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Abstract

Spectral methods for compressible flows are introduced in relation to

finite difference and finite element techniques within the framework of the

method of weighted residuals. Current spectral collocation methods are put in

historical context. The basic concepts of Fourier spectral collocation

methods are provided. Filtering strategies for shock-capturing approaches are

also presented. Fourier shock capturing techniques are evaluated using a one-

dimensional 9 periodic astrophysical "nozzle" problem.
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Nomenclature

a sound speed

t physical time

u solution to I-D test problems

interpolating polynomial

uj solution at collocation points
^

uk discrete Fourier coefficients

(u_v) physical velocities

(u0_v 0) mean velocities in astrophysical problem

xj collocation points

L discrete spatial operator

N number of collocation points

Nf number of time-steps between filtering

a coefficient for exponential cut-off

Ax mesh size

At time increment

amplitude of gravitational forcing

epicyclic frequency

€ spiral phase angle

p density

smoothing function

0 filter phase angle

ec filter cut-off angle

angular frequency

artificial viscosity coefficient

ii



I. Introduction

Spectral methods may be viewed as an extreme development of the class of

discretization schemes known by the generic name of the method of weighted

residuals (MWR).1 The key elements of the MWR are the trial functions (also

called the expansion or approximating functions) and the test functions (also

known as weight functions). The trial functions are used as the basis

functions for a truncated series expansion of the solution, which, when

substituted into the differential equation, produces the residual. The test

functions are used to enforce the minimization of the residual.

The choice of trial functions is what distinguishes the spectral methods

from the finite element and finite difference methods. The trial functions

for spectral methods are infinitely differentiable global functions.

(Typically they are tensor products of the eigenfunctions of singular

Sturm-Liouville problems.) In the case of finite element methods, the domain

is divided into small elements_ and a trial function is specified in each

element. The trial functions are thus local in character, and well-suited for

handling complex geometries. The finite difference trial functions are

likewise local.

The choice of test function distinguishes between Galerkln and

collocation approaches. In the Galerkin approach9 the test functions are the

same as the trial functions_ whereas in the collocation approach the test

functions are translated Dirac delta functions. In other words, the Galerkin

approach is equivalent to a least square approximation, whereas the

collocation approach requires the differential equations to be satisfied

exactly at the collocation points.

The collocation approach is the simplest of the MWR, and appears to have

been first used by Slater2 in his study of electronic energy bands in



metals. A few years later, Barta 3 applied this method to the problem of

torsion of a square prism. Frazer, et al.4 developed it as a general method

for solving ordinary differential equations. They used a variety of trial

functions and an arbitrary distribution of collocation points. The work of

Lanczos 5 established for the first time that a proper choice of the trial

functions and the distribution of collocation points is crucial to the

accuracy of the solution. Perhaps he should be credited with laying down the

foundation of the orthogonal collocation method. This method was revived by

Clenshaw, 6 Clenshaw and Norton, 7 and Wright. 8 These studies involve

application of Chebyshev polynomial expansions to initial value problems.

Villadsen and Stewart 9 developed this method for boundary value problems.

The earliest applications of the spectral collocation method to initial

value problems in partial differential equations were those of Kreiss and

Oliger, I0 (who called it the Fourier method) and Orszag_ II (who termed it

pseudospectral). Details can be found in Ref. 12.

Spectral methods have been used on one-d[mensional, compressible flow

problems with piecewise linear solutions by Gottlleb, et al. 13 and by Taylor,

et al. 14. These reports demonstrated that spectral methods, when combined

with appropriate filtering techniques, can capture one-dimensional shock waves

in otherwise featureless flows. A different sort of demonstration was

provided by Zang and Hussaini. 15 They exhibited spectral solutions of

compressible flows with non-trivial structure in the smooth regions.

A systematic assessment of the accuracy of spectral methods for

compressible flows is needed, however, to determine whether they are useful

rather than merely feasible. Some comparisons with finite difference

solutions Were presented in Ref. 15, but the length constraint on that brief

report precluded any detailed comparison. Cornille 16 presented both spectral



and finite difference results for a step function solution of the inviscid

Burgers" equation. His comparisons are not entirely satisfactory because the

time discretization errors were not assessed and the finite difference results

would surely have been better had the calculation employed a uniform grid.

The purpose of the present paper is to assess the accuracy of Fourier

spectral methods when used to capture shock waves. In particular 9 emphasis

will be placed on the role of filtering which must be used for stability

purposes and for the elimination of oscillations. One of the test problems

used by Zang and Hussaini 15 provides a non-trivial test of the filtering

strategies.

The restriction here to Fourier methods limits the discussion to periodic

problems. Such methods are appropriate, however, for an important class of

problems represented by flow around an aerofoil. In a companion paper 17, we

address two-dimensional non-periodic problems and the use of Chebyshev methods

in conjunction with shock fitting.

II. Spectral Methods for Shock-Capturing

Thus far the spectral collocation method has been the only type of

spectral method applied to compressible flow problems. The present discussion

will be confined to spectral collocation methods_ with all future references

to spectral methods implicitly referring to this specific type. Since

spectral methods are a novel approach to aerodynamic flow computations, a

basic introduction to their properties and implementation will be presented

first.



Basic Fourier Spectral Concepts

The potential accuracy of spectral methods derives from their use of

suitable high-order interpolation formulae for approximating derivatives.

Their efficiency has often depended on the use of Fast Fourier Transform

techniques. An elementary example is provided by the model problem

ut + Ux = O, (1)

with periodic boundary conditions on [0,2_] and the initial condition

u(x,0) = sin(_ cos x). (2)

The standard collocation points are

x. = 2_j j=0,1, ...,N-I. (3)
j N

Let uj denote the approximation to u(xj) 9 where the time dependence has

been suppressed. Then the spatial discretization of Eq. (i) is

IJ - (4)
_t _x j

where the right-hand-side is determined as follows. First_ compute the

discrete Fourier coefficients

i N_I- -ikxj k = _ _ ' 7!+ i''" ' _N • - i (5)
Uk=-- uj e , - .

N j=0

Then the interpolating function



N/2-1 ^

_(x) = _ uk eikx (6)
k= -W/2

can be differentiated analytically to obtain

_._.I N/2-1 ^ ikxj
j = [ ik uk e • (7)U2% I

k= -N/2+I

(The term involving k = -N/2 makes a purely imaginary contribution to the

sum and hence has been dropped.) Note that each derivative approximation uses

all available information about the function values. The sums in Eqs. (5) and

(7) can be obtained in O(N £n N) operations via the Fast Fourier Transform

(FFT).

An illustration of the superior accuracy available from the spectral

method for this problem is provided in Table I. Shown there are the maximum

errors at t = i for the spectral method as well as for second-order and

fourth-order finite difference methods. The time discretization was the

classical fourth-order Runge-Kutta method. In all cases the time-step was

chosen so small that the temporal discretization error was negligible.

Because the solution is infinitely smooth_ the convergence of the spectral

method on this problem is more rapid than any finite power of I/N. (The

error for the N = 64 spectral result is so small that it is swamped by the

round-off error of these single precision CDC Cyber 175 calculations.) This

type of convergence is usually referred to as exponential. In practical

applications the benefit of the spectral method is not the extraordinary

accuracy available for large N but rather the small size of N necessary

for a moderately accurate solution.



Of course r full-scale fluid dynamical problems are considerably more

complicated than those described by Eq. (i). Nevertheless_ for quite a few

three-dimensional_ viscous_ incompressible problems 18919 these complications

have not prevented spectral methods from displaying the sort of accuracy and

economy suggested by the results in Table I.

Table I. Maximum Error for a I-D Periodic Problem

2nd-Order 4th-Order

Fourier Finite Finite

N Spectral Difference Difference

8 1.62 (-I) i.II (0) 9.62 (-i)

16 4.97 (-4) 6.13 (-I) 2.36 (-I)

32 1.03 (-II) 1.99 (-i) 2.67 (-2)

64 9.55 (-12) 5.42 (-2) 1.85 (-3)

128 1.37 (-2) 1.18(-4)

The complications to Eq. (I) relevant to the Euler equations are: (i)

non-constant coefficients_ (2) non-periodic boundary conditions9 (3) a severe

explicit time-step restriction_ and (4) nonlinearities causing shocks. The

first three of these are also present for the incompressible Navier-S_okes

equations. Non-constant coefficient problems may be technically unstable but

this can be controlled by filtering techniques. 20 Highly accurate solutions

to problems with non-periodic boundary conditions can be obtained by using

Chebyshev polynomials in place of trigonometric functions. (The use of

Chebyshev polynomials is discussed in the companion paper. 17) A widely



applicable technique for surmounting the explicit time-step restriction has

yet to appear. However_ since this difficulty is algorithmic rather than

conceptual_ it should be resolved eventually. Finally_ the most serious

hurdle is surely the global oscillations arising from the presence of shocks

in the interior of the computational domain. This also seems to be a problem

in filtering so an extended discussion of filtering in this context is

provided in the next subsection.

Filtering for Fourier Spectral Methods

Several types of filtering operations are employed in spectral methods:

I) Pre-processing. The initial condition is filtered_ usually in Fourier

space. New grid point values are obtained from

N/2-1 ^ ikxj (8)uj = _ o(2_k/N) uk e ,
k=-N/2

where o(0) is a non-negative function defined on [-_,_] such that

o(e) = I for lel = 0 and g(e) + 0 as 101 + _. The coefficients Uk

could be either the discrete Fourier coefficients of the original initial

condition u(xg0) or its continuous Fourier coefficients defined by the usual

integral.

2) Derivative filtering. In the computation of spatial derivatives the

term ik in Eq. (7) is replaced with iko (2_k/N).

3) Solution smoothing. At regular intervals in the course of advancing

the solution in time r the current solution values are smoothed in Fourier

space in a manner described by Eq. (8).

4) Cosmetic post-processing. If only weak filtering is needed in order

to stablize the computations_ it may be necessary to smooth the solution as

above for display purposes only.



5) Artificial viscosity. Just as with finite difference computations_

the equations can be modified with either a linear or non-llnear artificial

viscosity.

The theoretical reasons for employing pre-processing are confined to

linear problems with discontinuous solutions. 21 None of the calculations

reported here employed pre-processing.

Derivative filtering has been proposed 20 as an inexpensive way to deal

with the instability of Fourier spectral approximations to non-constant

coefficient problems. For a (linear) constant coefficient equation_

derivative filtering is identical to a similar pre-processing and to solution

smoothing. (An alternative but more costly approach is to re-write the

equations in skew-symmetric form. 22) Our own experience with derivative

filtering on more complicated problems has been unfavorable. Its absence has

not led to any noticeable instability and its presence has often caused

troublesome oscillations in the solution. All the results in this paper have

been obtained without any sort of derivative filtering.

To date_ the most successful smoothing strategy to control the

oscillations which develop when shock capturing methods are used has been

solution smoothing. With this approach_ however 9 one must choose not only the

particular filter to be used_ but also the frequency of application. As with

artificial viscosity methods for finite difference techniques, fine tuning of

the smoothing process must be done in order to obtain the best results.

Cosmetic post-processing was introduced by Gottlieb et al.13 who used it

on problems where only weak smoothing was needed for stability. A strong

filter is then used only to make the solution presentable_ not to modify the

solution.



Finally_ an artificial viscosity can be applied not only to stabilize the

computations but to smooth them out as well. These can be viewed as non-

linear filters. They are not_ however_ well matched to spectral computations

since they introduce a finite order truncation error which negates the use of

the high order interpolation used by the spectral method.

Some of the smoothing functions that have been employed in our

calculations are

G(e) - sin e
e (Lanczos) (9)

1
G(O) = _- (i + cos 0) (raised cosine) (I0)

4(35 - 84G 0 + 70G_ - 20G30) (11)G(O) = G0

(sharpened raised cosine)

where G0 is the raised cosine given by Eq. (i0)_

1 Iol _ oc (12)
G(O) = 0 -"n" 4 8 < lel < ,,

(quartic taper)

l 1 lel_e

G(e) = c
-_,(lel- e )4 (13)c

e e <lel<=c

(exponential cut-off).



I0

These filters are listed above in order of decreasing strength and are

illustrated in Fig. 1. The Lanczos and raised cosine filters are classical.

Equation (Ii) represents one of a number of standard formulae for sharpening a

basic filter. 23 The exponential cut-off has been proposed specifically as a

filter for use in spectral methods. 21_13 A popular choice for the cut-off

function has been the exponential cut-off. Usually e lies between _/2
c

and 5_/6 and _ is chosen so that _(_) is 0(10-4 ) or smaller. Some

successful results have been reported for this filter on linear problems. 22

The choice of filter will determine which Fourier frequencies will be

modified. The k = 0 component of the Fourier decomposition is the only one

which contributes to the average value. Thus, in order to preserve the mean

value of the solution to a conservation law 9 _(0) = i is required. The

filters shown in Fig. I all have this property. The effect of the filter on

the high frequencies_ however_ is usually more difficult to assess in

nonlinear problems.

The raised cosine (also known as the yon Hann window) admits a simple

physical interpretation. It is algebraically equivalent to

uj_ 1 . 2uj + uj+ 1
U,

j 4

= u. + (Ax)_2 uj-I - 2uj + uj+ 1 (14)

j 4 (Ax)2 "

This is clearly a second-order artificial viscosity term with the coefficient

(Ax)2

4(At/Nf) ' (15)
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where Nf is the number of tlme-steps between applications of the filter.

Figure 1 suggests that the other types of filters amount to non-physical

viscosities: they damp preferentially the high frequency components of the

solution but in a different manner than a physical viscosity.

The frequency of applying the filter is analogous to the selection of the

size of the artificial viscosity for finite difference methods. Applied too

often a strong filter like the Lanczos filter will unacceptably smear out a

shock. Frequent applications of a weak filter such as the exponential cut-off

on the other hand may not be enough to stabilize a solution let alone

eliminate oscillations. At present it is still necessary to determine the

best filter and its frequency of application by trial and error.

Ideally a filter should suppress the oscillations arising from a

discontinuity while retaining the accuracy of the spectral method in the

structured regions of the flow. None of the filters described above is

entirely satisfactory. A simple illustration is furnished in Figure 2. Shown

there are several approximations to one period of a function composed of a

square wave plus a small_ narrow Gaussian. The approximations are based on

the interpolating polynomials generated by Eqs. (5) and (6) with N = 32. For

the bottom two parts of Figure 2 the Fourier coefficients have been modified

by the raised cosine and the exponential (with @ = 2_/3) filters_c

respectively. The oscillations of the interpolating polynomials between the

grid points are significant for real problems because they are indicative of

the dangerous high-frequency modes that will interact with variable-

coefficient and non-linear terms.

The familiar dilemma illustrated by Figure 2 led to the adoption of non-

linear filters in central difference schemes. As with artificial viscosities_

the non-linear filters currently available introduce a truncation error of
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finite order into the overall scheme, apparently precluding them from

converging exponentially fast even in the smooth regions of the flow. These

considerations imply that spectral shock-capturing solutions of compressible

flows must be examined critically.

IIl. Results for Fourier Spectral Shock-Capturing

Discussions of shock-capturing techniques are easiest for the Fourier

spectral methods. The discrete operator is simple, the collocation points are

uniformly distributed and the boundary conditions pose no difficulty.

However, there does not appear to be any interesting one-dimensional

aerodynamic problem with periodic boundary conditions. One non-trlvlal test

case for spectral shock-capturing techniques uses an approximate set of

equations derived by Woodward 24 for studying the time development of shock

waves in a spiral galaxy. The equations which describe an isothermal gaseous

component in a very thin disk galaxy are

u + (ou) = 0t

(0u) t + [0(u2 + a2)]$ = 2_(v-v0)0 + 0_ sin _ (16)

2

(ov) t + ( -- - (u - Uo)O.

The boundary conditions are periodic in _ with period 2_. The last term

in the middle equation represents the gravitational forcing of the gas from

the spiral field of the much more massive stellar component. These equations

have some significant differences from the Euler equations, notably the
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forcing term and the asymmetrical role of the velocity components. A more

detailed explanation of this physical problem and the approximations used in

deriving Eq. (16) is available in Ref. 24.

The parameter s in Eq. (16) is a dimensionless measure of the strength

of the gravitational forcing. If this forcing is sufficiently strong, then

the steady-state solution to this astrophysical problem contains a shock.

Behind the shock there is a region of rapid decompression and further

downstream occurs some features due to the second harmonic of the forcing

term. The steady-state solution 9 then 9 is more complex than some standard

test problems (such as the one-dimensional shock tube) whose solutions are

merely piecewise linear functions. The challenge for the spectral method is

to capture the shock and to suppress its attendant oscillations without also

destroying the remaining structure of the solution.

The specific test problem uses (in units which are not of interest here)

a = 8.56_ _ = 21.379 v0 = 1159 _ = 72.929 K = 26.759 and u0 = 13.5.

The spectral calculations use the steady-state solution to Eq. (16) as

the initial condition. The transients that would be generated by some other

initial condition take a very long time to damp out because spectral methods

have very low inherent damping and there are no boundaries out of which

transients can convect. The temporal discretization uses a second-order

Adams-Bashforth predictor followed by a third-order Adams-Moulton corrector.

It has a CFL limit of 3/(2_). The calculations used a CFL number of 0.2 and

were run for 500 time-steps. We seek to illustrate the performance of

filtering procedures ranging from the very weak to the very strong. The

specific examples to follow are representative of many dozens of calculations

in which the type of filtering, the form of the filtering function, and the

frequency of filtering were each varied over a wide range.
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Figure 3 shows the effect of applying the weak exponential cut-off filter

(with 9c = 0.7_ and = = 5) every 50 time-steps. Both high- and low-

frequency oscillations are quite evident. If a Lanczos cosmetic

post-processing step is added_ then the results shown in Fig. 4 are

obtained. As one would expect_ the high-frequency oscillations are under

control but the low-frequency errors remain substantial. The failure of the

weak filtering strategy on this problem (even when applied every time step)

may appear puzzling in view of the success a similar strategy has achieved on

a standard shock tube problem. 13 We attribute the difference to the strong

expansion in the post-shock region in the present problem. Without

appreciably stronger smoothing something resembling an expansion shock will

form in this region. The dip in the density plot is not smoothed by a weak

filter and it grows until the density becomes negative and the calculation

breaks down. On the other handy if the forcing parameter g is reduced to

31.0 then the weak exponential filter is sufficient to produce a stable

computation. However_ the shock here is quite weak (the density ratio is

1.38). The more difficult problem for _ = 72.92 evidently requires more

drastic filtering.

Stable computations are obtained by applying the raised cosine filter

every 50 time-steps. As Fig. 5 indicates_ the expansion is now adequately

controlled and the shock is captured in two points. But notice that there are

some low-frequency errors in the vicinity of the second harmonic near a spiral

phase of 270 °•

An alternative form of strong filtering is to add a nonlinear artificial

viscosity. In his second-order MacCormack's method calculations for the two-

dimensional version of this problem Liebovitch 25 used a fourth-order

viscosity. In the density equation this was proportional to
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"i+ 1/2(Pi+l - Pi ) - _i-I/2 (Pi - Pi-i )' (17)

where

_i+ 112 = lUi+l - uil" (181

Similar terms were used for the two momentum equations with the appropriate

momentum variable replacing the density variable in Eq. (17). Figure 5 shows

the results of employing this nonlinear artificial viscosity instead of any

type of linear filtering. Compared with Fig. 5 there is now one more point in

the shock but the solution is smoother_ particularly near the second

harmonic. A cosmetic post-processing step which is one-sided near the shock

would certainly sharpen the latter solution.

The need for strong filtering to keep the computations stable limits the

accuracy that is obtained for this problem. Table II shows the discrete L2

errors in the density excluding the shock region for both the strongly

filtered and artificial viscosity solutions on grids of 16_ 32 and 64

points. Away from the shock both approaches give very similar errors and both

show first order error decay rates. Nothing approaches "spectral accuracy"_

i.e._ exponential convergence_ has been obtained for this problem.

Table II, Comparison of L2 Errors for Filtering and Artificial Viscosity

N Filtering Artificial Viscosity

16 0.087 0.098

32 0.036 0.037

64 0.016 0.017
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A comparison with the preliminary results 15 for this problem is in

order. The earlier spectral result is given here in Fig. 7. The spectral

method used a second-order linear artificial viscosity applied every time-step

with the raised cosine solution smoothing added every i00 time-steps in

physical space (see Eq. (14)) but modified for one-sided linear extrapolation

for the two points straddling the shock. This latter feature accounts for the

apparent sharpness of the shock. Unfortunately 9 that type of one-sided

averaging was not conservative. Inspection of Fig. 7 reveals that the total

mass has increased. Conservative versions of this one-slded averaging have

not been as successful in producing sharp shocks.

All these spectral results may be compared with the second-order

MacCormack's solution displayed in Fig. 8. A nonlinear artificial viscosity

as given by Eq. (17) was included in these calculations. Grid refinement

studies for this method also reveal essentially first-order error decay. Away

from the shock_ this straightforward finite difference result appears to be

superior to all of the spectral results. Upwind difference schemes in

resolving the shock can do even better than MacCormack's method. Results for

a second-order flux splitting method applied to this problem are given in

Refs. 26 and 27. In terms of the error norm used in Ref. 26, the error in the

density is 1.6% and 2.4% for the present spectral filtering and artificial

viscosity calculations. For Van Leer's second order scheme it is only 0.6%.

IV. Conclusions

The astrophysical problem is the most challenging one-dimensional

compressible flow problem for which spectral shock-capturing results have been

reported. Cornille 16 examined a scalar problem for which the MacCormack
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finite difference method had sufficient implicit dissipation. In contrast,

explicit dissipation had to be added to this finite difference method for it

to handle the astrophysical problem. Corn[lie's spectral methods evidently

required no explicit filtering on his problem because the shock is relatively

weak and because they have an implicit dissipation similar to that of

MacCormack's method. The shock tube problem of Gottlieb_ et al.13 required

only a weak exponential filter 9 whereas much stronger linear filtering was

required for the astrophysical problem. The numerical examples of Taylor_ et

al. 14 were simpler than the shock tube problem_ consisting of only a single

wave. The plecewise linear nature of these other test problems precludes

their use for assessing the accuracy of a numerical method.

The performance of the spectral method on the astrophysical problem

should serve as a caution to those considering this approach. The only

presentable solutions we obtained employed such drastic filtering that the

accuracy of the method deteriorated to flrst-order. In a direct comparison

finite difference methods produced better (and cheaper) solutions.

We are not advocating that spectral methods be abandoned for compressible

flows. There are circumstances under which they are quite competitive

indeed. Streett 28 has developed a spectral shock-capturing method for the

two-dimensional full potential equation. His spectral method requires far

fewer grid points than the best finite difference methods to achieve

engineering accuracy for supercritical_ lifting airfoils. Moreover_ the

application of spectral multigrid technLques 29 makes the cost of this method

comparable to that of finite difference methods. Streett's results are so

accurate_ albeit not exponentially soy because only a weak filter is

required. The Gibbs oscillat_ons are less severe for this problem than for

the astrophysical problem because the solution itself is continuous at the

shock; it is the derivative which is discontinuous.
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Exponentially convergent spectral solutions to the Euler equations can be

obtained by resorting to shock-fitting techniques. These methods are

17
described for two-dimensional flows in the sequel to the present paper.
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Figure Captions

Fig. i. Filters used in the spectral calculations, a. Raised Cosine; b.

Lanczos; c. Sharpened raised cosine; d. Exponential cut-off.

Fig. 2. Effect of several linear filters upon a periodic square wave plus a

Gaussian bump. The dashed line indicates the exact function_ the

circles indicate the value of the post-filtered approximation of the

collocation points and the solid line indicates the interpolating

polynomial.

Fig. 3. Spectral solution to the astrophysical model (circles) computed with

the exponential cut-off filter applied every 50 steps. The solid

line is the exact solution.

Fig. 4. Solution as in Fig. 2 but with a Lanczos cosmetic filter also

applied.

Fig. 5. Spectral solution to the astrophysical model with a raised cosine

filter applied every 50 steps.

Fig. 6. Spectral solution to the astrophysical model with a nonlinear

artificial viscosity.

Fig. 7. Spectral-finite difference solution using a weak artificial

viscosity and raised cosine filter. One-sided linear extrapolation

is used at the shock when smoothing is applied.

Fig. 8. MacCormack solution to the astrophysical model.
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