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LIQUID  MANAGEMENT IN LOW-GRAVITY  USING  BAFFLED  ROTATING  CONTAINERS 

INTRODUCTION 

Long duration  space missions can require the location  and  control  of large masses of liquids for long 
times. An extreme  example  of  this  problem is a  proposed  relativity  experiment (GP-B1) for which over 300 
kg  of liquid helium will be  vented  during  a  period of one year, during which its configuration must be 
symmetric  enough to keep acceleration  effects at  the design center of mass below 9.8 x m/s2. It has 
been  proposed that  the helium, to be  contained in a cylindrical annulus,  be  controlled by rotating the 
annulus, and providing baffles to help  locate the helium. An ideal result  is  shown in Figure 1. The  purpose 
of this  paper is to examine the realizability  of the configuration  shown  in  Figure  1. 

Without baffles the helium gas  is likely to form  a single bubble, which may arrange itself around  the 
axis, or in an  offaxis  location. (For a full discussion of the unbaffled  problem, see Reference  1.) From  this 
it follows that  there is likely to be  a  maximum permissable baffle spacing which will depend  on the relative 
magnitude  of the surface  tension  and  centrifugal forces. As  will be shown below, that proves to  be the case; 
there is a  baffle spacing beyond which the fluid cannot form the interface  shown in Figure 1. The two 
possibilities are shown  schematically in Figure 2. 

A second question is whether the interfaces will all remain at  the same  distance  from the  rotation 
axis. The layers of liquid are to be  interconnected  at the outside, so that withdrawal  of fluid can  be  effected 
evenly from all the layers. Thus if there are pressure  differences across the baffles, fluid will be  forced  from 
the high pressure layer to  the low pressure layer. 

The pressure in the liquid is the difference  between  a  centrifugal  term  and  a  surface  tension  term. 
If the  interface moves out,  both terms decrease. If the interface moves in, both  terms increase. One  cannot 
tell, a priori,  whether the difference will increase or decrease. If the difference increases when the interface 
moves out of the configuration will be unstable because liquid will flow from  the “shallow” layer to  the 
“deep” layer. Figure 3 illustrates the situation  for  two layers. It will be shown below that this  instability 
is possible at low rotation  rates, and that  it can arise for  the presently-designed GP-B experiment. 

A third  difficulty is the possible fluid dynamic  instability of the  interface itself.  This  problem is 
beyond the scope  of  this  paper. 

Experimental analysis of possible fluid dynamical  instability, and verification  of the theoretical 
results’to be given below, is to be desired. Unfortunately gravity levels of 9.8 x 10-l’ m/s 2 are not easily 
attainable. Thus  the  theory will be generalized to include  an axial gravity field of arbitrary magnitude. A 
possible moderate gravity experiment will be discussed, and the results of a  simple laboratory  experiment 
will be given. Good  agreement is demonstrated  between  calculation  and  observation  for the latter. 



THE  EQUATION  OF  THE  INTERFACE 

Consider  a  liquid  of  density p~ partially filling a  cylindrical  container  of radius RC  and  length 
2(n+l)L.  Let  the  cylinder  contain n  baffles, evenly spaced at intervals 2L (and neglect the baffle thickness.) 
Imagine the container to be  rotating  at o about  its  symmetry axis, which is antiparallel to a  gravity field of 
strength g. 

Let  the  remainder  of  the  container be filled with a gas of  density p~ < pL, and denote  the  inter- 
facial tension by y. Neglect compressibility. 

Construct  a  cylindrical  r, @, z coordinate  system  with  r  measured  from the cylinder axis and  z  from 
the  bottom  of  the cylinder. An interface  shape 

r = rI(z) . (1) 

is to be found,  compatible  with  a  state  of  no reIative motion - both gas and liquid are to be in a state  of 
solid corotation  with  the container. Thus  the pressure fields in the gas and  liquid  must be given by 

where POG and POL are  constants. 

The  interface need not be continuous because of the baffles. Indeed its derivatives are not 
continuous,  and the interface  itself can be  continuous  only  in the absence of gravity. There will be n+l 
individual  interface  equations, the  ith of which is 

where Ri is a constant, representing the maximum  distance  from the  rotation axis to  the interface, 

Figure 4 shows  a single layer,  and  introduces  some  additional  notation: Oi is the  contact angle and 
ziT and Z? are the distances  between the  f i  = 0 position  and the upper  and  lower  bounding baffles. 

The  jump in pressure across each  interface is equal to yK’, where K‘ denotes  the mean curvature. 
Using standard  formulas  from  differential  geometry [2 J it can be shown that 
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where 

and  the subscript i has  been  suppressed. 

The  interface  equation in the  ith layer  can  be  written in terms of local  dimensionless  coordinates 
xi  and  yi,  defmed  by 

r = Ri = Ri[ 1 - yi(xi)] 

The result is 

’ A [ 1 + 2 - Fiyi (2-yi) - cixi = 1 + c. 1 1 

where  the prime  denotes  differentation  with  respect to argument, 

p = pL - p~ is the  density  contrast  and 

is the axial  curvature at  the  point xi = 0. 

Because the various  liquid  segments  are  connected at  their  outer edges, the liquid  pressure must  be 
continuous  there. This  reduces to the  condition  that 

be  independent  of i. (In the absence  of gravity, one  solution is the  intuitive  one  that = R, a  constant.) 
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Except  for  the  condition (lo), the subscript i is not necessary  and will be suppressed below where 
possible. 

An interface  shape is to be  found  by integrating equation (9) subject to the boundary  condition that 

yf = cote  at x = z /R T 

y ' = -  cote  at x =-z B /R 

and the compatibility  condition that zT - zB = 2(L/R). 

A rescaling of  equation (7) assuming y +. ~ y ,  z -+ ez, e2G << 1 , eeF = O( 1) leads to  the usual equa- 
tion  for a  planar  interface  under  a  perpendicular  gravity field [ 3 ]  , which  can  be  integrated  directly. That 
case  is not relevant to  the present  inquiry,  and it is necessary to integrate  equation (7) numerically. That is 
most easily done  by rewriting the  equation as a pair of first order  equations 

y ' = Y  

(l+Y2)1/2  [lEC-Gz+Fy(l-l/2y)] -L} 
1 -Y 

and then applying  a fourth  order Runge-Kutta scheme [4] to this  system. It is only necessary to  note  that, 
for small contact angles, Y becomes large near the wall. This  necessitates  a  continual  adjustment of  the 
interval  in z. The easiest way to do this is to fix the interval As along the interface  and to write the interval 
in z, h, as 

h = As/(l + Y 2 ) 1/2 

The  actual  integration is performed,  for a given F, by  starting  at z = 0 (where  y = 0 = y') with a given value 
of C and integrating  first in the forward  direction  until Y = cot0  and  then,  starting again at z = 0, integrating 
in the negative direction  until Y = -cote. Finally the compatibility  conditions are applied,  in  effect  deter- 
mining L/R a  posteriori. 

RESULTS AND DISCUSSION: STABILITY,  AN  EXPERIMENT  AND GP-B 

Interface  profiles,  and  results derived from  them, are obtained  by  choosing w and g, picking values 
of R  and Cy and  then integrating  equations  (12), as described above, until  the  boundary  condition (1 1)  are 
met.  The values of z T B  ,z and 2L are  recorded, as well  as the  maximum values of y, the capillary rise at  each 
end, yT and yB. For fixed w ,  g  and  R  (hence F and  G zT, zB, yT and  y all increase as C decreases. For  any 
F and  G there appears to exist  a  minimum value of  Cy  at which the larger y or  y reaches unity, whidh 

B 
T B  
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corresponds to  a  capillary rise reaching the  rotation axis. Decreasing C below this value leads to  an  apparent 
change in sign in y" before y' can  reach  its  boundary value.  Because one feels that  the interface  slope  should 
be  monotonic,  and because the maximum capillary rise cannot  exceed the maximum  radius R, this critical 
value of Cy C m h  and the value of L, Lma, associated with  it are  considered to be real limits. Specifically 
2Lmax is assumed to  be  the maximum  baffle spacing for which  an  interface  can form. 

Figure 5 shows the dimensionless  maximum baffle spacing D = 2(L/R) as a  function of F for 8 = 
0 = G. Increasing the  contact angle increases D. Figure  6 shows the effect of adding gravity, a decrease in D. 

The second type  of  instability is that outlined  in the  introduction,  for which the dependence  of 
pressure on radius is such that a perturbation  of  the equilibrium  position tends to grow. If the  (i+l)st slice 
is moved outward, so that  Ri+l "f Ri+l + ARi+l, and the  ith slice is moved inward, so that Ri + Ri - A%, 
then  the pressure drop from i+l to i is  given by 

and if that is positive, then the displacement will grow and the pair is unstable. 

It is necessary to find the  rate of change of the liquid pressure with R, holding w ,  g and L fixed. 
To  that  end, write the dimensional pressure 

The pressure in question is that  at x = -ziB or x = ziT. In  either case  xi + ziB is independent  of Ri and 

aPL - an i  y aci "- aR 7"- aR - [ + C i - F i - R - -  

K12 
aRi 

In  any  such  virtual  displacement  of the interfaces,  volume  must be conserved. Thus A% a RL', and 
the criterion  for the interchange  instability is 



If G = 0 the situation is simplified  dramatically  because the equilibrium  position has Ri = Ri+l, Ci = Ci+l , 
Fi = Fi+l and the  neutral curve is  given by 

R ~ ~ = I + c - F - R -  an ac = O  . 
aR 

In the case of  zero g, where  equation  (17) applies, C has been  found to be well represented  in the 
form 

C = A(F)  (R/L) + B(F)  (1 8) 

so that 

C A  F 
R L  R 
”- - + 3 - [A‘(R/L) + €3’1 

where ‘ denotes derivative with  respect to argument,  and  equation  (1  7) can be rewritten 

l -F+B-3F[A‘(R/L)+B’]  = O  . (20) 

that curve is shown in Figure 7. One  notes  that  this is the limiting  stability  curve  for F < 1.2, and that  it 
gives a  stringent  limit for F < 1 .O. 

The  situation  for nonnegligible G is sufficiently  complicated that a  general analysis seems counter- 
productive.  A possible application to moderate g (a low g profile  term on an aircraft will be explained as 
an  example. 

Consider  a two layer  model for which y = 0.022  N/m, p = 790 kg/rn3, 2L = 20 mm, o = 1 s-l and 
g = 0.098  m/sZ. Figure 8 shows Ill and l72 as a  function of R, where  1 denotes  the lower  layer and the 2 
the upper. 

Because all the independent variables other  than  the void volume have been  fixed,  R is a  function  of 
gas volume only,  and the position  of  any  configuration is determined by  that void volume. Denote  that  by V. 
For V  sufficiently small, the system cannot form  an  interface  at the given spacing, D. Let  this  critical  volume 
be VI .  In  this case V1 - 9 ml,  corresponding to  R - 10 mm.  Note  that  the Il, R curves do  not  extend  to  the 
left  of  this  critical  point. 

There is a  second  critical volume, V2, below which two  interfaces  are  unstable to the interchange 
instability.  Such  a  circumstance is shown by  the configuration By which has a total void volume, VB, less 
than  that  of  the  configuration A,VA; VA z V2. For  the  state By aII/aR < 0 and  XI,/aR < 0, the calculation 
shows that 
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so that  the configuration is unstable. The  only  other configuration  with the Sam .e  volume is one fa m which 
the lower  layer fills in to the  center and the  upper layer  becomes an  apparent  first layer. This  configuration 
is that of B', and the  theory given in  this  paper  predicts that  the B' configuration is that realized. 

For volumes greater than  that associated with  the configuration A, both  aIl1  /aR and aIIl /aR are 
positive. Such  configurations will be stable. So will the alternative  configuration A!, in which the lower 
layer is full  and  upper  acts  as  a lower. The present theory  cannot answer the question  of the  state  attained 
as V goes from VB to VA. 

One  motivation for adding  gravity was the  hope  that useful experiments  could be done in the labora- 
tory. Ideally one would want small G and  moderate F to attempt to model the proposed  space  application, 
for which  G << 1  and F = O(1). That proves to be impossible for  reasonable values of R and w. If p ,  g  and 
y are  fixed, then 

and 

w = [ Fy/pR3 ] I2 = 

and, to use ethanol as an exemplary  fluid, if G = 0.1 and F = 1, then R = 537  pm and w = 1.8 x lo5 s-'. 

While a model  experiment is impossible, it seemed useful to  explore the basic premises of the model 
in the laboratory. To that  end, a  set  of  experiments in a shallow disk were performed. All that could be 
observed easily was the location  of the  top  interface (when the liquid intersects  the  upper  boundary) and 
whether the liquid intersects the lower  boundary. (If 2L exceeds the maximum value for a given F,  the 
liquid will intersect  only the  top surface.) 

The  experiments were carried out in  a small petri  dish  (diameter = 48.06  mm,  depth = 8.59  mm) 
mounted, using double sided tape, to the  top of  a Genisco model C-181 turntable (maximum rotation  rate 
22 s-l).  Centering  accuracy was better  than 0.8 mm. Turntable speed was accurate to better  than 5 parts 
per thousand  in the range of  interest.  The  working fluid was ethanol  (Pharmco 200 proof  ethyl alcohol) 
colored with Higgens India Ink  at 2 drops  for 25  ml  ethanol.  Textbook [3] values for  density  (800  kg/m3) 
and surface  tension  (0.022 N/m) were used. A contact angle of  zero was assumed. 

The measured dependent variable was the apparent  intersection  radius  of the fluid with  the  upper 
boundary as a  function of rotation  rate  and air volume. The observation was made visually by watching the 
position of  the intersection against a  marked  upper  surface,  marked with  concentric circles spaced at 2 mm 
intervals. Errors arise from  nonconcentricity  and parallax (because the circles are on  the upper  surface of  the 
cover, to avoid imposing  surface  drag on  the  contact line.) These  errors  are  estimated to be 0.5 mm. The 
mean  position  can  be  estimated  somewhat  more precisely than 0.5 mm. Positions  shown  are to 0.1  mm, 
which  may be optimistic. 
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There is an additional  systematic  error  which  may lead one to overestimate the radius. This arises 
because the visible intersection  line is not  the  true intersection line, but is some  point  at which the coloring 
is dark  enough to see. The nearer the  contact angle is to zero, the  more  pronounced  this effect will be. 

The  most  difficult  parameter to control in the experiment is the air volume. Several methods  were 
tried. The fmal  procedure was to fill the container as nearly  completely  as possible, the last few ml being 
added  through a small hole  in the  center  of  the cover through a  syringe  while the container was spinning 
at  22  s-l, to center the air bubble; (2)  withdraw the desired amount  of fluid with  the  container  stationary; 
(3) plug the hole  with  paraffin.  The last step is necessary because, when the hole  is unplugged, the  ethanol 
is sufficiently  volatile to evaporate at  about 1.2 ml/hr (measured with  the  container  stationary). 

Results  are  shown  in  Figure  9 for air volumes of 2, 4, and  6 ml. The  symbols  denote  data  and  the 
solid lines joining  open circles are  calculated results. The calculation predicts-bottom  exposure  for  the 6 ml 
case at  rotation rates  above 18 s-', and the observations  are  consistent with  the prediction.  The four right- 
most  symbols on  the  upper curve showed a clearly exposed bottom.  The  next  two were ambiguous. All 
the others, on all the curves, showed the  bottom covered. 

Finally, the consequences  of  this analysis for  the proposed GP-B experiment  mentioned  in the 
introduction should be considered. The  container  for  that  application is a  cylindrical  annulus  with  an  inner 
radius 0.18 m  and Rc = 0.54 m. The overall length is 2.94 m. Reasonable values for  the physical constants 
of liquid helium are [ 1 ] : p = 145  kg/m3 and y = 5.3 x 10-1  N/m. The design rotation  rate is to  be 0.01 
s-l.  The dewar is to be  initially 90 percent  full  of  liquid  helium.  This  provides  an  estimate of R > 0.242 my 
and gives values of G and G, 

F M 0.388 G = 1.56 X 10-5, 

the  latter based on  the necessity of  keeping local gravity to lo-'' x normal  gravity. 

For these values of F and G one can find the maximum  baffle  spacing for which the helium does 
not reach the surface of  the inner  annulus. That result is 2L = 155  mm.  This, however, is not  the limiting 
value, because the interchange  instability is dominant  at  this small value of F. By repeated evaluation of 
equation  (1 7) at varying values of  2L, the critical values is found to be 2L = 18;5  mm. 
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Figure 1. Schematic of an ideal  rotating liquid container with baffles. 
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Figure 2. Sketch of the  type I instability,  for  which the interface  cannot form. 
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Figure 3. Sketch of the  type I1 instability, an unstable “hydrostatic” equilibrium. 
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Figure 4. Definitional  sketch of  one layer. All parameters  are  dimensional and positive as shown. 
For individual  definitions, see text. 
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Figure 5. Neutral  stability curves for zero gravity: D and F are defined in the  text. D,F pairs above the curve cannot form an interface. 



D 6  

2 

3.2 

F 

Figure 6. Neutral stability curves for  nonzero gravity: D,F pairs  above each curve cannot  form interfaces at G 
the value  shown on  the curves. Points denote numerical calculations. 



f 

4 

D 

2 

- 

" 

1 I 
1 2 3 

"I I 

"I 

S 

F 

Figure 7. Type I1 neutral  stability curves for  zero  gravity;  D,F  pairs in the UII field can form  interfaces, 
but  these are  unstable to  the interchange  instability.  The  curve dividing the  stable region from 

the UI region has been  redrawn from  Figure 5. 
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