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TROHNIOAL SUPPORT FOR AXAF

T4J 8 ruport summarizes the results ol: a ol.ady

of fort porformed under contract No.: NAS8-.i4kj!,,I.

Tho report is divided into two parts. The 	 part d(-)-
soriboo tae: effets of ray aberrations due to various

surface orrors on the point image , and tbo second

part introduoeo a new method and rationale for opt-11-

mizing the performance of nested arrays of grazing
incidence telescopes.
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I. RAY AHERhATIONS DUE TO SURFACE ERRORS

As part or the overall orror anaiysl,;3 01' tbu AXAF Gt^I.00vopu

Milo is an attompt 'to describe arid ( , atr,t0rIZ(-I t)jk; low

aburration causing surface defueto it, thu m ► ;vtl gunural

This 
work compliments the analysis dorio by 0,AO1H!gb hriov'y6

A.-trophy ,oli-to Divi!,,,ion which is based on aooumlur suluctud guomo-

ti, io, deformations.

A half mr.l idional section of a two-mirror jr vuzing in0idvno,(,,

configuration including the basic design parameters is shown in

fig. l.

p° 1

X 1

	

	 k2l
d

Fig.1: Two-mirror grazing incidence configuration
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2. Axial Slope Error: Aa= -,-AP4(zj,cb)
z 0

3. Circumferential Slope Error: Ao= -Ap(zk^)
P ^

2
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A morldional section of a voal, slightly pie formod ouvVaoo,

may be ropruoonted by tho oquation

) 2 +2kz _XZ 2 +00+01z+e
2v, 2 4, . .	 Z 1 .1 a 0 0	 (1TA

whom.; bhu square root term roprooento the idoal dusign ourfait,

and tiro voinalning terms make. up the- oorfaco urror funotloji,

tho dit-3tributions of surface defects will geriurally not t)ti rota-

tionally oymmetric, they are also a funotion of Miu azimuth angle,

i 
;;-- e i C) + e i I 	+ e i2, tp +	 + e i j	 +	 (2)

so 'that the complete oet of error terms can be summarized as

f ollows

Ap (z	 E	 ei, ^j ) z 1	 (3)

We now divide the total into three main categories of surface

errors:

1. Radial Error: Ap= Ap(z),O)
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T Radial Surface Error.

Tho radial error can be divided into two oomponuntst

a) a cons tant component: Ap :;4p o 
=a 

o o

b) a variable component:Ap=Ap(z,^)-eoo

To dotermino the ray aberration caused by a local art-or in radius,

Ap, we. rofor to fig.2.

IDEAL SWACE

AAp

A,

P

AP
B-Z

15 a

GAUUTAN	 OBJECT
IMAGE FLANS	 PLANE

Fig.2: Ray aberration due to radial surface error

Since a is a small angle'we have

Ot	 P
-Z	 (4)

and	
a- AP_

	

S-Z	 (5)
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I'liminating a by combining eqe. 	 4 and 5 yield

Using the ourface equation,

P 2 ,,:,,-po+2kz (7)

an(I the l.ono equation

2k	 1+m

one obtains	 2=P	 po L -(1tm)	 ^]
L

(9)
a

or	 p xpoll- 1	 m s
1] (10) <<

i9

Eq.	 10 inserted into eq.6 gives y

Qs^^ s p Q ^ (1+ srt)(1+ 12 sr)^1-^,) (11) ^	 `'

which yields after developing and neglecting all non-linear

terms	 of^,

ps ,_s'ZP1+m)- (1- m)(3m+1)^]8p (12) P
Eq. 12 applied to primary and secondary gives to the first order

1.	 Primary	 (m1=0)

longitudinal, aberration: As,= 
P 

6p (13)

lateral. aberration	 Aro i = Qp (14) Ij

3
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In the final focal plane tho 	 Laturu'L aborrat, ,Ioi, hi-.,(.,ao ►ijoo

4r o = In 2Ar o i = Au 05)

or,in anoular units

Ay o= " [I. dj2f	 a (16)

2.	 Secondary	 ( ►fl2 = 2)
longitudinal aberration:	 As'	

22	 Ap
2	 2

(17) 
P02

lateral aberration	 Ar02= 2AP2 (1 8 )

Or o	 in angular unite
Ay	 3Ap (19)2f

A special situation exists when Ap=Apo is constant over the

entire surface.	 This results primarily in a focal. shift and in

a small amount of apherical aberration.

The longitudinal aberration is formod by the two marginal

rays reflected at z=-zo and z=+zo.	 Using eq.	 12 we obtain

AAs'=As'(-zo)-As'(0o)= 04 (1-m)(3m+1)Apo (20)
Po

(see	 fig.3)
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uAUSSIAN
IMAUE PLANt

Fig.3: Focal shift and circle of least confuslutz duo to u
constant radial error

Applied to the two surfaces we obtain:

1. Primary (m,=O)

Mean focal. shift (for z 1 =0, p i =p oi) E61= A Ap o	 (21)

longitudinal aberration	 :QAsi= p Qpo	 (22)

I

radius of circle of least confusion: Ar 1xa A 2 s ' ^ ? `:	 A  o
i Pol

or	
= 

LD1 
AA o 	 (23)2sY

For best performance the first focus of the secondary must coin-

cide with the Location of the circle of least confusion. This is

6

}
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a ,11iluvod by adjuBting tho mirrox , owparntloit, ^! ► liy tits: imount

Ad ,^2 Ao 'j w--^^'	 Apo ( ;,# I
.4)

P o 1

Thon thu diameter of the circlo of loath oonfuolon	 In the V111 al,

focal plane is

2Ar= m2z1	 Apo= L" APO
0 1	 2 oli

In angular units it is

2Ay= 
2s
L"	 APO	 ad

i	 f	 Ir	 I
(26)

or,	 sinco 01=f/M2 and m2=j,

z2Ay="- f	 rt2APQ	 ad II (27)

2.	 secondary	 (M2=i)

Mean focal	 Y8shift(z,=Oo	 P2 = PO2) : 	2" 2 PApo (28)

longitudinal aberration	 :4482 5.	 .L A P 0
4 

P (29)
2

radius of circle of least confusion: 6r	
8 z " Apo (30)

The diameter of the circle of least confusion i p then

2Ar = I z	
Apo

4 S 2 (31)

or in angular units

2Ay= I z 
-0 !?	 ApoS 2r?

Crad 1 (32)

7
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I T Axial, lope Error

Tfw UX14l slope error otin al.no bo^ divid—f ;ato two .-timlootionto:

it) it con -Lan t component :4a7-A(-vo;-^o.,o

b) a variable componont:4a-v%),Uẑ - 0 1 D

To dotormine the longitudinal and latorat	 rtbuvratimi ittilloOd

by a fo(vil axial o1opu orrov wo rufur to

Act

I/-

2 4 a

P

Aro

GAUSSIAN
IMAGE PLANE

Fi g -4: Ray aberration due to an axial slope error

It is
a-2Aa= (32)

or
As'= (33)

It is also
S4 -7 (34)
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Eq.34 iriou^,'G€ad into eti. 33 givua

2

Firjully, ut'Gur ropl,acin i c) by oq.10 uno olit...it,,

At ' ;;2 0 2 [1 {'o ( ►n-^3)] Arc	 `})

kj . irk app I lod to primary and occondavy g i vu-., I o Lho i' r:# t:

1. 1 r2 lnury(mz=0)

.l.ong i tu , i 1na.l	 aborration : As' .; 2"" l Au (	 r

lu term aberration	 : Av o i- 20 iAa 08)

In the final fooa1 plane the lateral ray aberr= u t on becoinoo

Ar o = m2 Aror z oiAa (39)

In angular units

Ay o = f Aa Ir ad]	 ( 40)

or, s noe s =f /m2 =2f

Ayo=2Aa Crud]	 (41)

2. Secondary ( m2 =i)

12
longitudinal aberration: As , = 2P-- p a 	 (42)

if

Lateral, aberration 	 ; Ar02= 2si Aa	 (43)
1

or, in angular units	 : AYo = 2f Aa	 (44)

n—
2 A o i
 Au

A'
}
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A	 :;po, - irrl ;;1 i,uat10n oxI .-to again whcii A 	 riuxu	 1.;	 ^,kjn , ',LhItt,	 04	 1^

tho	 on t, i .1' t o;u vfacry , h I o	 rovuILo	 al,oi) 1) x'1Milt'11,r	 111	 a	 l`t,,otl

o11t.ft	 and 111 a omall amount of	 1► phorica;l, n1jo	 r!iI ioii,

vie r1rror C'mi ction eaus.lnt a t',oriotant axial oi-jpk' ,, vrtil'	 o

A P, A(%uZ# l . v. , thoro io 1a, rad lu l orror of 'Air . ,t!v,t111t, î  toy,

tAt 1)iSG , irat,leli with tho elotli; orr or* which votou.l t o a1>>^rl 1r1,Y t 	 ., t . 1,.
I

ill rirl addi , t !anal vocal olll ' vt Uf	 o (7 1n }r^i+x	 "r"t1i,,, amount, wiio ►

be riddod 1, 4 ) oq. 36 for tho totla.l foo-al oltif`t;.

f2
As r=2	 1+(m -3)r, Aao+1' (i +m)I,AaDPo	 2	 o	 w^

r

=2s1 

z 
1+(m_a1)2 1 A01 0 	 (45)

Tho longitudinal aberration Is formed by the two ma.rg irial rta,yo

ro,fl.ected at z=-zo off the surface. Using eq. 45 one obtains

for the longitudinal aberration, (see f g.5)

AAa r =As ► (-zo)-As ► (+zp)=2s; (1-m)Aao	 (/f6)

Applied to the two surfaces we obtain:

1. Primary (m 1 =0 )

Mean focal shift(z 1 =0 ► A 1 =Ap i ):AsJ=2
s
p
rz 

Aao	 (47)

,longitudinal aberration	 :A6s1 =4sp 01 Aao	 (48)

radius of circle of ?east	
:Ari AAsi a= 2zoi Aa o 	(49)confusion

10
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f

0AU$81AN
IMAGE PLANE

Fig-50- Focal shift and circle of ;y east coi l f 11 0 1on auo to

a constant axial slope error

To match the first focus of the secondary with the location
Of the circle of least confusion the mirror separationpdMLISt

be adjusted by the amount

X4012

P ol 4ao (50)

Thus the diameter of the circle of least confusion in the final

focal plane is
2Ar=4M2ZOiAao=2zoiAao 	 (51)

or in angular units,
A

2zo2Ay= —fAU0 
Irad]	 (52)

11
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Mearz t'^^oal shift (zr a U ► ^^r° tar):i^ Zx^?P	 A;za	 (f,^)

lung i tud final aberration	 A A o 2'y 12 !2 

a z 1 A, a	 (^^i )

rats i lAo of c ircia of lent AA.;
t!tJTI '^•itlitltl	

:Ar2	 ^.;	 tk := a: A (Y

'Niu cliamotor° of the circle of luaot coni'uol,oo i., tbult

2Ar= 2z o2Aao

or in angular un its

2Ay= 2-- ,1 Aao	 (57)

It may be mentioned here that ray trace results showed that the

spherical aberration due to a constant axial slope error can be

completely compensated by an appropriate separation change,pd.

For the primary this is

Ad= ^Qsi= ^sp ai Qa0	 (58)

and for the secondary Ad=
2m2 As 2 =4po^ Aa o	 (59)

A similar compensation cannot be made for a constant radial

surface error.

II I Circumferential Slope Error

A small local circumferential slope error may be represen-

ted by a corresponding decenter. S?.ope error,A^, and decenter,

12

f,
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Ax, arc., In ac cordanco with fig .6 rolated 1,./

Ax"PAS
	

(6o)

t
Y
f

Fig.6: Circumferential, Slope error

Applied to primary and secondary we have:

1. Primary

The ray aberration in the primary focal plane is

Art=Ax=plAc
	 (61)

&,nd in the final focal plane

Ar=m 2 Ar l = P1A^
	

(62)

or in annular units

AY=^A^ rrad^	 (63)

2. Secondary

The ray aberration in the secondary and final focal plane is

nX

13
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Ar 2- (m + 1 ) f) 2 Atp
;;I

 p 2 A,J)2

o l, jj^	 units

A	 (U5)
2f 

A

A constant circumferential slope error arfl o unt-I tO a conotain't

radial change which has been treated in section I.

Thilt,. wo l, k will be continuod by applying th(a vot-mt-to to -hho

AXAF toloocope assembly.

v

K.

i.
E.
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SUMMARY OF RAY AB ERRATIONS DU1a TO iURPACk' ERHOICI

Th l,o ho a summary of the call oulatod effue l,. ,, oJ' varr i "u."
vurfacu orrc rs on the print image of grazing itioldorlcu tul.e-
scopes applied to the six subsystems of tho AXAF Toleocopo
Assembly. 1n order to write the equations as futioti,onoof tiie
following  oy s tem parameters,

C: ^;Yotom foe"i'l l •ll E*i.r,	 ^^' l+ tat)in, a

u: back focal di stanco	 (b =380i.rr. )
p ol : cen ter radius of firot surface ( pol'•'3•^^^'1,`)4^`^•^`^

16.9^.i,14.?o-,1.,.r)3 In )

z 0 1 :half length of fi;r trb surface (z o 1 ..=1 `a . 8 t.l . )

we ►nake use of the following rela.tions:

;.	 s i =f /2, p^.Z= f
	 and z o 2= f z o l

nol 

1. Local Radial Surface Error

A local error in the mirror radius, Ap, causes the following

ray aberrations in the final Gaussian focal plane:

on the primary: Ayo= ^ =0.00125AP rad

on the secondary;Ayo- 3AP = 0.00375AP rad

2. Constant Radial Surface Ei )r

A constant radial surface error LApo, over the entire surface

causes a focal shift as well as a small amount of spherical

aberration.

On the primary:

diameter of circle of least confusion:2Ay= zf 4po = 2.5 . 10 " Aporad

separation change to compensate focal shift:Ad= 2f Apo= 800Apo
Pot	 pol

15

J;



rty

ORIGINAL PAGE 10
OF POOR QUALITY

on bho uoc,ondary:
ry ,

-a tuinu "or of (It bolo of loaz,t c;onfuo ion :.'AY'• .  ^7aAp o 1 . E"> • 1 tf"Akl oI'adF

opurn Lion ^ha:nge to copen Sato 1	 ga

	

"oou i l:if t : Ad '̀—r Apo	 , ^ 1?t	 A^, o
t o o z	 P01

3. Loc^al ;,Uopo Error

A local axia;at slope error,Au t causes the following un-;ulna , c,tiy
aberrrationo in the final. Gauosian focal p1nno:
on the prianary : Ay o=2Aa raal

on the secondary: A-y'o=2bAa=1.9Aa rad

4. Constant Axial Slope Error

A conotaa.nt axial slope error, Aao, over the entire ^,urfaco cuusea.i
a focal shift and spherical.. aberration. The spherical aberration

can be completely compensated by an appropriate separation change.

This results, however, in a final focal plane shift, Ab.

On the primary:

compensating mirror separation:Ad=4 	 Aao=6.4-105
Poi	 Po:

2
resulting focal shift	 :Ab=-f Aao =1.6.105Aao

Po:	 Poi

On the secondary:

compensating mirror separation:Ad=-4'f Aao=6.1-105paoPoi	 Poi

resulting focal shift	 :Ab=bbbff Aao=1.5.105 A01°
Poi	 Poi

5. Circumferential Slope Error

A local circumferential slope error, AO, causes the following

angular ray aberrations in the final Gaussian focal plane:
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ijri the primary: Ayo =P"" A4j)"0-001251)ojA^ vad
2f

va thu sE)oondary:Ay 0 = 3br)oi :^0.00356pojMp rad
2f w

A conotant (1-ircurriferential slope orror to oquiva1ujit. Lo a.

curistant rtudial surface evror.

17	 t
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ii. OPTIMIZING THE GRAZING INCIDENCE TELESCOH

" j! 4 ( ! W any attempt, 1 'o lmprt)vt^ 1.1jo	 of

the convuritional Woltor-typu tkOut000ptj tu.-tt, ,, otit W bo

futilo, it may be interesting to see 
what 

no

grazing incidence teleocopo would look Ilke.
Tho condition for ouch a syL3terri Ls found by

examining its aberrations. The primary aburration of

a grazing -.incidence two-mirror teloscope In given by

a sin t!, le term,
(d-2z 1)^2coqw

where A4 1 is the lateral ray aberration,f the oyotom

focal length, c the half field angle and w the polar

angle in the entrance plane. The remaining quantitius

aro given in fig.l.

d

Fig-1: Two-mirror grazing incidence geometry

The aberration term controls the lateral

aberration as well as the field curvature .; i.e., both

18
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decrease linearly toward the intersection of primary
and secondary, and disappear for z l = d / 2 . Optimum

performance is. therefore, obtained in the vicinity
where the two surfaces adjoin. `i'he concept of such

a short, element system is shown in fig. 2. Obviously,

the shorter the element length, the less tho oollLc c:tilit,
area per element, and a large number of rings are

required for a sufficiently large total cal.;l doting
area,

F-----= L -----a

Fig.2s Conceptual drawing of'a short element

grazing incidence telescope.

As an example a system was analyzed consisting of

100 4 in. long elements with radii between 14 in. and
24 in. yielding about the same accumulative

collecting area as AXAF.

A performance comparison between the AXAF telescope

and the optimum configuration is given in fig-3.

19
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;P0T :`,	 , I O FF A	 1 ► 	 A ti^il,l,,

aroouo Aj	 r t • 	rr3 .in ^.^} ^c'k,e	 . ;'^) at1^ ^:lnir^
At

3`J	 avo^,us: 15 arcmin 'I arok"uC 15 avoA111'1

1 ,i, 	 tAl'i" e	 10 ttl emill 1 , 0 ^tz^L^k^s^c' Ill ^ voillin

r^x^c	 oc;	 avornin
J ^ I• at ^..,^«^ ?^ r^x^^^ruin

OPT11.11AL AX' `a OPTICAL, AXI

RAD 011' GUR .a-	 fR9n

PERFORMANCE OF AXAF
	

PERFORMANCE OF OPTIMUM CONFIGURATION

Fig-3: Performance comparison
t

20
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P1941-0 4 allows tho approxil ato, numb ur of ('l umunt,o, (oub-
o ystems) and the porfcrmanco trund of a rroott^ti ojot,oll, or
1',vtzint, inr ldonco 'teloucupuo to u 1:'orje ,t Loll sy t' ±,t? t 

Length,

Commun system pura.mutoro are:

Outor Radius: 24 in.
xnnor Hadiuv: 14 in
Focal. beng-th: 400 in.

F
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,00*VL

10	 20
	

30

SYSTEM LENGTH (in.)

Fig. 4 : Performance trend as a function of

the system length
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