Technical Paper
2264
January 1984

# The Generalized Euler-Mascheroni Constants 

O. R. Ainsworth
and L. W. Howell

LOAN COPY: RETURN TO
AFVL TECHUGA IDRAPY
KIRTLAND AFB, N.M. 87117

Technical
Paper
2264
1984

# The Generalized Euler-Mascheroni Constants 

O. R. Ainsworth

and L. W. Howell
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama

## N $15 \Omega$

National Aeronautics and Space Administration

Scientific and Technical Information Office

## THE GENERALIZED EULER-MASCHERONI CONSTANTS

## INTRODUCTION

The generalized Euler-Mascheroni constants are defined by

$$
\gamma_{\mathrm{n}}=\lim _{\mathrm{M} \rightarrow \infty} \sum_{\mathrm{k}=1}^{\mathrm{M}} \frac{\ln ^{n_{k}}}{\mathrm{k}}-\frac{\ln ^{\mathrm{n}+1} \mathrm{M}}{\mathrm{n}+1} \quad, \quad \mathrm{n}=0,1,2, \ldots
$$

and are the coefficients of the Laurent expansion of

$$
\zeta(\mathrm{z})=\frac{1}{\mathrm{z}-1}+\sum_{\mathrm{n}=0}^{\infty} \frac{(-1)^{\mathrm{n}} \gamma_{\mathrm{n}}(\mathrm{z}-1)^{\mathrm{n}}}{\mathrm{n}!}
$$

They were first defined by Stieltjes in 1885, discussed by Stieltjes and Hermite [1], and have been periodically reinvented over the years $[2,3,4]$.

The rate of convergence is painfully slow (Table 1) so one is forced to seek some method to speed up convergence, and of course the most common way is by employing the Euler-Maclaurin formula. Following a suggestion made by Edwards [5] in computing the Riemann Zeta function, the sum portion of $\gamma_{\mathrm{n}}$ is split into two sums so that the first ( $p-1$ ) terms are directly summed and the $p$ to $M$ sum is approximated by the Euler-Maclaurin formula as M tends to infinity. Hence,

$$
\begin{align*}
\gamma_{n}= & \sum_{k=1}^{p-1} \frac{\ln ^{n_{k}}}{k}+\lim _{M \rightarrow \infty}\left\{\int_{p}^{M} \frac{\ln ^{n} x}{x} d x+1 / 2\left[\frac{\ln ^{n} M}{M}+\frac{\ln ^{n} p}{p}\right]+\sum_{k=1}^{j-1} \frac{B_{2 k}}{(2 k)!}\left[\left(\frac{\ln ^{n} x}{x}\right)_{x=M}^{(2 k-1)}\right.\right. \\
& \left.\left.-\left(\frac{\ln ^{n} x}{x}\right)_{x=p}^{(2 k-1)}\right]+\frac{B_{2 j}}{(2 j)!} \sum_{k=1}^{p}\left(\frac{\ln ^{n} x}{x}\right)_{x=p+k+\theta}^{(2 j)}-\left(\frac{\ln ^{n} M}{n+1}\right)\right\} \tag{1}
\end{align*}
$$

where $0<\theta<1$ and $\mathrm{B}_{2 \mathrm{k}}$ are the Bernoulli numbers. Letting $\mathrm{M} \rightarrow \infty$, it follows that

$$
\begin{equation*}
\gamma_{n}=\sum_{k=1}^{p-1} \frac{\ln ^{n_{k}}}{k}-\frac{\ln ^{n+1} p}{P}+\frac{1}{2} \frac{\ln ^{n} p}{p}-\sum_{k=1}^{j-1} \frac{B_{2 k}}{(2 k)!}\left(\frac{\ln ^{n+1} x}{x}\right)_{x=p}^{(2 k-1)}+\frac{B_{2 j}}{(2 j)!} \sum_{k=0}^{p-1}\left(\frac{\ln ^{n} x}{x}\right)_{x=p+k+\theta}^{(2 j)} \tag{2}
\end{equation*}
$$

The chief difficulty in using this formula is determining $\left(\ln ^{n} x / x\right){ }^{(j)}$ in a usable form.
Lemma.

$$
\frac{d^{j}}{d x^{j}}\left(\frac{\ln ^{n} x}{x}\right)=\frac{\ln ^{n-j} x}{x^{j+1}} \prod_{k=1}^{j}(y-k \ln x)
$$

where, after expanding the product, put $\mathrm{y}^{\mathrm{k}}=\mathrm{n}!/(\mathrm{n}-\mathrm{k})!$.
Proof: Let

$$
\mathrm{Q}_{\mathrm{m}}=\prod_{\mathrm{k}=1}^{\mathrm{m}}(\mathrm{y}-\mathrm{k} \ln \mathrm{x})
$$

and set

$$
\begin{equation*}
\frac{\mathrm{d}^{\mathrm{m}}}{\mathrm{dx}^{\mathrm{m}}}\left[\frac{\ln ^{\mathrm{n}} \mathrm{x}}{\mathrm{x}}\right]=\frac{\ln ^{\mathrm{n}-\mathrm{m}_{\mathrm{x}}}}{\mathrm{x}^{\mathrm{m}+1}} \mathrm{Q}_{\mathrm{m}} \tag{3}
\end{equation*}
$$

and assume that, for some value of $m$,

$$
\begin{align*}
D^{m+1} \frac{\ln ^{n} x}{x}= & D\left[\frac{\ln ^{n-m} x}{x^{m+1}}\right] Q_{m}+\frac{\ln ^{n-m} x}{x^{m+1}} Q_{m}^{\prime}=\frac{\ln ^{m-n-1} x}{x^{m+2}}\left\{[n-m-(m+1) \ln x] Q_{m}\right. \\
& \left.\left.+x \ln x Q_{m}^{\prime}\right]\right\} \tag{4}
\end{align*}
$$

and define

$$
H_{m}=[n-m-(m+1) \ln x] Q_{m}+x \ln x Q_{m}^{\prime}
$$

Now

$$
\begin{align*}
Q_{m} & =\frac{n!}{(n-m)!}-\frac{p_{1} n!\ln x}{(n-m+2)!}+\frac{p_{2} n!\ln ^{2} x}{(n-m+1)!}+\ldots+(-1)^{m} p_{m} \ln ^{m} x \\
& =y_{m}-y^{m-1} p_{1} \ln x+p_{2} y^{m-2} \ln ^{2} x+\ldots+(-1)^{m} p_{m} \ln ^{m} x \tag{5}
\end{align*}
$$

Since

$$
(n-m) \frac{n!}{(n-m)!}=\frac{n!}{(n-m-1)!}=y^{m+1}
$$

we obtain, upon substitution of (5) into (4):

$$
H_{m}=y^{m+1}-y^{m}\left[p_{1}+m+1\right] \ln x+y^{m-1}\left[p_{2}+(m+1) p_{2}\right] \ln ^{2} x+\ldots+(-1)^{m}(-1)(m+1) \ln ^{m+1} x .
$$

This is obviously

$$
[y-(m+1)] Q_{m}=\prod_{k=1}^{m+1}(y-k \ln x)=Q_{m+1}
$$

Inserting this into (3) proves the theorem by induction. The last term in equation (2) is

$$
\begin{equation*}
\frac{\mathrm{B}_{2 j}}{(2 j)!} \sum_{\mathrm{k}=0}^{\mathrm{p}-1}\left(\frac{\ln ^{n_{x}}}{\mathrm{x}}\right)_{\mathrm{x}=\mathrm{p}+\mathrm{k}+\theta}^{(2 \mathrm{j})} \tag{6}
\end{equation*}
$$

and must now be given bounds. By the Cauchy integral formula,

$$
\left[\frac{\ln ^{n}(p+k)}{p+k}\right]^{(2 j)} \leqslant \frac{(2 j)!}{2 \pi} \frac{2 \pi R}{R^{2 j+1}} \frac{\ln ^{n}\left(p+k+\mathrm{Re}^{\theta i}\right)}{p+k+e^{\theta i}} \leqslant \frac{(2 j)!2^{2 j} \ln ^{n}(k+p-2)}{p^{2 j}}
$$

where $R=p / 2$,

$$
\left|\ln ^{\mathrm{n}}\left(\mathrm{k}+\mathrm{p}+\mathrm{p} / 2 \mathrm{e}^{\mathrm{i} \theta}\right)\right| \leqslant 2 \ln ^{\mathrm{n}}(\mathrm{k}+2 \mathrm{p})
$$

and

$$
\frac{1}{\mathrm{p}}>\left|\frac{1}{\mathrm{p}+\mathrm{k}+\mathrm{p} / 2 \mathrm{e}^{\mathrm{i} \theta}}\right|
$$

Inserting this bound into (6) yields

$$
\begin{equation*}
\frac{B_{2 j}(2 j)!2^{2 j}}{(2 j)!p^{2 j+1}} \sum_{k=1}^{p-1} \frac{\ln ^{n}(2 p+k)}{p} \leqslant \frac{B_{2 j} 2^{2 j}}{p^{2 j+2}} p \ln ^{n}(3 p+1) \leqslant \frac{2^{2 j} \ln ^{n}(3 p+1) 2(2 j)!}{p^{2 j+1}(2 \pi)^{2 j}\left(1-2^{1-2 j}\right)} \leqslant \frac{2(2 j)!\ln ^{n}(3 p+1)}{(p \pi)^{2 j}\left(1-2^{1-2 j}\right)} . \tag{7}
\end{equation*}
$$

## COMPUTATION

The fourth term of equation (2) requires the construction of three matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and two vectors $\underline{u}, \underline{v} . A$ is a $(2 j-3) X(2 j-2)$ matrix whose first $(L+1)$ elements in the Lth row are given by the coefficients of

$$
\prod_{k=1}^{L}(y-k \ln p)
$$

and the remainder set equal to zero. $B$ is a matrix of the same dimension whose Lth row is given by

$$
\left(\frac{n!}{(n-L)!}, \frac{n!}{(n-L-1)!}, \ldots\right)
$$

The elements are, of course, zero if $\mathrm{L}>\mathrm{n}$. C is a matrix defined by

$$
\mathrm{C}=\left(\mathrm{a}_{\mathrm{ij}} \mathrm{~b}_{\mathrm{ij}}\right) \text { for } \mathrm{i}=1,3,5,7 \ldots, \text { and } \mathrm{j}=1,2,3,4 \ldots
$$

Next define

$$
\underline{\mathrm{u}}^{\mathrm{T}}=\left(1, \ln \mathrm{p}, \ln ^{2} \mathrm{p}, \ldots, \ln ^{2 \mathrm{j}-2} \mathrm{p}\right)
$$

and

$$
\underline{v}^{\mathrm{T}}=\left(\frac{1}{2!} \mathrm{B}_{2}, \frac{1}{4!} \mathrm{B}_{4}, \ldots, \frac{1}{(2 \mathrm{j}-2)!} \mathrm{B}_{2 \mathrm{j}-2}\right)
$$

With these equations, (2) may be written as:

$$
\gamma_{\mathrm{n}}=\sum_{\mathrm{k}=1}^{\mathrm{p}} \frac{\ln ^{n} \mathrm{k}}{\mathrm{k}}-\frac{\ln ^{\mathrm{n}+1} \mathrm{p}}{\mathrm{p}}+\frac{1}{2} \frac{\ln ^{n} \mathrm{p}}{\mathrm{n}}-\underline{\mathrm{v}}^{\mathrm{T}} \mathrm{Cu}
$$

with an error bounded by (7). An APL computer program was written to evaluate $\gamma_{\mathrm{n}}$ (see Appendix).
It was observed that the minimum error in computing $\gamma_{n}$ occurred in a neighborhood of $p=j$ and a sensitivity study indicated that $\mathrm{p}=\mathrm{j}=10$ was an optimum choice. Table 2 contains the first 32 EulerMascheroni constants.

Table 3 shows that the Laurent expansion provides a very effective means of computing the Riemann $\zeta$ function in a neighborhood of $z=1$. However, the expansion is not a useful method for extending the list of zeros of $\zeta(\mathrm{z})$ known today.

The behavior of the Euler-Mascheroni constants themselves have been the subject of investigation. Briggs [6] showed that infinitely many $\gamma_{n}$ are negative and infinitely many are positive and Mitrovic extended this result by showing that each of these inequalities $\gamma_{n}<0, \gamma_{2 n-1}<0, \gamma_{n}>0, \gamma_{2 n-1}>0$ holds for infinitely many n [7].

Good [8] recently conjectured that the lengths of the runs of the same sign of $\Delta \gamma_{n}$ never decrease.

TABLE 1. $\gamma_{\mathrm{n}}$ VERSUS NUMBER OF TERMS COMPUTED (M)

|  | $\mathrm{M}=10^{3}$ | $\mathrm{M}=10^{4}$ | $\mathrm{M}=10^{5}$ | $\mathrm{M}=10^{6}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{n}=0$ | 0.57771558156810 | 0.57726566406712 | 0.57722066488224 | 0.57721616479093 |
| $\mathrm{n}=1$ | -0.06936246015836 | -0.07235533352434 | -0.07275828112056 | -0.07280893950511 |
| $\mathrm{n}=2$ | 0.01416535317172 | -0.00544890007751 | -0.00902762943042 | -0.00959495724544 |
| $\mathrm{n}=5$ | 7.86463444728723 | 3.31473675482265 | 1.01213466958143 | 0.25241822958923 |

TABLE 2. GENERALIZED EULER-MASCHERONI CONSTANTS

| n | $\gamma_{\mathrm{n}}$ |
| :---: | :---: |
| 0 | 0.57721566490153 |
| 1 | -0.07281584548368 |
| 2 | -0.00969036319287 |
| 3 | 0.00205383442030 |
| 4 | 0.00232537006546 |
| 5 | 0.00079332381728 |
| 6 | -0.0002387693455 |
| 7 | -0.0005272895671 |
| 8 | -0.0003521233539 |
| 9 | -0.0000343947747 |
| 10 | 0.000205332814 |
| 11 | 0.000270184439 |
| 12 | 0.00016727291 |
| 13 | -0.00002746381 |
| 14 | -0.00020920927 |
| 15 | -0.00028346867 |
| 16 | -0.0001996969 |
| 17 | 0.0000262769 |
| 18 | 0.0003073682 |
| 19 | 0.000503605 |
| 20 | 0.000466342 |
| 21 | 0.0001044 |
| 22 | -0.0005416 |
| 23 | -0.0012439 |
| 24 | -0.0015885 |
| 25 | -0.0010746 |
| 26 | 0.000657 |
| 27 | 0.003477 |
| 28 | 0.006399 |
| 29 | 0.00737 |
| 30 | 0.00355 |
| 31 | -0.00752 |

## TABLE 3.

| x | iy | $\operatorname{Re}(z)$ | $\operatorname{Im} \zeta(z)$ |
| :--- | :--- | :---: | :---: |
| 0.5 | 0 | -1.46035450881 | 0.00000000000 |
| 0.01 | 0 | -0.50929071404 | 0.00000000000 |
| 2 | 0 | 1.64493406685 | 0.00000000000 |
| 3 | 0 | 1.20205690316 | 0.00000000000 |
| 4 | 0 | 1.08232323371 | 0.00000000000 |
| 5 | 0 | 1.03692775514 | 0.00000000000 |
| 6 | 1 | 1.01734306198 | 0.00000000000 |
| 0.5 | 3 | 0.14393642708 | -0.72209974353 |
| 0.5 | 5 | 0.53273667097 | -0.07889651343 |
| 0.5 | 0.70181237117 | 0.23103800839 |  |

## REFERENCES

1. Mitrović, Dragiša, Math. Reviews 29 (1965) No. 2232.
2. Kluyver, J. C.: On Certain Series of Mr. Hardy. Quart. J. of Pure and Applied Math., Vol. 50, 1927, pp. 185-192.
3. Briggs, W. E., and Chowla, S.: The Power Series Coefficients of $\zeta(\mathrm{s})$. Amer. Math. Monthly, Vol. 62, 1955, pp. 323-325.
4. Wilton, J. R.: A note on the Coefficients in the Expansion of $\zeta(\mathrm{s}, \mathrm{x})$ in Powers of $\mathrm{s}-1$. Quart. J. of Pure and Applied Math., Vol. 50, 1927, pp. 329-332.
5. Edwards, H. M.: Riemann's Zeta Function. Academic Press, New York, 1974, pp. 114-118.
6. Briggs, W. E.: Some Constants Associated with the Riemann Zeta Function. Michigan Math. J., Vol. 3, 1955-56, pp. 117-121.
7. Mitrović, Dragisa: The Signs of Some Constants Associated with the Riemann Zeta Function. Mich. Math J., Vol. 9, 1962, pp. 395-397.
8. Good, I. J.: Dept. of Statistics, Virginia Polytechnic Institute and State Univ., Blacksburg, VA, Personal Communication, 1983.

## APPENDIX

```
        \nablaEULER[口] \nabla
    \nabla R&NK EULER M;L;LM;Y;T;K;N
[1] LM+(L+\otimesM)*-1+\imath2\timesK+NK[2];N+NK[1]
[2] }\quad\textrm{Y}+(+/((\otimes\imathM)*N)\div1/N)-((L*N+1)\divN+1)+0.5\times(L*N)\div
```



```
[4] R&H,Y-+\(2+BERNOULLI K+2)\timesT[K\uparrow-1+2\times1K]\div!2\times1K
[5] a NK[1] IS THE N'TH EJLER CONSTANT
[6] & VK[2] IS THE NUMBER OF TERMS IN THE BERNOULLI SUM
[7] ค M IS TRE NUMBER OF TERMS IN THE FINITE SUM
    \nabla
        VGEMS[D] V
    \nabla M+GENM K;V;I;T
[1] }\mp@subsup{M}{j}{}+((K-1),K)\rho0;I+
[2] V V (2,K)\rho(K\rho1),-1K
[3] M[1;]&V[;1],(K-2)\rho0
[4] L:I+V[;I]॰. ×(M[I-1;]\not=0)/M[I-1;]
[5] T+(T[1;],0),[0.5]0,T[2;]
[6] }|[I;]+(+fT),(K-I+1)\rho
[7] }->(K>I+I+1)/L
[8] a GENERATES THE COEF. OF THE DEfIVATIVE OF (LOG X)*N/X
\nabla
    \nablaGENMV[I]\V
    \nablaN+K GENMN N;T
[1] K+((K-1),K) 00; I+2
[2] M[1;]+(N,1),(K-2)\rho0
[3] L:M[I;]\leftarrow(I KR N), 1+M[I-1;]
[4] }->(K>I+I+1)/
[5] a GENERATES MATRIX OE N\times(N-1)\times\ldots... (N-K+1)
[6] a USED NITH EUNCTION EULER
```

```
        \nablaBERNOULLI[口]V
    \nabla B+BERNOULLI N
[1] }->(N>22)/
[2] B+22\rho0
[3] }B[1]+1\div
[4] }B[2]\leftarrow-1\div
[5] }B[3]+1\div
[6] }B[4]\leftarrow-1\div3
[7] }B[5]+1\div4
[8] }B[6]*-1\div3
[9] }B[7]&5\div6
[10] }B[8]*-691\div273
[11] }B[9]&7\div
[12] }B[10]\leftarrow-3617\div51
[13] }B[11]\leftarrow43867\div79
[14] }B[12]*-174611\div33
```



```
[16] }B[14]*-236364091\div273
[17] }B[15]\leftarrow8553103\div
[18] }B[16]\leftarrow\mp@subsup{}{}{-}2.374946E10\div87
[19] }B[17]\leftarrow8.615841E12\div1432
[20] B[18] - 7.709321E12:510
[21] }B[19]\leftarrow2.577688E12\div6
[22] }B[20]+\mp@subsup{}{}{-}2.631527E19\div1919190
[23] }B[21]+2.929994E15\div6
[24] B[22]& 1.929658E16
[25] 
[26] L:'N MUST BE LESS THAN OR EQUAL TO 22'
[27] & FIRST 22 BERNOULLI NUMBERS
        \nabla
```


## APPROVAL

# THE GENERALIZED EULER-MASCHERONI CONSTANTS 

By O. R. Ainsworth and L. W. Howell

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

## Mri Xlonough

G. F. McDonough

Director, Systems Dynamics Laboratory


