NASA Contractor Report 168282
NASA-CR-168282
19840008078

POTENTIAL FLOW ANALYSIS OF GLAZE ICE ACCRETIONS ON AN AIRFOIL

Ronald J. Zaguli

The Ohio State University
Columbus, Ohio

January 1984

W Ran Gem
$\therefore 14$ at

LANGLEY RESEARCH CENTER
LIBRARY, VASA
hat: eton, virginia

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center
Under Grant NAG3-28

taEle CF CCNIENTS

homenciature iii
Chafige
I. INTBODOCTION 1
II. SURVEY CF LItegatobe 4
III. POTENTIAL FLOB TBECBY ANL
Panelifg metheds 9

1. Smetana
2. Fppler
3. Evorak
4. Eristcy
5. Laminar Separation Euktles
IV. EXPERIGENTAI PRCGBAE 19
v. RESULTS AND EISCOSSION 24
6. Analysis of Current Ectential
Flow Schemes
7. Mixed Analysis/Lesign Hethod
8. Equivalent Eody Apfrcach
vi. Summary and conciosions 35
APPENDIX - USER'S GUIDE TO THE BRISTOW CODE 38
LIST OF REFERENCES 43
FIGUEES 46

NCHENCLATUEE

$\mathrm{a}_{\text {MN }}, \mathrm{b}_{\text {MN }}$	Influence coefficients, Eg. (6)
c	Airfoil chord length
Cd	Airfoil drag coefficient
C_{ℓ}	Airfoil lift coefficient
${ }^{\text {C }}$ ¢ MAX	airfoil maximum lift coefficient
Cm	airfoil moment coefficient
Cp	Eressure coefficient
d	croplet diameter, microns
k	Eoughness beight
K	Number of distrifuted vortices
ℓ	Fanel length
LWC	Iiquid water content, g/m
M	nach number
P	Local static fressure, Eq. (9)
P_{∞}	Free streall static pressure
Re	feynolds number
t	Time of icing encounter, minutes
T	temperature, C
u,v	velocity in $8, p$ directions induced by a vortex. Eq. (3)
$\overline{\mathrm{u}}, \overline{\mathrm{v}}$	Het velocity in x, y directions induced by all vortices, Eq. (4)
ก	Iotal fluid velccity. Eq. (11)

U_{∞}	Free strear velocity
$\mathrm{V}_{\mathrm{N}_{i}}$	frescribed normal velocity at panel midpoint
X, ${ }^{\text {ip }}$	Horizontal, vertical cocrdinates
Xo, Yo	Coordinates cf vortex center
α	Angle cf attack, degrees
${ }^{\alpha}$ STALL	Stall angle of attack, degrees
ε	Lecal fanel abscissa
γ_{p}	Farabolic vorticity factor
Γ	Vertex strengtb
ϕ	Velocity petential, Eq. (2)
ρ	Air density
$\rho_{\text {ice }}$	Ice density, g/cs
σ	Scurce strength, Eg. (13)
θ	Iccal surface slope

I. INTFODOCIION

Ice is an insidious enemy. It attacks ci two flanks, adding weight to the airplane and at the same time ruining its aerodynamic shape. As ice accumulates, wore and wore power is necessary to maintain speed and altitude, and the pilot gradually finds himself forced to sacrifice first his speed and then tit ty bit his altitude in a desperate struggle to stay airborne [1].

The effects of ice growth on the performance of an aircraft are felt primarily through aerodynamic penalties: a drastic reduction in $C_{\ell M A X}$ and $\alpha_{S T A L L}$ and an increase in drag. The two classes of ice accretions, known as rime and glaze, are formed under different flight conditions. Rime ice is formed at low air temperatures and low velocities. The droplets freeze on impact and usually are found in flight through clouds with low liquid water content. Figure 1 shows an example of a rime ice accretion with its characteristic streamlined leading edge.

Glaze ice on the other hand is formed at temperatures near the freezing mark and higher velocities. With this type of ice growth, a phenomenon known as runback occurs. Rather than freezing on impact, the water droplets travel a short distance before freezing. The resulting shapes are of the type shown in Figure 1, with the characteristic horns. It is with glaze ice accretions that the greatest
aerodynamic losses are found, and it is this type of ice that is the sukject of this paper.

Classically, most of the work done in the study of icing. particularly that done by the NACA in the $1950^{\circ}{ }^{\circ}$ 。 was concerned with mechanical means cf freventing or removing the ice, known as anti- or de-icing. $\begin{aligned} & \text { fovever, }\end{aligned}$ with the increase in general aviation aircraft with smaller powerplants and ligtter weight, a wechanical method of solving the ice problem is no longer acceptakle. Retro-fitting the aircraft components with pneonatic roots or heating elements tend to increase the aircraft's weight, cosit and complexity.

A letter approach would be to design the component itself with characteristics that would reduce the chances cf ice growth and the detrimental effects if growth does occur. This process has been investigated ky bragg [2,3,4] for rime accretions but no attempt has been made fcr glaze ice conditions. $\operatorname{Grap}[5,6]$ derived an empirical formula for fredicting iced airfoil performance degradation kut the correlation has not keen found to fit recent experimental data very well.

When trying to develop a method for evaluating the glaze ice problem, two phases must be examined. The first, a thermodynamic protlem, deals with the prediction of the actual geometry cf the ice shape. The second is to
determine a scheme for analyzing the performance losses incurred once the geowetry cf the ice has teen determined. The study descrifed in this paper applies current potential flow wethcds to this problem. The apprach discussed is not a final sclution to the problem. Bather. it is intended as a first step in developing a glaze ice analysis method. Further investigaticn intc the properties of the flowfield in the region of the ice accretion is required before a complete scheme can be formulated.

Most of the early investigaticns into the icing phencmenon were concerned with de-icing. The first of these efforts was the develcfrent of inflatable de-icing boots ty the B.F. Goodrich Company in the 1930's. This concept is still in wide use today. Befinements bave reduced the boot in its deflated fors to the peint that its presence barely affects the geometry of the wing.

The first ajor investigation into the icing characteristics cf varicus airfoils and the resultant aerodynaic penalties was perforned by the NACA in the 1950's [5]. Information was gathered on the 65A004. 63A009, 0011. 65-212, and 63-015 airfoils. Hcwever, few correlations were drawn ketween the aerodynamic penalties incurred and the stape and location of the ice accretion.

The first major effort to drav these correlations was by Vernon Gray [5.6] in the 1960's at the Lewis Research Center. Gray develcped an enfirical equation which relates known icing conditions with change in drag cofficient.
 Icing Eesearch Iunnel on the NaCA 65A004 airfoil. wide range cf parameters were examined, including icing time,
airspeed, freestrear temperature, liquid water content, cloud droplet impingement efficiency, angle of attack and leading edge radius of curvature. However, the correlation he developed from this study does not readily predict changes in lift cofficient and mement coefficient. An interesting facet of Gray secrelation is the ability to mathematically grow the ice at a given angle of attack and then study the performance changes at ancther angle. Recent data however has shown that even theugh Gray's correlation reascnatly predicts $\Delta C d$ at the angle the ice is grown, its accuracy drops significantly when the calculation is performed at ancther angle cf attack. Some interesting observaticns by Laschka and Jesse [7] came from cther investigations in the Levis Icing tunnel. They olserved that as the angle of attack is varied, many different ice shapes will ke ottained. Also they noted that when the time of the icing encounter, t, is varied, the ice height will be apprcximately proportional to the value cf t, while the impingement limits are time indeferdent.

In order to begin quantifying the performance degradation due to ice, a scheme had to be developed wich could predict the flowfield akcut the irregular ice shape. In 1968, Dvorak futlished a method to predict the development of turbulent boundary layers over rough
surfaces [8]. This approach is incorforated in his prograr, which vas investigated in this pafer.

In addition to the roughness effects associated with icing, is the existence of a large separaticn lubble in the area of the ice shape. Little research has keen done studying these laminar separation bubbles. Host computer programs, such as the Eppler code [9], when they predict laminar separation, consider this simply a transition point retween laminar and turbulent houndary layers. However Venkateswarl and Harsden [10] investigated laminar separation fubbles that occur at 60-70 chord. They developed a correlation to predict the size and shape of the larinar fubtle. Also in 1976, Crimi and Reeves [11] studied leading edge laminar separation butbles and develofed a scheme to predict the onset of transition in the shear layer.

In the late $70^{\prime \prime} s$ and the present, icing research has increased with the work of Ingelman-Sundterg, Shav, Eragg, Gregorek and others. Ingelman-Sundkerg and Trunov [12] published a joint report from the Suedish-Scviet rorking Group on Scientific-Technical cocperation in the Field of Flight Safety. Flight test and icing wind tunnel studies were performed and the concept of simulated ice was developed as a means of investigating the aerodynamic effects of ice growths.

Shaw [13]. Eragg and Gregcrek [2.3.4] continued investigaticn in the lewis Icing Fesearch Tunnel in the 1980's. Extensive data uere collected on the lift and drag penalties of ice growths. Fime and glaze ice accretions were modelled using mahogany and pressure tapped so detailed aerodynamic data could ke collected. This work serves as the primary database for the analytical effort to be presented in this paper.

Of particular importance to the glaze ice analysis was the work of Pfeiffer and zumwalt [14] and HcLacblan and Karancheti [15] whe investigated the flowfield around airfoils with highly deflected sfoilers. Ffeiffer and zomalt utilized a splitter plate arrangement to visualize the separated zones created ky the spoiler.

Lastly, Bristow [16] bas developed an inviscid computer program uhich allows for input cf mixed analysisfdesign kcundary conditions. For example, the input to the program can consist of an airfoil with its geometry partially defined and a desired fressure distritution in the undefined regicn. The program will then hold the input geometry fixed and design the remaining portion $c f$ the airfoil based on the input pressures. This program was particularly useful in the author's investigation of the separation zcne associated vith glaze ice.
This reviev of literature shculd give the reader a clear picture of the deficiency of direct investigations into the glaze ice problea. It is hoped that the study reported here will spawn continued efforts in this area.

Abstract

In order to analyze the ferformance degradation that occurs due to glaze ice accretions, a method for predicting the flcwfield and therffore the pressure distritution of the iced airfoil must te developed. As a first step in accomplishing this task, current potential flow computer programs were investigated. These potential flow sclutions are based on an incompressible, inviscid, and irrotaticnal floid. fer which the classical NavierStokes Equation can be reduced to the Laplace Equation, $$
\begin{equation*} \nabla^{2} \phi=0 \tag{1} \end{equation*}
$$

One scheme presently in use to solve this equation involves the distributicn of surface singularities on a closed polygon which apfrcximates the airfoil contour. This aethod is kncwn as fanelling. Examples of computer programs using this technique are; 1) Smetana, ky F. Smetana, D. Sumney, N. Smith, and F. Carder [17]: 2) Eppler, by B_{e} Efpler and D. Somers [9]: 3) Dvorak, by F. A. Dvorak and F. A. Hoodward [8]; and 4) Eristow, $k y$ D. R. Bristow [16]: The fotential flcw method of each of these

prograss will be discussed in this chapter.

Smetana

The Smetana program apgroximates the airfoil geometry by a closed polygen. Vortices are placed cn the perimeter of the polygon (Figure 2). The velocity potential for each of these vortices can te expressed by:

$$
\begin{equation*}
\phi=\frac{\Gamma}{2 \pi} \tan ^{-1} \frac{\mathrm{Y}-\mathrm{Yo}_{0}}{\mathrm{X}-\mathrm{XO}} \tag{2}
\end{equation*}
$$

where Γ is the vortex strength and (XO, YO) is the location of the center of the vartex. This potential satisfies Laplace's Equation, which is linear and therefore the sum of any number of these fotentials also will ke aclution. The corresfonding velocity expressions can ke ottained by differentiation of the fotential:

$$
\begin{align*}
& u=\frac{\partial \phi}{\partial X}=\frac{-\Gamma}{2 \pi} \frac{Y-Y o}{(X-X o)^{2}+(Y-Y o)^{2}} \tag{3}\\
& v=\frac{\partial \phi}{\partial Y}=\frac{\Gamma}{2 \pi} \frac{X-X o}{(X-X o)^{2}+(Y-Y o)^{2}}
\end{align*}
$$

The confributions of each vortex to the net velocity at a point (X, Y) can then be treated separately and sumfed. Therefore, the net velocity components, $\overline{0}$ and $\bar{\nabla}$, are:

$$
\begin{align*}
& \overline{\mathrm{u}}=\frac{-1}{2 \pi} \sum_{\mathrm{N}=1}^{\mathrm{K}} \frac{\left(\mathrm{Y}-\mathrm{YO}_{\mathrm{N}}\right) \Gamma_{N}}{(\mathrm{X}-\mathrm{XO})^{2}+\left(\mathrm{Y}-\mathrm{YO}_{\mathrm{N}}\right)^{2}} \\
& \overline{\mathrm{v}}=\frac{1}{2 \pi} \sum_{\mathrm{N}=1}^{\mathrm{K}} \frac{\left(\mathrm{X}-\mathrm{X} \mathrm{O}_{\mathrm{N}}\right) \Gamma_{\mathrm{N}}}{\left(\mathrm{X}-\mathrm{XO} \mathrm{O}_{\mathrm{N}}\right)^{2}+\left(\mathrm{Y}-\mathrm{YO}_{N}\right)^{2}} \tag{4}
\end{align*}
$$

where k is the total number of vortices and ($X 0, Y 0$) is the location of the center of the $\begin{aligned} & \text { th } \\ & \text { vortex. }\end{aligned}$

The boundary condition that most be satisfied is that the flcw wust be parallel to the airfoil surface. Ading the contritution of the freestrean velocity to the velocity components induced ky the vortices, this condition can be witten:

$$
\begin{equation*}
\frac{\bar{v}}{U_{\infty}+\bar{u}}=\left(\frac{d Y}{d \bar{X}}\right)_{\text {wing }}-\tan \alpha \tag{5}
\end{equation*}
$$

If we denote the right side of this equation as B_{M} and dafine

$$
\begin{equation*}
a_{M N}=\frac{\left(\mathrm{Y}_{M}-\mathrm{Yo}_{N}\right)}{\left(\mathrm{X}_{\mathrm{M}}-\mathrm{Xo}_{N}\right)^{2}+\left(\mathrm{Y}_{\mathrm{M}}-\mathrm{Yo}_{\mathrm{N}}\right)^{2}} \tag{6}
\end{equation*}
$$

and

$$
\mathrm{b}_{\mathrm{MN}}=\frac{\left(\mathrm{X}_{\mathrm{M}}-\mathrm{XON}_{\mathrm{N}}\right)}{\left(\mathrm{X}_{\mathrm{M}}-\mathrm{Xo}_{\mathrm{N}}\right)^{2}+\left(\mathrm{Y}_{\mathrm{M}}-\mathrm{Yo}_{\mathrm{N}}\right)^{2}}
$$

This set of equaticns is then solved for the needed values of the vortex strength. Γ.

The influence coefficients $a_{M N}$ and $b_{M N}$ are solved for convenience at the midpcints of each panel. Hovever, from the gecmetry, only $R-1$ values of the coefficients can be calculated unless the polygon is closed. The trailing edge point is then given two indices, $=1$ and $X=K$. Then the system is determinant and can te easily sclved.

To satisfy the Rutta condition at the trailing edge. Smetana chose

$$
\begin{equation*}
\Gamma_{1}=-\Gamma_{K} \tag{8}
\end{equation*}
$$

which still satisfies the requirement that the circulation at the trailing edge is zerc. Since the trailing edge was denoted by the indices $N=1$ and $N=k$, the net vortex strength at the trailing edge is $\Gamma_{1}+\Gamma_{K}=0$. Thus Equation (7) contains $K-1$ distinct values of Γ_{N} and $k-1$ values of B_{M} and is therefore solvatle.

Lastly, in crder to oftain surface pressures, Smetana
uses the equation:

$$
\begin{equation*}
P=P_{\infty}-\frac{1}{2} \rho\left(\overline{\mathrm{u}}^{2}+\overline{\mathrm{v}}^{2}+2 \overline{\mathrm{u}} \mathrm{U}_{\infty}\right) \tag{9}
\end{equation*}
$$

which is derived from the Eernculli equation:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{S}}+\frac{1}{2} \rho \tilde{\mathrm{u}}^{2} \tag{10}
\end{equation*}
$$

Where \tilde{u} is the total fluid velocity and is calculated using the vector wagnitude formula:

$$
\begin{equation*}
\tilde{\mathrm{u}}=\sqrt{\left(\mathrm{U}_{\infty}+\overline{\mathrm{u}}\right)^{2}+\overline{\mathrm{v}}^{2}} \tag{11}
\end{equation*}
$$

Eppler

The Eppler program is very similar in construction to the suetana code in that both utilize vortices to frovide circulaticn and both satisfy the same flow tangency boundary condition. However, the Fppler code satisfies it on the actual input gecmetry foints. Also, rather than afplying a foint vortex. Efpler distributes the vortices parabclically along each airfoil fanel. The geometry of the panels is determined by a cutic spline fit of the input coordinates. The vortex strergths at the endfoints of each panel are solved for in the same mander as

Smetana.

The vorticity distribution between the panel endpoints is obtained from the equation:

$$
\begin{equation*}
\Gamma(\varepsilon)=\frac{\varepsilon}{\ell}\left(I-\frac{\varepsilon}{\ell}\right) \gamma_{p} \tag{12}
\end{equation*}
$$

where ℓ is the length of the panel, ε is the local panel abscissa, and γ_{p} is a parabolic vorticity factor. This factor is calculated using the vortex strengths at the endpoints of the twc surronding fanels. Integration of the vortex distribution is then required to evaluate the velocity contritutions of each panel.

The Kutta condition is satisfied as in the Smetana program. The requirement again is equal velocities on toth sides $c f$ the trailing edge and zero normal velocity with respect to the trailing edge kisector angle. Thus, enough circulation is generated that the trailing edge becomes the rear stagnation point.

Dvorak

The airfcil contour is again represented by an inscrited polygen. However each pair of adjacent panels has a triangular distribution of vorticity across it. The airfoil is thus modelled by a series of overlaffing
triangular vcrtex distributicns. lt the leading edge of the airfoil, the strength of the upper and lower surface vortices are set equal to insure smooth flcw.

The kutta condition is satisfied by setting the strengths of the vortices on the trailing edge panels equal to zerc. However, doing this reduces the system cf equations to be solved to N equations with $N-1$ unknouns. An additional unkncwn is added by applying a constant source distributicn on the inside of the airfoil surface. It should be pointed out that like the vortex strength of the trailing edge fcint used by Smetana and Eppler, this unkncur source strength is always very nearly zero for airfoils with closed trailing edges.

Bristow

The Bristow code is similar in design to Smetana and Eppler, hovever the singularities used cneach panel are linear source and vortex distributions asscciated with the classical third identity of Green. One of the particular advantages of this method is believed to te its high numerical stability when used in the design mode of operaticn.

The vortex distribution generated is linear on each panel and the source distribution can be either piecewise
constant or linear. This chcice bouever shows little effect on the results oftained. The source strength at panel widpoints, σ_{i}, is found simply from the following equation:

$$
\begin{equation*}
\sigma_{i}=V_{N_{i}}+U_{\infty} \sin \left(\theta_{i}-\alpha\right) \tag{13}
\end{equation*}
$$

Where $V_{N_{i}}$ is the prescribed normal velocity at the panel
 source strength evaluated. it is left only to determine the total potential at a panel midpoint induced by the simultaneous acticn of the vortex and scurce distritutions.

The Eristou code has a unigue feature. It can ferform mixed analysis-design problens. The user inputs fixed geometry regions and the desired surface velocities in the design region. The program ingediately satisfies surface continuity by stretching the input starting geometry in the design region. Then an analysis only scluticn is obtained from the combined source-vortex singularity scheme. The geometry of the design region is then rodified using a first order inverse method to minisize the difference tetween calculated and inpot values of tangential and normal velocities. This process is repeated until the convergence criterion is met.

Laminar Separation Eutbles

One cannot deal with glaze ice accretions solely using potential flow methods. This is due to the presence of a laminar separation kubble which forms behind the glaze ice horn. Short laminar separation buttles have very little effect on the integrated aerodynanic loads and most compoter analysis programs assume that the butble simply represents a transition point frow laminar to turbulent boundary layers. However, laminar butbles of the tyfe seen with ice accretions are sufficiently large that their effect cannot te neglected.

Most of the work done on la⿴inar separation butbles has been of an experimental nature. This is due to the difficulty in analyzing the interaction betveen the viscid and inviscid flow in the reverse flow region inside the bubble. In addition, evaluation of the transition foint from laminar to turbulent flow in the free shear layer becomes more complicated.

A diagram of a typical flow pattern cbserved with a separation bubtle is shown in Figure 3. The lawinar boundary layer first separates from the surface yielding the region of reverse flow. Transition to turbulent flow occurs in the separated shear layer shortly before
reattachment. The region is divided by the streamline which separates fron the surface and reattaches downstream. The area below the segaraticn streamine is known as the recircolaticn region or separation bubtle. Most of the examinations into the protlen of laminar separation kubbles have used the classical boundary layer assurption that

$$
\begin{equation*}
\frac{\partial P}{\partial Y}=0 \tag{14}
\end{equation*}
$$

Prom Schlichting [18] bowever. it is noted that this term is cf the order cf the boundary layer thickness. Fcr most cases, this would ke a valid assumption. Howerer, the bubble behind a glaze ice accretion is wach thicker than normal boundary layers and therefore the assumption that this term can te neglected may not be valid. In Chapter 5, the crder of magnitude of this term is investigated.

In an effort to analyze these separaticn bubbles using potential flow schemes, the assumption that the pressure gradient term is negligible will te considered valid. Pressures measured experimentally at the airfoil surface will Le input to the Bristow code in the design mode. The corresponding calculated bubble shape will then be compared with the flow visualization results.
IV. EXPERIMENTAL PBOGRAM

Very little experimental data has been available on the performance degradation of airfoil sections resulting from ice accretions. To help alleviate this, a two-year test progran was conducted in the NASA Lewis 6* $x 9^{\circ}$ Icing Research Tunnel(IRT-Figure 4). Its primary objectives were:
1). To examine a method of simulating ice accretions with wood shapes which were instrumented with surface pressure taps to obtain aerodynamic data.
2). To study and document the complex flowfield in the region of the ice shape through pressure distributions and floy visualization techniques.
3). To expand the current database of performance data on airfoils under icing conditions $[4,19]$.

The Eirst tunnel entry in 1981 was an actual ice accretion study. Glaze and Rime ice shapes mere grown on a 1.36 m chord NACA $63 A 415$ model. The resulting section drag coefficients were measured using a wake survey probe. Two flight regimes vere examined during the test; 1) cruise. with high velocity and lov angle of attack, and 2) climb. with low velocity and high angle of attack. The temperature in the tunnel was set to -4 degrees C to
generate glaze ice shapes and -26 degrees Cor rime shapes.

Two methods are available for recording the ice accretion geometry. For short icing times, a small section of ice is scraped away near the leading edge of the model. A template is then inserted into the gap and a tracing can be made. For longer periods of accretion, a section of the ice is removed by spraying stean inside the model near the leading edge. It is then dipped into a container of molten bessuax. After hardening, the water is removed, the plaster is poured inside and casts are then available for more detailed tracings [13].

From the shapes generated during this tunnel entry. 2 rime and 2 glaze shapes vere chosen to represent typical climb and cruise conditions. These shapes were then modelled for the second tunnel entry. Table 1 gives a summary of the pertinent test parameters which generated the chosen shapes.
table 1
Ice Generation Test Farameters

TIPE	T	α	U_{∞}	d	LYC	t	$\rho_{\text {ice }}$
FIME	-26	2.6	51	15	1.5	15	0.421
GIME	-26	6.6	40	15	1.5	15	0.534
GLAZE	-4	2.6	51	15	1.5	15	-
GLAZE	-4	6.6	40	20	2.9	15	--

A fifth shape, denoted Generic Glaze was derived from the work of Ingelman-Sundberg [12]. This shape was chosen
because it readily scales down tc a 6 " chord model. Comparison testing of this shape will be performed in the Ohio State Transonic Find Tunnel Facility.

The simulated ice shapes vere formed from whogany and extended full span. In order to ortain surface pressures, the inside of each shape was hollowed out to allow clearance for the $1 / 8^{\prime \prime}$ ID tubing required for tapping (Figures 5-7).

In order to obtain pressures on the airfoil itself. $1 / 8 "$ OD strip- a-tube was attached to the surface. In order to simulate the natural roughness of ice accretions. aluminum oxide grit with a $k / c=.00058$ was attached using an acrylic spray adhesive to the glaze shapes, while a grit uith a $k / c=.0012$ was added to the rime shapes.

Data acquisition and reduction was accomplished using the OSO Digital Data Acquisition and Reduction Systen (DDARS) [20]. The heart of the system (illustrated in Figure 8) is a DEC LSI-11 microcomputer. System input and output is through a standard teletype terminal, and the mass storage device is a single-head dual-drive floppy disc. Signals from the various pressure transducers and the wake probe slidewire enter the analog front-end, which conditions the signal and converts it into digital format for direct input to the microccmputer.

A Scanivalve transducer system was used to provide
surface pressures on the model and a twin-head wake survey probe, with wake total and static ports, was used to sample pressures in the wake. Drag data were then obtained using the wake momentum deficit technique. Figure 9 shows a schewatic of the data acquisition syster set-up.

One of the key features of the OSO DDARS is on-line data reduction. The system operator is given quick-look Cp distritutions as well as integrated values of C_{ℓ}. $C_{\text {m }}$ and Cd. The engineer can then evaluate the progress of the test and maximize tunnel usage time.

Final data reduction was performed on the OSU Harris/6 Computer System. Hard-copy plots of the Cp distributions for each configuration were generated and integrated values of lift, moment, and drag coefficient were obtained.

In order to visualize the floy in the region of the ice shape, a splitter plate arrangement was used. The plate could be inserted into place between the upper and lower balves of the simulated ice shape (Figure 10). Droplets of oil-based paint were applied and the tunnel brought frow idle up to the required test speed. After no further movement of the droplets was observed, the tunnel was brought to idle and photographs were taken of the flov patterns(Figures 11-13). The separated streamline coordinates were digitized from these photographs for use

```
in the mixed analysis/design study.
    Five configurations were run during the two year
program, including deflecting the flap from 0-30 degrees.
Of importance to this report vere results obtained on:
    1). Glaze 3
    2). Glaze 7
    3). Generic Glaze
```

The Cp distributions and integrated lift coefficients
provided the necessary datatase for the analysis effort
which will be discussed in chapter 5.

V. EESUITS ARD DISCUSSION

Inc approaches to evaluating the perfcrmance of a glaze ice shape were used in this studye Ecth relied upon the database generated in the Iewis Icing Iunnel on the simulated ice shapes. The first scheme was to examine current airfoil analysis codes and compare the fredicted inviscid pressure distritution to the experimental result. The second afproach utilized tbe Eristow inviscid design and analysis program in an atterpt to predict the shage of the sefarated zone tehind the glaze ice horn. Iogether with this effort equivalent $k c d y$ concepts were investigated.

Analysis of Current potential Flow Schenes

As a first attenpt at analyzing glaze ice accretions. an investigation of current airfoil analysis prograes vas performed. Computer programs utilized in this phase were Smetana. Eppler, Dvorak, Eristcw, and Theodcrsen.

To initially evaluate these programs, sample cases were un on the clean 63A415 airfoil and conpared to experimental results obtained in the Lewis Icing Tunnel. A
representative comparison is shown in Figure 14. This particular distribution is at $\alpha=2.6^{\circ}$ and was obtained froa the Bristow code, but the results cf all the programs studied were nearly identical. Gcod agreement uith experifent was seen.

An interesting observation can be made atout the various panelling methods described in Chapter 3 of this text. Throughout this phase of the study, very little difference was seen among the pressure distributions generated by the Eppler and Bristcy programs. However, Cp distritutions from the Eppler analysis do show a higher degree of sensitivity to the coordinates. This can ke seen in the higher frequency and magnitude of fressure spikes, particularly in the leading edge region. This is primarily due to the means $t y$ whicb Efpler cubic splines the input coordinates to define the panels. Snoothing cf all ice shapes was a necessity for inpot tc this program.

The first ice shape tc be \in xamined, the Glaze 7 case, was a logical progressicn fron the clean airfoil. As seen from Figure 6, this shape is menctonically increasing in X. Figure 15 shows a resulting fressure distribution from the couparisons made. Erediction again is very good at this angle of attack. 4.6°. However, as the angle of attack was increased and the laminar separation buttle in the region of the ice shape horns grew, the potential flow
results vere not very good. This is understandable in light of the bighly viscous nature of the seqaration bubble.

Three of the studied computer programs had boundary layer routines: Dvorak, Eppler, and Smetana. However none had the capatility to predict the separaticn bubble gecmetry and flow properties. Ghen laminar separation was predicted, the rubble was assumed to be sall enougt to be considered negligitle. Thus re-attachment was predicted at the sase location as separation. The flow was then considered turbulent from this point on. However, due to the large adverse gradient in this area the turbulent boundary laper routines soon predict separation alsc. It should be noted that the laminar separaticn point predicted by Drorak compared very well with the observed flow visualization separation feint.

Flow visualization technigues hovever reveal the true size of the separation bubble (Figures 11-13). Euttle lengths of 10% chord were obserged at moderate angles cf attack. This definitely shows that the assumptions made by these computer programs, even though valid for most cases. break doun when applied to the flow in the regicn of the ice growth.

The Glaze 3 and Generic Glaze shapes, due to the fact that they are not monotcnically increasing in X, proved to
be much more difficult tc analyze. The Smetana program simply would not run on a double-valued shape and the Theodorsen conformal mapping method (Figure 16) could not successfully map the iced airfoil to the circle plane.

Ancther difficulty arcse at this time with the Dvorak program. Pigures 17-19 shom the panel gecnetry produced by the Eristow, Dvorak, and Eppler codes respectively, for the Glaze 3 case. Hile Bristow and Eppler modelled the large change in slcpe very well (Eristow dces not redistribute the coordinates) , Ivcrak*s method poorly approximated the gecmetry. Figure 18 shous a panelling attempt by Dvorak for the Glaze 3 shape. The lower horn was nct retained in the panelled configuration. This inability to correctly represent the infut geonetry was seen throughout the analysis of the Glaze 3 and Generic Glaze shapes.

Pigures 20-2́2 show the comparisons between theory and experiment for the Glaze 3 ice shape at a low angle of attack. Reasonatle accuracy is obtained for this case. However, when the angle of attack was increased, results degraded guickly. Figures 23-25 show the Generic Glaze shape at a moderate angle of attack, 5.6°. As the angle of attack of the airfcil with ice is increased, the viscous effects become guickly wuch more important than for clean airfoils at a similar angle.

Figure 23 shows the difficulty associated with trying to treat a viscous flow protlen with an inviscid approach. The large pressure spike, otserved gith all ice shapes, occurs at the tif of the horn as the flow attempts to negotiate the large change in surface slope at this point. None of the programs examined could predict the observed constant pressure zone associated with the laminar separation tubble.

Even though comparisons betveen theory and experiment made at low angles of attack were good, when moderate angles are evaluated the viscous effects associated with the ice shape need to be considered. Table 2 shows this very clearly. It should be noted that the thecry roy corresfonds to an averaging of the results from Eristcy, Dvorak, and Eppler for that angle of attack (Suetana was included for the Glaze 7 cases). Figure 26 shows a sumary of the characteristics of the airfoil analpsis methods investigated. The next stef in the analysis then was to examine the shape and length of the laminar buthle.
table 2

Lift Coefficient frediction with Ice

GLAZE 3
α
-2.4
3.6
5.6
9.6

Theory	0.10	0.84	1.09	1.57
Experiment	0.08	0.75	1.01	1.18

GLAZE 7

α	-3.4	2.6	4.6	$\varepsilon .6$
Theory	-0.03	0.72	0.96	1.45
Experiment	-0.03	0.70	0.90	1.30

GENEBIC GLA2E

α	-2.4	-0.4	1.6	3.6	5.6
Theory	0.10	0.35	0.60	0.85	1.10
Experiment	0.10	0.32	0.54	0.72	0.84

Mixed Analysis/Cesign Method

The Bristow frogram has the unique option of parforming mixed analysis and design protlems. This feature was utilized in an effort to predict the shape of the laninar sefaration zone.

The input to the Bristcy mixed analysisfdesign cption involved holding the gecmetry fixed at the tifs of the ice horn (1 panel was fixed on each horg). In addition, tangential and normal velocities in the design region were required. All normal velocity components were set to zero. The tangential component was then calculated from the
experimental pressure coefficients and Eernoulli's Equation.

Since quantitative flow visualization data was cnly availatle for comarison for the upper surface, the geometry cf the buttle in this region was studied primarily, However, conclusions drawn here should apply in the lower surface separated zone and the region betwenn the two ice horns. From the chctographs of the splitter plate arrangement (Figures 11-13). digitized ccordinates for these regions were obtained for comparison to theory.

One final paraseter needed tc be examined before prediction cf the rublle gecmetry could be made. This parameter, the reattachrent point, is the position on the airfcil up to vhich velccities are specified and beyond which geometry is fixed. Figure 27 shows the predicted geometry cf a separation tuthle on the Glaze 3 shafe. The reattachment point was varied from $X=04$ to $X=-80$. The shape of the burble converged to the solid line in thic figure. Moving this point further tack cn the airfoil surface did not alter the shape of the ruthle. Therefore. for the cases examined here rear cositicn cf the design region was set tc $x=-20$.

Figure 28 shous a comparison tetween fredicted and experimental shapes of the separation bubble. Reascnatle agreement is seen at this low angle of attack. However. as
the angle of attack was increased, the predicted shape tended to ke longer and thicker than the chserved one. Figure 29 shows a comparison run on the Glaze 3 shafe at 5.6°. Experimentally, the reattachment point uas orserved to be at $X=.05$. Theoretically however, it was found to be at $\mathrm{z}=.175$.

There are a number of reascns for these discrepancies. First, with a splitter plate technique cf this kind, the line that is visualized is actually a little atove the zero velocity line (Figure 3), not the separated streamline. This would agree with the observation that the splitter plate shape lies within the bounds of the thecretical prediction.

A second, and far wore important difficulty was discovered while studying the flow visualization photographs. In Figure 11 , the streamlines are observed to converge, indicative of a flow no longer 2-D in nature. A test program was performed in the 0 S Subsonic wind Tunnel to determine the nature of this prcblem [21].

A GA日-1 airfoil was cutfitted with a splitter plate and a simulated glaze ice shape. The airfoil was run through a series cf angles of attack, first with the splitter plate leading edge frotroding out into the stream, and second with this pcrtion of the plate removed. The results of this study show that with the larger
splitter plate, the boundary layer separates off the plate and induces vortices due to the impressed adverse pressure gradient from the ice shape. These vortices traveled downstreaw, affecting the 2-D nature of the flow near the splitter plate. Quantitative measurenents showed a change in re-attachrent point of 5 sas possible tetwen the two plates. This value however cannct te directly applied to the results on the 63 a 415 airfoil in the IfT. Bather, the reader should use this information qualitatively when applying it to Figures 28-29. The important point is that the large splitter plate moved the reattachment point forvard on the airfoil surface. Keeping this factor in mind the predicticn of the separated zone in figures 28 and 29 appear to be better than first thought.

A third difficulty with this type of mixed-mode analysis and design cowes from the assumption that the pressure gradient through the toundary layer is negligible. This assumpticn is a key element of the design process but may nct be a valid cne for tre thick separation zones associated yith glaze ice.

Lastly, comparison with flow visualization is not possible in the region between the glaze borns due to the reascns just mentioned. However, Figure 30 shows the predicted gecmetry using this method for the Glaze 3 shape at $\alpha=5.6^{\circ}$.

Equivalent Eody Affroact

The last phase of this study looked at the equivalent body approach in which pressures vere calculated on the input cbserved separated streamline. Figures 31-33 show the fressure distrituticn in the separated zone for the Glaze 3 airfoil at $\alpha=5.6^{\circ}$. Hespectively these results are frow the Bristow, Dvorak, and Eppler codes. The dashed lines represent an inviscid sclution obtained frow the physical airfoil gecmetry cnly. The solid lines are the improvement obtained when the coordinates of the separated streamline from the flov visualization are input. The improvement does not appear very significant for this case but that is primarily due to the pcsition and extent of the bubble. It should be ncted that the coordinates of the separated streamline were not smocthed before input. As a result, a large pressure gradient is chtained where the separated streamline rejoins the airfoil surface (Figure 29).

Figures 34-35 show another comparison with a thicker and longer separaticn bubble. Hith this case, a vast imprcvement is ottained between the inviscid prediction based on the actual geometry and that based on the separated streamline. particular notice should be taken of the compariscn in the area cf the separated zone kehind
the ice shape horn. Lastly, a test was performed of the design method of the $\begin{aligned} & \text { gristew code using these conditions. }\end{aligned}$ The fressure distributicn calculated by Eristow for the separated streamline, Figure 34, was re-ingut as a design region. The geometry predicted from this distribution is shown in Figure 36 along with the original separated streamline geometry. Excellent agreement is obtained and substantiates the use of the Bristcy program for these applications.

An experimental program was conducted to expand the current datatase of performance data on airfoils with glaze ice. Simulated ice shapes were developed tased on actual ice grovth cn the NaCA 63445 airfoil in the NASA Lewis Icing Research Turnel. These shapes uere taffed so pressure distrifotions could be cttained. In addition. flow visualization fhotographs were taken cf a splitter plate arrangement in the region around the ice shape.

Extensive compariscns were run using current airfoil analysis programs such as Effler and Suetana in an effort to predict the fressure distribution and separation zone geometry of these ice shapes. Also, comparisons vere made using the Bristcu Hixed Analysis/Lesign program between the separated streamline gecmetry obtained from the flow visualization and the predicted geometry designed from input values of velocity. The following conclusions can be made from the study descrited here:

[^0]moderate levels, the method breaks down because of the large separation bubble created and its viscous nature.
2. Panelling wethods that do have boundary layer routines treat the laminar bulble as a transition foint from laminar to turvulent flow. This transition is considered to occur in a negligitle distance.
3. The classical assumption that the pressure gradient through the koundary layer is negligible apfears to bold even for the thick sefaration zones associated gith glaze ice accretions. Beasonable predictions of the bubble length and shape were obtained frow this assumpticn.
4. Improved results are obtained from the theory when an equivalent body approach is applied. The ccordinates of the separated streanline are input rather than the physical geometry of the airfoil surface.

It is recommended that refore an attempt is made to develof a numerical approach tc analyze glaze ice accretions, the following steps are taken:

1. Obtain more detailed pressure distributions in the
sefarated zone behind the ice horns and between them. The more detailed the surface fressure distribution is. the better the results the mixed analysis and design program yields.
2. Obtain pressures vertically through the separated zone. Also, at the same time measure the velocity Frofile in this region. Lastly, a determination shoold Le made $c f$ the transition point from laminar to turbulent flow in the shear layer.
3. Repeat the splitter plate flow visualization experiments with a saller plate so as not to ruin the 2-D nature of the flow. This will give a retter idea where the reattachment point is.

This chapter is intended as a user's guide for the Bristow program. Iwo modes of operation are possible with this program: 1) Analysis only and 2) Bixed Analysis and Design. Where applicable the differences in infut parameters tetwefn these modes will be pointed out.

CARD 1 COLUENS 1-72 ATITLR Enter case title on this card.

CARD 2 COLOMNS 1-10 ISAVE Set ISAVE=0 to indicate the start of a new set of geometry Set ISAVE=2 for infut cf a dev alpea coly. Suknit cards 1-2 only.
Set ISAVE=1 if only retaining $Q T$ and $N(Q)$ froa previous case. all cther inputs can be changed. Untransformed (XB, $I B$) cocrdinates are reused. Set ISAVE=3 to repeat last case with new values of AIP日A, CIRCE, and vap distrifution. Ho design cases are allcyed. Cnly submit cards 1, 2, 6. 8, and 11. cClums 11-20 alpha
Angle of attack of x-axis with respect to free strean velocity

CARD 3 COLUMNS 1-10 CT Number of airfoil elements (Hormally set $C T=1$. If flap present set $C I=2$, etc.)

CARD 4 COLUMNS 1-10 CEGRD Reference length for moment and lift coefficient integration (Normally set=1) CCLOANS 11-20 CAFEA1 Recommend set CAPPA1=.01. Osed in calculation cf sharp corner contrcl pcint colums 2:-30 cafeaz Recommend set CAEFA2=.02 . Osed in calculation of

Rutta conditicn control pointe
CCLOMNS 31-40 LINSIG
Singularity choices:
Set IIRSIG=0 for constant source distritution on panels.
Set LINSIG=1 for VINF fortion of source distribution to be pieceuise constant and vip portion to be piecewise linear.
Set LINSIG=2 for linear scurce distritution on panels (HOTE: IIHSIG Choice has little effect on results. Becommend set LIBSIG=0 cr 2.
CCIOHNS 41-50 VINF
Non-dimensional free stream velocity (Ncraally set=1) CCLUMNS 51-6C VBEF
Hon-dimensional reference velocity used to calculate Fressure ccefficients (Normally PREF=VIBF)

CARD 5 COLUNAS 1-10 ITHAX Number of iterations in design mode (Set=0 in analysis mode). Suggest set=4 for design mode. Bost cases converge in this numbr of iteraticns. CCLOMNS 11-20 ITR CCLUHNS 21-30 BLX Becommend set $f L X=1.0$. Design region geometry is relaxed by a factor of ElX every IfR iterations. CCLU日NS 31-40 ITHICR
Normally set=0. Allows no thickness increase if design process results in negative thickness. Execution will terminate if this occurs. Set=1 and thickness increase vill be allowed inspite of negative thickness occurring.

The following cards should ke ingut for each of the elements $(Q=1, ~ Q=2, \ldots, C=C T)$

CARD 6 COLUANS 1-10
Number of coordinates defining element G CCIUMS 11-20 PT Number of koundary conditions in element C (FT $=$ Number of analysis regions + number of design regions)
CCLOMNS 21-30 KOTTA
Normally set=5. Set=1 to input desired circulation normalized ty ferireter cf this element. Set=2 to input circulation (not normalized ky ferimeter). Set=3 if Kutta condition is zero velccity normal to trailing edge tisector. Set=4 to deteraine
circulation from infut tangential velccities. Set=5
for same condition as 3 but higher crder
extrapclation for trailing edge bisector is used $(4$
panels - 2 offer surface, 2 lower surface)
COLOMSS 31-40 CIBCE
Input circulation cf this eleuent. Set=0 for RUTTA>2
CCLDHS 49-50 DXTE
COLOHNS 51-60 DYIE
Trailing edge opening. Ignored if trailing edge regions are ETYPE=0 (DXTE $=\mathrm{X}_{\mathrm{N}}-\quad \mathrm{X}_{1}$) (DYTE $=\mathrm{I}_{\mathrm{N}}-$ ${ }^{1} 1$)

CARD 7 COLOMNS 1-10 AG
CCLUMS 11-20 BC
CCLOANS 21-30 ALFG
CCLOMNS 31-40 SCIC
Normally set $A O=0, B C=0$, $A L F C=1$, and $\operatorname{SCL} Q=1$. These are transformation parameters which are applied to input coordinates (XE,YE) to produce a nex series of cocrdinates for use in the frogran. This allows translaticn, rctation, and stretching of the input coordinates. The transforation applied is:
$X=A Q+S C L C *[X E * C O S(A L P Q)-Y E * S I I(A L F Q)]$
$Y=B Q+S C L Q *[Y B * C O S(A L F Q)+X E * S I Z(A L P Q)]$
CCLOANS 41-50 ICLK
Set=0 for internal flow lcounter-clockwise cocrdinate input). Set=1 for external flow (clockuise ccordinate input).

The following cards are input for each of the regions $p=1$. $\mathrm{P}=2$, $\mathrm{P}=\mathrm{FT}$ of element C .

CARD 8 COLUMNS 1-10 NPAH
Number of panels in this koundary condition region (NCTE: NPAA=8-1)
CCLUMNS 11-20 ISHP
Set=0 if first point in the region is not a sharf ccrner point
Set=1 if first point in the region is a sharp corner peint (NOTE: a sharp corner foint is defined as a point cf slofe discontinuity)
CCLDANS 21-30 PTYEE
Set=0 if analysis region with no translation Set=1 if analysis region uith translation allowed Set=2 if design region with first coordinate fixed and previous boundary condition vas a design region

Set=3 if design region with first cocrdinate free or previous rcundary condition region was analysis with nc translaticn
CCLUASS 31-4C PDSF
Normally set=0. Set=1 for this regicn to undergo same relative length change as previcus region. (NCTE:This region must be PTYEE=3 and frevious regice most be ETYPE 2 2)
CCLUANS 41-50 IVEP
Set=0 if normal velocities are prescribed in this regicn
Set=1 if normal velocities are all to be set tc zero. This is normally the case. CCLOANS 51-60 Normally set=.001. If large number is input length variaticn is suppressed.

CARD 9 COLOMNS $1-10$ XE
CCLONNS 11-20 YP
Coordinates of first point in this boundary condition region. Ignored if fTMPE=2.
CCLUANS 21-30 XBE
cclumns 31-40 YBb
If this is a design region and is followed by an analysis region, these coordinates are considered to be the last foint in this region.

CARD 10 COLOHNS $1-10$ thf of panel. 1
CCLUMNS 51-60 V (AP of panel nead
Ouit this card if IVBP=1. Otherwise enter panel
midpoint ncreal velocities.
CCLUANS 61-70 NBD
Number of values of $\nabla N P$ on this card. Oait if 6 values cf $\nabla N F$ are on this card or it is the last card fcr this region.
next Card SebIES

orit this card if analysis region. otherwise enter
panel midpoint tangential velccities.
CCLUANS 61-70 NRD
Same as NRC cf card 10.
NEXT CARD SERIES
colonis $1-10$ vtef of panel?
CCLOANS 51-60 VTEP of Fanel NEAN

```
Omit this card if analysis region. Otherwise enter
fanel endpoint tangential velocities.
CCLOMNS 61-70
NAD
Same as NBC cf card 10
```

Input the next series of cards for element $Q=1, C=2$ ，

```
...,C=QT. C⿴囗⿻丁𠃋㇒(t these cards if ISAvE=0.
```

NEXT CARD SERIES
CCLDNAS $1-10$ XB of point 1 on this element CCLOMNS $51-60$ XE cf pcint \dot{B} on this elenent x－coordinates of airfoil gecretry．If external flow， infut should be clockwise．If internal flow input is ccunter－clockwise．
CCLJHNS 61－70 RED
Same as NBD of card 10
NEXT CAED SERIES
CCLUMNS $1-10$ YB cf point 1 on this element
ccionns 51－60 yb of pcint N on this element r－coordinates of airfoil gecretry．If external flcw． input should te clockwise．If internal flow input is counter－clockwise．
CCLOHNS 61－70 NBD
Same as NRD of card 10

1）Editors of Flying Magazine．Rilot Error．Hew Ycrk：Van Nostrand Reinhold Company． 1977

2）Bragg，B．B．and Gregorek，G．M．，＂Predicting aircraft Performance Degradation Due to Ice Accretion＂，SaE Technical Paper Series 830742，presented at the SaE Business Aircraft Meetirg and Expcsition，Hichita，Kansas， April 12－15．1983

3）Eragg．A．B．and Gregorek，G．B．，Mind Iunnel Investigation of Airfoil Performance Degradation Due to Icing＂．AIAA Pafer No．82－0582．presented at the 12th Aerody March 22－24，1982

4）Bragg，M．B．．Zaguli，R．J．．and Gregorek，G．M．，Mind Tunnel Evaluation of Airfoil Eerformance Osing Siaulated Ice Shapes＂，NaSA CE 167960，Noventer 1982

5）Gray，Vernon H．．＂Prediction of Aerodynamic Penalties Caused by Ice Formation cn various airfcils＂，NASA Ty D－2166．February 1964

6）Gray，Vernon H ．and von Glahn，Ove $⿴ 囗 ⿱ 一 一 廾, ~ " A e r o d y n a m i c ~$ Effects Caused ty Icing of an onswept $⿴ 囗 十 ⺝ 丶 A^{\prime}$ 65A004 Airfoil＂，NACA TN 4155， 1957

7）NAircraft Icing＂，AGAED Advisory Report No．127， presented at agarc fluid Dynamics Eanel Foundtakle Discussion on Aircraft Icing，Ottawa，Canada，September 30， 1977

8）Dvorak，F．A．and hocdward，F．A．，na Viscous／ Potential flow Interaction Analysis fethod for Multi－ Element Infinite Swept wings＂，NASA CB 2476，Noventer 1974

9）Eppler，Fichard and Scmers，Dan B ．＂＂A Computer Erogran for the Design and Analysis of Lou－Speed airfcils＂．NASA TM 80210，August 1980

10）Venkateswarlu，R．and Marsden，D．J．，＂Frediction of Boundary Layer Levelopement in the presence of a Laminar

Separation Eubble", Department of Mechanical Engineering, University of Alterta
11) Crimi, Feter and feeves, Earry L. "Analysis cf Leading Edge Separation Butbles cn Airfoils", AIAA Journal. Vol. 14, Nc. 11. Decemear 1976
12) Ingelamn-Sundterg, M., Truncu, O.K.., and Ivaniko, A.. "Methods for Prediction of the Influence of Ice on Aircraft $\operatorname{Fly} \mathrm{i}$ ing Characteristics", a joint report fron the Swedish-Soviet horking Group on Scientific-Technical Cooperation in the Field of Flight Safety, 6th Meeting. 1977
13) Shay, Bobert J. and Sotos, Hay G., Man Experimental Study cf Airfoil Icing Characteristics". NASA q月 82790, January 1982
14) Pfeiffer, N.J. and Zumalt, G.H., ${ }^{n A}$ Computational Model for Low Speed Flows East Airfoils vith Spoilers", AIAA Paper No. 81-0253, presented at the 19th Aerospace Sciences Meeting, St. Louis, Missouri, January 12-15, 1981
15) HcLachlan, E.G. and Karancheti, K., "Experimental Study cf the flowfield of an Airfcil vith Leflected Spoiler", AIAA Eafer No. 82-0126, presented at the 20th Aercspace Sciences Meeting, Crlandc, Florida, January 11-14. 1982
16) Bristow, D.R. and Grose, G.G., "Modification of the Douglas Heumann Frogram to Improve the Efficiency cf Predicting Component Interference and tigh lift Characteristics". NASA CB 3020, August 1978
17) Saetana, Frederick 0., Summey, Deltert C., Saith, Neill S. and Carden, Bonald K.. Mlight Aircraft lift, Drag, and Mcment Prediction- A Revien and Analysis", NaSA CB 2523. Hay 1975
18) Schlichting, H., Bcundary Layer Theory, Sixth Edition, McGran-Hill, New York, 1968
19) Zaguli, B.J., Eragg, M.B., and Gregorek, G. M., "Results of an Experimental Ercgram Investigating the Effects of Simulated Ice on the ferformance of the NaCA 63 A 15 Airfoil with Flafn, AABI tg 8301, May 1983
20) Freuler, B.J. and Hoffmann, N.J., "Experiences Mith An Airtorne Digital Computer System for General Aviation Flight Iesting", AIAA Paper No. 79- Paper No. 79-1834,
presented at the AIAA Aircraft Systens and Technclogy Meeting. Hew York, Dew York, August 20-22, 1979
21) Kunchal, David, "Splitter Plate Analysis". Final Beport for AAE 693, Ohic State University, Octcher 1982
22) Bristow, Dean F., "Multi-Element Airfoil Inviscid Analysis and Design Program (Version 1) Dser Instructionsn, Mcecnnell Aircraft Company, St. Lovis, Missouri, Decenker 1980

\&

FIGURE 1. TYPICAL RIME ARD GLAZE ICE ACCRETIONS ON AN AIRFOIL

PHYSICAL AIRFOIL SHAPE

VORTEX FILAMENT

REPRESENTATION OF AIRFOIL BY POLYGON AID POINT VORTICES

FIGURE 2. SMETANA PANELJING MEIHOD

FIGURE 3. DIAGRAM OF LAMINAR SEPARATION BUBBLE

FIGURE 4. THE NASA LEWIS $6^{\prime} \times 9^{\prime}$ ICING RESEARCH TUNNEL

FIGURE 5. GLAZE 3 SIMULATED ICE ACCREIION AND PRESSURE TAP LOCATIONS

FIGURE 6. GLAZE 7 SIITULATED ICE ACCRETION AND PRESSURE TAP LOCATIONS

FIGURE 7. GENERIC GLAZE SIMULATED ICE ACCRETION AND PRESSURE TAP LOCATIONS

FIGURE 8. OSU DIGITAL DATA ACQUISITION AND REDUCTION SYSTEM

FIGURE 9. OSU DATA ACQUISITION SYSTEM AS USED IN THE NASA LEWIS IRT

FIGURE 10. SPLITIER PLATE ON 63A.415 AIRFOIL

FIGURE 11. SPLITIER PLATE PHOTOGRAPH OF GENERIC GLAZE ICE SHAPE ON 63 A 415 AIRFOIL ($\alpha=-0.4^{\circ}$)

FIGURE 12. SPLITTER PLATE PHOTOGRAPH OF GENERIC GLAZE ICE SHAPE ON 63 A415 AIRFOIL ($\alpha=5.6^{\circ}$)

FIGURE 13. SPLITTER PLATE PHOTOGRAPH OF GLAZE 3 ICE SHAPE ON 63A415 AIRFOIL ($\alpha=5.6^{\circ}$)

FIGURE 15. COMPARISON BETWEEN EXPERIMENT AND THEORY FOR THE 63 A 415 AIRFOIL WITH GLAZE 7 ICE SHAPE

[^1]

FIGURE 17. BRISTOW PANELLING SCHEME FOR GLAZE 3 ICE SHAPE

FIGURE 18. DVORAK PANELLING SCHEME FOR GLAZE 3 ICE SHAPE

FIGURE 19. EPPLER PANELLING SCHEME FOR
GLAZE 3 ICE SHAPE

FIGURE 23. COMPARISON BETWEEN EXPERTMENT AND THEORY FOR THE 63A415 AIRFOIL WITH GENERIC GLAZE ICE SHAPE

FIGURE 24. COMPARISON BETWEEN EXPERIMENT AND THEORY FOR THE 63A415 AIRFOIL WITH GENERIC GLAZE ICE SHAPE

	CODE	POTENTIAL SOLUTION	RUN TIME	COMMENTS
	EPPLER	MIXED PANEL METHOD PARABOLIC VORTICITY	2 MIN.	EXTREMELY SENSITIVE TO GEOMETRY REQUIRES ICE SHAPE SMOOTHING SPLINE FITS TO FORM PANELS, $C_{\ell_{\text {MAX }}}$ METHOD
	SMETANA	PANEL METHOD CONSTANT VORTICITY	2 MIN.	X MONOTONICALLY INCREASING
$コ$	DVORAK	PANEL METHOD LINEAR VORTICITY	2 MIN.	REDISTRIBUTES AIRFOIL COORDINATES POOR ICE SHAPE MODELLING $\mathrm{C}_{\text {¿ }}^{\text {MAX }} \text { METHOD }$
	BRISTOW	PANEL METHOD SOURCE AND VORTICITY	5 MIN.	RELATIVELY INSENSITIVE TO ICE GEOMETRY MULTI-ELEMENT MODE DESIGN WITH MIXED BC
	WOAN	THEODORSEN CONFORMAL MAPPING	1 MIN.	SENSITIVE TO GEOMETRY

—. - Reattachment point $=.08$
--- Reattachment point $=.15$
—_ Reattachment point $=.20$

FIGURE 27. SEPARATION ZONE PREDICTION FROM MEASURED Cp's FOR THE $63 A 415$ AIRFOIL WITH GLAZE 3 ICE SHAPE AND VARYING REATTACHMENT POINT

FIGURE 28. SEPARATION ZONE PREDICTION FROM MEASURED Cp's FOR THE $63 A 415$ AIRFOIL WITH GENERIC GLAZE ICE SHAPE

FIGURE 29. SEPARATION ZONE PREDICTION FROM MEASURED Cp's FOR THE 63 A 415 AIRFOIL WITH GLAZE 3 ICE SHAPE

FIGURE 30. PREDICTION OF REGION BETWEEN GLAZE ICE HORNS FROM MEASURED Cp's FOR THE $63 A 415$ AIRFOIL WITH GLAZE 3 ICE SHAPE

FIGURE 34. PRESSURE DISTRIBUTION IN SEPARATED ZONE BEHIND UPPER SURFACE HORN OF GENERIC ICE SHAPE

Predicted Separation Zone from

Cp's Calculated for the Flow Visualization
Shape
Measured Separation Zone from IRT Flow Visualization

FIGURE 36. EVALUATION OF BRISTOW DESIGN METHOD

$\begin{aligned} & \text { 1. Repor No. } \\ & \text { NASA CR-168282 } \end{aligned}$	2. Government Accossion No.		3. Recipient's Catalog No.	
4. Title and Subtitle Potential Flow Analysis of Glaze Ice Accretions on an Airfoil			5. Report Date January 1984	
			6. Performing Organization Code	
7. Author(s) Ronald J. Zaguli			8. Performing Organization Report No. None	
			10. Work Unit No.	
9. Performing Organization Name and Address The Ohio State University Dept. of Aeronautical and Astronautical Engineering Columbus, Ohio 43210			11. Contract or Grant No. NAG3-28	
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546			13. Type of Report and Period Covered Contractor Report	
			14. Sponsoring Agency Code$505-45-02$	
15. Supplementary Notes Final report. Project Manager, Robert J. Shaw, Propulsion Systems Division, NASA Lewis Research Center, Cleveland, Ohio 44135.				
16. Abstract The results of an analytical/experimental study of the flow fields about an airfoil with leading edge glaze ice accretion shapes are presented. Tests were conducted in the NASA Icing Research Tunne1 to measure surface pressure distributions and boundary layer separation-reattachment characteristics on a general aviation wing section to which was affixed wooden ice shapes which approximated typical glaze ice accretions. Comparisons were made with predicted pressure distributions using current airfoil analysis codes such as Eppler and Smetana et al. as well as the Bristow mixed analysis/design airfoil panel code. The Bristow code was also used to predict the separation-reattachment dividing streamline by inputting the appropriate experimental surface pressure distribution.				
17. Key Words (Suggested by Authorss) Airfoil ice accretion Glaze ice flowfield visualization Potential flow analysis		18. Distribution Statement Unclassified - unlimited STAR Category 02	d - unlimited ry 02	
19. Security Classifi. (of this report) Unclassified	20. Securty Classif. (of this page) Unclassified		$\begin{array}{\|c} \hline \text { 21. No. of pages } \\ 87 \end{array}$	$\begin{gathered} \text { 22. Price } \\ \text { A05 } \end{gathered}$

National Aeronautics and Space Administration
Washington, D.C.
20546
Official Business
Penalty for Private Use, $\mathbf{\$ 3 0 0}$

SPECIAL FOURTH CLASS MAIL BOOK

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

[^0]: 1. Most fanelling methods can fredict the ressure distribution of an airfoil with ice, tut only at a low angle of attack. When the angle is increased tc
[^1]: FIGURE 16. THEODORSEN TRANSFORMATION OF 63 A 415 AIRFOIL WITH GLAZE 3 ICE SHAPE

