding eigenvalue

and then a, ,a,,a, are calculated by differentiating a,.

Because of the asymptotic assumptions ,

A 3A 20

>> —
A an " a3 ' 2]

so (3.22) can only be satisfied if

4 - -1 -1 -1 .
a,(e,2,3) 0 + 0 { L’ .LA 'TA } (3.24)

This is the asymptotic form of the dispersion
relation between ¢ and @ and will usually be satisfied by

setting a, identically equal to zero. ¢ is now a slouwly

varying function of j due to the slow variation in the
coefficients. The characteristic length scale Lo is related
to some characteristic length scale Lc for variations in the
ccefficients.

Neglecting the H.O0.T. and dividing by a, gives the

asymptotic amplitude equation.
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3A 3A
a—n + rg 3‘3‘ € A
where rg = a, / a,
and e = - ( a, %% + a, ) / a;

{3.28)

(3.26)

(3.27)

Differentiating (3.24, with @ held constant gives,

EET 2a,
el (ao Jn,j const g +(3j) $,2 const 43

= 0 - H.O.T.

Hence, neglecting the higher order terms,

q (3aﬂ
j $,2 const 30 ﬂ,j const
: ') a

j $,2 const t

so € = =i a (13° a, a
Y133 )¢ ,2 const 178

If rq is real the left hand side of (3.25) is

3 9

-
2
%

$

w

j"[
e if
\

Lagrangian-type total time derivative with respect to

observer moving with velocity rq. Thus the amplitude

(3.28)

(3.29)

(3.30)

a
an

A is

being convected with velocity rg in computational space.

Differentiating (3.24) with j held constant gives,

- 3% ) 9,j const 3¢ ) 2,3 const

= 0 g H.O0.T.

Hence, neglecting the higher order terms,

(3.31)

ag = - (220 3a,
ae j const 3¢ /| 2,j const 32 ) 6,3 const

= a, / a,

(3.32)
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Substituting for Q@ and ¢ using (3.5a,b),

- I(wAt)
g 3(kAx)

- -4 (3.33)

Thus rq is the CFL number corresponding to the group

velocity in physical space of the propagating numerical

wave. It is the number of spatial mesh intervals which a

localised disturbance travels in one time step. For the

rest of the paper rg is called the group CFL number.
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3.3 Examples

The model problem which is considered is,

du 3u

Tt + c(x) i 0 -® < x < @

Three different methods are analysed.

2.3.1 Trapezoidal Scheme

The trapezoidal scheme is

1 n+1 n e | [ n+1 n A+l n
e Yy vyl 4ijL(Uj+1 *Uge1? = 0404 054!

which can be written using operator notation as

b -4
1 j n+}
ae | 8¢ ¥ 2 S Ve | Uy 0

where the CFL number r is defined as

¥ - cat
Ax
- 3
and Ax. = l (x - X )
73 2 j+1 j=1

(3.34)

(3.35)

(3.36)

(3+37)

(3.38)

a, is obtained by replacing the operators by their

eigenvalues.

a, = -2i sin(2/2) + % 2i sin(e) cos(Q/2)

The dispersion relation is

a, =0

so tan(Q/2) = § sin(¢)

a,, a,, a, are obtained by differentiating a,

(3439)

(3.40)

(3.41)
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al = i .a—ao

W

= cos(Q/2) + % sin(e) sin{(Q/2)

= r cos(¢) cos(Q/2)

a = - l 1 -a-.z—a°
3 9 302

o=
o
©

= - % sin(¢) cos(R/2)

Using the dispersion relation a, and a,

simplified.

a, = cos(Q/2) + sin(¢9) sin(Q/2)

(N1,

= cos(Q/2) + tan(Q/2) sin(Q/2)

ouALITY

(3.42)

(3.43)

(3.44)

can be

= [ cos?(Q/2) + sin?(Q/2) 1 / cos(f/2)

= 1 / cos(Q/2)

sin(¢) cos(0/2)

(ST

= - tan(Q/2) cos(/2)

= ~ gin(6/2)

so r_ = a, / a,

r cos(¢) cos? (Q/2)

, 12,
and ¢ 3 a,(aj) 6.0 cohas / a,a, =~ a, / a,
i 3
= %5 sin(¢o) cos(Q/2) [ —% sin(9) cos(Q/2)

(3.45)

(3.46)

(3.47)

1/[r cos(¢)]
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1 3 r " )
7 33 St (90 cos (/2) / cos(s¢) (3.48)

There are three points of interest

sin(w=¢) = sin(¢)
so for all Q@ there are two corresponding values of

by the dispersion relation,

¢, satisfying =-1/2 < Re(9,) < m/2
¢ =T =0,

For real @ in the range
0 < 2 < 2 tan~!'(r/2)

0 < tan(Q/2) < r/2

0 < sin(9) < 1

Thus ¢, and ¢, are both real and

0 <9, < n/2

/2 < ¢, < *
r (9,) < 0
gk

Hence for every frequency in the given range there

is one forward travelling wave, travelling in the same

direction as the physical waves being modelled, and one

backward travelling wave with wavelength less than 44x.

1id)

For real Q0 in the range
2 tan~!(r/2) < @ < «
sin(¢) > 1

so ¢, and ¢, are complex
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Let o, = 7/2 + i9_

Then sin(¢,) = cosh(oI)

so ¢ is real and satisfies

I
tan(Q/2) = 3 cosh(¢_)
2 I
9; =¥ =09,
= v/2 = LoI

These are evanescent waves. If there are
boundaries at j = 0,J and the boundary conditions force a
steady oscillation with a frequency in the given range one
wave will decay in amplitude exponentially away from the

boundary at j=0, while the other will decay exponentially

away from the boundary at j=J.

(¥
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The box scheme is

l_ [(Un+1 & Un+1) - (Un & Un )J

At 3 i+ b] it
il (Un n+1 n " Un+1) 0
ij j+1 Uj+1) (Uj 3j

which may be written in operator notation as

n+$ - 0

1
—_— [ -
ag (¥ TydelSy ! Ussp

x t 3

a,= ~-2i cos(¢/2) sin(Q/2) + 2ir cos(Q/2) sin(¢/2)

The dispersion relation is

tan(Q/2) = r tan(¢/2)

L

a, = i -30

o

= cos($/2) cos(Q/2) +# r sin(R/2) sin(e/2)

= 8in(9/2) s8in(R/2) + r cos(Q/2) cos(6/2)

i
&y = 3 3o

(3.49)

(3.50)

{351}

(3.52)

(3.53)

(3.54)

= % cos(¢/2) sin(Q/2) = % r cos(Q/2) sin(9/2)

= 0

Thus rq = a, / a,

sin(6/2) sin(Q/2) + r cos(R/2) cos(9/2)
cos(¢/2) coa(R/2) + r sin(Q2/2) sin(4/2)

(3.55)
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tan(¢/2) tan(Q/2) + r
1 + r tan(¢0/2) tan(Q/2)

2
- & 1 + tan® (9/2) (3.56)

1 + r? tan?(¢/2)

and € = 0 (3.57)
There are two points of interest

i) For each real value of Q2 there is one corresponding
real value of ¢ given by the dispersion relation and the

group CFL number rq is real and positive.

ii) When r=1, rg-r , 8o waves of all frequencies travel

at the same velocity as the physical waves being modelled.
This is because when r=1 the Box scheme reduces to,

1
oL, = ol (3.58)
4

which agrees exactly with the solution of the partial
differential equation,

u(x+ct,t) = u(x,0) (3.59)
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3.3.3 Backward Eule: Scheme

The backward Euler scheme is,

[~}
1 n+1 n j n+1 n+1
At (Uj Uj ) + T (Uj+1 Uj-1

)

w- “TT‘:.‘“L P;{\}: ‘8

OF POOR QUALITY

which may be written using operator notation as

1 1 n+1
at (Ve * 2%y 82 Uy

ay= 1 - exp(ifl) + ir sin(9)

The dispersion relation is

exp(iQ] - 1 = ir sin(¢)

|-
@
R=3

so r = a, / a,

= r cos(¢o) exp(=-iQ)

[ exp(iQ)

a, / a,

= -] 2'
st & . a’{ajJ 0,2 const / M1
ir . ar
3 sin(¢e) [ i 73 sin(e) ] /
= - % 3% sin? (¢9) exp(=-iR) / cos(e)

r cos(o)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

]

(3.68)
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3.4 Asymptotic Boundary Conditions

The general solution of
L, ul =0 (8 1)

is a sum of waves with different constant frequencies Q2 and

slowly varying wavenumber ¢ and amplitude A

M j
n
Uj = zi: E: An(j,n) exp (i [ om(E) df =-nQ)] (3.69)

m=1 0
The outer summation is over different values of Q,

and the inner summation is over the M different values of ¢

which satisfy the dispersion relation for each Q.

For each @,m the amplitude A satisfies its
asymptot : amplitude equaticn on the interior of the
computational c¢mmain independent of all the other waves.
All the waves of each frequency are however coupled by

boundary conditions.

Suppose a finite difference bouvndary condition at

i=J is
BU_=F {3:70)

where B is a constant tinite difference operator which can

be expressed in operator polynomial form as

B = pS(EX'Gx‘uX'!C'GC'ut) (3.71)

and F" is a forcing function which can be expressed as a

sum of inputs of different frequencies.

n o™
F = ), £(Q) exp(=id) £3.72)
Q
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Performing exactly the same asymptotic expansion as
in the derivation of the asymptotic amplitude equation the

boundary condition becomes,

] M
E ( 3b 3A . 3b 3A i 3a%b °
Z kb Am *igg -t 70 S—i-n' =3 It Am 3

s

J
exp (i f Om df =-nf)] = E: £(Q) exp(-inQ) + H.O.T. {3+73)
Q

where b(2,9 ) = P_[ exp(i¢ ),2i sin(¢ /2),cos(s /2),
m B m m m

exp(=-1iQ),-21i sin(Q/2),cos(Q/2) ) (3.74)
The coefficients of exp(-inQ) in (3.73) must be

asymptotically equal to zero for each Q so,

M
( 2
3
T [pa o+ s 22 3A, 3B 3AL_iatho3e ),
L m I 3In 93¢ 37 2 3¢ m 37
m=1
exp(i | o df ] = £(Q) +H.O0.T. ({3.78)
o

This paper is primarily concerned with stability
and convergence rates. When analysing perturbations from a
steady state or constant amplitude oscillaticn the boundary
condition f.r th perturbation has

£(R) = 0 (3.76)

Because the zero order terms will usually dominate

the normal form of the asymptotic boundary conditions is,

M J
\
“w, [i = .
Zd b(Q cm) Am(J) exp(i [ om d§ | 0 (3.77)
m=1 0
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The first order terms —2m , LY . m are only
an 33 37

important when,

b(a,9 ) = 0 ( 'rA", L,"', L ")

As explained in §3.1 if the finite difference
operator L in the interior scheme spans M+1 spatial levels
there will be M values of ¢ given by the dispersion relation
for a given value of Q. If the computational domain is
0<j<J the interior scheme gives finite difference equations
at J-M+1 nodes, so to complete the set of finite difference
equations there must be M finite difference boundary
conditions. Hence for each @ the asymptotic amplitude
analysis gives M independent amplitude differential

equations on the interior coupled at the boundaries by M

boundary conditions.
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3.5 Examples

The same model problem as in §3.3 is considered,

BV
(=4
ar
(=

et Sax "0 (3.34)
0 < x < xJ

c(x) > 0

The analytic boundary condition is,

u(0,t) = F(t) (3.78)
For perturbation analysis

u(0,t) = 0 (3.79)

The finite difference scheme using the trapezoidal
or backward Euler methods on the interior requires two
finite difference boundary conditions. For perturbations

the boundary condition at j=0 is,
u, =0 (3.80)

The boundary condition at j=J is some form of

extrapolation. Four of the most commonly used are analysed.

3.5.1 Upstream Boundary

vt = 0 (3.80)
o)
B = 1 (3.81)
so b = 1 (3.82)
Hence A,(0,n) + A,(0,n) =0 (3.83)

In preparation for the theory developed in chapters

4 and 5 it is useful to define RO, the amplitude refiection

coefficient as
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(0] TN
(0,n) oF romE v (
A n

B bt hte 3.84
R0 A, (0,n) : ;
so in this example

= - (3.85
RO 1 3 )
3.5.2 Downstream Boundary : Space Extrapolation

The space extrapolation buundary condition is

vl = U, (3.86)
B=1-E
-x
= Eiy Ox (3.87)

so b =1 - exp(=-i9¢)

= 2i exp(=-i9/2) sin(¢/2) (3.88)
Hence
2 J
o=, A
) szL(om/Z) exp(i | o dfg - i om(J)/Z ] Am(J,n) = 0 (3.89)
m=1 0
The amplitude reflection coefficient RJ is defined
as,
(J,n)
R, = i‘TE—;T (3.90)

So in this example

J
- - 3in(e,/2) L[ - P & 7y -
RJ 3in(05/2) exp LL j (o, ,) di 2(01(3) 0, (J))
0

(3.91)
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3.5.3 Downstream Boundary : Space-time Extrapolation

The space~time extrapolation boundary condition is

n n-1

UJ = UJ_1 (3.92)

B =1 - E E (3.93)
-X -t

b =1 - exp(=-i¢ + iQ)
= 2i exp(i(R=-9)/2] sin((9-0)/2] (3.94)

Hence,

J

i [ o ag - is (3)/2| A_(J.,n) = 0 (3.95)
P mn m
0

J
I T S f (8,-0,) dE = 2(0,(I)=0,(3))
0

(3.96)

3.5.4 Downstream Boundary : Box Method

In this example the Box method which was discussed
in §3.3.2 as an interior scheme is now considered as a

downstream boundary condition.

n-$
[ uySy *+ T w8, 105 4 =0 (3.97)
= 8 2
B E-}x E-}t [ ux S + r ut6x ] (3.98)

so b = exp[i(Q=9)/2] { =2i cos(94/2) sin(R/2) +
2i ¥ cos(Q/2) sin(9/2) } (3.99)

Hence,
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2
[r sin(om/2) - tan(Q/2) cos(om/2) v
m=1

J
sxp[if 0 dE - i (3)/2 ] A(3,m) =0 (3.100)
0

r sin(¢,/2) - tan(Q/2) cos(¢,/2)

Ry ™ = T sin(e,/2) - tan(2/2) cos(0,/2)
J s
exp [i f (0,=0,) df = %(Ol(J)-O,(J))J (3.101)
0
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4. Ray Theory and Wavepacket-Particle Duality

4-1 Ray Theory

In addition to the asymptotic approximations made
in chapter 3 this chapter assumes that for all real

wavenumbers ¢, the frequency Q1 is real for all j and hence

the group CFL number rg is real.

N
Tq ?[QOJ j const {3 n3é)
A Lagrangian-type total time derivative 1in
computational space is defined by,
d _ 3 3
dn - an tg 33 LELE
so dj _ 3 ., 343
dn an g 37
= r (4.2)
g

From the asymptotic amplitude equation (3.25),

dA A 3A
-— = — + r —
dn an g 37
= €A (4.3)

and using (3.26) and (3.29),

de _ 3¢ [ . 20
dn an g 3j
3
= r —
g 9]
= 22 . [2a,
a7 37 ) ¢,2 const a2

(4.4)
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A general initial value problem for a wave of
frequency 4 and wavenumber ¢(R,3j) can be solved by
integrating these equations (4.2)-(4.4) with initial

conditions

j(0) = 3, (4.5a)
A(0) = A(3,,0) (4.5b)
0(0) = 6(8,3,) (4.5¢)

Cach value of j generates a ray and all of the
rays together cover the entire domain for n > 0. Figure 2
shows the motion of some typical rays in computational

space.

n

FIGURE 2. RAYS IN COMPUTATIONAL SPACE




F)

49

rq is a function of j so at a particular j all the

rays have the same slope %%. Hence the time separation T of
two rays, illustrated in figure 2 for rays 1 and 2, remains

constant but the spatial separation L varies as r_ varies.

As explained in chapter 3 if the finite difference
operator spans M+1 spatial nodes then for a particular
value of @ there are M values of ¢ which satisfy the
dispersion relation. Define M, to be the number of
solutions ¢ for which the group CFL number is positive, and
similarly define M_ to be the number of solutions ¢ for
which the group CFL number is negative. Let the
computational domain be 0 < j < J as usual. At j=J there
are M, rays leaving the domain and M. entering it. The
amplitudes are related through the asymptotic boundary
conditions each of which has the form,

M

b(Q,Qm) exp( 1 [ 4ag ] Am(J,n) = 0 (3.37)

m

o'

m=1

Since the M, amplitudes of the rays leaving the
domain are known and the M. amplitudes of the rays
entering the domain are unknown there must be M_ boundary
conditions to uniquely determine the amplitudes of the rays
entering doma:in. Similarly at j=0 there must be M,
boundary conditions to uniquely determine the amplitudes of

the rays entering the domain.
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4.2 Wavepacket-Particle Theory

In terms of ray theory a wavepacket is a ray tube, a

group of rays, along which the amplitude is non-zero. From

the discussion in the last section the time length TA of the
wavepacket remains constant but its spatial length LA will
vary whenever rg has different values at the two ends of
the wavepacket. Provided LA << L° all the rays in the ray

tube have approximately the same value for 9(Q,3j) so the

motion of the wavepacket is given by,

a4 . ~
in rq(ﬂ,o(j),J) (4.2)
de _ i (3a,)

Sas dn ‘x(aj) ¢,2 const HaA

The energy, in physical space, of the wavepacket is

defined as,

X

J
E(n) = f |aCx,t )|? dx
X
3
d
-[ |a(3,n)|? == aj (4.6)
0 a3

Hence the wave energy density in computaticnal

space is detined to be,

p(j,n) = a(j) |A(j,n)|? (4.7)
where a(j) = %% (4.8)

Using (4.3) and the notation that A is the complex

conjugate of A it follows that

3p 2 3 - 3 -
+ =—(r p) = —(aAA) + —(r alAA)
- an 33 g

n 93
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- 3A A A A -3
= gA(=— + r —) + aA(=™— + r —=) + AA T=(r a)
n g 33 n g 33 3] g
- da dA - 2
= aqpA ” + aA an + AA aj(rga)
- —— - 2
= aAtA + aAceA + AA —=(r a)
3j g
= (e+?+la—.(r a))o (4.9)
3j g
Hence,
2 3
dF [*]
dn [ an ]
0
J
= [ - =—(r p) + (c + e + ) 1—(* a)) p 4]
3 a 3 “g
0
J J
= 1 2
= « r p - [ L + ¢ + = —(r a)) p d (4.10)
g i A ( a 3j g ]

If the wavepacket is in the interior of the domain
away from the boundaries the energy flux rqo at the

boundaries j=0,J is zero. Also assuming as before that

LA << Lc then € + € + & %?(rgv) is approximately constant

over the length of the wavepacket, so

J

dE - 1 3 .
— — e [
A [e + € + - aj‘qu)J f p dj
0
= (c + € + 3 1—(r c)) E (4.11)
a 33 g

Thus equations (4.2), (4.., and (4.11) completely
describe the motion of the wavepacket particle in the

interior of the computational domain.
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When the wavepacket reaches the boundary it
interacts with the boundary conditions to produce one or
more reflected wavepackets with the same frequency but
different wavenumbers. Tha2 only case for which i% is easy

to incorporate boundary conditions is when M=2 and

r (¢,,3) > 0
g 1 0]

r (e,.,3) < 0
g ' b|

An example of a scheme satisfying this condition is
the trapezoidal method which was applied to the model

convection problem in the introduction.

An additional assumption is that
Irq(h.j)l: |rg(’3lj)| << J

so that it takes much more than one time step for a

wavepacket to travel from one boundary to the other.

Suppose that initially there is one wavepacket with

wavenumber ¢, as in the introductory example. The
wavepacket travels to the right with position and energy

determined by the equations of motion previously derived
(4.2), (4.4) and (4.11). When the wavepacket reaches the

boun lary at j=J a proportion of the energy E, is reflected

into a left travelling wavepacket of frequency 1, wavenumber

¢, and energy E,. Figure 1 illustrates this interaction.

Equation (4.10) is

J J
g% = - r p + f £ + ? + = a——( a) dj (4.10)
dn g 5 a 33 rq J P 3 .
0

The outgoing energy flux is
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rg(o,,a) p,(J,n) = tq(o,,J) a(J) |A,(J,n)|? (4.12)

The incoming energy flux is

tg(o,,J) p,(J,n) = rq(o:.J) a(J) [A,(3,n)|2 (4.13)

The amplitude reflection coefficient RJ defined by

A (J,n)

B r— s
Ry * R(7.m) (4.14)

is a function of R,¢, ,0, determined by the asymptotic

boundary condition.

The energy flux entering the reflected wavepacket i

a factor

r (’1'J) 2
_1__1 |RJI
tq(Ox:J)

greater, or less, than the energy flux leaving the incident
wavepacket and so the totazl energy of the reflected

wavepacket is given by,

r (‘1;«1)
- SR

E, = E, (4.15)

r (¢ :J_)-
g 1

The reflected wavepacket travels left according to
the equations of motion for a wave 2 wavepacket until it

reaches j=0 where i: is reflected into a right travelling

wave 1 wavepacket. The reflected energy E, is given by,

I r (,,0) 2
E, = B laol E, (4.16)
| r (95,0
A, (0,n)
where R, = —— (4.17)

0 A, (0,n)

is determined by the asymptotic boundary condition.



54

ORIGINAL . .. 17
OF POOR QUALITY

Figure 3 balow shows the particle-like path of the

wavepacket in computational space.

iA

(b) (b)

(a) (c) (a) (c)

(d) n

FIGURE 3. WAVEPACKET PATH IN COMPUTATIONAL SPACE

In summary the equatious for the different parts of

the path are,

dj : ¢ y
(a) %5 " rg"xIJ) (4.2

de, : ’aao“u

dn 3,133 ) ¢, const L

3 )
3 (rga)

| (4.11)

Q|
L}

t O
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r (‘z;J) ' l 2
(b) TR - el S = | & (4.15)
r (o,,J) J
g
4 |
(c) Fs rg(o,,j) (4.2)
de, _ i [2a,
dn ax[aj ¢,2 const V440
dE, = 1 3
—1? = - — 11
A% {s + e+ < aj(rqa)] E, (4 )
r (¢,,0) 2
() E, = g |”,|* = (4.16)
r (¢,,0)
g
In (a) and (c) the dispersion relation can be used
as a check on the accuracy of the numerical integration of b
the equations or can replace the equation for the variation
of ¢.
The total number of time steps for a round trip from
0 to J and back again to 0 is
J
N =f (r (0,,3) 1= = [ £ (8,,3) 11 a3 (4.18) )
5 g g

The energy growth of a wavepacket travelling from 0

to J is given by

a_ 1 dE,
g PEVEL) E dn
=€ + € + i lv(r a) (4.19)
a 33 g
d d dj
- ko = ——— \’
so a3 ln(E,) an In(E,) / T
€ + € 1 )
= + -—(r a)
> r a 3j




ab ORIGINAL
€ + ¢ 3
= + ==[ 1In(r a) ] (4.20)
r 33 g
g
Hence, J - J
In(E, (J)] = 1ln[E, (0)] + [ E—%—E dj + ln(rqa) (4.21)
0 9 0
J -
r (o,,J) € + €
so E, (J) = e exp ‘[ dj E,(0) {4.22)
rq(Ova) 0 Ty

Similarly the energy growth of the reflected

wavepacket as it travels from J to 0 is

b 3 (01'0)
— e

so E,(0) =

J -~
E + € .
exp [ - = dj E,(J) (4.23)
rq(o,,J) 0 g

Combining (4.15),(4.16),(4.22) and (4.23) the round

trip energy amplification factor X 1is

r (¢,,J3) J - r (0,,J)
y = |_9_L’__' exp [ (S| a5 - I AR |=_|*
| £ _ (o,.0) r r (0,,J) J
g o} g J! g
r (6,,0) ’ J fe » &) r (¢,,0) g
| T e, | ®*P 1T ‘J j ° (6,,0) IRO,
3 219 0 \ g : rg 2 ¢
J { - _\
| 2 € + € £ + €
= : R! 3 | — - - ( .
lpo %, exp [\ . ] [ | a3 (4.24)
0 g 1 g 2
(e + €) . :
where | ~ai is evaluated at ¢,,3
\ g Jx
e *;\
and i = J is evaluated at ¢,.,3
\ g J2

The condition for stability is

A <1




The equivalent average decay rate o0 is

In(Ai) (4.25)

Z |-

When M>2 and there are M, waves with positive rq and
M_ waves with negative rg, one wavepacket with positive tg
reaching j=J produces M, reflected wavepackets with
negative rg, and one wavepacket with negative rg reaching
j=0 produces M, reflected wavepackets with positive rg.

Thus the total number of wavepackets increases with time

exponentially. Since each wavepacket has finite lengtn
this ultimately leads to the problem of determining the
effect of interference between overlapping wavepackets. In
general the sum of the energies of two wavepackets is not
equal to the energy of the sum of the wavepackets. If the
wavepackets are identical the latter is twice the former

while if the second wavepacket has opposite sSign to the

first the latter is zero.
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S. Asymptotic Stability and Convergence Analysis I

5.1 Theory

In addition to the asymptotic approximations in

chapter 3 this chapter assumes that M=2 an” there is one
boundary condition at both j=0 and j=J and if ¢, is real at

j=0 then ¢, and ¢, are real over the whole domain.

Examples of methods satisfying these conditions are
the trapezoidal method applied to the model convective
problem with variable CFL number r, and the backward Euler
method applied to the model convective problem with constant
CFL number. Methods which do not satisfy these conditions
include Lax-Wendroff and Runge-Kutta type schemes. For
these methods the general stability analysis of chapter 6 is

required.

As explained in §3.1 a standard Fourier series
analysis of the problem with constant coefficients and
periodic boundary conditions shows that the eigenfrequencies
are 2(¢) wnere ¢ is a real wavenumber satisfying the
periodic boundary conditions and Q2(¢) is the corresponding

frequency given by the dispersion relation.

The common use of a Fourier series analysis to
predict the stability of problems with non-periodic boundary
conditions implicitly assumes that for real wavenumber 9,
Q(9) is a close approximation to an actual eigenfrequency.
This chapter follows that assumption, calculates a
correction ' to this Q(¢9) due to the boundary conditions,

and then determines the validity of the assumption for this

particular class of methods based on the asymptotic errors.
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For real ¢, ,¢, and the corresponding complex 2 the

general solution 1is,

3 ( j
U? = A,(j,n) exp|i [ ¢, 4 -nfl|| + A, (j,n) exp|i f.wz d{ =-nQ
0 0

\

(5.1

where the amplitudes A, and A, satisfy the asymptotic

amplitude equations

3
L IR B w e a m=1,2 (5.2)
an gm3dj m m

and boundary conditions

b,(2,¢,) A, (0,n) + b, (2,9,) A,(0,n) =0 (5.3)
[ 7
b.(2,9,) exp|i f ¢, dj | A, (J,n)
L 0
r Jd
+ b,(R2,0,) exp|i /.o, dj | A, (J,n) =0 (5.4)

\ 0

A linear system of finite difference equations with
time-independent coefficients and boundary conditions has

eigenmode solutions of the form,

u? = (U,)., exp(=-ingQ,) (5.5)

] 83 8

where Qa is the comp'ex eigenfrequency and U_ is

time-independent.

Suppose the frequency @ in (S.1) is close to Qs.

Define Q' by

Q = Q + Q" (5.6)

Thus equating (5.1) and (5.5)
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(UB)j exp(=-inQ"')
i 3
A,(j,n) exp|i [ ¢, 4§ + A, (j,n) exp.i f.o, dg (5.7)
0 {0
so A, (j,n) = exp(=inQ') A, (j,0) (5.8)
A, (j,n) = exp(=-inQ') A, (3,0) (5.9)
and

j p)
(Ug), = Ay(3,0) exp{i f o, AL | + A (3,0) exp{i_f 0, dt}
0 0

(5.10)
Substituting (5.8),(5.9) into (5.2) gives
3 : e + iQ' '
sg[hm(j,O)] -[ = } Am(],o) m=1,2 (5.11)
g m
which can be integrated to give
(J(s + i
’ = ¢ —_— j |
Am(J n) Am(o 0) expL/N . ] dj (5.12)
0\ g Jm )

The boundary conditions (5.3),(5.4) then become in

matrix form

g i = 0 (5.13)
- {A,(O,O)‘
where A = | (S5.14)
\as (0,00
and
- (Bxx 311]
= (S.15a)
Lazx B2

B,, = b, (Q,0,) (5.15b)
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By, = b,(2,0,) (5.15¢)

3 J
10 )
By, = b,(2,9,) exp i[ o, dj | exp f [‘———5—“—] ajl (s.154d)
0 0 1

r
g J
r Jd J
e - f (¢ + 18"
B, = b,(2,0,) exp|i | ¢, dj| exp ) L——;———— dj (5.15e)
0 0 g A

A non-zero solution A of (5.13) exists if, and only

if,
det ; = 0 (5.16)
Hence
J
exp { T (00 3) 1T =[x (0,3 170 gy
b,(R,6,) b, (2,9,) [ } - 44 (%E] <& ) &
B, (R,0,) b, (2,0,) expLL 6 ®, ¢, d4dj expL_é rqu Ltgjx J

(S5:17)
the right hand side of (5.17) can be expressed as
its magnitude

|( J )
et ntnd | o (n [ 1) s
B LR o R i\ okgjz krgl

multiplied by a phase factor exp(i¥) where

; (€ (€ .
¢,-9, dj + Im ,; - == | g9

J
. b,(R,0,) b, (2,0,) [
V= 2 3, 1 1 %

29 5,(8,0,) b, (8,0,) ]

[+
|

o\\ag

(5.18)

If ¢,, ¢, are chosen so that Y/27 is an integer then

(5.17) reduces to




62

b, (R,0,) b, (2,0,)
b, (3,0,) by, (3,0,)

(5.19)
where as defined in chapter 4,
J
N = j- { 2. 0(9;:3) 1™ =« [ = (6,,3) 1t 43 (4.18)
g g
0
The stability criterion is
Im(ﬂa) = Im(Q + Q' < 0 (5.20)

Thus the frequency & resulting from a ncrmal Von
Neumann analysis is corrected by an amount Q' due to

boundary conditions and variable coefficients. This

approach, using 1 as an initial approximation to ﬂa the

actual eigenfrequency, is valid provided the asymptotic

errors are small compared to Q°'.

The asymptotic error is Of LC", TA" ) = of LC", a'? )

Now N = O 3
r
J

so if rg << J then N >> 1

and hence Q' << 1 except near frequencies for which

b, %,0,) b, (2,0,)
bz(QIQl) bl(glotf

is zero, or infinite, which usually occurs at Q=0. However
these frequencies are heavily damped by the boundary
conditions and so an accurate estimate of their
eigenfrequencies is not essential. This method gives

accurate asymptotic values near the critical frequencies

which are least damped and which therefore determine the
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overall spectral radius of the scheme.
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This example is the Backward Euler method applied to
the model convective problem with constant CFL number r and

space extrapolation at the downstream boundary.
The dispersion relation is

exp(i) = 1 = ir sin(9) (3.63)

so if ¢, is real, ¢, = 7 - ¢, is also real
b, (2,¢) = 1 (3.82)
b,(2,¢) = 2i exp(=i0/2) sin(9/2) (3.88)

bL(Q'OI) bL(QpQL) 51“(02/2)

89 B (f,0.) Belf,agy — SXPI=E10=0,372]) oty /2)
) cos(¢,/2)
exp(=-i(¢o,=-9,)/2] sin(0,/2)
= axp(=-i(9,-9,)/2]) cot(e,/2) (5.21)
. )
‘ Since —L = 0 , e=0
3
Hence ¥ = =(90, = 0,)/2 + J(o, = ¢,)
4
i = (J = 1/2) (7 = 2¢,) (5.22)
v}
g ¥/2m = n, where n is an integer, implies
: 9, = /2 = 27n / (23=1) (5.23)
’
The group CFL numbers are
! rg(ox) = r cos(9,) exp(=-iQ)

t

= r cos(¢,) / (1 + ir sin(e¢,) )
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= r cos(¢,)(1 = ir sin(e,)) / (1 + risin?(e,)) (5.24)

rg(o,) = = r cos(9,)(1 = ir sin(¢,))/(1 + r?*sin?(¢,)) (5.25)

Hence,
a ir cos(o,) (1 = ir sin(e,)) ln(cot(ol/Z)) (5.26)
23 (1 + r?sin?(e,) )
exp(=2 Im(R)] = | exp(iQ) |2
= | 1 % 42 sinly, /2) |*
= 1 + risin?(¢,/2) (5.27)
1
so Im(Q) = - o In [ 1 + r?*sin?(e¢,/2) ) (5.28)
Hence
1
Im( Q@ + Q' ) = = 3 ln [ 1+ r*sin?(¢,/2) ] =~

r cos(o,/2)
2J(1 + risin?(e,/2)

l1n [ cot(e,/2) ] (5.29)

Define the decay rate o to be

g = - Im( Q@ + Q' ) (5<30)

For small ¢ << 1

o L wtal r_ p
a 3 r‘e - 23 In(2/9%) 5.31)
do _ a2 r .-
de r‘e¢ >3 ® {S.32)
Thus 3% =0 at ¢ = (2rJ3)-% (5.33)
so min o(¢) = =+ L, In(8rJ) (5.34)
4J 47 '

The spectral radius )\ is




A6
iTY
A = max exp(=-0)
= masxz (1=-0)
4
1 = Y [ 1 + 1ln(8rJ) ] (5.35)

§6.2 continues this example proving rigorously that

every eigenmode is stable, and deriving an asymptotic

expression for the decay rate of the eicenmodes near ¢, =0,

showing as expected that the decay rate is greater than the

minimum decay rate obtained above and so the above analysis

is valid in calculating the spectral radius.
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6. Asymptotic Stability and Convergence Analysis I[I

6.1 Theory

This chapter continues the analysis of chapter 3
without any additional assumptions or approximations. The
eigenmodes of a linear system of finite difference equations
with time-independent coefficients and boundary cornditions
vary exponentially with time @20 a gyenaral eigenmode can bLe

written as

|
m=1 \

3 L T o, @)
0" = exp(-in8) ) A _(§) expli [ o  ag (6.1)
J m J m
0
Note that the amplitudes Am are independent of n.
The time evclution of the eigenmode is contained sclely in

the term exp(=-inQ). The complex amplitudes Am esach satisfy

their asymptotic amplitude equation,

A
—™0 = ¢ A (8:2)
a 39 m
J
f (e
so A_(J) = A _(0) exp| [ [ J a3 (6.3)
m m J kr
0 g/m
(€ £ :
[t ) denotes ; evaluated at Om,]
L‘g/m g

Now that Am(J) is related to Am(O) the M asymptotic

boundary condions can be written in tensor summation form as

Bkm Am = 0 (6.4)

where A = A (0) (6.5)
m

and
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bk(ﬂ.om) if the k boundary condition is applied
- at j-O
Bkm J
€
b (2,9 ) exp [ (;) + 10 a3 (6.6)
0 g/ m

if the kth boundary condition is applied

at j=J

iom dj} comes from (2.77)

)

——
O\\Q

The term b (Q3,¢ ) exp
=

and the term exp [

to A _(0) in (6.3).
m

o'“—\q

(% J dj] is the factor relating Am(J)
Fg)m )

A non-zero solution to (6.4) exists if, and only if,
det(B) = 0 (6.7)

Since all the elements of B are implicit functions
of Q@ this is the equation which determines the

eigenfrequencies.

If the coefficients are constant all of the Am are
constant and so there are no asymptotic errors. The theory

is then ex2ct and is identical to the P=-stability analysis

of Beam, Warming and Yee [(S5]. If the coefficients are

variable the asymptotic error is of order O(LC".J"L =419

c
The O(LC") comes from neglecting seccnd Jderivatives of An
and ¢ in the asymptotic amplitude equations. The O(J~'L_~!)

comes from neglecting the first derivatives of Am and om in

the asymptotic boundary conditions.

For all but the very simplest problems it will be
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impossible to solve (6.7) analytically to obtain the
eigenfrequencies. Three possible numerical approaches are

outlined below.

6.1.1 Iterative Solution

n . : -
Suppose @ is a good approximation to an
eigenfrequency @ and

a®* ' o o™ + 4" (6.8)

is to be a better approximation.

The terms in the definition of Bkm which change most
J
rapidly with variations in Q are exp ism dj since these
0

are oscillatory functions because om usually has a real

component of order O(1).

3o (33\'1
-_—m = -
aQ 3o /m
- Fg);l (6.9)
1 -
Hence °n+ = on + ﬁ ) ! AQ (6.10)
m m \"g/ m

Subscript m means evaluated at om,j

; n
Superscript n means evaluated at Q

Thus
(7 . (7 \ (]
/ + ? : ; . - .
exp j io: dji= exp f zo; dj | expnf iaQ &Q Ly (6.11)
L0 ) L 0 0 \ )
Define
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b (2%, 07) if the k' boundary condition
is applied at j=0
B2 = J J :
km n n (e \n | n : ‘[ n ~ .
bk(ﬂ ,om) exp f G J iom dj|exp |iaQ rq - dj
0 g/m 0 -
- th :
if the k boundary condition is at j=J (81:2)
Then choose AQ to be the smallest root of
n
det(B ) = 0 (6.13)
The method in chapter 5 performs one step in this
iterative procedure. As explained in chapter 5 the

asymptotic error remaining after a correction AQ is
o( 48~?,L_"?). For constant coefficients this gives
quadratic convergence to the true eigenfrequency. For

variable coefficients it will converge to a frequency which
differs from the true eigenfrequency by an asymptotic error

r =2
of order O(uc ) .

The solution procedure will fail as described in

chapter 5 near frequencies for which bk(Q,om) is zero since

the fractional variation in bk(ﬂ,am) is comparable to, or
J

may exceed, the fractional variation in exp f iam dj).

0
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6.1.2 Newton-Raphson Solution

The Newton-Raphson solution procedure is

n
Qn+1 - Qn o det[B(Q )] (6.14)

] n
— 1
a0 det [B(Q )]

Although this seems straightfcrward there will be
problems in practice because det(B)=0 has many roots and so
%3 det[B(ﬁn)] has many zeros near which the Newton-Raphson

iterative procedure is badly behaved.

6.1.3 Stability Domain Method

If z is defined as
z = exp(iQ) (6.15)

then the condition for stability is that det(B) has no zeros

in |z| < 1. In very simple cases this criterion can be
tested analytically (an example is given in §6.2). In more
complicated cases because det[B(z)] is an analytic function

of z the 'Principle of the Argument' method outlined in
appendix A.2 can be used to find whether det[B(z)] has any
zeros in |z| < 1. To find the spectral radius A the same

method can be used to find the largest A for which there are

no zeros in |[z| < \.
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6.2 Example 0; ﬁOOR QUALHY

The example is the Trapezoidal method applied to
the model convective problem with constant CFL number r and

space extrapolation at the downstream boundary.

The dispersion relation is

tan(2/2) = = sin(e) (3.41)
Define «x = exp(id¢) (6.16)
z = exp(=iQ) (6.17)
1 exp(i/2) - exp(=-iQ/2)
m | - -
Then tan(Q2/2) I exp(ia/2) + exp(-if/2)
e 11 - exp(-iQ)
i 1 + exp(=iQ)
1 1=2
= I ?:; (6.18)
sin(¢) = o [ exp(io) exp(=-i9¢) ]
21 pli P - !
1
= 2T (x=x=t ) (6.19)

Thus the dispersion relation becomes

Note that if x; is one solution then x, = -x,~ ! is

the other solution. The condition for stability is that

|z] < 1 for all eigenmodes.

Let z = R exp(i®) R,8 real, R > 0 (6.21)
1=-2 1 - R exp(if)
L 1+2 1 + R exp(if)
= (1 - R exp(id8)] (1 + R exp(=if)]
[1 + R exp(i8)] [1 + R exp(=i0)]

9 -

— - — o WS N Shemtess
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i) Stability domain for z

k OF BERE cire o
_ F POOR QUALITY
1

2/

1-z
ii) sStability domain for T—

7
)

iii) Stability domain for «x

////////

FIGURE 4. STABILITY DOMAINS : SHADED REGIONS ARE STABLE
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. 1 - 2iR sin(8) - R?
1 + 2R cos(8) + R?
- B - i i
- (1 R* ) 2iR sin(9) (6.22)
(1 + R cos(6)]? + [R sin(8)]?
R < 1 > Re 4== 3 @
Hence g
R>1 => Re —=2 < 0
® oz
Thus if r is Jositive then R = |[z| < 1 if, and only
X 1=-2 -
if, Re F e > 0 <==> Ps(k=-x~"'] > 0
Now let x = R exp(if8) (6.23)
Kk = k™! = R cos(8) + iR sin(8) - R™! cos(8) - iR sin(8)
= (R - R™}) cos(8) + i(R + R™!) sin(8) (6.24)
so |z| < 1 <==> Rel[k=x~"!] > 0
S either R > 1 , =®/2 < 8 < w/2
or R < 1 /2 < 8 < 3n/2
Figure 4 shows the stability domains for the
different variables.
The upstream Loundary condition has
b, = 1 (3.82)
The downstream space extrapolation has
b, = 1 - exp(=iR) (3.88)
’ 1 1 )
Hence B = | |
\exp(lJ@1)f1-exp(-iol)] exp(iJo1){1-exp(-iml)])
( 1 1 \
= 5 7 | (6.25)
\ K

id
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(I |
det(B) = 0 implies
27T e - 1) = (-7 + 1) =0 (6.26)
amy Sl . (o1)T 2T (6.27)
K=1
Consider the twc ng. .12lity regions I and II marked
in figure 4 iii).
In region I |x + 1| > |x = 1] and |xk| > 1
K+1 J 2J=-1
so =1 > ‘(-1) K I
In region II |x + 1| < |x - 1| and |x]| < 1
R+1 J 2J-1
so ¢ =1 |
K=1
Hence there are no possible solutions of (6.32) in
the two regions of instability. Every eigenmode is stable
and so the method is stable. This example is a special

example taken from a more general result, proved by Beanm,

Warming and Yee [5], that the class of A-stable Beam-Warming

. th :
multistep methods with g order space extrapolation at the

downstream boundary is stable.

Continuing this example asymptotic decay rates for

small ¢, can be derived.

Let kK = 1 + § (6.28)

Equation (6.31) becomes

1

t1 » 89 V% o (=1)%(2 » 4) = B (6.29)

.
Now 210 (1 + 57 2 exp(x) (6.30)

QX

>> J >> §

4

so provided
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(1 + 6)2J = exp(2J6)
J s=1
exp(2J6) = 2 (=1) § (2 + 8)(1 + §)

= 2 (-1)J g~
If J is even this has a solution for real §

236 = 1ln(2/6)

m == 1In(2/8)

2J
S I 1 S
2J In(2/6)
1n(J) in(ln(J)]
237 + terms of order Of -———3———— )

= exp(ieo,)
= 1 + -‘-@1
= =-id

i 1ln(J)

2J

Linearising the dispersion relation about ¢=0
= r @x
ir 1n(J)

2J

The asymptotic decay rate 1is

r 1ln(J)
0 = ———————
2J

If J is odd the smallest 4 solutions are

£« r 1ln(J) s ¥
2J 2

=

o

decay rate is the same.

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

gives

(6.37)

(6.38)

(6.39)




77

7. Assorted Examples and Further Developments

7.1 Instability of Backward Euler with Spacetime Extrapolation

Consider the Backward Euler method applied to the
model convective problem with constant CFL number r on
domain 0 < j ¢ J with space-time extrapolation at the

downstream boundary and J >> r >> 1.
The dispersion relation is
exp(iQ) = 1 = ir sin(¢) (3.63)

The upstream boundary has
b, =1 (3.82)
The downstream boundary with space-time

extrapolation has

b, = 1 = exp(i(Q=-6¢)] (3.94)

The eigenfrequency equation, det(B)=0 reduces to
exp(iJe,){1 = exp(i(Q=0,)]} = exp(iJe,){1 - exp(i(R-0,)]}

(7.1)

Because ¢, = v=-¢, this can be written as

exp(2iJ¢9,) {1 - exp(i(Q=-¢,)]} = (-1)J {1 + exp(i(Q+0,)]} = 0
(7.2)

This and the dispersion relation form two equations

in the two unknowns 2 and ¢,. Considering only the case in
which J is eve one eigenmode is given by,
0 =7 + Q' |a'] < (7.3)

so ir sin(¢,) = =2 = i2' + 0(Q'?) (7.4)
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0, = 21 + H.O.T. (7.5)
r

L

Substituting into (7.3) with Q'=0 gives

exp(=-4J3/r) (1 + exp(2/r)} - 1 + exp(=2/r) = 0 + H.0.T. (7.6)

Expanding the exponentials under the approximation

r >> 1 this reduces to,
J = Z ln(r) + H.0.T. (7.7)

For a particular even value of J the value of r
satisfying (7.7) makes this eigenmode asymptotically
neutrally stable. To find whether increasing r makes it

unstable or not (7.2) is differentiated by r.

2iJ %%‘ exp(2iJe,) {1 - exp(i(Q = ¢,)]}

+ exp(2iJe,) (i 28 . g 29-]' exp(i(Q = ¢,)]

dr dr
. de, , Q 3
- —' 4 i — ¢ =
{i cr -k dr} exp[(i(Q + ¢,)] 0 (7.8)
This is evaluated at Q'=0, J = % In(r) so
_, de, 1 do, da de, aes . _
In(r) - { P o }o+ { ir - = } 0 +H.0.T. (7.9)

Q
Hence S8 o ln(r) ae. + H.O.T.
dr dr

2i 1ln(r)
2

+ H.O.T. (7.10)
r

As r increases from the neutrally stable value,
Im(Q) becomes negative so the eigenmode becomes unstable.

Thus this eigenmode is stable only if

PN

In(r) < J

In numerical experiments it is found that this is

— - P — -
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the least stable eigenmode and so this condition is both
necessary and sufficient. The condition is asymptotically

equal to an exact stability condition derived by Beam,

Warming and Yee [5].
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7.2 Optimum CFL Number For Trapezoidal Method

Consider the Trapezoidal methcd applied to the
model convective problem with constant CFL number r on
domain 0 ¢ j < J with space extrapolation at the downstream
boundary.

The dispersion relation is

tan(Q/2) = sin(9¢) (3.52)

NN

The upstream boundary condition has

b, = 1 (3.82)

The downstream boundary has

b, = 2i exp(-i¢/2) sin(¢/2) (3.88)

Following the stability analysis of chapter 5, e=0

since r is constant, and the group CFL numbers are given by,

K = r cos(e,) cos?(a/2) (3.47)
i
r = r cos(9,) cos?(Q/2)
g
= - r cos(¢,) cos?(Q/2) (7.11)
b J
(2,0,) b, (2,8,) r
= 2. i 1. 9, e
so Y arg b (3,04) b, (R,0,) A J L ¢, dj
0
Y )
+m | [ [2] - (% ] aj | (5.18)
[ \ T \r
\o ' 972 971 )
- (3-1/2) ( Oz o @x )
= (J=1/2) ( % = 26, ) (7.12)

¥/27 = n where n is an integer implies
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R (7.13)
) b, (Q y
i b, (1,¢ 19, ) £ €
Q' = - = 1 A—t—2 o - | + Re ‘[ (& ) - (- ) dj
N b,(2,0,) b, (R,0,) r r
I 2 2 1 2 0 \ g/, g/,
= - % lnl sin(e,/2) / sin(e,/2) ]
= -« = 1ln( cot(¢,/2) ] {7.:14)
%
where N = | [r (6,,3)]7" = [r_(0,,3)]1"" 4j (5.20)
J g g
0
- 2J (7.15)

r cos(e,) cos?(Q/2)

The decay rate o was defin=:d as

g = - Im( Q + Q' ) (5.30)

r
9 = 33 cos(e,) cos?(2/2) ln(cot(e,/2)]

-

r cos(¢,) ln[ cot(s,/2) ]

23 [ 1 + tan?(Q/2) ] j
L. 2r cos(e,) 1ln( cot(s,/2) ] (7.16)
J [ 4 + risin?(e,) ]
Figure 5 shows the dacay rate as a function of r

for various values of ¢.

When a system of finite difference equations is
solved using a :ihe-independent approach to a steady state
solution, usually the initial conditions and the final
solution are smooth so the initial error is smooth i.e. the

error is predominantly in the low wavenumber, long

wavelength eigenmodes. For this problem suppose that the
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initial error is in the wavenumber range 0 < ¢ < ¢, where ¢,

is a constant, ¢, < w/2

- 2o 2
ac . 2r sin(¢) . 2r“sin(¢)cos® (9) 1n(cot(6/2)]
30 J 4 + r*sin?(9) (4 + r?sin?(¢)]?

" cos(9) < 0 (7.17)

sin(¢, 4 + r?sin?(¢)]

so over the range given above ¢ has a minimum at ¢,. To

maximise the overall rate of convergence the CFL number r

can be changed by altering At.

e v2ainl
30 _cos(e) [ 4 r?sin?(¢9) | ln{cot(e/2)] (7.18)
3r 23 [ 4 + risin?(¢) |

> 0 for 0 < r < 2/sin(9¢)
v for 2/sin(¢9) < r

so 0(¢,) is maximised by choosing

2

= — 7.1
sin(¢,) ( -

The smoother the initial error the lower the value
of ¢, and the higher the optimum CFL number. If the initial
error is not at all smooth with ¢, approaching v/2, the

optimum CFL number drops down towards 2.



84 ORIGINAL PAGE IS
OF POOR QUALITY

7.3 Discontinuous CFL Number In Trapezoidal Method

Consider the following Trapezoidal method applied to

the model convective problem.

5 r
i-b j+b . on+k
v ] = .
[ 6c + 3 by Yo + 2 e Ax. UJ 0 (7.20)

Suppose that r is discontinuous
r . j <0
3 . , j >0
On the two sides »f the discon._auity a general
solution of fregquency 1 can be written as,
A,(j,n)exp(i(jo,=-nR)] + A, (j,n)exp(i(je,~-ni)] j <0 %
U = (7-21)

Ay(j,n)exp(i(je,-nQ)] + A, (j,n)exp(i(je,-nQ)] j >0

¢, and ¢, satisfy the dispersion relation

-

tan(Q/2) = sin(e¢) (3.52)

(ST

with ¢, = T - 01

and 0 < Re(¢,) < m/2

¢y ard ¢, satisfy the dispersion relation

+

(ST

tan(Q/2) = sin(¢) (3.52)

with b, =T = ¢,

and 0 < Re(9,) < m/2
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The amplitudes A,, A, are related to A,, A, at j=0
by two equations. The first comes from the requirement that

the two expressions for U? are equivalent at j=0.

The second requirement is that

1 1 n+s
( 6t + 3 rj-} uth * 3 rj+¥ uch ] Uy =0 (7.23)

which implies

+
[ Gt * 2 utvx] U; * = - Gt * T utAx] UO 2 (7.24)

The left hand side involves U; at j=0,-1 so the
first expression for U? is used. The right hand side
J
involves U? at j=0,1 so the second expression is used.

Neglecting derivatives of the amplitudes the resulting
equation 1is,

A, { =-2i sin(2/2) + r_cos(Q/2)([1-exp(=-i0,)] }
+ A { =-2i sin(8/2) + r_cos(8/2)[1-exp(=-i0,)] }
= - A,{ =2i sin(Q/2) + r cos(Q/2) [1-exp(=io,)] } (7.25)

- A, { =2i sin(Q/2) + r*cos(ﬂ/Z)[1-exp(-ia.)] }

Substituting for ©2n{Q/2) using the dispersion

relations and using
exp(io) = cos(9) + i sin(9d) (7.26)

this reduces to

r { A, [(1-cos(9,)] + A, [1=-cos(s,)] }

= r+{ Ay[1=cos(¢,)] + A, [1=-cos(9,)] } (7.27)
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In the general problem the two equations relate the
amplitudes on either side of the discontinuity at j=0. Now

consider the particular problem in which ¢,, ¢,, ¢,, ¢, are
all real and A, is zero. This is the situation when a
wavepacket with wavenumber ¢, , and positive group CFL number

travels from j<0 to the interface at j=0 producing a

transmitted wavepacket with wavenumber ¢, and positive group
CFL number and a reflected wavepacket with wavenumber ¢, and
negative group CFL number. The reflection coefficient R and
transmiss:on coefficient T are defined by,

P = 4, / A (7.28)

T = A, / A, (7.29)

Since A, =0

A, + A, = A, (7.30)
so r_{A, [1-cos(9,)] + A, [1-cos(9e,)]} = r [A, +A,][1=-cos(9,)]
(231
r_[(1-cos(e,)] - r [1-cos(¢,)]
Hence R = = (7.32)

r_[1-cos(e,)] = r [1-cos(e,)]

and T =1+ R

r_[(1-cos(¢,)] = r_[1-cos(9,)]

r_[1-cos(9,)] - r+[1-cos(o,)] (7433

®)
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8.1 Degeneracy

So far in this paper it has been implicitly assumed
that no two eicenmodes have the same frequency @ and
wavenumber Q. This section cons.uders the degenerate case
in which this happens. An example is the Trapezoidal

method. The dispersion relation is

tan{Q/2) = % sin(¢) (3.41)

which has wavenumber solutions O‘ and oz = w-ol. These are

ident. tal when
0,' = ¢9,"' = /2 (8.1)

which occurs at the degenerate fresguancy Q' given by,

tan(Q/2) = % (8.2)
' I !
Note that rg '(30)j conet
= r cos(¢9') cos?(Q'/2)
= 0 (8.3)

This is characteristic of degeneracy because in the

neighbourhood of the double zero

Q - Q' = a( ¢ - ¢')? , a = constant (8.4)
g0 r = 28
g a0

= 2a( ¢ = 9o'")
=0 at ¢ = o' (8.5)

For @ # Q@' the general solution for constant r is
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u; = A,expl(i(jo,-n2)] + A,exp(i(je,=-nQ)] (8.6)
Consider the limit as Q@ approaches Q'
(a - a\}
- 9' =2 £ | —— .
] o \a) (8.7)
so ¢, = ¢' = = ( 9o, = 0"') (8.8)

Hence A,exp(ije,] + A, [ije,]
= exp([ijo'] { A,exp(ij(o,=- ¢')] + A exp(ij(o,=- ¢"')]
= exp(ijo'] { A,exp(ij(e,- ¢')] + A,exp(ij(e'~ o¢,)]

= exp(ijo'] { (A, +A,)cos[j(0,=0"')] + i(A,=A,)sinr j(0,=06"')]

}

}

}

= exp(ijo'] { Ay + A, J } (8.9)
where Ay = A, + A, (8.10)
dnd A. = i(Ax o Az‘ ‘Ql - 0') (8-11)

If A, and A, are now considered to be constants in

the limiting process the general form of the degenerate

eigenfunction is,

uv® = (A, + A,3 ) exp(i(je'=nR")] (8.12)

J
Another way of deriving this result is through the

asymptotic amplitude equation. With the amplitude A

time-independent, r constant, and rg equal to zero the

largest term is the second order derivative of A so,

2
3A _ (8.13)
3j?
which implies A = Ay + A, J (8.14)

In all the examples I have analysed I have not yet



e b o adiiied

89

found a degenerate eigenfunction which satisfies the
asymptotic boundary conditions and so is a degenerate
eigenmode. The degenerate frequency does however satisfy
the determinant condition

det(B) = 0 (6.7)
because two of the wavenumbers are equal so their columns
are identical and B is singular. This is not a problem in
the stability analysis because the separation of
eigenfrequencies, using the result from chapter 5 , is

approximately,

J -1
2m " - iy -
N_" 2T { [rq(Qx'j)] to- [Y-‘g(Oz:J)] ' dj

+ 0 as Q@ - Q'
so there is usually a true eigenfrequency which differs
from the degenerate frequency by less than the overall

asymptotic error.
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8.2 Eigenmodes and Eigenfrequencies

In chapters 5 and 6 it was stated that the
eigenmodes of a linear system of finite difference
equations with time-independent coefficients and boundary
conditions vary exponentially with time. This section

outlines the proof.
Let U, =2z V (8.15)

If the domain is 0 ¢ j < J then there must be J+1

finite difference equations so vj satisfy

au

v =0 (8.16)

~

where V is the J+1 vector of Vj elements and C is a (J+1)?

matrix whose elements are polynomials of z.

For there to be a non-zero solution requires

det(C) = 0 (8.17)

This is the equation that determines the eigenvalues
z of the eigenmodes. Apart from the problem of possible
degeneracy the on.y remaining difficulty is to show that the
number of eigenmodes equals the number of independent
initial conditions needed to start a numerical solution.
For the Backward Euler method with space extrapolation at
the downstream boundary there are J-1 independent initial

conditions since

Uo = 0 (8.18)
0 0
d = .
an UJ UJ_1 (8.19)
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-r,Z2/2 z-1 r,z/2
. -2, 8,2 z=1 r,z/2
C = -ryz/2 z-1 ryz/2
-rJ-1z/2 z-1 rJ_1z/2
\ Y
(8.20)

so det(C) is a polynomial in z of degree J=-1 giving J=-1

eigenmodes. Thus any solution can be expressed as a sum of

eigenmodes which vary exponentially with time.
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8.3 Other Asymptotic Approaches

One approach which can be used when the variation

in coefficients is extremely small is to let,
U; = A(j,n) expl[i(jo=-nq)] (8.21)

where ? and ¢ are both constant and satisfy

a,(2,0,3) = 0 (8.22)

at some point j.

The asymptotic amplitude equation is then

L 2% & 0 (8.23)

a,A+axa—n+a,aJ

where a,, a, and a, are defined and calculated as before.

3

1>
et

LA = min [A /

o

J

=0 (a, / a,) (8.24)

so the fractional error using this method is O (a,/a,)?.

If the variations in the coefficients are small this is fine
but if the variations are 0(1) the fractional error is O(1)
i.e. the method fails to give accurate asymptotic
approximatiolrs. The asymptotic approach used in this paper
allows total variations in the coefficients of O(1) and only
requires that the length scale of those variations is much

greater than 1.

Another approach is to set

u? = A(3,n) exp(i?¥(j,n)] (8.25)
en 2% = 8.26
wi 33 ? (8. )



a¥ Ja 2

SR T—eY

93

CR4
and ™ = - Q (8.27)

=}

and A, 2, ¢ are all real and slowly varying. This approac:
is used extensively in the analysis of water waves and other
partial differential equations with dispersion and very
little dissipation. This approach applied to finite
difference equations would give poor results because
dissipation over one time step is O(1) so if Q is real A

reflects this dissipation and so TA = 0(1). The method
presented in this paper is able to use¢ constant complex Q

rather than variable real Q as in the above method because
the eigenmodes have constant complex eigenfrequencies
provided the finite difference equations are

time~-independent.
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S. Wavepacket Test P~ogram

9,1 Program Description

The program solves the model ccnvective problem,

22+c-a—2-0 (9.1)
t ax

using a choice of Box or Trapezoidal methods on the domain,
0 < j < 200 (9.2)
and time step range,

0 < n < 400 (9.3)

The CFL number

c.At

r -—h— (9.4)
j

i3 specified by the user at j=0,200 and the program

interpolates fcr intermediate values by fitting an

exponential curve through rO and r200'
i \
r(j) = T, ®XP|353 1n(r200/r0)J (9.5)

Methods 1-3 are different Trapezoidal methods which
are identical if r is constant. For these methods the
program offers a choica uf space extrapolation, space-time
extrapolation or box condition as the downstream boundary
condition. Method 4 is the Box method. The wavepacket
theory for each of these methods is derived in the next

section.

The upstream boundary condition is,
U =0 (9.6)

The initial conditions are given by,

-
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u; = A(3,n) exp(i¥(j,n)] (9.7)
where A(j,n) = exp(=(3j=100)%?/200] (9.8)
and ¥(j,n) = ¢, (2,3) (9.9)
k=0

This produces a wavepacket abLout 40 mesh points
long. The user specifies Q1 by specifying tne critical CFL

number which is definec as,

rcrit = 2 tan(Q/2) (9.10)

- -k o
so Q 2 tan (rcr;t/Z) (9.11)

The significance of the critical CFL number is that

when,

r = rcrit (9.12)

the group CFL number for the Trapezoidal methods is zero.
w i 1§ >
ave propagation can only occur for r P,
At each time step the program calculates
'experimental' values for the position X(n) and energy E(n)

of the wavepacket. If U was continuous X and E would be

defined as,

%200
E(n) = [ IU(x,tn)I’ dx
*o
200
= [ lu(d,ny|? SX aj (9.13)
0 4
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200
and X(n) = E:nf f IU(x,tn)l’ x dx
*0
200 i
- o1 { 1003001t x(3) §F a3 (9.14)

so since U is discrete X(n) and E(n) are defined as,

0
E(n) = 3;: |U;|’ Ly (9.15)

j=0
200
1 | )2
- |
X(n) Ty .Ujl xj aj (9.16)
1
where a, = —(x -X ) (9.17)

3 2 3+1 31

In the program ¢ is taken to be constant so

variations in r are due to variations in Ax.

ax = S4E (9.18)
r
- « i |
sO xj*1 xj-1 (rj‘_})

A physical domain 0<x<1 is used so,

L e
xy = Zi [rj_*J"’//' 1[rj_*)“ (5.19)

k=1 k=
After completing the 400 time steps the program
calculates predicted values for X(n) and E(n) using the
wavepacket equations derived in the next section with the

experimental values at n=1 as initial corAiclions.

A
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9.2 Theory

Method 1 is a Trapezoidal method which is second

order accurate in Ax only when Ax is constant.

so

and

Following the analyses of chapters 3 and 4,

a,

2
3 n+
PR B 9, 1 Uy " =0

-2i 8in{(Q/2) + ir cos(2/2) sin(¢)

cos(R/2) + § sin(R/2) sin(¢)

r cos(Q/2) cos(9)

- % cos(2/2) sin(¢)

The dispersion relation is

tan(Q/2) = § sin(¢)

cos(Q2/2) + sin(QR/2) tan(Q/2)
( cos?(Q/2) + sin?(Q/2) ) / cos(2/2)
sec(Q/2)

a, / a,

r cos(¢) cos? (Q/2)

(2a,)

J‘\33’, Q2,0 const £ &y

( -+

(9.20)

(9.21)

(9.22)

{(2.23)

(9.24)

(9.25)

(9.26)

(9.27)

(9.28)

(3.26)

(9+29)

(4.4)
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ar

= - 73 sin(¢) cos?(Q/2) (9.30)
--ia,(2°) / 8,4y = 8, / & (3.30)
33 ) 2,9 const Lt o t
1 3r 2 .
= - 5 53 cos®*(Q/2) sin(¢) tan(¢) (9.31)

nce a is proportional to r~!,

@
2

ar

1
?; =~ % 5? (9.32)
3 )
= (r a) = r — (r /r)
33 g a3 g
& Y 2 a‘
= -« r sin{$) cos®*(Q/2) —
3]
. 2 ., da
= - r sin(9) cos®(Q/2) i 33‘ / a,
ar 2 :
= —? cos?* (R/2) sin(¢) tan(e) (9.33)
nce the egquations of motion for the wavepacket for
9 are,
= r cos(¢) cos?(0/2) (9.34)
o _ . 2
= - E? sin(¢) cos®*(Q/2) (9.30)
In(E) = 0 {(9:35)

thod 2 is also a Trapezoidal method which 1is

er accurate in Ax only when Ax is constant.

< 3
o frr j=
& + i‘uA+ i‘uvlu'.”'i'-o

£ 2 £ x 2 t x iBh30
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N

. | L . (9.37)

e
j+t xj+1-xj
1
a, = =-2i sin(Q/2) + 3 cos(R/2) (rj+¥[exp(io)-1] +

rj_*[1-exp(-io)])

1 ( 1 3r
= - i i -_— — — f -
2i sin(Q/2) + > cas(Q/2) L(tj + 2 33 ) {exp(ie)=1] +
1 ar : 3
(rj -3 5? )[1-exp(-xo)]) + H.O.T.
= =2i 8in(Q/2) + ir cos(Q/2) sin(¢) +
% %% cos(9/2)[cos(e)=1] + H.O0.T. (2.38)

The H.0.T. are neglected because they are of the
same order of magnitude as other terms already neglected in
the derivation of the asymptotic amplitude equation. To

this same level of asymptotic accuracy a,, a, and a, are
exactly the same as in the analysis of method 1.
The dispersion relation remains,

tan(Q/2) = sin(¢) (9.26)

(1L,

3

Sk}

so now a, = cos(2/2) [cos(¢)=-1] (9.39)

ar
L

-
2
Afte- some algebra it follows that the equations of

motion are,

%% = r cos(¢) cos?(2/2) (9.40)

do
—_— = -

13
dn 2

L)

sin(9) cos?(Q/2) (9.41)

Q

-
B

d 3
e In(E)

2

[1-cos(¢)] cos?(Q/2) (9.42)

N

]

Method 2 is a Trapezoidal method which is second
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order accurate in Ax for cases with smoothly varying Ax.

F. & (t. 5
3+4) 3=
i+t T i-% i+t T 3-%
The dispersion relation is the same as for methods
1 and 2 so after some algebra,
a, = %% cos(R/2) [cos(9)=1] (9.44)
and the equations of motion are,
H = r cos(e) cos?(a/2) (9.45)
de _ _ 3r _. 2
o g sin(¢o) cos?(Q/2) (9.46)
& 1n(E) = 2 2 (1-cos(e)] cos?(a/2) (9.47)
dn 3

When the wavepackets of methods 1-3 reach the
downstream boudary at j=200 they are reflected into

backward travelling wavepackets. The energy E, and the
wavenumber ¢, of the reflected wavepacket are related to
the energy E, and wavenumber ¢, of the incident wavepacket

ry the equations,

9, = T - 0, (9.48)
l1n(E,) = 1ln(E,) + 2 lnIRJl (9.49)
where RJ is the amplitude reflection coefficient.
For space extrapolation (see §3.5.2)
| | sin(¢,/2)
Ryl = Sin(e./2)
= tan(9%,/2) (9.50)
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For space-time extrapolation (see §3.5.3)

sin((e¢,=-0)/2]

|
' sin((9,=R)/2]

| R

J

For the box boundary condition (see §3.5.4)

cos(¢,/2) tan(Q/2) = r sin(e,/2)
cos(¢,/2) tan(Q/2) = r sin(9,/2)

IRJ|

= tan®(¢,/2)

after substituting for tan(Q/2) using the dispersion

relation and replacing ¢, by m=-9¢,.

(9.51)

(9.52)

The reflection relations at the upstream boundary

are,

o, =% =9,
In(E,) = 1In(E,;)

since Ro- -1 (see §3.5.1)

Method 4 is the Box method discussed in §3.3.2

n+$
[ uxét + rj utéx ] Uj+§ 0

The dispersion relation is
tan(2/2) = r tan(¢/2)

and the equations of moticn for the wavepacket are,

%ﬁ = r [ 1 + tan?(¢/2) ) cos?(Q/2)
ds _ g 3= 2 (g
a% 2 3 tan(9/2) cos?®(G/2)

(9.853)

(9.54)

(9.55)

(9.56)

(9..57)

(9.58)
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tan? (¢0/2)

cos? (Q/2)

(9.59)
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9.3 Numerical Results

9.3.1 Trapezoidal Method with Variable CFL Number

This example uses,

Method type = 2 ; one of the Trapezoidal methods

Boundary type = 1 ; space extr.opolation

Figure 6 shows X(n) and 1ln[E(n)] both predicted and
experimental. This example shows the movement of a
wavepa~cket and the change in its erergy due to the variation
in the CFL number. The agreement between the predicted and
experimental values is excellent. The energy of the
analytic solution ia constant so the wavepacket theory has
successfully predicted almost all of change in the numerical

energy due to variable Ax.
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FIGURE 6. EXAMPLE 9.3.1 TRAPEZOIDAL METHOD 2
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9.3.2 Box Method with Variable CFL Number

This example uses,

Method type = 4 ; Box method

r. = 0.05 r = 0.2 o

0 200 crit

Figure 7 shows X(n) and 1ln[E(n)].

= 0.04

As in §9.3.1

agreement between experiment and theory is excellent.

the
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FIGURE 7. EXAMPLE 9,3,2 BOX METHOD
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9.3.3 Trapezoidal Metnod with Space Extrapolation

This example uses,

Method type = 1 ; one of the Trapezoidal methods
Boundary type = 1 ; space extrapolation
g = YN T200 = 1" Terie - 0°3

Figure 8 shcws X(n) and 1ln[(E(n)]. This example
illustrates the effect of the downstream boundary reflecting
a wavepacket with reduced energy. Because of the finite
length of the wavepacket the drop in energy is smeared and

X(n) does not quite reach 1.0
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FIGURE 8, EXAMPLE 9.3,3 TRAPEZOIDAL METHOD 1 WITH SPACE
EXTRAPOLATION
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2.3.4 Trapezoidal Method with Spaca-time Extrapolation
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This example is the

Bcundary type = 2

Figure 9 shows X(n)
the reflected wavepacket is

consequeance the first order

same as 59.3.3 except that

; space-tire extrapolation

eand 1ln(E{n)]. The energy of
1." t.ﬂ‘n in '903-30 As a

terms which are neglected in

the asymptotic boundsry conditions are more significant and

so the enerxrgy decrease is more smeared and there is a

larger discrepancy betweean the experimental and predicted

values.
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9.3.5 Trapezoidal Method with Box Boundary Condition

This example is the same as §9.3.3 except that,

Boundary type = 3 ; box boundary condition

Figure 10 shows X(n) and 1n(E(n)]. The energy drop

in this example is three times that in §9.3.3 because,

ln(E,) = ln(E;) + 2 ln(IRJI) (9.49)
tan(¢,/2) space extrapolation (9.50)

and IR_| =
J tan’(¢,/2) space-time extrapolation (9.52)

Thus the box boundary condition increases the
overall convergence rate by factor 3 with minimal extra

computational effort.
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FIGURE 10, EXAMPLE 9.3.5 TRAPEZOIDAL METHOD 1 WITH BOX
BOUNDARY CONDITION
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9.3.6 Wavepacket Outflow in Box Method

This example uses,

Method type = 4 ; Box method

ro = 0.4 t200 = 0.4 rcrit = 0.2

Figure 11 shows X(n) and 1ln(E(n)]. Note that when

the wavepacket reaches the downstream boundary the
experimental value for X(n) remains near 1.0 and 1ln(E)

decreases rapidly towards -=.
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9.3.7 Instability of Trapezoidal Method with Space-time
Extrapolation
This example uses,
Method type = 1 ; one of the Trapezoidal methods
Boundary. type = 2 ; space~-time extrapolation
ro = 3.0 r200 = 3.0 rcrit = 2.1
Figure 12 shows X(n) and 1ln(E(n)]. Both the
theoretical prediction and the numerical result show that
the energy increases every time the wavepacket reflects off
the downstream boundary and so the numerical scheme is
unstable. The CFL stability condition for the case with '
constant CFL number is obtained by considering the
amplitude reflection coefficient.
Ql-ﬂ
sin 3
|RJI = —T_(;::E) (9.52)
sin >
The dispersion relation is
tan(2/2) = § sin(9) (9.26)
Now consider the two cases r<2 and r>2 .
a) r € 2
0 < o, < ®/2 ==> tan(2/2) < 1
==) Q < wn/2
==> (#/2 = Q) > 0 and (n/2 - ¢,) > 0
==> v > | (7/2=2) + (n/2=0,) | > | (w/2=@) = (w/2=0,) | > 0
‘1‘“) Ol-ﬂ
==) i >
sln( 3 ‘ sin( 3 )l
e
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FIGURE 12. EXAMPLE 9.3.,7 TRAPEZOIDAL METHOD 1 WITH
SPACE-TIME EXTRAPOLATION
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==> IRJI £ 1
b) ERR
For ¢=v/2 , tan(Q/2) > 1 ==) Q> n/2 ==> (>

For ¢=7 , tan(Q/2) = 0 ==) Q<o

As ¢, varies from 7/2 to v, Q-¢, varies

continuously so at some intermediate value,

Q = 9,

and hence IRJ

The numerical scheme is thus stable if, and only if,
the CFL number is less than 2. This stability condition

has previously been derived by Beam, Warming and Yee ([5].

In a numerical experiment an infinite amplitude
reflection coefficient does not occur because the first
order derivatives of the amplitude which are neglected in
the asymptotic boundary conditions become significant. In
fact in all the unstable cases I have tried the agreemant
between experiment and prediction is poor because of the
neglected first order terms in the boundary condition and
the neglected second order terms in the amplitude equation.
The example given is onc of the best. The qualitative

effects of these neglected terms can be understood as

follows;
. A 3A
Since +— = ¢ =— all the second order terms in the
an g 33
32 A 3ia A

d i :
amplitu eajquatzon an? ' 3n3j ' 33° can be expressed in
A

terms of 3?7 « Thus the amplitude equation including

second order terms has the form,

322
3352

3 9

»
>

+ r =y (9.61)

g

@
=]
@

(-
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where v is a function of Q2,9 and corresponds to an
artificial viscosity. The effect of this artificial
viscosity is to smear the wavepacket increasing its length
and decreasing its maximum amplitude. This has the largest
effect on X(n) since the longer the wavepacket the further
X(n) must be from the ends of the domain. X(n) still
oscillates approximately in phase with the predictions but
the amplitude of the oscillations decreases steadily. The

effect on te energy is much smaller.

The downstream boundary condition including firs<

order terms can be written as,

(A, (3,n) + 1, 321(3,n)] (9.62)

dA
Ag(3sn) + T, 3;’(J,n) = R 5

J
where t,,T, are functions of Q,¢. If tv, and t, are both

small compared to TA then (9.62) is approximately equal to

A, (J,n+1,) = RJ A, (j,n+T,) (9.63)

Thus the amplitude is reflected with a delay of

T,=-T, « This explains the fact that in almost all the
examples in this chapter the reflected wavepacket lags

bPehind the position predicted by wavepacket theory.
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9.3.8 Instability of Trapezoidal Method Due to Varying Mesh

This example uses,

Method type = 3 one of the Trapezoidal methods

-~

Boundary type = 1 ; space extrapolation

ro = 1.0 r200 10.0 rcrit = 0.8

Figure 13 shows X(n) and 1ln[(E(n)]. The agreement
between experiment and prediction is good for the energy
but as in §9.3.7 the agreement is poor for X(n) because of
the effect of the second order terms which are neglected in
the asymptotic amplitude equation. The significance of
this example is that this numerical scheme is stable for
uniform meshes which give constant CFL number r but if the
mesh, and hence r, varies sufficiently as in this example
the scheme becomes unstable. This instability is best
understood by expanding the finite differc.co equation in

computational space.

r, ' T, .
( J+%) ( 3-9 n+i
( 6t * T. . +r. . utAx * - +r utvx ] Uj e CPrA )
i*t " i-% A N B -
:1 dr n+s
+ - 2 . . . 2 = .
so | dt 3 ut62x + 3 utéx + H.0.T. ] Uj 0 (9.64)
The term %? utG; corresponds to a viscous term in
computational space. b iﬁ is positive it corresponds to

33
negative artificial viscosity and so causes the instability

in the above example.
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9.4 Program Listing

The program is written in FORTRAN 4 PLUS to be run on a
PDP 11-70 with Versatec graphics subroutines.

C #w#*** PROGRAM WAVE

DIMENSION U(0:202),Vv(0:202),A(0:200,3),W(0:200),XJ(0:202)
DIMENSION EX(402),EE(402),TX(402),TE(402),T(402)

EQUIVALENCE (TX(1),U0(0)),(TX(204),V(0)),(TE(1),A(0,1)),
1 (T(1),A(0,3),(T(202),W(0))

EXTERNAL R,J

REAL K,J

COMMON /RCONST/RO,R1,MT
COMMON /X/X(0:200)

C #w#*+ Tnput parameters

TYPE *,'INPUT TERMINAL TYPE'
TYPE *,'0 VERSATEC'

TYPE *,'3 VT100 WITH GRArHICS'
TYPE *,'4 CHROMATICS'

TYPE *,'S VISUAL 500°'

ACCEPT *,NT

TYPE *,' !
TYPE *,'INPUT METHOD TYPE'

TYPE *,'1-3 DIFFERENT TRAPEZOIDAL METHODS - SEE NOLES'
TYPE *,'4 BOX METHOD'

ACCEPT *,MT

IF (MT.EQ.4) GOTO 1
TYPE *, "o
TYPE *,'INPUT DOWNSTREAM BOUNDARY TYPE'
. TYPE *,'1 SPACE EXTRAPOLATION'
| TYPE *,'2 SPACE-TIME EXTRAPOLATION'
TYPE *,'3 BOX METHOD'
ACCEPT *,MDB

1 e *,' °
TYPE *,'IMNPUT CFL NUMBERS R(0),R(200),RCRIT'
ACCEPT+**,R0,R1,RC

C *#*** Omega definition explained in notes

OMEGA=2.*ATAN(0.5*RC)
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PI=3.14159
JMAX=200
M=400
XJ(0)=0.

DO 2 J1=1,JMAX
DX=1./R(FLOAT(J1)=0.5)
XJ(J1)=XJ(J1=1) +DX
U(J1)=0.

2 V(J1)=0.

DO 3 J1=1,JMAX
XJ(J1)=XJ(J1)/XJ(IMAX)
3 X(J1)=XJ(J1)

C ###** Tnitialise U(3j,0)+iv(3,0)

PSI=0.
J2=JMAX/2
DO 4 J1=J2-40,J2+40
IF(MT.LE.3) PHI=ASIN(RC/R(FLOAT(J1)))
IF(MT.EQ.4) PHI=2.*ATAN(0.S*RC/R(FLOAT(J1)))
PSI=PSI+PHI
AMP=EXP(=(J1=-J2)**2/200.)
U(J1)=AMP*COS(PSI)
4 V(J1)=AMP*SIN/PSI)

W(0)=0.
KOUNT=0

9 TYPE *,'NO. OF STEPS TILL NEXT PLOT OF U?'
ACCEPT *,NSTEP
IF (NSTEP.LE.O) GO10 5

DO 6 KOUNT2=1,NSTEP
KOUNT= KOUNT+ 1
IF (KOJNT.GT.M) GOTO 7

C **#**® Calculate new U+iV

CALL METHOD(U,A,W,JMAX,R,MT,MDB)
CALL METHOD(V,A,W,JMAX,R,MT,MDB)

C we*w*** Calculate new X,Log(E) of wavepacket
S-O .

SJ=0.
XJ(JMAX+1)=XJ(JMAX)
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DO 8 J1=1,JMAX

P (U(J1)**24V(J1)**2) *(XJ(J1+1)=XJ(J1=1))/2.
S=S+P

SI=SJ+P*XJ(J1)

EX (KOUNT)=SJ/S
EE(KOUNT)=LOG(S)

CALL OUTPT1(XJ ,203,'X A 1 ' ,NT)
GOTO 9

Calculate predicted X(n),Log(E(n))
Initial valu 3j(1) is passed to prediction subroutine PRED
as TX(1)

TX(1)=J(EX(1))
TE(1)=EE(1)
CALL PRED(T,1X,TE,JMAX,M,RC,R,MT, MDE)

Plot resul“e -

TYPE *,'PLOT E,X?'

ACCEPT 1000,C

IF(C.EQ.'N ') GOTO 10

IF(C.EQ.'E ') CAaLL ouTepT2(/.,EE,TE,402,'N ','LN E',NT)

IF(C.EQ.'X ') CALL OUTPT2(T,EX,TX,402,'N PhA < ',NT)

IF(C.EQ.'Y ') GOoTO 11 \

GOTO 12 |

CALL OUTPT3(T,EX,TX,EE,TE,402,'N ' 'X ','LN E',NT)
CALL PLOT(G.,0.,999)
STOP

-,

FORMAT(A4)
END

Function calculates R(3)
FCUCTION R(J)

COMMON /RCONST/RO,R1,MT
REAL J

R=RO*EXP(LOG(R1/R0)*J/200.)
RETURN

END
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Function calculates X(j)

FUNCTION X(J)
COMMON /X/XJ(0:200)
REAL J

IF(J.GT.200.) J=200.

IF(J.LT.0.) J=0.

J1=INT(J)
X=XJ(J1)+(J=FLOAT(J1))*(XJ(J1+1)=XJ(J1))
RETURN

END

Function calculates j(X)

FUNCTION J(X)
COMMON /X/XJ(0:200)
REAL J

IF(X.GT.1.) X=1.
IF(X.LT.0.) X=0.

J1=0

J1=J1+1
IF(XJ(J1).LT.X) GOTO 1

J=FLOAT(J1)=(XJ(J1)=X)/(XJ(J1)=XJ(J1=1))

RETURN
END

SUBROUTINE METHOD(U,A,W,JMAX,R,MT,MDB)

METHOD sets up the coefficients of the tridiagonal equations

for the calculation of the new U using wmethod MT and downstream
boundary type MDB, if needed. The tridiagonal equations are
solved by TRID and the new values of U are returned to T.

DIMENSION U(0:JMAX),A(0:JMAX,3),W(0:JMAX)

IF(MT.EQ.4) GOTO 1

schemes
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DO 2 J=1,JMAX-1
GOTO(3,4,5) MT
C1==0.25*R(FLOAT(J))
C2=~C1

GOTO &
C1==0.25*R(FLOAT(J)=0.5)
C2=0.25*R(FLOAT(J)+0.5)
GOTO &
R1=R(FLOAT(J)=-0.5)
R2=R(FLOAT(J)+0.5}
C1==0.5*R1**2/(R1+R2)
C2=0.5*R2**2/(R1+R2)
A(J,1)=C1
A(J,2)=1.=-C1-C2
A(J,3)=C2
W(J)=U(J)+C1*(U(J)=U(J=1))+C2*(U(J)=U(J+1))

GOTO(7,8,1) MDB

Set up coefficients for space and space-time extrapolation at
downstream boundary

A(JMAX,1)=-1.
A(JMAX,2)=1.
W(JIJMAX)=0.

GOTO 9

A(JMAX, 1)=0.
A(-TMAX,Z)='1 .
W(JMAX)=U(JMAX-1)
GOTC 9

Set up coefficients for box method on interior or at downstream
boundary as appropriate

JMIN=JMAX

IF(MT.EQ.4)JMIN=1

DO 10 J=JMIN,JMAX
C=R(FLOAT(J)=0.5)

A(J,1)=1.=C

A(J,2)=1.+C

A(J,3)=0.
W(J)=U(J=1)*A(JT,2)+U(J)*A(JT,1)

Se’ up coefficients for upstream boundary
A{0,2)=1.

A(0,3)=0.
W(0)=0.
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CALL TRID(U,A,W,JMAX)

SUBROUTINE TRID(U,A,W,JMAX)
DIMENSION U(0:JMAX),A(0:JMAX,3),W(0:JMAX)

DO 1 J=1,JMAX

C=A(J,1)/A(J=1,2)
A(J,2)=A(J,2)=A(J=1,3)*C
W(J)=W(J)=W(J=1)*C
U(JMAX)=W(JMAX) /A(JMAX ,2)

DO 2 J=JMAX-1,0,-1
U(J)=(W(J)=U(J+1)*A(J,3))/A(T,2)
RETURN

END

SUBROUTINE PRED(T,TX,TE,JMAX,M,RC,R,MT,MDB)

DIMENSION T(M),TX(M),TE(M)
REAL J,K
EXTERNAL R, X

DR(J)=100.*(R(J+0.005)~R(J=0.005))

PI=3.14159
J=TX(1)
TX(1)=Y(J)
T(1)=1.

IF(MT.EQ.4) GOTO 1
Prediction for trapezoidal schemes

K=ASIN(RC/R(J))
IF(RC.LT.0.) K=PI-K
OM=ATAN(RC/2.)*2.
C1=1./(1.+0.25*RC**2)

DO 2 KOUNT=2,M
T(KOUNT)=FLOAT (KOUNT)
DJ=R(J)*COS(K)*C1
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DK==DR(J) *SIN(K)*C1 ~

J=J+0.5* (DJ+R(J+DJ) *COS(K+DK)*C1)
K=K+0.5* (DK=DR(J+DJ) *SIN(X+DK) *C1)
TX (KOUNT) =X(J)

DE=DR(J+0.5*DJ)*C1*(1.-COS(K=0.5*DK))
IF(MT.EQ.1) TE(KOUNT)=TE(KOUNT=-1)
IF(MT.EQ.2) TE(KOUNT)=TE(KOUNT=-1)+DE

IF(MT.EQ.3) TE(KOUNT)=TE(KOUNT-1)+2.*DE

IF(J.GT.0.) GOTO 3
J==J
K=ASIN(RC/R(J))

TX (KOUNT) =X(J)

IF(J.LT.FLOAT(JMAX)) GOTO 2
J=2.*FLOAT(JMAX)-J

K=PI-ASIN(RC/R(J))

TX (KCUNT)=X(J)

GOTO(6,7,8) MDB
TE(KOUNT)=TE(KOUNT)=2.*LOG(TAN(K/2.))
GOTO 2

TE(KOUNT) =TE(KGUNT)=2.*LOG(ABS(SIN( (K=OM)/2.)/SIN((PI-K=-OM)/2.)))

GOTO 2
TE(KOUNT)=TE(KOUNT) -6 . *LOG(TAN(K/2.))

CONTINUE
RETURN

Prediction for box scheme

T1=0.25*RC*RC
T2=1./(1.+T1)
T3=0.5*RC*T2
K=2.*ATAN(0.5*RC/R(J))

DO 9 XOUNT=2,M
T(KOUNT ) =FLOAT ( KOUNT)
IF(J.GE.FLOAT(JMAX)) GOTO 10
R1=R(J)

DJ=(R1+T1/R1)*T2
DK==2.*DR(J)*T3/R1
R2=R(J+DJ)

J=J+0.5* (DJ+(R2+T1/R2) *T2)
K=K+0.5* (DK+DR(J+DJ)*T3/R2)
TX (KOUNT)=X(J)

TE(KOUNT)=TE(KOUNT=1)=2.*T1*T2*DR(J+0.5*DJ)/(R1*R2)

GOTO 9
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TX(KOUNT)=1.
TE(KOUNT)=TE(KOUNT=1)

CONTINUE
RETURN

END

SUBROUTINE OUTPT1(X,Y,NPLUS2,C1,C2,NT)

DIMENSION X(NPLUS2),Y(NPLUS2),XD(40)
N=NPLUS2-2

NPLUS 1=N+1

XL=5.

YL=4.

CALL PLOTS(0,0,NT)

CALL SCALE(X,XL,N,1)
CALL SCALE(Y,YL,N,1)

Do 1 I=1,N/8
XD(I)=(X(8*I+1)=-X(8*I-7))/X(NPLUS2)

IF(NT.EQ.0) GOTO 2

CALL FACTOR(1.8)

CALL PLOT(1.,1.,=3)

CALL AXIs(0.,0.,C1,-4,XL,0.,X(NPLUS1),X(NPLUS2))
CALL AXIs(0.,0.,C2,4,YL,90.,Y(NPLUS1),Y(NPLUS2))
CALL LINE(X,Y,N,1,1,3)

CALL GRID(O0.,0.,1000+N/8,XD,-1,YL,-1)

GOTO 3

CALL rACTOR(1.4)

CALL PLOT(S5.,1.,=3)

CALL Is(0+,0.,C1,-4,XL,90.,X(NPLUS1) ,X(NPLUS2))
CALL AXISs(0.,0.,C2,4,YL,180.,Y(NPLUS1),Y(NPLUS2))
Y(NPLUS2)=~Y(NPLUS2)

CALI, NEWPEN(2)

CALL LINE(Y,X,N,1,1,3)

CALL NEWPEN(1)

CALL GRID(O0.,0.,-1,-YL,1000+N/8,XD,=1)

CALL PLOT(0.,0.,=-999)
RETURN
END
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SUBROUTINE OUTPT2(X,Y1,Y2,NPLUS2,C1,C2,NT)

DIMENSION X(NPLUS2),Y1(NPLUS2),Y2(NPLUS2),Y(4)
N=NPLUS2~2

NPLUS 1=N+1

XL=5.

YL=4.

Y(1)=1.E10
Y(2)==1.E10
Do 1 J=1,N
Y(1)=AMIN1(Y(1),¥1(J),¥2(J))
Y(2)=AMAX1(Y(2),Y1(J),Y2(J))

CALL PLOTS(0,0,NT)

CALL FACTOR(2.0)

CALL PLOT(1.,0.75,=3)

CALL NEWPEN(2)

CALL SCALE(X,XL,N,1)

CALL SCALE(Y,YL,2,1)

CALL AXIs(0.,0.,C1,-4,XL,0.,X(NPLUS1),X(NPLUS2))
CALL AXISs(0.,0.,C2,4,YL,90.,Y(3),Y(4))
Y1(NPLUS1)=Y(3)

Y1(NPLUS2)=Y(4)

Y2(NPLUS1)=Y(3)

Y2 (NPLUS2)=Y(4)

CALL NEWPEN(3)

CALL LINE(X,Y1,N,1,25,1)

CALL LINE(X,Y2,N,1,0,0)

CALL PLOT(0.,0.,=-999)

RETURN

END

SUBROUTINE OUTPT3(X,Y¥1,Y2,21,22,NPLUS2,CX,CY,CZ,NT)

DIMENSION X(NPLUS2),Y1(NPLUS2),Y2(NPLUS2),Y(4)
DIMENSION Z1(NPLUS2),22(NPLUS2),Z(4)
EQUIVALENCE (Y(1),2(1))

N=NPLUS2-2
NPLUS 1=N+1
XI=4.
YL=2.
ZL=2.



CALL
CALL
CALL

30

PLOTS(0,0,NT)
FACTOR(1.9)
SCALE(X,XL,N,1)

Y(1)=1.E10
Y(2)==-1.E10

DO 1

J=1,N

Y(1)=AMIN1(Y(1),Y1(J),Y2(J))
Y(2)=AMAX1(Y(2),¥Y1(J),Y2(J))

CALL
CALL
CALL
CALL
CALL

PLOT(3.5,0.5,=3)"°

SCALE(Y,YL,2,1)

NEWPEN(2)
AX1s(0.,0.,cX,-4,XL,90.,X(NPLUS1) ,X(NPLUS2))
AXI1s(0.,0.,cY,4,YL,180.,Y(3),¥Y(4))

Y1(NPLUS1)=Y(3)
Y1(NPLUS2)=-Y(4)
Y2 (NPLUS1)=Y(3)
Y2 (NPLUS2)=-Y(4)

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

NEWPEN(3)
LINE(Y1,X,N,1,25,1)
-INE(Y2,X,N,1,0,0)
'EWPEN( 1)
«?™(0.,0.,2,-1.,4,1.,-21846)
NEWPEN(2)
PLOT(=-2.3,0.4,3)
PLOT(=2.3,1.0,2)
SYMBOL(-2.23,1.1,0.14, "WAVEPACKET THEORY',30.,17)
PLOT(-2.6,0.4,3)
SYMBOL(-2.6,0.5,0.08,1,0.,=2)
SYMBOL(=2.6 7,0.08,1,0.,=2)
SYMBOL(=2.6 0.08,1,0.,=2)
1
S

/0.
/0.9,
PLOT(=-2.6,1.0,2)
SYMBOL(=2.53,1.1,0.14, '"NUMERICAL EXPERIMENT',20.,20)

Z(1)=1.E10
Z(2)==1.E10

DO 2

J=1,N

Z(1)=AMIN1(Z(1),21(J),22(J))
2(2)=AMAX1(2Z(2),21(J),22(J))

CALL
CALL
CALL
CALL

PLOT(3.2,0.,-3)

SCALE(Z,2L,2,1)
AXI1s(0.,0.,CX,-4,XL,90.,X(NPLUS1) ,X(NPLUS2))
AX1s(0.,0.,CZ,4,2L,180.,2(3),Z(4))

Z1(NPLUS1)=2(3)
Z1(NPLUS2)==2Z(4)
Z2(NPLUS1)=2Z(3)
Z2(NPLUS2)==2(4)

CALL
CALL

NEWPEN(3)
LINE(21,X,N,1,25,1)
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CALL LINE(Z2,X,N,1,0,0)

CALL NEWPEN(1)

CALL GRID(0.,0.,2,-1.,4,1.,-21846)
RETURN

END
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10. Conclusions

The validity of the asymptotic approach developed in
this paper is demonstrated by the numerical results in
chapter 9. The limitations of the wavepacket theory are due
to the asymptotic approximations involved in treating the
wavepacket as a particle. The stability analyses in
chapters 5 and 6 use fewer approximations and so the
asymptotic errors will be substantially smaller. 1In
particular when the coefficients are constant the analysis
in chapter 6 reduces to the P-stability analysis of Beam,

Warming and Yee [5].

The calculation of the asymptotic amplitude equation
and asymptotic boundary conditions for a particular case is
no more difficult than a normal Von Neumann analysis. For
applicable cases the wavepacket theory and the stability
analysis of chapter 5 are straightforward. The general
stability analysis of chapter 6 will usually require
numerical computation. In the more complex cases the main
benefit from this theory will be the insight given by the
asymptotic amplitude equation and boundary conditions. The
amplitude equation gives the group velocities of the
different wavenumbers and the effect of varying
ccefficiente, which is of great interest since in 2-D
cascade geometries cell lengths can vary by factors of up to
100 in inviscid calculations and 1000 in viscous
calculations. The asymptotic boundary conditions give the
amplitude reflection coefficients which provide a practical
criterion for choosing the best numericgl boundary

conditions.

There are various possibilities for future research
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in this area. Further applications to relatively simple
problems can be done to gain insight into understarding
harder problems and improving boundary conditions.

Numerical procedures, such as those suggested in
§6.1.1=-6.1.3 , can be developed to solve the equa:ions given
by the stability analysis in chapter 6. Finally t.e

asymptotic amplitude equation and boundary conditions can be

extended to 2-D and 3-D.



(1]

(2]
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134

References

G.B. Whitham , Linear And Nonlinear Waves , chapter 11
John Wiley & Sons (1974)

J. Lighthill , Waves In Fluids , pp 237-260 , Cambridge
Univerity Press (1978)

C.P. Kentzer , 'Group Velocity And Propagation Of
Numerical Errors' , AIAA Paper No. 72-153

R. Vichnevetsky ard J. Bowles , Fourier Analysis of
Numerical Approximations of Hyperbolic Equations , SIAM
Studies In Applied Mathematics (1982)

R.M. Beam , R.F. Warming and H.C. Yee , 'Numerical
Boundary Conditions For Unconditionally Stable Implicit
Difference Approximations Of Hyperbolic Problems' ,
Paper presented at SIAM 1981 National Meeting, Troy, New
York, June 8-10 1981

M.R. Spiegel , Complex Variables , p127-8 , McGraw-Hill
(1964)



135

Aggondix

A.1 Finite Difference Operator Notation

An operator notation for finite Jdifference equations
simplifies the analysis of finite difference schemes and is
a necessity for making any general statements and proving
them.

The principal operators are Gx' central difference,
e central averaging Ex, shift operator, Ax' forward

difference and vx, backward difference. Their definitions

are;
8 uj - Uj+m/z - Uj-m/z (A.1(a))
1
Mo Uj - (ujm/2 - Uj_m/z) (A.1(b))
Eox Uj = uj+m (A.1(e))
8 uj = Uj+m - uj (A.1(4))
v U, = U, - U, (A.1(e))
mx ] 3 j=m

Usually these definitions will be used with m=1.

The main exceptions are 62x which is a node-centered central

difference,

Sax U3 = Y501 = Yyoy (A.2)

and me which can be used to define a general linear

operator,

\M
L, U = a U (A.3)
5 . ;

ms=
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ORIGINAL PAGE 19
OF POOR QUALITY

so Lj = E: ajm me (A.4)

m=1
When there are several independent variables the
subscript on the finite operator denotes the direction of

the shift, differencing or averaging. For example if,

n
Uj “(lecn) (A.S)
n n n
then sx Uj*f Uj+1 - Uj (A.6)
and ¢ o't o "' L o° (A.7)
t J J ]

The general shift operator expression for a finite

operator in 2-D is

L, = E cC__(3) e E (A.8)
j mp mx pt
m,p

In applications however this expression can be very

complicated and it is usually simpler to express L as a
polynomial in the finite operators. As an example the

operator in §3.3.2 has the polynomial form

L, = u § + r.L u 8§ (A.9)

j Xt 1 "t %
but in the shift operator form it is,

1 - -
L - a1 £ & 1=r l=r

j 2 Ex/2%e/2 7 Eox/2Be/2 T T2 Ex/2B-e/2

1+r
7 Eex/2B-t/2

Part of the advantage in using operator notation

(A.10)

when analysing finite difference schemes arises because all

of the finite operators have the same eigenfunction which in

2-D is exp(i(je=-nQ)].



§ exp(i(je=-nf)]

u_ exp(i(je=-na)]

E expl(i(je=-nQ))

A exp(i(je=-nQ))

7 exp(i(je=nQ)]

and similarly,

dt exp(i.; =-nQ)]
u_ expl(i(je=-n)]
E expl(i(je=-nf))

4 exp(i(je-=nR)]

V_ exp(i(je=-nQ)]
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exp(i((3i+f)e-nQ)] = exp(i((j=*)e=-nQ))
2i sin(0/2) exp(i(je=-nQ)) (A.11(a))
2

b (oxp[i((j*})o-nﬂ)] + oxp[i((j-f)o-nﬂ)])

cos(9/2) exp(i(je=nf))] (A.11(b))
exp(i((j+1)e=-nR))

exp(io) exp(i(je=-nQ)] (A.11(e))

exp(i((j+1)e-nQ)] =~ exp[i(3je=-nQ))

{ exp(io) = 1} exp(i(jo=-nQ)) (A.11(4))

exp(i(je-nQ)] = exp(i((3j=1)e=nQ))

{ 1 - exp(=i0) } exp(i(je=-nQ)] (A.11(e))

-2i sin(Q/2) exp(i(je-nQ}) (A.11(¢2))
cos(Q/2) exp(i(je=-nQ)] (A.11(q))
exp(=-1i0Q) exp(i(je=nQ)] (A.11(h))

{ exp(=iQ) = 1} exp(i(jo=n2)] (A.11(4i))

{ 1 = exp(iQ) } exp[(i(je=-nQd)] (A-11(3%))
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A.2 Principle of the Argument

Let f(z) be an analytic complex function with
simple poles in a region of the complex z-plane and let C
be a closed curve in the region. Then the number of zeros
of F minus the number of poles of f lying inside C is equal

to,

1 1
= 2T [ IntE) Jc
= 1 [ arg(f) ] (A.12)
27 9 ‘e :
[ ]C denotes the change as z goes round C

anticlockwise.

arg(f) is defined by,
f(z) = R exp(id) R,9 real R>0 (A.13)
arg(f) = @ (A.14)

with the restriction that 8 must vary continuously as z goes

round C.

The ;rouf'is given in many standard texts on complex
analysis, e.g. [6]. This provides a very simple test when
considering stability problems in which it is sufficient to
know whether there ara anv zeros in a critical region
without knowing their exact position. This 1s the basis of
the Nyquist criterion in control theory stability analysis.
The test can also be performed numerically relativel ;

easily. The step size Az in going round C is decreased, if
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'.a

[ arg(f) ] is

necessary, until |darg(f)| < €. Since a

N

L

an integer there is no rounding error. The only possible
error is if the magnitude of Aarg(f) over one step lies in
the range 2nw-¢ < ldarg(f) < 2nw+e for some integer n
other than zero. Decreasing ¢ reduces the chance of an
arror at the expense of increased computation. e=1/6 should

be adequate in most cases.
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A.3 Definitions of Norms and Stability

The noims used in this paper are generalised L,
norms. For a continuous function u(x,t) defined on 0<x<X

the norm ||u(t)|| is defined by,

X
[luce) | |2 = f |lu(x,t)|? a(x) dx (A.15)
0

where a(x) is a positive non=-zero function.

For a discrete function U; defined on 0<j<J the

norm ||U™|| which is a function of n is defined by,

3

J
[1o™]]2 = E: Iug|= a (A.16)
)

where aj is a positive non-zero function.

The stability used in this paper is asymptotic

Liapounov stability which is defined as,

Given 6>0 there exists €>0 such that
[Jat0o) || < & ==> a) Jluted|] < &
and b) |lu(e)|] =+ 0 as t+=

Condition a) is Liapouncv stability which limits

how large an initially small disturbance can become.

Condition b) is asymptotic stability which specifies that a

sufficiently small initial disturbance must ultimately tend

to zero.

For linear systems of equations an equivalent

definition is

a) There exists M>0 such that ||u(t)]|]| < ™M ||u(0)]|]
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and b) |lu(e)|] - 0 as t+e=

The corresponding definictions for a discrete

function are,

Given §>0 there exists €>0 such that

ol < e == ar 1ot < s

and n) ||Un|l + 0 as n+o

and for linear discrete systems,

0
a) There exists M»0 such that ||u™|| < ™ ||u ||

and b) ||u™]] « 0 a. a+e
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