NASA Technical Memorandum 58256

(NASA-TM-58256) HIGH ALTITUDE AERODYNAMIC N84-16182 PLATFORM CONCEPT EVALUATION AND PROTOTYPE ENGINE TESTING (NASA) 124 p HC A06/MF A01 CSCL 21E UDCLAS G3/07 11488

High Altitude Aerodynamic Platform Concept Evaluation and Prototype Engine Testing

J. W. Akkerman

January 1984

High Altitude Aerodynamic Platform Concept Evaluation and Prototype Engine Testing

=,

-

J. W. Akkerman Lyndon B. Johnson Space Center Houston, Texas

January 1984

CONTENTS

ţ

.

•

•

Page

4

4

ŧ

ć

۲,

] ;

ABSTRACT .	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
INTRODUCTION	I	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	*	•	•	•	•	1
CONCEPT ANAL	YSI	<u>[S</u>	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	2
PPOTOTYPE PO	WEF	SY	STE	M	DE	FI	NI	T	[0]	N	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13
ENGINE TESTI	NG	AND	DE	:VE	LO	PM	EN	<u>11</u>		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	27
TEST SYSTE	M	• •	٠	•	•	•	•	•	•	•	•	•	•	•		٠	•	•	•	•	•	•	•	•	•	•	•	•	•	31
DISCUSSION	I OI	RE	SUL	.TS		•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	38
OTHER OBSE	ERVA	TIO	NS		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		50
CONCLUSIONS	ANI) <u>RE</u>	COM	ME	ND	AT	10	<u>NS</u>	5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	52
REFERENCES	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•			54
APPENDIX A	-	COS	T S	EN	SI	TI	VI	TY		AN	ALY	(S)	[<u>S</u>	AN	Ð	AE	RC	DY	(NA	MI	C	PF	RE	OF	LMA	N	CE			
		IMP	ROV	'EM	EN	TS	F	OF	2	A I	II	GH	AI	LT]	ITL	ЛDЕ	E A	ER	ROE	YN	IAM	(I(: 1	۲.	T	?OF	M			
		PRE	LIM	IN	AR	Y	DE	SI	[G]	N (201	NCE	EP]	<u>r</u>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	A-1
APPENDIX B	-	THE	HA	AP	0	PE	RA	<u>.T</u>]	(N	<u>G</u>]	PRO	DCF	EDI	JRE	Ξ,	TI	<u>'A-</u>	<u>-T-</u>	-21	·55	<u>8</u>	•	•	•	•	•	•	•	•	B-1
APPENDIX C	-	EVE	NT	СН	RO	NO	LO	GY	[•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	C-1

PRECEDING PAGE BLANK NOT FILMED

111

and the second s

oan ni shi shermu

TABLES

Table																									Page
1	DESIGN FEATURES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	7
2	LIFE CYCLE COSTS		•	•	•	•	•	•		•	•	•		•			•	•	•	•		•	•	•	8

FIGURES

Figure

1	Operational concept	
2	Early vehicle concept	
3	Vehicle concept 2	
4	Vehicle concept HAAP3	
5	Cost sensitivity	
6	Winds at altitude	
7	Solar challenger	
8	Original power system schematic	
9	Engine side view	
10	Engine top view	
11	Engine fo. and aft views	
12	Turbocharger detail	
13	System schematic with 2-stage turbocharger	1
14	System schematic with 3-stage turbocharger	1
15	Engine assembly, front quarter view	
16	Engine assembly, front view	,
17	Engine assembly, right view	}
18	Engine assembly, left view	ł
19	Stock and modified valve motion	ì
20	Piston cap)
21	011 circuit schematic	}
22	Stock engine performance)
23	Stock engine performance it altitude)
24	Altitude test chamber)
25	Instrumentation list	3
26	Data program	•
27	Data printout	5

り

Figure

带

'n

28	Data sheet	37
29	Project chronology summary	39
30	Clearance volume limits	41
31	Altitude/speed for various turbochargers	43
32	Flow/pressure/temperature relationships	44
33	Flow volume vs RPM	46
34	Mass flow	47
35	Data sheet (44B)	49
36	Data sheet (predicted)	51

v

Page

ABSTRACT

A design concept has been developed for maintaining a 150-pound payload at 60,000 feet altitude for about 50 hours. A 600-pound liftoff weight aerodynamic vehicle is used operating at speeds just sufficient to overcome prevailing winds and powered by a turbocharged four-stroke-cycle gasoline-fueled engine. Endurance of 100 hours or more appears to be feasible with hydrogen fuel and a lighter payload.

A prototype engine has been tested to 40,000 feet simulated altitude. Mismatch of "be engine and the turbocharger system flow and problems with fuel/air mixture ratio control characteristics prohibited operation beyond 40,000 feet. But the concept could reasonably be developed to function as analytically predicted.

INTRODUCTION

High altitude flight continues to be of increasing interest among both civilian and military organizations. Most high altitude vehicles have been developed for the purpose of transportation. Also, there are needs for high altitude surveillance, communications relays, and certain scientific applications including atmospheric monitoring and earth resources. These later needs have been met for the most part with transportation vehicles. Rockets and balloons have been used in some cases.

Studies at NASA Edwards Flight Research Center in the mid-1970's indicated that the technology in low-speed airfoils and lightweight structures could be used to fly at extremely high altitudes and at relatively low speeds. This technology has the potential of satisfying many of the high-altitude flight requirements at relatively low cost. It offers a combination of high altitude capability and maneuverability not available in transportation vehicles and reusability not feasible with balloons or rockets.

Previous work at JSC has supported a vehicle conceived at the Dryden Flight Research Center (DFRC) to take high altitude air samples (Mini Sniffer) (ref. 1). This vehicle supported a short-term mission and used a non-airbreathing engine. More recent applications are aimed at long-term operation supporting a communication relay station.

a serie the series and the series of the ser

Various concepts have been proposed of airplanes and balloons in combination with solar cells/batteries, remote microwave power, fuel cells, solar cells/regenerative fuel cells, piston engine with various fuels, etc. Studies have indicated that all of these are technically feasible with varying requirements for system development and operational characteristics.

The central issue at this point is the cost of the concept, both in the development phase and its potential low cost in the operational phase. The solar concept (ref. 2), whether applied to a balloon or an airplane, awaits the evolution of low-cost solar cells before it can become economically viable. Also, for any significant duration, it will require development of an energy storage system for nighttime operations. The microwave-energy-powered balloon or airplane (ref. 3) will require the further development of a microwave power transmission system and an antenna which is steerable to the degree required. Its operational cost would be strongly influenced by the efficiency of the energy transfer system as well as its capital cost.

A primary issue is on-station flight duration. Some candidate concepts could conceivably fly indefinitely (microwave) and, therefore, minimize the handling costs and hazards involved with frequent flight up and down through low altitudes. However, ground turnaround operations and associated equipment will still be necessary and will have to be accounted for.

An aircraft system, using two or three vehicles, could maintain a continuous service with the convenience of easy access for maintenance of the vehicle and the payload system (fig. 1). "On-station" redundancy could be maintained. The issue of low-altitude flight of this airplane could be managed with a variable geometry wing, using a low performance/high strength configuration through the turbulent atmosphere, and the high performance/lower strength configuration on-station at high altitude. Studies at JSC have focused on this approach.

The author wishes to acknowledge and thank Dr. Kraft for his decision ter fund this activity. Also, the many individuals throughout JSC are to be commended for their support during the testing, analysis, and data reduction. The patience of management personnel in supporting an activity so far removed from the areas of responsibility and expertise in which they are officially involved is acknowledged.

CONCEPT ANALYSIS

The configuration concept in figures 2, 3, and 4 show the basis of the work reported herein. The concept has a wing which potentially folds to form a triangular truss to provide a higher strength configuration during low-level flights. At about 40,000 feet altitude or above, where gust loads are reduced. a winch system deploys the wing into the fully extended position for efficient operation during the on-station cruise part of the flight mission. Figure 4 (HAAP 3) is for a fixed wing version for concept evaluation. The concept was presented in November 1979 at a workshop session held at Langley Research Center (LRC). Since then "RC personnel have verified the estimates of structural weight and aerodynamic efficiency (ref. 4). They have suggested the addition of a controllable flap on the trailing edge of the outboard wing section to provide lift in the folded configuration. Recent JSC studies have focused on the system engineering aspects to understand better what the primary cost drivers are. Table 1 shows design features for each of four variations of the baseline vehicle, plus a configuration conceived by Dr. Paul McCready. The preliminary cost sensitivity results are shown in table 2. The sensitivity study (appendix A) was performed using a computer to calculate performance and total program costs. As shown in table 1, a baseline has been established which is in the middle of the range of estimates of performance for the primary elements -engine, propeller, structure, and aerodynamics. This baseline was then changed by 10 percent for each of the variables to assess their effects on the life cycle costs. The results are shown in figure 5. As one might expect, aerodynamic efficiency and weight are the major drivers. Also, the analysis predictably shows that lower operational altitudes are less expensive, within wind limitations and communications requirements.

. . .

•

7

•

.

~;

-) -

4

ĨL.

D

3

· . . ·

ORIGINAL PAGE IS OF POOR QUALITY

Figure 2. - Early vehicle concept.

•

ORIGINAL PAGE IS OF POOR QUALITY

and the second second second second second second

..

. .

المالية في المالية المالية الم

F

Figure 3 - Vehicle concept 2.

1

Figure 4.- Vehicle concept HAAP3.

ッ

1												0 0)rig F p	inai Oor	P/	iali	19 YT			
McCready	.20	36	1	237	11	60,000	260	1-0	25	.75	6.	•35	.787	34.78	150	.25	2.0	ı	,	ŧ
Military	5.00 (H2)	110 (TK+H2)	5	300	20 (20 KPT)	000,06	540	1.3	25	.85	-96	.14 (H2)	1.39	174.52	250	.25	2.0	50	Ŷ	2.30
Best	.20	350	350	1400	17.5	60,000	540	1.3	25	.85	9ó°	.45	5.06	49.06	100	.20	1.5	80	Ŷ	.0205
Baseline	.20	150	150	775	15	60,000	540	1.0	20	8.	6.	.394	2.40	54.72	150	.25	2.0	50	S	.1029
Worst	.20	81	81	540	11	60,000	240	œ	15	۲.	.85	.360	7 .04	12.66	200	.30	2.5	07	4	.6685
Parameter	Fuel cost, dol/lb	Fuel weight, lb	Payload weight, lb	Total weight, lb	Cruise power, hp	Cruise altitude, ft	Wing area, ft ²	Clift-cruise	T/D	η Propeller	7 Drive	S.F.C., lb/hp hr	Climb time, hr	Cruise time, hr	Operating costs, dollars	Facility cost, dol/hr	Overhead factor	Life on-station, percent	Vehicle life, yr	Cost effectiveness, dol/hr

TABLE 1. - DESIGN FEATURES

Ľ

Parameter	Delta, 10 percent	Vehicle lifetime cost savings (compared to "baseline")
Lift coefficient	+0.1	\$31,229.00
Cruise altitude	-6,000 ft	29,585.00
Vehicle empty weight	-54 lb	27,942.00
Fuel specific energy	+1,800 BTU/1b fuel	25,311.00
Specific fuel consumption	0.04 lb fuel/hp-hr	23,011.00
Drag coefficient	-0.005	21,367.00
Propeller efficiency	+8%	21,367.00
Operations cost	-\$15.00/f1ight	18,737.00
Wing area	. 54 ft ²	9,862.00
Fuel cost	\$.û2/1t -fsel	3,287.00
Climb horsepower	+2.i hp	3,287.00

TABLE 2. - LIFE CYCLE COSTS

1

[Dollar Value of 10% Parameter Design Improvement of One Base Vehicle Lifetime]

Basic Vehicle Cost - \$50,000.00 Vehicle Life: 5 Years, 20,000 Hrs -Operation Total Operations Cost: \$86,900 Total Lifetime Cost: \$308,700.00 シ

.

| |

•(

t

.

VIION				î.	-HR)						0 0/	rig]! F po	Val (Or (PAQ QUA	e 19 Li ty	
10% VARIA	([.0]	(6000 FT.)	(54 LB.)	(1800 ETU/LB	.04 LB _{FUEL} /Hp	(0.0005)	(8%)	15.00/FLIGHT)	(54 터 ²)	02/LB-FUEL)	(2.1 Hp)					
PARAMETER	LIFT COEFFICIENT	CRUISE ALTITUDE	VEHICLE EMPTY WEIGHT	FUEL SPECIFIC ENERGY	C 0	DRAG COEFFICIENT	PROPELLER EFFICIENCY	OPERATIONS COST (\$1	WING AREA	FUEL COST (\$.	CLIMB HORSEPOWER	.002 .004 .006 .008 .01	COST EFFECT FOR A 10% CHANGE IN ANY SINGLE PARAMETER	(OVER BASELINE VEHICLE DESIGN)	\$/LB _{P.L.} -HR	Figure 5 Cost sensitivity.

(+)[•]

*1

Ч |

1

ł

and the second of the second o

50 S

(

•

٠

•

9

The many production of the second seco

Studies of winds aloft (ref. 5) indicate that the choice of an operational altitude is strongly influenced by winds. The results are shown graphically in figure 6. Since the forward speed required is a major influence on power and energy required, there will be an advantage in operating at the altitude of "minimum wind," which varies with season and latitude. It might prove costeffective to operate with different aerodynamic configurations during different times of the year. All our studies have been based upon the assessment of operations at 60,000 feet. However, operational costs would be lower if the altitude could be reduced. Work should continue to improve the math model and further refine the concept.

4

There are, however, definite limitations to the analysis. Specifically, there is presently a serious shortage of aerodynamic performance data on vehicles operating at low velocity at very high altitudes. These data will likely not become available in the near future because of the lack of facilities for this kind of testing. Another source of potential uncertainty is in weight estimating. The accuracy to which weights can be predicted varies with the accuracy to which loads are known. In vehicles of the type involved here, where structural flexibility will interplay with the aerodynamic loads, prediction by analysis is difficult.

These issues, along with the relatively low cost of the vehicle involved, indicate that the best progress might be made by moving from the purely analytical approach for vehicle design into hardware testing in a real operational environment. Early vehicles could use the payload capacity for data-gathering on well instrumented, lightly loaded vehicles. Each flight could serve to further optimize the vehicle and its operations, leading to an early definition of an operational configuration. Seemingly minor improvements can result in significantly lower costs as shown in the sensitivity cost delta estimates in table 2. This kind of payoff could justify a fairly rigorous effort for vehicle optimization even with a limited projected fleet size.

Because of this and the fact that an early demonstration seems important to some potential users. a flight test program probably should be the next step. A review of potential flight test vehicles indicates that McCready's solar powered airplane (see fig. 7) is suitable, within certain limitations, and could have early availability. It is a lightweight vehicle with low power requirements. The only serious compromise when compared to the "baseline" vehicle design is its frailty due to its fixed wing. Test operations would have to be limited to fair weather. Dryden Flight Research Center (DFRC) is in the process of constructing a similar vehicle, but metal is being used instead of the lightweight plastics. This vehicle is also a good candidate for demonstration tests. Some lightweight sailplanes would also be acceptable. Any of these vehicles can potentially be used to test any or all of the presently envisioned power systems -- solar cell/battery, microwave, and piston engine. Also, any of these power system alternatives can be configured to provide power for an electric drive propeller.

Early flight tests for evaluation of aerodynamics could be balloon-lofted and released for simple glide testing, with the later addition of batteries and a motor to extend the test time and raise the structural loads to operational levels. As candidate power systems become available, they could be added to entend the flight time and/or increase the payload carrying capacity. A test system of this type should provide adequate concept verification and

ā

E

11

Ţ

e

ţ

!

こうちょう こうちょう しょうしょう ないない ないない ちょうちょう ちょうちょう かんない ないない しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう

÷

Figure 7.- Solar challenger.

().

•

),

12

· ·

demonstration at a relatively low cost. Such a flight test program in a real environment could conceivably provide a high fidelity test of a power system at a much lower cost than a test cell under simulated conditions operating on the ground. The operational handling experience and derived vehicle flight data would be valuable "extra" benefits.

PROTOTYPE POWER SYSTEM DEFINITION

The early design concepts of figure 2 were discussed at the November 1979 meeting at LRC. The power system schematic is shown in figure 8. The early design is shown in figures 9, 10, and 11. The turbocharger assembly is shown in five views in figure 12. The early configuration was tested using a stock OMC model 200 engine and two Schweitzer turbochargers, a model 2LM243 for the first stage and a model S6-200 for the second stage (close to the engine). Both turbochargers used identical turbines, the only difference being the choice of housings for the two units. The housing selection is discussed in the testing section.

These two turbochargers were later changed to use a unit by Rayjay for a first stage and IHI as a second stage with much improved results. Figure 13 shows the original two stage concept schematically along with the instrumentation points.

A second basic configuration was assembled using three stages of turbochargers as shown schematically in figure 14. The all-up engine assembly is shown in figures 15, 16, 17, and 18. Early tests were performed using the stock configuration engine. Later, the cam was modified to give less valve overlap and earlier exhaust valve opening (see fig. 19). The compression ratio was also increased from about 6:1 to 11:1 using a piston cap attachment as shown in figure 20. As discussed in the test section, the final configuration was restricted to operation with reduced manifold pressure to avoid preignition and/or detonation.

The interstage cooling between compressors consists of seven stainless steel tubes of the bellows type flowing in parallel. The material was supplied by the Anaconda Corporation and is normally used inside a braided steel wire cover to provide structural support. In this case, however, the pressure is low enough not to require external support. The first stage compressor discharges into seven 1-inch inside diameter tubes, the second stage into seven 3/4-inch inside diameter tubes, and the third stage into seven 1/2-inch inside diameter tubes. The first stage is cooled by ambient air in the test cell while the other two bundles of seven tubes are covered with a large flex tube and water is circulated between the tubes for cooling. In a flight configuration, the outer shell would be omitted. Inside each of the seven air tubes, in each heat exchanger, a thin strip of stainless steel (.020-inch thick) is twisted about five times per foot. This causes spiral flow in the tubes to promote heat transfer. Four of the spirals in each heat exchanger are left hand and three right hand. The end fittings are fastened and sealed with epoxy. Silicone rubber (RTV) is used to seal the ends onto the turbochargers. Set screws provide mechanical attachment.

The innerconnecting fittings on the exhaust side of the turbocharger serve as structure to hold the turbocharger package together and to serve as

泑

()

•

D

ę•י

H

.

D

Figure 10. - Engine top view.

()'

الله المارية المارية المعالمة المحالية الم

いていますいたの

Figure 11. - Engine fore and aft views.

Ð

ORIGINAL PACE 13 OF POOR QUALITY

Figure 12. - Turbocharger detail.

.

.

G

•

1

.

Œ

20

¥

4

1 ł

1

i i

ł

original page is of poor quality (+)

Figure 15. - Engine assembly, front quarter view

ORIGINAL PAGE IS OF POOR QUALITY (\bullet)

Figure 16. - Engine assembly, front view

ORIGINAL PAGE /S OF POOR QUALITY Ð

Figure 17. - Engine assembly, right view

ORIGINAL PAGE CO OF POOR QUALITY **(+)**

4

ł

推了

)

Figure 18. - Engine assembly, left view

ORIGINAL PAGE IS OF POOR QUALITY

A service and the service of the ser

(1

-- }

ţ

and second to

الدينية الدينية. بالساسية إلى السالة ا بمناجر المحتي وراحا

mounting. In each case, flanges were fabricated for the end connections, then a pipe was fitted to connect the flanges as required.

The air aftercooler is fabricated of heat exchanger tube normally used to vaporize liquid nitrogen. It was chemically etched from .095-inch thickness to .030-inch thickness for weight reduction and to provide more flow area. It has eight external radial fins 2 inches long, eight internal radial fins 1/4 inch long, all on a basic 1-inch tube. The material is 5052 T4 aluminum. Six of these tubes, 5 feet long, are manifolded in parallel. The oil cooler/reservoir is fabricated of ten 0.025-inch thick sheets 2 feet wide and 4 feet long. They are bent to maximize the air spacing and spaced 1/2 inch apart by an O-ring sealed hoop 6 inches wide and 24 inches long. The assembly is clamped together between two 3/8-inch plates with 20 number 10x32 bolts 6 inches long. The oil pickup port for the engine oil pump is ducted to the middle of the bottom of the reservoir with a 3/4 inch by .062-inch wall aluminum tube. The oil returns from the turbochargers, the valve covers and the crankcase vent with 3/4-inch hose to the collector at the center of the top of the reservoir. The crankcase PCV valve is connected to the intake manifold. Later tests used a separate oil supply for the turbochargers and simply pressurized it to the first stage compressor discharge pressure. The crankcase of the engine was laft connected to the intake manifold. See the oil circuit schematic, figure 21.

The prototype test system included several variations in mechanical details as will be discussed in the section on results. One major change from the schematic of figure 14 was the relocation of the carburetor to include two carburetors mounted directly on the cylinders. This and the shift to three turbos were the only major changes made. An effort was made to increase the displacement of the engine by increasing the stroke, thereby increasing the engine flow, but little success was achieved because of mechanical problems. No test results of that configuration were recorded. Space limits in the crankcase required a pressed-together assembly, making the modified crankshaft difficult to work on. Some success with camshaft variations caused the emphasis to shift so that the approach involving increased displacement was set aside.

Other variations are mentioned in the section on "Other Observations." The drawings for each of the mechanical details are on file if they are needed.

ENGINE TESTING AND DEVELOPMENT

The testing was divided into three phases: (1) stock engine, (2) stock engine at altitude, and (3) prototype system tests. The results of phases 1 and 2 are shown in figures 22 and 23. Much experience was gained with the engine during these tests. In phase 1, the performance was measured with various ignition timing, lubricating oils, oil additives (molydisulphide), fuels (aircraft and automotive), ignition primary voltage, exhaust configurations, induction system configuration, etc., (tests A, B, C, D, E, and F of appendix A). None of these items affected the performance significantly except the ignition timing. (Nominal changes in the ignition timing consistently degraded the performance slightly.) The reason that the engine is so insensitive is not entirely clear, but is likely the result of a basically efficient mechanical design (as reflected by the insensitivity to lubricant selection) and the low compression ratio. The most curious phenomenon is the relatively good specific fuel consumption in spite of the low compression

٩

352 - 2023

(DMC NO

3 **60**

CODE IDENT NO 21356 Scale 199

AUTH \$

SHEET

DATE MATIONAL AFRONAUTICS AND SPACE ADMINISTRATION

See 1

LAN (30%) NOVER

4000 PONER SYSTEM SCHEMOTIC

(+)'

100 S G P. C. 6000 R P.

NYN 198

OU MOSE

110 PSI COMPRESSION (2 CYL. OPP., OHV) - 43.2CU. IN. DISPL. REGULAR GASOLINE FUEL (NO LEAD) STOCK OMC MODEL 200 ENGINE

- REGULAR CARSULINE FOLL AND EXIST - 85°F AMBIENT TEMP. - SEA LEVEL

7° BTDC IGN. TIMING (STATIC)

Figure 22. - Stock engine performance.

SPEED - REV./MIN.

 $\frac{1}{2}$

.

Ð

)

pressure (110 psi). The results of the tests of the stock engine were consistent with published manufacturers' data.

The phase 2 tests were limited at low power (high altitude) by the inability to reduce the load sufficiently. A smaller pump and a larger valve were used in the load circuit in the phase 3 tests.

Phase 3 testing began with the assembly of the prototype engine with two Schweitzer turbochargers and continued with various modifications. These are discussed in the "Prototype Power System Definition" and "Discussion of Results" sections of this report.

 i_i

TEST SYSTEM

The initial test system consisted primarily of a hydraulic pump mounted directly to the engine crankshaft and a flow restricting throttle valve to control the load on the engine. A 1-foot long torque arm was mounted onto the pump and a load cell was used to measure the force generated. An electronic tachometer was used to measure engine speed. Oil temperature and cylinder temperatures were measured with thermocouples, and all the data were recorded on a paper tape in engineering units. A strip chart kept a record of oil pressure and engine speed. An automatic ignition cut off was used sensing low oil pressure (below 10 psi) and/or excess engine speed (above 7,000 rpm).

This test system was moved to the vacuum chamber and reassembled to do the initial altitude tests of the stock engine as recorded in tests G and H (appendix A). The test cell (vacuum chamber) is shown in the background of the photograph of figure 24. The schematics of the test system developed over a period of time on an as-needed basis and are shown in appendix B (Operating Procedure). Some special test systems were used on occasion and are discussed below in connection with the test results.

The data system is worthy of special mention. It required considerable innovation because of the remoteness of the engine (in altitude chamber) and the desire to be able to detect problems before damage occurred. The instrumentation list is shown in figure 25 along with the readout mode. The data logger proved to be a very convenient way of recording most of the data, recording the data on a paper tape in engineering units. The data program form is shown in figure 26 along with a typical data printout sheet in figure 27. Three strip charts provided quick access to the turbocharger boost pressures and the engine speed data. Six differential pressure gages were used to monitor pressure drops in the four heat exchangers, the carburetor and overall across the system from inlet to outlet (See the data sheet in figure 28). The speed pickups were a problem on occasion. Phototransistors were used in early attempts, but then magnetic washers were added to the shafts of the turbochargers to excite inductive pickups. Some problems were experienced with the pulse/analog conversion, but the system worked satisfactorily most of the time. The fuel consumption was measured with a calibrated volume in a sight glass using a stopwatch to measure time to deplete a known volume of fuel.

The vacuum system in the initial phase was a single 350 cfm piston-type pump. It was adequate for about 20,000 to 30,000 feet simulation when the engine was running about 4,000 rpm. A second vacuum pump with 850 cfm capacity

Figure 24.- Altitude test chamber.

1PressureCompressor (1) Inlet0-30 PSIA2""(2) ""3""(3) ""4"Carburetor Inlet"5"Intake Manifold"	(Data Yasaa)
2 """(2)"""(Strip) 3 ""(3)"""Chart 4 "Carburetor Inlet 5 "Intake Manifold	(Data Logger)
3 " (3) " " Chard 4 " Carburctor Inlet 5 " Intake Manifold	
4 "Carburetor Inlet " 5 "Intake Manifold "	:)
5 " Intake Manifold "	
D" Turbine (1) Inlet "	
10 Oll (Guage) U-100 PSIA	
Dyno Load (Guage) 0-2000 "	
12 Torque, Engine Output 0-50 Lb Force	
13 $\Delta Press.$ HX 1 0-30 " H ₂ O	(Manometers)
14 "HX 2 "	
15 " HX 3 "	
16 "Corburator "	
17 " Flow Maker "	
10 FIOW MELET	
19 Air Flow Carburetor Discharge 0-100 CFM Air @ 8	PSIA
20 Speed Eng. Engine (Meter) 0-10,000 RPM	
21 Turbo 1 Compressor (1) 0-200,000 RPM	
22 " 2 " (2) "	
23 " 3 " (3) "	
24 Temp. Culinder Head West 0-500°F	
27 " Compressor (1) Inlet -70-4200 ⁰ F	
27 " Compressor (1) Inlet -70-4200 ⁰ F 28 " " (1) Outlet "	
27 "Compressor (1) Inlet -70-4200°F 28 "(1) Outlet " 29 "(2) Inlet "	
27 " Compressor (1) Inlet -70-4200°F 28 " " (1) Outlet " 29 " " (2) Inlet " 30 " " (2) Outlet "	(Deta Loggor)
27 " Compressor (1) Inlet -70-4200°F 28 " " (1) Outlet " 29 " " (2) Inlet " 30 " " (2) Outlet " 31 " " (3) Inlet "	(Data Logger)
27 " Compressor (1) Inlet -70-4200°F 28 " " (1) Outlet " 29 " " (2) Inlet " 30 " " (2) Outlet " 31 " " (3) Inlet " 32 " " (3) Outlet "	(Data Logger)
27 " Compressor (1) Inlet -70-4200°F 28 " " (1) Outlet " 29 " " (2) Inlet " 30 " " (2) Outlet " 31 " " (3) Inlet " 32 " " (3) Outlet " 33 " Comburgeton Inlet "	(Data Logger)
27 " Compressor (1) Inlet -70-4200°F 28 " (1) Outlet " 29 " (1) Outlet " 30 " (2) Inlet " 31 " (2) Outlet " 32 " (3) Inlet " 33 " Carburetor Inlet "	(Data Logger)
27 " Compressor (1) Inlet -70-4200°F 28 " (1) Outlet " 29 " (2) Inlet " 30 " (2) Outlet " 31 " (2) Outlet " 32 " (3) Inlet " 33 " Carburetor Inlet " 34 " Outlet "	(Data Logger)
27 " Compressor (1) Inlet -70-4200°F 28 " (1) Outlet " 29 " (2) Inlet " 30 " (2) Outlet " 31 " (2) Outlet " 32 " (3) Inlet " 33 " Carburetor Inlet " 34 " Outlet " 35 " Aftercooler Outlet "	(Data Logger)
27 " Compressor (1) Inlet -70-4200°F 28 " (1) Outlet " 29 " (2) Inlet " 30 " (2) Outlet " 31 " (2) Outlet " 32 " (3) Inlet " 33 " Carburetor Inlet " 34 " Outlet " 35 " Aftercooler Outlet " 36 " Turbine (1) Inlet 500-2000°F	(Data Logger)
27 " Compressor (1) Inlet -70-4200°F 28 " (1) Outlet " 29 " (2) Inlet " 30 " (2) Outlet " 31 " (2) Outlet " 32 " (3) Inlet " 33 " Carburetor Inlet " 34 " Outlet " 35 " Aftercooler Outlet " 36 " Turbine (1) Inlet 500-2000°F 37 " " (2) " "	(Data Logger)
27 " Compressor (1) Inlet -70-4200°F 28 " (1) Outlet " 29 " (2) Inlet " 30 " (2) Outlet " 31 " (2) Outlet " 32 " (3) Inlet " 33 " Carburetor Inlet " 34 " Outlet " 35 " Aftercooler Outlet " 36 " Turbine (1) Inlet 500-2000°F 37 " (2) " " " 38 " " (3) " "	(Data Logger)
27 " Compressor (1) Inlet -70-4200°F 28 " (1) Outlet " 29 " (2) Inlet " 30 " (2) Outlet " 31 " (2) Outlet " 32 " (3) Inlet " 33 " Carburetor Inlet " 34 " Outlet " 35 " Aftercooler Outlet " 36 " Turbine (1) Inlet 500-2000°F 37 " " (2) " " 38 " " (3) " "	(Data Logger)
27 " Compressor (1) Inlet -70-4200°F 28 " (1) Outlet " 29 " (2) Inlet " 30 " (2) Outlet " 31 " (2) Outlet " 32 " (3) Inlet " 33 " Carburetor Inlet " 34 " Outlet " 35 " Aftercooler Outlet " 36 " Turbine (1) Inlet 500-2000°F 37 " " (2) " " 38 " (3) " " " 40 " Exhaust Cooler Outlet 0-200°F	(Data Logger)
27 " Compressor (1) Inlet $-70-4200^{\circ}F$ 28 " (1) Outlet " 29 " (2) Inlet " 30 " (2) Outlet " 31 " (2) Outlet " 31 " (3) Inlet " 32 " (3) Outlet " 33 " Carburetor Inlet " 34 " Outlet " 35 " Aftercooler Outlet " 36 " Turbine (1) Inlet $500-2000^{\circ}F$ 37 " (2) " " 38 " (3) " " 40 " Exhaust Cooler Outlet $0-200^{\circ}F$	(Data Logger)
27 " Compressor (1) Inlet $-70-4200^{\circ}F$ 28 " (1) Outlet " 29 " (2) Inlet " 30 " (2) Outlet " 31 " (2) Outlet " 31 " (3) Inlet " 32 " (3) Outlet " 33 " Carburetor Inlet " 34 " Outlet " 35 " Aftercooler Outlet " 36 " Turbine (1) Inlet $500-2000^{\circ}F$ 37 " " (2) " " 38 " (3) " " " 40 " Exhaust Cooler Outlet $0-200^{\circ}F$ 41 " Cooling Water Inlet $-60+100^{\circ}F$	(Data Logger)
27 " Compressor (1) Inlet $-70-4200^{\circ}F$ 28 " (1) Outlet " 29 " (2) Inlet " 30 " (2) Outlet " 31 " (2) Outlet " 32 " (3) Inlet " 33 " Carburetor Inlet " 34 " Outlet " 35 " Aftercooler Outlet " 36 " Turbine (1) Inlet $500-2000^{\circ}F$ 37 " (2) " " 38 " (3) " " 40 " Exhaust Cooler Outlet $0-200^{\circ}F$ 41 " Cooling Water Inlet $-60+100^{\circ}F$ 42 " " " Outlet	(Data Logger)
27 " Compressor (1) Inlet $-70-4200^{\circ}F$ 28 " (1) Outlet " 29 " (2) Inlet " 30 " (2) Outlet " 31 " (2) Outlet " 32 " (3) Inlet " 33 " Carburetor Inlet " 34 " Outlet " 35 " Aftercooler Outlet " 36 " Turbine (1) Inlet $500-2000^{\circ}F$ 37 " (2) " " 38 " (3) " " 40 " Exhaust Cooler Outlet $0-200^{\circ}F$ 41 " Cooling Water Inlet $-60+100^{\circ}F$ 42 " " " Outlet " " Outlet " " 43 " Chamber Wall " "	(Data Logger)
27 " Compressor (1) Inlet -70-4200°F 28 " " (1) Outlet " 29 " (2) Inlet " 30 " (2) Outlet " 30 " (2) Outlet " 30 " (2) Outlet " 31 " (2) Outlet " 32 " (3) Outlet " 33 " Carburetor Inlet " " 34 " Outlet " 35 " Aftercooler Outlet " " 36 " Turbine (1) Inlet 500-2000°F " 37 " (2) " " " 38 " (2) " " " 40 " Exhaust Cooler Outlet 0-200°F 41 " Cooling Water Inlet -60+100°F 42 " " Outlet " 43 " Chamber Wall " 44 " Cooling Shroud -3004100	(Data Logger)

3

)

فتاريح مرادا

0

...

Figure 25.- Instrumentation list.

ORIGINAL PAGE (5 OF POOR QUALITY

5. **1** A

•

(+)

)

			FLUKE 2240	B PROGRAM FO	DRM						
	FIRST CHANNEL		INTERV FIXED Single	VAL	TEST NO. SHOF DATE						
	CHANNEL	CHANNEL PI	ADDUESE	400,000	LIMIT A PROGRAM						
	ADDRESS	FUNCTION	LIMITA (1-15)	LIMIT B		SENSE	VALUE AND				
	1 - 40 VDC RPM						POLARITY				
	2 - T3 Oil Tem	.				1					
	3 - 13 Head Te	np. West			╢─┊─		+				
	4 - T3 Head Te	np. East	1	1	┨────	+					
	5 - T3 Air Inl	et Temp.			╢─╦─		+				
	6 - 13										
	7 - 13 Carbure	or Inlet				<u> </u>	<u> </u>				
	8 - T3 Compres	or #7 Inlet				<u> </u>					
	9 - 13 lst Sta	e Discharge]	1	<u> </u>					
	10 - T2 Exhaust	Temp.			10	†					
	11 - T2 Turbine	#2 Temp.			1						
	$12 - T_2$				12		<u></u>				
	13 - T2 Free Air	Temp. West	Turbo Oil	Temp. 6/30/8	2 13						
	14 - 12 Turbine	#3 Temp.		1	14						
Drawas	15 - 12				15						
P60205	16 - 400 MV 0il	Pressure			1						
	<u>17 - T2 Turbine</u>	#1 Temp.			1	LIMIT B PR	OGRAM				
	<u> 18 - T2</u>				LIMIT	SENSE	MANINE AND				
	19 - 12				ADDRESS	(HI/LO)	POLARITY				
	20				16						
P6U384	21 - 40 MV Load	Press.			17						
P(0))2	22 - 400 MV Tord	ue			18						
P60113	23 - 40 MV Compt	essor #1 Ini	et Press.		19						
P60127	24 - 400 MV Comp	ressor #2 In	let Press.		20						
P6014C	25 - 400 MV Comp	rssor #3 Inl	et Press.		21						
P60138	26 - 400 MV Comp	ressor #3 Di	scharge Pres	S.	22						
	27 - 40 V ENgFF	PM #2			23						
	28 - 4 V 4 VDC LE	L Inside C	amber		24						
	29 - 4 V 4 VDC LE	L Outside C	hamber		25		م من المراجع العالمي من المراجع العالمي المراجع العالمي المراجع العالمي المراجع العالمي المراجع الع 				
	30				26						
	31 - 4 V Turbine	#1 Speed RF	Μ		27						
ļ	32 - 4 V Turbine	#2 Speed RP	M		28						
.	33 - 4 V Turbine	#3 Speed RF	М		29	·					
P60605	34 - 400 MV Accum	ulator Pres	S.								

Figure 26.- Data program.

ORIGINAL PAGE 13 OF POOR QUALITY **()**'

•1

4

E

			FLUKE 224	08 FROGRAM	FORM								
	FIRST CHANNEL	FIRST CHANNEL INTERVAL INTERVAL											
				E CHANNEL		- DATE_							
	CHANNEL	CHANNEL PF	OGRAM			LIMIT A PROGRAM							
Pannso	ADDRESS	FUNCTION	LIMIT A (1-15)	LIMIT #	LIMI	SENSE	VALUE AND						
P(00/0	<u> 35 - 400 MV Tur</u>	bine #1 Pres	8.			- (11/20)	POLARITY						
F60069	36 - 400 MV Tur	bine #2 Pres	s.	Contraction of the International Strength of the									
P60004	37 - 400 MV Tur	bine #3 Pres	в.										
P60275	38 - 400 MV Exh	aust Press.			╺╢╾╍╴								
	<u> 39 - 4 V Air Tu</u>	rbine											
	40 - T3 Compres	sor #2 Inlet	Temp.										
	41 - T3 3rd Sta	ge Discharge	Temp.		┥┝╾╇								
	42 - T3 2nd Sta	ge Discharge	Temp.		┥┠──╯								
	43 - T3.Shroud	emp.		+	╺╢──╸								
	44 - T3 Chamber	vall Temp.			┥┠━━╹━	┥───							
	45 - T3			+	-11								
	46 - T3 Air Tur	ine Flowmet	er Temp		"								
	47 - T3 Accumula	tor Temp.	Cinp -	+	12								
				<u> </u>	- 13								
ſ					14								
ſ					15								
ļ				<u> </u>			ROGRAM						
ŀ					LIMIT	SENSE (HI/LO)	VALUE AND POLARITY						
Γ				<u> </u>	16								
-					17								
Γ				-	18								
F					19								
F					20								
-					21								
-					22								
					23								
					24								
					28								
	4				26	·							
<u> </u>													
					27		-Marken - Strategickerster Diversite & Constants						
							and the second second second second second						
L					29		and the summittee and a state of the state o						
					30								

Figure 26. - Concluded

ORIGINAL PAGE IS OF POOR QUALITY ۲

21

G

(* .9

G

	() (Accumulator Temperature
A 7	o z L		Air Flow Meter Temperature
40	****	1) •	Chamber Wall Temperature
A 4 4 7	- 400	*	Shroud (Cold Wall) Temperature
4 2	- 40,0	*	Second Stage Discharge Temperature
42	1172	 	Third Stage Discharge Temperature
41	1742	- 1	Compressor 2 Inlet Temperateure
40	F PA	. ,	Air Flow (CRM)
19		¥ • •	Fut Prospure
75	0,80	0 V 	Turbing 3 Process
77	1421	n V.	Turbine 2 Pressure
20	1 4 <u>4</u> 6 1 1 4 4 6	- 11 ¥ =	Turbine 1 Pressure
27	12 F 2 1 2 F 2	16 N 20 N	AULUING A FIEDOULG
74	1411	- 40 - ¥ - 1,7	Turbing 3 Road
	(j2400) CE\$44	V V	Turbine 2 Speed
• •	122144 01272	¥ .	Turbine 1 Speed
21	10000	V N	Turbine I Speed
4 M 0 0	21 G 1 9 C 1 D G G	v.	A Explosive Limit (Outside)
26	3 C 7 9		A Explosive Limit (Juside)
27	2,866	V N	Engine Speed (#2)
26	1016	n v	Compressor 3 Discharge Pressure
22	1239	n v	Compressor 3 Inlet Pressure
24	221	П: V 	Compressor 2 Inlet Pressure
/ 2	8,20	n ¥ • V	Compressor 1 Inlet Pressure
	209 A 0 F 4	n' v	Torque - Ft/Lb
21	1,056	m v	Load Pump Pressure
17	> 16034		Turbine 1 Temperature
16	5,610	p. v ►	Oil Pressure
14	10894	7 4	Turbine 3 Temperature
12	4 U Z A	۲ ٥.	Free Air Temperature
11	12720	r •	Turbine 2 Temperature
10	5125	- 7 -	Exhaust Temperature
9	10739	7	Compressor 1 Discharge Temperature
5	F U 0	+ •.	Compressor 3 Inlet Temperature
-7 -2	94,7		Carburetor Temperature
7	707 7107		Compressor 1 Inlet Temperature
4	21022		Cylinder Head Temperature (East)
5	5 2 7 5	Ť	Cylinder Head Temperature (West)
2	1437	7	Oil Temperature
I	2225	V.	Engine Speed (#1)
	7606 E 11		One tran (not
	-722226		
13510	9 # 1 C # 1		

Figure 27.- Data printout.

.

haap powerplant test

Figure 28.- Data sheet.

)

(†)'

was added along with a better exhaust cooling unit. Adequate flow was available to keep the test cell purged with fresh inbleed air.

A unit was added for cooling and dehumidifying the inbleed air. This unit consisted of two aluminum 3- by 5-ft cold plates attached to a spacer framework, mounting the two cold plates about 6 inches apart. A series of aluminum strips about 6 inches apart between the plates forced the air coming in at the top to flow back and forth as it progressed through to the outlet at the bottom. The entire unit was covered with foam insulation. Liquid nitrogen was used in the cold plates. This unit kept the cold wall in the chamber from being covered over with frost so quickly and gave better temperature control in the test cell.

4

The only real problem with the test system was the inconvenience of its access after installation in the test cell. With seven fans for air circulation, the test chamber was essentially "filled." Any work required removal of several fans and, in most cases, the large aftercooler heat exchanger on top of the engine.

The test procedure (appendix B) outlines the operation of the system and the many safety features.

DISCUSSION OF RESULTS

This report presents almost 3 years of activity concerning demonstration of an operational assembly of hardware for powering a vehicle at 60,000 feet altitude. The purpose is to aid those who may continue the effort to avoid the same problems. A chronology of the major events is summarized in figure 29. A more detailed chronology is shown in appendix C, which includes 76 tests, 92 engineering orders, 57 purchases, 49 correspondences, six meetings, three analyses, and five drawings. Each is documented in the files and may be reviewed by interested individuals.

The simplest summary of the results is as follows:

1. The goal of demonstrating 60,000 feet operation was not achieved - only about 40,000 feet on two occasions.

2. While the particular combinations of hardware selected for test did not function as desired, there seems to be no basic reason why the concept cannot be made to work.

The significance of the decision concerning compression ratio was revealed early in the project. In the beginning, considerable effort was involved with making the clearance volume in the engine automatically variable, to obtain the best possible combination of efficiency and power output. However, as the analysis of the overall concept was being completed, it became apparent that a controllable clearance volume did not offer a significant benefit. It was dropped for the time being, because other factors were more important in the cost realm (see appendix A). The choice of a "fixed" clearance volume continues to be a major factor in the engine design. It affects exhaust gas temperature, overall efficiency turbocharger effectiveness, volumetric efficiency, and ultimately the turbocharger compressor size. It also affects maximum allowable manifold pressure which limits power output. These factors should be related to

ORIGINAL PAGE 19 OF POOR QUALITY

ないたいので、「ないないない」、「アント」、アントンでいたので、「ないない」、「ない」、「ない」、「

÷

one another and included in the math model outlined in appendix A for an adequate understanding of the need for a variable compression ratio.

A natural initial choice is operation at the smallest possible clearance volume that will avoid detonation with the fuel being used and allow adequate manifold pressure for sufficient climb power. But that requires early exhaust valve opening to maintain exhaust gas temperature at reasonable levels for sufficient turbine power. To get the best engine efficiency, the turbocharger size selection is driven toward very small units to function with low

As in any power plant, the major consideration is the combustion process which is primarily influenced by clearance volume. The combustion should occur in the best possible temperature, pressure, and turbulence environment to produce the most energy release.

Theoretical minimum clearance volumes for the engine are shown in figure 30. The actual clearance volume minim limit that can be used is primarily a function of the chemical octane of the fuel. But the temperature, heat transfer, turbulence, ignition characteristics, basic combustion zone configuration, and fuel/air mixture characteristics also are influential. They are sometimes referred to as "mechanical" octane of an engine. These factors must be determined by testing. But after the limit is established, the adiabatic compression temperature data (figure 30) can be used to make appropriate adjustments for inlet air temperature limits. Also, if a fuel is used with known different basic temperature limits, then adjustments in clearance volume can be made to run that new fuel. For example, the limit for 100-octane gasoline is about 1160° F. For 90 octane it is about 1,000° F. In operating at 560° R (100° F) the difference is 2.5 to 3.5 in.³, a difference of 40 percent. This dramatically affects exhaust valve opening timing requirements and the resulting energy delivery to the crankshaft and to the turbocharger.

As discussed in appendix A, efficiency is paramount in this concept. The machinery must produce the most favorable situation possible for energy release and then convert that energy into useful work. In this example, the energy in the exhaust gas is used for air compression; therefore, the choice of exhaust valve timing is involved. This affects the expansion ratio of the gases in the engine and the relative amount of energy released to shaft work or to exhaust gas energy. Thus, as the exhaust valve is opened earlier, the shaft work goes down, lowering the efficiency of the engine but increasing the exhaust gas energy to power the compressors.

ويهد والمراجعة فالموالية المراجعة المحاط ويراطع والمحاط المحالي المحالي المحالية المحالية والمحالية والمحالية

While the original plan for the project was to "match" the engine/turbocharger combination, little was understood of the complex interrelationship of the many factors which affect the results. Much could be done analytically, but there are some fundamental problems. Turbochargers are basically considered in the industry today as "volume" machines. Some of the older companies in the industry still consider the flow primarily on a mass basis because that relates well to the power involved in the machine. Of course both mass flow and volume must be considered in any analyses, but the difference is in the way of "thinking" about the situation. The volume basis relates well to various engine displacements and is used in most data for users, particuarly in compressor selection. The turbines are somewhat flexible in their operation,

)

and typically companies will base their entire turbocharger "family" around a single turbine. A series of housings (nozzles) is made available so that the user can power the compressor selected to whatever speed is needed to give the pressure ratio desired. Therefore, in a company's "line," there will be a particular combination of compressor and turbine housing that will give the desired result for a selected engine.

In past experiences, no turbine/housing data have been made available--only compressor data. The user selects a compressor to match the flow of the engine, and "tries" various turbine housings (nozzles) to get the unit to produce the boost in manifold pressure desired.

This situation is the primary reason that the project has extended so long. The only option was to "cut and try." The first try was to use the units built by Schweitzer. The results were very discouraging. Even with the smallest housings available, little speed could be attained. The turbine itself was basically too large - by at least a factor of 2 and very little boost was achieved. As the altitude was increased, the mass flow decreased, reducing the speed and power in the turbine even more. See figure 31 (tests 3, 4, and 5).

5

The next step was to look for the smallest possible turbine. The unit selected was the IHI model 51B used on the 500 cc displacement Honda motorcycle. This violated a basic groundrule of using American built equipment, but there was no alternative. The Schweitzer unit was the smallest available in the United States.

Early tests with the IHI turbocharger combined with the Schweitzer unit produced the results of tests 8, 10, and 11 (figure 31). With the additional flow induced by the IHI unit, the Schweitzer compressor was flowing in a very inefficient range, but the results were much better. Finally, a Rayjay unit was selected to better fit the compressor flow situation and runs 18 and 33 produced sea-level power output at 40,000 feet altitude.

Many "adjustments" were made in runs 19 through 32 attempting to increase the turbine speed and produce higher pressure ratios. Fuel mixture ratio (lean and rich) showed very little effect. Ignition timing diffrent from stock timing had only adverse effects. Probably the most discouraging effect was the changing of turbine housings. Smaller housings (nozzles) caused extra back pressure on the engine and reduced the volume flow of the engine so much that the net result was a lower boost. Larger housings reduced backpressure, and allowed higher volumetric efficiency of the engine, but the lower turbine speed produced lower pressures in the manifold and less boost.

It became obvious at that point that something different was necessary. The data showed (fig. 32) that increased mass flow gave better performance. Also, higher compression pressure gave higher exhaust temperatures. It became apparent that all three units tested had best efficiency in the range of about 2/1 compression ratio in each stage. A pressure ratio in the range of 2.8/1, needed for 1/2 atmospheric manifold pressure at 60,000 feet with two stages, required much more exhaust gas energy than three stages operating at 2/1.

It was decided that the system would work best if the engine flow could be increased as well as changing to three turbochargers. A 1000-cc engine was assembled, using a crankshaft with 1/2-inch extra throw. The initial test

ORIGINAL PAGE IS

?

4

i_t

i ¥i

ł

÷

' 1

43

U

K

•

44

experienced a rod bearing seizure - probably because of inadequate oil flow. A second test with larger oil holes, resulted in a "slip" of the pressed-together to be the quickest and easiest way to significantly improve the flow. At that with a camshaft modification to give essentially standard value timing, but

4

The stock crankshaft was reinstalled and tests continued, but with no improvement in attitude capability. The boost was always good at high flow rates but as the altitude was increased, the pressures decreased, the exhaust temperatures decreased, the boost reduced, and the system would consistently cease to function when the manifold pressure was below 14 psia. Finally, the exhaust valve broke on one cylinder when the system's rpm and temperatures became too high. It was believed that something must be done to increase the flow (i.e., the power to the turbines) to get the boost desired.

At the outset, it was recognized that the clearance volume must be reduced to get the best combustion efficiency at reduced manifold pressures. But that is a risky thing to do on an engine with potentially high manifold pressure. Reducing the clearance volume was postponed as long as possible in the hope that an adequate demonstration could be achieved without the risk. It became apparent that volumetric efficiencies of 60 percent typically would not suffice and that 80 percent was required. See the curves of figures 33 and 34. Another problem with reducing the clearance volume was the reduction of exhaust gas temperature because of the increased expansion ratio of the combustion products. This increased fuel efficiency at the expense of exhaust gas energy. In this case, the expense was prohibitive. It became apparent that still another cam modification was in order to open the exhaust valve very early in the expansion stroke. Also, with decreased clearance volume, little overlap of exhaust and intake valves is required. The result was the choice of using a long duration exhaust lobe, and to avoid excess overlap (because the operation would likely require higher exhaust pressure than intake manifold pressure) use a short duration intake lobe.

7

A second s

To circumvent problems with overpressuring the small clearance volume, a pressure switch was installed in the intake manifold that would disconnect the ignition system if the manifold pressure rose above 1 psig (15.7 psia). Initial runs were very encouraging, showing volumetric efficiency at low speeds in excess of 90 percent. But at higher speeds, it was only 50 percent. A mechanical check revealed that the intake lobe was providing less than one-half the lift it was built for. Modification of the intake lobe required a broader weld material used to reconfigure the cam separated. In any case, this caused proceeded.

Surprisingly, the flow continued to be low at high speeds. Volumetric efficiency in the range of 60 percent produced mass flow along the lower limit of the established requirement (see fig. 32). The manifold pressure limit held the mass flow even lower than in the unmodified runs where the manifold pressure significant observation made in the project was apparent. At the low manifold pressure imposed by the pressure switch, the engine performed unpredictably. It

Figure 33. - Flow volume vs RPM.

Figure 34 - Mass flow.

seemed to have a mind of its own. On occesion it would run very well, only to be followed by a period of extremely low-power operation - all on a 1- to 2-minute cycle. The ignition system seemed to be entirely functional. The engine/mechanical system was verified to be "as designed." The fuel/air flow system, however, showed unexplained pressure-time variations that previously were not considered carefully since most testing was done at higher manifold pressures. An exhaust gas analyzer was used to verify that the fuel and air mixture was not being delivered to the cylinder with a consistent mixture ratio. On more than one occasion, fuel was found puddling in various places - heat exchangers, accumulators, etc. This was disregarded because the system performed predictably in most cases (when the mass flow rate was high). However, when the mass flow rate was reduced by lowering the manifold pressure, the "puddles" apparently did not get "blown" along consistently, resulting in periodic "off mixture" operation. Review of the data indicates that in every case where the dynamic pressure of the flow is reduced, the system ceased to function properly. In early tests, this was caused by inadequate flow, giving inadequate turbine power. This was true, but not so much because of inadequate flow as low "quality" flow. A few moments of extremely rich or extremely lean fuel mixture would reduce turbine power enough to put the entire operation out of commission. The only way to get the system up and going again was to go back to sea level and start again. Consistently, whenever the manifold pressure got below 15 psia, the system would "die." This became apparent when the pressure switch was installed and all the operation was at the lower flow level. The system could not be coaxed to work, even with the turbochargers disconnected. It would run properly with the stock manifold, however, so the problem was narrowed to the aftercooler and the accumulators.

•

ک مانان کا ایک مان کا المحمد میں اور ایک رالان کا در الاکار مالا معام میں کا کا ایک ہوتا ہے۔ الم کا د سم الالا ت

As a result, the carburetor was moved downstream of the aftercooler but upstream of the accumulator. Two carburetors were used - one in each side of the system. Operation was somewhat better, but cycling still occurred at a somewhat higher frequency - a few seconds instead of minutes. This indicated that the flow of fuel was possibly "hanging" on the walls of the induction system - and as the amount of area was reduced, the amount of fuel and the time involved were reduced. (The surface area was reduced by about one-half.) Finally, the two carburetors were moved to the cylinder interface downstream of all the plumbing. This gave steady engine operation at a reasonable specific fuel consumption. At last the engine would run steadily with less than one atmosphere in the manifold as it had in the tests G and H two years before.

The only problem was further flow reduction. With the carburetor upstream of the accumulators, the flow through the carburetors is essentially steady, allowing about four times the time for the flow to occur as in the case of the cylinder-mounted carburetor. Using the effective flow area of the carburetor throat, the volume that was required to go into the cylinder and the time available at 6000 rpm, it is clear that the flow in the carburetor throat was very close to sonic in the cylinder-mounted case.

At this point, part of the test facility being used was needed for another test project. The engine project was unfortunately terminated.

In event that someone will pickup the effort and continue, the following section, "Other Observations," outlines several of the "fringe" problems encountered and the solutions to them. Figure 35 shows a set of run data (run no. 44B). An analytically-derived set of operating conditions that should be

Î

ORIGINAL PAGE IS OF POOR QUALITY $\mathbf{ }$

4

*1

demonstrable using the proper components is shown in figure 36. All the other run data are available if needed.

OTHER OBSERVATIONS

Several problems came about which were not entirely related to matching the turbochargers and the engine, but two deserving some mention are oil control and cooling.

The problems experienced with the oil were of three types:

- 1. Cavitation of the pump due to low feed pressure and high speed
- 2. Air/oil separation (foaming)

and a start of the second of the second and a second of the second of the second of the second of the second of

3. Inadequate return flow to the sump

In some cases, all three may have been occurring at the same time. The oil pump in the OMC engine begins to cavitate at the suction at about 4 psia when using

SAE 10W oil at 250° F operating at 5000 rpm using the 5/8-inch I.D. 10-inch long suction tube as in the configuration. This was observed in the initial runs up to 40,000 feet with the crankcase vented. Later, in an effort to use oil cooling for the cylinder heads, an additional 3/8-inch I.D. suction line lowered this to about 3 psia. In most tests, the crankcase was connected to the discharge of the first compressor, keeping the crankcase pressure at or below the pressure in the compressors and turbines. This kep⁻ the oil from leaking past the compressor seals. However, there is evidence that air and exhaust leaked from the compressor into the crankcase cavity.

Oil consumption was a consistent problem during the entire altitude testing part of the project. In reflecting on the data, and after solving items 2 and 3 (air/oil separation and low return flow), it appears that the problem was with the crankcase vent. Mechanically it is arranged on the camshaft drive gear with the vented air passing inward through three radial holes in the cam gear and out through a passage cast in the crankcase adjacent to the cam bearing. The unit is designed to handle normal ring leakage, but it is possible that compressor and turbine seal leakage for three turbochargers was too much for this unit to handle and caused oil droplets to be blown through the vent mechanism. Future testing should include a clear line (tygon or glass) to verify this as a problem. The vent could be connected to an external supplementary tank through a relief valve (to maintain sufficient crankcase pressure to avoid pump cavitation, and stay below first-stage discharge pressure) to verify leakage. Removal cf the turbochargers from the crankcase oil system to a separate supply eliminated the oil loss and verifies this hypothesis.

Power loss in early tests might have been caused by excess oil in the crankcase, but carburetor location and poor fuel mixture ratio control was the probable cause. The initial fix was to provide an air vent from the vapor space in the sump to the top of the crankcase. This allowed the oil to return to the sump along with whatever bubbles were entrained without the vapor going upstream in the return oil flow passage. The return oil flow passage from the crankcase to the unit is about 1 inch in diameter. It was surmised that the 5-gallon per minute oil flow was too slow if the gas from the accumulated bubbles was

ſ

Figure 36.- Data sheet (predicted)

っと

passing back upstream into the crankcase causing overfilling in the crankcase and a large power loss. The addition of the vent line seemed to fix the bogging problem at that time, but no specific tests were run to verify it. All later power loss was accounted for by lack of turbocharger performance.

₩ 1 1

÷

Later, there continued to be problems with partial loss of oil pressure after long running - 10 minutes or more. The cause was surmised to be the long flow path in the sump oil cooler, allowing an accumulation of bubbles to become entrained with the oil. Thirteen 2-inch diameter holes were made in each of the 10 fins extending through the oil tank, and no further problems with oil pressure degradation were experienced.

In future testing, consideration might be given to using a separate oil pump operating at a very low speed to avoid cavitation at even 1 psia. This would allow venting of the crankcase to ambient air and would avoid reingesting the ring leakage and the exhaust leakage past the turbine seals into the intake system.

The other area of considerable consternation was cooling, or more generally thermal control. In some instances low temperature was a problem. This area will be greatly simplified when the environment is not artificial and when the power system behaves as designed. The overheat situations were always associated with high power tests to maintain sufficient flow for the desired boost pressures. The low temperature situations that gave problems were likewise cases with low power (idling) in a wait mode to achieve low cell temperature.

A notable exception is the problem with low oil temperature. This is the result of excessive fin area. The design was intended to be that way, with the plan to remove fin length as required when the system was functional. This low temperature did aggrevate pump cavitation, however, until much of the fin area was covered.

The addition of air intercoolers between the compressors appears to be an attractive feature. All the best turbocharger performance was recorded with cold air. This is a significant efficiency consideration in that the compression becomes closer to a constant temperature process. Also, with the denser air, the compressor gives higher pressure ratios with lower turbine speed

requirements. The lowest temperature of operation was on run no. 18 at -8° F in

the test cell. Operation at -70° F can be expected to be much improved especially if effective intercoolers can be used between each stage. The bellows type tubing with a spiral turbulator, as seen in figure 16, yields an effective intercooler with low pressure loss. Mechanical vibration and fatigue cracking may be a problem with this design, however, so some life testing needs to be done.

CONCLUSIONS AND RECOMMENDATIONS

The only conclusion that can be reached here is that matching engines and turbochargers in the small size range, where only limited variations of sizes are available, is difficult. Limited published data on flow characteristics of the various elements makes it difficult to do analytically, thus requiring

experimentation. However, there seems to be no reason why the concept will not work.

After the concept is basically demonstrated, there will be a great need to establish the altitude limit of operation of the concept as it relates to the specific fuel consumption. Specifically, with reduced clearance volume (to the limit of power capacity for climb), the question becomes: "How early must the exhaust valve be opened to provide sufficient exhaust energy to run the turbochargers?" At higher altitude, more of the fuel energy must be used for gathering air, thus requiring a higher specific fuel consumption. This effect will likely begin to be a significant factor at about 50,000 feet. Above that altitude, the specific fuel consumption will go beyond the typical 0.5 pounds per horsepower hour feasible at the lower altitudes.

It is recommended that the project be continued with basically the identical configuration except with improved fuel control, possibly with a fuel injection system located at the cylinder inlet.

REFERENCES

- 1. Reed, Dale R.: High Flying Mini-Sniffer RPV: Mars Bound? Astronautics and Aeronautics, vol. 16, no. 6, June 1978, p 26.
- 2. Phillips, William H.: Some Design Considerations for Solar Powered Aircraft. NASA Technical Paper no. 1675, June 1980.

(م /

- 3. Turriziane, R. Victor: Sensitivity Study for A Remotely Piloted Microwave Powered Sailplane Used as a High Altitude Obeservation Platform. NASA Contractor Report 159089, June 1979.
- 4. Morris, C. E. K., Jr.; and Liu, Grace C.: Performance Evaluation of a High Altitude Airplane Platform with a Cryogenically Fueled Engine. NASA TM 83184, Dec. 1981.

54

5. Strganac, Thomas W.: Winds Study for High Altitude Platform Design. NASA Wallops Flight Facility RP-1044, Dec. 1979.

(+)

ľ,

Ŋ.

JSC-17268

COST SENSITIVITY ANALYSIS AND AERODYNAMIC PERFORMANCE IMPROVEMENTS FOR A HIGH ALTITUDE AERODYNAMIC PLATFORM PRELIMINARY DESIGN CONCEPT

Robert Zehentner Program Development Office

Lyndon B. Johnson Space Center Houston, Texas

March 17, 1981

CONTENTS

?

 (\cdot)

.

A

ABSTR	ACT .	•	• (•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	٠	•	٠	•	•	٠	•	٠	•	•		A-1	
INTRO	DUCTION	1	• •		•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		A-1	
COST	SENSIT		ΓY	AN	IAL'	YS	IS	•	•	•	•	•	,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		A-2	
	Result	3	•	• •		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		A-3	
AEROI	DYNAMIC	DE	SI	GN	IM	PR	ovi	EMI	ENT	rs	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		A-7	
	Airfoi	1 S	el:	ect	tio	n	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•		A-7	
	Aircra	ft	Pa	rae	sit	e	Dra	ag	Re	ed	uci	tic	on	•	•	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	A-8	
	Induce	d D	ra	g a	an .	W	un;	g (Op	ti	n 1 :	za	ti	on	Aı	na:	Lys	51 6	3	•	•	•	•	•	•	•	•	•	•	•		A-10	
	Effect	of	A	ero	o E	ff	ic	ie	nc	y	Im	pro	ovi	eme	en	ts	01	n (Cos	st	E	Ef	ect	:i\	/er	nes	86	•	•	•		A-11	
RECO	MENDAT	ION	S	•	••	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	٠	•	٠	•	•	•	•		A-12	
REFE	RENCES	•	•	•	••	•	•	•	•	•	•	•	•	٠	•	•	٠	•	٠	•	•	•	٠	•	•	•	•	•	٠	٠		A-13	
RTRL	тосрари	v										•																•				A-14	

PRECEDING PAGE BLANK NOT FILMED

TABLES

Table			Page
1	Aerodynamics/Performance	• • • • • • • • • • • • • • •	A-16
2	Cost Sensitivity		A-17
3	Design Features	•••••	A-18

FIGURES

Figure

K

1

۶

1	HAAP Concept	A-19
2	Cost Effectiveness vs. Parameters	A-20
3	Cost Sensitivities	A-23
4	Cost Effectiveness vs. Usefulness Factor	A-24
5	Cost Effectiveness vs. Fuel/Payload Ratio	A-24
6	Range Optimization of Lift Coefficient	A-25
7	Endurance Optimization of Lift Coefficient	A-26
8	Wing Optimization - Climb Configuration	A-27

ľ

ala an aguna a

.

ABSTRACT

A cost sensitivity analysis was conducted on a remotely-piloted High Altitude Aerodynamic Platform (HAAP) preliminary design concept. Using a single mission profile math model, all cost-affecting parameters were independently varied from a defined reference vehicle. The cost sensitivity of each performance, operations, and financing parameter was established by calculating the vehicle cost effectiveness change for \pm 10 percent variation from the reference value of that parameter.

The results of the sensitivity study suggested further analysis to improve vehicle lift and drag coefficients. A higher performance airfoil and vehicle drag reduction resulted in greatly improved vehicle cost effectiveness as expected, while climb horsepower had very little influence on cost effectiveness.

INTRODUCTION

Geosynchronous earth orbit satellites have proven their effectiveness as communication relay systems for large area coverage. They are less costeffective for small areas with relatively few users and for mobile receivers where antenna size is limited. More efficient limited area coverage may be accomplished by stationing of a High Altitude Aerodynamic Platform (HAAP) at an altitude where wind gust frequency and velocities are minimal and transmitter coverage adequate. Many possible communication relay applications include news media onsite coverage, county and state law enforcement stations and vehicles, and low usage telephone systems.

Piloted vehicles require limited flight duration resulting in an increased frequency of flights for continuous coverage and higher operations costs. A remotely-piloted vehicle does not have this constraint and makes lower vehicle costs possible by eliminating pilot weight and the need for cockpit environment.

The cost of a remotely-piloted HAAP must be competitive to replace existing communication relay systems and for other uses. This report describes a cost sensitivity analysis of a nominal HAAP.

COST SENSITIVITY ANALYSIS

The cost sensitivity analysis was performed on the HAAP preliminary design concept originating from the Systems Design Office in late 1979 (references 1 and 2). An evaluation of the vehicle concept was performed by Langley Research Center (ref. 3) which verified the feasibility of the HAAP project and suggested design improvements in airfoil selection and wing optimization. Table 1 compares the preliminary design aerodynamic parameters with evaluations of the same made by the Langley study and the Entry Aerodynamic Design Section at JSC (ref. 4). The consistency of parameter values is an indication of the validity of the original design concept. The last column in the table shows the values selected for the nominal vehicle used as a reference in the sensitivity analysis.

The configuration analyzed is illustrated in figure 1. It features outboard wing sections that are folded during takeoff and low altitude climb for reduced sensitivity to atmospheric turbulence. The outboard ...ctions are deployed to the cruise configuration on reaching the altitude at which the full wing area is required for continued climb.

and from the standard and a subject when a subject to a sub-

The first step in conducting the analysis was the design of an analytical model simulating a single HAAP mission profile: climb to 40,000 feet, deployment of the folded outboard section, and climb to 60,000 feet where the mission is completed in cruise as the fuel supply is depleted. The math model includes all mission parameters affecting flight cost and hence vehicle cost effective-ness. Aerodynamic and engine performance parameters examined were cruise lift and drag coefficients, propeller and drive train efficiencies, wing area, vehicle dry weight, engine power available and specific fuel consumption. Operations and mission profile parameters included in the model were cruise altitude, fuel and payload weights, operating costs per flight for man-assisted launches and facility cost per hour for hangar storage. A computer program coupled the mission profile math model to vehicle lifetime and cost, percentage of vehicle life spent in cruise, and an overhead cost factor by which all cost inputs are multiplied. The program calculated vehicle cost effectiveness in dollars per pound of payload per hour of cruise at 60,000 feet ($\frac{1}{p_1}$ -hr). Other outputs

of the program include a cost distribution breakdown for vehicle, operations, fuel, and facility as percentages of total mission cost, along with wing loading, fuel-to-payload-weight ratio, and usefulness factor (defined as the ratio of fuel plus payload weight to total takeoff weight). These outputs were desired to help simplify recognition of cost effectiveness patterns among combinations of original input parameters.

If any further analyses are carried out, some minor refinements in the computer program are suggested. Outputs of total single mission cost and total lifetime cost would be helpful in evaluating results. Also, the analytic mission model assumed a static rate of climb definition where all excess power available over power required went into raising the vehicle, assuming the aircraft held a constant velocity. A dynamic rate of climb definition would slightly decrease rate of climb performance and would be more appropriate. Climb power available, however, had little effect on cost effectiveness; therefore, the validity of the sensitivity analysis would be unchanged as long as the overall concept does not change a great deal.

To determine cost effectiveness sensitivity to individual parameter changes, a reference vehicle was first defined. The analysis was conducted by varying a single cost-affecting parameter while holding all other parameters at their reference vehicle values to determine the independent cost effect. Mission profile computer runs were made with parameter values both above and below the reference values to generate cost effectiveness vs. parameter curves for each parameter. These plots are displayed in figure 2.

Results

Figure 3 shows the relative independent effects of various parameters on reference vehicle cost effectiveness. The reference vehicle had a cost effectiveness value of \$.103 per pound of payload-hour on-station. This value is based on a vehicle of nominal performance parameters with a 5-year vehicle lifetime cost of \$50,000, an operations cost of \$150 per flight, a facility cost of \$.25 per hour of vehicle on-station time, and fuel cost of \$30 per flight. The \$50,000 aircraft cost was an estimate based on the cost of similar vehicles. A 50 percent utilization factor gives an on-station lifetime of 2.5 years at 60,000 feet with the other half of its life spent largely in the hangar, since climb is only 6.5 percent of total time aloft. With low turbulence

•

and gusts in the on-station cruise configuration, a 5-year lifetime seems reasonable. The \$150 operations cost per flight represents an estimated three man-hours for preparation, launch, and recovery at \$50 an hour. The \$.25 facility cost per hour on-station is equivalent to \$180 monthly rent for a hangar shared by two vehicles. Fuel cost of \$30 per flight is based on 150 pounds of gasoline at \$.20 per pound. An overhead factor of 2.0 doubles all cost parameters to account for financing and insurance, and results in a cost per flight of \$535.90 and a total lifetime cost of \$338,000 per airplane. The cost distribution is: operations 56.0%, vehicle cost 29.6%, facility cost 3.2%, and fuel cost 11.2% of total cost before inclusion of the overhead factor.

From figure 3, it is seen that reference vehicle cost effectiveness is more sensitive to the time-weighted average lift coefficient than any other parameter. Since the vehicle spends approximately 95 percent of the reference mission profile in the cruise configuration, the time-weighted average effectively becomes the cruise lift coefficient. The figure displays the change in cost effectiveness for 10 percent variations from the reference value for each of the parameters. A 10 percent change in cruise lift coefficient (0.1) yielded a cost effectiveness difference of \$.009 per pound payload hour, or a 9.23 percent change in the base vehicle cost effectiveness of \$.103. Table 2 gives the dollar value of this 10 percent parameter design improvement based on one reference vehicle lifetime as already described. In practical terms, then, a 10 percent design improvement in cruise lift coefficient (from C_{L} = 1.0 to 1.1) on the reference vehicle would yield a savings of \$31,200 or $\bar{9}.23$ percent of the total lifetime system cost of \$338,000. Over the lifetime of one hundred HAAP vehicles, the design improvement would save \$3.12 million, well worth using the most efficient airfoil section design available. This great improvement in cost effectiveness is largely due to the large increase in endurance time onstation.

Lift coefficient is followed by cruise altitude in cost sensitivity. A 10 percent cruise altitude change yields an 8.75 percent change in cost effectiveness. The cruise altitude parameter does, however, have limitations of smaller area coverage and greater high gust frequency at lower altitudes, but these problems are minimal at the 54,000 foot level, a 10 percent decrease in the reference vehicle cruise altitude of 60,000 feet. Single vehicle lifetime

savings would amount to \$29,600, largely resulting from an extended cruise duration made possible with additional fuel not used in the last 6,000-foot climb increment. Fuel saved is substantial because the climb mode becomes relatively inefficient as the aircraft ceiling is approached.

Lowering the reference vehicle empty weight by 10 percent (54 pounds) improves cost effectiveness by 8.26 percent for a vehicle lifetime savings of \$27,900.

It must be remembered that the sensitivity analysis is restricted to a parameter range within \pm 10 percent of the reference vehicle base value. Outside that range, sensitivities would not be the same, so that a larger variation in parameter value would not necessarily have proportionately the same effect on cost effectiveness. It should also be noted that the 10 percent variation used in this analysis is arbitrary and may not represent the probable ranges of parameters, which are discussed below.

Usefulness factor, defined as

\$

والهامع الأولى تبع إذهاله للملايط ليله فالمالية الميلة الميلة المالية المالية المالية المالية المالية

1. - **1**. - 1. - 1.

:,

U.F. = <u>FUEL WEIGHT + PAYLOAD WEIGHT</u> TOTAL WEIGHT

is plotted vs. cost effectiveness in figure 4. Cost effectiveness improves rapidly as usefulness factor increases up to about 0.5, but very little thereafter. This suggests that fuel, fuel tank, and payload should comprise at least 50 percent of the total takeoff weight to achieve the most costeffective flights. Figure 5, fuel weight/payload weight ratio vs. cost effectiveness, shows minimum cost when fuel and payload weights are about equal. Therefore, a general rule of thumb for best cost-effectiveness is to plan for fuel and payload each to represent 25 percent of the total weight.

A final observation, noted throughout the analysis process, is that climb performance has negligible effect on cost effectiveness. This is true if the 40,000 foot wing deployment altitude and 60,000 foot cruise altitude are both attainable. As long as these altitudes can be reached, climb lift and drag coefficients, time to climb, an! fuel used in climb have little effect on the total mission since climb time is generally only 5 to 10 percent of time aloft. For this reason, design improvement efforts discussed in the second part of this report were concentrated on the vehicle cruise configuration with later checking back for adverse effects caused by the climb configuration performance.

To establish a credible base for comparison with other types of limited area communication relay systems, a realistic cost effectiveness band of performance should be defined. By estimating the most optimistic and pessimistic values for each of the cost-affecting parameters, a worst to best case vehicle cost effectiveness range is determined. Table 3 gives the parameter values for the worst and best case vehicles as well as for the reference vehicle. The cost effectiveness value ranges from \$.663 per pound payload-hour for the best case vehicle to \$.021 per pound payload-hour for the best case vehicle. The reference vehicle has a cost effectiveness of \$.103 per pound payload-hour, much closer to the optimistic performance vehicle than the pessimistic. With this cost effectiveness range definition, a comparison of the HAAP vehicle with present methods of communication relay including short wave radio, helicopters, hot-air balloons, and geosynchronous satellites could later be performed.

To get a feel for the upper performance limits of a HAAP system derivative, a special high altitude, high performance vehicle was evaluated for feasibility with little regard to cost effectiveness. Performance parameters are given in table 3 and show a vehicle takeoff weight of 300 pounds carrying 110 pounds of hydrogen fuel and a 5 pound payload to a 90,000 foot altitude, where cruise lasts for slightly over a week (175 hours). The cost was \$2.80 per pound payload-hour, over four times that of the worst case performance vehicle. The cost sensitivity analysis illustrated those areas where design improvement would be most productive in improving HAAP cost effectiveness. As a result, prodynamic design efforts were concentrated in the vehicle cruise configuration.

Airfoil Selection

An airfoil design for use on the HAAP vehicle must satisfy many requirements for efficient flight through its greatly varied regime. It must maintain effective performance through a Reynolds number range of 500,000 to 2,000,000. Since extended cruise duration is highly desirable, the endurance ratio, $C_L^{3/2}/C_D$, should be maximized. Low parasite drag at high angles of attack is also necessary. To achieve these characteristics, the airfoil must have minimum skin friction drag and flow separation on the airfoil upper surface. Separation results from adverse pressure gradient regions where the upper surface flow decelerates to achieve pressure recovery. Laminar (low skin friction) flows have minimal energy to maintain attachment through these regions. State-of-the-art airfoil technology deals with this problem by controlling the airfoil velocity profile and, hence, pressure distribution. The upper surface pressure distribution desired is relatively flat (constant velocity) back to about 40 percent of chord, where controlled transition from laminar to turbulent flow takes place and an abrupt pressure rise (adverse pressure gradient) occurs. The increasing pressure region develops a continuously decreasing pressure gradient. This has a favorable effect on the turbulent boundary layer development necessary for pressure recovery. The adverse pressure gradient reduces as the trailing edge is approached. For best performance and highest lift, the optimal pressure distribution is one in which a nearly separated turbulent boundary layer exists everywhere behind flow transition from laminar to turbulent on the upper surface. The lower surface profile should be nearly flat, producing a gradual flow acceleration once past the leading edge. Laminar flow is easily maintained since the pressure gradient is favorable. In summary, a high performance airfoil for the HAAP vehicle should have a pressure distribution described by a laminar region back to about 40 percent of chord where transition occurs and where a turbulent boundary develops from the rapidly decreasing adverse pressure gradient.

Of all the airfoils considered, two fit the above description exceptionally well. The Wortmann FX74-CL5-14C (reference 5) and the Liebeck L1003M (reference 6) had comparable maximum lift coefficients of 2.2 at a Reynolds number (Re) = 1 X 10^6 . The Liebeck airfoil was selected over the Wortmann for several reasons. First, the L1003M was designed for high aspect ratio application and so has a higher maximum thickness-to-chord ratio of 18 percent. This enables use of a more substantial spar to handle span-wise wing loadings. Secondly, the Wortmann airfoil was optimized for high lift and large glide (C_L/C_D) ratios whereas the Liebeck was developed for long duration sailplane applications with an emphasis on high endurance ($C_L^{3/2}/C_D$) ratios. The design criteria for both airfoils evidence themselves in their drag polars. For the Liebeck L1003M, C_D remains about constant up to the stall angle of attack (ref. 6, figure 12) whereas the drag polar for the FL74-CL5-140 (ref. 5, figure 5) shows a large increase in C_D at higher C_L 's. Therefore, the L1003M airfoil will give better cruise duration for the HAAP vehicle.

Design conditions for the Liebeck L1003M at Re = 1.0 X 10^6 include C_L = 1.8 and C_D = 0.009 at an 11.2° angle of attack. These values give an airfoil glide ratio (C_L/C_D) of 200 and an endurance ratio (C_L^{3/2}/C_D) of 268 -- ideal for the HAAP vehicle cruise configuration. An entire wing with the Liebeck L1003M airfoil section at the design condition should develop an estimated three-dimensional lift coefficient (C_L) = 1.6. With a 540 square foot wing area and an approximate 750 pound total vehicle weight at the start of cruise, the vehicle's air speed would be about 90 ft/sec or 53 knots. Based on a mean aerodynamic chord of 5.24 feet, Reynolds number is 4.0 X 10^5 .

Aircraft Parasite Drag Reduction

2

Parasite drag reduction efforts were concentrated on the wing and the 520 feet of strut guy wire running perpendicularly to the free stream velocity. Since cruise performance greatly affected vehicle cost effectiveness, all analysis was done assuming cruise configuration at 60,000 feet.

Reference 3 calculated HAAP vehicle wing parasite drag coefficient $(C_{D_p}) = 0.0113$. The wing evaluated consisted of a high camber Miley airfoil (reference 7) for the isboard wing and a symmetric section for the outboard folding span. The Miley airfoil is much like the Wortmann FX74-CL5-140 already discussed. The Liebeck airfoil with $C_{D_p} = .009$ has 20.4 percent less wing

parasite drag. At design cruise conditions, this results in a drag decrease from 5.5 $\rm lb_f$ to 4.38 $\rm lb_f.$

Parasite drag reduction for the HAAP vehicle's structural support guy wires has great potential largely due to the high drag associated with the wire's circular cylinder shape. With a 0.036 inch diameter, the wire has a cruise Reynolds number of 200. Reference 3 reports C_D for a cylindrical wire = 1.25, due largely to pressure differences between front and rear surfaces. Adding 20 percent for wing-guy wire interference effects results in $C_D = 1.5$. With this relatively high drag coefficient for the 520 feet of wire, a drag force of 2.11 lb_f results. Streamlined wire similar to that used in biplane applications offers substantial drag reduction. A streamlined wire with a fineness ratio (chord to maximum thickness) of 3.0 has $C_D = .25$ (ref. 8). Typical cross section profiles are shown in the reference. A streamlined wire will also have a smaller frontal thickness than the diameter of the original cylindrical wire. In addition, it may be possible to reduce the number of wing supporting wires, due to the large maximum thickness of the Liebeck airfoil which allows for the use of a torsionally stiffer wing spar. The preliminary HAAP design concept included two wing support wires above and two below each span. The high number of wires was originally felt necessary to control the torsional stiffness of the wing. With the stronger wing spar, four out of eight of these 26-foot wires could be eliminated, about a 20 percent reduction in total wire length.

The result of these design improvements is a substantial parasite drag reduction. With a drag coefficient of .30 (.25 plus 20% for interference effects), a streamlined wire frontal thickness of 0.03 inches (reduced 16.67 percent from 0.036 inch circular cylinder diameter), and the 20 percent reduction in total wire length, the resulting wire parasite drag = 0.279 lb_f (86.8% reduction). Together, the wing and strut drag reduction analysis lowered the vehicle drag 2.95 lb_f, from 7.61 lb_f to 4.66 lb_f. This increased aero-dynamic efficiency represents a 25.5 percent reduction in the total vehicle parasite drag, and lowers the airplane's zero lift drag coefficient (C_{D_0}) from 0.0238 (ref. 3) to 0.01773.

and the second second

Induced Drag and Wing Optimization Analysis

ちんちん、これにないないないないないで、 うくろうちょうちょうないないないないないないないで、 ちょうしいしょういう ちょうしょう

With the higher lift capability of the Liebeck L1003M airfoil, the addition drag induced by the wing at high C_1 's must be considered in determining the best lift coefficient in cruise. Simply put, are the benefits of higher lift outweighed by the large increase in induced drag (proportional to the square of lift) that results? For best vehicle range, the L/D ratio is optimized. Figure 6, a plot of L/D vs. C_L , shows a C_L of 1.0 to 1.1 to be optimal for best range performance with a maximized L/D ratio. L/D falls off rapidly at higher C_L 's, showing the effects of greater induced drag. The HAAP vehicle, however, sees improved cost effectiveness with endurance or maximum time in cruise optimization. Range is unimportant in its mission since it will be flying a stationary pattern over its relay area. A plot of the endurance ratio, $C_{L}^{3/2}/C_{D}$, vs. C_{L} in figure 7 shows a maximum endurance ratio of about 34 asymptotically approached at maximum C_1 . This effectively says that for maximum endurance and minimum power, the wing should be flown at its highest design lift coefficient. For the airfoil selected, the maximum threedimensional C₁ possible is about 1.6.

However, to fly the HAAP vehicle at a cruise C_{L} of 1.6 requires the entire wing to be of the high performance Liebeck wing section. This presents a potential problem in the climb configuration, since the outboard wing is folded over and flying in an inverted position until deployment at 40,000 feet. Flying at the same angle of attack as the inboard section, but in the upside down position, the section would produce a high negative lift that might make the 40,000 foot deployment altitude unreachable. A solution exists in turning the outboard wing section at the inboard/outboard hinge point as the section is folded over and inverted. This is mechanized by appropriately choosing the hinge line. This turning or twist at the hinge line would result in the inverted section seeing lower angles of attack, resulting in lower negative lift forces. The inboard wing could still fly at its design angle of attack and high $C_{\rm I}$ with a less deleterious effect on climb performance from the inverted outboard section. For best climb performance, negative lift effects need to be minimized; however, reference 6 shows dramatic increases in airfoil parasite drag below C_1 's = 55. The optimum hinge line angle would result in a low enough negative lift coefficient without large parasite drag increased. Figure 8 determines this optimum turn angle to be about 10 degrees of twist where the endurance ratio is maximized at 11.66.
A larger turn angle would result in great increases in parasite drag while a smaller angle would allow too high a negative lift coefficient. The inverted outboard wing section would fly at an effective $C_L \approx -.55$ with a resulting total wing effective C_L between .65 and .725 and L/D \approx 13.7. These values compare favorably with the climb performance of the cost sensitivity analysis reference vehicle. It climbed at $C_L = 0.8$ and L/D = 14.

Effect of Aero Efficiency Improvements on Cost Effectiveness

To determine the influence of improved aerodynamic performance on the baseline reference vehicle's cost effectiveness, a mission was flown changing only the aero parameters. The aero-improved reference standard incorporated a climb $C_L = .65$, climb L/D = 10.35, and a cruise C_L and 32 percent higher cruise L/D. All other parameters remained unchanged. Cost effectiveness for this model improved 25 percent, from \$.103 to \$.077 per pound payload-hour on station.

With the improved aerodynamic efficiency of the vehicle, greater weightcarrying potential is realized. A second aero-improved model was flown with 200 pounds additional weight and an increased mean aerodynamic wing chord of 7.0 feet. The increased chord created more wing area, keeping wing loading nearly constant, and helped maintain Reynolds number flow closer to the airfoil design condition. The 100 pounds each in additional fuel and payload resulted in a further improvement of the cost effectiveness to \$.041 per pound payloadhour, a 60 percent improvement from the \$.103 value of the reference vehicle.

RECOMMENDATIONS

Through the course of this analysis, many areas of additional needed research and study were identified. A larger vehicle may prove to be more cost-effective. Higher Reynolds number flow for better airfoil performance, increased engine efficiency, and lower operating costs per payload poundhour are all advantages of a larger system that should be traded against higher weight and cost. In addition, much work can be done to improve the efficiency of propellers for this application.

ą

REFERENCES

727

- 1. Akkerman, J. W. and Taub, W. M. Data Package for Airborne Experiment Program Vehicle, Johnson Space Center, December 1979 through February 1980.
- Taub, W. M. and Akkerman J. W. HAAP-2 (High Altitude Airplane Platform), Johnson Space Center Drawing, January 1980.
- 3. Turriziani, R. V. Evaluation of an Airborne Experiment Program Vehicle Concept and Designed by the Johnson Space Center (W.O. J327), Hampton Technical Center Memorandum V-19100/0LTR-132, May 23, 1980.
- 4. Perez, L. F. HAAP-2 Aerodynamic Evaluation, Entry Aerodynamic Design Section, Johnson Space Center, June 2, 1980.
- 5. Wortmann, F. X. "The Quest for High Lift," AIAA Paper 74-1018, September 1974.
- 6. Liebeck, R. H. "On the Design of Subsonic Airfoils for High Lift," AIAA Paper 76-406, July 1976.
- 7. Miley, S. J. "An Analysis of the Design of Airfoil Sections for Low Reynolds Numbers," Mississippi State College, January 1972.
- 8. Mises, R. V. Theory of Flight, Dover Publications, Inc., New York, 1959.

BIBLIOGRAPHY

Ayers, T. C. "Supercritical Aerodynamics Worthwhile Over a Range of Speeds," Astronautics and Aeronautics, August 1972, pp. 32-36.

Heyson, H. H. "Initial Feasibility Study of a Microwave-Powered Sailplane as a High-Altitude Observation Platform," NASA TM-78809, Langley Research Center, December 1978.

Kuethe, A. M., and Chow, C. Y. <u>Foundations of Aerodynamics: Bases of Aero-</u> dynamic Design. 3rd Edition. New York; Wiley and Sons, 1976.

Liebeck, R. H. "A Class of Airfoils Designed for High Lift in Incompressible Flow," AIAA Paper 73-86, January 1973.

McCormick, B. W. <u>Aerodynamics</u>, <u>Aeronautics</u>, <u>and Flight Mechanics</u>. New York; Wiley and Sons, 1979.

McMasters, J. H., and Palmer, C. M. "Possible Applications of Soaring Technology to Drag Reduction in Powered General Aviation Aircraft," NASA CR-145627, Proceedings of the NASA, Industry, University General Aviation Drag Reduction Workshop, July 14-16, 1975.

Miley, S. J. "On the Design of Airfoils for Low Reynolds Numbers," AIAA Paper 74-1017, September 1974.

Patrick, T. J. "Aerofoils Down to Critical Reynolds Numbers and the Performance of Remotely-Controlled Gliders," Department of Physics, University College London, U.K.

Pope, A., and Harper, J. J. Low Speed Wind Tunnel Testing. New York; Wiley and Sons, 1966.

Phillips, W. H. "Some Design Considerations for Solar-Powered Aircraft," NASA Technical Paper 1675, June 1980.

Pick, G. S., and Lien, D. A. "The Development of a two-Dimensional, High Endurance Airfoil with Given Thickness Distribution and Reynolds Number," Naval Ship Research and Development Center Report 4670, June 1975.

Sivier, K. R., Ormsbee, A. I., and Awker, R. W. "Low Speed Aerodynamic Characteristics of a 13.1% Thick, High Lift Airfoil," SAE Business Aircraft Meeting, Wichita, Kansas, April 2-5, 1974.

Strganac, T. W. "Wind Study for High Altitude Platform Design," NASA Reference Publication 1044, December 1979.

Turriziani, R. V. "Sensitivity Study for a Remotely Piloted Microwave-Powered Sailplane Used as a High Altitude Observation Platform," NASA CR-159089, Kentron International Inc. for Langley Research Center, June 1979.

A-14

Wortmann, F. X. "A Critical Review of the Physical Aspects of Airfoil Design at Low Mach Number," NASA CR-2315, Motorless Flight Research Final Report, Massachusetts Institute of Technology, 1972.

Ŷ.

Wortmann, F. X. "Airfoils with High Lift/Drag Ratio at a Reynolds Number of About One Million," NASA CR-2315, Motorless Flight Research Final Report, Massachusetts Institute of Technology, 1972.

Wortmann, F. X. "Drag Reduction for Gliders," NASA TM-75293, May 1978.

2				
	JSC		JSC	Base
Aerodynami cs/Performance	EW4	Langley	EX3	Vehicle
Airfoil Section Inboard	Miley ambered .ow-Speed	Miley		
Outboard (Folded to 40K FT)	=	Symmetrical w/20% Flap		
Lift Coefficients				
Inboard, Cruise		1,22		
Outboard, Cruise		0.9		
Overall Optimum Cruise.	1.1	1.1	1.1	1.0
Climb				0.8
Lift/Drag Ratio				
Climb	20	11.5		14
Cruise	20	25 _{60,000}	17.6	20
Maximum		27.6 _{5.L} .	18.1	
Propeller Efficiency				
Sea Level	.85	.57		۲.
40,000 FT	.85	.67		æ.
60,000 FT - Cruise	.85	.17		ω.
Cruise Endurance - 60,000 FT	20.3 HR.	24.9 HR.		34.72 HR.

Ð

e a substa

Table 1. Aerodynamics/Performance

.

i o

6

A-16

Parameter	10% Delta	Vehicle Lifetime Cost Savings (commared to Reference)
Lift Coefficient	+0.1	\$31.200
Cruise Altitude	-6,000 Feet	29,600
Vehicle Empty Weight	-54 Lb.	27,900
Fuel Specific Energy	+1,800 BTU/Lb. Fuel	25.300
Specific Fuel Consumption	-0.04 Lb. Fuel/Hp-Hr.	23,000
Drag Coefficient	-0.005	21.400
Propeller Efficiency	+8%	21.400
Operations Cost	-\$15.00/F1ight	18, 700
Wing Area	+54 Ft ²	006.6
Fuel Cost	-\$.02/Lb. Fue]	3.300
Climb Horsepower	+2.1 Hp	3.300

Dollar Value of 10% Parameter Design Improvement over One Base Vehicle Lifetime

Table 2. Cost Sensitivity

A

Ŷ

.

3. T. S. T.

5

Basic Vehicle Cost - \$50,000 Vehicle Life: 5 years, 20,000 Hrs. Operation Total Operations Cost: \$86,000 Total Lifetime Cost: \$338,000

A-17

().

i,

-				_	
PARAMETER	MORST	REFERENCE	BEST	MILITARY	MacCREADY
Fuel Cost \$/Lb	.20	.20	.20	5.00 (H2)	.20
Fuel Weight Lb	81	150 (250)	350	110 (TK+H2)	36
Payload Weight Lb	81	150 (250)	350	5	-
Total Weight Lb	540	775 (975)	1400	300	237
Cruise Power MP	11	15	17.5	20 (20 107)	=
Cruise Altitude Ft	60,000	60,000	60,000	000'06	60,000
Wing Area Ft ²	540	540 (720)	540	540	260
C _{11ft} (Cruise)	.8	1.0 (1.6)	1.3	1.3	1.0
۲/۵	15	20 (26.4)	25	25	25
n Propeller	.,	8.	.85	.85	.75
h Drive	.85	6.	% .	% .	6.
S.F.C. Lb/Hp	.360	.394	.45	.14 (H2)	.36
Climb Time Hr	7.04	2.40	5.06	1.39	.787
Cruise Time Hr	12.66	34.72	49.06	174.52	34.78
Operating Cost, \$ Per Flight	200	150	100	250	150
Facility Cost, \$/Hr	.30	.25	.20	.25	.25
Overhead Factor	2.5	2.0	1.5	2.0	2.0
% Life On-Station	40	50	80	59	
Vehicle Life, Years	4	5	6	2	•
Cost Effectiveness, \$/Lb-Hr	.668	.103	L20.	2.80	

Table 3. Design Features

rut titti g

ORIGINAL PAGE IS OF POOR QUALITY

 (\mathbf{f})

*

*

1

-

7

. ,

.

Œ

Figure 1. HMAP Concept

Ð.

•

 (\mathbf{f})

A Property of the

COST EFFECTIVENESS, \$/LB-HR.

and a straight and the second se

キノト こうぶ

A-21

....

J

 (\bullet)

Figure 2.- Concluded

(+)

•

A-22

Figure 3. Cost Sensitivities

 (\bullet)

. N

D.

y

A-23

(+)

シ

(+)

Figure 4. Cost Effectiveness vs. Usefulness Factor

A-25

5.

∦**(**♠) 3

1.12.12.12

(j

2

A-26

(+)

C¹ C^{3/2}

1

the state of the s , d

A-27

ų,

Ð

OF POUR QUALITY

APPENDIX B

(4)

A THE REPORT OF A PARTY OF A

. a

a Ar

THE HAAP OPERATING PROCEDURE DOC. NO. TTA-T-2P558 DATE 1/6/83

PREPARED BY:	James W. Akkerman Jourich Okhum 1/7/82
APPROVED BY:	Paul A. Sveikovsky (Heal disalante 751113)
APPROVED BY:	(BRANCH OFFICE)
APPROVED BY:	(DIVISION)
APPROVED BV:	

pre in

Ð

.

11

Ϊt.

•

).

ORIGINAL PAGE 19 OF POOR QUALITY

...

TEST PROCED	IRE	NUMBER	DATE	REVISION	8405	<u> </u>
THERMOCHENICAL TI	EST AREA	TTA-T-2P558	1/6/83	New	05	16
1.0 Vert 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 2.0 Vert 1. 2.0 Vert 1. 2. 0 Vert 1. 2. 1. 2. 0 Vert 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 1. 1. 1. 2. 3. 4. 5. 6. 7. 8. 9. 9. 10. 11. 12. 3. 4. 5. 6. 7. 8. 9. 9. 10. 11. 12. 3. 4. 5. 6. 7. 8. 9. 9. 10. 11. 12. 3. 4. 5. 6. 7. 8. 9. 9. 10. 11. 12. 3. 4. 5. 6. 7. 8. 9. 9. 10. 11. 12. 12. 12. 1. 12. 1. 1. 1. 1. 2.0 Vert 1. 1. 1. 1. 1. 1. 2. 3. 4. 5. 6. 7. 1. 1. 1. 2. 3. 4. 5. 6. 7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Ify connect Test art Test art Test art Test art Dynamome Cooling Throttle Turbocha Facility Facility Cooling Facility Instrume ify the fo Oil leve Dyno oil LN2 supp LEC's ca Both vac Gasoline volume m All inst function Air cont Backpres Throttle Dyno cor Air inbl LN2 main LN2 conf Battery Cooling schemat Verify for Verify for	tion of system per t icle air/exhaust icle oil icle fuel eter air control choke reger backpressure co vacuum/inbleed/dehu safety water cooling entation/ignition/aut ollowing: el in engine reservoi level within 5" of oly to facility cooli elibrated for alarm a cuum pumps operating full to within 2" of the full to within	he attached sche ntrol midifier o shutdown r at top fin +1/ top of drum. ng shroud at 20" t 0.25 LEL (alar but valved "OFF" f top of sight c 30 octane) avial ed and in date, on (schematic 5) N" position (sch (schematic 6). closed (schematic closed (schematic clo	2". level of m funct. jlass user ion fuel zero, sp mematic 8 ic 4). c 11). (schemat c (schemat c), 1 fan ble (sche at 2 psig surement	r more. 2 each) 2 each) d for an and). ic 8). tic 11) ; matic 9 maximu sight g):
to 4.J Ope	allow fue n valve P(1 to fill carburator DV 1004 to small vacu	(schematic 3). ium pump (schema)	tic 8).		

B-1

ORIGINAL PACE IJ OF POOR QUALITY

TEST OP	00501195	NUMBER	DATE	REVISION	(
THERMOCHERIE	CAL TEST AREA				PAGE
	VAL ILUI ANLA	<u>11A-1-2P558</u>	1/6/83	New	or <u>16</u>
5.0	Open dyno loa	id valve 4 (needle va	lve) about 2 tur	ns (schen	natic 4).
6.0	Open throtle button. Chok Verify oil pr load gage (sc	about 2 turns, pull e as necessary until essure and set rpm a hematic 4).	choke momentaril smooth running t about 2,000 wi	y, and pu is achiev th about	ish "START" Yed. 400 pst on
7.0	Close chamber door.	door and place safe	ty chain across	the face	of the
8.0	Close inbleed altitude shou	valve HV7 to chambe ld go to about 5,000	r (the one to the ft (10 psia) (se	e cold bo chematic	x). The 8).
9.0	Open the LN (schematic 8)	supply valve 733 and •	the valve to the	e cold bu	X HV10
10.0	Reverify inst place, LEL's	rumentation ready, a not over 5%, and fire	ll safety items o e extinguisher h	checked, andy.	chain in
11.0	Begin to add throttle is a where any boo	throttle, but contro chieved at 2500 rpm. st is achieved.	l speed with load This should be	d until w below th	ide-open e speed
12.0	Close the air chamber, reduc one atmosphere	inbleed valve HV6 (, cing load to allow sp e (in the engine air	ambient) to let a beed to increase receiver-manifol	about 8 p to provi Id pressu	sia in the de about re).
13.0	As the chamber inbleed, HV6, air.	r temperature drops, and open the dehumic	begin to close o difier inbleed, H	off the a W? to su	mbient air pply dry
14.0	Continue to c pump must be c opening the dr	lose off air inbleed opened valve POV 1009 ry air inbleed (HV7)	until about 5 ps 5 to the chamber, to hold 5 psia.	sia where , simulta	the large neously
15.0	Continue to re reducing the l engine rpm is	estrict the inbleed, load and allowing eng 8,000).	holding the mani Jine rpm to incre	fold pre ease (max	ssure by imum
	CAUTION:Go no Al Co Co du It	o slowly and watch cy ot go over 425°F. Iso, oil temperature ontrol LN ₂ flow to ke ontrol the dehumidifi ump line. FLEL gets to 0.25, s	linder heat temp not over 375°F. ep the cold wall er LH ₂ to not wa top and fix caus	erature- at abou ste LH ₂ e.	-it should t -100°F. put the

JSC Ferm 360C (Rev Mar 88)

8 --

S

4

÷

С

 \bullet

NASA-JSC

chiaise e

ORIGHIAL MAGE IN OF POOR QUALITY

TEST PP	OCEDURE	NUMBER	DATE	REVISION	<u> </u>	
THERMOCHENIC	AL TEST AREA	TTA-T-2P558	1/6/83	Now	PAGE	$\frac{3}{16}$
				new	or	
N 16.0	HOTE: If cylin pressure pressure At some chamb will reduce a	der head temperature by slowing engine r without increasing er pressure, hopeful od the engine will a	goes over 425°F pm, or by going engine rpm. ly 1 psia, the m	, reduce to lower anifold p	manifold chamber ressure	1
	inbleed (valv to go to abou to define the	e HV7), shut off the t 10 psia. Restart engine operating li	large pump, and the engine and re mits.	allow th epeat as	n the e chambe necessae	er Ty
	NOTE: The ai temper (schem	r contro! may have t ature in the range b atic 5.)	o be used to reg etween 8 psia and	ulate cyl d 4 psia	inder he	ad
	The ex balanc exhaus	haust backpressure c e the inlet air pres t pressure to equal	ontrol will have sure (chamber pro levels (schematio	to be us essure) a : 7).	ed to nd the	
17.	Repeat runs a (maximum and) if possible. the instrumen	s required to get da minimum power, SFC, Keep the chamber as tation lines.	ta at various pre etc.) i.e., 2, 1 cold as possible	essure le 5, 1, 0. e without	vels 75 psia, freezin	g
18.	After complet HV10), open tl idle at about chamber return	ion of test runs, sh he inbleed valves HV 1800 rpm and 600 ps ns to about 70°F.	ut off the LN ₂ (v 5 and HV7 and ² all i load until the	valves 73 ow the en temperation	3 and ngine to ure in t	he
19.	Shut off the sudeplete the su Let the instru- shutdown.	fuel (valves #12, 13 upply in the plumbin umentation operate fo	, and 14) and all g before turning or a cycle or two	ow the en off the after en	ngine to ignition ngine	•
20.	Secure the sys	stem as follows:				
	 Turn off t Turn off (Turn off (Turn off f Disconnect Power down Close load Turn off t 	the cooling water. GN ₂ supply. See fac vacuum pumps. Fans. C chain door restrain the instrumentation valves HV4 and HV5. Dattery charger.	ility schematic. ht.			
21.	Place catch pa	an under door joint a	ind open door.			

JEC Form 380C (Rev Mar 69)

1(~

1

,

•

1

ς,

NASA-JSC

(+)

1

1

1

÷

1111

្រីខ្ល

DATE NUMBER REVISION TEST PROCEDURE 4 PAGE . THERMOCHENICAL TEST AREA 1TA-T-2P558 1/6/83 16 New **∩**₽ EMERGENCY PROCEDURE A. In case of fire in chamber during run: Close inbleed valves HV6 and HV7.
 Shut off fuel (HV12, 13, and 14). 3. Monitor temperature. B. In case of fire in facility area: 1. Call fire department x3333. 2. Use CO₂ fire extinguishers. 3. Terminate facility power. 4. Close all doors. 5. Avoid smoke inhalation. 22. For each test run (to altitude and back) designate a run number, date, etc. 23. Recheck data system calibration, etc. Record final "O" valves with the system "down" before instrumentation is shutdown. 24. Record on data sheet any observations which may need work before the next run. 25. In case a measurement of specific fuel consumption is to be made, close valve HV12 and open valve HV13 allowing engine to operate using fuel out of sight glass. Measure and record on Fluke print the time required to use the marked amount. reverse valves to resupply the sight glass. JSC Form 360C (Rev Mar 69) NASA-JSC

ORGENAL FACE IS OF POOR QUALITY

(+)

Ü

1

Zi in di

y.....

(+)

j.

õ

(+).

 (\bullet)

Figure 2.

ŝ,

)

B-6

Figure 3.

١Ì

B--7

1 10 CO

12

こうないないないない ちょうちょう ちょうちょう ちょうちょう ちょうちょう ちょうちょう しょうちょう ちょうちょう しょうちょう しょうちょう しょうちょう しょうちょう しょうちょう しょうちょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう

. .

Figure 4.

· Alter Tek

D

B-8

· Or fre d

he in a way in the second prove the

D

B-10

Ĵ.

t. F

ۍ ر:

-

الملاقية والمستعلق والمعالية الموالية المحالية المحالية المحالية المحالية المحالية والمحالية والمحا

ŝ

.

D.

i.

E

Figure 10.

í

り

B-14

*1

[‡]t

i

-

 t_{μ}^{μ}

. _ 100

ł

٩.

B-16

APPENDIX C

•

EVENT CHRONOLOGY

ORIGINAL PAGE IS OF POOR QUALITY

HIGH ALTITUDE AERODYNAMIC PLATFORM CONCEPT EVALUATION AND PROTOTYPE ENGINE TESTING EVENT CHRONOLOGY

YEAR 1979

C-1
HIGH ALTITUDE AERODYNAMIC PLATFORM CONCEPT EVALUATION AND PROTOTYPE ENGINE TESTING EVENT CHRONOLOGY

YEAR 1979

HIGH ALTITUDE AERODYNAMIC PLATFORM CONFERT EVALUATION AND PROTOTYPE ENGINE TESTING EVENT CHRUNOLOGY

YEAR 1973

H.	MK.	L'OPL	EVENT
10		A	DITO CYCLE PERFORMANCE ANALYSES COMPLETION - COMPRESSION RATIO SEEN AS PRIMARY DRIVER ON PERFORMANCE AND ECONOMY
O C T	2	c	P. R. OUT ON TURBUS
0 8 E	3	, C C C	JUCTIFICATION FOR NON-COMPETITIVE PROCUREMENT ON TURBOS INVITATION TO INTERCENTER MEETING ON HAAP AT LANGLEY NOTE TO DALE REED ON OTTO CYCLE ENGINE PERFORMANCE WITH VAR.
R	4	C (DELIVERY GEOME ENGINE
11 N	1	C EC	PHONE CALL YO DAW - ASKED FOR ENGINE DRAWINGS COMULTE SHROUD YOK ALT. CHAMBER
0 V E	2	м	LANGLEY MEETING PER HEADQUARTERS REQUEST
M B	3	C i	P. R. FOW HONDAY ENGINE FOR VAR. COMPRESSION RATIO TEST
E B			TRANK MOD(L1CAT2ON
	1	.∳ic	ONU 2760 I TEUDROUT
12 D)		
E C	?		
H H		- 50	CYLINDUR HEAD MODIFICATION
BE	3		
T	4	Ì	

1(4)

10.0

٩

••••••

2

ŗ

- ちょうにんちょうないないできょうとうとうないないないないであっていたい いっちゅうかい

r (>

HIGH ALTITUDE AERODYNAMIC PLATFORM CONCEPT EVALUATION AND PROTOTYPE ENGINE TESTING EVENT CHRONOLOGY

(+)

1.....

),

مراد معتقد معروب مريهما بالمري

YEAR 1980

4

ŕ

).

HIGH ALTITUDE AERODYNAMIC PLATFORM CONCEPT EVALUATION AND PROTOTYPE ENGINE TESTING EVENT CHRONOLOGY

 \bullet

1.000.00

こうしょう しょうしょう いまままた かんない たんちょうしょう しょうせい たいない いたい ないない いちょう しょうしょう

1

YEAR 1980

P1 CCCC C EC P3	CONTROL VALVE PHONE CALL TO OMC - ASK ABOUT PARTICULARS OF ENGINE & DRAWING TEST PLAN FOR TTA LETTER FROM OMC - CRANKCASE ASSY. DRAWING LETTER FROM FRANKLIN (TECH. SERV. TO SCHEDULE PARTS) TURBO BLOCK LETTER TO OMC ASKING ABOUT ENGINE TESTING MOLY COAT M MOTUR OIL
с с с	MINUTES OF REFINE WITH THA - BASIC MERCENENTS BUSY ON SHUTTLE) MEMO FROM J. D. WILLIAMS - (TECH. SERVICES TOO BUSY ON SHUTTLE)
C P4 E0 E0	PROPSOSED LETTER FROM KRAFT TO DFRC CUPPER SHEET DIP TUBE EXHAUST COOLER
E0 D T T T T C C E0	TORGUE ARM MAAP - 28 DRAWING (TAPERED WING) A INST C/O B SYS C/O C IGNITION TIMING VS TORGUE D EXHAUST, AIR CLEANER, ON AND OFF E 10 W GIL PART THROTTLE, UPPER OIL LUBE F OVERSHEED PUBLISH SEA LEVEL STOCK ENGINE TEST DATA PLOT (TORGUE & POWER VS SPEED) MEMO FROM PEREZ ON HAAP AERO EVALUATION LETTER TO OMC DATA ON SEA LEVEL TESTS FLANGE & GASKET
	P1 CCCC ECPPCC C CP4 EDO EDTTTTTC C LEO

HIGH ALTITUDE AERODYNAMIC PLATFORM CONCEPT EVALUATION AND PROTOTYPE ENGINE TESTING EVENT CHRONOLOGY

Const. Do

The state of the state of the

ORIGINAL PAGE IS OF POOR QUALITY

YEAR 19<u>60</u>

	к.	WK.	CODE	EVENT
	7	1	С	LETTER FROM SCHWETZER (DATA FOR TURBO OVERHAUL ETC)
	JUL	2		
	Y	3	C C	P. R. FOR HEAT EXCHANGER TUBING P. R. FOR NSI FUNDING
		4		
	8	1	C T T	OAST REVIEW OF ENERGY PROJECTS G. STOCK ENGINE AT ALTITUDE H. STOCK ENGINE AT ATTITUDE
	A	2	D D	DRAWING OF AFTERCOOLER COMPLETE DRAWING OF OIL SUMP/COOLER COMPLETE
	U G U S T	3	C D	MEMO TO HEADQUARTERS FROM COVINGTON ASKING SUPPORT DRAWING (3 VIEW) OF ENGINE INSTALLATION COMPLETE
		4	ευ C	TURBO INSTALLATION PUBLSIH ALTITUDE TEST DATA FOR STOCK ENGINE
	9	1	£O	TURBO MOUNTING
	SEPTEM	2	M	PROJECT REVIEW WITH DIRECTOR OF E & D
		3		
	Ř	4	D P5	DRAWING OF NAAP-3 COMPLETE STRAIGHT WING O RINGS

4

4

i

,

,

÷

3

i

١

ŧ.

HIGH ALTITUDE AEROBYNAMIC PLATFORM CONCEPT EVALUATION AND PROTOTYPE ENGINE TESTING EVENT CHRONOLOGY

(+)

17

YEAR 1980

C-7

HIGH ALTITUDE AERODYNAMIC PLATFORM CONCEPT EVALUATION AND PROTOTYPE ENGINE TESTING EVENT CHRONOLOGY

YEAR 1981

, , ,

ĥ

ł

1

HIGH ALTITUDE AERODYNAMIC PLATFORM CONCEPT EVALUATION AND PROTOTYPE ENGINE TESTING EVENT CHRONOLOGY

Ĩ(**+**)

YEAR 1981

EVENT

	M.	WK.	CODE	EVENT
		1		
	A P R I L	2	C P9 M E0	NSI P. K. 16571-F FOR IHI TURBO TURBOCHARGER MEETING AT HEADQUARTERS ON HAAP. DICK KENNEDY ATTENDING EXHAUST MANIF MOD TURBO ADAPTER DRAWING CONNECTOR AIR DELIVERY FLANGE EXHAUST MANIF MOD EXHAUST MANIF MOD
		4	EO EO EO EO EO	
	5	1	T E0 C E0 E0 T	FIT & ASSEMBLY OF TURBOCHARGERS LETTER FROM CUMMENS DIESEL. RE. FORTUNE 500 MTG & THEIR 2 STAGE SYSTEM MOUNT BRACKET TURBO SHEED PICKUP 9. DEHUMMDIFUR CHECK
		2	T C P10 P11 T	10. 20,000 FEET-SEALEVEL RATED POWER SPHERCO TO GET SMALLER HOUSING FOR IHI TURBO HOSE GASKET MATERIAL 11. 30,000 FEET ALTITUDE SEALEVEAL RATED POWER
	M A Y	3	P12 P13	O RINGS TURRCCHARGER
		4	C P14 T T	MEMO FROM HEADQUARTERS - RESULTS OF HAAP MEETING ON APRIL 17TH (DISCOURAGING OIL 12. OIL HEATER CIRCUIT CHECKOUT 13. COLD SOAK TEST 14. ATTEMPT TO REPEAT #11- BLOWN GREAT
	6	,	Ρ15 Ρ1δ	BATTERYS (DIEHARDS) PVC ADAPTERS
			P17 P18	TURBINE HOUSING SWAP (UPS COST) FITTINGS
	J	2	E0 E0 E0	GASKETS TURBO ADAPTER FLANGE WASTEGATE FLANGE EXHAUST GASKET INTERCOOLER ASSEMBLY MAGNETIC WASHER ASSEMBLY TURBO ADAPTER FITTING TURBO FLANGE REINFORCEMENT ADAPTER
	N E	3	E0 E0 E0 E0 E0	
		4	ËÕ T P20	OTL DIFUSER MOD. 15. BIGGER HOUSING ON FIRST STAGE 16. BIGGER HOUSING ON SECOND STAGE BATTERY CONNECTORS

(+)

1, 1

and and a standard a

HIGH ALTITUDE AERODYNAMIC PLATFORM CONCEPT EVALUATION AND PROTOTYPE ENGINE TESTING EVENT CHRONOLOGY

(+)

YEAR 1981

	М.	<u>WK.</u>	COD	EVENT
╞	7	1	T P2	17. CAVITATE OIL PUMP Hardware Cloth
	J	2	T T T	18. 40,000 FEET ALTITUDE SEALEVEL RATED POWER 4.6:1 COMP. RATIO IN TURBOS 19. CRACKED EXH MANIF. OIL FOAMING 20. TRY AGAIN-NEW CRACK IN EXHAUST MANIFOLD
	U L Y	3		
		4	L 20	TO MCCREADY - ASKING FOR LOOK AT VEHICLE EXHAUST MANIF MOD.
	8	1	с	HAROLD BENSEN'S NOTES ON HAAP CONTACTS
	A U G U	2		
	S T	3	T .	21 WEST CYLINDER RICH (HOT 407 ⁰)
		4	Т	22. WEST CYLINDER HOTTER (412 ⁰) 23. WEST CYLINDER HOTTER (440 ⁰) 24. WEST CYLINDER HOTTER (STOPPED) 25. EXTRA FUEL PUMP
$\left \right $	9	1	50 T	EXHAUST MANTFOLD 26. TRY NEW EXHAUST MANIFOLD (LO FLO)
	SE	2	T T T T	27. INTAK: MANIF ELBO REINFORCEMENT 28. EXCESS PRESSURE DROP IN AFTERCOOLER 29. INSTRUMENTATION PROBLEMS 30. 4.5 PSIA ALTITUDE - 19 PSIA IN MANIFGOOD-BUT NOT ENOUGH
	P T E M	3	T P22	31, 32. RICH JETS-SLO SPARK LEAN JETS 33. 40,000 FT. ALTITUDE-RATED SEALEVEL POWER INI & RAYJAY DURMAN BOLTS, HOSE
	B E R	4	Ŧ	34. 30.000 FEET-SMALL HOUSING ON BOTH TURBOS 35. EXHAUST MANIF. BROKE 36. EXHAUST MANIF. BROKE AGAIN

(+)

ł

١.

HIGH ALTITUDE AERODYNAMIC PLATFORM CONCEPT EVALUATION AND PROTOTYPE ENGINE TESTING EVENT CHRONOLOGY

 \bullet

3

A

YEAR 1981

M.	WK.	CODE	EVENT
10	1	c	P. R. FOR \$15,000 to NSI
O C T O B E R	2 3 4	Μ	REVIEN OF WORK TO DATE - PRESENTED REASONS FOR AND WAYS TO GET ADDITIONAL FLOW.
11_	1		
N O V E M B E R	2	P23 P24	JOURNAL PINS CYL STUDS
	3	с	STATUS REPORT OF 1000 CC ENGINE 50% COMPLETE
	4	P25 P26 P27 P28	BOLTS CAWSHAFT GRIND OIL MAGNETS
12	1	E0 E0 E0 E0	PUSH ROD COVER MOD. TURBO. INSTL. EXHAUST ADAPTER COML MOD.
DEC	2	EO EO C	EXHAUST CONNECTOR EXHAUST ADAPTER LANGLEY EVALUATION OF NOV. PROPOSAL ON HAAP TH #83184
L M E	3	P29	TURBOCHARGER
R	4		

i(+)

Ť

A.F.A.A.

Ny.

1

.s. 1

,

1

HIGH ALTITUDE AERODYNAMIC PLATFORM CONCEPT EVALUATION AND PROTOTYPE ENGINE TESTING EVENT CHRONOLOGY

ť

4

4

ł

ł

1

ļ

YEAR 1982

t han hand to have a free constant of the second second second second second second second second second second

OF POOR QUALITY

Ŷ)

HIGH ALTITUDE AERODYNAMIC PLATFORM CONCEPT EVALUATION AND PROTOTYPE ENGINE TESTING EVENT CHRONOLOGY

C

情

25

YEAR 19<u>82</u>

\\

لم بد بتحسنهم و سور آ

State of the second

HIGH ALTITUDE AERODYNAMIC PLATFORM CONCEPT EVALUATION AND PROTOTYPE ENGINE TESTING EVENT CHRONOLOGY

YEAR 1982

Μ.	WK.	CODE	EVENT
1	1	T E0 E0	42. TURBO OIL, SEPARATE (NO OIL LOSS) 43. 44. LOW BOOST OIL INDUCTION TUBE MOD. MOD. ACCUMULATION (2FA)
JUL	2	T T T P45	 45. STOCK CAM, BIG IHI .86 SCHWERTZER, 1.4 RAYJAY (LO FLO) 46. LOW OIL 47. TOOK OFF RAYJAY (STILL LO FLO) 48. BRCKE VALVE CAWSHAFT REGRIND (MOD 3) SHORT EXHAUST DURATION, LONG INTAKE DURATION, LO OVERLAP
Y	3	EO	EXHAUST POST SURFACE
	4	P46 P47 P48	TURBINE SHAFT & HOUSING VALVES (SATELLITE & GASKETS) SOCKET HEAD SCREWS SPARK PLUGS SPARK PLUGS
8	1	P49 P50	
AU	2		ACCUMULATOR MOD. PISTON CAP. MACHINE
G U S T	3	EO EO	
	4		
٩	1		
SED	2		
T E M B	3 E0 E0	EO EO EO	ACCUMULATOR MOD. OIL MANIF OIL CIRCUIT FITTINGS
E R	4	P51 P52 P53	REWELD & GRIND CAM Hose & Freeze Plugs Heater Hose

original page in of poor quality

HIGH ALTITUDE AERODYNAMIC PLATFORM CONCEPT EVALUATION AND PROTOTYPE ENGINE TESTING EVENT CHRONOLOGY

17

YEAR 19<u>82</u>

-	<u>M.</u>	WK.	CODE	EVENT
	10	1	EO C	OIL CIRCUIT FITTINGS Letter to Borg Warner Asking for best ini combination
	0 C T O B E	2		FUEL HOSE FUEL HOSE & CLAMPS
		3	P54 P55	
	n	4	 	49. DATA STS PROBLEM - CHANGED SPARK PLUG WIRE 50. LO BOOST (COOLING CIRCUIT ADDED) 51. LO BOOST N VOL 62% 5500 RPM 52. Retard Spark, LO Exhaust gas Tamp (LO FLO) 53. FOUND CAM "CHIPPED" & TAPPET BROKEN
	11	1		
	N O V	2		
	E M B E	3	P56	MOTOR OIL
	R	4		
•	12	1		
	U E E	2		
	M B E R	3		
	Ī	4		

HIGH ALTITUDE AERODYNAMIC PLATFORM CONCEPT EVALUATION AND PROTOTYPE ENGINE TESTING EVENT CHRONOLOGY

YEAR 1983

1

-

ht and

The state of a second second