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r	 SUM" %RY

The principal objectives of this investigation wero:

^.	 (a) to assess the usefulness of combined analysis of LANDSAT imager y and

high—quali ty digitaL seismic data from existing and new s , lobal network~

i -	of seismic stations (principaly SRO) to infer geologically recent crustal

!!!1	
deformation, active faulting, and stress fields;

(b) to determine the must effective combinations of LANDSAT PISS channels and
digital analysis of them ghat JeLineate and enhance tectonic teakmes in

several different types of aL'ive source regions;

(c) to determine the extent and nature of the surface expression on LANDSAT

images of major earthquakes;

(d) to search for discernible precursory changes in LANDSAT imager; prior to
there major earthquakes-

(e) to develop a software p.& Age to implement these ;n alysis tech iquvs for
routine application by users witl,ont background in remote sensing.

One new and pountially important data source emerged (SEASAT Synthetic
Aperture Radar (SAR)) that was incorporated into the analysis. SAR imagery

'	 has the advantages over LANDSAT and other visible — infrared imagery that (1) it

is sensitive to surface rock and soil texture, spatial contrast, and

near—surface moisture content and (2) that it penetrates clouds and

vegetation, a significant factor in a number of active earthquake zones.
!	 Inasmuch as one of our very preliminary findings was that known

geologically— recent active faults appear to he more sharply defined (higher

I spatial contrast) on LANDSAT imagery than older or inactive ones in the same
region, the SEASAT (SAR) imagery was especially helpful in identitying which

faults have been active in tectonic regions where little ground — based data

`	 was available. Another important question was whether SAR and LANDSAT digital
imagery could be combined to yield improved definition of active tectonic
features. 'Therefore, SEASAT radar imagery was included in the analysis in
regions for which is was available (North America primarily). In selected

area:, comparison with conventional side— looking radar data was also made.

This grant is a continuation of Grant NCC5-12 that has been reported upon
previously. The appendices give the details of the results of this portion of
the investigation. They are summarized as follows:

RECENT FO LT I NG IN CAI, I FOKN I A I- M I NFM FROM

RI%MOTELY SI-:NSFD DATA AND SEISMICITY

Landsat imagery and seismicity data were analyzed to determine the

usefulness of remotely sensed data for identifying the locations of the most
earthquake prone areas in seismically active regions. Characteristic traits

were determined for earthquakes associated with strike— slip motion in Central

California and the area surrounding the Salton Seri using only remotely sensed
data. These results were compared to a pattern recognition study that used

J
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ground-based data In the same areas. All Lhe LmporLant dLaW um Lic

J	 characteristics determined from the gro"nd-based study were observable on the

imagery. The mapped lineaments are orientated in several dominant directions.

one direction is the same as the trend of the San Andreas fault, the major
strike-slip fault in this region. The other directions differ from area to
area and may reflect the stresses of earlier geologic processes. The pattern
of lineament orientations is significantly different across the major San

Andreas fault zone in Central California and the Salton Sea areas. A third
area, where the left-Lateral Garlock fault intersects the right-lateral San

Andreas fault, was investigated to test the results. It was possible to

1	 distinguish between areas dominated by dip-slip faulting and strike-slip

faulting in this area.

UTILITY OF DIGITALLY MERGED SEASAT-A SAR, LANDSAT MSS, AND

MAGNETIC FIELD DATA SHITS FOR MAPPING LITIIULOGY
AND STRUCTURE IN A VEGETATED TERRAIN

Remotely sensed data from each part of the electromagnetic spectrum

contains potentially different and independent information about the Earth's
surface and subsurface. Tnterpretatinh of these different data sets, together
with conventional gv nphysLcnl and geological Information, is greatly

facilitated by merging all the data sets such that each (spatial) resolution
element has associated with it an n-dimensional vector composed of information
from each of the n data sets. In this study, Landsat MSS, Seasat-A Synthetic

Aperture kadar (SAR), and magnetic field data from the South Mountain area

west of Gettysburg, Pennsylvania, were registered to match each other in
spatial position, and merged. Pattern recognition techniques were then
applied to the composite data set to determine its utility in recognizing

different rock types and structures in vegetated terrain around South
Mountain. The SAR imagery was filtered in order to reduce its directional

dependence. Principal components analysis was used to decrease the
dimensionality of the entire data set. A texture algorithm was then applied
to the first two principal axes, ann later to the third axis, in order to
enhance various geologic features. Next, thc• contribution of each data set

and texture measure to the separability of rock type classes in the training

area was evaluated. A classification of the entire study area was then done
using the enhanced data that contributed the most to the separability of

classes.

The texture measures were found to emphasize the geologic information in

the data and thus increase the separability of the rock type classes. The
best classification was obtained when texture measures from each of the first

three principal component axes were merged with the magnetic field data.

About 40% of the area was classified as having the same rock types as the
geologic map showed. The confusion of rock type classes was due to the large
amount of variance within each class when compared to the between-gruup
variance. The variance is thought to originate from three sources;
registration errors, the heavy vegetation cover, and systematic noise in the

SAR data.

A test of the correlation between SAR tone and texture, Landsat tone and
texture, and magnetic field data, revealed no tone or texture measures
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linking any two of these original data sets.

The magnetic field data showed a bi) correlation with the Surf;ice geology
of the area, and about 207 was correlatable with the <nown subsurface
geology. in contrast, the satellite data was related only to the surface

characteristics. TI—us, the merged data set contained mainly surface
information, but had a small component of subusurface information.
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ABSTRACT

Landsat imagery and seismicity data were analyzed to

determine the usefulness of remotely sensed data for

identifying the locations of the most earthquake prone

areas in seismically active region ,3. Characteristic

traits were determined for earthquakes associated with

strike-slip motion in Central California and the area

surrounding the Salton Sea using only remotely sensed

data. These results were comparea to a pattern recognition

study that used ground-based data in the same areas. AJJ

the important diagnostic charac Ler.is tirs determined from

the ground-based study were observable on the imagery.

The mapped lineaments are oriented in several dixttitiant

directions. One direction is g hee same as the trend of the

San Andre=.w fault, Vie major strike-sl i.p Fatilt in this

region. The othor directions differ from arna to area and

may reflect tho st.re;ses of oarlier

The pal turn of l innament or ierttal.ion s	 is	 s igni f ir,: iritl y

different acros:;	 the major San Androa:; fxaLt zon,! in

Central California and the Sulton Sea areas. A	 third area,

where the lo."t-lateral Garlock fault i.ntorsec;t; tho righL-

lateral ,an Andrea-, falrl L, wan, invF! -; f; igat -i(I to tF?:;t tho

results. It was, p :;sible Lo distin^ui.,h botween area,

dominat,i(i by di.p-::lip faulr,in;; and strike-slip f'aul t:ing

in thi., arm.

Q:

t-

i



c

r
i

Table of Content s

Abstract .......................................... iii

Table of Contents ..................................iv

List of Tablc:; ....... .. .................. . .......... v

List of Figures ....................................vi

Acknowledgements ...................................ix

Geologic History ....................................1

Previous Investifialions ............................?o

Statement of the Probiem ...........................19

Procedures .........................................2.0

Gbservationn and Analysi-, ..........................26

Discussion .........................................71

Summary and Conclusions ............................76

Suggestions for Future Analyses ....................80

References ............ .............................83
Appendix :.............. .............................85 P

•	 --



)

0.

V

List of Tables

1. Characteristics of larger earthquakes associated
with dip-slip movc:m(*nt as determined by Briggs
et al (1977) ......................................12

2. Summary cf characteristic traits for lip-slip
type earthquakes from Briggs et al (1977) ......... 13

3. Characteristics of larger earthquakes associated
with strike - clip movement as determined by Briggs
et al ( 1977) ........ . .............................14

4. Summary of characteristic traits for strike-slip
type earthquakes from Briggs et al (1977).........16

5. Analyzed "andsat imagery .......................0..?0

6. Seismicity data ...................................25

7. Characteristics of events near the Salton Sea..... 55

8. Characteristics of events between Monterey and
San Francisco.......... es ......................... 60

i

'r
	

ir^r



1
j 7

1, rl
V1

List of Figures

1. Location mail of California showing the major
faults and areas investigated in this study........2

2a. Geolog ic map of Sout} . ,'rn California... • • ....... • • . • 3

2b. Explanation of geologic maps shown in Figure 2a
and figure 3........ . ..• ..................•........4

3. Geologic map of Central California .................8

4. Locations of dangerous areas for large dip-slip
and strike-slip type earthquakes as determined.
by Briggs et al (197?) .........................0..17

5a. Comparison of image interpretations (Central
California region) ................................21

5b. Comparison of image interpretations (Salton
Sea region). * .....................................22

6. Permanent stations of the Southern California
Seismic Network .............................•.••..24

7a. Imagery of the Salton Sea ....... ......•..........27

7b. Imagery of the Salton Sea and mapped lineaments...28

8a. Imagery of Central California .............•.......29

8b. Imagery of Central California and mapped
lineaments....•...... .,•..........................30

9a. Base map of the Salton Sea region ................. 31

9b. Earthquakes of magnitude greater than 5 from
1932-iQ79 in Salton Sea region Si and associated
focal mechanisms .............. ....•...•.•... ... .•.32

9c. Earthquakes of magnitude greater than 5 from
1932-1979 in Salton Sea region S2 and associated
focal mechanisms .... . .............................33

9d. Earthquakes of magnitude greater than 5 from
1932-1979 in Salton Sea region S3 and associated
focal mechanisms .... . .............................34

93. Earthquakes of magnitude greater than 5 from1Q

r!

i

I	
Ii

i

^^

i 932-197, in Salton Sean region S4 and associated
focal mechanisms ............. 	 ...................35

I^
i



4

10a. Base	 snap	 of	 Central	 Calif'ornia .................... 36

10b. Earthquakes of magnitude greater than 5 from
1963-1976 between Monterey and San Francisco
(Central ralifornia region M1) and associate)

• focal	 mechanisms...................•..............37

' 10c. Earthquakes of magnitude greater than 5 from
.: 1963-1976 between Monterey and San Francisco

s (Central California region A2) and associated
focal	 mechanisms............. .... 69o-e- * 9v-v6 * e ... 938

10d. Earthquakes of magnitude greater than 5 from
' 1963-1976 between Monterey and San Francisco

j (Central California region M3) and associated
focal	 mechanisms ..................................`'

s 11. Rose diagrams of lineaments SW of San Andreas
'. fault	 in	 the Salton Sea region........,.•, ... .....41

12. Rose diagrams of lineaments N:' of San Andreas
fault	 in	 the	 'slton	 Sea	 region ....................42

13a. Mapped lineaments and seismicity	 (1975, all
magnitudes)	 in	 Salton Sea region	 51 ...............43

13b. dapped lineaments and seismicity	 (1979, m<2)
In	 Salton	 Sea	 region	 S1 ...........................44

13c. Mapped lineaments and seismicity (1979, m22)
In	 Salton	 Sea	 region	 Sl ...........................45

13d. Mapped lineaments and seismicity 	 (1975, all
magnitudes)	 in Salton Sea region	 S2...., ......... *46

13e. Mapped lineaments and sei.smtcity (1975, all
magnitudes) in Salton Sica region .53 ...............47

13f. Mapped lineaments and seismicity (1979, m<2)
In Salton Sea region S3 ...........................48

139. )dapped lineaments and seismicity (1979, m>2)
In Salton Sea region S3 ...........................49

13h. flapped lineaments and seismicity (1975, all
magnitudes) in Salton Sea reg ion S4 ...............50

131. Mapped lineaments and seismicity (1979, m<2)
In Salton Sea region S4 ...........................51

13,). Mapped lineaments and seismicity (1979, m>2)
In Salton Sea region 1} .................••••••.••• 52

4

^I

^	 I

a

iW 



Viii
14. Rose diagrams of lineaments NE of San Andreas

fault In Central California .......................5?

15. Rose diagrams of lineaments SW of San Andreas
fault in Central California .......... ..•.• .... ...•58

16. Mapped lineaments and seismicity (1972, all
magnitudes) in Central California region M1.......59

17. Mapped lineaments in Nevada .......................61

18. Rose diagrams of lineaments mapped In Nevada ...... 62

19a. Mapped lineaments and seismicity (1932-79, m>5)
near Los Angeles ... ...•••••••••••••.•••..... .•...64

19b. Mapped lineaments and seismicity (1972, m>2)
near Les Angeles .............. 9.................•Q65

19c. Mapped lineaments and seismicity (1979, m_>2)
near Los Angeles .... . .............................66

20. Rose diagrams of lineaments NE of San Andreas
fault near Los Angeles ............................67

21. Rose diagrams of lineaments SW of San Andreas
fault near Los Angeles... ......	 ... 68

22a. Grid and characteristic traits in the area near
Los Angeles.,.,,.,,., ...

22b. Interpretation of lineaments and seismicity
In the area near Los Angeles .................•..^.70

23. Orientations of stress ellipsoids and the fault
motion associated witti each stress condition ...... 72

24. Orientations of stress axes in California ......... 72

25. Rose diagrams showing rotations of lineaments
across the Sari Andreas fault .....................•?4

J-5



f

it

iI

ix

Acknowledgements

The author expresses appreciation to her advisor,

Dr. Shelton S. Alexander, for his suggestions and guidance

throughout this project. In addition. the discussions and

Imagery interpretations from Carolyn Petrus were most

helpful.

Computer facilities were made available by the Compu-

tation Center of The Pennsylvania State University. This

project was funded through NASA Cooperative Agreement

No. NCC 5-12.

R, n

a

t
;-	 s

t -
I	 -



1

Geologic History

The two major areas of interest for this study are

the Salton Trough region and the area between Monterey

and Sua Francisco in Californ i a. These areas are divided

into several natural provinces each with unique geologic

histories (see Figure 1).

The Salton Trough region lies mainly in the Colorauo

Desert province. It is bordered on the west by the Penin-

sular Range province, on the east by the 5iojave Desert,

and on the north by the Transverse Ranges [Jahns, 1954].

A generalized geologic map of the Salton Sea region is
	 ti

shown in Figure 2. The Salton Trough is a linear and

narrow depression approximately 1400 km in length [Sharp,

19721. It formed in Pliocene or Miocene epoch by active

right-lateral strike-slip faulting in the San Andreas

fault system and is an extension of the Gulf of California

physiographic province. This region experiences the

highest level of seismicity along the San Andreas system.

The Colorado Desert is at the delta of the Colorado

River. The Salton Sea lie; within this natural province

and was most recently filled when the Colorado River

burst levees between 1905 and 1907.  The low-lying

depression is a former basin filled with mid-late Cenozoic

sediments. Most of these racks are alluvial-fan and

lacustrine deposits and some are shallow marine
I
1	 '
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Figure 1. Location map of California showing the major
faults and areas investigated in this study. The boundaries
of the natural physlog raphic provinces within the two major
areas of interest are shown in the upper right corner.
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OF POOR QUALITY

SEUIh11 1-:11'PARY I.W) VOLCA111C ROCKS

Q' Cenozoic nonmarine (cont inerita.1) sedimentary
rock3 and al l.uvial depo-s its

Q] Cenoiolo marine se,lunentary rocks

Cenozoic volcanic rocks

Late Mesozoic (la.tPst Jurassic and Cretac;eour;)
shelf and slope sod imentary ro(:k

Late Mesozoic (latest Jurassic and Cretaceous;)
eugeo:^)ync.l inal rocks of the Fran c iscan C or:na;:io.^.

Mesozoic sedimentary and volcanic rocks older
than the Nevadan orogeny; in place:, sLron`ly
metamorphosnd

Paleozoic sedimentary and volcanic rocks; in
places strongly met;tmorphosed; includes some
latr! Precambrian sedirneritary rock; in Great Basin

Precambrian rocks of all type .-; including
coarse-grained intrusives

Pre-Cenozoic metamorphic rocks of unknown _igo

$1 1

r

i
{

1

t

I	 j

IWRUSIVE iGNE0l1S ROCKS

Q Granitic rocks chiefly of Mesozoic age

LQ 111tramafic rocks chiefly of Mesozoic age

--- Contact

1	 •••• Fault, dotted where concealed; includor; low-
angle faults; arrows indi ,.itt! direction of
mr)vement on strike-slip faults

Figure 2b. Explanation of geologic maps shown in
Figure 2a and F.Igrure 3.
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deposits of '- liocnne age from the Gulf cif Cali forni e.

There if; a think section of fine- to very coars,!-gra ine(f ,

non-marine strata made up of late Cenozoic volcanics, in

addition to igneous and motamorphic rocks of pre-Cenozoic

age. Faults bound the province and cut rocks as young as

Quarternary. Subparallel breaks of the San Andrea, fatAlt

zone are Cound on the northeast edge. The western edge of

the province is bounded by the Elsinore, :gar; Jacinto, and

other major northwest-trending faults.

The Peninsular Range also ha:=> northwef,t trending

topography. Several. relatively high mountain rariges are 4

located in this province and the coastal. Plain ha:; several

marine terraces. The Paleozoic and Niesozoic rocks are

igneous, metasedimentary, and metavolr_anic. The igneous

_

	

	 rocks are associated with the great California batholith.

There was another period of volcan'Lom and deposition of

f	 non-marine sedimentary rocks in the mid-late Cenozoic era.
s

The sedimentary sections are folled i-.long vlest-northwest

and north-northwest trending axes, with r.idge3 rnade of rocks

resembling the Franciscan Formation. There is evidence

Ithat the faults were rictive during the Cenozoic era.

f	 The most extensive provinces is the Mojave De ; ,art. It
I

is bounded on the north by the left-lateral Garlo(;k fault

I and on the solithwoot by the right-lateral San Andreas fault.

Within the } p rovince there are fold ..; trending north to

i.

j	
i
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northwest, steeply dipping faults, and some major thrust

l
faults of middle Jurassic to late Cretaceous age. 	 The

structural features of late Cenozoic age are open folds,

qlow angle thrust faults,	 and steeply dipping faults thatti
trend northwest and show some evidence of recent movement.

r- Indications of igneous activity in the province include

t pre-Cambrian and Mesozoic; plutonic rocks,	 pre-Cenozoic

volcanic and metavolcanic rocks, and Cenozoic hypabyssal

•	 ° intrusive rocks.	 There are severely deformed and meta-

morphosed sedimen' =,.ry rocks,	 sections of metamorphosed

Paleozoic rocks, and some sedimentary, metasedimentary,

and metavolcanic rocks of Mesozoic age. 	 Basin formation

from the middle Miocene epoch to the present is indicated

1

by young fluvial deposits and lacustrine sedimentation. 	 !

Elongated mountain ranges, valleys, chains of hills,

`. and broad basins are major features in the Transverse

Ranges.	 The structures trend east to west.	 There are I'

some steeply dipping strike-slip faults,	 but most .faults
t

!

!

in this province are reverse faults. 	 The San Andreas and

San Jacinto faults cross the eastern part of the province.

The Paleozoic and pre-Cambrian rocks are metamorphosed

sedimentary and volcanic units.	 There was an orog nny	 in

the late Mesozoic era causing widespread plutonic	 intrusion.

Large basins are filled with marine and non-marine sedi-

I

mentary rocks of the Tertiary period. 	 Another orogeny in

Y
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i
the mid-Pleistocene epoch caused intense folding and uplift

as reflected in the scarps seen in the present topography-

of the province.

The area between Monterey and San Francisco lies

mainly in -the Central California Coastal Ranges (see

Figure ? for generalized geologic map). To the east is

the Great Valley province which shows very little seismic

activity [Richter, 19581•

The California f:oastal Ranges lie between the

Mendocino and Murray fracture zones and experience

moderate to high seismicity. The basement complex is

made of metamorphosed sedimentary rocks and volcanics.

The granitic plutonic rocks are exposed along the San

Andreas fault and to the west [T aliaferro, 1941].

Rocks of the Franciscan Formation (shallow marine

elastics and chemical and organic sediments) later

filled the sinking geosynclinal basin. During the

Mesozoic era there were periods of uplift, intense

folding, sedimentation, and volcanism. During the

Eocene epoch there were thrust faulting and vertical

movement along the San Andreas fault. Miocene sedi-

mentation was followed by another period of uplifting,

folding, and downwarpin. This continued into the

Pliocene and Pleistocene epochs. The s e thrust faults

are the en echelon faults now observed.
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Movement along the San Andreas fault. has been in excess

of 300 km of right-lateral slip during the la s t 8 or 10

million years [ Sylvester and Crowell, 1979]. Between 38

and 29 millicrl years ago the North American and Pacific

plates converged and a transform boundary was created.

Faulting, subsidence, uplifting, and volcanic activity

began as a result of the plate interaction;. The modern

San Andreas fault became the major transform boundary
I

between the Pacific and North American plates about

4 million years ago. Faults of the present San Andreas
I

system include the main branch of the San Andreas, the

San Jacinto fault, and the Elsinore fault. Each of these

right-lateral faults shows displacement of the order of

30 km.

r^	
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Previous Invest i,rat ion

Ground-based geologic observations were used to deter-

mine characteristic traits of the most earthquake prone and

the least earthquake prone areas in Nevada and California

[Briggs et al, 14771. The pattern recognition algorithm

that they u,ed could distinguish among earthquakes charac-

teristic of the San Andreas fault ;system, Basin -,rid Range

province type earthquakes, acid places within these active

regions. where the epicenters of strong earthquakes are

unlikely to occur. Briggs et al used earthquake epicenters

of magnitude 6.0 or greater- for their study.

The algorithm used for pattern recognition in described

in an earlier paper where it was used to predict strong

earthquake epicenters in California [Gelfand et al, 1976].

A pattern is defined as of suite of traits that characterize,

a group of c,ojects and distin guishes this group of objects

from another group" [Briggs et al, 19771. Their studies

were unuertaken to forecast epicentral locations in space.

but not in time, and to investigate earthquake processes.

Because our understanding of earthquake procvrL; s.s is incom-

plete, it is not possible to fully describe the epicentral

locations or to include all of the importrit source-related

properties. Therefore, to describe epicentre] locations,

they chose to include cnaracteristics tnaL were common to

>65 percent of C1 objects (locations that are earthquake

t^ ^1
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epicenter prone) and <10 percent of G2 objects (locations

that are not earthquake epicenter prone).

They searched combinations of one, two, and three

properties from answers to a list of 45 geologic and

geomorphic questions to identify the characteristic traits.

These questions were based on recent ground-based studies

of the California-Nevada region and data from standard

geologic and tectonic maps. All points were reclassified

as D (dangerous) or N (non-darigerous, :safe) depending on

the number of traits they possessed characteristic of G1

objects or G2 object;. All of the characteristic traits 	 4.

were combinations of two or more properties. They folznd

it was possible to discriminate between dangerous zones of

dip-slip type and sLrike-slip type events.

Earthquakes with dip-slip displacement are charac-

teristic of the Basin and Range province of Nevada. Briggs

et al used a set of 28 locations near epicenters and 160

other points to determine the combination of traits that

are characteristic of earthquake prone versus more stable

r	 areas associated with significant vertical fault movement.

(Table 1 is a summary of the characteristics of larger

earthquakes associated with dip-slip movement. The values

.ndicate the limits characterizing areas with dangerous;

traits. Safe traits correspond to the areas falling out-

side those limits.) They found 89 percent of G1 (earth-

J
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quake prone) locations were recognized as dangerous and

90 percent of G2 (not earthquake prone) location;, were

recognized as safe.

Table 1. Characteristics of larger earthquakes a.s'sociated
with dip-slip movement as determined by Briggs
et al (1977)

High elevation
Large local variations in elevation
Dip-slip faults nearby
Numerous faults
Geothermal activity
Absence of nearby strike-slip faults
earthquake 6.0 > M > 5.0
Major branch of San Andreas
Body of water (oceans, lakes)
Melange outcrop
Spreading center (divergence zones)
Two or more lineaments
Lineament intersection

>7000' within 15 km
>2000 1 within 15 km
<40 km
>5 within 25 kin
<50 km
>40 km
<30 km
>75 km

10 km
>30 km
',300 km
<40 km
>30 ken

The dangerous areas are characterized by high elevation,

large local variations in elevation, nearby dip-slip faults,

numerous faults and parallel lineaments, geothermal activity,

and an absence of nearby major strike-slip faults. They

suggest these characteristics are consistent with a model

proposed. by Scholz et al (1971) in which warm, melted rem-

nants of the Farallon plate rise under Nevada. This would

cause uplifting and dip-slip faulting that would explain why

the intrusions there still retain Borne heat ana have observ-

able thermal anomalies. The safe areas are regions with

lower elevation, absence of geothermal activity, and

_J^ __



[I
V

1 

Table 2. Summary of characteristic traits for dip-s]lp
type earthquakes from Briggs et al (1977)

Dangerous traits:

1. Region of considerable uplift With closely-spaced,
extended linear features. but not faulted to an
extreme degree

2. Hot water circulation associated with regions that
have undergone uplift and

'
 lock faulting for time

periods on the order of 10 years
3. Same characteristics as in trait 2, plus n°arb,y

topographic relief that directs or concentrates
drainage to geothermal areas

4. Areas free from lineament intersections and far from
spreading centers

5. Areas with nearby major dip-slip faults, moderate
fault density, and absence of mSlange

6. Same characteristics as in trait 5, plus an absence
of surface bodies of water

7. Same characteristics as in trait 5. plus closely-
spaced, nonintersecting lineaments

8. Moderately faulted regions with geothermal activity
and an absence of smaller earthquakes

9. Areas with geothermal activity, absence of a major
strike-slip fault and an absence of m6lange

Safe traits:

1., Areas where uplift and block faulting have not
occurred

2. Areas with low lineament density and no recent
normal faulting

3. Absence of large-scale dip-slip features in are.:s with
no Indication of recent movement on smaller faults

4. Areas with low fault density and absence of geologically
recent normal faulting or dip-slip activity

5. Absence of geothermal activity in undersaturated,
dilatar_t regions

1%
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absence of major dip-slip faults. The combination of

characteristics that were determined to define dangerous

and safe traits are summarized in Table 2.

San Andreas type earthquakes are associated with

strike-slip movement. Learning in Briggs et al's study

was based on 26 locations near epicenters and 162 other

points to determine the combinations of dangerous versus

safe characteristic traits. !Table 3 is a summary of the

characteristics of larger earthquakes associated with

strike-slip movement. The values indicate the limits

characterizing areas with dangerous traits; safe traits

correspond to the areas i'alling outside those limits.)

They found 77 percent of G1 (locations that are earthquake

epicenter prone) were recognized as dangerous and 90 percent

of G2 (locations that are not earthquake epicenter prone)

were recognized as safe from large strike-slip earthquake;.

Table 3. Characteristir.s of larger earthquakes associated
with strike-slip movement as determined by Briggs
et al (1977)

Major branch of San Andreas <75 krn
Intersections of lineaments <40 km
Longer,	 lc.ctive strike-slip faults <30 km
Major normal or reverse faults >40 1cm
Major strike-slip fault <40 km
Historically active major fault <20 km
Volcanism <40 kin
Melange outcrop <30 km
Spreadin,; center <300 km
Nearest .lineament <20 km
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Areas with longer, active strike-slip faults, numerous

lineament intersections, and absence o.,: vertical faults are

considered dangerous regions for large events associated

with strike-slip motion. The San Andreas fault system is a

major transform fault between the North American and Pacific

plates. At this boundary, transcurrent motion occurs along

the linear features. Safe areas are characterized by an

absence of active major strike-;lip faults and an absence

of lineament intersections. In the study re.-ion, safe areas

are situated in those parts of California and Nevada not

associated with the San Andreas fault, areas of aseismic

creep, or areas not under stress. The combination of

characteristics that were determined to define dangerous

and safe traits are summarized in Table 4.

Briggs et al found most dip-slip events were located

in Western Nevada and most strike-slip events were located

along the San Andreas fault. Both types of faulting occur

where the east-west trending Garlock fault intersects the

San Andreas fault (see Figure 4).

The stability of their algorithm was also tested. They

found that additional question:; used in the analysis

resulted in the same conclusions. A control experiment was

devised in which the first half' of the earthquake catalogue

was used to predict the locations of tree other hall'. The

algorithm's prediction success was approximately 16 out of

E
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Table 4. Summary of characteristic traits for strike-slip
type earthquakes from Briggs et al (1977)

Dangerous traits:

1. Areas along the transform fault that have been
historically or currently active

2. Faulted areas with an absence of compression or tension
and where there are no bends in the f,-tult

3. Lineament intersections in areas along the transform
fault

4. hecent strike-slip faulting, absence of dip-slip
faulting

Safe traits:

1. Stable areas with no major faulting at present or in
recent geologic history

2. Absence o1' m6lange in areas away from the plate
boundary

3. Areas away from the transform fault with an absence
of recent volcanism

4. Regions located away from a spreading center that are
not located near a major strike-slip fault
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Areas	 where strike slip type

earthquakes arc likely to occur
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Figure 4. Locations of dangerous areas for large dip--slip
and strike-slip type earthquakes a^ determined by Brings
et al (19_7) . The :pan Andreas and Garlock faults are shown
In red. Nedrawn from Figures 2 and ), Geol. Soc. of Amer.
Bull. , v.88, pages 161-173.
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20 events.

Briggs et al's study outlines a procedure for locating

areas of significant earthquake activity and areas without

significant activity within a major seismic prov;nce. They

used ground-based data that had been collected by marry

researchers over several decades. This method would not be

feasible in seismic areas that have had few or no previous

ground-based investigations. For these areas it is

suggested that remote sensing techniques may be used to

gather analogous diagnostic data. The regional trends and

smaller features could easily be observed as can most of 	
!t, 1

the significant diagnostic characteristics discussed earlier.

The remotely sensed data are expected to further supplement

those areas with ext r•nsive ground-based data. Remotely

sensed da ta (e.g., Landsat) can provide complete coverage

of the earth's land masses. For Landsat, the same ground

scene is repeated every 18 days which would allow an observer

to study the longer term changes that may be associated with

large earthquakes. It also provides an economical means of

comparing geologically recent spatial features to crustal
i

stress conditions inferred from earthquale focal .nechan.isms.
I	

This study is concerned with evaluating these possible

i
	 joint applications of remote sensing and seisin.ic ohoer-

^.	 vations.

I

l:	 J

, V11 J# —1



4 

19

Statemprit of the Problem

The objective of this study is to compare data observed

on Landsat imagery with the characteristic trait:, which

define seismically active areas determined by Briggs et al's

(1977) ground-based pattern recognition investigation,. The

same areas are examint-1 in both studies and a simi.lnr set

of criteria are used. 'Phis study is a preliminary deter-

mination, based on visual arlalys is, of tha usefulness of

remotely sensed data in earthquake investigation:;. If the

important characteristics can be observed using these data,

a more quantified analysis could be d(-vi.-loped to be used in

seismically active areas where little ground-bared data have

been collected. To be useful, the observations must define

characteristics whir-.h disticzruish amrn', areas wh -re :;trikr!-

slip type earthquake:;, dip-slip type earthquakes, and no

large earthquakzis are 1 iki^ly to or.cur. FF;atlir.3 ; that

describe more geologically recent: ctr.icturi;.; will he

emphaf;1_7ed in the analysis. Observ;itions will be discussed

in terms of r. e;.ion<al tectonics. Fina] ly, a pro; edure will

be outline(t for investigating other soismi,a.11.y active areas.

IV)
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Procedures

Visual analysis; of Landsat satellite images were used

to identify the locations of distinct lineaments and other

i
geologic features.	 (Tabl^: 5 is a list of the analyzed

^i

1	 (	 S

I

images.)	 For this study,	 lineaments are defined as any

• linear surface expressions that are geologic, geomorphic,

"	 f or topographic, and faults refer to those lineaments which

are known to be associated with vertical or horizontal

" movement.	 Features used in the image interpretation include:

i j	 r fault valleys,	 saddles, narrow troughs and ridges, 	 scarps,

l	 ±' steep mountain fronts,	 changes in rock type and/or texture,
e

44	 s̀ offset streams,	 and sag ponds.
t

1
r 'Fable 5.	 Analyzed Landsat imagery (all	 in color)

Location	 Identification	 Data
I

Salton Sea	 E-2120-17382	 May 22,	 1975
Monterey-San Francisco 	 E-1002-18134	 July 25,	 1972
Monterey	 E- 1057 -18172	 Sept.	 18,	 1 9'72
Garlock	 (Los Ang eles)	 E-10111-18010	 Aug.	 10,	 19?2
Nevada	 E-1072-17592	 Oct.	 3,	 1972

1 Another observer (geoingist), 	 in addition to the author,

interpreted the imagery. 	 This gave further corroboration

of the locations and dominant orientations of the observable

lineaments.	 Rose diagrams (see Figures 5a and 5b) were

constructed for the sets of data for both observer:;,	 and

the dominant orientations agree in almost all cases.
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Figure 5a. Comparison of image interpretations. The solid
lines represent the orientations of the lineaments mapped
by the author in the Central California region. The small
dotted lines represent the interpretation of another
observer on the same imagery. The rose diagrams were
constructed from length data. The large dotted line (N450W)
represents the trend of the San Andreas fault in this area.
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Figure 5b. Comparison of image Interpretations. The solid
lines represent the orientations of the lineaments mapped
by the author in the Salton Sea regicn. The small dotted
lines represent the interpretation of another observer
on the same imagery. The rose diagrams were constructed
from length data. The large dotted line (N)45"W)
represents the trend of the San Andreas fault In this are1.
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Agricultural effects and cloud cover were the major problems

in interpreting the images. Digital analysis of the data

should be considered for m,.^e detailed future analysis.

The recen t., :seismicity of each region was plotted at

the same scale as the imagery. This was done to compare

the lineaments to the zones of greater current activity.

The seismicity data are contained on two computer tapes.

Data for the seismicity of' the world for 1963-1976 are

contained on Tape I:H 76. These data wer :^ used for the

epicente r plots of Central California. The data sources

listed include: BRK, ERL, and CS. Southern California

seismicity data for 1932-1U79 are listed on 'rape CALSEI.

This tape was used to plot the seismicity of the Salton Sea

region and the Los Angeles; area. Since 1973, the relative

epicentral location error is within 4 km due -to the dense

seismic network in Southern California (see Figure 6).

Much of the 1979 data in Southern California is accurate to

within 2.5 to 1 km [Johnson, 19791. Both sets of data were

searched for lccation and magnitude before being plotted.

Wolfplot graphics routines were used to plot the data on a

Tektronix 4662 plotter. Where possible, the data were

plotted for the year the images were taken, for 19 79, and

for the events with magnitudes greater than 5 from 1932 to

1979 (see 'fable 6).
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Table 6. Seismicity data

25

Loc,. •.. l on Lat	 ( ON) Lo ,g	 ( O W) Source Date Mag,

Garloc, 34-35 117-120 Tape CALSEI 1972 _>2
(Los „ngelesj

Garlock 34-35 117-12.0 Tape CALSEI 1932-79 ?5
(Lcs Angeles)

Garlock 34-35 117-120 Tape CALSEI 1979 2
(Los Angeles)

Monterey- 36-38 120-122 Tape EPTP76 1972 >0
San Francisco

Aonterey- 36-38 120-122 Tape EPTP76 1963-7 6 >5
San Francisco

Salton Sea 32-35 115-117 Tape CALSEI 1975 20

Salton Sea 32-35 115-117 Tape CALSEI 1979 <2

Salton Sea 32-35 115-117 Tape CALSEI 1979 ?2

Salton Sea 32-35 115-117 Tape CALSEI 1932-79 25 IT,
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Observation3 and Analysis

The imagery of the Salton Sea region and the area

between (Monterey and Sain Francisco are presented in figures

7a and 8a, rQspecti.vely. The imagery of these two regions,

with the lineaments mapped, are presented in Figures 7b and

8b. Both major study areas have been seismically active

and are associated with strike-slip .fault movements.

(Figures 9a-9e and 10a-10d show some of the larger earth-

quakes of the two regions and indicate the associated focal

mechanisms.) The questions used to analyze the data are

listed in the Appendix.

An image of Nevada and an image of the area around Los

Angeles were also interpreted. The Nevada image was used

to compare the characteristics of a region with dip-:lip

faults (the Basin and Range province) with the character-

i^tics of the strike-slip faulted regions in the major

study areas. The Los Angeles image included the inter-

section of the Garlock fault and the San Andreas .fault

where both dip-slip faulting and stri:ce-slip faulting are

known to occur. This area was chosen to test the results

of the study by finding distinguisiing combinations of

characteristic traits associated with the two types of

faulting.

The San Aridreas fault trends approximately N45 0 W in

the Sal-con Sea. region. On the southwest side of thu fault

e 1'
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Figure 7a. Imagery of the Salton Sea
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Figure 7b. Imagery of the Salton Sea and mapped lineaments
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Figure 9a. Base map of the Salton Sea region. The large
dashed line shows the region in the Land;at imagery.
61, S2, S3, and S4 are the areas shown in Figures 9b-e
and Figures 13a-j.	 (SCalt: ofGurl^;:	 1 cm =	 fri)
Sym > >olS Ia:;eJ in Figures 9h-9
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Figure 10a.	 Base map of Central 	 Callfornla. The large

I dashed line shows the region in the Landsat imagery.
,4l,	 1,12, and M3 are the areas shown in Figures 10b-d
and	 Figure 16.	 (scale of	 CMire:;:	 1	 c:n =	 5 km)
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there are two sets of 1.inecments 	 (see F!-U re 11).	 One set

trending from N40 01.1 to N70 19 W reflects the ordentaLion of the

faults of the San Andreas system in this area. 	 Another set

i ranges from N10 1 h to N700E.

On the northeast side of the San Andreas fault there

are two major orientations and two minor orientations of

the lineaments that are prominent	 (see Figure 12).	 The two

major trends are from N30 e W to N 50 e W and from N30 0 E to

N40 1 E.	 The first reflects the trend of the San Andreas

fault as does one set of lineaments southwest of the fault.

k
R . The minor orientations range from O aN to N10 a :' and from

. N500E to N60eE.

The zones of activity in the Salton Sea region are

concentrated mostly south of the Saltor. Sea along the

Imperial, San Jacinto, and Coyote Creek faults and in the
r_

C
t area where the San Andreas faulL begins to	 :play into the

t
T

# other faults.	 Little activity is observed in the Niojave
F

Desert area to the northeast.	 Figures 13a-13j sholw -the

lineaments mapped by the author and the locations of

T seismic activity.	 The seismic data for this region were

extensive.	 As shown on these figures,	 the mapped lineaments

•^ 1 are concentrated in the same locations as the greatest

seismic activity,	 The more . ,ecenL events are associated

with the more pr..)minent linr:amenLs on the satellite imagery.

E^

For example,	 the lineaments on and near the 1968 (Borrego

I

it

)I



6 

j L;t
r• •-

c3klG:^^^;r rr^.^ ►: i.

OF POOR QUALITY

s~

p	

^^

,4 tr

CD

a)

(n o
as

41 ca
,-A 4-)
:5 C
ce a)
44 fQ

a1
V) C)

C3 S~

O

.4

CD

II

O ^

^ U

4-4 ;J

O U

Q)

4-) co

N
El

of •

Q) C

S~ O
t1 . )
r-1 tL`

Q)
4. F^

O

aS
ch Q)

fi S:
h0 U
tC +^ o
.-) r-1 ?

Q)	 II

O ^ r+

r+

Q)

^i
r^

4. ^I

i

v it

I

)

I

I
i

C-4

is

2 —

Z —



I

;n

r.

1

Cri:G:rJAL FACE L'S
OF POOR QUALITY

Zr

Z —

c

b

s: A

N
v.

:j v
0 U
w cd

a^
rn ^
ro .^
a) ^4
c,
•v ^n

aj
II

Q1 ?)
S. C^

O o'

z c^

m ^.
4-) ^e

a^
El
CZ

co
to
v

c, s•,
0

Hu
cd e
ti cx
eo 0
m41

•cf ce

n^	 n
cn c
0 .c .

C4 N^

N
.,

n^
N

a,

,m

i n

1	

it i I



It!

f•

f 1'

I

M:.

C'a IC,:" 
T . _ r f !:e Ea

OF P0J , QUALITY	 43

i

No

 Irt	 .^

•
^4'N"	 .	 .1•	 i	 •1•	 ^	 •

l	 \

10.
'0i,.001,

r!	 ^

" X

116'30'W	
I!6 W

Figure 1 ja. i4apped 1]neamerits and seismici

of all	
ty In Salton Searegicn 51. The red dots re p -• esent locations of 1975 eventsma3n1 ud.^;;•

i

in

.000



jet	 I

t	 !

	

OF POOR QUALITY
	 44

i
RA

to

71'M-

to `  , 	L

	

No	 r

`,	 ..

IIE'^0'W	 I16'W
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Figure 13c. Mapped lineaments and seismicity in Salton Sea
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53

nit. ), 1969 (Coyote Pelt. ), and 1975 (bravi)ey) earthquak.., are

very prominent (refer to Figures 71), 9d, and Qe) . The

.atures easily identifying these lineaments are a sharp

visual contr:^st in enviror.ments across the lin ments and

offset streams. These lineaments include the Coyote Creek,

San Jacinto, Superstition Hills, and Imperial faults whore

there w-re observations of lateral surface displacement.

Although this study involves only a visual study of the

images, it is apparent that further enhancement of the

digital images and the addition of radar imagery will

increase the distinction of the more recent geological

features. The mutt recent features are less likely to be

blurred or suppressed by agricultural, cultural, and

erosional factors. It appears that the preferential

association of seismic events with the lineaments is

independent of the magnitude of the events. This was

expected to be true since the majority of smaller magnitude

events occur in the same locations as the stronger earth-

quakes. Only two plotted events occurred in the Mojave

Desert area where no lineaments are mapped and those events

were of magnitude less than 2.

Six epicentral locations and two ocations where no

strong earthquakes are known to ;sve occurred were used to

examine the characteristics of .strike-slip events near the

Salton Sea. The six epicentral locations were chosen to

Mh ,

W::

0i

1*^I

it

11 - 0 ^	 ^ - I



represent dif forcrit areas ofi^nif ic::tnt se iniri i r. ar)t Lv I ty. .

The other te:;t point^ were chosen to samnlr, the Less active

areas. Table 7 is a list of the location,;, nearby epLcercter.;,

and the more important characteristic:; oC these -1-Irpls. The

importance of a comb nation of traits, is	 fr,)m the:>e

data. Although some characteri:- ti ^s of the inactive

location!; are the ;came as in an Ppiceritr al

overall patt ,'rrio aro dist i ngu_ shnbl.-a.	 Cu p r' .'it	 ;rnl.0

act iv ity, 1 l tleama'11t int(, rsec t lJ'1:;, WA 1 lne':mnnt s

characterize most epicentral location-. One toot. Potent in

thr, stable area has had no large earthquakes and th y! other

test point in a less active region has had fever earthn-aakes

than most of the tort points in seismically act.i_vi^ locations.

Both of thew points have fewer 1 Lneame lto aria 1 i p lc _;7nnt

intersections than the more activeive regions . krea:; :with

numerous lineaments arid lineament i.nters(,c c ions where.

evidence of recent active faulting is observed are inferred

to be likely site:; of future events. Th ,- tec;t points that

are at epicentral location:; are within 5 kni of a mapped

lineament and an average of 6.7 km from a lineament inter-

section. In this region thi, distance to the Salton Sea and

the dista.ncc to known spreading centers appear to ^)e

insignificant. All .l.ocztionc in the investigation were the

same relat iva distancr. from thi?sc featlrres. It may be

important that the points lie within 50 km of the San

Andreas fault zone, however.

L,
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The Stn Andreas f.aifl.t trend; approximately N45 9 W from

Monterey to San Francisco.	 On the northeast side of the

fault there are two major trends and two minor trends of

the mapped lineaments (sec, Figure 14).	 The major orien-

tations range from N40 0E to N70 9 E and from N40 01.1 to N50°'.V.

` The minor orientations range from N20 11 E to N30 1E and from

N70 OW to N80 014.	 On the southwest side of the fault	 there s

are two trends observed (see Figure 15).	 Three range from

N30 0E to N70 0 E and from N30 1t,V to N401W.

I
A less complete catalogue of seismicity was used

for the Central California area. 	 The activity is concen-

trated around the San Andrea: fault.	 Figure 16 shows the
A

' lineaments mapped by the author and the related seismicity.

{ Five locations were chosen for the analysis of this

region.	 Three of these are epicentral locations and -two

are located in areas less seismically active.	 A summary

of the data is listed in Table 8. 	 These data agree with

the conclusions from the Salton Sea data.	 The .gain charac-
1
!

t
teristics of strike-slip events are the nearness of the San

` Andreas fault	 (<50 km), numerous nearby lineaments and

1
lineament	 intersections,	 and active faulting.

i

1

An image of an area in Nevada where events are

associated with dip-slip movement was interpreted (see

Figure 17) .	 The trends of the l.ineam ont s are oriented in

one major direction from O°N to N30 2 E (see Figure 18).

fi	 f
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0.j

There are many lineaments in this; region but few inter-

e sections.

The lineaments and seismicity of the area near Loc

Angeles where the left-lateral Garlock filUlt and the right-

lateral :,_rn Andreas fault intersect are shown in r'igures

j
19a-19c. Rose diagrams indicating the directionc of orien-

ttation of the manned lineaments southeast ,rota northwest of

the San Andreas fault are shown in Figures 20 and 21.

Using a 1 ° latitude by 1 1 longitude grid, the areas where

dip-slip faulting, strike-clip faulting, and more stable

areas were distinguished. The variables used in the anal-

ysis were the number of past earthquakes (at lea5L one

within 1 9 distance), the nurnher of lineaments (>l0 for

earthquake prone areas), parallel .lineaments (> 5 for dip-

slip Pvents, <5 for strike-slip events), an(! lineament

intersections (>10 for strike-slip events, <10 for dip-slip

events). The data are presented in Figure 22a and the

interpretation is giver; in Figure 22b. Two recent event:,

are consistent with these results a magnitude 6.4 earth-

quake located at 34.41 s w and 118.40 11 W irr 1971 w:as associated

with dip-slip (thrust) motion and a rnagnitudt! 6.0 earthquake

located at 34.90°N and 118.90 9 w in 1916 was associated with

strike-slip motion.

J
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Figure 19a. M^xpped lineaments and seismicity near Los
Angeles (inters,^etlon of Garlock and San Andreas faults).
The red X's represent locations of earthquakes of magni-
tude greater than 5 that 00currei from 1932 to 1979.
( Scale. :	 1 01 1 1	 10 xcn)

`r.

J



65

OF POOR QUALITY
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Figure 19b. Mapped lineaments and seismicity near Los
Angeles (intersection of 6 arlock and San Andreas faults).
The red dots represent locations of earthquakes of magni-
tude greater than 2 thFit occurred in 1972.
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Fi gure 19c. Mapped lineaments and seismicity near Los
Angeles (intersection of Garlock and San Andreas faiil ts).
The red dots represent locations of earthquake:: of magni-
tude greater than 2 that occurred In 1979.
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Figure 22a. Grid and characteristic tr,ilts in the area
near Los Angeles.
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Figure 22b. Interpretation of lineaments and seismicity
in the area near Los Angeles. Each set of data
In Figure 22a was designated DS (dip-slip
characteristics). SS (:strike-clip character-
istics), or ND (non-dangerous area).
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Discussion

The more prominent lineaments on the imagery appoar to

reflect the more recent fault motions, and therefore,

indicate the stresses now present in the region. The other

mapped lineaments may represent the stresses that were

present in earlier geologic processes. Figure 23 shows

several different orientations of the :;tress ellipsoids and

the fault types associated with each stress condition. At

present, the intermediate principal stress axis along most

of the San Andreas fault is vertical and the least and

greatest principal stress axe:; are horizc •ital (see Figure

24). The San Andreas fault may be a transform fault

associated with a coninuation of the East Pacific Rise

[Press and Siever, 1974]. Here the North Pacific plate

slides past the North American plate in a northwesterly

direction. The relative motion of the plates in California

is approximately 5.5 cm/yr. Some areas have undergone no

movement and in some other areas movement is occurring

without earthquake activity [NASA Technical Paper 1464,

19791. In Central California the rate of movement is only'

3-4 cm/yr along the San Andreas fault. In this area the

stress appears to be relieved in part by creep. Asei smic

plate movement does riot usually occur in the areas around

Los Angeles and San Francisco. Here the strain is released

principally in episodic major earthquakes.
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Figure 23. Orientations of stress ellipsoids and the fault
motion associated with each stress condition. cr is the
greatest principal stress axis o' is the intermkdiate
principal stress axis, and (' is ^he least principal stress
axis. [!redrawn from Billinv;sl (1972), Structural Geology,
Fig. 10 -14, page 231. 1
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Figure 24. Orlenta;;ions of stress axes in California. The
San Andreas fault is shown separating the Pacific and North
American Plates.
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A recent ;study of paleomagnetic data from Miocene rocks

by Luyendyk et al, 1980, suggests a rotation of crustal

blocks. The crustal blocks are bounded by strike-slip

faults. 'They proposed a model in which the faulting and

rotation occurred simultaneously. In this model, rotation

began when the Pacific place collided with the North

American plate (late Oligocene) and ended wh r-n the San

Andrus fault system broke through the crust in Southern

California (.late 011ocene) . The rotated blocks include

sections near Los Angeles and the Salton Sea that are

bounded by the San Andreas fault.

The remotely sensed data from this study also suggest

an apparent rotation of lineaments across the San Andreas

fault (see Figure 25). The most dominant orientation of

lineaments in the Central California region and the Salton

Sea region trend in the same direction as the San Andreas

faul t. in these areas. Other prominent orientations are

rotated approximately 10° clockwise as one crosses from

northeast of the fault to southwest of the fault. These

secondary sets of lineaments are oriented at high angles

to the San Andreas fault trend.

In the Los Angeles area the major set of lir. aments

trends northeast-southwest. The San Andreas fault trends

N25 9 'd, a 20 9 counterclockwise rotation froin the orientation

of the fault both north and south of the area. Northeast

C	 •

k: 1
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Figure 25. hose diagrams showing rotation of lineaments
across the San Andreas fault. On tho left cre the lineament,
In Central California; the Los Angeles rep^iori is shown In tht!
middle; and on the ri g ht: are the lineaments In the Salton
Sea region.
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of the San Andreas fault in this area, the orientations of

the mapped lineaments are widely dispersed and reflect the

complex history oi' tectonic movement in this recic.z.

Southwoot of the fault, the lineament orientations reflect

the trend of the Garlock fault. 'Phis area is the only

region along the San Andreas fault to experience both dip-

slip and strike-slip faulting in recent geologic history.
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Summary! and Conclusions

In thisprelims n:iry investigation, rhar,ictcr ii; :i

trait, of seismically active areas were recognize(: on

Lanc_l;clt satellite i na-ery which corn,., sporid to :;irn.il,ir

traits determined by Briggs et al ( 1977) . 1 1 atttr rn ,,; of

lineaments including. parallel 1 1 ineam:ntc (charac ter i:;t is

of regions with large dip-slip type earthquakes) and

lineament inter•si.ctions (characteristic of re_;ions with

large strike-sl.ip type -earthquakes) were the moF-;t dia-no;tic;

features, which aver(; observed. Prom this study, it is

apparent that remotely snriso(l data may be useful, perhaps 	 R n

as useful as ground- based data, in distinguishinS among

areas where there is acti •re strike-slip faulting, active

dip-slip faulting, and regions of low seismic activity.

At a minimum, sr?ace imat-ery can province impor • tarit oupple-

mentary information to characterize active tectonic regions. 	
11

In both the Salton Sea ;arid Central California study

areas there were 48 mapped ep.centr.at locations of evunts

oC trkignitude greats r than or equM. to 5.0. These epicenters

are located in regions predicted in Briggs et al's (1977)

study to have large striko-slip earthquakes. All of these

epicenters lie within 50 km of' the San Andreas fault zone.

There are at lea-It 10 mapped lineaments within 25 kin of

each epicentral loc:itiori. All of tht, epict^nter.s lie within

15 km of a mapped 1 ineame-nt and 41 epicenters are w i thin

jP-	 _	 __ ^_	 _	 ___ _.I
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5 km of a mappHI line-iment . Of ',he 7 t:picer Lor • :; that are

not within S km of a mapped linuaml^nt 3 are in the' Salton

S ea. Prominont l i.noament intersect ior:S are locaLe , i 'Vithin

15 km of 38 cf the epi^enters. Of the^c, 24 are located

with in 5 km of a prominent lineament intersection.

The lineaments on a : -.,dsat image of Nevada were also

'	 mapped. This area is in a region predicted by 13riggs et al

(1977) to hive prirncipalJ y d 1p-slip type earthjuak:^:;.

There is a strong directional.'.ty among the mapped lin-cements

i , this image. The other lineaments are cliaper'er_i in

azimuth. There are .50 mapped lineaments from 0 9 N to N3o"'.:.

In addition to numerous; extended, parallel lineam.^nts.

Briggs et al (1977) have suggested an association with

geothermal activity and sharp relief in areas when: there

is active dip-slip faulting. The mapped area app oar d to
i

have high relief although no measurements were m,.trle.

Thermal imagery, which miffht have been useful in identifying

geothermal areas, was nct available for interprctati-n.

I

The areas with the lo-,rest lineament denolty Oc cur in

the Mojave Desert and Great Valley provinces. These areas

correspond to areas of low seismic activity according to

Briggs et al (1977).	 In support of this condition, thy_

epicenter maps plotted in this study shae, no events in part

of the CreaL Valloy north of 36 °30'N in reglon:, N12 and NO,

and only one event of magnitude less than 2 in the eastern

R.
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half of Seel Lon Seri rogi on S2.

!	 Previous experience with 1i.neament mapping reveals that
F•

among different observers there are wide variations in the

i	 number, local ion, and continuity of in(lividusil mapped line-

" t {	 aments; however, the distribution of lineament orientation;;
^^

	

	 I
i

are remarkably consistent among observers. In this study,

	

:	 lineaments were mapped independently by both the author anci

another experienced image analyst. The results were: consic-

tent with this previous- experience in both the Salton Sep:

area and Central California, although the agreement of the

two lineament maps was much better than ha^ bt,en reported

previously. Rose diagrams were plotted by both observers

and these suggest relative rotation, of dominant lineament

directions across; the San Ancreas fault. If' the ir resul',s

are correct, the implication is that there nas been a

relative rotation of crustal blocks associated with the 	 j
` deformation in this area. Independent evidence from paleo-

magnetic data of such block rotations in this area has been

published by Luyendyk et ai (1980).

This inves t i;at i on was based on a vi:;ual anal .,.- i s of

Landsat satellite imagery. The agr(^e-nent of these results

with those cf the: ground-based investigation demonstrates

the potential value or remotely sensed data in stud;;in`

other seismically active region-.. More work is needed to

develop reliable criteria for infer., ing the relative ages of
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1	 7`'
the tecl;nnic features that can be observi., d from ;.puce in

I.
different geologic settings. ; or example, in this, study

there is so ►ne indication th;it f;reater spatial ;harpness of

lineament feature; is ch;tractf!ri:,Ljc of the most sei. smi call y

active regions;, whilo in areas of lower activity the linea-

ments are less sharp. Data enhancement of digital imagery

will also aid in quantifying the observation:;. This io

expected to decrease the subjectivity which often leads to

variations emong interpretations of satellite imagery by

different oboervers.
11
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Su gr en t ion:; for Future Anal .(.;

The exp(:rience gained in th.i.s study suggests that the

following procedure might be used to identify a s0i.21nically

active c:ont'tnental area:

i	 (1) Obtain good, cloud-free imagery of thi s area to be

investigated. `Phis could include imagery taken at

different times of the year to decrease the efects

due to veo,etat.iun. Thermal imagery might be used to

identify geothermal areas. Relief' may be exam ini!cl

stereo ;copically on satellite irna^;ery or by radar

imagery.	 Y

(2) In a visual analysis, lineaments and other structural

fcaturrs may easily be mapped on a transparent over-

lay on the imagery. These s t ructural features may
	 ,

bc• identified by standard geological and geom,,,;rphic

features as well as by more subtle contrasts due to

differences in rock type or texture. Enoi l gh imagery

should be used to cover a large area cc cu--,g.ional

structural tr,2nd.; may be observed.

(3) Digital data could also be acquired. These data might

be enhanced throu-h computer methods which offer a

means of quantitatively analyzing the (iata. A few of

the available methods are discussed below:

(a) Pritrhtness classification maps, may be made to show

the overall land patterns.

♦1t/
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(b) Maps of local spectral uniformity outline areas

j	
1
i

which have similar spectral signature;;.	 These

might be used to apply the characteristic results

of a known area to a new study region.

(c) Nave number analysis; may be used to determine the

orientation and scale of various spatial features

in a given scene.	 By applying a band-pass or

band-reject filter, features in any given orien-
T'

tation may bQ enhanced or removed.

i
(d) Derivative operators may be used to enhance narrow

zones which show a rapid change in character..	 Many

Of these zones are diagnostic geomorphic and vegetal

features.

(e) Two ima;es may be merged to maximize the classifi-

. ^.ation categories.

1
(4) Seismicity data could be collected and epicenters could

be plotted to correspond to the exact scale of each

imaged scene.	 This would aid in identifying the most

'
I

active areas within a region.

(5) A list of question s" ,	 ,such as that given in the Appendix,

f could be used in the analysis;. 	 The most imporLant

questions appear to be those concerning number of line-

aments,	 lineament	 intersections,	 current seismicity,

relief, and nearness to major faults. 	 Other characLer-

istics which may be diagnostic should be considered. 	 In

^-t
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addition,	 the p}zysical meaning of	 these traits might be

texamined. could	 madeAn ..attempt	 be	 to identify the most

recent geological .features. 	 This can be accomplished

by locating the most prominent lineaments and by examin-

ing the spatial relationships of the mapped lineaments.
r

(6) An appropriate grid should be used to assemble these

1= data,	 so that they may be used in a pattern recognition

t.
algorithm to determine characteristic traits. 	 It is

suggested that the sample points include epicenters of

 strong earthquakes.	 The grid should be small enough to

completely sample the entire area. 	 The accuracy of

aC estimating the areas of active faulting will be related

to the grid size.

- Such studies may prove useful. in improving seismic-risk -

f ' zoning and may add to our understanding of earthquake: mech-

Pt anisms in areas where ground-based data are lacking or inade-

1^
quate.	 Remote sensing data offer an inexpensive means of

examining large areas in a short amount of time.
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I'	 The following list of questions were used to interpret
the epicentral regions. This list Includes  paraeieters
used in previous ground-based investigations [Hri4- s
et al (1977) and Gelfand et al (1976)_.

1. In what natural province is the epicenter located?

2. Description of event: magnitude? date(s)?
observed surface faulting?

1	 3- Is the relief sharp" moderate to sharp? moderate?
low to moderate? low?

`	 4. Within 40 km is there any known dip--sl i p faulting?
thrusting? strike-slil y faulting?

{	 5. Are there indications of geothermal activity within
50 km?

j	 6. What is the distance to the nearest spreading center?
^.	 [lat 40.5°N, long !26.6 0 W or lat 33.2 0N, long 115.6°W]

7. How far is the nearest body of water?

8. What is the focal mechanism?

9. What are the preferred orientations for the main
shock fault plane solution?

10. How many earthquakes with magnitude greater than 5
j	 have occurred within 50 kGt from 1932-1579

11. How many faults are there within 25 km?
i

12. How many sul,pnrallel (intersection angle less than
20 1 ) faults are there within 25 km?

13. How many fault intersections are there within 50 km?

14. How far is the closest branch of the Sail Andreas
fault system?

f	 15. What are the trends of the major faults within 50 km?

I
16. How far is the nearest fault?

f 17. How far is the nearest fault intersection?

18. What features were used to identify the lineaments
on the imagery?

4
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19. What are the trends of th3 lineaments mapped
within 50 km?

20. How many lineaments are there within 25 km?

21. How many parallel lineaments are there within 25 km?

22. How many lineament intersections are there within
25 km?

23. How far is the nearest lineament?

24. How far is the nearest lineament intersection?

25. Are the lineaments well-defined within 25 km?

26. Is the area within 25 km seismically active?

27. Does the seismicity occur at the same locations
as the lineaments? lineament intersections^
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ABSTRACT	
OF POOR QUAL ► 1Y

Kemotely sensed data from each part of the

electromagnetic spectrum contains potentially different and

independent information about the earth's surface and

subsurface.	 Interpretation of these different data secs,

together with conventional geophysical and geological

information, is greatly facilitated by merging all the data

sets Such that each (spatial) resolution element has

associated with it an n-dimensional vector composed of

information from each of the n data sets.	 In this study,

,.andsat MSS, Seasat-A Synthetic Aperture Radar (SAR), and

magnetic field data from the South Mountain area west of

Gettysburg, Pennsylvania, were registered to match each

other in spatial position, and merged.	 Pattern recognition

techniques were then applied to the composite data set to

determine its utility in recognizing different rock types

and structures in vegetated terrain around South Mountain.

The SAR imagery was filtered in order to reduce its

directional dependence. Principal components analysis was

used to decrease the dimensionality of the entire data set.

A texture algorithm was then applied to the first two

principal axes, and later to the third axis, in order to

enhance various geologic features.	 Next, the contribution

of each data set and texture measure to the se p arability of

rock type classes in the training area was evaluated.

-iii-

N

i m

i



ti n

0 1
^	 1	 ^a
' ORIGINAL p-,.,--  r^

OF POOR Qj,'^Li rY

{ A	 classification	 of	 the	 entire	 study	 area	 was	 then	 done

using	 the	 enhanced	 data	 that	 contributed	 the	 most	 to	 the

separability	 of	 classes.

The	 texture	 measures	 were	 found	 to	 emphasize	 the	 geologic

I
information	 in	 the	 data	 and	 thus	 increase	 the	 separability

• of	 the	 rock	 type	 classes.	 The	 best	 classification	 was

obtained	 when	 texture	 measures	 from	 each	 of	 the	 first	 three

principal	 component	 axes	 were merged	 with	 the	 magnetic	 field

data.	 About	 40%	 of	 the	 area	 was	 classified	 as	 having	 the

same	 rock	 types	 as	 the	 geologic	 map	 showed.	 The	 confusion

of	 rock	 type	 classes	 was	 due	 to	 the	 large	 amoint	 of	 variance

within	 each	 class	 when	 compared	 to	 the	 between—group

variance.	 The	 variance	 is	 thought	 to	 originate	 from	 three

sources;	 registration	 errors,	 the	 heavy	 vegetation	 cover,

and	 systematic	 noise	 in	 the	 SAR	 data.

A test	 of	 the	 correlation	 between	 SAR	 tone	 and	 texture,

Landsat	 tone	 and	 texture,	 and	 magnetic	 field	 data,	 revealed

no	 tone	 or	 texture	 measures	 linking	 any	 two	 of	 these

original	 data	 sets.

The	 magnetic	 field	 data	 showed	 a	 60%	 correlation	 with	 the

surface	 geology	 of	 the	 area,	 and	 about	 20:	 was	 correlatable

with	 the	 known	 subsurface	 geology.	 In	 contrast,	 the

satellite	 data	 was	 related	 only	 to	 the	 surface

j characteristics.	 Thus,	 the	 merged	 data	 set	 contained	 mainly

`

l

surface	 information,	 but	 had	 a	 small	 component	 of	 subsurface

t
information.
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CHAPTER I.	 1

INTRODUCTION

1	
Sensor Capabilities

The mapping of geologic features from space is still in

r
	

its infancy. We are still experimenting with various

sens,)rs which record potentially useful geologic information

from different parts of the electromagnetic spectrum. 	 Each

new sensor provides a wealth of information about this

planet, some in spectral bands beyond our visible range. As

shown in Figure 1, the wavelengths of interest for remote

sensing extend from the ultraviolet, around 0.4 micrometers

t
to microwaves at 50 centimeters, a range of 10' in

i	 wavelength. This spectrum can be divided into several

segments each of which has special characteristics useful

for remote sensing of surface features.	 The ultraviolet

wavelengths shorter than 0.4 micrometers are generally not

exploited for remote sensing because of high atmospheric

absorption and Rayleigh scattering.

The information recorded by the Landsat Multi—Spectral

Scanners (MSS) in the visible and near — infrared spectral

ranges from 0.5 micrometers to 1.1 micrometers, has been the

subject of considerable research and exploitation for almost

a decade now.	 Foresters have used it to map vegetation

distribution, while geologists have used it in arid regions

4
to map regional rock t y pe and structural geology.

	 i

J
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Ferrous iron—ion transition bands occur in the visible

T'

1

of

range, and although not ideal, the ratio of Landsat spectral

band 5 to Landsat spectral band 4, can be used to

discriminate hematite, geothite, and limonite as a group

from practically all other minerals (Vincent, 1977). 	 In

vegetated areas though, Landsat MSS data offe--s little

direct information about the soil or rock types. 	 The

spectral reflectance of vegetation in the visible to near —

infrared differs markedly from that of rocks and soils, so

that even a small amount of vegetation will alter the

apparent spectral signatures of rocks and soils (Goetz and

Rowan, 1980).

The solar — reflected infrared region, 1-3 micrometers,

shows strong atmospheric water absorption bands; thus,

information about bound and unbound water contained in

surface materials is not transmitted.	 The 2-2.5 micrometer

region though, does contain sharp, highly diagnostic

spectral absorption bands for layered silicates and

carbonates.	 The Thematic Mapper instrument planned for

Landsat D will have two spectral bands centered at 1.6 and

2.2 micrometers and will increase significantly the

lithologic mapping capability from space (Goetz and Rowan,

1980).

In the reflected portion of the spectrum, from the

visible region to the solar — reflected infrared region, the

spectrum of the stressed vegetation can be used to outline

!r 1

11,
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mineralized areas or map lithologies and soil types. The

geobotanical variations which, cause the spectral changes

range from slightly stressed vegetation, to completely

barren areas. These variations are specifically related to

anomalous concentrations of metals or to regional lithologic

variations. Much more research is needed to establish the

uniqueness of this shift in vegetation spectra; its change

with the seasons, sun angle, and precipitation (Goetz and

Rowan, 1980) . '

In the 3-5 micrometer range of the mid-infrared portion

of the spectrum, the crossover occurs between solar-

reflected and surface-emitted energy. 	 This region has not

been thoroughly investigated.	 In the 8-15 micrometer

region, emittance variations provide a basis for

distinguishing silicate and non-silicate rocks and for

discriminating between silicate rocks. 	 Moreover, thermal

inertia information from this region can provide significant

lithologic information.	 Aircraft systems for this region

have operated successfully, but systems with sufficient

spatial resolution for spectral imaging from orbit require

the development of better detector arrays.

The Sea3at Synthetic Aperture Radar (SAR) is an imaging

radar system in the L-band that does not depend on either

solar-reflected or surface-emitted energy. 	 It is an active

system that provides its own source of illumination at any

specified angle, penetrates most weather conditions, and can

^l
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operate	 day	 or	 night.	 The	 price	 paid	 for	 these	 advantages

compared	 to	 passive	 sensors	 operating	 in	 the	 visible	 to

infrared	 spectral	 range,	 is	 that	 a	 much	 larger	 power	 output

is	 required	 and	 extensive	 preprocessing	 is	 required	 to

generate	 images.	 Appendix	 A	 contains	 a	 detailed	 discussion

1
1 of	 the	 Seasat	 SAR	 characteristics.

1

The	 large	 incidence	 angles	 used	 with	 SAR and	 SLAR	 (Side-

Looking	 Airborne	 Radar)	 cause	 terrain characteristics	 to	 be

emphasized;	 however,	 shadow	 zones	 are	 created	 in	 which

terrain	 details	 are	 lost.	 The	 SAR	 return	 is	 a	 function	 of

various	 characteristics	 of	 the	 signal,	 such	 as	 incident
ti

angle,	 polarization,	 and	 frequency,	 as	 well	 as	 dielectric

properties	 and	 roughness	 of	 the	 surface.	 The	 surface

I properties influencing	 the	 SAR return are	 different	 from

those	 influencing	 the	 return	 in	 the	 visible	 spectral	 region,
r

because	 each	 part	 of	 the	 electromagnetic	 spectrum	 reflected
r

from	 the	 earth	 contains	 independent	 information about	 the

earth's	 surface.

other	 types	 of	 remotely	 sensed	 data,	 such as	 magnetic

I

field and	 gravity	 field	 intettsitites	 give	 subsurface

information.	 By	 merging	 the	 data	 sets,	 such	 that	 each

digital	 picture	 element	 (pixel)	 or	 spatial	 resolution

element	 is	 a	 multidimensional	 vector,	 a	 classification	 map

I. according	 to	 vegetation/soil/rock/structural	 units	 should	 be

f
possible.	 The	 texture	 associated	 with	 one	 or	 more	 data	 sets

l

may	 also	 be	 used	 as	 additional	 independent	 information.
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Texture measures defined by Hsu (1979) have been

implemented on Penn State's IBM 370/3033 computer by Pavlin

(1979).	 Parker (1980) then applied them to Landsat data of

the Nevada test site, Degelen area of the USSR, and the Tour

tan Alfella area in North Africa.	 Results of this study

indicate that some texture measures are much better

discriminators of rock types than are spectral tones.

Texture measures are simply added to other data for each

pixel to create a larger — dimension data set.	 i

The merged data set used in the study contained four

channels of Landsat MSS data- one channel of Seasat SAR 	 t,

data, and a channel of magnetic field data covering part of

the area investigated.	 The digital computer processing and

classification of the merged digital data set was then

undertaken using the package of programs developed at the

Office for Remote Sensing of Earth Resources (ORSER) at the

Pennsylvania State University (Turner et al, 1978).	 j

i

Statemenr of Problem	 I

The main purpose of this study was to apply data

enhancement techniques to different remotely sensed digital

data sets in an attempt to map rock types and structure in a

heavily vegeLated terrain.	 The data sets available included

u	 closelLandsat ..SS, Seasat SAR,and in part of the region, 	 y,

a/ ^
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sampled magnetic field data obtained by a surface survey.

To facilitate the joint use of these data sets, computer

programs had to be altered or Written which filtered the

Seasat SAR data and cast it in a format compatible with the

ORSER package of programs, which were developed for

multispectral image data. Also, a program had to be written

which determined 17 texture measures in every pixel

neighborhood in the data set and then stored them as extra

channels. The texture measures in each pixel neighborhood

were expected to add additional geologic information to the

data sets. The magnetic field data had to be resampled such

that one data value existed fo: every satellite picture

element (pixel).	 Then the magnetic field data could be cast

in ORSER format and merged with the other data sets. By

merging all the data sets, including the derived texture

c+easures, the significance of each one to the separability

of rock type classes could be determined and the best ones

used in the final classification.

J, I
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8CHAPTER II.

STUDY AREA

I

A magnetic tape containing digital Seasat SAR data was

obtained from Samuel W. McCandless Jr. at User Systems

Engineering in Washington, D.C.	 The data on this tape had

been radiometrically and geometrically corrected, but was

not in the usual NASA Landsat format. The tape contained a

100 x 70 kilometer scene of an area in Pennsylvania, from

South Mountain to McAlevy's Fort to Miff linburg to York

(Figures 2 and 3).	 The area of study chosen was 18 x 18

kilometers in the South Mountain area just west of

Gettysburg, as indicated in Figure 2. 	 It is part of the

Blue Ridge Province of the Appalachians and contains

Precambrian metavolcanics of the Catoctin formation as well

as Cambrian metasediments of the Chilhowee Group (Figure 4).

This area consists of linear ridges trending approximately N

30° E. The mountains are rugged with a maximum relief of

1100 feet.	 Approximately 80 percent of the area is

represented by slopes.	 Generally, breaks in the slope are

controlled by lithology (Farlekas, 1961).	 Although folding

has been shown to be the dominant method of deformation in

most of the South `fountain region of Pennsylvania and

`laryland, faulting is prominent in the study area (Fauth,

1962).	 The Carbaugh— llarsh Creek fault which passes through

the center of the study area, is a strike — slip fault with

right — lateral disal4cement of 3.2 kilometers.	 This fault is

i
v	 t
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	 aligned with the Everett lineament to the west (Kowalik and

!	 ;;	 Gold, 1974).

The area has been actively mined in the past due to

r
numerous deposits of native copper and copper sulfides in

metabasalts and Cornwall — type magnetitk — copper deposits

(Rose,1970). Greenstone deposits are being actively mined

at present. The volcanic rocks are thought to be subaerial

(Fauth, 1978), and thus volcanogenic massive sulfides are

not present. For this study a geo'ogic map was compiled

jfrom maps by Stose (1932) and Fauth (1962, 1978). 	 To the

west the area is flanked by the Great Valley of the Valley
1

t '	 and Ridge province, whereas on the east it terminates

against the fault — bounded Triassic lowlands. Traditionally,

the basic structure of South Mountain was thought to be a

rooted anticlinorium with an overturned western limb

(Epenshade, 1970). There is now mounting geophysical
I

evidence that the entire Blue Ridge is actually a thrust

sheet above a major decollement (King, 1964; Cook et al,

1979).	 Gwinn (1970) outlines three possible basement

configurations in the South Mountain area (Figure 5).	 This

study does not present any new evidence to resolve this

controversv. The presence of such a range of different rock

I
types and a complexity of structure makes it an i_.teresting

area to develop and test techniques for interpreting

(	 combinations of remotely sensed and conventional geophysical

I
observations, in a vegetated terrain with considerable

topographic relief.

A
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METHOD

Data Collection

Much of the work in this study was involved with

preprocessing of the data, especially the Seasat SAR data.

Because the SAR data was collected on September 25, 1978, a

Landsat tape from the Fall season was chosen. A tape from

the same year was not readily available and was not

considered essential.	 The Landsat tape selected was NA0160,

NASA ERTS E-1440-15172, October 6, 1973 (Figure 6).

The idea that a data set representing an entirely

different rock property might aid in distinguishing rock

types in a vegetated area, prompted the investigation of the

aeromagnetic coverage in the South Mountain area. Through

consultation with Dr. P.M. Lavin (1980), it was discovered

that although one-quarter mile flightline coverage existed

the Triassic basin near Gettysburg, the area of interest

was covered by flightlines four miles apart. 	 This was much

too coarse a sampling interval to be of any use in this

study; therefore, a field magnetic survey was undertaken.

Grid lines were laid out by pace and compass,

perpendicular to the regional geological trend (Figure 7).

It was hoped that by this orientation of grid lines, a large

line spacing could be used without causing aliasing of the

data.	 The lines were spaced 400 meters apart and readings

I
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were taken every 25 meters along the lines. 	 The area chosen

lay five kilometers directly southeast of the town of South

:fountain.	 The area contained . both a large diversity of rock

types and a sparse population.	 One small copper prospect

near Mt. Hope, which was mined at the turn of the century,

was included in the survey area. The survey was conducted

using the proton precession magnetometer belonging to the

Geophysics Prograa, Geosciences Department of the

Pennsylvania State University. The actual dimensions of the

area were 3.2 kilometers east —west by 2.0 kilometers north —

south (Figure 4).

Relationship of magnetic field data and geologic features

The magnetic field data was used both as an aid to

surface rock type classification, and in determining the

relationship between subsurface geologic structure and the

total magnetic field.	 In the magnetic field survey area, a

geologic cross — section was compared to a magnetic field

profile.	 Also, *.ne contoured total magnetic field map was

compared to the detailed ground — mapped geology.

I

I

i
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Reformatting and rotating the Seasat SAP, data set. 	 The

first step in the processing of the Seasat SAR data set was

to make it compatible with the Office for Remote Sensing of

Earth Resources (ORSER) system of programs (Turner et al,

1978); references in this section and elsewhere are made to

specific programs in that system, and a description of each

is available in their manual. This entailed translating the

tape from ASCII to EBCDIC format using the PSUDEBE magnetic

tape utility program, and then rewriting the ORSER SUBSET

program so that it produced a labelled tape in the ORSER

format. The original SAR tape also had a LRECL-6144 and a

BLKSIZE-6144. This had to be changed to the ORSER

specifications of LRECL-3692 and BLKSIZE-3700. This meant

that an entire line of data from the SAR tape could not be

subset onto the ORSER tape all at one time.

A further complication to the eventual spatial

registration of the Seasat SAR scene to a Landsat scene was

that the azimuth of the SAR scene (perpendicular to the scan

line orientation) was 246 degrees. 	 This was 125 degrees off

from the azimuth of the Landsat scene (11 degrees azimuth).

The ORSER SUBGM program will not allow more than 36 lines of

data in memory; chus, only rotations of less than 10 degrees

will usually be allowed each time (depending on the size of

the data set, of course). 	 This problem was alleviated by

e
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w
s subsetting	 a	 small	 Brea	 of	 interest	 (size	 limited	 by
I4

computer	 storage	 capability)	 and	 incorporating	 in	 the

rewritten	 SUBSET	 program	 (SUBRAD),	 a	 section	 that	 switched

lines	 and	 elements,	 thus	 implementing	 a	 90	 degree	 rotation.

The	 resolution	 of	 the	 SAR	 is	 25 meters	 but	 the	 sampling
f	

rI rate	 is	 finer.	 Thus	 the	 SAR	 data	 after	 rotation	 had	 a	 pixel

spacing	 of	 18	 meters	 between	 elements	 and	 16	 meters	 between

lines.	 The	 NMAP	 digital	 image	 scale	 of	 the	 SAR	 data

(1:6299),	 was	 much	 larger	 than	 that	 of	 the	 Landsat	 digital

image	 (1:31102.4).	 The	 desired	 scale	 was	 1:24000,	 but	 the

SUBGM program	 could	 not	 handle	 such	 a drastic	 scale

reduction,	 except	 by	 a	 series	 of	 iterative	 reductions.	 Thus

the	 SUBRAD	 program	 sampled	 every	 third	 element	 of	 every

` third	 line,	 giving	 a.scale	 of	 1:18898.

1.

S

Filtering Seasat SAR data. The second step was to remove

the look direction dependency of the SAR data (Appendix 1)

by applying a filter in the wavenumDer domain of the form:
1

i
(1/(1 - 0.5 cos 20)Y' 2	(1)

where	 - the azimuthal angle or viewing angle.

The filter had values from 0.8 to 1.4 and thus did not

change the average values in the space domain very much.

The 0-255 dynamic range was preserved. 	 The filter values

were simply multiplied b y the data wavenumber values in the

%r. I
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wavenumber domain. The filter was also multiplied by a

Hamming window to minimize spectral leakage in the space

domain.	 A major problem was the limited core space

available for the large arrays involved in the 2 — D fast

Fourier transform. This problem is somewhat alleviated now,

with the new MVS system for the IBM 370/3033 computer at

Penn State.	 Another possibility for decreasing the core

space needed, would be to apply a truncated version of the

filter in the space (or image) domain and use a convolution

technique.

Processing the ma gnetic field data.	 The third step was

to cast the magnetic field data into a form compatible (same

sampling interval and dynamic range) with the other two data

sets. The data set had to be resam, led and interpolated.

The Nyquist wavenumber (Brigham, 1974) of the magnetic field

data, at a 25 meter sampling interval, ^,as about 0.0082

meters 1 , thus a sampling interval greater than 61 meters

along the lines could lead to aliasiag. 	 Across the lines it

was assumed that the 400 meter sampling interval was

ade q uate, because the rock units were striking in that

direction.

In order to use the ORSER program SUBGM, the data had to

be extrapolated to form a square grid.	 The lines were

extended by adding data from adjacent lines (Figure 7)•

Lines 400 North and Zero spanned the entire length of the

O



r"

i

21

grid; thus, data values at the ends of these lines were used

to extend all the other data lines in the grid.	 Line 400

North wasused to extend lines in the northern part of the

grid, while line Zero was used to extend lines in the

southern part of the grid. The data were then resampled at

a 50 meter interval along the lines and linearly

interpolated to a 50 meter sampling interval across the

lines.	 The resulting rectangular data set had to be reduced

to a 0-255 range and then written to tape in ORSER format.

A program (SUBMAG) was written which accomplished that step.

The data set could then be rotated to zero azimuth and

rescaled to a 1:24000 scale using the ORSER program SUBG`i.

r'

4

d

An attempt was made to use cubic convolution resampling

during the data set rotation, but when that failed (for an

t

1

	 unknown reason), a nearest neighbor resampling was used.

The resulting density slice map (:TAP) is shown in Figure 8.
1

The blank areas represent the highest magnetic field

readings, while the darkest symbols represent the lowest

readings. The final scale of the NM AP was 1:24000 which

meant that a sampling interval of 61 meters was used and

some aliasing may have occurred.

This type of ground survey magnetic field data is

referred to as "draped" data, because the elevation at which

l	 each point was read was constantly changing due to the

I
rugged topography.	 Filtering the data would have first

1	
required reducing it to a single datum plane.	 The Fourier

f

l
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Figure S. :JW digital printout of magnetic field data
(not corrected for line printer ). The line
printer outputs 10 symbols per inch but only
6 lines per inch. The figure has also been
reduced during copying. The solid line outlines
the actual magnetic field survey area before
extrapolation, as shown in Figures 4 and 7.
Each symbol represents a level of intensity of
the total magnetic field, with blank areas
containing the highest magnetic field values,
anc each symbol (. , - + X N *) representing
areas of progressively lower total magnetic
field values.
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j methods used in more sim p le continuation problems from one

linear surface to another would not be applicable (Henderson
7

and Cordell, 1971; Syber;, 1972).	 Instead, a finite

harmonic series approximation would have to be used.

Because topography did not seem to have a significant effect

I on the data set, no filtering was attempted.

Registration of all the data sets. The fourth step was

the rotation of both the Landsat data and the filtered SAR

data to zero degree azimuth (Figures 9 and 10) using SUBGM.

The area shown in Figures 9 to 12 is the entire thesis study

area as outlined in Figures 2 and 4. Some changes in array

size specifications in SUBGM were made in order to allow

larger rotations.	 Scale changes and the interpolation of

	

• j
	

the data to form s q uare pixels were accomplished at the same

time. Then, registration points were picked on the N:!AP

digital images of each scene. This step was very difficult

due to the intrinsic differences in the information recorded

by each sensor.	 By choosing 20 well—distributed

registration points, a set of fourth degree polynomial

functions could be used to rubbersheet — stretch the SAR data

	

1	 using the ORSER programs RUBRFUN and SUBGM. These

polynomials were arrived aL. by a step —up, linear, multiple

rep-ession procedure as explained in the ORSER manual

(Turner et al, 1978).	 The rubbersheet stretched SAR data

(Figure 11) was matched to the Landsat data by minimizing

f)

it I



II;

^i

Iy^;

Il

{I
.i
^I

I
I'

ORIGIMkt 
P ApEI 0OF POOR Q

Figure 9. NMAP of Landsat AS data rotated to zero azimuth.
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Figure 10. TILkP of Seasat SAR data rotated to zero azimuth.
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Figure 11. v:LAP of rubbers',.eet-stretched Seasat SAR data.

Figure 12. N1,Ur of merged Landsat MSS - Seasat SAR data.

J
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the error between all the paired registration points. 	 This

data set was then merged with the Landsat data and stored on

tape as a fifth channel (Fi^ure 12). 	 Before merging, the

Landsat data was contrast — stretched by 2.5 times in all 4

channels so that it covered more of the 0-155 range and thus

was more compatible with the SAR data.

The small area of magnetic field data was then merged

with the Landsat — SAR Bata. `o rubbersheet stretching of the

magnetic data was undertaken. After a close com parison of

the corrected Landsat .'i-ital image with a set of USGS

1:24000 scale topo;-.)h`c maps of the area (Iron Springs,

Fairfield, Caledoz.ia Park, and Arendtsville quadrangles)

(USGS, 1953), it was concluded that rubbersheet stretching

was not required. This conclusion held for the entire study

area. The registration of the combined image was

accomplished through a simple overlaying and recording of

matching pixel coordinates and latitude—longitude

coordinates (Table 1).	 The magnetic field data set was used

as a sixth channel in a small section of the area of

interest (Figure 4) to test its usefulness in distinguishing

rock types.

Principal components analysis. 	 The final step in the

preprocessing of the data was the principal component

transformation of the entire merged Landsat — SAR data set.

The starting point of principal component analysis is the

t



Table 1. Registration of merged data to topographic raps.

Line	 Element
Latitude	 Longitude	 Number	 Number

28

39 0 55'00" N 77°27'30" W

39°55'00" N 77°22'30" U

39°50'00" `1 77°27'30" W

39 0 50'00" N 77022'30" W

2521	 401

2522	 516

2672	 Q00

2673	 516'

USGS
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assumption that conservation of variance corresponds to

conservation of information. The method employs a

rotational transformation of the original data set such that

each new axis accounts for progressively less and less of

the total variance (Borden et al, 1976).	 The transformation

is useful because it requires no prior information and can

be used to reduce the dimensionality of the data set if

there is redundancy among channels. The NMAP density slice

displays of four of the resulting five axes are shown in

Figures 13,14,15, and 16.	 The first principal axis

contained 86.9 percent of the total variance, the second

axis contained 11.0 percent, and the higher numbered axes

contained the rest of the variance.	 Table 2 illustrates the

fact that axis 1 h.d a high negative correlation with

channel 5, the SAR channel, and that axis 2 had a high

negative correlation with both channels 3 and 4. Thus the

first principal axis was essentially the SAR data, whereas

the second and third axes were the first and second

principal components of the four Landsat channels. 	 Table 3

shows that the Seasat SAR channel was not highly correlated

with any of the Landsat channels and thus was a very unique

set of data.	 This also illustrates why registration of the

SAR to the Landsat data was very difficult.	 After the

principal component transformation, the resulting axes

showed very little correlation with each other as shown in

:able 4.	 The principal component axes are by definition,

those axes that minimize this correlation.

1

f
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Figure 13. NMAP of principal component axis 1.
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Figure 14. VtIXF of principal component aids 2.
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Figure 15. :MAP of principal component aids 3.

Figure 16. VMAP of principal component aids 4,
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Figure 17. Linear features and maior structural and
geologic units of the study area
(after Socoloa, 1960).
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Table 2. Correlation of channels with principal cormonent
axes.

l

Axis:	 1	 2	 3	 4	 5

Channel

(.	 1

t	 2

3

C	 4

W2	 5

.1
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0.12 -0.45 -0.80 0.01 -0.37

0.09 -0.34 -0.91 0.1_ 0.20

0.14 -0.98 0.00 -0.10 0.02

0.13 -0.95 O.i9 0.20 -0.02

-1.00 -0.02 -0.00 -0.00 -0.00

Table 3.	 Correlation matrix for initial given channels.

Channel:	 1 2 3 4	 5

Channel

1	 1.00

2	 0.82 1.00

3	 0.45 0.33 1.00

4	 0.30 0.13 0.94 1.00

5	 -0.11 -0.08 -0.12 -0.11	 1.00
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Table 4. Correlation matrix for principal component axes

I
Ax-4 s: 1 2 3	 4

Axis

1 1.00

2 0.19 1.00

3 -0.06 -0.1; 1.00

4 -0.06 -0.14 0.01	 1.00

5 0.04 -0.11 -0.04	 -0.03	 1.00

.N n

1

is
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Feature Extraction

Choosing training areas.	 Training areas were chosen

within the area of the image that was geologically mapped

most recently (Fauth, 1978); the testing area was that area

mapped earlier by	 Fauth (1962), while the rest of the area

of interest was classified and compared to the mapping done

by Stose (1932).	 An NP1AP digital image of the merged

Landsat — SAR data set (corrected for the line printer) was

overlain manually on the geology map of Fauth (1978). 	 The

rock type boundaries were then traced and transferred to an

NM AP not corrected for the line printer, because this was

the data set on which the final classification had to be

done. Training areas were chosen on the basis of this NMAP

and a uniformity map (UMAP), also not corrected for the line

printer.	 Three criteria were followed in establishing

training areas:

(1)	 Sites within the area of the magnetic field survey

were chosen first.

(2)	 Sites used in the texture analysis (including all

those outside the area of the magnetic survey and some

inside) had to contain a minimum of 51 pixels.	 This

criterion is based on the work of Foley (1971).	 His

principle states that for a valid analysis the minimum

number of pixels sam p led must be three times as large



y

36

as the number of variables used.	 Because the texture

algorithm calculates 17 measures of texture, 51 pixels

were needed.

(3)	 Because texture was one of the measures used in

discriminating between classes, the training areas were

chosen by using both the NMAP and UMAP digital outputs.

The predominant intensity level and degree of

uniformity within a given rock type area were

considered to be characteristic of that rock type.

Training areas were chosen on that basis.

There were 14 training areas chosen inside the magnetic

field survey area (Figure 37), and 26 more were chosen

outside that area.	 Areas that were too small to use for the

texture measure analysis were input together as one training

area, or else the statistics from them were combined

afterwards so that they essentially represented one larger

area.	 The characteristics of each rock type class are

listed in Tables 5 and 6. 	 All the training areas were

chosen either within the Precambrian Catoctin formation of

metavolcanics (rock type classes A, B, and C) or in the

Cambrian Chilhowee group of metasediments (rock type classes

D, E, F, and C).
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jTable 5.	 Rock type classes in Catoctin metavolcani::s

(after Fauth, 1978).

1
TRock type	 Characteristics

class

Rock	 type	 A	 Phyllites	 which	 were	 originally	 a	 rhyolite
^. tuff.	 A	 thin	 bed	 outcrops	 in	 the	 eastern

part	 of	 the	 magnetic	 survey	 area.	 One
training	 area	 was	 chosen	 in	 the	 magnetic

I field	 survey	 area;	 none	 outside.

l
Rock	 type	 B	 Metarhvolites	 which	 were	 originally	 glassy r

lava	 flows	 or	 welded	 tuffs.	 Many	 outcrops Y'
occur.	 Three	 training	 area	 were	 chosen	 in
the	 magnetic	 field	 survey	 area,	 seven
outside.

Rock	 type	 C	 Metabasalts	 which	 were	 the	 initial	 lava
flows,	 were	 followed	 by	 thick	 sequences	 of
rhyolite	 and	 then	 a	 final	 intrusion	 of
basalt.	 Poor	 exposure	 exists.	 Three
training	 areas	 were	 chosen	 in	 the	 magnetic r

(
I

I

field	 survey	 area,	 seven	 outside.

f

I

l

f
L ^
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Table 6. Rock type classes in Chilhowee'metasediments
(after Fauth, 1978).

Rock type	 Characteristics
class

Rock type D Loudoun formation composed of phyllites and

graywackes.	 It occurs along lower slopes of

ridges.	 Outcrops are rare. Two training

areas were chosen in the magnetic field
survey area, five outside.

Rock type E Weverton formation composed of quartz

phyllites, quartzose graywackes, and
	

1

quartzites.	 It is a major ridge former.

Two training areas were chosen in the

magnetic field survey area, five outside.

Rock type F Harpers formation composed of greywacke

siltstone and greywacke.	 It forms shallow

longitudinal valleys. Two training areas

were chosen in the magnetic field survey

area, one outside.

Rock type G Harpers formation — Montalto member composed

of medium —grain " d quartzite.	 It forms the

upper slopes and crests of ridges.	 One

training area was chosen in the magnetic

field survey area, six outside.
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Spectral signatures.	 Once all the training areas were

chosen, they were input to the ORSER program STATS, which

computed the mean vector and the variance-covariance matrix

for each training nre-i.	 The training areas within the

magnetic survey area were each characterized by a six-

component mean vector or spectral signature. These mean

vectors were then input to a multivariate stepwise

discriminate analysis program (BMD07M) developed at UCLA

(Jennrich and Sampson, 1979).	 This program tests the

separability of rock types, as will be explained later. 	 The

first four Landsat components were input first, then the

Seasat SAR component was added, anJ finally the magnetic

survey component was added.	 In this way, the contribution

of each component to the separability of rock types could be

tested.	 The five-component mean vectors of the training

areas outside the magnetic survey area, plus some inside the 	 f

area, were tested in the same way.	 Each training area was

then input to the texture algorithm.

Textural signature algorithm.	 Most classification

decision rules in use at present depend on the assumption of

normally distributed data for their implementation. 	 The

minimum-distance decision rule assumes equal within-group

variances as well as normalit y of the data, while the

Xahalanobis distance classifier takes account of different

within- g roup variance-covariance matrices, t<<u£ resulting in
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higher	 classification	 accuracy.	 Hsu	 (1979)	 states	 that	 it

r

J

has	 been	 well-documented	 that	 spectral	 response	 data,	 in

most	 cases,	 are	 not	 normally	 distributed.	 This	 non-

inormality causes	 substantial	 errors	 in	 final	 decision	 maps

^_.. produced	 by	 most	 classifiers.	 To	 solve	 the	 problem,	 as	 well

as	 to	 improve	 the	 feature	 extraction	 capability,	 he	 proposed

y a	 textural	 algorithm	 that	 in	 effect	 creates	 a	 more	 normally

distributed	 data	 set	 (Hsu,	 1979).	 A	 (3x3)	 pixel	 window

design	 was	 applied	 to	 the	 data	 to	 extract	 17	 texture

i
measures	 which	 were	 assigned	 to	 the	 center	 pixel	 of	 the

(3x3)	 pixel	 box.	 These	 measures	 of	 texture	 tone	 (Table	 7)

were	 implemented	 by	 the	 computer	 program written	 by	 Paviin

(1979).

This	 texture	 algorithm was	 applied	 to	 the	 Seasat	 SAR

channel	 of	 each	 of	 the	 training	 areas.	 The	 algorithm

•

computed	 the	 average	 of	 each	 texture	 measure	 within	 each

training	 area	 and	 output	 this	 measure	 as	 the	 textural

^. signature	 of	 that	 training	 area.	 These	 signatures	 could
i

then	 be	 input	 to	 the	 BMD07%,	 program	 to	 test	 the	 separability

of rock types.	 By adding the spectral tone signatures from

the Landsat channels as four more variables, the

jseparability due to texture measures could be compared to

'	 that due to spectral signature alone.	 The texture algorithm
4

was also applied to the first three axes of the principal

component transformed data to test the effect on

separability using this transformation.

)F
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Table 7. The texture-tone variables of Hsu's algorithm
(after Hsu, 1979).

Code nescrintion or comp utational formula

1. ME.I.V Average

2. STD Standard deviation
the Four central moments

3. SKEW Skeuness

4. KURT Kurtosis

5. MDEVN [xi - x]/n, where xi-tone value of individual pixel

x -mean

6. MPTCON (xi - xc]/n, where xc-tone value of center point

7. MPTRE (xc - xi) /n

8. `ENCO`I (xi - xj ]/n, i and j	 are adjacent pixels

9. MIVSQF, (xi - xj)	 /n

10. w.2`?CON [:Q - ,&];n, i and k are second neighbors

11. M2NSQR (xi - Zit)	 /n

12. MUAT1 "lean area above daturt 1 (50)

13. MADA''2 Mean area above datum 2 (100)

14. :44DAT3 Mean area above datum 3 (150):

15. M3DAT1 wean area below datum 1 (50)

16. `30AT_2 Mean area below datum 2 (100)

17. `BDAT3 Yzan area below datum 3 (150)
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' I The	 texture	 measures	 that	 best	 separated	 the	 categories	 were

then	 extracted	 for	 each	 pixel	 neighborhood	 and	 written	 to

tape,	 using	 a	 modified	 version	 of	 the	 previously	 implemented

texture	 program	 of	 Pavlin	 (1979).

i

Correlations	 between	 data	 sets.	 The	 first	 principal

component	 axis	 essentially	 represented	 the	 SAR data,	 while

the	 second	 and	 third	 axes	 represented	 the	 first	 and	 second

!

j

principal	 components	 of	 the	 four	 Landsat	 channels

respectively.	 Thus,	 a	 test	 could	 be	 made	 (over	 the	 entire

study	 area),	 of	 the	 correlation	 between	 the	 Landsat	 textures

Y^

and	 either	 the	 SAR	 tone	 or	 the	 SAR	 texture.	 The	 correlation

between	 the	 SAR	 tone	 and	 each	 of	 the	 17	 texture	 measures	 of

both	 principal	 component	 axes	 2	 and	 3	 was	 first	 tested.

Then,	 a	 test	 was	 made	 of	 the	 correlation	 between	 the	 texture

i-
measures	 (from	 all	 three	 principal	 component	 axes)	 that	 best

i
i separated	 the	 rock	 type	 categories.	 Four	 texture	 measures

z

from	 principal	 component	 axis	 1	 were	 used,	 five	 from	 axis	 2,

`
I and	 one	 from	 axis	 3.	 In	 the	 magnetic	 field	 survey	 area,	 the

correlation	 between	 17	 texture	 measures	 from	 all	 three

a	
I principal	 component	 axes	 and	 the	 magnetic	 field	 data,	 was

i
tested. Eight	 texture	 mt g sures	 from	 each	 of	 the	 principal

component	 axes	 1	 and	 2,	 plus	 one	 from	 axis	 3,	 were	 used	 in

.f

the	 test.

I
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Discrimination.	 A useful supplement to the ORSER set of

programs was the UCLA BMD07M program which performed a

multiple group discriminant analysis on the mean signatures

of the training areas.	 The variables were entered one at a

•	 time depending on their F-statistic (which measures that

variable's contribution to the between-group variance). The

variable with the largest F-statistic was the one that

contributed the most to the between group variance and the

least to the within group variance. This variable was

entered first.	 If, as more variables were entered, a

variable's F-statistic dropped below a certain level, that

variable was deleted from the analysis.	 In this manner, the

variables that contributed the most to the discrimination of

rock types could be identified. Once all the variables with

a large enough F-statistic were entered, a canonical

analysis, developed by Merembeck et al (1976), was done,

which fitted a new set of mutually orthogonal axes to the

data by rotation, translation, and scaling, such that the

first axis accounted for the greatest amount of variance

with succeeding axes accounting for less and less.

Mathematically the process created a set of transformed

variables by maximizing the between-class covarianceand

minimizing the within-class covariance.	 The first two

canonical axes were plotted on a scattergram to give an

optimal two-dimensional picture of the separation of groups.
I

These scattergrams were used in each step of the analysis,

i

i

N

i

.1

61
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to determine the contribution of each data set and/or

texture measure to the separability of rock types (Figures

21 to 34).	 Each rock type symbol on the scattergrams

represents a training area for that rock type. 	 If two

training areas of one rock type class are very close

together, only one symbol is printed.	 The asterisks (*)

indicate the location of the mean values of each rock type

class in canonical space. The characteristics of the rock

type classes are tabulated in Tables S and 6. The abscissa

or horizontal axis is the first canonical axis, and the

ordinate or vertical axis is the second canonical axis.

`s 1

Classification

The data classification was first performed on five

channels of texture measures computed from the principal 	 j

component transformed data.	 Texture measures 7, 8, and 14

(Table 7), extracted from principal component axis 1, and

texture measures 3 and S, extracted from principal component

axis 2, were merged forming a new data set used in the

classification.	 Using the ORSER program CANAL, the

signature from each of the training areas was used to

construct canonical axes that best separated the data

classes.	 The data pixels were then transformed into

canonical space and classified using a minimum distance

J
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rule.	 The 5-channel data set was reduced to 4 canonical

axes.	 Classification was performed on the entire study area

and then on the magnetic field survey area after the

addition of the magnetic field data.	 The 6-channel data	 set

in the magnetic field survey area was also reduced to 4

canonical axes.

A comparison of principal component axis 3 (Figure 15)

with a map of the linear `eatures and major structural and

geologic units (Figure 17), reveals the close similarities

and thus the importance of the third principal component.

The Carbaugh-Marsh Creek fault shows up well, cutting

horizontally across the Figure. The powerline right-of-way

is also clearly visible.	 The most interesting feature of

Figure 1: though, is the significant contrast across the

faults separating the Triassic Basin on the east fro:z the

Blue Ridge province on the west. 	 In the Blue Ridge, the

metavolcanic rocks seem to be displayed as lighter colored,

and the metasediments are a darker green.	 In the Triassic

Basin, all units appear much darker.

An attempt was made Lo improve the classification

accuracy in the magnetic field survey area by using more

texture measures including one from principal component axis

3.	 Eight channels were used initially, and reduced to 5

canonical axes.

JTI
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CHAPTER IV.	 4f

RESULTS

Each data set was tested for its geologic information

content.	 The magnetic field data alone could be correlated

very well with the geology of the study area. With the

merged data set, a steady progression was made towards

better and better automatic computer zlassification of the

study area.	 Isolating the causes of classification errors

was difficult, but one of the principal causes was probably

registration errors.
! 
^rl

Registration

Registration ' of the SAR data to the Landsat dita resulted

in a 15 pixel or better accuracy between matching

registration points.	 This is about a 1 kilometer or better

r2lacive accuracy.	 No measure of absolute accuracy could be

obtained.

Relationship of magnetic field data and geologic features

A comparison of the total magnetic field to the geology

and geologic structure in the survey area (Figures 18,19,

and 20), yielded some interesting correlations.

i
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1	 The magnetic field highs correlated in general with the

occurrence of the metabasalts either at the surface (Figures

18 and 19), or at depth (Figure 20), except in the northwest

corner of the surve y area.	 There, a substantial magnetic

6	 hign occurred in an area mapped as quartzites. 	 This

suggeMLS that either metabasalts outcrop there, or occur at

!	 fairly shallow depths, similar to the cross — section (Figure

20) in the eastern part of the survey irea. 	 The

metarhyolites had, in general, a low magnetic expression

especially in the eastern part of the survey area where the

profile shows they were n:t un4C-71ain at depth by 	
ti

metabasalts.	 The metasediments had an intermediate magnetic
r	 ^

expression.	 Thus, the total magnetic field was with some

Iexceptions, well correlated with the surface rock types.

I'	 Correlations between SAR, Landsat, and magnetic field data

The texture measures of principal component axes 2 and 3

were tested for their correlation with the SAR tone and

texture.	 If a strong correlation existed, the approximate

equivalent of the SAR data could be derived from the Landsat

data in future studies.	 Table 8 shows the correlation

t	 between the SAR data and the 17 texture measures from

I
principal component axes 2 and 3. 	 No strong correlation

exists (a perfect correlation would be 1.00); thus the SAP.

data is indeed a unique data set.

I



Table 8. Correlation of SAR tone with principal component
axes 2 and 3 texture measures.

Texture	 SAR and SAR and
measure	 principal principal

component component
axis 2 axis 3

correlations correlations

51

1 0.19 -0.06

2 -0.07 -0.07

3 0.04 0.01

4 -0.02 -0.01

5 -0.07 -0.07

6 -0.05 -0.07

7 -0.17 -0.03

8 -0.06 -0.08

9 -0.07 -0.07

10 -0.07 -0.07

11 -0.07 -0.07

12 0.04 0.02

13 0.0a -0.09

14 -0.05 -0.10

15 -0.02 0.0

16 -0.07 -0.02

17 -0.05

R, 1

J
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A further test was -sde of the correlation between the

texture measures (from principal component axes 1,2, and 3),

which contributed the most to the separability of the rock

type classes.	 Ten measures of texture were used, and the

results are shown in Table 9.	 In the magnetic field survey

area, the magnetic field data was included, and 18 channels

were used in the correlation (Table 10).	 The highest

correlation between texture measures was found to be 0.94

between texture measures 5 and 9 of principal component axis

2.	 There was essentially no correlation between texture

measures from different principal component axes. 	 The

magnetic field data showed about a 0.20 correlation with

texture measures 5,9 and 14 from principal component axis 2

and texture measure 12 from principal ^-nmponent axis 1.

These correlations are relatively low and would non be

discernable by a visual inspection of the data.

Classification usin g texture measures from principal

component axes 1 ant 2

The training areas chosen were used to test the

contribution of each data set to the separability of rock

type classes.	 The evaluation of these results was done by

comparing, between each step, the confusion matrices and the

canonical scatter g rams output by the stepwise discriminant

IN

i

r 1Y.

JI
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Table 10. Correlation of magnetic field with principal
component axes 1,2, and 3 rextur.e measures.

I4 1

Texture 'Magnetic
measure field

correlation

2P3 -0.04

2P4 0.03

2P5 -0.18

2F 3 -0.15

2P9 -0.18

2P11 -0.16

2P14 -0.20

2P16 0.08

3P14 0.09

1P6 0.07

1P7 -0.02

1P8 0.06

1F9 0.07

1P11 0.02

IP12 -0.21

1P14 -0.11

1P15 0.09

Variables 1P'_ - 1P17 - ?rir cipal component axis I
texture measures

Variables 2P1 - 2P17 s Principal co=onent =Ls 2
texture measures

Variable	 3P14	 - Principal cc=onenc axis 3
texture measure

1

.' L
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analysis program BMD07M.	 Table 11 shows the confusion

r

	
matrices in the magnetic field survey area.	 These matrices

show the accuracy of classification of the mean values from

each training area.	 The training area (after canonical

transformation) is classified into that group to which it is

most similar.	 Because the rock type of each training area

is known, the accuracy of the classification can be tested

and expressed as a confusion percentage.	 The effect on the

confusion percentage by the addition or deletion of a data

set or variable, can thus be used as a measure of the
i
i
	

contribution of that variable to the separability of rock

type ela-,ses.

The contribution of the four Landsat variables to the

separability of rock type classes was tested first. 	 The

matrices show a 14% confusion among the training areas in

this first case; 7% confusion with the addition of the SAR

charnel and 01': confusion after the addition of the magnetic

field channel.	 The canonical scattergrams (Figures 21,22,

and 23) show some improvement with each step, but not as

clearly as the contusion matrices, due principally to the

limitation of only being able to display two canonical axes.

However, the canonical axes displa y ed are alwa y s those that

contain Post of the variance.	 The most significant

variables chosen by the program BMD07`1 for each case, are

shown in Table 12.	 Landsat channel 4 was the most

significant, and the magnetic field data was more

significant than the SAR data.

.A
	 C
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i

I

ile 11. Confusion matrices for magnetic field survey area.
Rock ty-pe classes are defined in Tables 5 and 6.

i) Landsat channels only (1,2,3,4).

	

'1e	 Number of cases classified into rock class

	

'k	 A	 B	 C	 D	 E	 F	 G
ass

1	 0	 0	 0	 0	 0	 0

0	 3	 0	 0	 0	 0	 0

0	 1	 1	 1	 0	 0	 0

0	 0	 0	 2	 0	 0	 0

0	 0	 0	 0	 2	 0	 0

0	 0	 0	 0	 0	 2	 0

0	 0	 0	 0	 0	 0	 1

Landsat + SAR channels (1,2,3,4,5)

	

Ue	 Number of cases classified into rock class

	

k	 A	 B	 C	 D	 E	 F	 G
class

A	 1	 0	 0	 0	 0	 0	 0

B	 0	 3	 0	 0	 0	 0	 0

C	 0	 1	 2	 0	 0	 0	 0

D	 0	 0	 0	 2	 0	 0	 0

E	 0	 0	 0	 0	 2	 0	 0

F	 0	 0	 0	 0	 0	 2	 0

G	 0	 0	 0	 0	 0	 0	 1

(c) Landsat + SAR + magnetic field channels (1,2,3,4,5,6)
True
rock	 :lumber of cases classified into rock class
class	 A	 B	 C	 D	 E	 F	 G

A	 1	 0	 0	 0	 0	 0	 0

B	 0	 3	 0	 0	 0	 0	 0

C	 0	 0	 3	 0	 0	 0	 0

D	 0	 0	 0	 2	 0	 0	 0

E	 0	 0	 0	 0	 0	 0

F	 0	 0	 0	 0	 0	 2	 0

G	 0	 0	 0	 0	 0	 0	 —1

i
I

I

i

i

I

1

i

1C-dhh--	 -	 J,
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Table 12. Significance of data sets or variables in the magnetic
field survey area.

Landsat	 Landsat	 Landsat
only	 +	 +

SAR	 SAIR

magnetic
field

Most 4 4	 4
significant

variable 3 3	 6

2 2	 3

1 5	 5

Least 1	 2
significant

variable 1

Variable 1 a Landsat channel 1 (0.5-0.6 um)

Variable 2 3 Landsat channel 2 (0.6-0.7 um)

Variable 3 - Landsat channel 3 (0.7-0.8 um)

Variable 4 - Landsat_ channel 4 (0.8- 1 1 urn)

Variable 5 - SAR channel

Variable 6 - Total magnetic field
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In the larger area, more training sets were used and no

magnetic field data were available. 	 First, the contribution

of the Landsat data to the separability of the classes was

tested, then the SAR data was added, and finally the effect

of 17 SAR texture measures was tested.	 Table 13 shows the

confusion matrices. The matrices show a 29: confusion in

the first case; a ;such more reasonable number than the 14

confusion that resulted in the magnet ^ survey case with

only the Landsat channels, because more training areas were

used.	 The SAR data reduced the confusion to 7;., and the 17

SAR texture measures reduced the confusion to 0%. 	 The same

improvement is evident to a lesser degree in the canonical

scattergrams (Figures 24,25, and 26). 	 Figure 26 shoes good

clustering of the rock type classes. 	 Rock type E which is

the Weverton formation composed of phyllite, graywacke and

quartzite, and rock type F which is the Harpers formation

composed of siltstone and graywacke, are well separated from

each other and from the other rock t ype clusters.	 Rock type

B which is metarhyolite is well clustered and is fairly well

separated from the other clusters.	 Rock type C (metabasalt)

and C (quartzite) are confused.

The next step was to apply a principal components

transformation to the data and then apply the texture

algorithm to the first three principal axes.	 The principal

component transformation did not change the distributions of

the data.	 The data still showed a near — normal, or skewed

Nt
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Table 13. Confusion matrices for entire study area.
• Rook ty9e classes are defined in Tables 5 and 6.

(a) Landsat channels only (1,2,3,4)

True
rock Number of cases classif' A into rock class

class R	 C E F G

B 4	 2 0 1 2

C 1	 ' 0 0 0

E 0	 0 4 2 0

F 0	 0 0 2 0

G 0	 0 1 0 5

(b) Landsat + SAR channels	 (1,2,3,4,5)

T rue Number of cases classified into rock class h'rock B C	 E F G 
class

B 7 1	 1 0 1

C 0 7	 0 0 0

E 1 0	 5 0 0
4

F 0 0	 0 2 0 .^

G 0 0	 1 0 5
1

(c) Landsat + SAR. texture	 (1,2,3,4, + 17 textures)

True
Number of cases classified into rock class

rock
B C	 E F G

class

B 9 0	 0 0 0

C 0 8	 0 0 0

` E 0 0	 6 0 0

F 0 0	 0 2 0

I

G 0 0	 0 0 6

i

r
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distribution.	 Th y texture measures 7 and 8 (Table 7),

obtained from principal component 1, had skewed

distributions, and texture measure 14 had a spike at zero

containing 7". of the data.	 Because texture measure 14

represents the mean area above a tonal value of 150, the

spike represents the large number of pixel neighborhoods in

which all the pixels are below 150.	 Texture measures 3 and

5 obtained from principal component axis 2 showed normal and

skewed distributions, respectively. 	 Table 14 shows the

resulting confusion matrices. With the transformed

principal component axes alone, a confusion of 10% resulted

among the training ereas, which is an improvement over the

1; • confusion obtained before the principal components

transformation. Texture measures obtained from principal

component axis 1, showed an increase in confusion to 12:,

and the texture measures obtained from principal components

axis 2, showed a further increase in confusion to 16%. 	 By

combining the texture measures from both principal axes, ;4

channels resulte ,', an'	 he confusion among :raining areas

was reduced to zero. The scattergrams do not show the

change in confusion, except for the 34 variable case, in

which a significant improvement was noted (Figuras

27,28,29,30).	 The texture measures derived from principal

component axes 1 show a good separation of :ock type classes

E,F and B, while C and G are confused. 	 The same results

were obtained when the SAR texture measures were combined

with the Landsat channels (Figure 26).
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Table 14. Confusion matrices for the principal components of
entire study area. Rock type classes are defined
in Tables	 j and 6.

(a) Principal components channels only (5 channels)

True
rock Number of cases classified into rook class

class B	 C E F G

B 8	 1 0 0 0
C 0	 8 0 0 0
E 1	 0 5 0 0
F 0	 0 0 2 0
G 0	 0 1 0 5

(b) Texture measures from principal component axis 1
(17 channels).

True Number of cases classified into rock classrock
class	 B	 C	 E	 r	 G

B	 7	 0	 0	 0	 2
r	 0	 6	 0	 0	 2
E	 0	 0	 6	 0	 0
F	 0	 0	 0	 2	 0
G	 0	 0	 0	 0	 6

(c) Texture measures from principal component ax-:s 2
(17 channels).

True
rock	

Number of cases classified i^to rock class
B	 C	 E	 F	 Gclass

B	 8	 0	 0	 0	 1
C	 1	 6	 1	 0	 0

E	 0	 0	 5	 0	 1
F	 0	 0	 0	 2	 0

G	 0	 0	 1	 0	 5

(d) Texture measures from p.c. 1 and p.c. 2 (34 channels).

True

-rock	 Number of cases classified into rock class

class	 B	 C	 E	 F	 G

B	 9	 0	 0	 n	 0

C	 0	 8	 0	 0

0	 0	 6	 0	 0

F	 0	 0	 0	 2	 0

G	 0	 0	 0	 0	 6
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TThis illustrates	 the fact	 that	 principal	 component	 axis 1	 is

T equivalent	 to	 the	 SAR channel.	 For	 principal	 component axis

2	 the	 texture	 measures show	 a	 much poorer	 separability, with

only	 3	 (metarhyolite) being	 completely	 separable.	 It	 must

be	 remembered	 though that	 only	 the	 first	 two	 canonical axes_

are	 represented.	 The significance	 of	 the	 variables	 to the

r,
N separability	 of	 the	 rock type	 classes	 was	 determined	 by the

program	 BlID07M	 and	 is shown	 in	 Table	 15.

For	 the	 combined	 texture measures	 of	 principal	 component

axes	 1	 and	 2,	 the	 best five	 texture	 measures	 were	 chosen,

written	 to	 tape,	 and used	 in	 the	 final	 classification.

} Before	 classification, a	 test	 of	 separability was	 made using

only	 these	 five	 texture measures	 over	 the	 entire	 stud y area,

and including the magnetic field data in the magnetic field

survey area. The results are shown in the confusion

matrices of Table 16 and the scattergrams of Figures 31,32,

and 33.	 Using the 5 texture channels as variables, a 6%

confusion between training areas occurred in the entire

study area and a 14: confusion occurred using only those

r.	 I	 training areas in the magnetic field survey area. When the

magnetic field survey data was added as a sixth channel, the

confusion was reduced to 0:. 	 The scattergrams show less

separability than the confusion matrices indicate, and they

do not show the decrease in confusion with the addition of

the magnetic field data.	 Table 17 shows the significance of

each variable to the separability of rock type classes.
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Table 15. Significance of the variables in the entire
study area.

Landsat Landsat Landsat P.C. P.C.	 1 P.C.	 2 P.C.	 1&2
oray + + tone texture texture textures

SAR SAR
texture

Most 4 5 T4 P1 1P8 2P5 US
significant 3 4 T12 P4 1P14 2P13 2°5

variable
i 3 T_11 P5 1P6 2P7 1P14

1 2 T2 P2 1P7 2P4 2P3

1 T17 P3 1P`4 2P3 1P7

T15 1P5 2P10 2P14

T14 2F16

T16 2P8

T1 2D 11

T5 2P9
Least

significant 2P4

variable 1F6

N I

R

Variables 1 - 4 = Landsat charnels

Variable	 5	 - SAP. _hannel

Variables T'_ - T17 - SAR texture --easures

Variables P1 - P5 - ?rincipal component axes

Variables 1'1 - 1P17 - Princi pal component axis 1
texture measures

Variables 2P'_ - ?P17 = Principal component axis 2
texture measures

I



^:	 'tip•

1.

74

i

i
i
r
i
r

Table 16. Confusion matrices for texture measures.
Pock type classes are defined in Tables 5 and 6.

(a) Texture charnels for entire study area ( 5 channels)

True	
Number of cases classified into rock class

rock	
B	 C	 E	 F	 G

class
B	 8	 0	 1	 0	 0

C	 1	 7	 0	 0	 0
E	 0	 0	 6	 0	 0
F	 0	 0	 0	 2	 0
G	 0	 0	 0	 0	 6

(b) Texture channels for magnetic field survey area
(5 channels).

True	
Number of cases classified into rock class

rock	
B	 C	 D	 E	 F	 Gclass

A	 1	 0	 0	 0	 0	 0	 0
B	 0	 1	 2	 0	 0	 0	 0
C	 0	 0	 3	 0	 0	 0	 0

D	 0	 0	 0	 2	 0	 0	 0
E	 0	 0	 0	 0	 2	 0	 0
F	 0	 0	 0	 0	 0	 2	 0
G	 0	 0	 0	 0	 0	 0	 1

(c) Texture and magnetic "field data channels in -magnetic
field survey area (6 channels).

True

rock 	
Number of cases classified into rock class

class	
A	 B	 C	 D	 E	 F	 G

A	 1	 0	 0	 0	 0	 0	 0

B	 0	 3	 0	 0	 0	 0	 0

C	 0	 0	 3	 0	 0	 0	 0

D	 0	 0	 0	 2	 0	 0	 0

E	 0	 0	 0	 0	 2	 0	 0

F	 0	 0	 0	 0	 0	 2	 0

G	 0	 0	 0	 0	 0	 0	 I

It,
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fable 17. Significance of the texture variables.

Entire Magnetic Magnetic 'Sag-etic
survey field field field
area survey survey survey

area area area
(texture only) (texture plus (texture plus

magnetic magnetic
field) field)

(6 channels) (8 channels)

Most 1P8 2P5 2P5 2P5
significant

variable
2P5 1P8 6 3P 14

L
1P14 1P14 1P 8 1F 3

Least 2_D 3 1P 7 2P3 1P6

significant 1P7 2P3 1P14 2P4
variable

1P 7 2F9

6 -

Variable 6 - Total magnetic field

Variables 1P1 - 1P17 - Principal cormonent aids 1
texture measures

Variables 2P1 - Z"17 - Principal component aids 2
texture measures

Variable 3P14	 - P rinci?al co= orent aids 3
texture measure

1%W
	 ^u
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The significance of each variable changes with the addition

of the magnetic field data.

Despite the encouraging results obtained in

discriminating between training areas, the final classified

data set compared rather poorly with the the ground—mapped

geology in the training area and in the testing area (Figure

35).	 The reasons for this are considered in Chapter V. 	 In

the training area, the Harpers formation (F) was outlined

relatively well (figure 36), but the other rock type classes

were commonly confused. No definite area of concentration

of the G symbols, representing the Harpers formation —

Montalto member, could be found.	 Limiting distances (the

distance from the mean beyond which a pixel is no longer

considered a member of that class) were chosen on the basis

^I

of both the confidence intervals, and the distances of

separation between classes. 	 Varying the limiting distances

did not change the classification accuracy. A final

limiting distance was decided on by a visual analysis of the

classification map. The degree of confusion was decreased

as much as possible while limiting the amount of blank space

or unclassified area.	 In the testing area, no areas of

concentration of certain symbols could be outlined and thus

the classification accuracy could not be tested.	 However,

certain regional structural and lithologic features are

recognizable on Figure 35.	 The fault structure separating

the Blue Ridge from the Triassic Basin is discernable as a

C

11

?I
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k^

Figure 35. Classification map of the entire study area.

3
t

Figure 36. Classification map showing only the areas

classified as Harpers formation.
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transition zone separating darker areas to the east from the

T	 lighter colored Blue Ridge. The Everett lineament and

Carbaugh —Marsh Creek fault zone is also discernable cutting

t	 horizontally across the figure.

^.

i

Classification using texture measures from principal

component	 axes 1	 and 2	 plus magnetic field data

As a test of the contribution of the magnetic field data

to the classification accuracy, a digital reap was produced L

for the magnetic field survey area (Figure 37). 	 The

original training areas chosen are shown, and the ground —

mapped geological boundaries are outlined. The results show

that even in those areas used for training, the pi%als (as

represented by the small letters and blank spaces), were
1

often not classified as the rock type characteristic of that

training area.	 Rock types F (siltstone and graywacke) and G

(quartzite) were the only ones classified with any

reasonable accuracy.	 The appearance of the F symbols to the

southeast of the boundary between F and E indicates that

there may have been an error in the ground — mapped geology.

Other concentrations of the symbols F and G throughout the

map indicate that either those rock types appear there and

the ground — mapped geology is w- ong, or that the

vegetation/soil/structure expression at that location is

much the sane as in the training area.

1

3

, DIP
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!	 G
E	 !?

PPP
H

E

F
B	 1

LEGEND

A Phyllites

S Metarhyolites

C Metabesclts
0 Phyllites and graywcckes
E Phyllites, graywackes and quertzi tes
F Si I tstone and graywacke
G Quartzite

p0 Training area with symbol for rock type

Ground mapped geolog ic boundaries

Hori=ontal scale 1:24000
Vertical scale	 1:14400

Figure 37. )ig:tal classification map (6 variables) for magnetic
`field surrrev area (not cor-ected `or '__ae ^-'inter) .
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Classification using	 texture measures	 from principal

component	 axes 1,2,	 and 3	 plus magnetic	 field	 data

The classification map using 7 measures of texture from

principal component axes 1,2, and 3, plus magnetic field

data (8 channels in all), shows an improvement in

classificatiion (Figure 38). 	 The data was reduced to S

canonical axes. The importance of each initial variable to

the final classification is shown in Table 17. 	 The magnetic

field data was much less important in this case than in the

6 variable case. The scattergram (Figure 34) shows some

improvement over that for the 6 variable case (Figure 33).

The classification digital map (Figure 38) for this case

shows enough grouping of rock type symbols, that areas of

concentration can be outlined. 	 A comparison of the outlined

area to the geological boundaries of Figure 37, show that a

lot of error and confusion still exists, especially between

rock type E (ph •71lite, graywacke and quartzite) and rock

type B (metarhyolite).	 However, there is a definite

improvement over the 6 variable case. When the

discrimination of rock types in the training area is this

marginal, there is no point in testing the accuracy of the

algorithm in another area.

11r,

- D-
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CHAPTER V.	 86

DISCUSSION AND CONCLUSIONS

T
i

Discussion
•

t Seasat	 :1R	 records	 information	 about	 the	 earth's	 surface

' that	 is	 very different	 from	 that	 recorded	 by	 Landsat	 and	 by

other	 sensors	 (Figure	 1).	 The	 SAR	 representation	 of	 the

_ 1 surface	 is	 strongly	 effected	 by	 layover	 and	 foreshortening,

I

which	 can	 be	 corrected	 for	 with	 an	 independent	 data	 source

such	 as	 the	 topography	 of	 the	 surface.	 Even	 with

tcpographic	 data,	 the	 registration	 of	 the	 SAR	 data	 to	 the

!Ir true	 surface	 location must	 be	 accomplished	 before

i appropriate	 corrections	 can	 be made.	 In	 this	 study,

registration of	 the	 SAR data	 to	 the	 Landsat	 data	 was	 done

without	 applying	 a	 topographic	 correction	 to	 the	 SAR	 data.

A relative	 registration	 accuracy	 of	 1	 kilometer	 or	 better

was	 obtained,	 which	 is	 rather	 poor	 and	 more	 work	 needs	 to	 be

done	 to	 increase	 the	 registration	 accuracy.	 An	 absolute

measure	 of	 accuracy	 was	 not	 possible.	 The	 effects	 of

layover	 and	 foreshortening	 contributed	 significantly	 to	 the

i registrat_'.on	 inaccuracies	 (see	 Appendix	 A).	 In	 the	 South

Mountain	 area,	 the	 total	 elevation	 difference	 is	 1100	 feet,

resulting	 in	 a	 geometric	 error,	 due	 to	 foreshortening,	 of	 1

j kilometer	 (Appendix	 A,	 Figure	 47).	 Because	 this	 elevation

difference	 does	 not	 occur	 at	 one	 location,	 a	 registration

L

J
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accuracy much better than 1 kilometer should be possible.

The rubbersheet stretch of the SAR data (to fit the

registration points), is the best average correction of

layover and foreshortening that is possible.

The effect of the subsurface rock types on the magnetic

field at the surface was found to be substantial. 	 Filtering

to remove the effect of deep sources was not attempted due

to the similarity of deep strong sources and shallow wide

sources.	 Thus, great care must be exercised in using

magnetic field data to determine surface lithology. 	 Once

the surface lithology has been determined though, the

magnetic field data may provide great insight into the

structure of the subsurface.

A comparison of the information content of each of the

data sources was made by testing the correlations among

them.	 It was found that the SAR data is unique and cannot

be derived from Landsat MSS data.	 The texture measures most

significant in separating the rock type classes ma y be

correlated when they are derived from the same principal

component axis, but they are not correlated when derived

from different axes.	 The magnetic field data is not

I
strongly correlated with any of these texture measures.

'	 Each principal component and magnetic field represents a

unique data set describing a different aspect of the surface

and/or subsurface of the earth.

ur
Y
r
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The addition of the SAR and magnetic f ield data sets to

the four Landsat c'.,annels, greatly increased the

separability of rock type classes in the training area.

These two extra data sets provided unique information about

the geology that was not available from the Landsat channels

alone. The Seasat SAR appears to penetrate the vegetation

canopy and interact with the surface material. However, the

vegetation affects the SAR signal to some extent.	 The

magnetic field data definitely contain: • subsurface

information.	 But, even the addition of these two

independent data sets could not :ompletely solve the

difficulty inherent in identifyirg lithologic units in

vegetated terrain.	 The large variance within ea:h class

(especially of the SAR data) due to the masking effect of

the vegetation, resulted in a within — category standard

deviation that, in the final classification, was at least of

the same order of magnitude as the separation between

categories.

Principal component transformation and then generation of

texture measures from the principal axes, were used in an

attempt to inc r ease the classification accuracy. 	 The S

texture measures that accounted for essentially 100% of the

variance in the data sets were written to tape and used in

the final classification. The texture measures showed

slightly more normal distributions as predicted by Hsu

(1979), in all but one of the channels and thus were more

l^
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suited to the minimum distance classifier used. 	 Even after

all these attempts at increasing the separability of the

classes, a very poor classification accuracy was obtained

(Figures 35 and 37).

The stepwise discriminate analysis program BMD07M found a

good separability between the mean values of the training

areas, as indicated by the encouraging results obtained by

comparing the confusion matrices and scattergrams during

each step of the feature extraction. An explanation for

this must include the fact that the BMD07M program used only

the mean signatures within each training area.	 The large

variance must occur not between the mean values of the

training areas belonging to each class, but within each

training area itself. The main source of this variance was

probably the SAR data set due to its large "noise equivalent

difference in the scattering coefficient (NE A-c )" and

coherent speckle (see Appendix A). 	 Registration errors may

also have contributed significantly.	 A solution would be to

classify the average of a small area and assign a rock type

symbol to the center pixel. 	 This would tend to decrease

both the noise within the SAR data and the effect of

registration errors.

The SAR data at 25 meter resolution has a very large

"noise equivalent 41 Q; (NEAc; )", which is the least

detectable difference in the scattering coefficient (see

Appendix A).	 This limits the number of gray levels that can

4s n
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be	 resolved	 to	 about	 seven.	 Closer	 spaced	 gray	 scale	 levels

are	 lost	 in	 the	 noise.	 Spatial	 averaging	 increases	 the

number	 of	 resolvable	 gray	 levels	 as	 well	 as	 decreasing	 the

'	 IL NEda;	 such	 that	 a	 more	 accurate	 representation of	 the

t surface	 is	 obtained.

Another major	 source	 of	 variance	 ir.	 the	 SAR data	 could	 be

coherent	 speckle	 (see	 Appendix	 A).	 Speckle	 introduces	 false

texture	 into	 the	 SAR	 image	 so	 that	 only	 texture	 coarser	 than

r
J this	 systematic	 component	 is	 real	 surface	 texture.	 Spatial

r^
averaging	 will	 decrease,	 but	 not	 eliminate,	 the	 effects	 of

^ speckle.	 because	 the	 final	 classification	 used	 a	 data	 set

created	 from	 texture	 measures,	 coherent	 speckle	 was

undoubtedly	 a	 contributor	 to	 classification	 inaccuracies.

The	 variance	 in	 a	 data	 set	 in	 which	 training	 areas	 have

been	 chosen	 can	 be	 separated	 into	 two	 types;	 between — group	 —

variance	 and	 within — group	 variance.	 The	 usefulness	 of	 a

data	 set	 is	 determined	 by	 the	 ratio	 of	 the	 two	 variances

the	 F — statistic.	 For	 the	 SAR	 data,	 conflicting	 results	 were

obtained.	 In	 the	 magnetic	 field	 area,	 where	 small	 training

areas	 were	 used,	 the	 average	 SAR	 var{.able	 within	 each	 area

was	 less	 significant	 than	 the	 magnetic	 field	 variable	 and

f most	 of	 the	 Landsat	 variables	 (Table	 12).	 In	 the	 larger

'

survey	 area	 though,	 where	 larger	 training	 areas	 were	 use,

the	 SAR	 variable	 was	 the	 most	 significant.	 This	 illustrates

the	 effect	 of	 spatial	 averaging	 on	 the	 usefulness	 of	 the	 SAR

! data	 set.	 In	 this	 study,	 spatial	 averaging	 was	 not	 carried
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out as one of the 'Initial steps.	 Instead, every third data

value was used and some information was thus lost. 	 However,

spatial averaging was achieved to some extent during the

filtering process which removed the directional dependence

of the SAR data.

The first attempt at classification of rock type classes

did not utilize principal component axis 3 in any way. This

component does nevertheless outline the linear features, as

well as the structural and major geologic units of the area

(Figures 15 and 17).i

	

	
The striking differences between the Blue Ridge province	

14 1

and the Triassic Basin to the east (Figure 15) ma y be due to

different landuse practices.	 Topographic maps show a

transition from mainly forested land in the Blue Ridge to

predominantly agricultural land in the Triassic Basin.

A comparison of the texture measures derived from axis 3
iW.

with the texture measures from the other two principal

component axes, revealed that texture measure 16 would be

significant in increasing the separability of the rock type

classes.	 By using this texture measure as well as 3 texture

measures from each of principal component axes 1 and 2, plus

the magnetic field data, a much better classification was

achieved (Figure 38).
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Conclusions

This study includes an extensive amount of software

development to introduce SAR data processing capabilities at

the Pennsylvania State University. Computer programs were

written or modified to filter the SAR data an3 ut it in the

ORSER format (used in the processing of Landsat `!SS data).

Programs were also written to cast the magnetic field data

into this format. The SAR data could then be merged with

Landsat MSS and magnetic field data. 	 The te::ture measures

of Hsu (1319) were tested on the merged data se: and were

found to contribute significantly to a reasanatly good (b0.")

rock type classification.

By merging all the data sets, the significa-,ce of each

variable to the separation of rock type classes could be

easily tested and compared.	 The most significant variables

were used in the final classification. 	 In future analyses,

other geophysical data such as gravity, resistivity,

electromagnetic, and seismic velocity observations, could be

included in the data set in a manner analogous to tha; used

for the magnetic field intensity data in t!,is study. 	 Remote

mapping of lithology and struc=urc in heavily vegetated

terrain may be improved with better registration of the SAR

data to Landsat `iSS data, spatial averaging of the SAR data

to reduce its noise content, and inclusion of as many

independent data sets as are available .	By including the
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surface — mapped geology of an area as one of the data sets,

an analysis of the relationship(s) between surface and

subsurface geology and structure could be undertaken.
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SEASAT-A SAR CHARACTERISTICS

Seasat SAR compared to Landsat MSS and aerialhp oto raohs

The Seasat SAR is an active imaging system. 	 It provides

its own source of illumination, unlike a passive system such

as Landsat.	 Its specifications are tabulated in Table 18.

The Seasat-A Satellite specifications are tabulated in Table

19. The main difference between the SAR and Landsat MSS or

aerial photographs is that it is a range measuring device

while they are angle measuring devices. The position of an

object in a photograph is determined by it: angular

direction from the nadir. Where an object is imaged by the

SAR is determined by its ground range distance. The

advantages of SAR are that it penetrates most weather

conditions and provides its cwn source of illumination at

any specified angle.	 The radar return is a function of

incidence angle, polarization, frequency (all

characteristics of the signal), dielectric properties and

roughness of the surface. 	 The incidence angle used in SLAR

and SAR causes terrain characteristics to be emphasized

although some detail is lost in the shadows.	 This is also

true for low sun-angle aerial photographs. 	 Variations in

the ground slope give rise to continuous changes in the

effective angle of incidence, which determines the amount of

R^

t



Purpose: Obtain images of sea surface and sea ice
Detect and measure ocean wavelenght and
direction.
Detect slicks, current patterns, ice
bergs, ice leads, ice coverage, ice type.

Actual coverage: Swaths starting or ending at sea, with
extensive land coverage.

Frequency: 1340 Mhz.	 (L-band)

Wavelength: 23 cm.

Polarization: HH (Horizontal transmit and receive).

Antenna: 14 m x 2 m

Antenna beam: V x 6% pointed 20° off vertical

Coverage: 100 km swath, 250-350 km off nadir

Resolution: 25 m at 4 looks

Pixel spacing: 18 m in range, 16 m in azimuth

Dynamic range: -25 dB to +5 dB.

Transmit pulse width: 31 usec

PRF: approx. 1000 Hz.

Power: 250 watts

Weight: 80 Kg

Overation: Line-of-sight only

Aircraft heritage: JPL Y-L band radar, numerous military

radars

Experiment team leader: Dr. John Apel - NOAA

Y,

e
Z
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Table 18. Seasst-A Syrtaetic Aperture Radar (SAR) specifications.



96

Table 19. Seasat-A Satellite specifications.

Launch date:	 June 26, 1978.

Utitude:	 790.17 km. + 50 m.

Coverage:	 72° North to 72' South

Period:	 100.75 minutes

Orbits per day:	 14.3

Orbi t_ repeat (exact) : 	 152 days

Inclination:	 108° nominal, 104°- 1080 range

Lifetime:	 3 months

i
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backscatter and thus the tone of the image.	 Unlike the

shadows on aerial photographs which contain a certain amount

of information within the shadow area, radar shadows are

total, because there is no illumination and consequently no

reradiation from the shadow zone.	 Another big difference is

the fact that the length of the shadow of an object varies

depending on the depression angle (angle above the

horizontal) of the radar beam at that point. 	 In low relief

areas, the oblique illumination and resultant shadowing by

imaging radar can generally provide enhancement of

topographically expressed geological features; however, in

mountainous terrain, radar shadowing can deter geological

interpretation. For most operational side—looking radar

systems, the interpretive data loss increases as terrain

slopes exceed 35 0 and the local relief surpasses 1000 meters

(_4atthevs,1975).	 The local relief is a measure of the

height difference encountered locally between the summits

and valley floors.	 It is a useful parameter because it

provides an index to the topographic irregularity of an

area. There is an obvious link between the local relief and

the terrain texture (large — scale texture) of an area, and it

may be hypothesized that because of the geometric

relationship between topography and radar shadow, there

should be an empirical relationship between the radar shadow

pattern and the terrain macro — roughness (Parry,1973). 	 There

have been some attempts to arrive at this empirical
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relationship (Parry, 1973; Lewis and Waite, 1972), with

limited success.

The word RADAR is an acronym derived from Radio Detection

And Ranging. Electromagnetic energy is transmitted, and the

part of it scattered back to the receiver from the target,

is detected. With imaging radar, the ground can be

considered as an array of scatterers.	 Frequencies in the

range of 250 to 40,000 mhz. are used (Figure 39), with a

letter code of frequency —wavelength bands; K,X,L etc. 	 that

have been arbitraril y selected by the military. Longer

wavelengths have greater penetration but require better

sensors to achieve the same resolution.	 The nature of the

reflected wave is influenced by the dielectric constant of

the surface and by whether it is smooth or rough. Smooth

surfaces are those with reflecting facets (surface height

deviation from a mean plane) less than rx/10.	 They are
l^

characterized by specularlike reflection at incident angles

between 100 and 30 0.	 Rough surfaces are those with reflecting
5

facets between a/2 and 2l and are called diffuse reflectors

(Figure 40).	 Some surfaces are neither diffuse nor

specular. This results when the surface roughness is near

the wavelength of the illuminating energy or when parts of

the surface are smooth while other parts are rough.

Incident radar waves are either horizontally or verical)y

polarized, a definition which is based on the orientation of

the electric field vector. 	 The reflecting surface can have

J

^Yr
h'n

t

f

i

i

i

r 1



r moos

too* Freq
food -+

R bend

n'1
UKICi ► NAL PAGE Itil

OF POO R QUALITY	 99

1"1 _ J _	 . 1 i _ .. _ 1 _	 i L	 P\

nuuw nuve^rirytn v^ r-,uuur rt eyurncy

F. ro•
Wavelength in cm. =3uuuu

Freq. (M Hz)

Wavelength (cm)
1	 1! I l< I 1 1 1 1	 1	 t	 1	 !	 [ I S I

!60
al to -

TABLE OF RADAR BANDS ;SD FREQUENCIES

Radar Frequency Band	 Wavelen gth (A) Freauenc•r Rance

P 136 - 77 cm 220 - 390 MHz
MiF 100 - 30 cm 300 - 1000 `liz

L 30 - 15 cm 1000 - 2000 Iliz
s 15 - 7.5 cm 2000 - 4000 'biz
C 7.5 - 3.75 cm 4000 - 8000 `Siz
Y 3.75 - 2.40 cm 8000 - 12500 ^Iz

Ku 2.40 - 1.67 cm 12500 - 18000 `tHz

K 1.67 - 1.18 cm 18000 - 26500 `biz
Ka 1.18 - 0.75 cm 26300 - 40000 ?biz

Figure 39. Lette; code and frequency-wavel ength Sands (after Macdonald,
1969) .
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Figure 40. Types of reflection (after Goodyear Aerospace, 1977).
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1 depolarization	 effects	 on	 the	 radiation	 such	 that	 a

horizontally	 polarized	 wave	 can	 return	 with	 either	 the	 same

polarization	 (HH)	 or	 a	 vertical	 polarization	 (HV).	 The	 same

applies	 for	 an	 initially vertically	 polarized	 beam.

Surface	 roughness	 determines	 the	 tone	 and	 texture	 of	 an

^. image.	 This	 is	 complicated	 by	 the	 vegetal	 canopy.	 Where

vegetation covers	 the	 ground	 surface,	 the	 radar	 return	 may

be	 influenced	 by	 the	 combination	 of	 vegetation and	 terrain

surface	 below	 the	 vegetation	 (MacDonald	 and	 Waite,1973).	 In

a	 given	 area,	 how much	 the	 vegetation	 influences	 the	 radar

return	 is	 determined	 by	 the	 wavelength;	 the	 radar	 return	 for

longer	 wavelengths	 is	 influenced	 less	 by	 the	 vegetation.

The	 Seasat	 SAR	 at	 a	 23	 centimeter	 wavelength	 is	 relatively

little	 affected	 by	 vegetation.	 Polarization	 of	 the	 electric

vector	 of	 the	 radar	 signal	 is	 also	 a	 variable.	 A measure	 of

}surface	 roughness	 may	 be	 obtained	 by	 comparing	 the	 direct

and	 cross	 polarized	 components	 of	 the	 signal	 return

(Ellermeir	 et	 al,	 1966).	 The	 Seasat	 SAR	 transmits	 and

receives	 in	 the	 HH	 mode.

The	 dielectric	 constant	 or	 permittivity	 of	 a	 material	 is

a	 function	 of	 frequency;	 it	 is	 almost	 constant	 over	 the

radar	 portion	 of	 the	 spectrum	 for	 most	 natural	 materials,

but	 does	 decrease	 with	 decreasing	 frequency	 (increasing

wavelength)	 (Parry, 1973).	 It	 is	 proportional	 to	 the

moisture	 content	 and	 porosity	 of	 the	 surface	 material	 and

affects	 both	 the	 reflectivity	 and	 conductivity	 of	 this

.W a.
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surface material.	 Reflectivity is directly proportional to

the dielectric constant - moist areas give a higher return.

Surface material conductivity inversely affects the depth of

radar penetration and is directly proportional to the

dielectric constant. Thus the radar penetration is greater

in dry materials than in wet, and is greater for long

wavelengths as shown in Figure 41, taken from Parry (1977).

The skin depth of the Seasat SAR L-band is about 1.0 meters

in average moist loams and can penetrate to 10 meters in dry

sand.

Resolution

While the ultimate resolution attained by the system is a

function of many parameters, the single criterion most

commonly used to judge it is the pulse packet size projected

on the ground (Leighty,1968).	 The system parameters that

determine the pulse packet size are the antenna beamwidth

and pulse length as measured at the half power points. 	 The

range resolution is determined by the pulse length - objects

separated by a slant range distance less than half of the

pulse length are unresolvable (Figure 42).	 The two

reflected signals from the objects are received as one

continuous echo, and the two targets cannot be

differentiated.	 The range resolution (RR) on the ground

varies with the depression angle and is given by:

Ir

J



leo

to

1 ►+

Skin

Depth

ICO

4 r.+,

I r" Y"

Y, I

1

age

^•1

103
ORIGINAL PAGE IS

TIV
OF POUR QUtiLI

to 	 109	 IOro	
^^ rr

Frequency (Hz)

I. ,O	 c. I	
0.01

Wavelength (m)

Figure 41. Variations in skin deot!t for various

soil types (after Parry, 1977).
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(a)

H = aircraft altitude
6 = depr2ssion angle

SR : slant range
CT : pulse length

B = beam width

(b)

Range resolution = RR = C T
2 cos 2

Cr 	 Azimuth resolution =AR-- 	 = SR - -3sin
2 `

Area of resolution cell=ARC
PLC

e1 %^xg _AR	
H8 CT

.	 -, : ^^:^,m,th	 -sin a 2 cos

( C )	 _ CTHS
sin 29

Figure 42. Range resolution
(a) Radar configurat-ton
(b) Relation between pulse lengti and range resolution
(c) Range resolution and depression angle

(after Par-,7, 1973).
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RR - ` _Z^-	 (2)
2 c os 9

where	 c - 3x10 6 m/sec

'Z' pulse duration (sec)

6 - depression angle

RR- range resolution	 (Parry,1973)

Range resolution is worst at large depression angles close

to the ground track, which is why side-looking radar is

used.	 It can be improved by decreasing the pulse length,

but a minimum limit exists because the average power

transmitted is a direct function of the pulse length. 	 Also,

if the transmitter pulse width is decreased, the bandwidth

of the receiver must be increased because the bandwidth of a

pulse is inversely proportional to its time duration. 	 For

most types of receivers, an increase in bandwidth results in

an increase in noise level, so the amplitude of the

transmitted pulses must be increased to maintain the signal-

to-noise ratio.	 Further complications can be introduced to

range resolution calculations by using other than constant

amplitude rectangular pulses (Goodyear Aerospace,1977)

Azimuth (along-track) resolution (AR) is also a variable

quantity if a real-aperture system is used.	 It is a

function of transmitted wavelength and dimensions of the

antenna and is given by:

AR	 s ^a	 ( 3 )

t
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where	 P	 1 . 2 A/D

half-power beamwidth in radians

,
radiation wavelength

f	 D - antenna aperture size

H - aircraft altitude

e - depression angle

AR - azimuth resolution 	 (Parry,1973)

I

thus the area of the resolution cell (ARC) is

ARC = C - . ±L^ = c 'Z" H r
;2c,ose	 sin 	 sin 26	 (4)

(Parr-,r,1973)

which is the basic factor controll.ng the resolution

capabilities of a radar system.

A considerable improvement can be achieved by use cf

synthetic aperture techniques so that the effective size of

the antenna is greatly increased over that physically

realizable.	 The resolution lirlit of synthetic aperture

radar is one-half the physical antenna length.	 The

increased resolution is achieved by generating a phase

history for a given target by moving the target through the

pulsed radac bean.	 What is actually happening is that the

transmitter moves relative to the target. 	 Resolutior

differs from detestability in that a small fence post with

dimensions below the resolution limit will be detected if it

is resonant to the wavelength of the radar and if it is

i

r
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illuminated at the right angle. The size and shape of the

object however, will not be determinable.

Signal-to-noise ratio, dynamic range, and contrast

^+1

j

{

I	

!

These three characteristics are best discussed together

because of their close functional relationship. The signal-

to-noise ratio was found not to be a good measure of the

noisy aspect of the image.	 Instead, the "noise equivalent

ao (scattering coefficient)" which is a measure of the

lowest detectable a-of the system and the "noise equivalent

W;" which is the least detectable difference in a.-of the

system, were found to be much better measures (Figure 43) as

illustrated by Beal et al (1977).	 The "noise equivalent ca"

(NEoo) represents the lower bound of the dynamic range,

while the saturation of the system represents the upper

bcund.	 For the Seasat SAR at 25 meter resolution, the NEQao

is about 3 dB while the dynamic range is about 20 dB. This

means that only 7 gray levels can be expected to be

resolved.	 Spatial averaging will increase the dynamic range

and decrease the NEQoo. Seasat SAR measures 4 independent

looks to construct a 25-meter resolution cell but further

averaging, maybe to the resolution of Landsat is necessary

to discriminate a reasonable number of gray levels (Figure

44 and 45) as illustrated by Beal et ai (1977).

N, 1

4

3

L
	

^J



JUST DETECTABLE

DIFFERENCE

INHERENT

NOISE

n^

of pooh Ql^r^► ^ { i'r'

108

LOG a;NEao	 NEDoo	 I	 I	 _-

	

LINEAR	 I
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Figure 43. Typical input-output transfer function
(after Beal et al, 1977).
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Contrast is the most critical image descriptor. 	 I_f

spatial resolution degrades, the gray scale resolution

usually improves, and the overall quality remains about the

same. If the signal — to — noise ratio NEao degrades, one can

still obtain good imagery from the brighter targets. 	 If

contrast is low however, both wzak and strong targets are

affected. A low—contrast system would continue to detect

strong point sources, but they would be surrounded by a

uniform, non — informative gray (Beal et al, 1977). 	 For the

Seasat SAR, the chief contamination sources resulting in low

contrast are high frequency amplitude, phase, and timing

errors.	 If ten such contamination sources are postulated,

which would be close to the worst case, the resulting ratio

of useful energ y to total energy would be 90:. The dynamic

range of the Seasat SAR is — 25 dB to +5 dB but this range

will not be accomedated simultaneously. 	 For any particular

image, the contrast ratio will limit the "local" dynamic

range to about 20 dB (Beal et al, 1977).

Radiometric accuracy

Imaging radar return is a function of the surface

configuration described by ao,which is the differential

scattering cross section per unit area, and a _function of

systematic effects. 	 If the instrument were "perfect", and

•
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the mapping function were unique and known, a calibrated map

of radar backscatter would be produced.	 Such is not the

case, but the resulting image can still-be used mostly in

the category of pattern recognition or detection in which a

knowlege of absolute backscatter is not required (Beal at

al, 1977).

There are two main systematic effects that can be easily

removed and these are range loss and antenna gain pattern.

In real-aperture systems radar return is reduced by a factor

of range to the fourth power while in synthetic aperture

systems the factor is range to the third power. 	 The pixels

can be corrected for this range loss by a simple coefficient

multiplication to remove the effect of changing slant range

(Lowry et al,1978). 	 Imaging radar mounted on a satellite

has additional effects which are much more difficult to

remove.	 Both the rotation of the planet and the antenna

pointing errors cause a slant-range displacement of a fixed

point on the planetary surface.	 This effect is sometimes

called range walk.	 In addition, at satellite altitudes the

curvature of both the signal wavefronts and the planetary

surface give rise to significant slant-range displacements

called range curvature. The combined effect of the two

types of dtsplacemen= is called range migration (Vast et al,

1979).

A major cause of uncertainty in backscatter values in all

imaz ing radar systems is due to coherent speckle (Rayleigh

G:

^` f

i
i

i

r

i

f

l	 ,

.	 t

^f

^ R

i

L
	 J



r
r	 1 1

fading).	 It is caused by the fire diffraction pattern

created by each reflecting element in the scene when

illuminated by a monochromatic, spatially coherent source.

In effect, the ground surface can be considered as a source

containing a number of randomly phased oscillators at

slightly different frequencies. The signals add in phase at

some time and out of phase at others, which results in

coherent fading or interference.	 When treated at a coarser

level, speckle patterns introduce texture into the radar

image (Parry, 1977).	 Only textures coarser than this system

component are real surface textures.	 In the Seasat SAR for

example, fields of identical scatterers, in the absence of

other contamination sources, produce backscatter variances

of 3 dB at the scale of a single resolution element. There

is no effective way to reduce this variance except by

spatial averaging. The variance will decrease

proportionally to the square root of the number of cells

which are spatially integrated (Beal et al, 1977).

Many investigators have found that the number of linear

features found on an image varies markedly with the

direction of illumination.	 The generally excepted remedy is

to obtain multiple look — direction imagery over the terrain,

but this is expensive.	 However it is evident that the

detestability factor of features off—normal can be improved

by spatial filtering in the Fourier plane of a single look—

direction image by using a filter which has an an g ular power

variation of the fora of equation 5.
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D - K(1 - cos 2^)	 (5)

where D - an empirical detectability factor

the azimuthal angle or viewing angle

and K - a function of the incidence angle

The filtered spectrum upon reconversion to an image would

have a relatively uniform detectabiliy factor for almost all

azimuth angles (Eppes and Rouse, 1974).

Geometric accuracv

Imaging radar is a range measuring device.	 Data are

digitally recorded by sampling the returning signal with a

constant delay interval. As a result, the ground resolution

cell in the near range is much bigger than in the far range.

The first step is to convert slant range to ground range

using the formula:

GR - (SR" - H 2 )^'2
	

(6)

where	 - aircraft altitude above the terrain

SR - slant range

GR - ground range
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In this formula the earth is assumed to be flat. 	 For

satellite data this assumption cannot be made and

corrections are complicated by range migration (Vant et

al,1979).	 Next, the image must be resampled to generate

square pixels.	 Due to the changing resolution with ground

range or slant range, there are two options for resampling.

These are a linear interpolating oversampling, and a boxcar

filter or running mean averaging. 	 In either case the

resampling must be done with care to avoid aliasing errors

(Lowry et al,1977). The difference between the two method.

is that either a pixel size near to the smallest resolution

cell is chosen as a standard (oversampling), or one near to

the largest resolution cell is chosen (averaging). 	 For

applications where the small amount of high frequency noise

introduced by the boxcar filter is important, a different

filter may have to be used (Lowry et al,1978).

Geometric problems that are inherent in all radar systems

imaging irregular terrain surfaces and which cannot be

corrected, are foreshortening and layover.	 Foreshortening

is the compression in the length of egial slope elements

when viewed at different incidence angles.	 It is at a

maximum at zero incidence and is completely eliminated at

grazing incidence (Figure 46).	 Layover results because

radar is a time dependent ranging system and the location of

an object on a radargram is based on the time re q uired for

the transmitted energy to complete the round trip back to

i
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the receiver. In the case of SLAR systems, where the radar

pulse is obliquely incident at the surface, mountain summits

and ridge crests lie at shorter slant ranges than their foot

slopes, with the result that the summit is imaged closer to

the ground track on the radar image (Figure 46). 	 This

situation, which arises whenever the slope angle of the

terrain feature exceeds the complement of the depression

angle, is more likely to occur at large depression angles

(in the near range) (Parry,1973). 	 Foreshortening occurs at

all incidence angles.	 Figure 47 illustrates the effect of

target altitude upon the location of the target in the SAR

image.	 In the figure, A iG the altitude of the target, T,

and (a) is the altitude of the satellite, S, with respect to

the image datum plane. 	 In the SAR image, T would'appear at

Ts, and would have a ground displacement of Rs. This

displacement is opposite from that of the optical

perspective in which T would be imaged at To. Values of the

displacement at the near edge and far edge cf the SAR image

are tabulated, along with the difference in their

displacements (Beal et al, 1977).	 In the case of the thesis

studv area where the maximum elevation difference is 1100

feet, the displacement of the highest point relative to its

true location on the image datum plane through the lowest

point is about 1 'kilometer.	 This substantial displacement

would of course be spread over many pixels. 	 The values of

Rs listed in Fi g ure 47 do not include the effects of the

r
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curved earth surface which are significant (Beal et al,

1977).

. 1
	 Landsat 4SS _ Seasat SAR Synergism

r

Combining these two types of data retains all the

information available from each sensor system and additional

detailed data resulting from their superposition. 	 The

Landsat imagery is sensitive to water and vegetation type

and condition, while radar imagery is affected to a d:gree 	
NF.

by vegetation moisture content, but principally by terrain

parameters and general type of vegetation (Harris and

Graham,.1976) .

Radar and Landsat imagery may be combined in a number of

different ways.	 The two basic choices are digitally or

photographically.	 Most combinations thus far have been done
	 1

photographically.	 Registering the Landsat image
	

L

photographically to the radar image is very time comsuming

and inaccurate.	 It is done through enlargements and

reductions avid thus it is only possible to get a good

ave~age scale ad!ustment, with some areas of misregistration

in the final composite.	 Four methods of photographically

combining this imagery are described in Harris and Graham

(1976).	 These methods are additive as well as muliplicacive

techniques accomplished through the use of many

)I
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internegatives exposed through different color filters. 	 The

method with the most promise, they conclude, is an additive

process involving the use of six negatives; three from

Landsat MSS bands 4,5, and 7 and three cf the radar image.

It appears that they used an X-band radar in the 4H mode.

The method of digital image registration involves the

selection of tiepoints or ground coatro'_ points (GCP's) in

both images and then the radar image is manipulated to fit

the Landsat image.	 The relationship between the tiepoints

in the two images is assumed to be a polynomial with the

coefficients determines by a least squares fitting of the

polynomial to the tiepoints.	 The method is generally much

more accurate than the photographic techniques, but both

methods -re complicated by the high noise content of SLR

which makes the choice of tiepoints difficult

(Murphrey,1978).	 Once the data	 agistration is complete,

many different methods of combining the data exist.

The Landsat images can be transformed from red-g een -blue

(RCB) color coordinates to hue-saturation-intensity (HSI)

color coordinates.	 Then the digitally registered radar data

can be inserted as the intensit y component and the resulting

data transformed back to RCB coordinate space (Dai'.y et

a1,1978).	 The ORScR facility at the Pennsylvania State

University does not have this capability.

Other methods involve using a Landsat channel as one

color coordinate and for example Vh and VV polarizati:n L-

band as the other two color coordinates (Daily et al,1978).
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A rather obvious combination that no one seems to have

tried, is to evaluate the principal components of the four

Landsat bands and then combine them with the radar channels

(polarizations and wavelengths), or combine all the data

first and then obtain principal components.

Once the data are registered and combined, they may be

converted _o image form for visual interpretation (Daily et

al,1978), or be subjected to "automatic" pattern recognition

techniques. Areas of interest where ground truth

information is availab l-e, are used to "train" automated

classifiers.	 This is where a problem may arise with the

large dimensionality of the combined data. When the number
	 1

of training samples is small, the classification accuracy in

an eight — dimensional space (for example) may be less

accurate than that achieved with fewer dimensions (Ahern et

i
a1,1918).	 This restriction will then dictate eithe r how

many training samples have to be obtained, or how many
	 i

principal components can be used.

Summary and Problems

Imaging radar provides unique information which when

combined with information fro- other sensors, potentially

can increase the classification accuracy greatly. 	 The price

for this unique information is dealing with problems in ,.ata
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quality due to sensor characteristics and imaging system

geometry and the extensive processing re q uired to generate

an image from the raw data. Foreshortening and layover

errors will always be present in the imagery due to inherent

characteristics of the radar system. 	 Coherent speckle now

creates many problems, but in the future may become less

severe as improvements in the electronics are made; spatial

averaging helps to overcome this problem.	 Registration of

radar data to other data is still not very accurate

especially for satellite radar which is complicated by range

migration. Extensive work still reeds to be done to improve

radar data analysis and interpretatioi:.	 There is no

mathematical technique which explains the terrain response

to radar, so interpretations have to rely on empirical

relationships.	 Visual inspection of radar imagery suggests

that surface texture is a prominent controlling factor in

the radar response.	 Also, boundaries where significant

changes occur tend to be emphasized suggesting that the

response is in some sense equivalent to an edge enhancement

(spatial derivative) of visible — band channels. With further

work will come greater understanding of the surface

characteristics and interacticas with radar that determine

the observed radar return.
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