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Abstract

An asymptotic techni q ue is developed for analysing the
propagation and dissipation of wave-like F.)lu *_ions to finite
li .̀ference e q uations.	 It is shown that for each fixed
com p lex frequency there are usually several wave solutions
with different wavenumbers and the slowly varying amplitude
of each satisfies an asymptotic amplitude equation which
includes the effects of smoothly varying coefficients in the
finite difference equation's.	 The local group velocity
ap p ears in this equation as the velocity of convection of
the amplitude. Asymptotic boundary conditions couplin g the
amplitudes of the different wave solutions are also derived.

A wavepacket theory is developed which preaicts the
motion, and interaction at boundaries, of wavepackets,
wave-like disturbances of finite length. Com p arison with	 ti

numerical experiments demonstrates the success and
limitations of the theory.

Finally an asymptotic global stability analysis is
developed which gives results which agree with other
stability analyses and which can be applied to a wider range
of problems.
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1. Introduction

Consider the following very sim!Dle problem and

numerical solution. The partial differential equation is

au + c au	 0	 ( 1 . 1 )
at	 ax

where c is a positive constant. The domain

considered is O<x<1 . The initial condition is

u(x,0) - exp[-200(x-0.5) 2 ] cos(kx)	 (1.2)

with k-80. This form of distribution is usually

called a wavepacket. The cos(kx) term defines the

oscillation of a group of waves and the exp[-200(x-0.5)2]

term is an amplitu el - 'envelope'.

The upstream condition is

u(O,t) - 0
	

( 1.3)

The solution of this problem is

u(x-ct,0)	 ct < x < 1
u(x,t) -	 (1.4)

0	 0 < x < ct

F The numerical solution uses a uniform grid with

computational domain O<j<200 and a trapezoidal scheme.

i-
	
n+1 -	n	 r	 n+ 1	 n	 n+1	 n	 1

Tj
j	 4`	 j+1	 0+1-1	 0 -1

where	 r = 
cdt	 ( 1.b)
Ax

In this example r-1.	 the initial condition is

U^	 u(x.,0)	 (1.7)
J

and the upstream boundary condition is

Et



n	 _ n
U 200	 U199

(1.9)

8

U n 	0
	

(1.8)
0

In addition a numerical boundary condition is

required at the downstream boundary. For this condition

space extrapolation is used.

Figure	 1	 shows	 the	 numerical	 solution	 at	 intervals

E

of	 60	 time	 steps	 with	 each	 plot	 drawn	 to	 the	 same	 scale.

The	 first	 two	 plots	 show	 the	 initial wavepacket	 travelling

i downstream	 in	 the	 direction	 of	 the	 phy	 i,ial	 characteristic.

Corresponding wavecrests	 are	 labelled	 a-e,	and	 it	 can	 be	 seen

that	 the	 propagation velocity	 for	 the wave	 crests	 is	 greater

than	 for	 the	 amplitude	 envelope.	 Note	 for	 example	 that	 the

amplitude	 maximum	 lies	 approximately midway 	 between	 crests	 b

and	 d	 at	 n-60	 but	 at	 n-120	 the,maximum	 is	 clearly	 nearer

crest	 b.	 At	 n=180	 the	 numerical	 disturbance	 is	 interacting

with	 the	 downstream boundary.	 The	 solution	 appears	 to be

the	 sum of	 two	 waves,	 one	 with	 the	 original	 wavelength	 ,	 and

one	 with	 a very much	 shorter wavelength.	 A^-	 n-240	 there	 is

a	 reflected wavepacket	 of	 wavelength	 slightly	 greater	 than

2.	 and	 the	 plots	 at	 n=300,360	 show	 that	 this	 wavepacket

travels	 back up	 the	 domain	 at	 approximately	 the	 same	 speed

as	 the	 origin3L	 wavepacket.	 This	 solution	 is	 clearly

numerical	 and	 not	 physical	 since	 the	 analytic,	 physical

solution	 moves	 from	 left	 to	 right	 across	 the	 domain	 and	 then

_ out	 the	 downstream boundary.	 The	 analytic	 equation	 does	 not

have any solutions with waves travelling from right to left.

At n=420 the wavepacket is interacting with the upstream

boundary, and at n-480 there is a reflected wavepacket with

the original wavelength. This completes one cycle. 	 I_f the

solution was continued the wavepacket would travel down to

the downstream boundary and then reflect again into a

C+
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Has Moved at a Slightly Smaller
Velocity Than the Wovecrests.

n = 180 The Wavepocket is
listerocting With tl,e Downstream
Boundary.

n = 240 The Reflected Wovepocket
Has Smaller Amplitude and a
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n = 300 The Wovepacket
Travels Upstream.

n = 360 The Wavepocket
Continues To Travel Upstream.

n = 420 The Wovepacket is
Interacting With the Upstream
Boundary.

n = 480 The Reflected Wovepacket
Has the Some Wavelength as
the Original Wavepocket.
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FIGURE 1, NUMERICAL SOLUTION OF CONVECTION EQUATION
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wavepacket with short wavelength, and a decreased amplitude,

travelling upstream.

The qualitative and quantitative prediction of the

behaviour of numerical solutions in problems such as the

above is one of the two objectives of this parer. 	 The

second objective is a global stability analysis

incorporating boundary conditions and smoothly varying

coeff;^ients and predicting both stability and accurate

asymptotic estimates of convergence rates.

To achieve thEse aims a technique is developed to

analyse the approximate time evolution of an amplitude N
modulated wave, i.e. a wave with fixed frequency and a

slowly varying amplituae. Chapter 2 derives the theory for

partial differential equations, while chapter 3 derives the

theory for finite difference equations incorporating

smoothly varying coefficients and boundary conditions.	 In

the case of dispersi- r e, non-dissipative wave propagation, it

is found that the amplitude is convected at the local group
	 1

velocity, a principle which is well understood in par;:ial

differential equations.

Chapter 4 applies the theory to the motion of

wavepackets which are wave-like disturbances of finite

length and constant frequency such as in the earlier

example.	 Chapters 5 and 5 der_ve global stability analyses

with different levels of asymptotic approximation.	 Chapters

7-9 develop further topics and examples including

comparisons between numerical experiments and theoretical

predictions.

Throughout this paper a finite operator notation is

used which greatly simplifies analysis and is a neccessity

O
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for general proofs.	 Since there is no universally accepted

standard notation Appendix t details the notation ujed.

Very little previous p ork appears to have :;een done

along the lines of this paper.	 The r.oncepc of group velocity

in partial differential equations is well understood and is

explained in many texts 112•	 The asymptotic approach of

chapter 2 is not common due to the advantages of other

methods but is discussed by Whitham 1•	 Kentzer 3 has
I

discussed the use of group velocity in analysing finite

difference equations but does not derive a general Equation

for the amplitude or calculate the quantitative effects of

boundary conditions. Vichnevetsky and Bowles s derive the

the group velocity in finite differt-. • e equat^.ons using an

approach which is valid only for constant coefficients.

They also derive amplitude reflection coeffficients at
c

bo^indaries and discuss soma of :he examples given in this

paper.

it

t



t n.* C^
12I I

2. Amplitude Analysis of Partial Differential Equations

2.1 Fourier Analysis

Consider a homogeneous par-ial differential equation

u(x,t) n 0	 < x< 9 , t> 0	 (2.1)

where L is a constant linear differential operator.

Iefinel by,

M	 n
L	 -7, C mn t3 x )!	 (atil	 (?.2)

m,n

and the coefficients C	 are constants.
mn

An eigenfunction of the operator L is a function

u(x,t) satrsf inrt	 ^	 g

L u = ku	 (2.3)

where a is a constant called the eiQenvalue.

An etgenmode is a solution cf the homogeneous

}_	
equation (2.7) _.e. -t is an eigenfunction with a,-ger.value

F	 zero.

3
as exp[i;kx-w1..)] - ik exp[i(kx-ut)]	 (2.4a)

3
a« exp[i(kx-wt)] - -iu exp(i(kx- wt)] 	(2.4b)

3 •mr a I n	 m	 n
3x	 ^atJ	

exp[i(kx-ut)) - (ik) (-iw)	 exp[i(kx- ,at)]	 (2.4c)
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17(a	 1mr3 In	
=

L	 C mnlaxj	 13t)	
exp(i(kx-wt)]

m,n

C	 (ik)m(-iw)n	 exp[i(kx-wt) 2.3d)
nn

m,n

Thus	 exp(i(kx-wt)]	 is	 an	 eigenfunction	 of

3	 3	 a M
2 2

n

3x	 3t	 lax)	 (atj	 and L with	 eigenvalues	 ik	 -iw

m(ik)(-iw)n,	 and	
/ C 

mn (ik) m (-iw) n	respectively
i m,n

t
Hence

u(x,t)	 =	 exp(i(kx -w*_)] (2.5;

is	 an	 exact	 solution	 of	 (2.1)	 provided

Cmn	
(ik) m	(-: y ) n	 0 (2.6)

_
m,n

This	 relation	 between	 k	 and w	 is	 called	 the

dis p ersion	 relation.

Examples	 of	 dispersion	 relations	 are

+- Surface	 waves	 on	 dee p	water	 w4	 _	 ; qkI (2.7a)
s

Acoustic	 waves	 J2	 c2 k2 ( 2 .7b)

y ;paves	 prGoaQating	 along	 a	 wavequide	 w 2	 -	 c 2 (k 2	 +	 k; ) ( 2 .7c )s,

where	 q	 c	 a-id	 k o	are	 constants.

A general solution of (2.1 1 is a superposition of

eigenmodes which in the case of a oarti.al differential

e q uation is ex p ressed as an integral over all the

wavenumbers k of the sum of all the eigeamodes with

wavenumber k.

	

m	 N
n

	

u(:{,t) = J+^	 An(k) exa[i(kx-r n t)] dk	 (2.8)

	

-Ce	 n=

t t

1	 '3
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If the dispersion relation is of order N in W , i.e.

it contains powers of W up to u N	then

W 1 (k)	 , W 1 (k)	 ,	 ....	 , WN(k)

are the N values of W which satisfy the dispersion relation

for a given value of k and the 4 n ('') are the corresponding

constant amplitudes of those eigenmodes.

If A
n 
(k) is non-zero for all k,n then a neccessary and

sufficient condition for u(x,t) to remain bounded and not

increase exponentially is that each eigenmode must remain

bounded. Splitting u into its real and imaginary components

gives ,	
m

W	 WR + iWI	 (2.9)

expf-iwt] - exp[-iW R t + WIt]
	

(2.10)

Thus the condition that every eigenmode remain

bounded, and hence a general solution remain bounded, is

,I < 0
	 for all k,n.	

1

This analysis is lacking in three respects. 	 The

first is that in some situations the initial d_sturbance is

zero exce p t for a finite re g ion and one wants to know the

time evolution of this disturbance, in particular the

p ropagation velocity for the energy. The second failing is

that when the initial-value problem is replaced b y an

initial-value / boundary-value proil lem with boundary

conditions at x = 0,1 there is no eas y way to include the

effect of the boundary conditions in this stability analysis.

The third failing is that exp[i(kx- wt)] 	is an eigenfunction

of L only when the coefficients C mn are constant.	 The

analysis breaks down when the coefficients are non-constant.

ti

o^
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The resolution of these problems requires the analysis of a

wave of constant frequency with an am p litude which varies

over a characteristic length scale much greater than the

wavelength.

i^

0
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2.2 Asymptotic Amplitude Equation

The problem now being considered is

L(x) u(x,t) - 0	 < x < - , t > 0	 (2.11)

where L(x) is a non-constant linear differential operator

defined bv,

3 
L(x) =	 Cmn(x) (

a x)m (kt) "

 
(2.12)

m,n

and the coefficients Cmn (x) are slowly varying functions of

X.

The theory calculates the approximate evolution of a

wavetrain with waves of a constant frequency u and a slowly

varying amplitude, so u(x,t` is written as

u(x,t) = A(x,t) exp(if(x,t)1	 (2.13)

where A(x,t) is the slowly varying amplitude and

Y(x,t) is the phase of the wave which is related to the

frequency u ani wavenumber k by

3Y

at	
-u	 (2.14)

aY = k	 (2.15)
?x

The frequency u is constant but the wavenumber k

will vary slowly with x because of the slowly varying

coefficients C (x) so the above relations can be intearated
w 

to give ,

1 n

x

Y(x,t)	 J k(^) d^	 - ut	 (2.16)

0

a:

i

	 j
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To explain the asymptotic approximations which are

made two characteristic length scales L k and L A and one

characteristic time scale T A are defined. L k is the length

scale for variations in k, L p is the length scale for

variations in the amplitude A, and T A is the time scale for

variations in A. Numerical values for L k , L A and T A are

are given by ,

L k	 min I	 k / ax l (2.17a)

L A = min	 A / (2.17b)ax

(

/

T A = min	 A / t ( 2. 17c)

The asymptotic aprr^ximations used	 in this	 theory are

L	 >>	 k -1k L A >>	 k -1 T A »	 -1

which	 imply

k	
<<	 k2

2x
<<	 Ak

at
<<	 Au

A	 Taylor series expansion	 of A and	 'f about	 a point

( x, ,t, )	 gives

AA(x,t)	 =	 A,	 + (x-xo) +	 - to)ate(t + H.O.T (2.18)

X
(

I

f(x,t) - Y 0 - W(t - t o ) + 
1 

k(^) dF

X0

X

fo - u(t-to ) + f	 Ek e + k (^-xe ) + H.O.T j d^
a

xe

oJl
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'o — u(t — t o ) + k o (x — xo) + 2
	

ax (x—xo ) 2 + H.O.T.	 (2. 19)
0

Subscript o denotes terms evaluated at (xo,to).

The H.O.T. , higher order terms, includes terms like

3 2 A	 AAA	 a2k
a xe	

at e 	axe 
A	 which are O{A(LAk)- 2,A(TAu)-2,A(Lkk) -2]

and are necilected in this asymptotic approximation.

exp (if(x,t)I -	

l
= exp (ifo + ik o (x—x o ) — iU(t — to) + 2 aX (X—X, )2 + H.O.T

11	 o	 J

exp ( if 0 + ik o ( x — xo) — iW (t — to) ]	 ; 1 + t a x o
( x—xo ) 2. I

+ H.O.T.	 (2.20)

Hence ,

u(x,t) - exp[i?, +iko(x - xo) - iu(t - to)]	 ( 1 +	 2
i 3k
 
ax 

(x_xo)21l	 o	 JJ

( Ao +	 ax 
( x —xo) +	 at (t—to) 

J 
+ H.O.T.

	

6	 0

exp [i'f o + ik o ( x -xo) - iW ( t -to ) 1

• IAo +	 aX (x-xo) +	 at (t-to) + 2 A o X (x — xo)2

Jfill	 0	 0	 0

+ H.O.T.	 (2.21)

To evaluate derivatives of u(x,t) at (xo,to) a

two-variable version of Leibnitz 's rule is used.

(
m(at)n[ f(x,t) g(x,t) ]
ax) 

m	 n
f 

(m-p)

T ^	 f 

q i 1' q 1

	

ax
(a \ p ^ a_l o f	 ^ a_\ m-p , a—\ n-q

p	 g
L	 •	 . (n- ) .	 )	 at)	 a x	IlatJl

p=0 q=0

V
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(2.22)

Let

f(x,t) m exp[iY' o + ik 0 (x-x 0 ) - iu(t-t o )]	 (2.23)

g(x,t) 3 Ao + aA (x - xo) + ato(t-ta) + 2 A,ak (x-xo)2	 (2.24)

Then,

(ax)

P
 (at)4 fl	 = (ik o ) p (-iu) q exp[iY o ]	 (2.25)

a

	

g 0 = A 0 	( 2.26 )

aq	 =	 aA	
(2.27)axa	 axo

19	 =	
aA	

(2.28)at,	 ata

zs

	

iAo	 (
 

2.29)
a x2	 a X0 

0

and all other derivatives of g(x,t) evaluated at (x o ,t o )

are zero.	 Hence ,

(2

a

^
_)m(at)n,1(x,t)	 = exp[iT0

0

	A 0 (ik o )mn + m	 (iko)m-1(-iu)n + n 
at	

(iko)m(-iu)n-1
I	

^—x ,	 a

+ i 
m(2-1) 

A0 aX( iko)
m-2

(-iu) n	+ H.O.T.	 (2.30)0
and so ,

O
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L(x) u(x,t) = exp(i?l	 Cmn ( A(ik) m (-iu) n +
m ,, ,,,,n	 l

m 
dX 

(ik)
m-1

(-iu) n + a 
3A 

(ik)m(-iu)n
-1 +

.m(2 -1)
 A 

aX 
!ik)

m-2
(-iu) n j	 + H.O . T.	 (2.31)

To satisfy the homogeneous equation (2.12) the

amplitude A(x,t) must satisfy ,

a ° (k,u,x) A + ai(k,u,x) 3t + az(k,u,x) A
	

+ a^(k,u,x) A 3k
ax

= 0	 + d.O.T.	 (2.32)

where

Cmn( x} (ik) m (-iu) n 	(2.33a)
m,n

a l (k,u,x) _ T, C mn ( x) n (ik ) m(-iu)n-1

m,n

= 2. a°	 (2.33b)

	a 2 (k,u ,x) _	 Cmn( x) m (ik)m-1(-iu)n

m,n

-i ak°	 (2.33c)

and	 a,(k,u,x) _	 Cmn( x) i 
m(2-1) 

(ik)m-2(-iu)n

m,n

i a 2 a °	= 	
2 3k2	

(2.33d)

Because of the asymptotic assumptions

A >> u-1 at , k 1 ax , k-	 A 3x

so ( 2.32 ) can only be satisfied if

0

fi

t
0



21

a o (k,u,x)	 0	 (2.34)

This is the dispersion relation between k and u.

k is now a slowly varying function of x due to the slow

variation in the coefficients. Thus the characteristic

length scale L k is related to some characteristic length

scale L„ for variations in the coefficients.

Neglecting the H.O.T. and dividing by a 1 gives the

asymptotic amplitude equation.

at + c ax	 e A	 (2.35)
g

where c g - a 2 / a l	(2.36)

and	 E _ - a, ax / a l	(2.37)

If c	 is real the left hand side of (2.35) is a
I[	 g

Lagrangian-type total time derivative with respect to an

observer moving with velocity c
g

.	 If the coefficients Cmn

I'
 

ar,: all constant, k is constant, e - 0 and so the amplitude

A is constant along rays moving with velocity c
9 *	

In a

wavepacket individual wavecrests move with phase velocity

u/k , usually denoted cP , but the wavepacket, or amplitude

'envelope' , moves with velocity 
cg*	 9

For this reason c	 is

called the group velocity.

Because the group velocity is the propagation

velocity for the amplitude and energy of the wavepacket the

group velocity is often more important than the phase

velocity. One example is the Sommerfeld radiation condition

which states that the waves generated by a fixed source have

a group velocity directed away from the source.	 In some

f

^_	 J
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unusual cases the phase velocity of the waves is actuall,r

directed towards the source. A second example is that the

group velocity never exceeds the speed of light which is the

limiting speed of propagation of information while the phase

velocity can exceed the speed of light , as happens in wave

propagation along an electromagnetic waveguide.

To link this derivation of group velocity to other

derivations the dispersion relation (2.34) is differentiated

with x held constant.

da, - a k ° dk + au ° du

0	 (2.38

  aa, 	 aa,Hence ( 3w)

ak, x const^	 ak	 au

a 2 / a,

C	 (2.39)
g

The most common method of showing that (w)x
a

a 	 const

is the group velocity uses the method of stationary phase

which is well explained in the available literature [1,21.

The usual approach is to combine the dispersion relation

the . definition of the group velocity and some physical

principle suc as energy conservation to calculate the

pro p agation of energy. The approach giver, above is not

usually used partly because sometimes the exact partial

iifferential equation is not known and the dispersion

relation has been determined by asymptotic methods (e.g.

water waves) or from empirical data (e.g. seismic waves).

This approach is however suited to analysing finte

difference schemes in which the exact finite difference

equations are known and there _s no general equivalent to

'InI
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the principle of energy conservation.

6
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3. Amplitude Analysis of Finite Difference Equations

3.1 Four-er Analysis

Consider a homo g eneous finite difference equation

( L Un	 0 (3.1)
J

As	 explained	 in	 the	 appendix	 A.1,	 L	 can	 always be

expressed	 as	 a	 sum	 of	 step	 operators,

L	 =	 C	 E	 E (3.2)
L,	 mp	 mx	 pt
m,p

where	 the	 coefficientsare	 constants,	 but it	 is
-mp

often	 more	 simply	 expressed	 as	 a	 polynomial	 of	 finite

difference	 operators	 written	 symbolically	 as,

_
L	 =_	 P(Ex,6x	 x,E t , 6 t ,Nt) (3.3)

The	 eigenfunctions	 and eigenmodes	 of	 L	 are	 defined

exactl y	as	 ^.n	 42.1.	 The	 finite	 operators	 all	 have	 the same

eigenfunctions,	 exp(i(jm-nQ)J.	 m	 and	 A	 are	 related	 to the

wavenumber	 k	 and	 frequency	 u	 of	 the	 physical	 wave	 being j

modelled	 by,

r"

9	 kdx (3.4)

A	 uat (3.5)

;^
v

As	 shown	 in	 the	 appendix	 A.1

EK	 exp(i(js - nil)]	 -	 exp(im)	 exp(i(js-nA)] (3.6a)

'. 5x	 exp(i(js-nA)]	 -	 21	 sin($/2)	 exp(i(jm-na)j (3.6b)

I

µ x	 exp(i(j0-na	 -	 cos (m/2)	 exp(i(jm- nA)] (3.6c)

E t	exp(i(j$-nil)]	 -	 exp(-in)	 exp[i(j0 - n9)j (3.6d)



U	 exp [ i( j s -nn) J
J

(3.7)

0
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6 t	mexp 	 - -2i sin( 	 exp[i(j- nn)] 	(3.6e)

V  exp [i(jm- nn)] - cos (a/2) exp [i(jo-nn)J	 (3. 3f)

Emx 
E Pt exp [ i ( j m -nn ) I - exp [ i (m(P -pil )j exp [ i (j m -nn) ]	 ( 3 . 1+q )

Thus exp [ i ( j m -nn ) J is an eigenfunction of

Ex' 6 x' µ x' E t' 6 t' U  and Emx E Pt with eigenvalues

exp(i9), 2i sin( $/2), cos (m/2), exp(-in), -2i sin..(9/2),

cos ( Q/2 )	 exp [ i ( m® -p ►1 ) J respectively, and L has ei(renv,.lue

C
mP 

exp (i(ms-pn)]	 oru 
m,p

P[exp(im),2i sin(O/2),cos(4/2),

exp(-in),-21 sin(n/2),cos(n/2)1

de p ending which expression for L is used.

is

 Lp
C

an exact solution of (3.1) provided

mp	 mexp [ i (m -pit ) J ^ 0	 ( 3.8

This is the dispersion relation between a and n.

	

Since exp[2nwi] - 1	 for all integers n, o + 2n+r is

equivalent to a so only solutions in the ranges

-+r < Re( s ) < a

-R < Re(:2) < +r

need be considered.

If L involves P+1 time leveli and M+1 spatial nodes

the dispersion relation is a polynomial of deg r ee P in

exp (-j.:1 ) and of degree M in	 exp (im) .	 Thus for i given m

,:.-iere are P corresponding values of 3, and for a given n
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exp[-in+:) - exp( - inA R + nQII (3.11)

FO
C^) 

4

26

there are M correspondi n g values of m.

A general solution of (3.'i) for periodic boueary

conditions is a superposition of eigenn,odes.

P

U3 _	
)P1Ap
(m) exp(i(jm-nip))

P _ 1

The 0 summation is a summation over all the values

of a which satisfy the periodi-- boundary conditions, and

the p summation is over the P values of A corresponding to

each v..=.lue of s.

If A p ( $) is non - zero for all s,p the, a necessary and

sufficient condition fcr U  to remain bounded and not
J

increase exponentially is that each vigenmole must remain

bounded.	 Splitting Z into its real and imaginary components

gives,

A = it R + ial	 ( 3. 10 )

.9)

Thus the condition that every eigenmode remain

bounded , and hence a general solution remain bounded , is

.1	 < 0	 for all s,p.

This analysis is lacking in the same three rrispects

as the analysis of partial differential equations by

e.igenmode exp,insion in the last chapter. 	 The analysis

gives no information about the movement of an initially

localised disturbance, cannot incorporate boundary

conditions or anal y se schemes with non-constant

coefficients.
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3.2 Asymptotic amplitude Eauation

in this section the coefficients C in the
mp

definition of L (3.2) are assumed to be slowly varying

functions of j. The analysis is performed in computational

space with coordinates (j,n) in whicn the grid spacing is

Aj-1, 4n=1. Variations in mesh spacing in physical

coordinates are incorporated directly into the variable

coefficients of the finite difference equations.

The theory calculates the approximate evolution of a

wavetrain with waves of a constant frequency 0 and a slowly

varying amplitude , so U  is written as

Un , A(j,n) exp(if(j,n)J 	 (3.12)

where A(j,n) is the slowly varying amplitude and

Y(i,n) is the phase of the wave and is related to the

frequency a and wavenx.ber :0 by

(3.13)
`	 an

3?	
9	 (3.14)

which can be integrated to give,

I d^	 -	 nQ	 (3.15)

0

- As	 in 12.2 two characteristic	 length	 scales,	 L^	 for

variations	 in 1, and LA	for variations	 in	 the	 amplitude	 A

and one	 characteristic time	 scale T A	for variations	 in	 the

t
amplitude A ,	 can be defined with	 numerical values	 beii.g

given	 by,

fi 1

a

O
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r PCB'_

aLy	 - min (1 / 1
ajl

( 3 . 16a )

aL A - min (A / ^ 1 ( 3 . 16b)

T A - min ( A /
a n

( 3 . 16c )
l

The	 asymptotic approximations are

L 9 >> 1 LA >> 1 ^A	 > >	 1

which	 imply

am «1
aj	

A 3n«A
J J

A Tavlor series expansion of A	 and	 'f	 about a	 point

(j,,n,)	 gives,

SA	 ?AA(j,+m,n,+o) A,+	 m
+ p	 + H.O.T (3-17)

a j 0	 an,

jo+m

Y ( j o +m , n , yp )	 _ ?,	 - pit	 +	 d{

j,
jo+m

= To	 - P 11	 + f	 (m^	 +	 (`-jo )	 +	 H.O.T J	 d^
ajo

Jo

a	 am
f,	 - p11	 + -nm,	 + +	 H.O.T. {3.18)

2	 ajo

Subscript , denotes terms evaluated at (j,,,,)•

The H.O.T. , hiaher order terms, includes terms like

2	 2	 2a A	 a A	
a L A which are O(AL A -2 ,AT A -2 ,AL 9 -I I	 and are

a j 2	
3n' 
	 a j 2

neglected in this asymptotic approximation.
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exp(i f(jo+m ,no+p)]

iM 2	J oM	 Axp [	 if,	 -	 ipQ	 +	 imo o	
+	 +	 H. 0 . T

2	 a jo
J

im z 	am
I

-	 exp[	 if,	 -	 ipm	 +	 immo] 1	 +
2	 ajo

+	 H.O.T. (3.19)

Hence

2

U j °o '	 aXp ( if o]	 exp[i(mmo-pil)1	 I 1	 +	 12
+ m ado

3 	 3A
Ao	 + m	 + p	 +

ajo	 ano
H•O.T .

exp(ifo]	 exp[i(mmo-pil)]	 A,	 +	 m	 ap'	 +	 p
an	

- i2 A.
Jo 0 0

+	 H.O.T. (3.20)

Hence,

nc
L 
	 U j	 exp[ifJ	 Cmp(j)	 exp[i(mm-p1)]	 .

m,p

^ 2

(A	
in

A	 d-	 ++ m 3A + p 3n +11	 J	 J

H.O.T. (3.21)

To	 satisfy	 the	 homogeneous	 equation (3.1)	 the

amplitude	 A(j,n)	 must	 satisfy,

F ao(9,A,j)	 A	 +	 a l (m ,Q ,7)	
aA	

+	 a 2 	(m,f2,j)	
aA

+	 e 3 (a,2,j) A	 am
an	 aj aj

0	 +	 H.O.T. (3.22)

where .

T, C
mp (j) exp [i(mm-pfl)]	 (3.23a)

M ,, ^,p

a 1 ( m	 j ) _ T, C	 ( j ) p exp [ i ( no - PQ

ml,p l

la aoli an	 (p,j const	
(3.23b)



O
	 d 4

OF p00K QUALO Y

	

aj(m,p,j)	
T, 

Cm 
P 

(j) m exp(i(m4-nil)]
LLL^^^ 

m 

a ael
-i -	 (3.23 (-)

m	 ,j con st

and	 a^(m,a,j)	 Cmp(j) 
i2	

exp(i(mm-F:3)]

m,p

i ra j a l

- 2 ^3m j J 9, j const	
( 3.23d)

In the above derivat:.on of a, ,a l ,a j ,a, the general

shift operator expression for L. (3.2) is used. 	 In

applications it is more convenient to use the finite

operator polynomial expression (3.3).	 a, is obtained by

replacing each operator with its corresponding eigenvalue

and then a l ,a j ,a, are calculated by differentiating a,.

Because of the asymptotic assumptions

	

3A	 3A	 am
A » 3n aj A 2j

so (3.22) can only be satisfied if

a,(9,.I,]) - 0	 + 0 ( L^-1 LA-1 TA-1 t	 (3.24)

This is the asymptotic form of the dispersion

relation between v and a and will usually be satisfied by

setting a, identically equal to zero.	 m is now a zl,,wly

varying function of j due to the slow variation in the

coefficients.	 The characteristic length scale L $ is related

to some characteristic length scale L C for variations in the

ccefficients

Neglecting the H.O.T. and dividing by a, gives the

asymptotic amplitude equation.

ir

O

i
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an + rg aj (3.25)
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where	 rg = a 2 / a l	 (3.26)

am
and	 E	 _	 -	 (	 as	 +	 a °	 )	 / a l (3.27)

^ aJ

Differentiating	 (3.24; with n	 held	 constant gives,
i

aa° as °1da °	 _ (a	 ) dm + ( 3j i
djm	 n , j	 const 0,a 	 const

=	 0	 +	 H.O.T. (3.28)

Hence,	 neglecting	 the higher	 order	 terms:

0

- (aa jj	 j) $ ,A	 const
0

/	 (am) Q , j	 const

(3.29)
la a o)=	 i ( aj m, n 	 const

/ a2

ajE	 -i	 a^	
a j	 m , Z	 const(so ) al a 2/ ( 3 . 30 )

If	 r	 is	 real	 the	 left hand	 side	 of	 (3.25) is	 a
4

Lagrangian-type	 total	 time	 derivative with	 respect to an
1

observer moving with velocity r	 .	 Thus	 the	 amplitude A	 is
g

beinq	 convected with velocity r	 in	 computational	 space.
g

Differentiating	 (3.24) with	 j	 held	 constant gives,

aaoda°	 s(an ) do as°)
+ (am dm9,j	 const n,j	 const

=	 0	 +	 H.O.T. (3.31)

Hence, neglecting the higher order terms,

(
s

	

	 aa°
a
a

9 ) j const 	 (11s o ) n , j const	 (ail ) m , j const

- a2 / a:

= r	 (3.32)
9
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Substituting for a and m using (3.5a,b),

a (WA t)

r 	 a (kAx)

At au
-x ak

c At

^x
(3.33)

Thus r is the CFL number corresponding to the group
9

velocity in physical space of the propagating numerical

wave.	 It is the number of spatial mesh intervals which a

localised disturbance travels in one time step. 	 For the

rest of the paper r
S 

is called the group CFL number.

V

C
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3.3 Examples

The model problem which is considered is,

at + C( X) u - 0	 < x < m	 (3.34)
ax

Three different methods are anal.ysed.

3.3.1 Trapezoidal Scneme

The trapezoidal scheme is

1	 n+1	 n	 ci	 n+1	 n	 n-1	 n
(U.	 - U.) +	 (U.	 +U.	 ) - (U	 +U	 )	 = 0 (3.35)

At	 ]	 ]	 4Axj^	 3 +1	 ]+1	 j-1	 j-1

which can be written using operator notation as

r,	 1

It	 6 t + 2 ] 62c ut 
J
I Un +2 = 0	 (3.36)
 ]

:there the CFL number r is defined as

r. =
 c A t

	
(3.37)

J	 ]

	and Ax. _ 1 (x,	 - x.
]	)
	 (3.38

	

]	
)

]	 2	 +1	 -1

a, is obtained by replacing the operators by their

eigenvalues.

a, _ -2i sin(0/2) + Z 2i sin($) cos(0/2)	 (:.39)

The dispersion relation is

a, = 0	 (3.40)

so	 tan ( 0/2)= Z s4.n ( m)	 (3.41)

a 2 , a 2 , a, are obtained by differentiating a,

Opp

11
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3a°
a l = 1 an

= cos(0 /2) + 2 sin (i) sin(n/2)	 (3.42)

a2

r cos() cos(n/2)	 (3.43)

1	 a2 a°
a,	 - 2 i am2

1 3 2

2 3$

_ - 2 sin ($) cos(Z/2)	 (3.44)
E

Using the dis p ersion relation a l and a, can be

simplified.

a l - cos ( 0/2) + r sin (0) sin(0/2)

= cos(0 / 2) + tan ( n/2) sin(n/2)

cos t (n/2) + sin 2 (n/2) ] / cos(n/2)

D

= 1 / cos(n/2)	 (3.45)

a l _ - 2 sin (o) cos(n/2)

- tan(0 / 2) cos(n/2)

-• sin(W2)	 (3.46)

so	 r
g	

a; / al

r

r 

cos(m) cos 2 (n/2)	 (3.47)

and E _ -i a, 
a°l $ ,n const / 

a t a,	 a° ! at

zr sin (0) cos(n / 2) (	 a^	 sin(v) cos(n/2) ]/[r cos($)]
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1 3r
- —s in = (s) cos' (Q/2)  / cos (m ) 	 ( 3 .48 )

2 33

There are three points of interest

i)	 sin(n- v) = sin((V)

so for all a there are two corresponding values of

m given by the dispersion relation,

i I satisfying	 -1r/2 < Re((P l ) < n/2

F	 and 0	 = a - ml

ii )	 For real it in the range

0 < I < 2 tan - ' (r/2 )

0 < tan(n/2) < r/2

so 0 < sin(m) < 1

Thus m l and 0, are both real and

0 < $ I < it /2

so r ((P 1 ) > 0
g

and n/2 < 9 2 < it

sor (y= ) < 0g

riencc for every frequency in the given range there

is one forward travelling wave, travelling in the same

direction as the physical waves being modelled, and one

backward travelli.g wave with wavelength less than 4Ax.

iii)	 For real A in the range

2 tan -, (r/2) < 0 < ,r

sin(9) > 1

so m l and 0, are complex

Ii C46
I
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Let	 m l - 1F/2 + is 

Then sin($,) - cosh(OI)

so m I is real and satisfies

tan(Q/2)
2
 cosh(s

0 2 - r - m 1

- r /2 - is 

These are evanescent waves.	 If there are

boundaries at j - O,J and the boundary conditions force a

steady oscillation with a frequency in the given range one

wave will decay in amplitude exponentially away from the

boundary at j-0, while the other will decay exponentially

away from the boundary at j-J.

M,r

it

G	 Emma
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The box scheme is

1(	 n+1	 n+1	 n	 n	 l

at	 J	 J	 J	 J	 J

c.	 l

^ ) j ( (U j+1 + 
Uj +1) - (Un + U^ +1 )

J
 = 0	 (3.49)

which may be written in operator notation as

1

Gt	 ux6t + r j u t a x ) U j+f = 0	 (3.50)

a,= -2i cos ($/ 2) sin ( A/2) + 2ir cos(:2/2) sin($/2)	 ( 3.51)

The dispersion relation .s

f:an(0/2) - r tan($/2)	 (3.52)

a	
as

, = i ano

= cos($/2) cos(0/2) + r sin ( A/Z,' sin(o/2)	 (3.53)

a a,a:
a^

= sin($/2) sin(a / 2) + r cos ( n/2) cos(0/2)	 (3.54)

1 a 2 aoa,	 2 a-^

= 4 cos($/2) sin(A/2) - 4 r cos(n/2) sin(1/2)

_ 6 
ao

0	 (3.55)

Thus r	 a, / a,
4

_ sin($/2) sin(Q/2) + r cos(0/2) cos($/2)
cos(0/2) co3(A/2) + r sin(9/2) sin($/2)

. M

01
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tan( */2) tan(n/2) + r

+ r tan(($/2) tan(n/2)
n

_ r _ 1 + tan 2( */2)	
(3.56)

1 + r 2 tan g ( s/2 )

and	 e - 0	 (3.57)

There are two points of interest

i) For each real value of n there is one corresponding

real value of * given by the dispersion relation and the

group CFL number r
g 

is real and positive.

ii) When r - 1, r
g 
-r , so waves of all frequenc-es travel

at the same velocity as the physical waves being modelled.

This is because when r-1 the Box scheme reduces to,

UJn+1 - U^	 (3.58)

which agrees exactly with the solution of the partial

differential equation,

u(x+ct,t) - u(x,0)	 (3.59)

^	 o
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3.3.3 Backward Eule- Scheme

The	 backward	 Euler	 scheme	 is,

1	 (U n+ 1	 -	 U 	
)	 +	

ci	
(Un+ 1	 -	 U rj+ 1	

)	 =	 0 (3 - 6 0 )of	 ]	 ]	 2 A x	 ]+1	 ]-1

which	 may	 be	 written	 using	 operator	 notation	 as

0t	
(7 t	 + 2

J	
r	 6 2x	 )	 Un+1
	 =

J
(3.61)

a,=	 1	 -	 exp(in)	 +	 it	 sin(m) (3.62)

f
i The	 dispersion	 relation	 is

exp(inJ	 -	 1	 =	 it	 sin(m) (3.63)

3 a,
al	

i 30

=	 exp(in) (3.64)

la,
a,

= r cos O (3.65)

13 2 a,
a,	

-	 _	 2	 i	
T-1

1	 3a2=
z	 3

-	 Z	 sin(>t)
2 (3.66)e

r.

so	 r	 =	 a,	 /	 al
4

=	 r	 Cos	 (0 	 exp( -in) (3.67)

and	 E	 i 

3a,
-1	 3	 J/	 a	 -	 / 

 const	 1 a	 a7	 0	 a ,

=	 lZ sins))	 (	 i	
a	

sin(o)	 J	 /	 [	 exp(i.1)	 r cos(m)	 J

R

1 3r	 3
2 

a] 
sin (a) exp( -in) / cos($) (3.68)
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3.4 Asymptotic Boundary Conditions

The general solution of

n
L ,	 i1 .	 0	 ( 3 . 1 )

J	 ]

is a sum of waves with different constant frequencies A and

slowly varying wavenumber m and amplitude A

	

M	
7

Z
U.	 Am(j,n) exp(i(

J 
V m (^) d{ -nil	 (3.69)

7
fl	 m i	 0

The outer summation is over different a 'ues rf Q,

and the inner summation is over the M different values of 9

which satisfy the dispersion relation for each A.

For each 11 ,m the amplitude A satisfies its

asymptot : amplitude equation on the interior of the

computationa l_ comain independent of all the other waves.

All the waves of each frequency are however coupled by

boundary conditions.

Suppooe a finite difference boundary condition at

)-J is

nn
B U 	 , F	 (3.70)

where 9 :.s a constant tinite dlfftrence operator which can

be expressed in ooerhtor polynomial form as

5 = P 3 (r x ,5 x ,li x ,F t ,s t ,u t )	 (3.71)

and F n ;.s a forcing function which .::an be expressed as a

sum of inputs of different frequencies.

F 1	f(n) exp(-i7)	 (3.72)
Q
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Performing exactly the same asymptotic expansion as

in the derivation of the asymptotic am p litude equation the

boundary condition becomes,

M

ab as	 ab aA_ i a-b	 amb 
A M 	 1 an 

anal - i 3m 33T	
2 am t A m ajm

	

i2	 m = 1

J

	

Exp(i( f O m d^ - nil)]	 f(52) exp(-ina) + H.O.T.	 (3.73)

	

0	 A

where b(n,9 m ) = P B [ exp(is m ),21 sin($m/2),cos(am/2),

exp(-ia),-2i sin(A/2),cos(:Z/2) J	 (3.74)

The coefficients of exp(-inQ) in (3.73) must be

asymptotically equal to zero for each A so,

	

M	 ^

ab aA _	 ab aA _ i a 2 b	 am

 ^
b Am + 1 TO anm	 1 am aj m 	 2 amt A

m ajm
Lt

J
exp[i	 co	 d^ 1	 f(Q) +H.O.T.	 (3.75)

J	 m
0

This pa p er is primarily concerned with stability

and convergence rates. When analysing perturbations from a
f

steady state or constant am p litude oscillation the boundary

condition ftr th perturbation has

f(Q) = 0	 (3.76)n

Because the zero order terms will usually dominate

the normal form of the asymptotic boundary conditions is,
1

	

M	 J
b('.I	 m ) A m (J) exp[i f	 9 m d& J	 0	 (3.77)

	

m_^	 0
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The first order terms 
3Am	 2--Am 	 3—Om

	

do	 3	
A a are only

]	 j
important when,

in )	 0 ( T' A -1	LA - ► 	 L * ` )

As explained in §3.1 if the finite difference

operator L in the interior scheme spans M+1 spatial levels

there will be M values of s given by the dis p ersion relation

for a given value of a.	 If the computational domain is

0<j<J the interior scheme gives finite difference equations

at J-M+1 nodes, so to complete the set of finite difference

equations there must he M finite difference boundary

conditions. Hence for each A the asymptotic amplitude

analysis gives M inde p endent amplitude differential

equations on the interior coupled at the boundaries by M

boundar y conditions.

l
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3.5 Examoles

The same model pro:11em as in 63.3 is considered,

3uau

	

+ c
	 0	 (3.34)

3̀ t	 ax

0 < x < x 

C(X) > 0

The analytic boundary condition is,

u(O,t) = F(t)	 (3.78)

For perturbation analysis

u(O,t) - 0	 (3.79)

The finite difference scheme using the trapezoid&l

or backward Euler methods on the interior re quires two

finite difference boundary conditions. For perturbations

the boundary condition at j-0 is,

U0 , 0	 (3.80)

The boundary condition at j=J is some form of

	

extrapolation.	 Four of the most commonly used are analysed.

3.5.1 Uostream Boundary

U n	0	 (3.80)
0

B = 1	 (3.81)

	

so	 b	 1	 (3.82)

	

Hence	 A 1 (O,n) + A 2 (O,n) = 0	 (3.83)

in preparation for the theory developed in chapters

4 and 5 it is useful to define R 0 , the amplitude refraction

coefficient as

U'

y

Ct) I
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R O	 A1/)	
(3.84)

A 2 (0 n

so in this example

RO - -1	 (3.85)

3.5.2 Downstream 3oun dat 	Space Extrapolation

The space extrapolat:.cn buur dary condition is

U J 	 UJ-1	 (3.86)

3	 1 - E-

_ E-fix b
x 	(3.87)

so	 b	 1 - exp(-im)

= 2i exp(-im/2) sin(9/2) 	 (3.88)

Hence

2	 Jc-1
si:.(m m /2) exp(i jr m^ d& - i 9 m (J)/2 ] A m (J,n) - . 0 (3.89)

n= 1	 0

The am^.litude reflection coefficient R is definedJ
asp

^ 2(J,n)
RJ	

F.(J,n)	 (3.90)

so in this example

J

RJ 	 - sln($2/2) eXp 	1 f (m l - m t ) d; - 1 ( ,0, ( j )- $2 (j)
z

0 (3.91)

G
a	 _	 O I

,,,, . ... s..^.d. -_	 — -	 -	 _ - -	 -

1
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3.5.3 Downstream Boundary	 Space-time Extrapolation

The space-time extrapolation boundary condition is

U J	 UJ-1	
(3.92)

B	 1 - E	 E	 (3.93)
-x -t

b	 1 - exp(-is + iA)

= 2i exp(i(Q-m)/2J sin[(*-a)/2] 	 (3.94)

Hence,

2	 m -A`	
J

sin( -2 I exp i I m m d ;'- im^(J)/2	 Am(J,n)	 0	 (3.95)
1.

M- 11	 /	 0

sin ro , -,71	 J
J

RJ = - 	(	
2,1	

exp i i f (m 1 -9 2 ) d^ - 2(0 1 (J)-9z (J) )
sing 

z2.	
I`	 0

{3.96)

3.5.4 Downstream Boundar., : Box Method

In this	 example the	 Box method which	 was discussed

in	 43.3.2 as	 an	 interior scheme is	 now	 considered as	 a

downstream boundary	 condition.

-1( u x i t	 +	 r	 u t 5 x }	 UJ =	 0 (3.97)
z

s

r

B E_X	 E_^ t	(
2

u x d t	 + r	 u t 6 x	 ] (3.98)

so	 b	 exp(i(a -9)/2]	 i -2i	 cos(s /2)	 sin( ►Z/2)	 +

2i	 r cos(A/2)	 sin((p/2) }	 (3.99)

Hence,

fm

x^	

O
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2

(r	 sins	 /2)	 -	 tan(f2 /2)	 cos(m	 /2)j

m 1
11	 m m	 J

J

Exp[i f	 A	 d^ -	 i	 (p(J)/2	 J	 A	 (J, n)	 0	 (3.100)
m m	 m

0

r	 sin($ 1 /2)	 - tan(1/2)	 cos(	 /2)R	 = -
J	 r	 sin (0 2 /2)	 - tan( 0/2)	 cos (m2/2)

J

exp	 i	 f	 (m l -D 2 ) d&	 -	 `(m l (J)-	 2j 	 )	 (3.101;

0

1

t

t
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4. Ray Theory and Wavepacket-Particle Duality

4-1 Ray Theory

In addition to the asymptotic approximations made

in chanter 3 this chapter assumes that for all real

wavenumbers 1, the frequency Q is real for all j and hence

tale group CFL number r
9 

is real.

and
—	 (r g 	 ,3¢	 j const	 3.32)

A Lagrangian - type total time derivative in

computational space is defined by,

- an + r	 (4.1)
do	

a
9	 j

so	 1-1 _ 2-2+
do	 an	

rg aj

r	 (4.2)
9

From the asymptotic amplitude equation ( 3.25),

dA = 3A	 aA+ r
do	 a n	 g a j

= EA	 (4.3)

and using ( 3.26) and ( 3.29),

dm _ 3m	 am

do	 an + rg a 

a^

a?	 1 (a j 	 m ,;1 const / a2

=o
i ( 33

s1
a ^j ) s 4 const (4.4)

iC	 JI
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A general initial value problem for a wave of

fre quency A and wavenumber s(Q,j) can be solved by
integrating these equations (4.2)-(4.4) with initial

conditions

j(0) - j,	 (4.5a)

A(0) - A(j,,0)	 (4.5b)

m(0) _ $(n,j,)	 (4.5c)

Each value of j generates a ray and all of the

rays together cover the entire domain for n > 0. 	 Figure 2

shows the motion of some typical rays in computational

space.

M!.

n

FIGURE 2, RAYS IN COMPUTATIONAL SPACE

11, (.01,	 o I
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r	 is a function of j so at a particular j al'.. the
g

rays have the same slope d .	 Hence the time separation T of

two rays, illustrated in figure 2 for rays t and 2, remains

constant but the spatial separation L varies as r varies.
g

As explained in chapter 3 if the finite difference

operator spans M+1 spatial nodes then for a particular

value of A there are M values of s which satisfy the

dispersion relation.	 Define M+ to be the number of

solutions a for which the group CFL number is positive, and

similarly define M_ to be the number of solutions 9 for

which the group CFL number is negative. Let the

computational domain be 0 < j < J as usual. 	 At j=J there

are M+ rays leaving the domain and M_ entering it. The

amplitudes are related through the asymptotic boundary

conditions each of which has the form,

M	
Jr

b(Q,^: ) exp( i 
J m m d^j Am (J,n) - 0	 (3.37)

m=^
	 0

Since the M + amplitudes of the rays leaving the

domain are known and the M_ amplitudes of the rays

entering the domain are unknown there must be M_ boundary

conditions to uniquely determine the amplitudes of the rays

entering domain.	 Similarly at j=0 there must be M+

^.

	

	 boundary conditions to uniquely determine the amplitudes of

the rays entering the domain.

IP

4

U
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4.2 Wrvepacket-Particle Theory

In terms of ray theory a wavepacket is a ray tube, a

group of rays, along which the amplitude is non-zero.	 From

the discussion in the last section the time lenqth T A of the

wavepacket remains constant but its spatial length L A will

vary whenever r
g 

has different values at the two ends of

the wavepacket.	 Provided L A << L 9 all the rays in the ray

tube have approximately the same value for s(A,j) so the

motion of the wavepacket is given by,

11 - rg(^,m(j),j)	 (4.2)
do

and	 d,D	 iseal
do	 al 3j ) m,A const	

(4.4)

The energy, in physical space, of the wavepacket is

defined as,

x
J

E(n)	 f	 ^A(x,tn	 2 dx

x

J
r	 dx

0	 d 

Hence the wave energy density in computaticnal

space is defined to be,

o(j,n)	 - o(j)	 IA(j,n)l = 	(4.7)

where	 a(j) = dx
	 (4.8)

7

Using (4.3) and the notation that A is the complex

conjugate of A it follows that

)n + 8 (r o) . an (aAA) + a (r aAA)T( 
g	 j 4

L

" n

f

o I
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n	 aA(3n + r	 aA ) + aA(an +	 r	 aA )	 +	 AA	 a-(r	 a)
4	 J 9	 j	 j	 9

-	 aA do + aA dA +	 AA	
2	

( r	 a)
9

M	 aAEA + aAEA	 + AA --(r	 n)
^J	 9

1 aI I E	 + E +	 —(r a)	 P	 (4.9)
`` a	 aj 9	 J

Hence,

J
dF _	 ao 

d
do	 an	 J

0

J

f - a (r P) +	 E + E + 1 a (: 
a)	 P	 djaj	 9	 a aj	 q	 )

0

J J
a ll

_	 -	 r	 P +f I	 E	 + E	 +	 -1 (r
9 a 3 

a)
J 	

P	 dj	 (4.10)
9

0 0

If the wavepacket is	 in	 the interior	 of	 the	 domain

_ away	 from the boundaries the	 energy flux	 r	 o	 at	 the
9

boundaries j-0,J is zero. Also assuming as	 before	 that

L A	 <<	 L^ then E	 + E	 + a —(r	 i)	 is approximately	 constant
J	 9

over	 the	 length of the	 wavepacket, so

ll ^r

= + E	 + aj(rga)
J J	

P	 dj
do lE

a

0

e+ E+	 a ( r a) 1 E	 ( 4. 1 1)
l	 a aJ	 9	 J

Thus equations (4.2), (4.., and (4.11) completely

describe the motion of the -daveparket particle in the

interior of the com p utational domain.

1



(D+ 
4

52

When the wavepacket reaches the boundary it

interacts with the boundary conditions to produce one or

more reflected wavepacket.s with the same frequency but

different wavenumbers.	 Th_ only case for which it is easy

to incorporate boundary conditions is when M=2 and

r g (S 1 ,j) > 0

r
g 

(m 2 ,j) < 0

An example of a scheme satisfying this condition is

the trapezoidal method which was applied to the model

convection problem n the introduction.

An additional assumption is that

e r g (* 1 , j) 1, e r g ($ " j) l << J

so that it takes much more than one time step for a

wavepacket to travel from one boundary to the other.

Sup pose that initially there is one wave p acket with

wavenumber a l as in the introductory example. The

energywavepacket travels to the right with position and 

determined by the equations of motion previously derived

(4.2), (4.4) and (4.11). 	 When the wavepacket :-caches the

boun'_ar y at j-,7 a proportion of the energy E 1 is reflected

into 3 left :.ravelling wavepacket of frequency R, wavenumber

a: and energy E ; .	 Figure 1 illustrates this interaction.

Equation (4.10) is

J	 J
dF
do	

r9G	 + f	
lE	

e	 a a ( z g a)1 A dj	 (4.10)

0	 0	 J

The outgoing energy flux is

O
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r g (s,,J) P,(J,n) r- r g ( s 1 ,J) a(J)	 IA 1 (J,n) l = 	 (4.12)

The incoming energy flux is

r ( m 2 ,J) o 2 (J,n) - r Q (s.,J) o(J)	 IA 2 (J,n)l =	(4.13)
g

The amplitude reflection coefficient 
R  

defined by

A2(J,n)

R J	 A,( J, n)	
( 4. 1 4)

is a function of R,s l , o, determined by the asymptotic

boundar y condition.

The energy flux entering the reflected wavepacket J-

a factor

	

r9((D,,J)	 IRJIi
rg(s1,J)

greater, or less, than the energy flux leaving the incident

wavepacket and so the total energy of the reflected

wave p acket is given by,

r	 ,J)
L_	

(a
9	 2	 _ I	 I R J I 2 E 1	( 4. 15 )

r9(01,J)

The reflected wavepacket travels lift according to

.he equations of motion for a wave 2 wavepacket until it

reaches --0 where i_ is reflected into a right travelling

	

wave 1 wave p acket.	 The reflected energy E 1 is give- by,

E 1	 I	 g	 1	 _ I	 I RO 12	 E 2	( 4. 16 )
r	 (s2,0)
g

AiiO,n)
where	 R	

A2(0,n)	
(4.17)O 

is determined by the asymptotic boundary condition.

f

O
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Figure 3 t41ow s; , ows the particle-like path of the

wavepacket in computational space.

FIGURE 3. WAVEPACKET PATH IN COMPUTATIONAL SPACE 	 ,I
1

n t_

In summary the equatio,is for the different parts of

Ar	 the path are,

ti
(a)	

do	
rg!s1,J)	 (4.2)

d9, _ 1	 3a o`
do	 ai(dj ) ^,^ cons 	 (4.4)

dE l	—	 1 3

J	 4

IF

C+
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r (9 2 ,J)	 _

(b) E2 -	 ^----- I	
! R J I	 E ;	 (4.15)

r 9 (0 -"i)

(c) dl = r (m2 .j)do	 9	
(4.2)

dm 2	 i
do	 a; 	 m,A const	

(4.4)
( 3, aj ,) 

dE 2 	- 	 1 a	 )
E + E +	 (r a)	 E 2	 4. 11

do	 z a	
)

7	 9

I	 r	 (a	 ,0)	 I
(d) E

1 
_	 .^—^ IJ 	 I R O I 2 E z	 (4.16)

r ( a 2 , OTg

In (a) and (c) the dispersion relation can be used

as a check on the accuracy of the numerical integrat:.on of

the equations or can re p lace the equation for the variation

of 9.

The total number of time steps for a round trip from

0	 to	 J	 and back	 again	 to	 0	 is

J

N = J^	 [	 r (9;	 ,j)	 ) -1 -	 [ r	 ($.,.j) l -1	 dj	 (4.181	 A
g g

0

The energy growth of a wavepacket travelling	 from	 0

to	 J	 is	 given by

l
1n(E ) =

4
do

;
E	 dn

r

_	 E	 +	 E	 + 1
a

(r	 a)	 (4. 19)
a aj g

so	 d- In( E, ) a-	 In (E;
dj do do

1
i E

-
E 	+ 1 ( r	 a )r r a a

7	 9It
g g
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E	 +	 E +	 a
(4.20)

r
aj( In(z g a)

g

Hence, J	 _ J

ln(E 1 (J)l	 1n(E1 (0)) +	 r	 E=	 E dj	 + ln(r	 a) (4.21)
J g
0	 g 0

J
r ( m 1 ,J) E +	 E

so	 E 1 (J)	 = g exp	 f
I

dj E 1 (0) (4.22)
rg(0110)

0
r g

Similarly the	 energy growth of	 the reflected

wavepacket	 as	 it travels from J	 to	 0 is

J _
r (9=0) E	 +	 E

so	 E 2 (0) I g exp	 f - dj	 E 2 (J) (4.23)
r
9

(s 2 ,J) 0 r g

Combining (4.15),(4.16),(4.22) and (4.23)	 the round

trip	 energy	 amplification factor	 a	 is

)
J)

rga= I
rg(m1,

r	 (01,0)	
I ex

	 J-

p
E-	 E	

d'
r	 3

I
--

r	 (^l,J)

I I R

J

12

g C g	 1 4

r	 (92,0)

•	

I J ( E

	

+	 ^^

d^
I

r(^1,0)

G ( m 2 ,)	 I

E10 I:

r Q (92,J)
exp

r^J= r	 00 a
J

=
R0	

R
	

12 exp	 Jr

^ t
_ll

E J1 ^E
_ll
EJ2

dj (4.24)
0 r g r g

Where	 I E	
y E is	 evaluated at 9.	 , j

g	 1

and	 IE	
E1

is	 evaluated at 1 21 j

l

r 

g	 2

The	 condition for stability is

a	 <	 1

i

E CA
	 o I
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The equivalent average decay rate a is

a	 _ ln(a)	 (4.25)
N

When M>2 and there are M+ waves with positive r
g 

and

M_ waves with negative r , one wavepacket with positi ,,r e r
g	 9

reachinc j=J produces M + reflected waveoackets with

negative r
g	 g
, and one wavepacket with negative r reaching

J=0 produces M + reflected wavepackets with positive r
9

Thus the total number of waveoackets increases with time

exponentially.	 Since each wavepacket has finite lengtr,

this ultimately leads to the problem of determining the

effect of interference between overlap p ing wavepackets.	 In

general the sum of the energies of two wavepackets is not

equal to the ener7y of the sum of the wavepackets 	 if the

wavepackets are identical the latter is twice the former

while if the second wavepacket has opposite sign to the

first the latter is zero.

C^	 o I
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5. Asymptotic Stabili_v and Convergence Anal}_sj.s I

5.1 Theory

In addition to the as y mptotic approximations in

chapter 3 this chapter assumes that M=Z an y' there is one

boundary condition at both j=O and j=J and if m l is real at

j-0 then a j and m 2 are real cver the whole domain.

Exampled of methods satisfying these conditions are

the trapezoidal method a pp lied to tre model convective

p roblem with variable CPL number r, and the backward Euler

method applied to the model convective problem with constant

CFL number. Methods which do not satisfy these conditions

include Lax-Wendroff and Runge-Kutta type schemes. For

these methods the general stability analysis of chapter 6 is

required.

As	 explained	 in	 53.1	 a	 standard	 Fourier	 series

analysis	 of	 the	 problem with	 constant	 coefficients	 and

p eriodic	 boundar y conditions	 shows	 that	 the	 eigenfrequencies

are	 a(9)	 wnere	 0	 is	 a	 real	 wavenumber	 satisfying	 the

periodic	 boundary	 conditions	 and	 0(0)	 is	 the	 corresponding

by	 dispersionfrequency	 g•iien	 the	 relation.

The	 common	 use	 of	 a	 Fourier	 series	 analysis	 to
V

predict	 the	 stability of	 problems	 with	 non- p eriodic	 boundary

conditions	 implicitly	 assumes	 that	 for	 real	 wavenumber	 s,

:1(9)	 is	 a	 close	 approximation	 to	 an	 actual	 eigPnfrequencv.

This	 chapter	 follows	 that	 assumption,	 calculates	 a

F
correction	 a'	 to	 this	 a($)	 due	 to	 the	 boundary	 conditions,

and	 then	 determines	 the	 validity	 of	 the	 assumption	 for	 this

particular	 class	 of	 methods	 based	 on	 the	 asymptotic	 errors.

r
J
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For real m 1 ,m, and the corresponding complex Q the

general solution is,

	

j	 j
U 	 = A l (j , n ) exp i r $ 1 d^ -nQ	 + A, (j , n ) exp i 

J $ 2 d& -n0j

3	 0	 0

(5.1)

where the amplitudes A l and A, satisfy the asymptotic

am p litude equations

H

an	
g m	 m m

m 
+ (r)	

3A	
= EA	 m=1,2	 (5.2)

and boundary conditions

b 1 ( Q ,m 1 ) A l (O,n) + b 1 ( 11,0 2 ) A 2 (O,n)	 0	 (5.3)
f

^`	 I	 Jb. ( a ,a 1 ) exp^i	 01 dj	 A l (J,n)

0

i	 J

+	 b2(a,02)	 exp^i	 f	 0 2	 dj	 A,(J,n) 0 (5.4)

0

A	 linear	 system	 of	 finite	 difference equations with

time-independent	 coefficients	 and boundary conditions has

eigenmode	 solutions	 of	 the	 form,

U^	 _	 (U g )
j
	exp(-inQ	 ) (5.5)

where	 A 3	is	 the	 comp l ex	 eigenfrequency	 and U 5	is

time-independent.

Su pp ose	 the	 frequency	 n	 in	 (5.1)	 is close	 to Qg.

Define	 a'	 by

A B	=	 A	 +	 J1 (5.6)

Thus	 equating	 (5.1)	 and	 (5.5)

71;

FC	 ^I
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( U a ) j	 exp(-inA') OF
_

A,(j,n) exp(i f	 m l d^ +	 A 2 (j,n) exp^i
J	 s =	 d^ (5.7)

0 l	 0

so	 A l (j,n)	 _ ?xp(-iaa ') A l (j,0) (5.8)

A 2 (],n) exp(-ini2') A 2 (j,0) (5.9)

and

j 7
( U 3 ) j	 A,(j,0) exp

l
i r m l	 dE

1

+ A 2 (j,0) exp i Jr m 2	 d^
l	 0 0

(5.10)

Substituting (5.8),(5.9) into (5.2) gives

a	 ^ +
aj [Am (j,0)) = I	 r 

iS2 '
l	 Am(j,o)	 m=1,2	 (5.11)

l	 g	 )m

which: can be integrated to give

J
r

Am (J,0)	 Am(0,0) exp J Ir E + iil	 dj	 (5.12)
0 l	 g	 m	 J

The boundary conditions (5.3),(5.4) then become in

matrix form

B A	 0	 (5.13)

(A1(0,0)

where	 A	 I	 (5.14)
(A2(0,0)^

and

B: 1	 '31 2

B =	 (5.15a)
B 2:	 8:2

B 	 $ I	 (5.15b)

6
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B 12 = b l (A,m 2 )
	

(5.15c)

	

J	 J

B21 = b 2 (S2,m 1 ) exp i	 m	 d'	 ex	 E + in'	 5.

	

f	 1	 ]	 P f (	 r	 dj	 (	 15d)

	

0	 0	
111	 g	 1

	

J	 J

B 22	 b2	 02) exp(i f 9 2 dj	 exp f I E r in 
J dj
	 (5.15e)

	

00 l	 g	 J2

A non-zero solution A of (5.13) exists if, and only

if,

det B = 0	 (5.16)

Hence

J

exp ^ia	 I^	 [ r 	 ] 1 - [ r g ((0 2 j)	 -1	 dj
J0

F

bz(a,m2) b,( s2,x t )	 r	 E	 /E
ib 2 ('I	 bl(:2,92) exp l 	 92 - 9 1 dj	 exp	 I( r 1 

-lr 
I dj

	

l	 0	 )	 0	 9l 2	 g l

(5.17)

the right hand side of (5.17) can be expressed as

its magnitude

	

r	 Jb 2 (Q, m 2 ) b l (n,9 )	 p I	 (E l 
2 

-^E 1	 7f
i b 2 ( `̂ ,s l ) b l (:2,m2)	 I	 ex	 Re	 Fr J	

lr	 I	 d'

	

l	 0	 g	 g' 1

multiplied by a phase factor exp(if) where

J	 ,!
arg b2 (2 D l ) b l (il,y 2 )	 + f 

92 -91 d0 ^ 
lm 

l^lrgJ: f rgl2dj

l(51.18)

If 0 1 , 9 2 are chosen so that IF/2w is an integer then

(5.17) reduces to

V
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J	 1n	 - - N
	

1n	
I b2 (n ,m1 ) bl (n,m2 ) I 	 Re	 f 

(=g12-(Egli 
dj

l	 1	 J	 i
(5.19)

where as defined in chapter 4,

J

N	 J	 ( r g (m l ,j) ) 1 - ( r g ( m 2 ,j 	 dj	 (4.19)

0

The stability criterion is

Im(n a ) - Im(n + p')	 < 0	 (5.20)

Thus the frequency n resulting from a nc •-mal Von

Neumann analysis is corrected by an amount n' due to

boundary conditions and variable coefficients. This

approach, using n as an initial approximation to R 3 the

actual eigenfrequency, is valid provided the asymptotic

errors are small compared to n'.

The asymptotic error is 0( L
C

-2 , T A -2 ) - 0( L
C

-2 , n' 2 )

Now N - O J
r
9

so if r << J then N >> 1
9

and 'hence n' << 1 except near frequencies for which

b 2 : n,m 2 ) b 1 (n ' s )
b t (n, 9 i ) b l ( n ,m!

	is zero, or infinite, which usually occurs at n -0.	 However

these frequencies are heavily damped by the boundary

conditions and so an accurate estimate of their

eigenfrequencies is not essential. This method gives

accurate asymptotic values near the critical frequencies

which are least damped and which therefore determine the

v

k
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overall spectral radius of the scheme.
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This	 example is	 the	 Backward	 Euler method applied to

the model	 convective problem with	 constant CFL number r	 and

space	 extrapolation	 at the	 downstream	 boundary.

The	 dispersion relation	 is

i exp(in)	 -	 1	 = it	 sin(l) (3.63)

so	 if	 91	 is	 real,	 m 2 =	 n	 1	 is	 also	 real

b l (A,9)	 1 (3.82)

b 2 (0,(D)	 2i exp(-im/2)	 sin(D/2)
L

(3.88)

b2(A,m2)	 b l (R,m l ) sin(22/2)
^

,
so =	 exp [ -1(m 2 -^D 1 )/2)i b2	 (+2, 9 1	 )	 b 1	 ( 12 ,m 2 	) sin(m 1 /2 )

cos (0, /2)
=	 exp[-i( m 2 - 9 1 )/21

sin( ml/2)

t: 'xp[- i($2 -1 1 )/2) cot(1	 /2) (5.21)

Since ar = 0 , E=0

Hence Y j -( 9 2 - 41)/2 + J($ 2 - ml)

_ (J - 1/2)	 (?r - 22 1 )	 (5.22)
r,

k	 1/2r - n, where n is an integer, implies
E

41 = ?r/2 - 21rn / (2J-1)	 (5.23)

'"he group CFL nuc•bers are

r g (4 1 )	 r cos (4 1 ) exp(

 -

i^j

= r cos((P	 / ( 1 + -r sin (4 1 )	 )

ti

C7
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	r cos(m l )(1 - it sin(m l )) / (1 + r 2 sln 2 (m l ))	 (5.24)

	

r g (m 2 ) _ - r cos (a l )(1 - it sin(a i ))/(1 + r 2 sin 2 (o,))	 (5.25)

Hence,

t	 it cos(m ) ( 1 - it sin(m ))	 rr	 ll1	 i	 lnlcot(m1i2)J
	

(5.26)
2J ( 1 + r 2 sin e (o 1 )	 111

exp(-2 Im(A)) _	 exp(i:l) I2

(	 _	 1 + it sin (o, /2 ) 12
i

= 1 + r 2 sin e (D 1 /2 )	 ( 5 . 27 )

so	 Im(A) _ - 2 In ( 1 + r 2 sin 2 ( m l / 2) )	 (5.28)

Hence

c Im( Q + a' ) _ -	 In [ 1+ r 2 sin 2 ( m l / 2) ) -

r cos( 0, /2 )
In ( cot(a l /2) l	 (5.29)

2J(1 + r 2 sir. 2 (a l / 2)	 i

Define the decay rate a to be

o	 - Im( R + II' )	 (5.30)

For small m << 1

C
	

2 r2a2 + 2J ln(2 /a) 	(5.31)

4
J-

dm r2a - 2J a -`	 (5.32)

li
c

Thus

	

	 do = 0	 at $	 (2rJ)-	 (5.33)d 

so	 min a(a)	 4J + 4J 1n18rJ)	 (5.34)

The spectral radius a is



f O
r	 ^T

J
.,	 fY

a	 max exp(-a)

ma.t ( 1 -a )

4J	
+ In(8rJ) J	 (5.35)

46.2 continues this example provin g rigorously that

every eigenmode is stable, and deriving an asymptotic

expression for the decay rate of the eicenmodes near T,—O,

showing as expected that the decay rate is greater than the

minimum decay rate obtained above and so the above analysis

is valid in calculating the spectral radius.

IM

i
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6. Asymptotic Stability and Convergence Analysis 11

6.1 VFeory

This chapter continiies the analysis of chapter 3

without anv additional assumptions or approximations.	 The

eigenmodes of a linear system of finite difference equations

with time-independent coefficients and boundary conditions

vary exponentially with t±mP Po a general eigenmode czn be

written as

	

M	 ]	 1

Un	 exr( -inQ )	 Am( j ) exp i Jr m m d& I	 (5.1 )
J	 u

t	 m^ 1	 0	 J

Note that the amplitudes A are independent_ of n.
m

The time evolution of the ei g enmode is contained solely in

the term exp(-inQ).

	

	 The complex amplitudes A Pach satisfy
m

r

their asymptotic amplitude equation,

rAm - e A m	 (6.2
g 2

	

	
)

j

J
^,	 r
^_	 so	 A (J) - A (0) exp	

J 
i E l dj	 (6.3)

m	 m	 r
0	 q m

ldenotes =	 evaluated at sm,j
l
r,; ) m
	

4

Now that A (J) is related to A (0) the M asymptotic
M	 m

*	 boundary condions can be written in tensor summation form as

Bkm Am - 0	 (6.4)

where	 A	 r A (0)	 (6.5)
m	 m

and

M

I-

0
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b k (a,s m )	 if the k th boundary c o ndition is applied

at j-0
k m	

Jf r 	
1

b k (1,s m ) exp	 ism dj I	 (6.6)
0 l *J m	 J

if the k th boundary condition is applied

at j-J

J

The term	 b k ('I,* m ) exp f is m dj	 comes from (2.77)

0J
and the term exp f "E 

g Jm dj
	 is the factor relating A (J)

0
lr J	 m

to A (0) in (6.3).
m

A non-zero solution to ( 6..i) exists if, and only if,

det(B) n 0
	

(6.7)

0+"1

Since all the elements of B are implicit functions

of :2 this is the equation which determines the

eigenfrequenc:_es .

If the coefficients are constant all of the A are
m

constant and so there are no asvm p totic errors. The theory

is then exact and is identical to the P-stability analysis

of Beam, warming and Yee [5]. 	 If the coefficients are

variable the asymptotic error is of order 0(LC-`,J-1LC -1)•

The 0(I. 0 -3 ) comes from neglecting second derivatives of Am

and s in the asymptotic amplitude equations. 	 The 0(J-'LC -1)

comes from neglecting the first derivatives of A
m 

and t 
m 

in

the asymptotic boundary conditions.

For all but the , ery simplest problems it will be

of
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4.mpossible to solve (6.7) analytically to obtain the

eiaenfrequencies. Three possible numerical approaches are

outlined below.

6.1.1 Iterative Solution

Suppose a n is a good a p proximation to an

eigenfreauency a and

a n+1	
an	 aan	 (6.8)

is to be a better approximation.

The terms in the definition of 
Bkm 

which change most

J

rapidly with variations in A Pre exp	 is
m 

dj since these

0

are oscillatory functions because 9
m 

usually has a real

comooneUt of order 0(1).

as	 _	 3a)-1

ai m (70j m

q M-,

Hence	 0m+1
	

1n + (r g)
m l An	 (6.10)

S+ihscriot m means evaluated at Om,j

S ,iperscript n means evaluated at an

Thus

J	 J	
rJ
	 1

exp ,	 is	 djdj	 exp f io n dj	 expl	 iAQ (r )-1 dj	 (6.11 )
0	

m	
0	

m	
l0
Ir
 9

Define

0
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b k ( a ,0m)	 if the 
kth 

boundary condition

.s a p plied at j-0

r.J	 J	 l
r	 -1 Ikm	

bk (11 , 9m) exp 1 rr 1 n + ism di exp ian f rr m	 dj

O l g m	 0	
g

if the k th boundary condition io at j-J 	 (6.12)

Then choose AQ to be the smallest root of

det(B n ) - 0
	

(6.13)

The method in chapter 5 performs one step in this

iterative procedure. As explained in chapter 5 the

asymptotic error remaining after a correction an is

0( a;l - ^ , L C -Z ) .	 For cons- ant coefficients this gives

quadratic convergence to the true eigenfrequency. For

variable coef f icients it will converge to a frequency which

differs From the true eigenfrequency by an asymptotic error

of order 0(r. O - ' ) .

The solution procedure will fail as described in

chapter. 5 near freq ,lenc?es for which b k (0,0 m ) is zero since

the fractional variation in b k (A,A m ) is comparable to, or

JrJmay exceed, the fractional variation in exp 
	
ism dj)

0

n
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5.1.'. Newton-Raphson Solution

The Newton-Raphson solution procedure is

^n^1	 ^n -	 det[B(.2n)] _ 	
(6.14)

aZ det [B( ^l n ) ]

Although this seems straightfcrward there will be

problems in practice because det(B) = O has many roots and so

3, det[B(fl n )] has many zeros near which the Newton-Raphson

iterative procedure is badly behaved.

6.1.3 Stabilitv Dom a in Method

If z is defined as

z = exp(iO)	 (6.15)

then the condition for stability is that det(B) has no zeros

in Izj < 1.	 In very simple cases this criterion can be

tested analytically (an example is given in sb.2). 	 In more

complicated cases because det[B(z)] is an analytic function

of z the 'Principle of the Argument' method outlined in

appendix A.2 can be used to find whether det[B(z)] has any

zeros in IzI < 1.	 To find the spectral radius ^ the same

method can be used to find the largest a for which there are

no zeros in 1a1 < X.

1

i

f
	

O.
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6.2 Examole	 OF POOR QUkUrs

The example is the Tra p ezoidal method applied to

the model convective problem with constant CFL number r and

space extrapolation at the downstream boundary.

The dispersion relation is

tan(Q/2) = Z sin(m)	 (3.41)

Define	 K = exp(is)	 (6.16)

z	 exp (-iQ )	 ( 6 . 1 7 )

1 exp (iQ /2 ) - exp (-ia/ 2 )
Then	 tan( n/2 	

exp(in/2) + exp(-iA/2)

1 1 - exp(-i.12)a —
i 1 + exp (-iQ )

1 1-z
i 1+z

sin( m	 -I-23.  [ exp(is) - exp(-is) l

= 2i 	
(6.19)

Thus the dispersion relation becomes

1-z	 r
1+Z	 4 
	 (6.20)

Note that if K, is one solution then K 2	 -K1-, is

zhe other solution. The condition fcr stability is than

IzI < 1 for all eigenmodes.

Let z = R exp(i9)	 R,a real, R > 0	 (6.21)

Then	
1-z = 1 - R exp(i9)
1+z	 1 + R exp(i9)

_ (1 - R exp(i9);	 (1 + R exp(-i9)1
[1 + R exp(i9)]	 [1 + R exp(-i@)]

A

I(D
	

^I
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i) Stability domain for z

1-Z
ii) Stability domain for 1+z

iii) Stability domain for K

FIGURE 4. STABILITY DOMAINS - SHADED REGIONS ARE STABLE

Ec
	 0
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1 - 2iR sin(g) - R2
1	 2R cos(9) + R2

(1 - R 2 ) - 2 i R sin(@)	 (6.22)

[1 + R cos ( @) ] 2 + [R sin(@)]'

Hence R < 1	 =>	 Re + Z > 0

R > 1	 =>	 Re + Z < 0

Thus if r is )ositive then R	 I zI < 1 if, and only

i f  Re ^+Z > 0	 < __>	 P,[K-K
-1

 J > 0

Now let K	 R e.cp (i@ )	 ( 6 .23)

K - K -1 - R cos(9) + iR sin(G) - R -1 cos(0) - iR sin(9)

_ (R - R -1 ) cos(9) + i ( R + R -1 ) sin (@) 	 ( 6.24)

so I z I < 1	 <=_>	 Re [ K -K
-1 

] > 0

either R > 1	 -ir/2 < @ < r/2
or	 R < 1	 n/2 < @ < 31t/2

Figure 4 shows the stability domains for the

different variables.

The upstream Boundary condition has

b l	 (3.82)

The downstream space extra p olation has

b 2	 1 - exp(-iA)	 (3.88)

Hence B =

^ exp(iJs 1 ) r 1-exp(-i*j)]	 exp ( iJm1)(1-exp( - i(Dl)l

1	 1	 l

K J ( 1 - K L)	 (_K _ 1)1 ( 1 + K) 1	

(6.25)
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det(B) = 0 implies

K 2J-1, K - 1) - (-1)
1

(K + 1) = 0	 (6.26)

r+ 1 _ (_1)J
	 2J-1K 	

(6.27)

Consider the twc ins,'. - ..•ility regions I and II marked

in figure A. iii) .

In region I	 IK + 11 > IK - 1	 and	 SKI > 1

so	 I 
K+i 

I	 >	 I_ 1) J K 2J- 1 1

In region II I K + 11 < 11C - 11	 and	 JKJ < 1

so
	 I

K
}1	 I	 <	 I(- 1)JK2J -1I

K-1

Hence there are no possible solutions of (6.32) in

the two regions of instability. Every eigenmode is stable

and so the method is stable. This exam p le is a special

example taken from a more general result, proved by Beam,

'Harming and Yee [5), that the class of A-stable Beam-Warming

multistep methods with qth order space extrapolation at the

downstream boundary is stable.

Continuing this example asymptotic decay rates for

small 91 can be derived.

01 ° 0	 >	 K	 1

Let	 K	 1 + d

E q uation (6.31) becomes

(1
	

5)2J -15
 - (-1) J (2 + 6)	 0

Now	 1	 (1 + J)J	 = exp(x)
J m 

so provided J >> 1 >> 6

(6.28)

(6.29)

(6.30)

a a

I E	 O
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(1 + 6) 2J = exv(2J6)	 (6.31)

Hence	 exp(2J6) = 2 (-1) J 6 - ' (2 + 6)(1 + 6)

= 2 (-1) J
6

-1	 (6.32)

if J is even this has a solution for real 6

2J5 = ln(2/6)	 (6.33)

so	 o =
2JJ	

In( 2/6 )

1	 4J
= 2J 

In 
In ( 2/6 )

ln( J) 	In[1n^J)]
+ terms of order 0(	 )	 (6.34)

2J	 J

Since K = exp(is,)

= 1 + im 1 	(6.35;

m l	-id

i ln(,7)
_ -	 (5.35)

2J

Linearisinq the dispersion relation about m-u gives

S2	 r (P

	it In(J)	 (6-37)
-	 2J

The asymptotic decay rate is

r 'n(J)
a	 (6.38)

2J

If J is odd the smallest o solutions are

6 = r In( J)	 + Sri	 (6.39)
2J	 2J

and the decay rate is the same_

F ^

A ^^
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Assorted Examples and Further Developments

7.1 Ins*_ability of Backward Euler with Soacetime Extrano'_ation

Consider the Backward Euler method applied to the

model convective problem with constant CFL number r on

domain 0 < , < J with space-time extrapolation at the

downstream boundary and J >> r >> 1.

The dispersion relation is

exp(i:1) - 1 - it sin(m)	 (3.63)

The upstream boundary has

b l = 1	 (3.82)

The downstream boundary with space-time

extra p olation has

b, = 1 - exp(i(n-(P)] 	 (3.94)

The ei g enfreauencv e q uation, det(B)=0 reduces to

exp(iJO 1 )(1 - ex j.(i(n- 0 1 )J} = exp(iJ$ 2 )(1 - exp(i(:1-0=)]}

(7.1)

Because m 2 - n-T, this can be written as

exp(21.Js j ) !	 - exp(i(n-s, ) ) } - (-1 ) J ( 1 + exp(i(n+m l )J } = 0

(7.2)

This and the dispersion relation form two equations

in the two unknowns Z and 9 1 .	 Considering only the case in

which J is eve	 one eigenmode is given by,

Il = n + n	 n	 < n	 (7.3)

so it sin(0,	 _ -2 - in 	 + 0(ni2)	 (7.4)

o I
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m i	1 - —	 + H.O.T.	 (7.5)
r	 r

Substituting into (7.3) with V =0 gives

exp(-4J/r) (1 + exp(2/r)} - 1 + exp(-2/r) - 0 + H.O.T. (7.6)

Expanding the exponentials unde- the approximation

r >> 1 this reduces to,

J4 ln(r)	 + H.O.T.	 (7.7)

For a particular even valut of J the value of r

satisfying (7.7) makes this eigenmode asymptotically

neutrally stable. To find whether increasing r makes it

unstable or not (7.2) is differentiated by r.

2iJ 
dr
	 exp(2iJm 1 ) {i - exp[i(a - ml)]}
	

n

+ exp(2iJm 1 ) {i dz 1
 - i d=} exp(i(Q

(i dml + i^} exp(i(:1 + 9 1 )^	 - 0	 (7.8)
it	 dr

This is evaluated at V-0, J 	 a ln(r)	 so
f

ln(r) dml - 1 { dml - dfl } + { dml + do } = 0 +H.O.T.	 (7.9)dr	 r	 dr	 dr	 dr	 dr

Hence	 d=	 1..^.(r) 
dzl 	 + H.O.T.

2 i ln(r)
_ -	 + H.O.T.	 (7.10)

- 2

As r increases from the neutrally stable value,

Im(A) becomes negative so the eigenmode becomes unstable.

T'n us this eigenmode is stable only if

r ln(r) < J
4

In numerical experiments it is found that this is

Q
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I
the least stable eigenmode and so this condition is both

necessary and sufficient. The condition is asymptotically

equal to an exact stability condition d-rived by Beam,

Warming and Yee ,51.

Y^

f
r.

S

(1.1.1
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7.2	 Optimum	 CFL Number	 For Trapezoidal	 Method

Consider	 the	 Trapezoidal	 methcd	 applied	 to	 the

model convective	 problem	 with	 constant	 CFL	 number	 r	 on

domain 0	 <	 j	 <	 J with	 s p ace	 extrapolation	 at	 the	 downstream

boundary.

The	 dis p ersion	 relation	 is

tan(a /2) 	 =	 r	 sin(m) (3.52)2

Th o	upstream	 boundary	 condition has

1

b 1	1 (3.82)

The	 downstream	 boundary has

b 2	 =	 2i	 exp(-im/2)	 sin($/2) (3.88)

PM

} Following	 the	 stability	 analysis	 of	 chapter	 5, E=0

since r	 is	 constant,	 and	 the	 group	 CFL	 numbers	 are	 given by,

r	 =	 r	 cos(s,)	 cos 2 (a/2) (3.47)
g	 i

rr	 cos(s 2 )	 cos2(3/2)
9	 ► 1

-	 r	 cos(m l )	 cos 2 (2/2) (7.11)

L'

J
b 2 (A,s 2 )	 b l	 ("',	 )	 rj

so	 - ara	
b	 (A,a 2 )	 b 1 (^,a= )	 +	 m2	 -	 ^,	 dj

_.	 J0

+ J

0	 g )2	 \	
g ^I

(J-1/2)	 (	 $ 2	 -	 m l	 )

(J-1/2)	 (	 r	 -	 2m 1	) (7.12)

1/21r	 =	 n	 whe y s	 n	 is	 an	 integer	 implies

1

U
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?f 	 2rn
2	 2J- 1

1n ! b 	
.m, ) b l (n,m i )

v	
I	

b 2 (Cl,m 2 )	 bl

i
N In[ sin	 2) / sin((0	 2) J

1 In[ cot($,/2) J

(7.13;

J

Re f 1zg12- ( =^)1 
dj

(7.14)

J

where	 N	
Jr	

[rg(s,,j)J-` - [r g (m 2 .j)1 	 dj	 (5.20)

0

2J
(7.15)

r cos($,) cos2 (n/2)

The decay rate a was iefinid as

a	 - Im( 3 + if'	 )	 ( 5 .30 )

a	 2J cos(m l ) cos 2 (A/2) ln[cot(ml/2)]

r cos (0	 In 	 cat( t,/2)

2J ( 1 + tan 2 (11/2) J

2r cos (9 1 ) In[ cot(t,/2) J	 (7.16)
J [ 4	 r2 sin' (9 1 ) j

Figure 5 shows the decay rate J as a function or r

for various values of t.

When a system of _f inite difference equations is

solved us-, ng a time-independent approach to a steady state

sol ,.ition, usually the initial conditions and the final

solution are smooth so the initial error is smooth i.e. 	 the

error is predominantly in the low wavenumber, long

wavelength eigenm..odes. 	 For this problem suppose that the

IM

6c,
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initial error is in the wavenumber range 0 < $ < $o where $o

is a constant, $o < n/2

3	 2r	 (	 sin($)	 2r2sin($)cos2($) J

	
ln[cot($/2)]

3$	 J	 4 + r 2 sin e (^ ) + (4 + r 2 sin e ($) l 2 )

cos($)	 <	 0	 (7.17)
sin($1'4 + r2Sin2($)I

so over the range given above a has a minimum at $,. To

°aximise the overall rate of convergence the CFL number r

can be changed by altering St.

ea - cos(s) ( 4 - r 2 sin 2 ((D) l	 ln(cot($ /2)j 	(7.18)
3r	 2J [ 4 - r 

2 
s i n 2 ( 

0 ) 1

> 0	 for	 0 < r < 2/sin(o)

	

for	 2/sin(o) < r

so a(m o ) is maximised by choosing

The smoother the initial error the lower the valt•.e

of $o and the higher the optimum CFL number. 	 If the initial	 7

error is not at all smooth with Zo ap p roaching r/2, the
i
f

optimum CFL number drops Sown towards 2.

i

LE
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7.3 Discontinuous --FL Number In Trapezoidal Method

Consider the following Trapezoidal method applied to

the model convective problem.

r.	 r
[ a t + —=-2^
	

t v x + —2 u  AX; Un+ 2 = 0	 (7.20)

Suppose that r is discontinuous

r	 j < 0

r	 ,	 j > 0t

On *..he two sides of the discon—nuity a general

solution of frequency n can be written as,

A,(j,n)exp[i(jV,-nn); + A 2 (j,n)exp[i(js 2 -riI)j 	j < 0

Ui	 (7.21)

A,(j,n)exp[i(js,- na)] + A,(3,n)exp[i(jm,-nQ)]	 j ^> 0

s; and s 2 satisfy the dispersion relation

r
tan(n/2)

2
' sin(s)	 (3.52)

with	 $2 = 7r — al

and	 0 < Re($, ) < x/2

s, and v, satisfy the dis p ersion relation

r
tan(Q/2)	 2+ sin(m)	 (3.52)

with	 01, - a - $,

and	 0 < Re(s, ) < >r/2

to
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The amplitudes A 1 , A 2 are related to A,, A 4 at j-0

by two equations. The first comes from the requirement that

the two expressions for U  are equivalent at j=0.

Thus	 Al + A2 = As + A,	 ( 7 .22 )

The second requirement is that

d t + 2 r.	 ut7x + 2 r + 4 6 x ] U0 + '	 0	 (7.23)

which implies

1( 
d	

+ r	 µ 0 ] Un+2	
- ( d	 + r	 a A ] Un+2	 (7.24)

t	 - t x	 0	 t	 + t x	 0

The left hand side involves U  at j=0,-1 so the
J

first expression for U n is used. The right hand side

involves U  at j = 0,1 so the second expression is used.
c	 J

Neglecting derivatives of the amplitudes the resulting

equation is,

A 1 { -2i sin(:2/2) + r - cos(n/2)[1-exp(-is,)] }

+ A 2 11 	 sin(Q/2) + r - cos(A/2)^1-exp(-is 2 )] }	 y

i	 = - A,! -2i sin(,'1/2) + r+cos(n/2)[1-exp(-i©,)] } 	 (7.25)

- A,{ -2i sin(A/2) + r + cos(a/2)[1-exp(-is,)] }

Substituting for t_ntQ/2) usin g the dispersion

relations and using

exp(im) - cos(s) + i sin(s)	 (7.26)

i
this reduces to

r - { A 1 (1-cos(a l )] + A 2 [1-cos(s i )] }

= r+ { A,[1-cos(s 2 )] + A,[1-cos(s.)I }	 (7.27)

s^



' 86	 ORIGINAL
OF POOR QUALI iY

In	 the	 general	 problem	 the	 two	 equations	 relate the

am p litudes	 on	 either	 side	 of	 the	 discontinuity	 at	 j s 0. Now

consider	 the	 particular	 problem	 in	 which	 m l ,	 m 2 ,	 a,,	 y, are

all	 real	 and	 A,	 is	 zero.	 This	 is	 the	 situation	 when	 a

wavepacket with	 wavenumber	 m l ,	 and positive	 group	 CFL number

travels	 from	 j<0	 to	 the	 interface	 at	 j=0	 producing	 a

transmitted	 wave p acket	 with	 wavenumber	 r 2	 and	 positive group

CFL number	 and a	 reflected wavepacket with	 wavenumber 02	 and

negative	 grou p	CFL	 number.	 The	 reflection	 coefficient R and

transmisj: on	 coefficient	 T	 are	 defined	 by,

r	 =	 ;}	 /	 A l ( 7.28 )

E T	 A3	 /	 A, (7.29)

Since A,=O

A l + A 2 = A,	 ( 7 .30 )

so r- (Ai (1 -cos (m 1 ) ] + A= [ 1 - cos (a 2 ) ] } - r + [ A 1 +A 2 ] ( 1-cos ( a 2 ) ]

(7.31 )	 fI

r - [1- cos(m l )] - ry(1 -cos(m2)]
Hence	 ^ _ -	 ( 7.32 )

r-[1-COS((02)] - r+[1-cos(03)]

aad	 1 = 1 + R	 I

r [1- COS(0 2 )] - r ;1- cos(sj)]

3 r - [1 - COS V 2 )] - r+[1- COS(02)]	 (7.33)

1
r

A'
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S. Assorted Loose Ends	 OF POUR 4Jf;tlfY

8.1 Degeneracy

So	 far	 in	 this	 paper	 it has	 been	 implicitly assumed

that	 no	 two	 ei( • enmodes	 have	 the	 same	 frequency	 R	 and

wavenumber	 I.	 This	 section	 cons_uers	 the	 degenerate case

in	 which	 this	 happens.	 An	 example	 is	 the	 Trapezoidal

method.	 The	 dispersion	 relation	 is

r tan,'Q/2)	 z	 sin($) (3.41)

• which	 has	 wavenumber	 solutions	 m	 and s	 1T	 These are
1	 2	 1

ident. :al	 when
r

which	 occurs	 at	 the	 degenerate	 frag lzency	 A'	 given	 by,

tan(A/2)	 =	 2 (8.2)

atl	
,Note	 that	 r

q	 ^s	 j	 const

=	 r	 cos(a' )	 cos y (01/2)

=	 0 (8.3)

This	 is	 characteristic	 of	 degeneracy	 because in	 the

} neighbourhool	 of	 the	 double	 zero

S2	 -	 S2	 ^ a(	 m	 -	 m	 ) a	 a	 =	 constant ( 8 . 4 )

an
so	 r	 —

g	 ax

2a(	 $

h , 0	 at	 9	 D' (8.5)

it

For A ¢ 0 1 the general solution for constant r is

0
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J , 

A,exp(i(j0,-na)] + A 2 exp(i(jm 2 -na)]	 (8.6)

Consider the limit as R approaches Q'

_	 l

Hence A l exp [ijm, ] + A 2 [ 2 ]

- exp(ij(0	 { A, exp (ij(m,- m')] + A 2 exp (ij(0 2 - m')] }

= exp[ijm'] { A,exp(tj(0,- m')] + A 2 exp(ij($'- $,)] }

2 exp(i 3 o'] { (A,+A:)cos(j(m_-x')] + i(A,- A 2 )sir j(9,—m')] }

= exp [ i j I 	 { A, + A, j }	 ( 8.9)

where A, - A, + A 2	(e . 1 0 )

and	 A, -	 i(A, - A 2 ) fm, - V')	 (8.11)

If A, and A, are now considered to be constants in

the limiting process the general form of the degenerate

eigenfunction is,

UnJ , (A3 + A .J ) exp(i(jo'-nil')]	 (8.12)

Another way of deriving this result is through the

asymptotic am p litude equation. with the amplitude A

tine-independent, r constant, and r
9 

equal to zero the

largest_ term is the second order derivative of A so,

a2 	
0	 (8.13)aj2

which implies	 A = A, + A, j	 (8.14)

In all the examples I have analysed I have not yet

is

0C
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found a degenerate eigenfunction which satisfies the

asymptotic boundary conditions and so is a degenerate

eigenmode. The degenerate frequency does however satisfy

the determinant condition

det(B) - 0	 (6.7)

because two of the wavenumbers are equal so their columns

are identical and B is singular. This is not a problem in

the stability analysis because the separation of

eigenfrequencies, using the result from chapter 5 , is

approximately,

J	 -1
21r 2ir	 I	 ^r (m ,j)] - ' - i t (^	 1N	

g	
1	

g	
i .j)] -	dj

0

0	 as 2 • 'I'

so there is usually a true eigenfrequency which differs

from the degenerate frequency by less than the overall

asymptotic error.

U

1l

^J
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8.2 Eigenmodes and Eigenfrequencies

In chapters 5 and 6 it was stated that the

eigenmodes of a linear system of finite difference

equations with time-independent coefficients and boundary

conditions vary exponentially with time. This section

outlines the proof.

Let	 Un	 zn V.	 (8.15)
J	 J

If the domain is 0 < j < J then there must be J+1

finite difference equations so V. satisfy
7

C V - 0	 (8.16)

where V is the J+1 vector of V. elements and C is a (J+1)2
J

matrix whose elements are polynomials of z.

For there to be a non-zero solution requires

det(^:) - 0	 (8.17)

This is the equation that determines the eigenvalues

z of the eigenmodes.	 Apart from the problem of possible

degeneracy the on.y remaining difficulty i_s to show that the

number of eigenmodes equals the number of independent

initial conditions needed to start a numerical solution.

For the Backward Euler method with space extrapolation at

the downstream boundary there are J-1 independent initial

conditions since

U0 = 0	 (8.16)

and	 (JJ , U 0	(8.19)

n :

1	 O
^r
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L ^ • ^I w, w•f T •• '•	 ^,^• \J 1'

1

-r, z/2	 z- 1	 r, z/2

-r 2 z,'2	 Z-1	 r2 z/2

C -r, z/2	 z-1	 r, z/2

r	 -rJ-1z/2
	 z-1	 rJ-1z/2

1 

1

(8.20)

so det(C) is a polynomial in z of degree J-1 giving J-1

eigenmodes. Thus any solution can be expressed as a sum of

eigennodes which vary exponentially with time.
M.

I 

I 

_J
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8.3 Other Asymptotic Approaches

One approach which can be used when the variation

in coefficients is extremely small is to let,

nU.	 A(j,ni exp(i(jm- nil)] 	 (8.21)
3

where n and a are both constant and satisfy

a 0 (S2,m.j) - 0	 (8.22}

at some point j.

The asymptotic amplitude equation is the-;

a0A + al an 4 a2 34j - 0	 (8.23)

where a 0 , a l and a = are defined and calculated as before.

L	 min A / c 
A j

A 
j

0 (a 2 / a p ) (8.24)

so the fractional error using this method is 0 (a0/a2)2.

If the variations in the coefficients are small this is fine

but: if the variations are (I ( 1 ) the fractional error is O(l)

i.e. the method fails to give accurate asymptotic

approximatiot_s.	 The asymptotic approach used in this paper

allows total variations in the coefficients of 0(1) and onl.r

requires that the length scale of *_hose variations is much

greater than 1.

Another approach is to set

n
U,	 A(j,n) exp,i`C(j,n)l

M

with — 9
r	 ^^

(8.25)

(8.26)

i
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and	
an	

A
	

(8.27)

and A, :1, ; are all real and slowly varying. 	 This approacL•

is used extensively in the analysis of water waves and other

partial differential equations with dispersion and very

little dissipation. This approach applied to finite

difference equations would give poor results because

dissipation over one time step is 0(1) so if n is real A

reflects this dissipation and so T A M 0(1). The method

presented in this paper is able to use constant complex A

rather than variab'.e real A as in the above method because

the eigenmodes have constant complex eigenfrequencies

provided the finite difference equations are

time-independent.

F

O
Iii
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S.	 waveoacket	 Test	 P-ogram

9.1	 Program	 Description

The	 program	 solves	 the	 model	 ccnvective	 problem,

8u '	 c	
au	

-	 0	 (9.1)
3t	 ex

using	 a	 choice	 of	 Box	 or	 Trapezoidal	 methods	 on	 the	 domain,

0	 <	 j	 <	 200	 (9.2)

and	 time	 step	 range,

0	 <	 n	 <	 400	 (9.3)

The CFL ++number

c	 u t ~

r.	
= ^x	

(9.4)

is	 specified	 by	 the	 user	 at	 j-0,200	 and	 the	 program

interpolates	 fcr	 intermediate	 values	 by	 fitting	 an

exponential	 curve	 through	 r 0 	and	
x200'

rr	 1
r( j)	 -	 r 0	 expl20	 In( r200/r0)1	 (9.5)

Methods	 1-3	 are	 different	 Trapezoidal	 methods	 which

are	 identical	 if	 r	 is	 constant..	 For	 these	 methods	 the

program	 offers	 a	 choirs	 ^jf	 space	 extrapolation,	 space-time

extrapolation	 or	 box	 condition	 as	 the	 downstream	 boundary

condition.	 Method	 4	 is	 the	 Box	 merhod.	 The	 waveoacker.

theory	 for	 each	 of	 these	 methods	 is	 derived	 in	 the	 next

section.

:he	 upst-eam	 boundary	 condition	 is,

UO	 =	 0	 (9.5)

The	 initial	 conditions	 are	 given	 by,

__ Q

'.'
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n

U 
	 = A(j,n) exp(i'f(j,n))	 (9.7)

where	 A(j,n)	 cxp'L- ( j-100)=/200J	 (9.8)

ar.d	 Y(j,n)	 ml (ft,j)	 (9.9)

k-0

This produces a wavepacket al,out 40 :mesh points

long. The user specifies 7 by specifying the critical CFL

number which is defined as,

r	 - 2 tar.(a/2)	 (9.10)
crit

so	 n - 2 tan-` ( r Crl t /2)	
(9.11)

The significance of the critical CFL number is that

w h E n ,

r - r	 (9.12)
crlt

the group CFL number for the Trapezoidal methods is zero.

Wave propagation can only occur for r > r	 .
Grit

At each time step the prugram calculates

'experimental' values for the position X(n) and energy =(n)

of the wavepackat.	 If U was continuous X and F would be

defined as,

x2r00

E(n) -	 1	 JU(x,t )1 1 dx
/	 n
x0

200

fU( j ,n) = dj di

0

(9.13)

^ E	 o
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x2r00

and	 X(n )
E(n) J IU(x,tn x	 dx

X
0

200

jU(j,n)I2 x 	 )	 dX	 d 	 (9.14)
E(n) J

0

so	 since	 U	 is	 discrete: X(n) and E(n)	 are	 defined	 as,

0

E(n) IUjli c j (9.15)

j-0

200

X(n)	
E(n)	

!Un	
x 
	
a 
	 (9.16)

]M0

where	 a j 	 2(xj+l -xj-1)	 (9.17)

In the program c -s taken to be _onstant so

variations in r are due to variations in Ax.

c A tAx -

	

	 (9.18)
r

so	 x3+1	 xj-1 ° (rj
+,,	

i

A physical domain 0<x<1 is used so,

200
ff/
	

'7
	

(rj_,)xjrj-1I 	 L'i (y.19
1	

)

After completing the 400 time steps the program

calculates predicted values for X(n) and E(n) using the

wavepacket equations "erived in the next section with the

experimental values at n-1 as initial r.or-lit.ons.

n %

1

it
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9.2 Theory

Method	 1	 is	 a	 Trapezoidal method which	 -s second

order	 accurate	 in	 Ax	 only	 when	 Ax is	 constant.

[	 6 t 	+ 2 µ t 6^ x 	 J	 III + 0 (9.20)

2 c A t (9.21)r	 =
xj+l-xj-1

i

( Following	 the	 analyses	 of chapters	 3	 and 4,

r

i ao	 =	 -2i	 sin(9 / 2)	 +	 it	 cos(Q /2)	 sin($) (9.22)

a.	 -	 cos(.,1/2)	 +	 r sin ( A/2) sin(o) (9.23)
2

a2	 =	 r	 cos(A/2)	 cos(s) (9.24)}
c_

r

a,	 _	 -	 2	 cos ( a/2)	 sin ( V) (9.25)

?1:I

The dis p ersion relation is

tan(A / 2) a 2 sin($)	 (9.26)

	

so	 a, = 0	 (9.27)

	

and	 a l - cos(a/2) + sin(n/2) tan(Q/2)

_ ( cos' (n/2) + sin 2 (,1/2) ) / cos(2/2)

sec .1/2 	 (9.28)

r	 = a 2 / a l	 (3.26)
9

r cos(a) cos' ( 1-1/2)	 19.29)

_.)
do	

11	
) 'i,s const	

a1	 (4.v)

c

e'
	

o



c^
98	 ORiGf^If". Pry is 1;4'

OF POC R QUALITY

_ ar sin
( m) cos 2 ( 12/2)	 (9.30)

=	 aj

E = -ia,ll a  const 
/ a,"

 2	 - a o / a i 	(3.30)

_ - 1 ar cos
2 ( A/2) sin ( m) tan(m)	 (9.31)

2 13

Since a is proportional to r-1,

1 as	 1 ar
a a^	 — r a^	

(9.32)

so	
a	

( r a)	 r a— ( r /r)
a aj	 4	 33	

g

- r sin.(W) cos 2(A/2) am
aj

_ - r sin(a) cos 2 (A/2) i 0	 / a2
j

	

C'	
ar 

co g2 ( A/2) sin(o) tan ( m)	 (9.33)
aj

Hence the ecuations of motion for the wavepacket for

real ;1 and a are
1

	liz	

dr cos(m) cos2(0/2) 	(9.34

= - ari 	
sin(o) cos2(0/2) 	(9.30

o a 

j d	 1n(E)	 0 	(9.35)
zdo

Method 2 is also a Tra p ezoidal method which is

second order accurate in dx only when Ax is constant.

+	 r	 1( 
d	

+	 7	 µ9	 +	 2-	
µ t x7	 U. 

2 
= 0	 (9.36)

tX

t	 _

1.-.
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r.	 =	
cat	 (9.37)

J+}	
xJ+1'xJ

a, _ -2i sin(n/2) +Z cos(n/2) I r j+# [exp(im)-1] +

r,-,[1-exp(-im)])

	

-2i sin(n/2) +2	 ^cos(n/2) Pr	 + 2 
ar 

)[exp(im)-1]t

	

ll	 7

1
(r	 - 1 

3r 
)[1-exp(-i(V)] I	 + H.O.T.

3	 2 3 j	 J

_ -2i sin(0/2) + it cos(n/2) sin(4) +

1 3r cos(n/2)[cos(s)-1! 	 + H.O.T.	 (9.38)z aI

The H.O.T. are neglected because they are of the

same order of magnitude as other terms already neglected in

the derivation of the asymptotic amplitude equation. To

this same level of as ymptotic accuracy a,, a 2 and a, are

exactly the same as in the analysis of method 1.

The dispersion relation rema'_ns,

tan(n/2)	 sin($)	 (9.26)

F so	 now	 a, cos(n/2)	 [cos(m)-1' (9.39)2	
3i

Afte:- some	 algebra	 i t 	 follows	 that the	 equations	 of

s,
:notion	 are,

r	 cos((P)	 cos 2 (0/2) (9.40)
do

E;
a ' dt

an
1	 3z	

sin(a)	 cos 2 (n /2)
- z a, (9.41)

1n(E)	 =	 ar	
[1-cos(o)]	 cos 2 (n/2) (9.42)

do 7

method 2 is a Trapezoidal method which is second

o
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order accurate in Ax for cases with smoothly varying Ax.

(r j +j
)
 2	

(
r 7 - ,) 2	

,

( 6 t + r.	 +r	 utAx + = 	 +r
	 ut7	

n+
x 	 Jj	 0	 .4

J + ^!	 J-	 J+	 j-2

The dis p ersion relation is the same as for methods

1 and 2 so after some algebra,

ao	 2.2 cos(A/2) (cos(;)-1;	 (9.44)

and the equations of motion are,

d1 = r cos(s) cos 2 (A/2)	 (9.45)
^1 n

dm	
3r sin(m) cos 2 (0 /2) 	 (9.46)

d  3 - 3 

do In(E) = 2 
ar 

(1- cos(m)1 cos 2 (0 /2) 	 (9.47)
J

When the :raveaackets of methods 1-3 reach the

downstream boudary at j=200 they are reflected into

backward travelling wavepacke*_s. 	 The energy E 2 and the

wavenumber S 2 of the reflected wavepacket are related to	 9

the energy E 1 and wavenumber $, of the inci3ent wavepacket

1-s the equations,

^V2	
- ?r - a 1 	(9.48)

ln(E 2 ) = In( E,) + 2 lnj R 1 1	 (9.49)

where R  is the amplitude reflection coefficient.

For s p ace extra p olation (see 43.5.2)

sin( s,/ 2 )

RJ I = 9in(m2/2)

tan($,/2)	 (9.50)

0

R	 O
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For space-time extrapolation (see 43.5.3)

sin(($,-QU21
IRJ I a	 sin(((P2-R)/21

For the box boundary condition (see 43.5.4)

cos($ 1 /2) tan(n/2) - r sin($,/2)

IR J I	 cos($./2) tan(a/2) - r sin($,/2)

tan' ((P1/2)

after substituting for tan(a/2) using the dispersion

relation and replacing $= byr

(9.51)

(9.52)

The reflection relations at the upstream boundary

are,

$ I - 'r - $ 2	 (9.53)

In ( E 1 ) - In( E 2 )	 ( 9 .54 )

since R 0 = -1 (see 33.5.1)

Method 4 is the Box methcd discussed in 33.3.2

( u x d t + r
i 

u t d x 1 U^^ 2 = 0	 (9.55)

The dis p ersion relation is

tan(A/2)	 - r	 tan($/2)	 (9.56)
R
>E

and the	 equations of	 motion	 for	 the	 wsvepacket	 are,

do	
.	 r	 (	 1 +	 tan 2 (m/2)	 1	 cos 2 (0/2)	 (9.57)

do	
= -2	

;r
tan($/2)	 cos 2 (Q/2)	 (9.58)

do

r_
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do In(E) - -2 -	 tan 2 (0/2) cos 2 (0/2)	 (9.59)

Wi

v	 U
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9.3 Numerical Results

9.3.1 Trapezoidal Method with variable CFI. Number

This example uses,

Method type	 = 2 ; one of the Trapezoidal methods

Boundary type = 1	 ; space extr.-polation

r0	 200
= 0.05	 r	 - 0.2	 r crit = 0.04

Figure 6 shows R(n) ani ln[i(n)] both predicted and

experimental. This example shows the movement of a

wavepr,-.ket and the change in its energy due to the variation

in the CFL number. The agreement between the predicted and

experimental values is excellent. The energy of the

analytic solution io constant so the wavepacket theory has

successfully predicted almost all of charge in the numerical

energy due to variable Ax.

it

O
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FIGURE 6. EXAMPLE 9.3.1 TRAPEZOIDAL METHOD 2
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9.3.2 Box Method with Variable CFL Number

This example uses,

Method type = 4	 Box method

r 0 = 0.05	
r200	

0.2	
rcr+t ^ 0.04

Figure 7 shows X(n) and ln[E(n)].	 As in 49.3.1 the

agreement between experiment and theory is excellent.

.1

n ;
	

11

C
	 n O
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9.3.3 Trapezoidal Metnod with Space Extrapolation

This example uses,

Method type	 = 1	 ; one of the Trapezoidal methods

Boundary type - 1	 ; space extrapolation

r0
	 1.0	 r 200 = 1.0	 r 

crit 
W 0.3

Figure 8 shows X(n) and ln(E(n)).	 This example

illustrates the effect of the downstream boundary reflecting

a wavepacket with reduced energy.	 Because of the finite

length of the wavepacket the drop in energy is smeared and

X(n) does not quite reach 1.0 .

A

0
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FIGURE 8. EXAMPLE 9,3,3 TRAPEZOIDAL METHOD 1 WITH SPACE

EXTRAPOLATION

TV o _^
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9.3.4 Trapezoidal Method with Spacp-time Extrapolation

This example is the same as 19.3.3 except that

Bcundary type - 2	 , space-tie extrapolation

Fiqure 9 shows X n) end lr,(Ekni]. 	 The energy of

the reflected wavepacket is less than in 19.3.3. 	 As a

consequence the first orier terms which are neglected in

the asymptotic bounr.-ry conditions are more significant and

so the energy decrease :s more smeared and there is a

larger discre p ant:, between the experimental and predicted

values
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9.3.5 TraDezDidal Method with Bcx Boundary Condition

This example is the same as 39.3.3 except that,

Boundary type - 3	 ; box boundary condition

Figure 10 shows X(n) and in[E(n)]. 	 The energy drop

in this example is three times that in 49.3.3 because,

ln(E 2 ) - in(E1) + 2 ln(I RJ I )	 ( 9.49)

tan(m l /2)	 space extrapolation	 (9.50)
and	 IRJI'

tan'(m l /2)	 space-time extrapolation	 (9.52)

Thus the box boundary condition increases the

overall convergence rate by factsr 3 with minimal extra

computational effort.
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9.3.E waveoacket Outflow in Box Method

This example uses,

:Method *youe	 = 4	 ; Box method

r 3	0.4	
r200 = 0.4
	 r	 0.2

czit

Figure 11 shows X(n) and 1n[E(n)]. 	 Note that when

the wavepacket reaches the downstream boundary the

experimental value for X(n) remains near 1.0 and In(E)

decreases rapidly towards

E!:
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9.3.7 Instability of Trapezoidal Method with Space-time

Extrapolation

This example uses,

Method type	 - 1	 one of the Trapezoidal methods

Boundary.type = 2	 space-time extraooiation

r 0 = 3.0	 r200 = 3.0	 rcrit = 2.1

Figure 12 show; X(n) and ln[E(n);.	 Both the

theoretical prediction and the numerical result show that

the ener gy increases every time the wavepacket reflects of`

the downstream boundary and so the numerical scheme is

unstable. The CFL stability condition for the case with

constant CFL number is obtained by considering the

amp litude reflection coefficient.

sin l -")

 
IRJ I	 ,4	 (9.52)

sing	 2

The dispersion relation is

tan(n/2) _ 1 sin(m) 	 (9.26)

Now consider the two cases r<2 and r>2 .

a)	 r < 2

0 < s, < a/2	 __>	 tan (n/2 ) < 1

(ir/2 - U > 0	 and (a/2 - 1,) > 0

IT > I	 ( n/2-0 ) + Or /2-o,) I > I	 (,r /2-A ) - (,r /2 -0, ) I > 0

rm 2 a	 rml-^^ 1

__>	 I sing	
2) I	

>	 sin	 2 
J

V
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_>>	 ^RJ	 < 1

b)	 r > 2

For s = n/2	 tan(,1/2) > 1	 =_>	 Q > n/2	 =_>	 S2>s

For a = n	 tan(A/2) = 0	 ==>	 a<$

As 9 2 varies from n/2 to n,	 0 - 0 2 	varies

continuously so at some intermediate value,

'Z = m2

and hence IRJ I _

The numerical scheme is thus stable if, and only if

the CFL number is less than 2. This stability condition

has previously been derived by Beam, Warming and Yee (5].

In a numerical experiment an infinite amplitude

reflection coefficient does not occur because the first

order derivatives of the amplitude which are neglected in

the asym p totic boundary conditions become significant. 	 In

fact in all the unstable cases I have tried the acrreem-tnt

between experiment and predict-ion is poor because of the

neglected first order terms in the boundary condition and

the neglected second order terms in the amplitude equation.

The exam p le given is ono of the best. The qualitative

e_`ects of these neglected terms can be understood as

follows;

Since 
an	

r 
aA	

all the second order terms in the
g	 7

2	 I	 I
amplitude equation	

an A 	ana	
a A can be expressed in

I	 J	 J

terms of a'A	 Thus the amplitude equation including

second order terms has the .form,

aA
an + r	 aA =
	 2A	 (9.61)

g	 7	
a 
]I

L
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i

where v is a function of R,m and corresponds to an

artificial viscosity. 	 The effect of this artificial

viscosity is to smear the wavepacket increasinq its length

and decreasing its maximum amplitude. This has the largest

effect on X(n) since the longer the wavepacket the further

X(n) must be from the ends of the domain. 	 X(n) still

oscillates approximately in phase with the predictions but

the amplitude of the oscillations decreases steadily. 	 The

effect on tie energy is much smaller.

The downstream boundary condition including firs=

order terms can be written as,

A 2 (j,n) + T 2 arA2(J,n) - R J [A 1 (J,n)	 T1 an i (J,n))	 (9.62)

where T 1 ,T 2 are functions of Z,m.	 if T 1 and T. are both	
N n

small compared to T A then (9.62) is approximately e q ual to

A 2 (J,n +T 2 ) - R J A 1 (j,n +T 1 )
	 (9.63)

Thus the amplitude is reflected with a delay of

T2-T1 This explains the fact that in almost all the

examples in this chapter the reflected wavepacket lags

rehind the position predicted by wavepacket theory.

`d	 o
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9.3 .8 Instability of Trapezoidal Method Due to Varying M esh

This example uses,

Method type	 = 3 ; one of the Trapezoidal methods

Boundary type = 1 , space extrapolation

1.0	 r	 m 10.0	 r	 = 0.8r0	
200	 grit

Figure 13 shows X(n) and ln[E(n)].	 The agreement

between experiment and prediction is good for the energy

but as in 49.3.7 the agreement is poor for X(n) because of

the effect of the second order terms which are neglected in

the asymptotic amplitude equation.. The significance of

this example is that this numerical scheme is stable for

uniform meshes which give constant C F L number r but if the

mesh, and hence r, varies sufficiently as in this example

the scheme becomes unstable. This instability is best

understood by expanding the finite differ..._ equation in

computational space.

ff 2	 (	 2
I r J + 2	 1r7-2	 n+L

5 t + r.	 +r	 t^x + r	 +r	
ut7x J U^ 2 - 0	 (9.43)

7 + 2	 J'2	 J+i	 J'2

r.	 1
so ( a t + -1 u t a 2x + a
	 µ*5 2 + H.O.T. ] U^ +2 s 0	 (9.64)

The *term 
3r 

µ t 52 corresponds to a viscous term in
J

computational space.	 If 
ar 

is positive it corresponds to
J

negative artificial viscosity and so causes the instability

in the above example.

1'i

^N

9
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5.4 Proaram Listing

The program is written in FORTRAN 4 PLUS to be run on a
POP 11-70 with Versatec graphics subroutines.

C •••'• PROGRAM 'NAVE

DIMENSION U(0:202),V(0:202),A(0:200,3),W(0:200),XJ(0:202)
DIMENSION EX(402),EE(402),TX(402),TE(402),T(402)

EQUIVALENCE (TX(1),U(0)),(TX(204),V(0)),(TE(1),A(0,1)),
?	 (T(1),A(0,3),(T(202),W(0))

EXTERNAL R,J
REAL K,J
COMMON /RCONST/R0,RI,MT
COMMON /X/X(0:200)

C "'••• Input parameters

F TYPE ♦ ,'INPUT TERMINAL TYPE'
! TYPE • ,'0 VERSATEC'

TYPE *,'3 VT100 WITH GRArHICS'
l' TYPE ','4 CHROMATICS'

TYPE *,'5 VISUAL 500'
ACCEPT *,NT

TYPE

TYPE *,'INPUT =HOD TYPE'
TYPE *,'1-3 DIFFERENT TRAPEZOIDAL METHODS - SEE NOTES'
TYPE • ,'4 BOX METHOD'

t
ACCEPT -,MT

IF	 (MT.EQ.4)	 GOTO	 1
TYPE	 ♦ 	 '	 '
TYPE *,'INPUT DOWNSTREAM BOUNDARY TYPE'
TYPE *,'? SPACE EXTRAPOLATION'.^
TYPE *,'2 SPACE-TIME EXTRAPOLATION'
TYPE *,'3 BOX METHOD'
ACCEPT •,MDB

1	 TYPE	 •,'	 '
TYPE •, 'INPUT CFL 91TMBERS R(0),R(200),RCRIT'
ACCEPT•*,R0,RI,RC

C ***** Jmega definition explained in notesr
OMEGAs2.*ATAN (0.5*RC)

O
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PI-3.14159
JMA.X- 2 0 0
K-400

XJ(0)-0.

DO 2 J1-1,JMAX
OX-1./R(FLOAT(J1)-0.5)
XJ(J1)-XJ(J1-1)+DX
U(J1)-0.

2	 V(J1)-0.

DO 3 J1-1,JMAX
XJ(J1)-XJ(J1)/XJ(JMAX)

3	 X(J1)-KJ(J1)

C *•"' Initialise U(j,0)+iV(j,0)

PSI-0.
J2-JMAX/2

DO 4 J1-J2-40,J2+40
IF(MT.LE.3) PHI-ASIN(RC/R(FLOAT(J1)))
IF(MT.EQ.4) PHI-2.•A:AN(0.5•RC/R(FLOAT(J1)))
PSI-PSI+PHI
AMP-EXP(-(J1-J2)••2/200.)
U(,^1)-AMP*COS(PSI)

4	 V(J1)=A.MP*SIN1PS;)

W(0)-0.
KOUNT-0

9	 TYPE *,'NO. OF STEPS TILL NEXT PLuT OF UV
ACCEPT * , `ISTEP
IF (21ST°P.LE.0) 50,0 5

DO 5 KOUNT2-1,NSTEP
KOUNT- )COUNT+ 1
IF ( KO'JNT . GT . M ) GOTO 7

C ••••• Calculate new U+iV

CALL . METHOD(U,A,W,JMAX,R,MT,MDB)
CALL METH0D(V,A,W,JMAX,R,MT,MDB)

C " " • Calculate new X,Loq(E) of wavepacket

S-0.

SJ-0.
XJ(JMAX+1)-XJ(JMAX)

I.-

. m

of
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DO B ;,1-1,JMAX

P-(U(J1)••2+V(J1)••2)•(XJ(J1+1)-XJ(J1-1))/2.
S-S+P

	

9	 SJ-SJ+P•XJ(J1)

EX (KOUNT) -SJ/S

	

6	 EE(KOUNT)-LOG(S)

	

5	 CALL OUTPTI(XJ	 ,203,'X	 ','U	 ',NT)
COTO 9

C ••••' Calculate predicted X(n),Log(E(n))
C "•'• Initial salu j(1) is passed to prediction subroutine PREI
C ••••• as TX(1)

	

7	 ?'X(1)^J(EX(1))
TEM-EE(1 )

CALL PRED(T,'17X,TE,JMAX,M,RC,R,MT,MDH)

C "•" Plot results

	

12	 TYPE ','PLOT E,X?'
ACCEPT 1000,C
IF(C.EQ.'N	 ') COTO 1f)
IF(C.EQ.'E	 ') CALL OUTPT.2(2,EE,TE,402,'N 	 ','LN E',NT)
IF(C.EQ.'X	 ') CALL 0UTPT2(T,EX,TX,402,'N','X 	 ',NT)
IF(C.EQ.'Y	 ') COTO 11
COTO 12

	

11	 CG.LL OUTPT3(T,EX,TX,CE,'_'E,402,'N	 ','X	 ','LN E',NT)

r
	 10	 CALL PLOT(0.,0.,999)

STOP

1000	 FORMAT(A4)
END

C •'••• Function caiculatus R(i)

FC:JC'TION R(J )
COMMON /RCONST/RO,RI,MT
IqEAL J

R-R0•'•XP(L0G(R1/R0)•J/200.)
P1;TfJ >;:a

E'^1D
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C ***** °unction calculates X(j)

FUNCTION X(J)
COMMON /X/XJ(0:200)
REAL J

IF(J.GT.200.) J=200.
IF(J.LT.0.) J-0.
J1-INT(J)
X-XJ(J1)+(J- -OAT(J1))*(XJ(J1+1)-XJ(J1))
RETURN
SID

C ***** Function calculates j(X)

FUNCTION J(X)
COMMON /X/XJ(0:200)
REAL J

IF(X.GT.1.) X=1.
IF(X.LT.0.) X=0.
J1-0

1	 J1-J1+1
IF(XJ(J1).LT.X) GOTO 1

J-FLOAT(J1)-(XJ(J1)-X)/(XJ(J1)-XJ(J1-1))
RETURN
ND

SUBROUTINE .4ETHOD(U,A,W,JMAX,R,.4T,MDB)

C **'** METHOD sets up the coefficients of the tridiagonal equations
C	 for the calculation of the new U using .nethod `1T and downstream
C	 boundary type MOB, if needed. The tridiagonal equations are

solved by TRIO and the riew values of U are returned to T.

DIMaISION U(O:JMAX),A(O:JMAX,3),W(O:JMAX)

IF(MT.EQ.4) GOTO 1

C " "' Set up coefficients for Tra pezoidal and Backward Euler interior
C **"' schemes

i<
.r

'I0



+01

125

00 2 J- 1 , JMA.X-1
GOTO(3,4,5) MT

3	 C1=-0.25*R(FLOAT(J))
C2--C1

GOTO 6

4

	

	 C1=-0.25*R(FLOAT(J)-0.5)
C2-0._25*R(FLOAT(J)+0.5)
GOTO 6

5

	

	 R1-R(FLOAT(J)-0.5)
R2=R(FLOAT(J)t0.5)
C1=-0.5*R1**2/(R1+R2)
C2=0.5*R2**2/(R1+R2)

6

	

	 A(J,1)=C1

A(J,2)=1.-C.1-C2

A(J,3)=C2
2	 W(J)-U(J)+C1*(U(J)-U(J-1))+C"̂ *(U(J)-U(J+1))

GOTO(7,8,1) MDB

C ***** Se*_ up coefficients for s pace and space-time extrapolation at
C	 downstream boundary

7

	

	 A(JMAX,1)--1.
A(JM_AX,2) = 1 .
W(JMAX)=0.

GOTO 9

8 A(JMAX,1)=0.
A(,TMAX,2)=1.
W(JMAX)=U(JMA.X-1)
GOTC 9

C ***** Set up coefficients for box method on interior or at downstream
C	 boundary as appropriate

1 JMIN=JMAX
IF(MT.E2.4)JMIN=1
00 10 J=JMIN,JMAX
C=?(FLOAT(J)-0.5)
A(J,1)=1.-C

A(J,2)=1.+C
A(J,3)=0.

10	 W(J)=U(J-1)*A(J,2)+U(J)*A(J,1)

C ***** Se' up coefficients for upstream boundary

9 A(0,2)=1.
A(0,3)-0.

W(0)=0.
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14	 CALL TRID(U,A,W,JMAX)

RETURN
END

SUBROUTINE TRID(U,A,W,JMAX)

DIMENSION U(O:JMAX),A(O:JMAX,3),W(O:JMAX)

DO 1 J= 1 , JMAX
C	 C-A(J,1)/A(J-1,2)
Ft	 A(J,2)-A(J,2)-A(J-1,3)*C
t f 	1	 W(J)-W(J)-W(J-1)*C

U(JMAX)-W(JMAX)/A(JMAX,2)
DO 2 J-JMAX-1,0,-1

2	 U(J)-(W(J)-U(J+1)*A(J,3))/A(J,2)
RETURN	 '4
END

SUBROUTINE PR%D(T,TX,TE,JMAX,M,RC,R,MT,MDB)

DIMENSION T(M),7X(M),TE(M)
REAL J,K
EXTERNAL R,X

s^

DP.(J) = 100. * (R(J+O.O n 5) -R(J-0.005) )

PI=3.14159
J-TX(1)

T(1)=1.

IF(MT.EQ.4) GOTO 1

C ***** Prediction for trapezoidal schemes

K-ASIN(RC/R(J))
IF(RC.LT.O.) K=PI-K
OM-ATAN(RC/2.)*2.
C1=1./(1.+0.25*RC**2)

4	 DO 2 KOUNT-2,.K
T(KOUNT)=FLOAT(KOUNT)
DJ-R(J)*COS(K)*C1

!t
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DK DR(J)*SiN(K)*C1
J=J+0.5*(DJ+R(J+DJ)*COS(K+DK)*C1)
K=K+0.5*(DK-DR(J+DJ)*aIN(Y+[,K)`C1)
TX MOUNT)-X(J)

DE-DR(J+O.S*DJ)*L1*(:.-COS(K-0.5*DK))
IF(MT.EQ.1) TE(KOUNT)-TE(KOUNT-1)
IF(MT.EQ.2) TE(KOUNT)-TE(KCUNT-1)+DE
T_F(MT.EQ.3) TE(KOUNT)=TE(KOUNT-1)+2.*DE

IF(J.GT.O.) GOTO 3
J--J
K=ASIN(RC/R(J))
TX(KOIJNT)-X(J)

3	 IF(J.LT.FLOAT(JMAX)) GCTO 2
J-2.*F'-OAT(JMAX)-J
K=PI-ASIN(RC/R(J))
TX(KCUNT)-X(J)
GOTO(6,7,9) MDB

6	 TE(KCUNT)=TE(KOUNT)-2.*LOG(TAN(K/2.))
GOTO 2

7	 TE(KOUNT)-TE( vuNT)-2.*LOG(ABS(SIN((K-OM)/2.)/SIN((PI-K-OM)/2.)))
F

GOTO 2
8	 TE(KOUNT)=TE(KOUNT)-6.*LOG(TAN(K/2.))

2	 CONTINUE
RETURN

C ***** Prediction for box scheme

1	 T.1=0.25*RC*RC

T3=0 .5 *RC*T2
K=2.*A:AN(0.5*RC/R(J))

DO 9 KOUNT=2,M
)+	 T(KOUNT)-FLOAT(KOUNT)
#	 IF(J.GE.FLOAI(JMAX)) GOTO 10

I	
R1-R(J)

b	 DJ=(R1+T1/R1)*T2
OK--2.*DR(J)*T3,/R1
R2-R(J+DJ)
J=J+0.5*(DJ+(R2+T1/R2)*T2)
K=K+0.5*(DK+DR(J+DJ)*T3/R2)
TX(KOUNT)-X(J)
TE(KOUNT)-TE(KOUNT-1)-2.*T1*T2*DR(J+0.5*DJ)/(R1*R2)
GOTO 9

r

C

G	
V
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10	 TX(KOUNT)=1.
TE(KOUNT)-TE(KOUNT-1)

9 CONTINUE

RETURN

END

i SUBROUTINE OUTPTI(X,Y,NPLUS2,C1,C2,NT)
t

DIMENSION X(NPLUS2),Y(NPLUS2),XD(40)
N-NPLUS2-2
NPLUSI-N+1
XL-5.
YL=4.
CAl'_ PLOTS (O , O , NT )

CALL SCALE(X,XL,N,1)
CALL SCALE(Y,YL,N,1)

r- DO	 1	 I-1 , N/B
1	 XD(I)=(X(8.1+1)-X(8'1-7))/X(NPLUS2)

IF(NT.EQ.0) GOTO 2
CALL FACTOR(1 .8 )
CALL PLOT(1.,1.,-3)
CALL AXIS( O.,O.,C1,-4,XL,O.,X(NPLUSI),X(NPLUS2))
CALL AXIS(O.,O.,C2,4,YL,90.,Y(NPLUSI),Y(NPLUS2))

' CALL LINE(X,Y,N,1,1,3)
CALL GRID(0.,0.,1000+N /B,XD,-1,YL,-1)
GOTO 3

! 2	 CALL F ACTOR ( 1 .4 )
CALL, PLOT (5 . , 1 . , - 3 )
CALL AXIS(O%,O.,C1,-4,XL,90.,X(NPLUSI),X(NPLUS2))
CALL AXIS(O.,O.,C2,4,YL,180.,Y(NPLUSI),Y("IPLUS2))
Y(NPLUE2)--Y(NPLUS2)
CALI, NEWPEN(2 )
CALL LINE(Y,X,N,1,1,3)

F CALL NEWPEN(1)
CALL GRID(0.,0.,-1,- YL,1000+N/B,XD,-1)

3	 CALL PLOT(O.,O.,-999)
RETURN
END

128
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SUBROUTINE OUTPT2(X,Y1,Y2,NPLUS2,C1,C2,NT)

DIMENSION X(NPLUS2),Y1(NPLUS2),Y2(NPLUS2),Y(4)
N=NPLUS2-2
NPLUSI=N+1
XL=5.
YL=4.

Y( 1 )=1 . X10
Y(2)=-1.E10
DO 1 J= 1 , N
Y(1)=AMIN1(Y(1),Y1(J),Y2(J))

1	 Y(2)=AMAX1(Y(2),Y1(J),Y2(J))

CALL PLOTS(O,O,NT)
CALL FACTOR(2.0)
CALL PLOT(1.,0.75,-3)
CALL NEWPEN(2)
CALL SCALE(X,XL,N,1)
CALL SC.ALE(Y,YL,2,1)
CALL A.XIS( 0.,..C1,-4,XL7O.,X(NPLUSI),X(NPLUS2))
CALL AXIS(O.,O.,C2,4,YL,90.,Y(3),Y(4))
Y1(NPLUSI)=Y(3)
Y1(NPLUS2)=Y(4)
Y2(NPLUSI)-Y(3)
Y2(NPLUS2)=Y(4)
CALL NEWPEN(3)
CALL L:NE(X,Y1,N,1,25,1)
CALL LINE(X,Y2,N,1,0,0)
CALL PLOT(O.,O.,-999)
RE ."URN
END

SUBROUTINE OUTPT3(X,Y1,Y2,Z1,Z2,NPLUS2,CX,--Y,CZ,NT)

DIMENSION X(NPLUS2),Y1(NPLUS2),Y2(PIPLUS2),Y(4)
DIMENSION Z1(NPLUS2),Z2(NPLUS2),Z(4)
EQUIVALENCE (Y(1),Z(1))

N-NPLUS2-2
NPLUSI=N+1
XL=4.
YL=2.
ZL=2.

S
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CALL PLOTS(O,O,NT)
CALL FACTOR(1.9)
CALL SCALE(X,XL,N,1)

Y(1)=1 .E10
Y(2)--1.E10
DO 1 J=1,N
Y(1)-A.MIN1(Y(1),Y1(J),Y2(J))
Y(2)-AMAX1(Y(2),Y1(J),Y2(J))
CALL PLOT,3.5,0.5,-3)
CALL SCALE(Y,YL,2,1)
CALL NEWPEN(2)
CALL ACIS(O.,O.,CX,-4,XL,90.,X(NPLUS1),X(NPLUS2))
CALL AXIS(O.,O.,CY,4,YL,180.,Y(3),Y(4))
Y1(NPLUSI)-Y(3)
Y1(NPLUS2)--Y(4)
Y2(NPLUSI)=Y(3)
Y2(NPLUS2)--Y(4)
CALL NEWPEN(3)
CALL LINE(Y1,X,N,1,25,1)
CALL -,INE(Y2,X,N,1,0,0)
CALL 'EWPEN( 1 )
CALL 7-n(0.,0.,2,-1.,4,1.,-21846)
CALL NEW EN(2)
CALL PLOT(-2.3,0.4,3)
CALL PLOT(-2.3,1.0,2)
CALL SYMBOL(-2.23,1.1,0.14,'WAVEPACKET THEORY',90.,17)
CALL PLOT(-2.6,0.4,3)
CALI, SYMBOL(-2.6,0.5,0.08,1,0.,-2)
CALL. SYMBOL(-2.6,0.7,0.06,1,0.,-2)
CALL ::YMBOL(-2.6,0.9,0.08,1,0.,-2)
CALL PLOT(-2.6,1.0,2)
CALL SYMBOL(-2.53,1.1,0.14,'NUMERICAL EXPERIMENT',90.,20)

Z(1)=1.E10
Z(2)=-1.E10
DO 2 J-1 , N

` Z(1)=AMIN1(Z(1),Z1(J),Z2(J))
2	 Z(2)-AMAX1(Z(2),Z1(J),Z2(J))

CALL 2I,OT(3.2,0.,-3)
CALL SCALE (Z , ZL , 2 , 1 )
CALL MIS(O.,O., CX , -4,XL,90.,X(NPLUSI),X(NPLUS2))
CALL AXIS (O.,O.,CZ,4,ZL,180.,Z!3),Z(4))

f Z1(NPLUSI)-Z(3)
Z1(NPLUS2)--Z(4)
Z2(NPLUSI)-Z(3)
Z2(NPLUS2)--Z(4)
CALL NEWPEN(3)

' CALL LINE(Z1,X,N,1,25,1)
ti.

e
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CALL LINE(22,X,N,1,0,0)
CALL NEWPEN(1)
CALL GRID(0.,0.,2,- 1.,4,1.,-21846)

RETURN

END

1
	 0
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10. Conclusions

The validity of the asymptotic approach developed in

this paper is demonstrated by the numerical results in

chapter 9. The limitations of the wavepacket theory are due

to the asymptotic approximations involved in treating the

wavepacket as a particle. The stability analyses in

chapters 5 and 6 use fewer a p proximations and so the

asymptotic errors will be substantially smaller.	 In

particular when the coefficients are constant the analysis

in chapter 6 reduces to the P-stability analysis of Beam,

warming and Yee [51.

The calculation of the asymptotic amplitude equation

and asymptotic boundary conditions for a particular case is

no more difficult than a normal Von Neumann analysis. For

applicable cases the wavepacket theory and the stability

analysis of chapter 5 are straightforward. The general

stability analysis of chapter 6 will usually require

numerical computation. In the more complex cases the main

benefit from this theory will be the insight given by the

asymptotic amplitude equation and boundary conditions. The

amplitude equation gives the group velocities of the

different wavenumbers And the effect of varying

coefficients, which is of great interest since in 2-D

cascade geometries cell lengths can vary by factors of up to

100 in inviscid calculations and 1000 in viscous

calculations. The asymptotic boundary conditions give the
C

amplitude reflection coefficients which provide a practical

criterion for choosing the best numerical boundary

conditions.

11L

f

There are various possibil4ties for future research

`„e

.
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in this area.	 Further applications to rela y -vely simple

problems can be done to gain insight into understanding

harder problems and improving boundary conditions

Numerical procedures, such as those suggested in

§6.1.1-6.1.3 , can be developed to solve the equations given

by the stability analysis in chapter 6. 	 Finally t ►,e

asymptotic amplitude equation and boundary conditions can be

extended to 2-D and 3-0.
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Appendix

A.1 Finite Difference Onerator Notation

An operator notation for finite difference equations

simplifies the analysi3 of finite difference schemes and is

a necessity for making any general statements and proving

them.

The principal operators are 5 x , central difference,

IA	 central averaging E x	 x
, shift operator, 6 , forward

x 

difference and 0 , backward difference.	 Their definitions
x

are;

	

5 m 
U.	

Uj+m/2	
Ui

- m/2	
(A.1(a))

	

612U '	 (U	 + U.	 )	
(A.1(b))

	

7	 j +m/2	 J- ,n/2

E	 U	 U.	 (A.1(C))

	

mx ]	 ]+m
I

	

U.	 U.	 - U.	 (A	 d) )
mx	 ]	 ]+m	 ]

0	 U,	 U, - U	 (A.1(e))
mx	 ]	 ]	 ]-m

Usually these definitions will be used with m-1.

The :Hain exceptions are 6 2x which is a node-centered central

difference,

	62x U,J	 7
' U +1 - U 

J
. -

1	
(A.2)

and E
mx 

which can be used to define a general linear

operator,

M

-	 ,	 U,	 1A.3
L	

)^ j [1	 a
7	 jm	 ]+m

MM 1

1.S

4
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so	 L.	 )	 a
^ t► 

E 
m x	

(A.4)
L^ 
m- 1

When tnere are several independent variables the

subscript on the .f inite operator denotes the direction of

the shift, differencing or averaging. 	 For example if,

U^ = u(x i ,t n )	 (A.5)

then	 6 x U^ + 0 Uj+1 - Uj	 (A.6)

and	 d	 Un
+f
 . Un +1 - U 	 (A.7)

t	 3

The general shift operator expression for a finite

o p erator in 2-D is

L^ _	 )	 Cmp(]) E mx E pt	 (A.8)

mop

in applications however this expression can be very

complicated and it is usually sim p ler to express L as a

polynomial in the finite operators.	 As an example the

operator in 13.3.2 has the polynomial form

L^ - u x d t + r^ 4 t 6 x	 (A.9)

but in the shift operator form it is,

_ Imo -	 1 -r	 _-z
L 3 	 2 E x/2 Et/2 + 2 E -x/2 E t/2	 2 Ex/2E-t/2

1+r 
E_	 E-

x/2--t/2	
(A. 10 )

?art of the advanta g e in using o p erator notation

when analysing finite difference schemes arses 'because all

of the finite operators have the same a_genfunction which in

2-0 is exp ( i(34-nA)I.

n

I

f^
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6	 exp(i(j0-nA))	 exp(i((j+}) o - nQ)I - exp(i((j- 1 )m- nil) )

21 sin(0 /2) exp(i(j0-nQ)j	 (A.11(a))

a x exp(i(j0- na)) = 2 (exp(i((J+J)*-nQ)je 	 + exp(i((j-J)0-n:l)J^

= cos(4/2) exp(i(j0 - nQ ))	 (A.11(b))

E
x 

exp(i(j9-nn)) - exp(i((j +1)0 - nQ)j

exp(i9) exp(i(j0 -nil)] 	(A.11(c))

x 
exp(i(j0- nQ)j - exp(i((j+1;0-nQ)j - exp(i(j0-nn)j

( exp(is) - 1 ) exp(i(j9-nn))	 (A.11(d))

7 % exp(i(j0 - nQ)j = exp(i(j0-nQ)) - exp(i((j- 1)0-nQ)j

	exp(-i0) } exp(i(j0- nQ)j 	(A- 11(e))

and similarly,

6t exp[ik, - nil)] _ -21 sin( /2) exp(i(j0-nil',) 	 (A.11(f))

u t exp[i(j0-nQ)j	 cos(n/2) exp[i(je-nit))	 (A. 11(q))

E . 	= exp(-in) exp(i(j0-nQ)j 	 (A.11(h))

a  
exp(i(j0•-nA)j = { exp(-i:)	 - t } exp(i(ja-nA))	 (A.it(i))

o f exp(i (j0-n0)j _ { 1 - exp(i2) } exp[ i (j0-nil)]	 (A.11(j))

v

ti 1
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A.2 ?ri.nciDl.e of the Argument

Let f(z) be an analytic complex function with

simple poles in a region of the complex z-plane and let C

be a closed curve in tl^e region. Then the number of zeros

of F minus the number of poles of f lying inside C is equal

to,

1	 1 	 f , ( z)
271

	

	 J	 Z
^(Z)

C

=	 1
2 _ i [ ln,f) 1C

1
= 2 1T [ arg(f) i C	 (A.12)

[ ) C denotes the change as Z goes round C

anticlockwise.

arg(f) is defined by,

f(z) = R exp(i9)	 R,3 real	 R>0	 (A.13)
S

arg(f ) = A	 (A. 14)

with the restriction that a must vary continuously as z goes

round C.

The jroc.t	 is given	 in many	 standard	 text$	 on	 complex

analysis.,	 e.g. [61. Tnis	 provides	 a	 very	 simple	 test when

d
considering stability problems	 in	 which	 it	 is	 sufficient	 to

know whether there	 ara anv	 zeros	 in	 a	 critical	 region

without	 knowing their exact	 position.	 This	 is	 the	 basis	 of

z the Nyquist criterion in	 control	 theory	 stability	 analysis.

' The test	 can also	 be performed	 numerically	 relative]!

easily.	 The step	 size Iz	 in	 going	 round	 C	 is	 decreased,	 if

1: -

1
, (^	

-o-m^	

-	
-.1-	

-	 - --	
-AN," --^ ^ -	 - (- ̂

)
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1
necessarv, until 142rg(f)I < E.	 since 	 ( arg(f) ] c	is

an integer there is no rounding error. The only possible

error is if the magnitude o1? Aarg(f; over one step lies in

the range	 2nw -E < Garg(f) < 2nw +E 	for some integer n

other than zero. Decreasing E reduces the chance of an

error at the expense of increased computation. c-i/6 should

be adequate in most case.

rs'
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A.3 Definitions of Norms and Stabilit

The nn^.ms used i% this p aper are generalised L.

norms.	 For a continuous func t ion u(x,t) defined on 0<x<X

the norm H u(t)II is defined by,

X

Ilu(t)II 2 	 f Ju(x,t)1 2 a(x) dx	 (A.15)

0

where a ( x) is a p ositive non-zero function.

For a discrete function Un defined on C<j<J theJ
norm 11U *  11 which is a function of n is defined by,

J
IjUn,12	 jUn12 a j	(A.16)

0

where a is a positive non-zero function.
j

The s t ability used in this paper is asymptotic

Liapounov stability which is defined as,

Given 6>0 there exists e>0 such that

IIu(0)iI	 <	 E	 __>	 a)	 (Iu ( t)II	 <	 d

anal	 b)	 1 1 u(t) I I + 0 as t-m

Condition a) is Liapouncv stability which limits

how large an initially small disturbance can become.

Condition b) is asymptotic stability which s p ecifies that a
i.

si:fficiently small initial disturbance must ultimately tend

to zero.

For linear systems of e quations an equivalent

definition is

a) There exists M>0 such that H U (t)II < M IIu(0)iI



U,6*'
1 
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and	 b) J j u (t) j i • 0	 as t-

The corresponding de°ir,irions for a discrete

function are,

Given 5>0 there exists E>O such that

Ilu 0 ^^	 < E	 -_>	 IIUn,I	 < 6

and	 I j U n j j • 0 as n•m

and for linear discre*.e systema,

a) There exists M>') such that IjU n I, < M IIUO11

ar.d	 b) I I U n I	 - 0	 a • • a--

I 9
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