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ABSTRACT

A prime obstacle to the widespread use of adaptive control is

the degradation of performance and possible instability resulting

from the presence of unmodeled dynamics. The approach taken is to

explicitly include the unstructured model uncertainty in the output

error identification algorithm. The order of the compensator is

successively increased by including newly identified modes. During

this model building stage, heuristic rules are used to test for con-

vergence prior to designing new compensators. Additionally, the

recursive identification algorithm has been extended to multi-input,

multi-output systems. Enhancements were also made to reduce the

computational burden of an algorithm for obtaining minimal state

space realizations from the inexact, multivariable transfer func-

tions which result from the identification process. A number of

potential adaptive control applications for this approach are illus-

trated using computer simulations. Results indicated that when

speed of adaptation and plant stability are not critical, the

proposed schemes converge to enhance system performance.
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Chapter I

INTRODUCTION

A. ADAPTIVE CONTROL BACKGROUND

Automatic control systems are often required to operate

physical plants which have a wide range of dynamic properties.

These changes in dynamic properties could be caused by one of the

following: I) alterations in operating environment; 2) structural

modification of the plant; or 3) failure of one of its compo-

nents. If the variation of the dynamic properties is sufficiently

large, a single point design of the control system (no matter how

robust) may not 5e able to satisfy the performance specifications.

Hence, a control system is required that can reconflgure itself to

provide enhanced performance in the face of these variations. A

control system is said to "adapt" if its internal structure or

method of obtalning feedback control is altered in response to these

changes.

Examples of problems which would benefit from efficient

adaptive control systems exist in most areas of engineering. Flex-

ible flight vehicles may be required to fly over a wide range of

velocity, height and Mach number which significantly modifies their

flight characteristics. In the case of jettlsonable flight stores,

rapid changes in dynamic properties occur. Space structures are

difficult to analyze and test on Earth, have a wide range of chang-

ing external disturbances and may actually grow significantly during

deployment and/or construction. Additionally, if for any applica-

tion some element of the plant or control system fails, a reconfig-

. uration of the control system may be desirable for either safety or

performance.



Adaptive control strategies have two subdivisions of effort

which can be used to distinguish them from nonadaptlve systems (See

fig. (I-I)). The first subdivision is a learning system which

improves the information about the unknown system variables.

Another task of this estimation subdivision may be the construction

of state variables for use by the other subdivision, the control-

ler. The controller subdivision determines the control inputs to

the plant based upon the estimated state variables and plant para-

meters. Adaption occurs when either one or both of the subdivisions

alter the computation scheme based upon the values of the state

variables, primary plant parameters or secondary (dependent) plant

parameters.

Especially in the case of continuously adapting systems, the

two subdivisions interrelate. This interrelationship makes conver-

gence and stability proofs difficult, even ink cases where perfect

modeling exists. The estimation subdivision uses past control

inputs and past plant output measurements to generate current state

estimates and parameter estimates. A key feature of this subdivi-

sion, however, is that the estimation accuracy is heavily dependent

upon the control inputs. A clever sequence of controls can be used

to excite specific modes, isolate effects of certain gain parameters

and regulate slgnal-to-nolse ratios at the sensors. However_ con-

trol inputs that are good for estimation purposes may not be good

for mission or performance specifications.

The controller subdivision computes gains based upon the

current estimate of the state variables and plant parameters. While

the estimation subdivision utilizes previous control inputs and out-

put measurements, the controller uses the current values and esti-

mates of future values to compute current control inputs. If the

estimation subdivision fails, the controller subdivision will also

fail. For this reason, most adaptive control research emphasizes

the importance of accurate and efficient algorithms in the

estimation subdivision.
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Figure I-I _ Block diagram showing fundamental subdivisions of
adaptive control.



An adaptive system may be defined as one which measures its

performancerelative to some index and modifies its internal para-

meters to approach a set of optimumvalues [I]. It has also been

suggestedthat an adaptive system is one that is designed from an

adaptive viewpoint [2]. Clearly it becomes a logical impossibility

to determine by observationof performancecharacteristicswhether

or not a control system is adaptive [3]. The very use of feedback

in control systems reduces the system sensitivities to external

disturbances and changes in the plant operating characteristics.

The behavior of a system with feedback tends to be invariant to

internal changes in itself or in the environmentand may legiti-

mately be called adaptivein the customaryusage of thatword.

In the context of control theory, an adaptive system usually

excludes control system designs in which the state variables are

measured or estimated and the parameters are assumed to be known.

Although the distinctionbetween state variables and parametersis

usually based upon historicalperspective,it really is a conveni-

ence of the control system design engineer and not necessarilyan

objective observatlon [3]. As an example, consider the following

process

= -px + u (1.I)

It would be customary to call x the state variable and p the

parameter. Suppose that p is not a constant and can really be

modeled as

= xv (1.2)

with v as another input variable (control or external distur-

bance). Now the designer can approach the problem in two different

ways.

If an adaptive system is desired, a controller is designed

using equation (I.I) only. The parameter p is tracked by an

identification scheme or estimated through explicit measurements to

maintain acceptable performance as it varies throughout its range.

4



On the other hand, the designer could implement a nonadaptive system

considering both (1.1) and (1.2) and explicitly using x and p as

state variables. It would be easy to evaluate the performance of

either system, but it would be impossible to determine which

• viewpoint was used by the designer.

A universal adaptive controller is a fictitious device which is

the ultimate goal of control designers. It consists of a box with

inputs and outputs which could be connected to any process. It has

no prior knowledge of the system it tries to control, but after a

period of time, it generates an internal model and begins to control

the plant. It continues to be sensitive to any plant changes or

variations in the external disturbance field while maintaining good

performance characteristics. Universal adaptive controllers for

general plants are assuredly a long way in the future. However, the

research reported herein is a step in this direction. It represents

an attempt to identify and build an internal model structure with

limited prior knowledge for use in adaptive control of a limited

class of problems.

In this report, a system will be considered adaptive if it is

implemented with the following design principles: I) continuous

monitoring of system performance; 2) use of a figure-of-merit for

decision making; and, 3) adjustment of internal parameters or struc-

ture to improve the performance. In addition, a distinction will be

made between parameter adaptive control and adaptive control. Para-

meter adaptive control is where the control structure or internal

model order is held constant. In contrast, adaptive control is the

wider class of problems which requires a change in the order (number

of state variables) of the internal representation. Most of the

research in this area has been with parameter adaptive systems. The

next section outlines some approaches to parameter adaptive control

and discusses some of the inherent problems when unmodeled dynamics

are neglected.



B. CURRENT STATUS OF PARAMETER ADAPTIVE CONTROL

B-I CURRENT ALGORITHMS

Adaptive control has received attention from theoreticlans and

practitioners for the past 25 years. Nearly a dozen books and

hundreds of papers have been devoted to the subject. Most of this

research has been on parameter adaptive control which maintains the

order of the modeled system as constant, thereby neglecting

unmodeled dynamics. Examples of early approaches which rely princi-

pally upon analog circuit technology can be found in references

[4,5]. With the advent of computer technology, new methods of para-

meter adaptive control were developed, including the following:

model reference adaptive control, self-tuning regulators, dual-

control methods, multiple-model adaptive control, and adaptive

observation. These methods are reviewed below as a framework for

understanding the problems that are being addressed by this

research.

ADAPTIVE OBSERVERS--A logical approach toward adaptive control

is to use an adaptive observer in conjunction with a constant gain

matrix multiplying the estimated states as depicted in

figure (1-2). Advances have been made which guarantee stability of

this approach under certain restrictions [6] and [7]. This method

has been further extended in [8] to include adaptive gain selection

for the control law and is illustrated in figure (1-3).

MODEL REFERENCE ADAPTIVE CONTROL_Explicit and implicit model

reference adaptive control (MRAC) algorithms have proven to be

extremely useful for controlling plants with wide variations in

plant parameters [9]. Explicit MRAC is where a reference model is

specified and an adaptive control algorithm is used to make the

plant output asymptotically approach the reference model output.

Implicit MRAC includes the case where the reference model is

adjusted during the adaptation process as an intermediate step.

Again the purpose is to drive the output of the plant asymptotically

toward the model response. Both approaches are illustrated in

figures (1-4) and (1-5).
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Figure 1-2 m Block diagram of adaptive observer method of

parameter adaptive control.
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SELF-TUNING REGULATOR--A structure representing a self-tunlng

regulator (STURE) is shown as figure (1-6). Although there are a

number of ways to implement this approach [I0,II], it usually con-

slsts of the use of output error identification techniques to update

model parameters. A linear dependence of the control gains upon4

these parameters is typically developed so that the control strategy

is adaptively updated on-line with the parameters.

MULTIPLE MODEL ADAPTIVE CONTROL--Multiple model adaptive

control (MMAC) was recently investigated in references [12,13].

Figure (1-7) depicts the basic approach. A number of models are

assumed and used in the state estimation subdivision. The models

are evaluated based upon their performance and either i) the best

model is used in developing the control law, or 2) a weighted sum of

the models is used in the control law computation. The first method

affords more flexibility than pure gain scheduling. The second

method allows one to hypothetically span the range of model

parameters with good performance.

DUAL CONTROL--Dual control methods [14-16] use an iterative

algorithm which explicitly includes a cost for identification in the

total cost fUnction. As previously mentioned, identification accur-

acy is highly dependent upon the control inputs, the state variables

and the plant outputs. By explicitly including a cost for identifi-

cation, control energy is expended in order to improve the estimates

of the states and the plant parameters. Unfortunately, dual control

schemes are currently computationally burdensome, which has so far

prevented their use in aerospace applications.

There are approaches to parameter adaptive control other than

those illustrated above. However, the information flow is similar

in all approaches and can be represented by the fundamental scheme

of adaptive control (fig. (I-i)). In the next subsection the impact

of unmodeled dynamics upon these adaptive algorithms will be

considered.
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B--2 CONVERGENCEPROBLEMS OF ADAPTIVEALGORXTHMS

Although adaptive control has been actively researched for the

past 25 years, there have been very few cases where it has been used6

in actual control systems. Direct utilization of any particular

. algorithm without fine tuning to the problem is not currently pos-

sible. Recent research has been directed at trying to understand

the fundamental problems of parameter adaptive control algorithms

[17]. For example, in the case of MRAC algorithms problems tend to

occur in cases where prior knowledge of the plant or operating

environment is poor [18]. Specifically, MRAC algorithms suffer from

the following problems: a) generation of high frequency control

inputs; b) high susceptibility to instability in the presence of

unmodeled dynamics; and c) poor performance in the presence of

observation noise.

Adaptive control algorithms have a number of universal problems

which need to be resolved. If large reference inputs are used,

there is a tendency for the adaptation process to react too fast,

sometimes leading to instability. An implicit adaptive algorithm

which relies upon internal system identification as part of the

adaptation process can be proven to converge with global stability

only when unmodeled dynamics do not exist. In fact, parameter adap-

tive algorithms characteristically result in high gain/high band-

width systems where the gain and bandwidth tend to grow in the

presence of disturbances. Clearly this can be disastrous in terms

of control spillover for truncated models.

These unfavorable aspects are a direct consequence of the

information flow between the estimation subdivision and the control

subdivision of the adaptation process. Errors in the predicted out-

put and the commanded output are utilized by both subdivisions to

simultaneously improve the performance, oftentimes resulting in

growing bandwidth and gain. Classical solutions such as low pass

filtering confuse the issue since stability and convergence proofs

• for the currently available adaptive algorithms require known model

order and a fixed relative order.
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The analytical research performed in references [17-20] relied

upon a llnearization procedure called "final approach analysis" to

study adaptive algorithms near the solution. The closed-loop, non-

linear, time varying equations were linearized for single-input,

slngle-output (SISO) first order systems when the system outputs and w

reference model outputs were close. This allowed a study of many of

the adaptive algorithms for making relative performance compari-

sons. In addition, an exhaustive set of simulation studies were

performed on many of the known parameter adaptive algorithms [19].

Results of these studies showed that most of the algorithms con-

verged and were stable under ideal conditions. Some were even

robust with adverse white noise in the process. However, all of the

adaptive algorithms studied diverged under the following conditions:

I. Small bias in controls or sensors

2. Unmodeled, noncontrollable mode as sensor noise
3. Unmodeled dynamics in plant

These conditions are almost always encountered in real system

implementations. Therefore, current parameter adaptive control

techniques cannot be used without careful tuning.

Clearly, the direction of adaptive control research must

change. If we assume that a controller exists which can handle

unmodeled dynamics, sensor noise and biases, what should its form

be? Methods for the estimating parameters of the structured model

uncertainty are fairly mature; however, emphasis is needed to

develop parameter identification algorithms for working on what is

called the unstructured model uncertainty. This implies model

building (or modification) on-line. A successful adaptive control-

ler will need to modify or add on to its internal model representa-

tion whenever the unstructured model uncertainty significantly

degrades the control system performance.

It has been argued that a requisite feature of a truly adaptive

control algorithm which can minimize the risk of failure due to

unstructured uncertainty is that it must have some level of machine
a

intelligence. It should take advantage of computer technology to

monltor its performance and adjust its characteristics in response

to unmodeled (but predictable) dynamics or system errors. So a set
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of heuristic rules may be necessary to insure widespread application

to a variety of problems with a minimum of specific problem fine

tuning. The decisions required of an intelligent controller may be

similar to those an experienced engineer would need to make to opti-

mize an algorithm to a particular system.

C. PROPOSED APPROACH FOR ADAPTIVE CONTROL

The research reported herein is an engineering approach to try

and solve some of the characteristic problems of adaptive control

that were mentioned in the previous sections. A fundamental dif-

ference of this research when compared to previous efforts in adap-

tive control is that the internal model order of the compensator

will not necessarily be considered fixed. A systematic approach for

building a model during real-tlme processing will be developed. At

the crux of this development is the extension of an output error

identification algorithm to explicitly include the unstructured

model uncertainty. It will be shown that under a number of restric-

tions, it is possible to implement an algorithm with the capability

of performing on-line equivalent system identification for a number

of applications of adaptive control.

The algorithms are developed assuming that digital implementa-

tion [21] for current microprocessors is desired. The implicit

parameter estimation algorithm that was chosen comes from digital

signal processing and is referred to as the LMS (Least Mean Square)

algorithm. The Lt_ algorithm has a very low computational burden at

each time step, making real-tlme, recurslve processing in a micro-

processor possible. The LMS algorithm estimates parameters of a

z-domaln SISO transfer function. In chapter II this is extended to

multi-lnput, multl-output (MIMO) systems with an autoregresslve

moving average (A_A) model format. Since linear quadratic gaussian

(LQG) multlvarlable design techniques [22] are used for the esti-

mator and controller design, it is necessary to transform the MIMO

• z-domaln transfer function to a minimal state space form. A compu-

tationally efficient algorithm for performing the required state

space realization is developed in chapter IV.

13



Figure (1-8) shows the structure of the model identification

algorithm. It is similar to the structure proposed in references

[23,24]. A suboptimal Kalman-Bucy filter, which is suboptimal in

the sense that prior knowledge of the noise statistics and the

actual plant are not available, is designed and used to estimate the D

states for possible use by the controller. Simultaneously and in

parallel, the adaptive algorithm is processing the input and output

data to identify new parameters or update the ones currently used in

the model for designing the Kalman-Bucy filter. Periodically the

asymptotic Kalman-Bucy filter is redesigned either with the updated

parameters or by adding another mode to the Kalman-Bucy filter model

(increasing its order). This process is continued until some

evaluation of system performance is satisfied.

The closed-loop flow diagram is depicted in figure (1-9). The

parallel structure between the adaptation process and the controller

is critical. The separation of the two functions is important as it

prevents many of the failures mentioned in the previous sections.

Large inputs, colored noise (possibly due to unmodeled dynamics) and

biases, which may cause parameter estimation inaccuracies during

adaptation do not feed directly through to the controller design.

The properties of LQG optimal compensators in the presence of

unmodeled disturbances have been extensively studied [25,27]; and

while system performance may be compromised, the divergence charac-

teristic of parameter adaptive control algorithms will only occur in

extreme cases.

Another advantage of the separation of the implicit model

identification task from the system control task is that internal

monitoring is possible. The identification accuracy is principally

a function of the control inputs used to excite the system. Since a

computer program is used to monitor system performance and to peri-

odically update system parameters and/or model order, it can also be

used to make decisions about how to improve the equivalent system

identification accuracy, either through adjusting some free para-
4

meters in the adaptive identification scheme or through specifying a
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different set of control inputs. This decision making process is

equivalent to the first stages of programming heuristic problem

solving logic.

A significant contribution of this research is the modification

• to the output error identification algorithm, LMS, to include addi-

tional states and is called the Incremental Mode LMS (IMLMS) algo-

rithm. The IMLMS algorithm is developed in chapter II. A number of

simulations illustrating the parameter identification capabilities

of the LMS and IMLMS algorithm are presented in chapter III. Com-

plete examples of equivalent system identification with model

building and adaptive control are presented in chapter VI.
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Chapter II

OUTPUTERRORIDENTIFICATION- ANALYSIS8

A. INTRODUCTION

The performance of adaptive control algorithms depends

primarily on the manner in which the estimation subdivision reduces

the model uncertainty. Implicit adaptive control techniques use

parameter identification to formally find an internal model repre-

sentation of the plant prior to applying a control law. Hence,

asymptotic stability of the overall algorithm requires that the

model parameters approach those of the best equivalent system repre-

sentation of the plant. This is easily understood in the case of

plants which can be accurately represented by low order, linear,

time-invarlant models but becomes complicated when the plant has

signlflcant nonlinearitles--higher than modeled order or time varia-

tions. It is unfortunate that these cases of high model uncertainty

are the very ones which drive the engineer toward adopting adaptive

control strategies as a means of obtaining or maintaining system

performance. Adaptive control cannot be an attractive alternative

to robust control [28] until it can treat both modeled and unmodeled

plant uncertainties.

In this research, an implicit adaptive control scheme is

utilized which requires the on-line identification of plant para-

meters. Two anticipated applicatious are aircraft flight control

(particularly in regions of significant nonlinearities or changing

parameters) and spacecraft modal damping with pointing control. In

the case of spacecraft problems, a sample rate in excess of 200 Hz

. has been envisioned [29]. The high sample rate required, coupled

with the relatively long periods of the rigid body modes, make

. purely batch processing techniques (e.g., least squares or maximum

likelihood) impractical both from computational burden and data

storage aspects. This is true especially for microprocessor
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implementations. For these reasons, a recursive algorithm was

choosen for the discrete output error identification operation of

the adaptive control scheme.

Recurslve identification has the advantage of always having an

updated parameter estimate for use in the controller subdivision.

However, recurslve algorithms are less precise due to the simplifi-

cations needed to run at high sample rates. Hence, batch processing

tends to yield more accurate results with fewer samples of data.

The engineering trade-off is whether or not by the time a batch

identification scheme has processed the data, a recurslve scheme

could have already converged to an acceptable answer. As previously

mentioned, the storage and speed requirements of certain applica-

tions make microprocessor implementation of batch identification

methods impractical.

Specifically, the algorithm utilized for output error identifi-

cation in this research is the LMS (Least Mean Square) Adaptive

Predictor Filter. It was first introduced by Widrow and Hoff [30]

and has been further analyzed in references [31-33]. The algorithm

is very slmilar to a class of adaptive filters known as SHARF

(simple hyperstable adaptlve recurslve filter) [34-36] or sometimes

HARF (hyperstable adaptive recurslve filter) [37-39]. The LMS,

SHARF and HARF filters are similar in formulation, but differ only

in the choice of scale factors• References [31-33] analyze the LMS

algorithm showing a derivation, a study of selecting the magnitude

of the step size factor, an estimate of the speed adaption, and

convergence proofs in stationary stochastic environments. Refer-

ences [37-39] are particularly useful as they also discuss parameter

convergence in the presence of unmodeled dynamics.

In this chapter, the output error identification algorithms for

the adaptive control scheme will be developed. In section II-B the

slngle-lnput, slngle-output (SISO) form of the LMS algorithm will be

developed. Section II-C extends the LMS algorithm to multivariable

(multi-lnput, multl-output or MIMO) plants. Section II-D studies

the analytical convergence properties of the output error identifi-
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cation algorithm. A hybrid batch and recurslve version of the

algorithm is developed in section II-E. A prime contribution of

this research, an explicit inclusion of the unstructured model

uncertainty in the output error identification, is included as

section II-F.

B. DERIVATIONOF SISOOUTPUTERRORIDENTIFICATION

In this section the LMS adaptive filter algorithm is derived

following the development of references [31,32]. It should be noted

that the notation used in this derivation prevents the extension to

a multlvariable representation, a necessity for the algorithm's use

in practical stochastic control applications.

Using the autoregressive moving average (ARMA) representation

[21], a dynamic system is represented in terms of past measurements,

y(k), and past control inputs, u(k), as:

y(k) = x_T(k) a_(k) (2.1)

where

xT(k) = [y(k-l),y(k-2) ... y(k-n),u(k-l),u(k-2)

... u(k-n)] (2.2)

a(k) is the vector of weights multiplying past state measurements

and controls for obtaining the predicted output, y(k), of output

y(k), and n is the order of the model. The error is defined by

comparing the measured output and the predicted output

Q

E(k) = y(k) - y(k) (2.3)

Substituting (2.1) into (2.3), results in
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€(k) = y(k) - xT(k)a_(k) (2.4)

It is desired to minimize the square of the error for all time

(-_<k< =) by finding the optimum set of weights, a_*. A logical

approach would be to update a trial set of weights using a simple °

steepest descent algorithm.

_i+l = hi - _V , (2.5)

where the gradient is given by

V - 8 _ 2(j) (2.6)
j=--

Since a recursive algorithm is desired, an update for each

discrete time step is needed. The gradient of the square of the

error is formulated as a time dependent variable

k

[ E2(j) (2.7)
VE(k) = _a--_

This would still require a great deal of storage and computation for

each ai at each step k. The convention is to update the __i

at each time step, so adopting the notation

a i = a_(k) , (2.8)

and making the following crucial approximation

p

V(k) = V(k) = _ E2(k) , (2.9)

an estimate for the gradient is obtained. That is, instead of

summing all the past errors using the current value of _(k), just
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use the current error. The definition of the gradient from (2.6)

yields

V(k) = 2€(k) _¢(k) (2.10)

Using (2.4)

_€(k) -x(k) (2.11)
_a-'_] "= _

so (2.10) becomes

V(k) = -2E(k)x__(k) (2.12)

Substituting (2.12) into (2.5) using (2.6), the LMS adaptive

filter for updating the weights is obtained

a(k+l) = 9_(k) + 2_€(k)x(k) , (2.13)

or it can be rewritten as

a__(k+l)= a_k) + _(k)[y(k)-x_(k)a(k)]. (2.14)

This differs from reeurslve least squares [21] only in the term V,

which replaces the estlmate-error covarlance matrix P(k+l). There

P is updated at each step by

P-l(k+1) = P-l(k) + x(k)xT(k), (2.15)

• or

6

P(k+l) --P(k) - P(k)x(k)[l+xT(k)x(k)]xT(k)P(k) (2.16)
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In effect, the LMS algorithm replaces the step-varying P matrix by

a constant diagonal matrix BI, where I is the unity matrix. Hence,

a reasonable estimate for _ is

_ I tr(P), (2.171 °
n

i.e., the average error variance of the parameters ci" The

difference between the LMS algorithms and the SHARF algorithms also

lies in the selection of weighting factors.

The parameter update from (2.13) can be made very quickly as it

requires only about 5n operations. Despite its simplicity, it is

data adaptive and has convergence properties that approach those of

more cumbersome conventional methods. Some simple convergence

arguments follow. Take the expected value of (2.12)

E[V(k)] = E[-2_(k)x_-(k)] (2.18)

Noting that €(k) is a scalar and using (2.4)

E[V(k)] = -2E[y(k)_xxT(k) - _(k)xJ(k)_(k)] (2.19)

Defining the stochastic covariances as

P(k) _ y(k)xJ(k)
(2.2o1

R(k) _ x_k)xJ(k)

It can be shown that the gradient is equal to (e.g., [4111

V = Rc - P (2.21)

Hence

E[Y(k)] = VE (2.22)
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Solving (2.21) for the optimum weight vector gives the well known

Wiener solution

c* = R-Ip (2.23)

Since the mean value of the gradient estimate, V(k) is equal

to the gradient, V, the estimate must be unbiased.

The above analysis assumes that the weight vector was held

constant. References [31,33,41] extend the analysis to include

variation of weights and show that the Weiner solution is again

obtained for the optimum weights if the inputs are uncorrelated over

time and are stochastically stationary. References [31,33] remove

the stationarity requirement in a formal manner. A discussion of

the weight vector convergence is given in section II-D.

This development of the LMS algorithm can be extended to find

bounds for the estimate of step size factor, B, to be chosen by the

engineer. The analyses of references [31,32,41] shows that

0 < _ < _ (2.24)

as a requirement for convergence. Simulation studies in

reference [32] indicate that the normalized error of misadjustment

of weight parameters is linearly proportional to the number of

weights. In addition, a discussion of the speed of adaptation shows

it to be an exponential function of _, the eigenvalues of R and

the number of weight parameters. References [31,33] indicate that

based upon experience, a "good" value for _ for design purposes is

around .001 plus average input signal power.

Reference [33] is significant in that it discusses the LMS

algorithm in terms of a wider class of problems and allows that

adequate performance is possible under dependent random environ-

ments, slowly changing parameters and in the presence of unmodeled
.

dynamics. A prime contribution of the literature for SHARF and HARF
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algorithms is the explicit inclusion of the recurslve identification

scheme in an adaptive control function. Analyses in these refer-

ences [34-39] are concerned with proving global asymptotic conver-

gence of the parameters, studying the impact of unmodeled dynamics

and quantifying the sufficient excitation requirements for parameter o

convergence. Some of these issues will be discussed in section D.

The next section develops a MIMO formulation of the LMS adaptive

filter.

C. MIMO FORMULATION OF LMS AlgORITHM

Most practical applications of adaptive control involve MIM0

systems, that is, systems with more than one control input and more

than one output. In this section the LMS algorithm is extended to

MIM0 systems. The vector notation utilized in the previous section

will not accomodate multl-output formulations, so a tensor notation

is used to maintain the same AR (autoregresslve) coefficients for

each output. In addition, a distinction shall be made between the

terms multiplying the measurements and the controls.

Let

y£(k) = £th measurement at time k

ej(k) -- jth input at time k

Assume that the £th measurement can be predicted as

A

y£(k) = elYl(k-l) + a2Y2(k-2) + ... + anY£(k-n)

+ 81j£el(k-l) + 82j£e2(k-2) + ... + 8nj£ej(k-n) (2.25)

the notation can be condensed by making the following definitions

consistent with an ARMA model:
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xi£(k) _ y£(k-i) (2.26)

- uij(k) = ej(k-i) (2.27)

Tensor notation with the summation convention implying the following

summation limits will be used:

n m r

i=l j=1 £=I

where n is the model order, m is the number of control inputs

and r is the number of outputs. Now (2.25) can be rewritten

y£(k) = ai(k)xi£(k) + 8ij£(k)uij(k) . (2.28)

The error of prediction becomes

^

_£(k) _ y£(k) - y£(k) (2.29)

or

€£(k) = y£(k) - xi(k)ai£(k) - 8ij£(k)uij(k) . (2.30)

As in the previous section it is desired to find an approximate

gradient of the square of the error with respect to the weights,

ai(k) and 8ij £(k).

So assuming that the gradient can be approximated by using the

current weights and errors,

= E£( aa_i v£) (2.31)" _i (E£_£) 2

= 2 E£ _a---_(y - aixi£- Bij£uij)E£ (2.32)

including time dependence
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[g£(k)_£(k)) = -2_£(k)xi£(k) , (2.33)

and for the control influence terms

(_£E£) = 2€£ (2.34)
_ij £

(E£T_£) = 2g£(y - aixi£ - Bij£uij) (2.35)

(s£T(k)€£(k)) -2_£(k)uij(k) . (2.36)
88ij£

So again using a steepest descent approach, equation (2.5) can be

used to give

_(_£T(k)g£(k))

=i(k+l) = ai(k) -_ _=i(k) (2.37)

ai(k+l)= c_i(k)+ 2_££(k)xi£(k) (2.38)

and

_(E£T(k)g£(k))

Bij£(k+l) = Bij£(k) - _ _ij£(k) (2.39)

_ij£(k+l) = 8ij£(k) + 2_g£(k)ulj(k) . (2.40)

The parameter update equations which comprise the MIMO LMS

algorithm are (2.38) and (2.40). Previous formulations implied a

separate set of _i's for each output, where as now there is a

single set of parameters constrained to remain valid for all outputs
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while maintaining the desirable convergence properties of the SISO

LMS algorithm. This permits a simpler, multivariable ARMA formula-

tion for the plant. The e and B parameters are merely the deno-

minator and numerator terms of a discrete, multivarlable transfer

function. Chapter IV develops an efficient way to compute an

approximate minimal state space realization from the experimentally

determined transfer functions. The next section discusses conver-

gence of the LMS algorithm, applicable to both SISO and MIMO

systems.

D. NOTES ON OUTPUT ERROR IDENTIFICATION CONVERGENCE

In this section, the notation of the previous section will be

used to develop a first order example to illustrate many of the

convergence properties of the LMS algorithm. The plant is assumed

to be known and the convergence of the identifier algorithm is to be

investigated.

Plant: x(k+l) = ax(k) + bu(k) (2.41)

Estimator: x(k+l) = _(k)x(k) + B(k)u(k) (2.42)

Error: _(k) _ x(k) - x(k) (2.43)

_(k) = la-e(i-l))x(i-l)+(b-B(i-l))u(k-l) (2.44)

LMS Identifier: _(k+l) = _(k) + 2_{[a-_(k)]x(k)

+ [b-_(k) ]u(k) }x(k+l) } (2.45)

B(k+l) = _(k) + 2B{ [a-e(k)]x(k)

+ [b-_(k)]u(k) _x(k+l) } (2.46)

Equations (2.42) and (2.43) become

f ix ux:IraI= + 2_ (2.47)

LB(k+I)J [_(k)J (k)u(k+l) u(k)u(k+l [b-B(k)J

29



From (2.47) it is easy to see the requirement for sufficient

excitation. [c.f.,36,39,40,42]. If steady state conditions are

reached such that x(k) s x(k+l) or u(k) _ u(k+l) no improvement

is made in the parameters no matter how large the parameter errors,

a-=(k) and b-B(k), are. Control inputs are required to improve B.

If a step input of magnitude uo is applied at k=O with

x(O)=O, it follows that

bu
o

x(k) = (l-ak) l-a (2.48)

indicating that any stable parameterization of = and 8 with a
^

zero frequency gain of b/(l-a) will show x.x [42]. Clearly, a

and B may not have converged to a and b.

Combining (2.47) and (2.48) near k=O, we get

= + 2_ (2.49)

LB(k+I B(k Uo2 B(k)]

whereas for any k,

I iu aUra]o o -_(k)
a(k+l) _(k) a(l-ak)2 i----_ (l-ak) l-a

= + 2p 2 (2.50)

bUo 2 Lb_B(k )L_+_qL_)J (l-ak) 1-a Uo

and for k+_

rfirbuo2abu2]ie(k+l ) a(k) ]a _ 1_° a-_(k)= + 2p (2.51)

bUo2L_+_)Jt_J l._ U_oL_-_j
For small k the only improvement is in B and it can have a

relatively large magnitude depending upon the sizes of _ and uo.
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As x(k) moves away from O, corrections in _ begin. It is

possible, however, for _ to initially move in the wrong direction

depending upon uo, b-8(k) and _.

" Considering equations (2.49) and (2.50), an input strategy

suggests itself for obtaining sufficient excitation for parameter

convergence. A step input provides immediate improvement in _.

Experience, such as the results in chapter III, indicates that the

first few samples after the step impulse provide the majority of the

improvement. As the system begins to respond to a step input, the

improvement in _ grows in magnitude; but the improvement decreases

at an exponential rate, albeit slower than the improvement in 8.

If only a single step pulse is applied through the control, the

parameters will most likely not converge to an accurate answer.

Multiple step pulses are required for sufficient excitation.

This is consistent with the general identification research for

optimal inputs of references [43-45] and the specific LMS results of

[33,36,37,39]. The pulses are needed to improve the control influ-

ence terms, B, but _nprovement in the denominator terms, _, comes

only after waiting for the system to respond. So the designer is

confronted with a conflict when choosing input signals to enhance

the parameter estimate. Frequent pulses would be advantageous for

_, but may not give _ enough time to begin its improvement.

Conversely, allowing the system to respond to infrequent pulses

would yield an ideal convergence environment for _ but would be

insufficient for _.

In chapter IV it will be shown that equation (2.42) has a

simple representation as a discrete (z-domain) transfer function and

that _ corresponds to the denominator term and _ to the numera-

tor term. The need for several rapidly changing control inputs to

estimate the numerator terms is typical of identification problems.

In contrast, a low frequency externally applied signal (e.g., a

dither signal) is advantageous for identifying the denominator

terms. Although white process noise is capable of providing a para-

meter convergence for a, studies [31,32] indicate that a control-

induced, signal-to-noise ratio of 2 or more will start to yield the

exponential convergence rates indicated in equation (2.50).
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It is apparent that the rate of convergence is dependent upon

the relative sizes of _ and the mean values of x and u. The

implication is that _ should be sized to handle the expected

values of x and u. An alternative approach, however, may be to

scale the outputs of the state variable representation so as to

maintain expected values for x and u near unity. This later

case is the approach adopted in this research.

E____.BATCH LEAST SQUARES NUMERATOR DERIVATION

In the previous section it was observed that the improvement in

the numerator term of the discrete transfer function representation

of the LMS adaptive algorithm comes primarily within the first few

samples following a pulse. Therefore, many pulses are required to

obtain convergence of the numerator terms. However, it is advanta-

geous to wait on the order of a time constant between pulses so the

denominator terms can approach their true value. The result is that

the denominator terms converge more rapidly than the numerator

terms.

Since for most adaptive control applications the speed of

adaptation is critical, a hybrid batch and recursive identification

scheme is proposed. Once the denominator terms have been identified

it becomes a relatively simple matter to use a batch least squares

algorithm to identify the numerator terms. This operation is tanta-

mount to finding the zero frequency gain of the system; hence, data

from the last two pulses are probably all that are necessary for

sufficient accuracy. It has already been argued that collecting

data for several system time constants and applying a computation-

ally burdensome batch identification scheme (e.g., maximum likeli-

hood techniques [46]) for finding a best model order and/or para-

meter estimates is inappropriate for microprocessor applications.

This is true from both a data storage and a time for computation

standpoint.

Using a batch scheme for the numerator terms has some potential

advantages. A prime problem with least squares batch algorithms are

the inconsistent results obtained with model truncation. This is
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not as significant a problem for the LMS algorithm, as will be

illustrated in section III-C. Also, batch data that use only the

last two pulses are all that is required to be stored for the
t

accurate estimation of the control influence terms. Since the

parameters for the denominator terms from the LMS algorithm are

available at each sample, the innovation sequence can be recursively

modified to contain only the numerator content, making the solution

for the numerator terms a simple computation prior to obtaining a

state space realization.

Using an ARMA model representation [21],

_(k) n n'=- _ ci_(k-i) + _ Bi u_(k-i)+ __(k) (2.52)
i=l i=l

Note that Bi is summed up to n', the assumed order of the

numerator terms, where n' _ n. Bi has the dimensions of r x m,

where r is the number of measurements and m is the number of

control inputs. So rewriting (2.52) in tensor notation from

section II-B

^

y£(k) =-aiY£(k-i) + 8ij£uj(k-i ) + €£(k) (2.53)

Assume that the ci are known and that only the part of error

associated with not knowing the Bij£ is needed. The part of the

output attributable to the control input u can be written

y_(k) = y£(k) - clY£(k-i) (2.54)

Hence, we define a parameter vector, with dimension (nm x I),

m

= [811£821£...Snl£B12£...Bnm£]T, (2.55)8£

a control vector of dimension (n'm x I)
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u(k) =. [Ul(k-l)Ul(k-2)...u1(k-n')u2(k-l)...Um(k-n')]T, (2.56)

and a data vector with N samples with dimension (N-n+Ixl) is

defined as,

Y_(N) = [y_(n)y_(n+l)...y_(N)] T. (2.57)

By forming the following matrices,

U(N) = [u(n),u_(n+l),..._(N)]T (2.58)

_£(N,8)= [€£(n),_£(n+l)...€£(N)]T (2.59)

The N-n+l equationerrors can be written in matrix notationas

Y_(N) = V(N)e%+ €%(N,e) (2.60)

The cost function is the square of the errors and is defined by

J£(8£) = i£T(N,e£)i£(N,8£) . (2.61)

The normal equationsfor this case are

uTwu@£ = UTW_ (2.62)

yielding the conventional weighted least squares solution

8£ = (uTwu)-IuTw_£ . (2.63)
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The weighting matrix, W, is assumed to be the identity matrix

for the remaining analysis. All that is necessary for this computa-

tion is to save Nn'm control inputs in the vector U(N) and £N

samples of the control contribution to output, y'£, in vectors

y'£(N). It should be noted that y'% is a byproduct of the LMS

algorithm computation. The ai used in the LMS algorithm should

be satisfactory, provided that enough time constants have elapsed

and little adaptation is taking place. Finally, it should be

observed that the 0£ need to be identified for each output, £.

This comes from the formulation of (2.61) which was adopted for

saving computer storage space.

F. INGR_EMENTALMODELMS ALGORITHM DERIVATION

LMS adaptive filters perform well in the presence of higher

frequency, unmodeled modes since they act as low-pass filters. This

capability of the LMS algorithm is studied analytically in refer-

ences [33,39,40,47] and by simulation in section III-C. It is

clear, however, that there are times when it would be advantageous

to add modesto the assumed model structure. Furthermore, if some

prior knowledge of the plant is available, it would be beneficial to

include it in the identification process. Chapter I pointed out the

intrinsic problems of unstructured model uncertainty in terms of

stability for adaptive control algorithms. In this section an

approach for adding modes to the model structure will be developed

by distinguishing between the known (or already identified) part of

the dynamics and the unknown (or incremental) part.

One reason that most parameter convergence studies for output

error identification algorithms are limited to low order is because

of the inherent numerical inaccuracies that predominate as the order

is increased. Equation (2.64) is the discrete (z-domain) transfer

function of equation (2.25)

B £z-I + _ £z-2 -n

H£j(z) = I_ 2_ + "'" _n_£ z-I -2 -n (2.64)
o

I - alz - a2z + ... anZ
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The effect of a small error in _i on the location of the poles

increases with n.

A natural approach would be to find the optimum set of _*

using the LMS algorithm for n, then assume that the order will be

increased to n+p, and compute a starting set of n+p values of _'

using the n values of _* obtained from the LMS algorithm and

initial guess for p values of a0 for the new modes to be

identified. The indicated product is given by

l-c_ z-l+...Otn+pZ-(n+P) = (l-¢t_z-l+...+otr_z-n)

(I I+ P) (2.65)P

The LMS algorithm can then be used to identify n+p values of _',

the new coefficients of the larger model. However, this does not

solve the numerical accuracy problem of higher order systems posed

above.

Instead, a method whereby only the new modes are adapted and

the previously identified modes are held constant is desired. This

would tend to minimize the impact of numerical inaccuracies of the

adaptation process upon the estimated system dynamics. It also

provides a way to include the known dynamics into the identifica-

tion. The algorithm that is derived below is termed the Incremental

Mode LMS (IMLMS) algorithm since it provides a way to add incre-

mental modes to the assumed model.

We cast the form of the discrete transfer function of (2.64)

into one which explicitly distributes dynamics into two parts: (I)

the nonvarylng or known part and (2) the incremental or unknown

part.

n_p -i, Biz
H(z) = i=ln (2.66)

Ii- [ a'z-i)Ill- _ afz-f)
i=l f=l
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where Bi is a rxm matrix for a multlvarlable system and is

identified each time,

n

8ili 8112 "'" 8iim

" 8 21 8 22 "'" 8i2m (2.67)
Bi = : : • . :

• • • •

8irl 8ir2 "'" Sir m

The ai are assumed constant and only the af, the coeffi-

cients of the incremental modes are identified. The new system

order is taken as n+p. Multiplying the denominator out in (2.66),

the following expression is obtained

n_p Biz-i

HCz) = i=l (2.68)

n -i_ -fn_ -i-f
I - [ aiz - afz + [ alafz

i=l f=l i=l f=l

Writing (2.68) in finite difference form [21]:

y£(k) = aiY£(k-i) + efy£(k-f) - aiafY£(k-i-f) + 8i£juj(k-i) (2.69)

The implied summation limits of i are 1 to n, of f are 1 to p,

of £ are I to r, and of j are I to m. Using equations (2.28),

(2.37) and (2.29) with the above notation a form for the parameter

update is

ef(k+l)= af(k)- 2_££(k)_-_f(k) (2.70)

° Finding the first partial of the error, E£(k)

8_£ _ (y£(k)) (2.71)

37



(k) = y£(k-f) - aiY£(k-i-f) (2.72)

So the unknown parameter update equation becomes

cf(k+l) = of(k) + 2_£(k)[y£(k-f) - aiY£(k-i-f) ] (2.73)

The parameter update equations for the numerator terms, 8i£j,

remained unchanged as

_i£j(k+l) = 8i£j(k) + 2_m£uij(k) • (2.40)

The LMS algorithm has been extended to include only the

adaptation of the unknown modes of arbitrary order. No assumptions

used in proving asymptotic convergence of the basic LMS algorithm

have been violated; hence, we expect the IMLMS algorithm to exhibit

the same asymptotic robustness as the unmodified LMS algorithm. The

derivation of the IMLMS algorithm was accomplished in the MIMO form-

ulation of section II-C. Since the numerator update equations are

unchanged, the same batch least squares identification of the numer-

ator terms is still possible using the development in section II-E.

While it is anticipated that the IMLMS algorithm will exhibit

robust performance under nonideal conditions (sensor noise, proces-

sing noise or unmodeled dynamics), it will be similar to other iden-

tification algorithms in that global convergence proofs will not be

possible in such circumstances. The inclusion of the IMLMS algo-

rithm in an adaptive control application will need heuristic tests

to check for divergence prior to utilization of the newly identified

model. Furthermore, there is a danger of incremental fitting of

multiple modes which have eigenvalues with nearly equal magnitudes.

Section III-C will illustrate that spectral separation is necessary

for good performance in the presence of unmodeled dynamics, enabling

the IMLMS algorithm to distinguish between modes.
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The IMLMS algorithm should be especially suitable for aerospace

applications. Flight vehicles often have a single mode which is

relatively easy to estimate a priori, but have additional modes

which are susceptible to wide variations (e.g., phugold and short
t

period modes or roll and Dutch roll modes). Spacecraft typically

have rigid body modes which are easy to predict, but the interaction

with the flexible body modes is difficult to estimate or even mea-

sure with experiments prior to deployment. In both types of vehi-

cles, the use of an algorithm which holds part of the model constant

while identifying the incremental part would be advantageous com-

pared to approaches which identify the entire model for a given

order.

In this section, the IMLMS algorithm was presented as an

effective way to identify explicitly part of a model while holding

the dynamics of another part fixed. There are many applications

where this may be a useful approach. In the next chapter, the LMS

algorlthmparameter convergence properties will be examined by simu-

lation. First, the standard LMS algorithm performance will be

studied from the viewpoint of a designer. Then, the impact of using

the multlvarlable formulation will be ascertained; the influence of

unmodeled modes will be evaluated; and, the robustness of the IMLMS

algorithm will be demonstrated.
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Chapter III

b

OUTPUT ERROR IDENTIFICATION - SIMULATION STUDIES

In this chapter the results of simulation studies investigating

the use of the LMS algorithm as a parameter estimator are pre-

sented. These studies are useful in that they can be used to help

guide the designer in choosing the free parameters of the LMS algo-

rithm for particular applications. A description of the techniques

utilized for the computer simulations in this report is given in

appendix I. The Fortran code for the LMS and IMLMS algorithms is

given in appendix II.

A. SISO CHARACTERISTICS OF LMS_RITHM

A-____IFirst Order Demonstration of LMS Algorithm

In this subsection a first order model will be studied to

illustrate the parameter estimation convergence rate of the LMS

algorithm. Several control input strategies are used to excite the

system.

The roll mode of an airplane is an example of a first order

system which is spectrally separated from the remaining lateral-

directional dynamics (much faster) and may require on-line identifi-

cation since the damping is a function of angle-of-attack and

dynamic pressure. The linear, time-invariant plant for this example

is modeled by

x = ax + bu + w (3.1)

where the baseline value of a is .5 sec-I and b is 2

° sec-I . Note that the time scale has been transformed for

convenience as values for a of I0 sec-I are more typical for

aircraft. The LMS filter equations become
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x(k+l) --e(k)x(k) + 6(k)u(k) (3.2)

¢(k) = x(k) - x(k) (3.3)

a(k+l) = a(k) + 2_E(k)x(k) (3.4)

B(k+l)= 6(k)+ 2_E(k)u(k) (3.5)

A simulation was performed for 50 seconds at a sample rate of

5 Hz with the inputs scheduled by table 3.1. The step size factor,

V, was chosen to be .005. A step input was applied at t = 0; from

I0 to 20 seconds a sine wave was superimposed; from 20 to 30 seconds

a square wave was superimposed; from 30 to 40 seconds the control

consists of discrete random inputs; and, from 40 to 50 seconds dis-

crete process noise is added. Time histories of x and x are

presented in figure (III-I) and the control input time history is

shown in figure (111-2).

The time histories of the estimated parameters are depicted in

figures (111-3) and (111-4). It is possible to verify some of the

analytical results of the previous chapter. The denominator coeffi-

cient, a, moves in the wrong direction initially while the numerator

coefficient, 8, makes some improvement after a step input. Then

begins to move in the correct direction while 6 reaches a steady

state. Little real benefit comes from the sine wave input while the

square wave input yields the most improvement in the parameters.

Random inputs have little impact for this case as signal-to-noise

ratios of approximately I0 were used. A good rule of thumb is to

expect parameter convergences with the LMS filter for signal-to-

process-noise ratios of 2 or more and signal-to-measurement-noise

ratios of 5 or more [33].

At the end of this simulation, the adapted parameters had the

values shown in table 3.2. Fairly good agreement between the theo-

retical and experimental coefficients were obtained indicating that

the identification inputs and other problem parameters were well .
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Table 3.1 _ Input schedule for first order demonstra-
tion of _ atgorIthm.

TIME CONTROL INPUT NOISE INPUT

t, sec u w

0 - I0 u 0
con

I0 - 20 u + u sin(R-10) 0
con amp

20 - 30 u + u sgn(sin(R-lO)) 0
con amp

30 - 40 n(O,.l) 0

40 - 50 0 n(O,.l)

Table 3.2 m Comparison of theoretical and experimentally
determined parameters for first order

demonstration of _ algorithm.

PARAMETERS THEORETICAL EXPERIMENTAL

.9048 .9040

B .3807 .3857
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RESPONSETO CONTROL INPUTS AND PROCESSNOISE

4
5

2

STATE.
X 0

STATE 0
DERIVATIVE

-5 --

-2

-4 I I I I
0 10 20 30 40 50

TIME,t.sec

Figure III-I -- Time histories of state and state derivative for

various control and noise inputs.

CONTROL INPUT TIME HISTORY

_

coNTRo,1 F-
INPUT.

U 0 - - II_n,,lJ__.1

-1 I I I I I
0 10 2O 3o 40 50

TIME,t

Figure 111-2 -- Time history of control input for first order
demonstration of LMS filter.
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ADAPTIONOF DENOMINATORFILTERCOEFFICIENT
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.89

.88 I I I I I
0 10 20 30 40 50

TIME.t. sec

Figure 111-3 --Tlme history of LMS filter denominator coefficient
for first order demonstration.
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Figure 111-4 --Tlme history of LMS filter numerator coefficient
first order demonstration.
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matched. In the next subsection, the impact of choosing these free

parameters will be illustrated.

A-2 Study 9f Important Identlflcatlon Parameters

The first order system of the previous subsection is studied

further in this subsection. The importance of the problem para-

meters to the identification accuracy is determined by systematic

variation of each parameter. The parameters considered and their

nominal values are listed in table 3.3.

A normalized total parameter error, ep, is defined by

comparing the estimated parameter value, Pl, with the actual

parameter, Pl, and summing for all parameters as follows

- Pi - Pi
= x I00% (3.6)

Pi Pi

m _ep = (3.7)
_i=I pi2

In this case the parametervector,_, includesonly two items

pi= [=,S]T (3.s)

The system is excited by a square wave for 40 seconds and then

allowed to settle for I0 seconds. At the end of 50 seconds the

estimated parameters, = and B, are compared with their theoretical

values and the total percent error, ep, is computed. This was

done for several cases by fixing the values of the problem para-

meters to their nominal values and varying each one at a time.

The influence of varying _, the step size factor of the LMS

algorithm, is depicted in figure (111-5). It shows the expected

trends. Above a certain value (_ _ .8 for this case) the algorithm

diverges. Two minimum values occur, one for best fit of a and the

other for B. This indicates that possibly a different H may be

desired for each coefficient. It is common to have a different
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Table 3.3 _ Nominal values of problem parameters
first order studies of LI4S algorithm.

PARAMETER NOMINAL VALUE

a -.5

• b 2

.005

u 1.5
amp

0.5

_0 5 Hz
samp

u 0.
con
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IMPACTOF STEPSIZE FACTORUPONCONVERGENCEOF LMS FILTER
5-

w

NORMALIZED
PARAMETER3 -

ERROR. !-_---,-- .

ep. ALGORITHM
% 2 - DIVERGES

1-

0 I I
.0001 .001 .01 .I

STEPSIZEFACTOR.p

Figure 111-5 -- Normalizedparametererror versus step size factor
for first order demonstrationof LMS filter.

IMPACT OF AMPLITUDE OF EXCITING INPUT UPON IDENTIFICATION
ACCURACY5-

NORMALIZED
3

PARAMETER
ERROR.

ep. ALGORITHM
_. 2 DIVERGES

!

0 I 2 3 4 5 6

AMPLITUDEOFSQUAREWAVEINPUT.UAMP

Figure 111-6 -- Normalizedparametererrorsversus amplitudeof
squarewave input for first order demonstrationof
LMS filter.
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for denominator terms and numerator terms for the SHARF and HARF

algorithms [36]. If the value of _ is too small, the speed of

adaption is slowed, preventing satisfactory parameter convergence.

The choice of _ is highly problem dependent and is difficult to

select optimally a priori.

The amplitude of square wave input has a similar double minimum

in ep as shown in figure (111-6). If the amplitude of input is

too large, the algorithm diverges. This is equivalent to too large

of a stepsize factor, as B over-corrects in equation (3.5). If

the amplitude of the input is too small, sufficient information for

B is not available and the system response, x, is too small for the

nominal value of B.

The parameter estimation error is very sensitive to the

frequency of the square wave input as depicted in figure (III-7).

The optimum frequency is at .5 rad/sec, which is the system time

constant. Although a square wave has a wide spectrum of sine wave

frequencies, it may be advantageous to select square wave inputs

with varying frequencies. Reference [43] indicates that pulsing the

controls hard against the stops may be optimum for many linear sys-

tems, with the switch time for optimum identification a function of

system parameters. The data in figure (11I-7) seem to be consistent

with this result.

Although the data have inconsistent variations between 5 and

30 Hz, figure (III-8) verifies what is expected about system per-

formance with respect to sample rate. Sampling too slowly results

in estimation problems due to aliasing effects with respect to the

input square wave frequency. Sampling too fast runs into numerical

problems for the nominal values of problem parameters and the accu-

racy is somewhat reduced. However, it is wiser to sample too fast

than too slow as the penalties are less and divergence is not a

problem.

The plant parameters, a and b, were also varied and the

estimated parameter errors are shown in figures (III-9) and

(III-10). Changing a had a much bigger impact than changing b.

If a is increased in magnitude beyond -1.5, the error becomes
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IMPACT OF FREQUENCYOF SQUAREWAVE INPUT UPON
IDENTIFICATIONACCURACY

5

4

NORMALIZED
PARAMETER3

ERROR.

ep.
_o 2

I I I I I
0 .5 1.0 1.5 2.0 2.5 3.0 3.5

FREQUENCYOFSQUAREWAVEINPUT._. rad/sec

Figure 111-7 -- Normalized parameter error versus frequency of

square wave input for first order demonstration of
LMS filter.

IMPACTOF SAMPLERATEUPONIDENTIFICATIONACCURACY
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ERROR.

ep.
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Figure III-8 -- Normalized parameter error versus digital sample
rate for first order demonstration of LMS filter.
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IMPACT OF SYSTEM DENOMINATORCOEFFICIENTUPON
IDENTIFICATIONACCURACY
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PARAMETER 15

ERROR.

ep,
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I _'1 I I
0 -.5 -1.0 -1.5 -2.0

SYSTEMDENOMINATORCOEFFICIENT.a

Figure 111-9 -- Normalized parameter errors versus plant denomina-
tor coefficient for first order demonstration of
LMS filter.

IMPACTOF PLANT CONTROLPOWERCOEFFICIENTUPON
IDENTIFICATIONACCURACY
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Figure III-I0 m Normalized parameter errors versus plant control
influence coefficient for first order demonstra-

tion of LMS filter.
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significant, while fairly large changes in b have a much smaller

impact upon the identification accuracy.

All of the trends mentioned in this subsection illustrate the

importance of the input (noise or control) signal on identifiabil-

ity. The designer must select input signals to sufficiently excite °

the system. In the absence of prior knowledge of system character-

istics, it may be desirable to use digital implementation of learn-

ing concepts to vary the input signals. Such heuristic approaches

are currently under consideration for adaptive control applications.

The studies of this subsection also show that the step size

factor, _, is of paramount importance for obtaining good performance

of the LMS algorithm. It was observed that there are optimum

values and that if the values are too large, divergence may occur.

The step size factor may also be a prime candidate for systematic

variations by computer learning logic. Separate _'s for each term

being adapted may be appropriate.

A-3 Study of a Second Order System

In this subsection a second order system will be considered.

The LMS algorithm implementation will have four terms to be identi-

fied: two denominator system terms; and, two numerator control

influence terms. Reference [32] points out that the parameter error

is a linear function of the number of parameters, so it is expected

that the accuracy of parameter estimation may be reduced relative to

the first order studies considered previously.

A typical second order system that is of concern to the

airplane control system designer is the short period mode. It is

spectrally separated from the phugoid mode and its damping ratio

varies significantly with aircraft geometric characteristics and

flight condition. Such a system could be _enerically modeled in

modal coordinates as

= Ax + Bu (3.9)

y = H_ (3.10)
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o

where

Uam p sgn [sin(_t)) If [sin(_t)[ _ .707
u = (3.11)

• 0 If [sin(_t)[ < .707

• [ ]o 1

A = m2 -2_ (3.12)

B = [0 i]r (3.13)

H = [I 0] (3.14)

The control input (3.11) was a pulsed wave alternating between

equal segments of Uamp, O, and -Uam p. The nominal values for

the design parameters were: _=.005, Uamp=.5 sec-2, _=i rad/sec,

ms=20 Hz and the length of the simulation was for 200 seconds.

The plant natural frequency, _, was 1 rad/sec. Only the damping

factor, _, was varied. Its impact upon average parameter estimation

accuracy is computed based upon the theoretical estimates for the

parameters. The results are plotted in figure (111-11).

The lowest error for the denominator terms of the discrete

transfer function occurred for a damping ratio of .5. The accuracy

of the numerator terms increased with the damping ratio and was less

than the denominator terms when the system was overdamped with

greater than 1.3. These results are consistent with the previous

observations that the input signal is of prime importance for

obtaining sufficient excitation for identification. The signal and

the plant need to be matched for optimum estimation performance.

The denominator terms conver_e to accurate results more readily

than the numerator terms when _ is less than I. This is a charac-

. teristic of using the LMS algorithm for ARMA type model implementa-

tions. As previously discussed, the improvements in the estimates

of the numerator terms, the 8's, comes within the first few samples

of the step input. In contrast, the denominator terms, the a's,
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IMPACT OF DAMPING RATIO ON LMS IDENTIFICATION
ACCURACY FOR SECOND ORDER SYSTEM
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Figure III-II -- Average normalized parameter errors versus damping
ratio for second order system.
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make the majority of the improvement after the system has had time

to react. This suggested a hybrid technique using both the recur-

sive and the batch least squares identification schemes. This

approach to improve the estimation of the control influence

parameters was developed in section II-E.

A-4 Phase/Gain Evaluation of LHS Filter

Phase and gain plots of the LMS filter were obtained as a

function of frequency. Such Bode plots are potentially useful for

evaluating the effect of sampling rate on filter performance.

These approaches may also be useful for determining the potential

application of the LMS adaptive algorithm to nonlinear problems. In

this study, the frequencies of the input signal and the sample rate

were varied. If describing functions for nonlinear applications

are desired, the magnitude of the input signal should be systematic-

ally varied as well.

The phase and gain analysis was performed by driving a unit

magnitude sinusoldal signal at frequency _ as the system output,

y(t) = sin(_t) (3.15)

To estimate the output, a second order LMS filter was implemented at

sample rate ms• The filter equations and parameter updates

became

y(k) = al(k)y(k-i ) + _2(k)y(k-2) (3.16)

^

€(k) = y(k) - y(k) (3.17)

_l(k+l) = al(k) + 2_(k)y(k-l) (3.18)

c2(k+l) = a2(k) + 2_(k)y(k-2) (3.19)
6

° The system signal was initiated and the LMS filter transients

were allowed to die for 20 seconds or 3 periods of system signal,
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whichever was _reater. The in-phase and quadrature components were

computed, resnectively, for one cycle as:

T

fl f y(t)sin(flt)dt (3.20)

_2 T
O =-- f V(t)cos(flt)dt (3.21)I[

The phase and _a_n were computeN by the followJn_ relations

_b = tan-l(_] (3.22)

M = 10 IOZlo[O 2 + p2] (3.23)

The RMS error of nrediction was also computed durin_ the period of

phase and _ain eya]uation.

Figure (III-12) is a plot of phase and _aSn as a function of

freouency at a sample rate of 25 Nz. The phase maintains _ood

(I€ I < 15 de_ree)uD to an input signal frequency of abouta_reement
i T

30 rad/sec. The _ain remains relatively flat .n through about 20

rad/sec. Figure (III-13) shows a plot of the RMS error of Dredic-

tion, confirmin_ the re_ion of d_ffic.]ty st frequencies _reater

than 20 rad/sec.

As expected, it was observed tbat the _amDle rate is a prime

factor _n determining the fre_ueocy where the performance of the

filter be_ins to de_raAe. Figure (I!I-IA) is a plot of the ratio of

frequency for a 15 de_ree nhase mar_in to samp]e rate as a function

of sample rate. A ratio o¢ I/4 to ]/10 bounds most of the answers,

so it seems that _ood design practice wo.]_ call for usin_ a sample

rate of 10 times the bi_best frequency bein_ modeled b¥ the LM_

adaptive al_orithm.
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PHASE AND GAIN PLOTS OF LMS FILTER
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Figure 111-12 -- Phase and gain plots of second order LMS filter as

a function of input signal frequency at a sample
rate of 25 Hz.
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Figure 111-13 -- RMS error of prediction for second order LMS

filter as a function of input signal frequency at
a sample rate of 25 Hz.
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FREQUENCY RATIO FOR LESS THAN 15 DEGREE
PHASE MARGIN AS A FUNCTION OF SAMPLE RATE
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Q 15°_ 0
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Figure 111-14 -- Frequency ratio for satisfying 15 degree phase
margin for second order LMS filter as a function

of sample rate.
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B° HIHO CHARACTERISTICS OF LHS ALGORITHM

A number of simulations were performed studying multi-input,

multi-output identification to verify the multivariable formulation

• of the LMS algorithm developed in section II-C. No unusual charac-

teristics were observed; as the number of parameters being identi-

" fied increased, the accuracy decreased as predicted.

As previously mentioned, the mean parameter error increases

linearly with the number of parameters being identified. There are

2 parameters for the first order system of subsection III-A.I, 4

parameters for the second order SISO system of subsection III-A.3

and there are 10 parameters for a second order system with 2 inputs

and 2 outputs. There are n+nrm parameters in a MIMO system of

order n with m inputs and r outputs. Clearly, the number of

parameters grows significantly for MIMO systems.

During this research, systems were studied ranging from first

order to tenth order; some were SISO and some had 2 inputs and 2

outputs. Although the results are somewhat inconsistent (no effort

was made to systematically match sampling rates, duration of adap-

tion, plant dynamics or step size factors) a plot of average para-

meter error is shown as figure (111-15). It is a plot of what is

supposed as the best achievable for each problem. There is signifi-

cant scatter in the data, but the anticipated trends are observ-

able. One can expect a degradation in parameter estimation accuracy

as the number of parameters increases. This is another good argu-

ment for using the IMLMS formulation as it allows for fewer

parameters to be estimated at each stage of the model building.

Figure (111-15) also illustrates the fact that the numerator

terms converge slower in time and have much larger parameter

errors. Inaccuracy is substantially reduced by using the recursive

LMS algorithm in conjunction with the batch least squares identifi-

cation for the numerator terms as was developed in section II-E.
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PARAMETER ERROR PERFORMANCE AS A FUNCTION OF THE NUMBER
OF PARAMETERS

30- O SISOLMSFILTER
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v/%-z .-- ._. --- -" "[3 "-- LNISFILTERDENOMINATOR
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NUMBEROFPARAMETERS.n + nrm

Figure 111-15 -- Average normalized parameter errors as a function
of the number of model parameters.
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C. CONVERGENCEIN PRESENCEOF UNMODELEDMODES

References [31-33,39-40,48-50]have indicatedthat LMS adaptive

filters converge well even when used with mismatched model order.

A simulationstudy to verify these assertionswill be presentedino

this section. A fourth order SISO plant is modeled as equations

• (3.9) and (3.10) with

1 ) o o ]

A = 0 0 0 (3.23)

0 _(m2,_ 2

[BI]= (3.24)
B B2

H = [HI,H2] (3.25)

The submatrlces are defined as

I0 2 1 (3.26)Ai(_i,_i) = -mi -2_i_i

0 ] (3.27)Bi = bi

Hi = [hi 01 (3.28)

Measurement and control influence terms are normalized by the first

mode to define

h2
- h'= -- (3.29)

hI
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b2
b- = -- (3.30)

bI

The input signal is the pulsed wave of equation (3.11) where

Uam p = .5, _ = 1 rad/sec and the sample rate, Us, is 20 Hz.

The simulations were run for 200 seconds with _ = .008 and for all

runs _I = I rad/sec and hI = bI = 1.

The LMS adaptive filter was implemented assuming only one mode

and the parameters of the second mode were varied. Identification

accuracy was found by comparing the experimental LMS coefficients

with the theoretical discrete coefficients of mode I. A summary of

the results with _I = _2 = .5 is plotted as figure (111-16).

The total percentage error for the denominator terms is shown

in figure (111-16) as a function of the frequency of the unmodelled

mode, _2" The LMS filter does remarkably well for _2 greater

than 2. Looking at the curves with h = 2 and greater, it is appar-

ent that the LMS filter tries to identify the lowest frequency mode

until the signal power of the new mode becomes prohibitively

strong. As the frequency of the unmodeled mode approaches the fre-

quency of the modeled mode, 1 rad/sec, the parameter error grows.

When h > 2, the parameter estimate near 1 rad/sec is nearly

divergent as the LMS algorithm begins to follow the second mode.

A survey was done varying _i and _2 but making them

equal, and the same shape curves as figure (111-16) were obtained•

However, the actual parameter estimation accuracy was dependent upon

the input sequence used to excite the system. With the same input

as was used for generating figure (111-16) and with varying the

damping ratios between .005 and 1.0, the asymptotic total parameter

estimation error varied between .12 percent and 5.9 percent.

If the damping ratios of the two systems are not held constant,

the impact of the input signal is felt more strongly. However, the

same trends are apparent• If the spectral separation between two

modes is wide and they have nearly equal signal power, the LMS

filter can be expected to perform well in estimating the values of

the parameters of the lowest frequency mode.
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IMPACT OF UNMODELLED MODES UPON PARAMETER
IDENTIFICATION ACCURACY

4-

AVERAGE K = b h= b= 5
PARAMETER3
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ep. 2
o/.
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Figure 111-16 -- Total parameter estimation error versus the

frequency of the unmodeled mode.
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D. IHI_tS CONVERGENCECHARACTERISTICS

The Incremental Mode LMS (IMLMS) algorithm was derived in

section II-F and is useful because only part of the model is

adapted. It allows the known part to be held constant while the

unknown part is adjusted. This provides a natural way to perform

model building--that is, by adding one mode at a time. Although no

additional assumptions were needed to prove convergence of the IMLMS

filter compared to the LMS algorithm, it is still of interest to

verify the performance of the parameter estimates.

The generic sixth order plant is modeled by assuming the

linear, time-invariant, state space representation of equations

(3.9) and (3.10), with A in modal form:

iI 0 •

A = A2 (3.31)

A3

B = B2 (3.32)

B3

H = [H1, H2, H3] (3.33)

The submatrices are defined by equations (3.26-3.28). For this

simulation the plant parameters were selected as follows:

mi,2,3 = I.,4.,8. ras/sec

bl,2, 3 = hl,2, 3 = I.,2.5,1.

_1,2,3 = .I,.I,.I
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The sample rate, Us, is I0 Hz so that• _s > _3 and the

input signal is a pulsed wave given by equation (3.11) with

Uamp=.5 and _=I rad/sec.

Time histories for the simulation are shown in figures (111-17)
m

through (111-20). It is assumed that the first mode is known

exactly and the IMLMS algorithm is used to identify the second

mode. The third mode is not modelled and is treated as process

noise similar to the previous section. Since the spectral separa-

tion between modes 2 and 3 is 4 rad/sec or a ratio of i to 2, it is

expected that good parameter estimation is possible. The output, y,

the control input, u, and the modal positions, xI, x3, and x5

are plotted in figures (111-17), (111-18) and (111-19),

respectively.

The recursive parameter estimates for the two denominator

parameters of the second mode are shown in figures (111-20) and

(111-21). The parameters obtained 90 percent of their asymptotic

limits within about 3 or 4 periods of oscillation of the second

mode. The total parameter error was small (.23 percent). There was

no tendency toward a bias and it converged quickly, even in the

presence of another mode. So as predicted, this illustrates para-

meter convergence properties similar to the LMS algorithm for the

same number of parameters being adapted.
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TIME HISTORY OF OUTPUT
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OUTPUT.0
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TIME.t, sec

Figure 111-17 -- Time history output of third order system used for
studying IMLMS algorithm.
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Figure III-18 m Time history of control input used to excite third

order system for studying IMLMS algorithm.
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POSITION OF EACH OF 3 MODES
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Figure 111-19 -- Time history of the positions of each of three

modes during simulation used to study IMLMS

algorithm.
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ADAPTION TIME HISTORY OF Of,1
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Figure 111-20 --Tlme history of denominator coefficient, _I, for
IMLMS algorithm demonstration.
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Figure 111-21 -- Time history of denominator coefficient, _2, for
IMLMS algorithm demonstration.
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Chapter IV

4

•STATESPACEREALIZATIONSFROMMIMOTRANSFERFUNCTIONS

A. PROBLEMDESCRIPTION

The multi-input, multi-output (MIMO) version of the LMS and

IMLMS adaptive filters yield the coefficients for the following

discrete ARMA model in indicial notation

^

YE(k) = ciYA(k-i) + BiAju j(k-i) (4.1)

This represents a set of discrete transfer functions [21]

n
-i

Biz

H(z) = i=I n (4.2)
-i

1 - _ c i
t-1

The compensator portion of the adaptive control scheme proposed

here will be implemented on-line using optimal control techniques.

This requires a state space realization of the plant model to take

advantage of the computer codes that are available for optimal

design of linear quadratic gaussian (LQG) systems [51].

Finding a state space realization given a single-input, single-

output (SISO) transfer function is straight forward [52]. However,

finding a state-space realization given a MIMO transfer function as

a state space representation is considerably more complicated.

Several methods have been proposed [53,54], but they tend to be

effective only when the coefficients of (4.2) are exact• The

coefficients of (4•2) as determined by the LMS or IMLMS algorithms

- will not be exact. Additionally, a truncated, equivalent system of

a higher order system may be desired.
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A robust algorithm for finding minimal state space realizations

was proposed in reference [55]. However, it is costly in terms of

computational burden as it requires nonlinear programming tech-

niques. In section C an improved version of the algorithm is devel-
4

oped which greatly reduces the required computations. A further

refinement is proposed in section D for the special case of a single

mode with 2 inputs and 2 outputs (a 2x2x2 system). A partitioned

linear algorithm is derived in section E which requires no itera-

tions. In the final section of this chapter, some examples are

given.

B. ALGORITHM FOR STATE SPACE RFALIZATIONS

The algorithm of reference [55] is developed below in the

s-domain, but it is easily extended to the z-domain. It converges

only for stable systems (poles inside the unit circle).

The transfer function matrix is represented as

N(s) (4.3)P(s)=d(s)'

and a state space realization is desired

P(s) = H(sI-A)-IB + L , (4.4)

where A is a nxn matrix, B is a nxm matrix, H is a rxn

matrix and L is a rxm matrix. P(s) is proper and rational and

d(s) is the least common denominator of order n.

L is found in the usual way

L = lim P(s) (4.5)
S._

The ARMA representations in this research are usually assumed to be

of unit delay, so that L = 0. Define the following
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M(s) - N(s) - Ld(s) (4.6)

therefore,

M(s) = H( sl-A)-IBd( s) (4.7)

The denominatorcan be representedas

d(s) = a0sn + alsn-I+ a2sn-2+ ...+ anS0 (4.8)

or by the summation

n

d(s) = [ an_iSl (4,9)i=O

The term (sl-A)-I can be represented by the exponential

series given by [52]

(sl_A)-I= I _ s-kAk (4.10)s
k=0

Substituting (4.9) and (4.10) into (4.7) yields

1. s_kA n iM(s)= s [ an_lS (4.11)
k=O i=0

which also equals

n

i-k- IAL_an_iP B (4.12)H(s) =n l I s
i:0 k=0
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If the following definition is made

k' --k+i-i , (4.13)

then

k =-k'+i-I , (4.14)

and

M(s) H [ sk'A-k+i-I " (4.15)= an_ i
i=0 -k'+i-l=0

Adjusting the k' summation £ives

n m_

M(s) H [ [ sk'A-k'+i-Iffi an_ i B • (4.16)
i=0 k'=i-I

Breaking (4.16) into positive and negative summations of k' gives

n 0 k,A_k,+i_1M(s) = H I _. s an_i
i=0 k'=i-I

+ In -_[ sk'A-k'+i-lan_i B (4.17)
i=0 k'=-I

Note that a zero i gives a negative k'. So in the positive k'

summation, i goes from I to n; and in the negative k' summation,

i goes from 0 to n. The negative summation of equation (4.17)

equals

[ sk'A -k'-I _ Aian_ i (4.18)
k'=-I i=O
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But

n

Aian-I = lan + Aan_l + "'" Ana0 = 0 (4.19)
. i=0

• Equation (4.19) is equal to zero by the Cayley-Hamilton Theorem

[52] since d(s) is the minimal polynomial of P(s). Therefore,

equation (4.17) becomes

n i-I

M(s) --H _ _ sk'A-k'+i-lan_i B (4.20)
i=l k'=0

Equation (4.20) is solved iteratively by specifying a set of

residuals, R(s), for minimization using nonlinear programming

techniques.

n-I

n-I k el_kHAn-I-iBR(s) = M(s) - [ s [ (4.21)
k=0 i=k

Ideally the elements of R(s) approach zero at a solution determined

by the numerical procedures outlined below.

Developing the following indicial notation

R0sn-I RlSn-2 0 (4.22)R(s) = + + ... + Rn_iS

I u

ril I ril2 "'" rilj "'" rilj

r 21
Ri ffi .• •• :. (4.23)

rikl

rirl fir2 "'" rikj "'" firm
n

• and if M utilizes the same notation, we can equate indices in

(4.21) and write
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n-I

n-i n-i n-i a£ IHAn-I-£Bs rlkj ffis talkj - s [ _ (4.24)£=I

It is desired to make the sum of the squares of the residuals,

r2ikj, as small as possible. Since values of mlkj may vary

significantlyin magnitude, causing numerical problems, (4.24) is

normalized by mlkj (in the computer code, mikj is set to 1 if

less that 10-6). Normalizing and equating terms of llke powers of

sn-i gives

n-1

mikj - [ a£_iHAn-l-£B
- £--i . (4.25)
rikj = mikj

The implied summation limits for i, j and k are 0 to n-l,

I to m, and I to r. Hence, (4.25) implies that nrm equations are

required for the minimization of r2ikj.

A unique solutlon of (4.20) is obtained through the minlmlza-

tlon of r2ikj from. (4.25) by choosing an A matrix with the

proper elgenvalues from the coefficients (4.9) and by specifying one

nonzero element in each row of B or each column of H. The

remaining elements of B and H are found iteratlvely using non-

linear programming techniques.

For convenience, the A matrix is chosen in observer canonical

form [21,52] and the elements of the first row of H are chosen as

unity. Equation (4.22) is solved computatlonally by using Stewart's

adaptlon of the Davldon-Fletcher-Powell (SDFP) algorithm [56,57],

where the gradient is computed by numerical differentiation. The

minimization is performed over (m+r-l)n optimization variables

using a computer code for the SFDP algorithm available at Langley

Research Center.

Initial implementations of this multlvariable state space

algorithm were found to be extremely sensitive to initial condl-

tlons. Two solutions were adopted to improve operating
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characteristics under varying initial conditions: I) If a satisfac-

tory convergence is not obtained in a certain number of function

calls, the routine restarts itself with a new set of parameters

chosen randomly between some preselected boundaries; and, 2) an

optimization variable transformation was used to scale the variables

and apply constraints to the region that the search is allowed to
t

take place over.

The optimization variable transformation [58] from the para-

meters, Pi, of H and B to the optimization variables, zi, is

given by

(Ui-L i) _ Ui+L i

Pi = 2 sin (_ zi) + 1_) (4.26)

where zi is the ith variable the SDFP code optimizes, Ui and

Li are the upper and lower values, respectively,that are con-

straining the ith parameter, Pi" The inverse transformationis

clearly given by

Pi - (Ui+L-----_i)
2 -I 2

z. =-- sin ( )
i w (Ui-L i) (4.27)

2

The key feature of this transformation is that the optimization

codes search parameters over a range of -I to +I. Furthermore, any

value of zi will always return a value for Pi in the range

Li to Ui. Hence, the code optimizes variables of approxi-

mately the same size and the Pi'S have been effectively

constrained to lie between Li and Ui.

In the next three sections, further improvements in the

algorithm are developed. Section F of this chapter gives examples

• illustrating the use of these algorithms.
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C. MODIFIEDALGORITHMBY PARTITIONING

An algorithm for obtaining state space realizations from

multivariable transfer functions [55] was developed in the previous

section. It is noted, however, that the solution of equation (4.20)

through the normalized error residuals of (4.25) involves the use of

nonlinear programming with the optimization code searching over

(m+r-l)n variables. In the simplest useful case of a 2x2x2 system

(nxrxm), there are 6 degrees-of-freedom the program must search

over. A typical representation for the longitudinal motions of an

airplane would require 12 parameters (4x2x2). The overall adaptive

control algorithm should be able to translate the parameters

estimated by the LMS or IMLMS filters into state space realizations

in real-tlme on microprocessors prior to the suboptimal compensator

design. Performing a search over this many parameters would be

quite slow.

In this section an improvement to the algorithm of [54] is

proposed that reduces the execution time by reducing the number of

degrees of freedom. The approach used is to partition the problem

into a linear part and a nonlinear part. The linear part is solved

with simple matrix operations using the current values of the

iterated nonlinear part. In this fashion the size of the nonlinear

portion of the problem is reduced.

Take the matrix equation of (4.25) for the s° term of the

numerator (i=0)

n

M0 - _ a£HAn-I-EB

= £=0 (4.28)
M0

Since it is desired that R0 approach zero, we can rewrite

(4.28) as

M0 = _ a£HAn-I-£B (4.29)
£=0
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which is just a different form for one power of s from (4.20).

Assume H is known, then (4.29) can be solved for B

n

• B= _ (a%HAn- I-£ )+Mnv (4.30)
_=0

t

The ()+ indicates a matrix pseudo inverse, which is needed if r

and m are not equal. In the likely event that r and m are

equal, then a simple matrix inverse is needed.

Equation (4.30) implies that once the elements of H have been

chosen, B can be computed using linear algebra. Therefore, the

nonlinear optimization code now only has to search over the elements

of H; and, B is computed by (4.30). Hence, the solution of

(4.20) has been effectively partitioned into a nonlinear part (find-

ing the remaining elements of H) and a linear part (finding the

elements of B).

The degrees of freedom for the algorithm of [54] have been

reduced from (r+m-1)n to (r-l)n. In the case of a 2x2x2

example, this corresponds to a reduction from 6 degrees-of-freedom

to 2, which would translate into more than a 66 percent savings in

execution time for the optimization code. The 4x2x2 example is

reduced from 12 to 4 parameters. It is anticipated that this would

correspond to a reduction of nearly 85 percent in execution time.

These savings are significant, especially when on-llne implementa-

tions are considered. Additionally, the accuracy of the algorithm

can be expected to improve with a reduction in the number of free

parameters.

It may be advantageous to alternatively specify n nonzero

elements in B and find the remaining elements in B by nonlinear

optimization. Equation (4.29) can then be rearranged for a linear

solution of H

n

H-- _ ( _ a%An-l-£B)+ (4.31)
_=0
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Using (4.31) would result in (m-l)n degrees-of-freedom. In

this research (4.30) was used, but the choice should be based upon

the relative magnitudes of m and r.

D. PARTITIONED ALGORITHM WITH ANALYTICAL GRADIENTS
FOR SINGLE MODE

In the previous section, the algorithm of [54] was partitioned

into a linear and a nonlinear part to improve computational effi-

ciency. The implementation of the algorithm with Stewart's adaption

of the Davidon-Fletcher-Powell (SDFP) computer code utilizes

numerical differencing techniques for the computation of the gradi-

ents. This is time consuming and is required only when analytical

relations for the gradients are not available. General relations

for the gradients were not possible because of the inverse/pseudo

inverse aspect of equation (4.30) that is used in the quadratic form

of (4.25). However, it is possible to derive analytical gradients

for special cases.

In the multivariable examples used in this research, the prob-

lem of adding a single mode with two inputs and two outputs (2x2x2)

to a model was encountered frequently. In order to speed up the

partitioned algorithm further, analytical relations for the first

partials and second partials of the cost function with respect to

the parameters of H were found. This allowed direct implementa-

tion into Newton's method of optimization [22]. The iteration in

terms of optimization variables, zi, would be processed for the

kth iteration as

z.(k+l) = zi(k) + J -1j (4.32)l mE Z

where J is the cost function defined from (4.25) as

n-i m r -2

J = _ _ I rik j (4.33)
i=O j=l k=l
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Jz and Jzz are the first and second partials of J with

respect to the optimization variables, zi.

For the 2x2x2 case considered here, B is found from (4.30) as

B = (alH+HA)-I _ (4.34)

and the residuals come from (4.25) as only the s term since (4.34)

exactly satisfies the i=0 term

-2 [mijk-a0HB ]2= (4.35)
rijk 2

mijk

For convenience H is taken as

1111H = (4.36)

21 h2

so that the parameters that are sought in the nonlinear part become

[ 21]2_ = (4.37)

Lh22J

The first and second partials of J with respect to 2_ were

computed on MACSYMA [59,60]. The 4 second partials and the 2 first

partials took up over 50 lines of Fortran code. Although the compu-

tational burden is lower, the complexity is much greater.

The optimization variable transformation of [58] was used in

this case, as well, to scale the parameters and to apply limits to

the range the search is taken over. Hence, the partials of J with

respect to zi are computed as follows
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_J = _J . ___Pi (4.38)
_zi _Pi _zi

_2j = 82j . ___Pi • --SPJ (4.39) "
_z._z.13 _Pi_PJ _z.1 _z.3

The correction terms in (4.38) and (4.39) for transforming the

gradients between the z-domain and the p-domain are developed from

(4.26) as

8Pi (Ui-Li) _ COS(28z_ = 2 2 zi) (4.40)
1

This 2x2x2 version of the multivariable state space realization

had significant savings as the number of required function calls was

reduced 50 percent over the partitioned method of the previous

section.

In this section the analytical gradients, Jp and Jpp,

were found on MACSYMA [59,60] only for the 2x2x2 problem. MACSYMA

was used to directly obtain Fortran code, indicating the possibility

of finding the gradients for any specific problem if a particular

application warranted it. For example, a 4x2x2 system would be

useful for airplane applications. So the general procedures

developed in this section would be useful for developing adaptive

control systems for other cases. However, the lack of generality

and the length of the sensitivity equations limit the widespread

applicability of this approach.

E. PARTITIONED LINEAR ALGORITHM

After performing the simulations for this report, another

method was found which partitions the problem into two linear
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problems. I One is solved with a simple matrix inverse and the other

is solved with a pseudo inverse (least squares). No nonlinear

programming techniques are required. This approach is derived here

and results are presented in the next section which illustrate the
Q

increased efficienty and accuracy.

The partitioned linear algorithm is derived by rewriting the

infinite matrix polynomial equation (4.10) as a finite partial

fraction expansion

n-I

s%Cn_%

(sI-A)-I %=0
= d(s) ' (4.41)

where Cn_% are the numerator matrices. Then by equating the

transfer function numerator matrices in powers of s, equation

(4.41) can be partitioned into two linear problems.

The numerator terms from (4.6), (4.7) and (4.41) are equated as

n-% n-i

H _ s%Cn_%B = _ s£Mn_%. (4.42)
£=0 %=0

As for the previous approaches, a nonzero element is specified in

each column of H. For convenience and compact notation, l's are

chosen for all the elements of the first row. If the notation

(.)U is used to indicate taking the first (uppermost) row of (.)

and (.)L is used to indicate taking the remaining (lower) rows

of (.), H can be partitioned as

=[ ul
H LnLj (4.43)

" IThis method was proposed to the author by Professor Arthur E.

Bryson, Jr., of Stanford University in a personal letter dated April

20, 1983. This was later refined in a letter from Prof. Bryson on
May 14, 1983. The author has subsequently generalized the approach

for high order systems for any number of inputs and outputs.
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where

HU = [I 1 ... I] (4.44)

with dimension Ixn. HL has dimension (r-1)xn. The desired

numerator matrices, M(s), are partitioned in the same fashion

The dimension of MU is Ixm and the dimension of ML is

(r-l)xm.

Define a new matrix, TH, which stacks the first rows of the

matrix products HUCk

HUc]
TH =[_|H.C . (4.46)

LHUc.

Also, the first rows of the M(s) matrices are stacked vertically in

VB

r(MI)U]

= | . (4.47)
VB (S_)u

L(MB)U

Equation (4.42) is partitioned using (4.46) and (4.47) into a

linear equation in terms of B.

THB = V B (4.48) "
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B is found by premultiplying (4.48) by TH-I

B = THIVH.- (4.49)

The remaining nr-n values in H are found by solving the

remaining equations of (4.42). Define two new matrices as

TB = [CIB C2B ... CnB] (4.50)

VH = [(MI)L (_)L ... (Mn)L ] • (4.51)

The dimensions of TB are nxnm and the dimensions of VH

are (r-l)xnm. The lower partition of (4.42) is written as

HLT B = VH , (4.52)

which is a set of nmr-nm equations for nr-n unknowns. The unknown

values for H are found in a least squares sense as

HL --VH(TB )+ (4.53)

where ()+ indicates a pseudo inverse.

The numerical solution is found in a direct way with no

requirement for nonlinear programming. Nonzero values for the first

row of the output distribution matrix, H, are assumed. The partial

fraction expansion for the numerator terms of (sl-A)-I , C, is com-

puted using the Leverrier-Souriau-Faddeeva-Frame formula [51,52].

The control influence matrix, B, is computed using (4.49). Then a

least squares solution for HL, the remaining terms of the output

distribution matrix are computed using (4.53). This approach

requires no iteration and is computationally fast. The most strin-

gent computational burden is the need for two matrix inverses of

size nxn.
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F. NUMERI_LEXAMPLES

In this section a 2x2x2 transfer function from [54] is

considered and the algorithms of the previous four sections are used

to find a state space realization. The answers are compared by

evaluating the residual at the solution. First a problem with exact

coefficients is given and secondly the same problem with inexact

coefficients is utilized. The exact transfer function is

P(s)- s+3J (4.54)
s2+5 s+6

The chosen A matrix becomes

[ i]A = (4.55)

-6

and the M matrices are

M2 = . (4.57)

The H matrix is assumed to be

hI I ].

H = (4.58)

21 h22

Initial guesses for the parameters of the partitioned method were

h21=l and h22=.25.

The exact solution for the state space realization is

0 .25]

B = (4.59)

1.0 .75J
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H = (4.60)
.0

A comparison of the straight SDFP, the partitioned SDFP, the

• Newton's iterative, and the partitioned linear methods are shown in

table (4.1). The partitioned SDFP algorithm reduced the number of

function calls from 25 to 7 and improved the accuracy of the fit.

The partitioned Newton's method with analytical gradients reduced

the number of function calls further to 3. The partitioned linear

method required no iterations and was much more accurate than the

other three.

Table 4.1 -- Convergence characteristics of realization algorithms
for a problem with exact coefficients and of size
2X2X2.

METHOD NO. OF FUNCTION CALLS RESIDUAL

SDFP 25 4.01 E -07

PARTITIONED SDFP 7 1.21 E -14

PARTITIONED NEWTON

WITH ANALYTICAL 3 1.70 E -II
GRADIENTS

PARTITIONED

LINEAR 1 2.31 E -18

LEAST SQUARES
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The solution that the partitioned linear method achieved was

2-39xI0-I0 -251

= (4.61)

B L 1.0 .75

I:°°01H = (4.62)

.0 9.57xi0 -I

Now consider the case where the transfer function is an inexact

representation of the same system. This might occur with experi-

mental data, for example. The inexact transfer function is given by

[I11s0.191.02s3 15]
P(s) = 4.11 .9s+3. (4.63)

s2+5.03 s+6.62

The matrices A, MI, M2 and H are defined in the same

fashion as equations (4.55-4.58). The results of applying the three

algorithms is shown in table 4.2. Partitioning the SDFP algorithm

resulted in a reduction of function calls from 39 to I0. Computing

analytical partials of the cost function allowed a further reduction

in function calls to 5. The partitioned linear method gave accept-

able performance with no iterations.

The solution that the partitioned linear method obtained for

the inexact case is given by

.04 .23]
B = (4.64)

1.07 .79J

H = (4.65)
.32 -. 0
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Table 4.2 -- Convergence characteristics of realization algorithms
for a problem with inexact coefficients and of size
2X2X2.

Q

METHOD NO. OF FUNCTION CALLS RESIDUAL

SDFP 39 3.40 E -07

PARTITIONED SDFP I0 4.44 E -06

PARTITIONED NEWTON

WITH ANALYTICAL 5 7.36 E -07
GRADIENTS

PARTITIONED

LINEAR 1 3.51E -4

LEAST SQUARES
b

Using (4.64) and (4.65), P(s) is

I.Iis+6.19 1.02s+3.25 ]

P(s) = L.057+4.086 .907s+3.156J (4.66)
s2+5.03 s+6.62

Most approaches to state space realizations of this second

example would have resulted in a fourth order system due to the

inexactness of the experimentally-determined coefficients. Since

the LMS or IMLMS algorithm is implemented by stating the desired

size of the block to be added, it is advantageous for the algorithm

to return a minimal state space realization in a least squares, best

fit sense. If the value of the residual at the solution is too

large, further estimation of the parameters by the output error

identification scheme would be warranted.
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Since real-time applications for the algorithm using micropro-

cessors are anticipated, the linear partitioned method appears to be

the most promising. It requires no iteration and is totally general

for any size system with any number of inputs and outputs. Addi-

tionally, it is computationlly simple as it requires only two matrix

inverses of matrices with rank equal to the system order. It sacri-

fices some accuracy for inexact problems, but these differences were

negligible for the cases considered.
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Chapter V

• SUBOPTIMAL COHPENSATOR DESIGN AND IMPLEMENTATION

A. INTRODUCTION

Section I-C describes the approach to adaptive control in this

research. A fast, robust identification scheme estimates a set of

discrete transfer functions for the process being controlled (chap-

ters II and III). These transfer functions are then converted into

a state space realization (chapter IV). Using the compact matrix

notation of the state space realization, digital compensator logic

is designed using linear-quadratic-gaussian (LQG) techniques (this

chapter).

Figure (V-I) is a block diagram that shows the form of the

suboptimal compensator. Albeit LOG or so-called optimal control

techniques are used, the compensator is referred to as suboptimal

because generally no prior knowledge of noise covariances is avail-

able and because the model utilized for the compensator design is

understood to be an inexact representation of the plant. Constant

gain matrices K, C, and F are the output of the design pro-

cess. To keep the computational burden low for the digital compen-

sator, both the filter and the controller are implemented with their

steady state values. The LQG digital designs were performed using

ORACLS [51]. A more complete description of the computing tech-

niques is given in appendix I.

Some simplifications were required to obtain the capability to

perform on-line designs. The form of the weighting matrices was

assumed; and, it was assumed that the separation theorem [52] holds

in spite of plant-model mismatch. This allows the filter and the

controller to be designed sequentially. However, the overall

system is checked for stability of the compensator.
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SUBOPTIMAL COMPENSATOR BLOCK DIAGRAM

'c u u u(k) x SENSOR v

FEEDFORWARD- - --'-- ----] .................. Jr --

I sE.soR y(k_1
I MODEL

I
FILTERGAIN I

_I

DIGITALCOMPENSATOR

Figure V-1 -- Block diagram showing fundamental structure of

suboptimal discrete compensator.
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B. STEADY STATE KALHAN FILTER DESIGN

Once the order and parameters of the model have been found, an

asymptotic Kalman-Bucy filter [63] is found using ORACLS [51]. The

system is modeled as a discrete, LQG, time-invariant process. The

state equation is given by

x(k+l) = _x(k) + r w(k) (5.1)

with output

_i(k+1) = Hx(k) + v(k) (5.2)

where _ is the state transition matrix, rw is the discrete

influence matrix of process noise input, _. It is assumed for

simplicity in most filter designs that rw, is an identity matrix

of order n. The elements of _ and H are determined by the state

space realization methods of the previous chapter from the identi-

fied parameters of the LMS or IMLMS algorithms.

The process noise _(k) and the measurement noise _(k) are

modeled as purely random gaussian vectors with zero means and co-

variance matricies Q and R. The solution requires that w(k) and

v(k) are mutually uncorrelated. Since prior knowledge of the pro-

cess is limited due to the model building approach being proposed,

the on-line design is implemented by assumming that Q and R are

identity matrices of rank n and r, respectively. The designer

choices p, a scaler multiplicative factor of Q, as a means of

varying the relative weights in the cost function. This simplifica-

tion is possible since the output variables are scaled during the

identification process.

The cost function is defined as

" J = lim E[EJ(k)W!(k) ] (5.3)
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where g is defined as

g_(k) = _(k) - _(k) (5.4)

and W is a weighting matrix which does not appear in the

computation. If the pair (i,r w) is stabilizable and the pair

(_,H) is detectable, then a solution to the optimal observer problem

exists and the predicted state, _, is given by

_(k+l) = __x(k)+ K[_!(k)-Hx_(k)] , (5.5)

where

^

_x(0) = E[_x(0)] . (5.6)

The steady state filter gain is found from

K = _pHT(R+HPHT) -I (4 7)

where P satisfies the discrete algebraic Riccatti equation

p = (_-KH)P(_-KH) T + KRK T + pQ . (4.8)

The matrix P represents the constant, steady-state variance

matrix of the reconstruction error, g(i), given by

lim E[x(k)xT(k)]°--_= P (5.9)
i=0+-=

The product of this computation is K, the Kalman filter gain

matrix in figure (V-l). The designer chooses the weighting factor,

0, and the on-line code uses the values of i and H to find a K

matrix. Some skill is needed in choosing p and it could
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conceivably be delegated to the heuristic, problem solving logic of

the adaptive processor• Clearly, if this approach was being imple-

mented on a process where prior knowledge can be used to estimate Q

and R, an optimal Kalman-Bucy filter may be possible•

C. STEADYSTATEREG[N__TORDESIGN

After the order and parametersof the model have been deter-

mined, a state space representation found, and an asymptotic filter

gain computed, an asymptotic quadratic regulator gain, C, is calcu-

lated (see fig. (V-l)). The discrete, tlme-invarlant, linear,

optimal output regulator problem is solved using ORACLS [51]. The

system is given by

x(k+l) = %x(k) + ru__(k), (5.10)

and the output vector is

y(k) = Hx_(k) . (5.11)

The cost function that is optimized is

N-I

J = llm E _ [_T(k+l)pQy_(k+l)+ _uT(k)Qu_U(k)] (5.12)N+_ i=0

subject to the constraints of (5.10) and (5.11). The matrices _,

F and H are obtained from the estimation and state space

realization sections of the code. Qy and Qu are weighting

matrices that are assumed to be identity matrices of order r and

m, respectively• The design parameter, p, is a scalar multipllca-

tire factor of Qy.

If the pair (_,r) is stabilizable and the pair (_,H) is

detectable, a solution to the optimal control exists and is given by

_(k) =-C_(k) , (5•12)
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where

C = (R+FTpF)-IFTp_ (5.13)

and

p = (_-rc)re(_-r¢)+ CTQuCT + HTpQyH (5.14)

The steady-state controller is designed by computing the

constant regulator gain C. The code uses as input the matrices _,

F and H and the designer chooses O. The weighting factor, p,

is chosen by the designer as a relative trade in the cost function

between output power and allowable control input power that is mini-

mized. The convenience of utilizing O as the design parameter is

possible since the variables are scaled during the identification

process. It may be desirable to allow the adaptive processor the

opportunity to heuristically select the magnitude of p.

The separation theorem was used to design the controller and

observer separately, but it should be noted that when actually

implemented they are linked by

u(k) = -Cx(k) (5.14)

That is, the estimated states are fedback. Stability is not guaran-

teed since the transition matrices of the estimator and regulator

may not be sufficiently accurate representations of the process

being controlled. This assumption that the separation theorem holds

is not necessarily true, but the suboptimal compensators designed in

this fashion do exhibit good control characteristics for a wide

range of problems.
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D. NON-ZERO SET POINT FOR DISCRETE RECdTLATOR

Durin_ the model building process proposed here, it is

necessary to sufficiently excite all the modes of the system.

It was observed in chapter Ill that sqt,are wave p.lses of the

control inputs are a good way to do this. AlthouRh it may not be

desirable durln_ a control task to _ndiscrlminate]v pulse the

controls, some sort of dither signal is necessary to insure the

convergence of the Identification schemes.

An alternative approach, which has proven tO be successful, is

to command the output to follow a pulsed souare wave pattern. If

the plant mode] is Food, the o.tput will closely follow the com-

manded outp,,t, t;owever, if there are unmodeled modes present, they

will most likelv be excited and discerned in the output. The reason

for this Js that feedforward gain matrix, F, _s based on the plant

model.

The feedforward gain matrix, F, for a discrete reRulator is

based upon the non-zero set point ca]culation_ from reference [64].

Since the calculation is fundamentallv requirin_ an asvmptot Jc

response to step commands, the zeros have been neglected [21]. The

state equations are

x(k+l) = @x(k) + Ft.(k) (5.15)

!(k) = -i(k)+ t,,:(k) (_.16)

The steady state equations oce.r when

x -- @x + r,, (s.17)--SS --SS --_--SS '

v = l_x + T,u . (5.18)--SS --aS --._S

Combining terms in (5.17) yields

0 - (O-I)x_s s + ru (5 lq)-- --SS •
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writing (5.19) and (5.18) in matrix form

ss L-SSl

Solving for __ss and __ss yields

ss = (5.21)

L YssL--SSj

The matrix inverse is partitioned as follows:

:][i
where the dimensions of S1 are nxn, S2 are mxn, F1 are

nxr and F2 are mxr. The steady state values of the states and

control inputs are

x = F1 (5.23)--ss Zss

Uss = F2 Yss (5.24)

Since it is desired to have the steady state output approach

the steady state commanded output, let

Yss = _-c (5.25)

Also, in the steady state _ss+_Xss, so from (4.14)

u = -Cx . (5.26)
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Adding a steady state component to both sides of (5.26) implies

that corrective inputs would occur only for deviations from the non-

zero set point

u - u = -C(_-_ ) (5.27)-- --SS SS

Solving for the total control u

u = u - Cx + Cx (5.28)-- --SS -- --SS

Substituting (5.23) and (5.24) into (5.28) gives

u = F __c - Cx_ (5.29)

where

F = (CFI+F 2) (5.30)

The constant feedforward gain matrix, F, is implemented in the

suboptimal compensator of figure (V-I). The commanded output,

Ycom, is used to pulse the output so as to excite the unmodeled

dynamics. The amplitude and frequency of the square wave pulse can

be selected by the designer. Alternatively, these design parameters

could be systematically varied and optimized by the heuristic learn-

ing logic of the adaptive processor.

E. COMPENSATORIMPLEMENTATIONSTRATEGIES

The overall adaptive control scheme described in section I-C

requires that the compensator design be updated periodically. The

output error identification scheme is in parallel to the plant and

the compensator (see fig. (V-2)). Information from the identifica-

tion block passes to the compensator block only when the compensator

° is to be redesigned, which may include a change in model order as
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OVERALLSCHEME FOR ON-LINE EQUIVALENTSYSTEM
IDENTIFICATION FOR ADAPTIVE CONTROL

/
D C U =FEEDFORWAR_ PLANT Y

+ GAIN I +_r'vI

! uUfTu_su /:BOPTIMAL_
COMPENSATOR

F / n,¢,.F. H, K,C.F

° /oo

Ioso,!RECURSIVEl CONTROL DESIGN I"" _ STRATEGI
u IDENTIF'ERl _ ES

= / ly I
IDENTIFICATIONINPUTS

Figure V-2 -- Block diagram showing on-llne equivalent system
identification scheme for adaptive control.



well as model parameters• Information is passed when divergence of

the parameter estimation scheme is detected, so divergence problems

like the ones described in subsection I-B.2 do not occur for this

approach. However, advantage is gained at the expense of adaption
i

speed; it takes time to collect data, build a model, check for

consistency and compatibility, and then to design a compensator•
m

The questions addressed in this section are related to the

issue of how often to update the compensator design. The strategies

for choosing and evaluating figures-of-merit are also discussed.

The fundamental issue is how long should the recursive LMS or IMLMS

algorithms be run before a satisfactory convergence is obtained;

and, once obtained, when is it warranted to replace the compensa-

tor? Therefore, the scheme must have a means of self-evaluation so

overall system performance can be enhanced.

E-I Restructurable Control

The first case considered is when the adaptive control scheme

is used in a conventional way. That is, the order of the model is

constant, but parameters have a significant uncertainty, time depen-

dence or possible failure modes that might require the compensator

to be redesigned (restructured) to augment the control system

performance.

Three primary figures-of-merit are used for evaluating subsys-

tem performance. The parameter convergence of the LMS (or IMLMS)

algorithm is initially determined by considering an RMS error of

prediction from the recursive identification scheme,

[ _ (_(k)__LMs(k) )2] I/2

k=l (5.31)
°LMS = N

where YTMS(k) is the predicted output from the LMS or IMLMS

. algorithms, N is the number of samples.

If °LMS is above some minimum threshold, say I0-I in

• normalized units, it is assumed that convergence has not been

achieved. If °LMS is computed over a sufficiently long time and
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is above some _ximum threshold value, it is assumed that the US

algorithm is diverging and should be reinitialized.

The estimation subdivision of the compensator is evaluated

using an expression similar to (5.31)

_I k=l= _ (5.32)

where _k) = Hx(k) is the predicted output of the Kalman filter

portion of the compensator.

The MS estimation error, oi, is a measure of how well the

model utilized in the compensator design is doing in predicting the

response of the plant. If oi, after a certain minimum period of

time, is above some preselected value, a new model _th the para-

meters obtained from the LMS or I_MS algorithms is implemented.

oI includes modeling errors, process noise and measurement

noise. The threshold value for oI that is selected needs to be

considered by the designer in the context of these other distur-

bances.

Another performance index _ich is critical for the restructur-

able control problem is the R_ error of commanded output. It is

computed by comparing the actual output _th the commanded (desired)

output. Typically, a set of square wave pulses is commanded. This

figure-of-merit is computed by

I 2] 1/2

(Ycom (k)-y(k) )
k=1

oc = _ (5.34)

If oc becomes too large, either the model should be updated

or the regulator portion of the compensator should be redesigned

with a higher gain factor, O. The RMS error of commanded output,

Oc, includes the effort of the process noise and measurement

noise, as well as the performance of the compensator.
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Determining if a failure has occurred is a complicated and

unresolved problem [65,66] that will not be considered here. How-

ever, if a failure has been detected, the adaptive control logic

proposed here for a restructurable control problem is applicable as

shown in the flow chart of figure (V-3). This chart shows an

approach that was successful for the examples considered; it con-

sists of heuristic rules selected by the designer to implement an

adaptive controller. The delay in time at the second decision level

and the other checks prevent the recursively identified parameters

from being fed directly through to the compensator, avoiding some of

the divergences mentioned in chapter I.

The logic of figure (V-3) is meant to systematically isolate

what needs to be improved and is meant to operate simultaneously

with the control, estimation and identification processes. If a

failure is detected, a predetermined amount of time is allowed to

pass so the identification schemes can have time to converge. If

the control index is not satisfied, the model prediction is

checked. If the model prediction is satisfactory, the controller is

redesigned; otherwise, the convergence of the LMS algorithm is

checked. Once OLMS is low enough, the model parameters are

updated, a state space realization is found and a compensator is

designed using the techniques of this chapter. Once a compensator

has been brought on-line, it may be necessary to further update the

model or redesign the compensator as the LMS algorithm convergence

improves.

The prime limitation of this approach is that an unstable

system could fail or break before the adaptive process could work.

In general, the scheme has inherent delays to prevent adaptation

divergence, but these may result in unsatisfactory performance. The

next chapter shows an example of where the approach in this subsec-

tion was used successfully to restructure a control system after a

component failure.
L

E-2 Model Building

• A prime contribution of this research is the IMLMS algorithm

which includes the unstructured model uncertainty in the adaptation
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DECISION LOGIC FOR RESTRUCTURABLE CONTROL
START

1

WAI'

LASTMOD?

TO0

YES

REDESIGNI-----
LARGEI REGULATOR

ONLY

YES

WAIT1
YES |LARGE'

NO

IUPDATEMODELPARAMETERSI

ISTATESPACEREALIZATIONI

[DESIGNSUBOPTIMALCOMPENSATORI

Figure V-3 -- Flow chart showing decisions required for

restructurable control applications of adaptive
control algorithm.
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process. Part of the model is assumed to be known and the other

part is adapted by IMLMS algorithm. When satisfactory convergence

of the IMLMS filter has been achieved, the order of the compensator

• model is increased as an additional mode is added. This process can

be repeated over and over, thereby building a model. The key ques-

" tlon is when to add a mode and when to stop.

The model building logic is shown in figure (V-4); it uses the

same figures-of-merit as the restructurable control application,

OLMS, oi, and oL. However, in addition, the designer selects

a minimum model order to begin control and maximum model order for

the model building process. These parameters are chosen based on

prior knowledge of the plant and its environment. Stability prob-

lems may occur if a plant is controlled with too few modes repre-

sented in the compensator design model. The maximum limit is a

practical one which may be dictated by hardware constraints.

If the maximum model order limit has not been exceeded, the

adaptive model building logic tests to see if enough time has

elapsed since the last control system modification, this allows the

IMLMS algorithm enough time to converge. The designer chooses this

based upon prior knowledge of system dynamics and the chosen sample

rate. If oc is satisfactory, no adaptation is required. Other-

wise, oI is tested.

If cI is significantly bigger than the last time it was

computed, experience has shown that this is because the model order

was too large the last time a mode was added. Most likely the

last mode was added based upon trying to identify nearly white

noise, and when implemented in the Kalman-Bucy filter, degrades its

ability to predict the output. A successful solution to this pre-

dicament is to reduce the internal structure order by removing the

last mode.

The controller portion of the compensator is redesigned if cc

- is too large and oI is satisfactorily small. If oI is too

large, another mode is desired for the compensator model. It is

- added once the IMLMS algorithm satisfies its convergence check. The

controller portion of the model is implemented only if the number of

modes in the compensator model is above the minimum value required

by the designer.
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The logic shown in figure (V-4) is the logic that was imple-

mented for the model building example in the next chapter. It could

be expanded to apply to wider classes of problems. The time needed

" to perform the model building precludes its use for unstable plants

or where the speed of adaptation is critical. In the next subsec-

tion, the ability to avoid problems resulting from on-llne adapta-

tion is discussed.

Although not studied here, it may be possible to use the LMS

algorithm in parallel with the IMLMS algorithm; the LMS filter could

be used to refine the estimated parameters of the modes that are

being added by the IMLMS filter. Depending upon the application, it

may be possible to restart the identification process after one com-

plete model has been built using the refined estimates of the previ-

ous model as initial estimates. This is possible because of the

parallel structure of the plant, compensator, and IMLMS algorithm.

E-3 Discussion of Additional Adaptive Problem Solvin_ Logic

It is desirable, especially for the case of model building, to

have an autonomous adaptive system that is capable of handling most

adverse contingencies that may be encountered. A prime example is

that of a space structure under construction. An adaptive control-

ler would be required to satisfy certain pointing or damping

requirements. Since it is envisioned that the entire control mis-

sion would be satisfied by on-board computers, it will be necessary

to expand the capabilities mentioned in the previous two subsections

to include recovery from predictable (or even unpredictable) errors

or divergences that may occur.

In this subsection some potentially important factors in the

adaptive design are considered. Although none of the problems

described in this subsection were encountered during the simulations

of the next chapter, some were encountered during other applications

of this equivalent system identification scheme for adaptive con-

trol. Other points are natural extensions that could conceivably be

added. When a control system is fine tuned for use, it requires

many iterations by a knowledgeable controls expert. Hence, it is

envisioned that an "expert system" with knowledge to apply heuristic

rules would be required to solve the problem.
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This becomes especially feasible if multiple processors are

used so that controller speed is not impacted while decisions are

made. Looking at [Igures (1-8) and (1-9), a logical separation of

functions would be to put the controller and recursive identifica-

tion in one processor and the state space realization, compensator

design, and adaptive logic rules in the other processor.

An obvious protective mechanism would be the capability to turn

o_f the compensator. Sometimes the overall scheme breaks down,

either due to an inherent limitation or implementation error. This

probably can initially be detected by a control input saturation or

too large of an amplitude of output, the first indication of a

divergence. Since this scheme, at this point, is intended for

stable plants, the wisest thing would most likely be to stop con-

trolling and restart the adaptive identification logic. A reason-

able expection would be that the identification has failed (inaccu-

rate) or the compensator model order is too small.

A problem that immediately comes out of the analysis in section

I-D is the scaling of the state variables and the control inputs

with respect to each other mld the step size factor, _. Otherwise,

parameter divergence is likely. The codes for LMS and IMLMS algo-

rithms of appendix II include normalization factors for the measure-

ments and inputs. It may be necessary for the computer to adjust

these factors during on-line, autonomous operations. This can

normally be detected by OLM S growing too large or by the para-

meters of the LMS or IMLMS filter becoming unrealistically large.

As it turns out, OLM S is not a very accurate measure of

convergence. As indicated in section II-D, the error of prediction

of the LMS or IMLMS algorithm is easily satisfied even prior to

parameter convergence. So actually OLM S is an indication of

divergence of the LMS or IMLMS algorithm. A better measure of con-

vergence of the algorithm would be to check and see the rate-of-

change of the parameters over a sufficiently long time. This is

especially true for the control influence terms of the multivariable

LMS or IMLMS algorithms, if a batch least squares method is not

used for the numerator terms.
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Another check for convergence of the LMS or IMLMS algorithms

would be to evaluate the pole and zero locations of the discrete

transfer function prior to realizing in state space form. It should

. be possible to isolate certain numerical difficulties prior to

implementing a compensator. For example, sometimes a pole on the

negative real axis in the z-domain may be identified during para-

meter convergence problems. This corresponds to an imaginary fre-

quency and usually results in an inaccurate model for the compensa-

tor design. When the numerator terms are not converging, experience

has shown that the discrete transfer function zeros frequently lie

significantly outside the unit circle in the z-domain, corresponding

to zeros deep in the right half plane of the s-plane.

In the case of large space structures, it is expected that a

significant period of time will be required to perform the model

identification needed to construct a model for the control system

design. In addition to using the control system actuators to excite

the structure and making measurements from the control system sen-

sors, it may be beneficial to utilize special purpose actuators and

sensors to aid in the model identification process during this

period of time. Application of disturbances other than through the

actuators may be necessary to insure that the system has had all its

modes excited. Auxiliary sensors could be used to distinguish

between uncontrollable modes and sensor noise. The use of on-board

heuristic logic would make the application of such practices

feasible.

Another task that could be turned over to an intelligent compu-

ter system that is required to function autonomously, is the selec-

tion of the designer's step size factor, _ and the actual control

(dither) inputs. These are the prime variables available to the

controls engineer in this scheme for influencing overall system

performance. Ideally, it would be advantageous to develop a learn-

ing system that could vary _, Uam p and _ to enhance perfor-

mance. Most likely a trial and error approach with systematic
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variations would be required. So a}_ain, heuristic logic would need

to be programmed based .pon tlle designer's experience.

Other factors could be considered. The fundamental issue is

that a truly adaptive system will need some implementation of heur-

istic rules to help prevent instabilities and reduce the risk of

divergence. However, the proper balance between the use of artifi-

cial intelligence and control theory for solving real time control

problems will need considerable research.

Initially, fairly simple decisions need to be evaluated under

the formalism of artificial intelligence as a means of verifying the

approach. When the required decision process becomes highly com-

plex, the approach can then be extended with confidence to enable an

efficient search for the proper solution.

In this research an attempt was made to include some heuristic

rules to aid in the solving of off-nominal problems. What was

actually implemented was described in the previous two subsections.

In the next chapter some examples are presented where the overall

scheme for adaptive control are applied to some generic problems.
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Chapter VI

ADAPTIVE CONTROL EXAMPLES

A. RESTRUCTURABLE CONTROL EXAMPLE

In this section a generic example of an unstable plant will be

considered. The actuator will be assumed to break and an implemen-

tation of the overall scheme proposed in this research will be used

to restructure the control to achieve acceptable performance as

described in section V-E.I. Notice that the terms that will be

tracked by the adaptive filter are the numerator terms. It was

shown in sections II-D and III-A that the adaptation of the control

influence terms are the slowest and most inaccurate of this

approach. As a means of improving the adaptive controller perfor-

mance, the batch least squares scheme of section II-E will also be

used i_ conjunction with the recursive LMS filter.

The linear, time-invariant plant which is representative of a

highly unstable attitude hold mode for a helicopter in hover is

given by

= Ax + Bu (6.1)

with output

y = Hx (6.2)

where the system matrices are given in modal coordinates as

A = (6.3)

. B = [2 0] T (6.4)

H= [0 i] (6.5)
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The open loop eigenvalues are s=l±j.

The plant is clearly unstable and stabilization is required to

maintain accurate regulation. A digital compensator is used, as

described in chapter V. The estimator is

x_(k+l) = Cx(k) + Fu(k) - K[y(k)-Hx(k)] , (6.6)

and the control law is

u(k) = -Cx_(k) + FYcom(k) , (6.7)

where, for a sample rate of 20 Hz,

[1.1011°51= , (6.8)
[.053 997J

F = [.105 .00258] T. (6.9)

The open loop poles in the z-domain are z=l.05±.05j

(unstable). The constant compensator gain matrices, that were

selected using the methods of chapter V, are

K = [4.22 1.20]T (6.10)

C = [5.26 15.4] (6.11)

F = [16.4] (6.12)

The closed loop plant performance has eigenvalues z=.754±.16j.

The apparent closed loop natural frequency of the plant is 6.68

rad/sec with a damping ratio of .48.
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A simulation was performed using the approaches outlined in

appendix I where the output is commanded by

Yamp sin(_t)>.767

• Ycom = 0 for .707>sin(_t)>-.707 (6.13)

-Yamp sin(_t)_ -.707

with Yamp=.25 and _=.25 rad/sec.

At time t=25 seconds, half of a double "actuator" is assumed to

break, resulting in only half the original control authority. That

is, B changes to

B = [i 0]T (6.14)

The failure is sensed and the adaptive algorithms are given 50

seconds to find a new representation of the plant using the

recursive LMS algorithm. At time t=75 seconds a new controller is

brought on-line in an effort to improve the control system

performance.

Time histories of the output and the commanded output are shown

in figure (VI-I). The closed loop damping ratio goes from .78 to

approximately .05 at 25 seconds. Stability is barely maintained and

there is a large error in the commanded output. Although the system

has not diverged, its performance is poor.

After a preselected interval of 50 seconds has expired, the new

compensator is brought on-line using the coefficients identified by

the LMS algorithm. The system is stabilized with an apparent damp-

ing ratio of approximately .45. However, there is still an error--a

bias in the nonzero set point of the output command due to poor

knowledge of B, a necessity in the computation of the feedforward

gain matrix, F.

If the LMS algorithm is given more time to find the numerator

terms, it does a better job. In fact, a good strategy would be to

update the compensator again after a certain interval in time.
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batch least square algorithms.
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Figure (IV-2) shows time histories of the actual and estimated

control influence term, bll. The estimate lags (as observed in

section II-D); improvements are made only within a few samples after

each nonzero pulse.

Figure (Vl-2) also shows a locus of estimated bll from a

single batch least square 9 estimate of the numerator terms as

described in section II-E. It uses a minimum of the last 400 data

points (20 seconds) or a maximum of the last I000 data points (50

seconds)• As can be seen, the batch least squares estimate for the

numerator terms converges faster. At t=75 seconds the standard LMS

has identified bll with a 25 percent error, while the batch

least squares approach has only a 5 percent error.

A time history of the simulation using the batch least squares

approach for identifying the numerator terms is shown as fig-

ure (VI-3). When the new compensator is brought on-line, it

stabilizes the system to nearly the same damping ratio as before the

change in actuator characteristics and has a small commanded output

error.

The performanceindex for the controlleris the RMS commanded

output error (c.f. from eq. (5.35)). A plot of this parameter,

normalized by Ycom, is shown as a time history in figure (Vl-4).

When the new compensatoris implementedat t=75 seconds, the error

is significantlyreduced. However, if a goal of having oc under

I0 percent was set into the computer logic (see fig. (V-2)), then

the adaptive scheme attempts to improve by implementing another

compensator. It continuesto do so until the goal is reached. The

algorithmwith just the LMS filter achieves this goal after t=120

seconds.

There are some weaknesses in the scheme. If bll had become

.25, say, then the closed loop systemwould have gone unstable. The

LMS algorithm tends to diverge for unstable systems and the system

may break before a new controlleris broughton-line. However, with

limits on the control input, u, the system may not be stabilizable

anyway. Also, it take 50 secondsto bring an acceptablecompensator

on-line, which may not be fast enough for many applications.
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B. MODEL BUILDING EXAMPLE

In this example a low order model of a flexible spacecraft is

considered. The rigid body mode is, of course, known and the flex-
b

ible body modes are identified one at a time by the IMLMS algorithm

. and added to the control model. Although the plant is stable,

acceptable control performance is possible only when an accurate

model is used for the compensator design.

Reference [67] shows that a sixth order model of the 0S0-8

spacecraft [68,69] is possible when near pole zero cancellations are

taken into account. In fact, figure (VI-5) is a convenient repre-

sentation of the model, which is similar to the study of flexibility

upon control in reference [21].

Using the state space form of equations (6.1) and (6.2), the

matrices for the system in figure (VI-5) are

-0 1 0 0 0 O-

-kI kI-- 0 -- 0 0 0
mI mI ,
0 0 0 I 0 0

A = kl -(kl+k2) k2 (6.15)
-- 0 0 -- 0
m2 m2 m2
0 0 0 0 0 1

-k2
0 0 -- 0 -- 0

_ m3 m3 -

B = [0 0 0 1 0 0]T (6.16)

H = [0 0 I 0 0 O] (6.17)

The 0S0-8 spacecraft had the following equivalent

characteristics for the system of figure (Vl-5)

kl -I -I -I

" --= 13.96 sec mI = 16.5 sec (6 18)
ml m2 = 40.64 sec •
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SIXTH ORDER SYSTEM EQUIVALENT TO REDUCED
ORDER SPACECRAFT CONTROL PROBLEM
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RICTIONLESS

Figure Vl-5 -- Diagram showing equivalent system description of
of reduced order spacecraft control model.
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For the convenience of the simulation, let time be measured in units

of _I and mass in units of mI. The model parameters for the

simulation are chosen to be

kl -i
---- 13.96 sec

ml (6.20)

_I = .716 _ = 2.817 (6.21)

Viscous damping corresponding to a damping ratio of .005 was

added to the two modes. The simulation is performed using the

techniques of appendix I at a sample rate of 20 Hz. The output is

commanded through a pulsed wave given by (6.13) with Yamp=.5 and

_=.25 rad/sec.

A time history showing the output when a compensator was

designed neglecting any knowledge of the flexible body modes is

shown in figure (Vl-6). The normalized RMS error of commanded

output, Oc, from equation (5.35) approached a steady state value

of 18 percent. Additionally, the regulation about zero is

apparently poor as a bias exists.

The time history in figure (VI-7) shows the output if a compen-

sator is designed including the first flexible mode. The RMS of

commanded output error, Oc, approaches a steady state value of

.126 and the bias about zero is no longer a problem. While the

closed loop system is effectively regulated, stable and damped, the

remaining flexible mode is lightly damped and prominent in the out-

put. Clearly, the response is unsatisfactory for any precision

control requirement.

• Figure (VI-8) is a time history of the output when all three

modes are included in the model to design the compensator. In this
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case, oc approaches a steady state value of .083 which is repre-

sentative of the good performance. There is no steady-state error

• and the modes are fairly well damped. However, use of the optimal

control design strategies described in chapter V leads to notch

. filter designs for the compensators [70,71]. Other methods of

designing the control system may in fact lead to superior perfor-

mance, especially given inaccuracies in knowledge about the

dynamics.

Designing control systems for spacecraft can be difficult [73]

because ground-based testing generally leads to inaccurate represen-

tations of spacecraft performance. Furthermore, large space struc-

tures may require months to construct. Although certain pointing

and damping tasks may be required during this deployment stage, it

would be difficult to model the configuration at each possible,

intermediate step. For these reasons, it is desirable to have

learning or adaptive control schemes similar to the one suggested by

this research.

The IMLMS algorithm was used to build a model for this

example. The rigid body dynamics are known and the output was com-

manded as in figure (Vl-6) for 50 units of normalized time. At that

time, the coefficients from the IMLMS algorithm are used to add the

first flexible mode to the model used to design the compensator.

The next 50 time units are shown in figure (Vl-9). The normalized

oc has been reduced from 18.2 percent to 13.1 percent, which is

similar to the 12.6 percent of the compensator with exact knowledge

for two modes only. Figures (Vl-7) and (Vl-9) look fairly similar.

The steady-state error has been removed, but the undamped oscilla-

tion of the third mode still exists.

After I00 time units, the IMLMS algorithm is used to add the

second flexible mode to the model. A time history of the ensuing

motion is shown as figure (VI-10). The performance is nearly as

good as the exact case shown in figure (VI-8). The RMS error of

• commanded output, °c, is equal to i0.i percent versus 8.3 percent

for the exact case. The output is well regulated and the modes are

fairly well damped.
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The compensator that results from the optimal control design is

of the same order as its system model and contains a notch filter.

This filter is highly sensitive to identification errors. Other •

design methods (e.g. [70,71]) may not be as sensitive to the para-

meter estimation accuracy of the flexible body modes, but may give

poorer performance.

Simulations were also made using the LMS algorithm where all

modes are identified at the same time. An improvement over no know-

ledge of the flexible body modes was possible using the LMS algo-

rithm to identify and add these modes to the compensator model.

However, small parameter errors translate into large dynamics errors

as the order of the system to be identified increases. In fact,

when the order of the system was assumed to be four, the LMS filter

identified a negative real z-plane pole which is quite inaccurate.

The results of these simulations are summarized in table VI-I.

The IMLMS algorithm used in conjunction with the model building

scheme improves the accuracy and damping of the commanded response.

One reason such good estimation accuracy is possible is because some

prior knowledge about the flexible body modes is used in selecting

the step-size scale factors of the IMLMS algorithm. The denominator

of the discrete transfer function for a single damped mode can be

written as [21]

d(z) = z2 - 2e-aT(cosbT)z + e-2aT (6.22)

T is the time between samples, a is the real part of the

s-domaln roots and b is the imaginary part of the s-domain roots.

Since space structures are lightly damped, the real part of any pair

of unaugmented roots will be approximately zero. So, if the coef-

ficients of the LMS or IMLMS filters correspond to the following

denominator equation,

q

d(z) = z2 - alZ - _2' (6.23)

the parameters can be equated as
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• 0

Table 6.1 -- Performance of adapted and nonadapted compensators in controlling the

output of a reduced order model of the 0S0-8 spacecraft.

SOURCE OF MODEL EXACT IMLMS LMS

NO. MODES IN MODEL I 2 3 2 3 2 3

EIGENVALUES OF

MODE 0,0 0,0 0,0 0,0 0,0 NA 2 0,0
l

EIGENVALUES OF

MODE NA ! -.005 ± j -.005 ± j -.006 ± 1.04J -.006 ± 1.04j -.071 ± 1.19J .006 ± 1.23j
2

EIGENVALUES OF

MODE NA I NA I -.012 ± 2.52j NA I -.013 ± 2.52j NA I -.19 ± 2.3J
3

NORMALIZED ERROR
OF COMMAND .182 .126 .083 .131 .I01 .169 •157

FOLLOWING

NA 1 Not available, mode is not included In truncated compensator model

NA 2 Not available, root found by LMS has imaginary frequency (negative real root on z-plane)



=i = 2(cosbT) (6.24)

_2 = -I (6.25) "

Since a2 is approximately -i with good accuracy (especially for

high sample rates), it can be preset to -I and the appropriate step

size factor nulled. There is no need to identify a term that is

known a priori. This, in effect, reduces the number of degrees of

freedom, thereby improving the speed of adaption and the accuracy of

convergence.

Even better accuracy for the model building adaptive controller

using the IMLMS could be achieved by allowing more time for conver-

gence and varying the input signals (especially pulse frequency) in

a systematic way. A logical expectation is that minutes or possibly

hours could be taken by a learning system to identify a model of

high order to perform a control mission in space on a structure

under modification or construction.

A verification of the MIM0 capabilities of the algorithm was

performed by adding a colocated actuator-sensor pair at mass m3.

The number of free parameters in the denominator polynomial coeffi-

cients remained unchanged so the identification accuracy remained

approximately the same. Adequate pulsing of both controls for both

outputs required more time to identify the coefficients of the

numerator polynomial. Equivalent accuracy for the numerator terms

was obtained in twice the time as used for the SISO system. As pre-

viously illustrated, the full model built by using the IMLMS algo-

rithm resulted in fairly similar output as using the exact model in

the compensator design. The inclusion of the additional sensor and

actuator improved the damping and yielded Oc'S of .038 and .051

for the exact model and IMLMS sequentially identified models,

respectively. Hence, no problems were encountered extending the

scheme to MIMO systems.
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C. ADAPTIVECONTROLIN THE PRESENCEOF SENSORNOISE

Many of the adaptivecontrol algorithmsthat have been studied

• diverge in the presence of observation noise (c.f. chapter I). A

small bias (constant or oscillatory) in the sensor output produces

" divergence. This instability is avoided by separating the system

identification and the controls tasks. Only occasionally is the

information allowed to flow to the control block. Hence, the adap-

tive control scheme of this research will not exhibit any worse per-

formance than that from using a time-lnvariant, suboptimal con-

troller. In this example, the adaptive control scheme proposed in

this research is used to augment sensor performance.

Assume for this example a linear, time-invariant plant which is

known exactly and has the following familiar form

= Ax + Bu (6.26)

with output

y = Hx_+ sb + sa sin(smt) (6.27)

where sb is the sensor bias, sa is the sensor noise amplitude

and sm is the sensor noise frequency. The bias and noise are, of

course, uncontrollable by u. The system matrices were chosen from

an unstable Dutch roll mode of an airplane and are given by:

[°ii]A = (6.28)

--.2

B = [0 2]T (6.29)

H = [2 0] (6.30)

The open loop eigenvalues are s=-.l+j, damping ratio of .I and a

natural frequency of 1 rad/sec.
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A digital compensator of the form of equations (6.6) and (6.7)

was designed to control the plant output. The equivalent discrete

system, for a sample rate of 20 Hz, has system matrices

€ : (6.31)

.049 .9893

r = [.002 .0991T (6.32)

The gain matrices for the digital compensator, designed using

the methods of chapter V, are

K = [.519 .361] T (6.33)

C = [-55.8 -7.40] (6.34)

F = [28.2] (6.35)

The closed loop eigenvalues are z=.586 + .289j. The output is

commanded to follow equation (6.13) with Yamp=.25 and _=.2 rad/

sec.

In this example, an extreme case is chosen with sb equal to

.05, sa equal to .05, and %o equal to 3. Figure (VI-II) shows

the actual and commanded output for Sa=01. The corresponding

sensor output is plotted in figure (VI-12). The control effort

expended to reduce the oscillation in the sensor output results in

exciting an oscillation in the plant output, which is clearly not

desirable.

After I00 seconds of recursive identification using the IMLMS

algorithm, an extra mode is added to the compensator model. The

sensor noise frequency was identified within 2 percent and the

control influence terms were very small, less than 10-4 , making

the mode uncontrollable for the tolerance levels selected in the

software design package [51]. The result of applying the new model

to the system is shown in figures (VI-13) and (Vl-14).
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sensor noise.

•SENSOR OUTPUTWITH UNMODELEDSENSORNOISE

.4

.2 _ COMMANDEDOUTPUT-_

SENSOR [ I;SENSOROUTPUT I I

0UTPUT.YseRs-.20 ,AVAVAV_ I'___VAV_V_

I I I I I
-. 4 0 10 20 30 40 50

• TIME. t. sec

Figure VI-12 _ Tlme history of sensor output wlth oscillatory
sensor noise•
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Figure VI-13 -- Time history of plant output with oscillatory
sensor noise. A mode has been added to the

compenstator model from the IMLMS filter.
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Figure VI-14 M Time history of sensor output with oscillatory
sensor noise. A mode has been added to the

compensator model from the IMLMS filter.
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The plant output in figure (Vl-13) remains virtually unchanged,

so the performance is not impacted by knowledge of the sensor

noise. However, the sensor output is significantly better as shown

in figure (VI-14). This is a result of using output in the cost

• function for finding the control law; this causes the extra mode to

be included as if it were a physical mode of the plant. While the

perceived performance is enhanced, the actual performance is poor,

indicating the need to identify and minimize sensor errors.

The problem can be solved if the oscillatory mode can be

classified as sensor noise. This is accomplished by testing the

identified mode to see if it satisfies some threshhold of control-

lability. Equation (5.11) is then modified such that no ouput from

the uncontrollable mode appears in the y used in the cost function

for computing the controller feedback gains. This makes y equiva-

lent to the plant output instead of the sensor output. The results

from this experiment are shown in figures (VI-15) and (VI-16). The

plant output has relatively good performance and the sensor output

has reverted to oscillations. In effect, the uncontrollable but

detectable mode is subtracted from the total sensor output to esti-

mate the plant mode. This made it possible to observe and control

the actual plant output in spite of the observation noise. However,

the problem would still exist for cases where prior knowledge does

not allow one to distinguish between sensor noise and an uncontrol-

lable mode of the plant.

The influence of sensor bias is shown in figures (VI-17) and

(VI-18). The plant output is well damped, stable and follows the

commanded output well, except that it is offset from the desired

output by sb. The sensor output is also offset slightly, but to a

smaller extent. The bias was not included in the control model and

the threshholds that were chosen for the adaptive logic did not

result in the addition of another mode when used in parallel with

the I_JMS algorithm. If good following performance is desired, the

sensor bias needs to be small.

A main observation from this example is that the present adap-

tive control scheme does not diverge in the presence of uncontrol-

lable modes. Thus, if some heuristic decision .logic can be
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Figure VI-17 -- Time history of plant output with an unmodeled
sensor bias.
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implemented to distinguish between an uncontrollable mode of the

plant and observation noise, it is possible to use this adaptation

scheme to improve plant performance in the presence of such sensor •

noise.

t
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CHAPTERVII

CONCLUDINGRKMARKSAND RECOMMENDATIONS

A. SUMMARY

A scheme for the adaptive control of multi-input/multi-output

(MIMO) plants is proposed that utilizes heuristic logic. Control

law restructuring takes place intermittently after satisfying a

number of convergence tests instead of continuously. The plant is

constructed by starting with a simple model and identifyin_ one

additional mode at a time until the added mode makes no substantial

improvement in closed-loop performance. The recursive identifica-

tion scheme which allows the adaptation of part of the assumed model

while holding the remainin_ part fixed is a modification of the LMS

(Least Mean Square) algorithm. It is termed the incremental mode

LMS (IMLMS) algorithm.

On-line identification is performed using an extension of the

LMS algorithm of Widrow and Hoff to MIMO systems. This is a recur-

sire identifier having the same form as the extended Kalman filter

(EKF), but it uses constant instead of time-varying gains. Hence,

it does not require the propagation of a large covariance matrix,

and it avoids the "oblivious filter" problem that occurs with the

EKF when the variance of the estimated parameters becomes small.

Excitation for identification is performed using rectangular pulse

output-commands.

Only the coefficients of the denominator polynomial of the MIMO

z-transfer function are identified using the IMLMS algorithm. The

coefficients of the numerator polynomials are identified using a

batch least squares algorithm over the last several output com-

mands. Control law synthesis is done by LOG methods which require

the formation of a MIMO state space realization from the z-transfer

function identified by the IMLMS al_orithm. An efficient regression

algorithm is presented to do this and is illustrated by a second

order example with two inputs and two outputs.

133



Three adaptive control examples were presented: (i) a control

restructuring example where a partial failure of the actuator

resulted in a change in actuator gain; (2) a model building example

of a spacecraft with a rigid body mode and two flexible body vibra-

tion modes; and, (3) a sensor noise example where uncontrollable

oscillatory noise appears in the sensor signal, but not in the plant

output being controlled.

As in previous adaptive control schemes, there is no way of

discerning whether detectable but uncontrollable modes appear in the

actual plant output or only in the sensor output. If this determin-

ation can be made by some other means, then an appropriate model can

be formed.

The proposed scheme for adaptive control is not suitable for

situations where rapid adaptation is required; in particular, it

will not handle plants with significant instabilities.

B. CONCLUDING REMARKS

Several continuously adapting control algorithms have been

proven to be globally stable. It has been shown, however, that the

assumptions required for proving stability are overly restrictive.

In fact, divergence is likely when operated with sensor noise, with

biases in controls or measurements, or with unmodelled dynamics

[17-20] present. The goal of this research was to extend a simple

recursive estimation algorithm to a form which will minimize the

impact of these real world considerations. This is accomplished

with the proposed adaptive control scheme, but the added complexity

prevents proving global stability.

The LMS algorithm was selected as the baseline parameter esti-

mator because of its low computational burden and good convergence

characteristics in the presence of process noise, sensor noise and

unmodelled dynamics. The algorithm was enhanced by the systematic

inclusion of MIMO systems. A prime contribution of this research is

the development of the IMLMS algorithm which provides a systematic °

means for including unmodelled dynamics. The IMLMS algorithm is a

recursive identification scheme that estimates the parameters of

134



part of the assumed model while holding the remaining part of the

model constant. This provided the basis for an on-line structure

identification scheme using heuristic rules to build models.
D

Although linear equivalent systems are sought as models, plants

. with small or locally insignificant nonlinearities will be readily

controlled by the proposed adaptive control scheme. Plants with

large nonlinearities which prevent the ready representation as a

linear system will not be easily controlled by this or any adaptive

controller now being considered in the research literature. Excep-

tions would be cases where complex plants are modelled with good

physical understanding and have only a few time varying or uncertain

parameters. In this research, it is assumed that very little prior

knowledge about the plant is available, necessitating model learning

and building in real time. The approach in this research is useful

for plants which can be effectively linearized, but have a wide

range of uncertain modal characteristics or are slowly changing.

The model used in the compensator for controlling the outputs

was updated only after satisfying a number of convergence tests and

passing performance threshholds. By preventing the controller gains

from being updated at each sample, the divergence problems that

plague continuously adaptive control systems are avoided. Unfortu-

nately, this approach of waiting to evaluate performance and conver-

gence properties on-line prevents direct analysis. Without the

ability to directly analyze the overall scheme, proofs for global

stability are impossible to obtain. However, this research does

provide practical solutions to the generic types of problems that

adaptive control algorithms suffer from. Although mathematical

rigor is replaced with engineering judgement, this scheme of using

heuristic logic points to a class of learning controllers which may

have high reliability for a wide range of applications.

. A final concern of the adaptive control scheme proposed in this

research is the added complexity of utilizing heuristic logic to

• avoid divergence. Software reliability is already a difficult
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problem and an area of intense research. The use of simple hypothe-

sis testing may make the issue of program quality assurance a sig-

nificiant hindrance in its use for other than highly experimental or

back-up applications of adaptive control. Additionally, the proper

balance between control theory and machine intelligence concepts

needs to be considered in terms of problem solving capability, com-

puter requirements, problem application and software reliability.

C. RECOMMENDATIONSFOR FURTHER STUDY

The prime recommendations for developing enhanced adaptive con-

trol methodologies are those involved with making adaptive control a

practical alternative to robust control. As a first step, the

results reported in this document should be verified through hard-

ware implementation. A dual microprocessor control experiment for a

lightly-damped, flexible beam using the algorithms of this report is

being considered for the experimental apparatus described in refer-

ence [73]. It will provide a benchmark for comparing with other

real-time adaptive control experiments. Trade-offs between recur-

sive identification and batch processing will be possible, plus the

computational efficiency of performing the compensator design can be

evaluated. It could also be an effective check of the approach of

using heuristic adaptive logic for dealing with practical problems

as they arise. It may be more cost effective to perform hybrid

(digital and analog) simulations than trying to perform accurate,

high-order, digital simulations.

One advantage of hardware experimentation is that the LMS adap-

tive filter was originally developed for analog implementation. It

may be possible to find a similar way to implement the IMLMS filter

in a hybrid control system. Analog implementation of the recursive

identification techniques could provide faster adaptation, more

accurate parameter estimation and less sensitivity to the numerical

convergence, especially at high sample rates. However, the use of

analog adaption will introduce sampling errors into the parameter

estimates during digitizing.
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Lattice filters [74] are a potentially attractive alternative

to the LMS cl_ss of adaptive algorithms considered in this

0 research. It bas been shown that an estimate for the system order

can be recursively included in the identification scheme [75],

. making rapid model identification possible. If n is the model

order, the lattice filter algorithm has approximately 10n more com-

putations per cycle than the LMS algorithm [74]. It does, however,

provide the capability to iterate the model order based upon hypo-

thesis testing at frequent, recursive intervals. Research shows

that it can be useful for the identification of space structures

[76], but its use for cases with substantial damping has not been

verified. Furthermore, direct use of the lattice filter output for

compensator design is still of concern and needs further research.

Another shortcoming is that the lattice filter cannot explicitly

include any prior knowledge of the plant. In spite of these limita-

tions, the use of lattice filters with their model order iteration

capability and low computational burden does look to be promising

for future adaptive control research.

The use of quadratic cost techniques may not be ideal for

on-line compensator design. An alternative design technique should

be considered for the observer and controller implementation. It

may be possible to utilize computationally efficient and robust

algorithms that take advantage of the modal forms preserved from the

recursive identification schemes. In addition, the feedforward con-

troller design algorithm should be extended to handle a different

number of control inputs from output measurements [64] and to be

able to follow other than step inputs with arbitrary placement of

the zeros [21].

An area of active research that all adaptive control approaches

would benefit from is the continued development of a method for

determinin_ optimal control inputs for system identification [43-

45]. Implementation of a full dual control scheme--where control

• power expenditures for improving identification, as well as for
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performancerequirements,are explicitlyincludedin the cost func-

tion that is optimized--appearsto be too computationally burden-

some at this time. However, an inexact techniquemay be possible

whereby suboptimalinputs are computedor suggestedby the adaptive

strategies implementedin the computerby designers.

In this vein of "smart"controllers, whole new avenues need to

be explored. It may be possible to couple an "expert"system from

the scienceof artificialintelligenceutilizingrules and knowledge

from experiencedcontrols engineersto help build an on-llne adap-

tive controller. An adaptive control scheme is envisioned which

could be successfullyapplied to a wide variety of problems while

requiringa minimum of problemdependentfine-tuningand still main-

tain a high probabilityof success. However, a logical next step

would be merging the scienceand rules under developmentfor artifi-

cial intelligencewith the formal analysis frequently applied to

controlsystemdesign. This may eventuallyresult in a flexibleand

fast "universalcontroller"which could be used to improve control

systemperformancefor many types of problems.
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APPENDIX I

. DESCRIPTION OF SIMSLATION EXPERIMENTS

A. ADVANCEDCONTINUOUSSIMULATIONLANGUAGE(ACSL)

The computer simulations were performed using the CDC Cyber

network at Langley Research Center. ACSL (Advanced Continuous Simu-

lation Language) [77] was the prime tool used in these studies. It

provides a facility for performing integration of nonlinear equa-

tions of motion and for obtaining a wide variety of outputs from

either interactive or batch use. ACSL interprets the set of com-

mands given it, which look like FORTRAN, and writes a FORTRAN pro-

gram for the user. Hence, it is relatively easy to couple FORTRAN

subroutines to the ACSL program.

The simulations shown in this thesis were performed using a

second order Runge-Kutta integration scheme with a step size at

least as small as the sample time of the discrete compensator and

identification schemes. The program was segmented so the required

field length at execution would be small enough to allow interactive

execution. Graphic output was obtained from Tektronix copiers

during interactive simulation and Varian plotters for batch process-

ing.

Subroutines were added to the ACSL programs to provide discrete

sampling with zero order hold, the compensator and control law

implementation, performance evaluation and the heuristic adaptive

decison making. A brief description of these routines is given in

table I-I. Program flexibility was maintained making it relatively

easy to interchange models and adjust parameters during the debug-

" ging stages of the adaptive control law development. Input decks

minimized the need to recompile the entire simulation during problem

formulation and evaluation.
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Table I-1 -- Subroutines used to augment ACSL for
simulating adaptive control schemes.

m

SUBROUTINE DESCRIPTION

ADMODE Adds modes to compensator model

during model building process.

COMMAG Selects input pulses for
identification.

COMND Distributes pulses to appropriate

control or output command.

CONTROL Computes control input from feedback
and feedforward law.

ERREVAL Accumulates figure-of-merlt

computation for adaptive control.

FORM Assembles dynamics matrix from modal
information.

IMLMS Performs IMLMS algorithm computation.
(see app. II)

KFILT Computes state estimates using

asymptotic KBF gains.

LMS Performs LMS algorithm computation

with MIM0 extensions (see app. II)

SAMPCK Code for implementing discrete

sampling logic.

SETUP Routine for initializing plant and

compensator model selection.
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B. OPTIMUM REGULATORALGORITHP_ FOR THE CONTROL OF
LINEAR SYSTEI_ (0RACLS)

° The code used for performing the matrix operations used by ACSL

and the compensator designs as described by chapter V is ORACLS

" [51]. ORACLS is a library of subroutines for synthesizing control

logic for multivarlable state space systems. ORACLS also provides a

set of routines for matrix operations and manipulations.

ORACLS was coupled to ACSL making on-line compensator design

possible. However, a number of routines had to be added to custom-

ize the library to the present problem. In addition, several analy-

sis routines were added to aid in debugging the adaptive control-

ler. Descriptions of the subroutines that were used to augment the

ORACLS library are given in table 1-2.

Arrays for ORACLS are stored as a single subscripted array

stacked by columns in combination with an integer pointer array.

For example, if a 3 X 2 matrix A is to be used by a routine from

ORACLS, it is saved as array A(1) of length 6, where the first three

elements are the first column of A and the last three elements are

the second column. In addition, an integer array NA(J) of length 2

is also used. The first value is the number of rows and the second

value is the number of columns.
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Table 1-2 -- Subroutines used to augment ORACLS to facili-
tate on-line implementation for adaptive
control schemes.

SUBROUTINE DESCRIPT[ON

COMPEN Computes gain matrices for asymptotic,
suboptimal compensators.

CONVRT Transforms roots between s-plane and

z-plane.

CTRLAW Computes control law for asymptotic,
discrete, suboptimal regulator.

ELEMENT, Several matrix manipulation routines

GRAB, ETC. to faciliate the use of ORACLS.

INIT Initializes common blocks and local

variables for ORACLS and ACSL.

KFILTD Computes gain matrices for asymptotic,

discrete Kalman-Bucy filter.

MATINV Finds general matrix inverse including

pseudo inverses for non-square matrix.

PHIGEN Computes discrete equivalents for

linear system matrices.

POLZER Finds poles and zeros of linear system

on both s-plane and z-plane.

SETPT Computes the feedforward gain matrix

for non-zero set point of regulator.
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, APPENDIX II

.... - i COMPUTER CODES FOR OUTPUT ERROR IDENTIFICATION

This appendix contains FORTRAN listings of the LMS and IMLMS

recursive, adaptive filters. The subroutines are called at each

• discrete time step to update the predicted output and the parameter

estimates. YP is the predicted output. The storage arrays for com-

puting the ARMA predictions are XS and US and are updated each time
J

step. XNORM and UNORM are used to normalize the inputs to the

•_ _•• filter as a means of scaling the data to near unity as suggested in

chapters II and III. The parameters being updated are ALPHA and

BETA, which are the coefficients of denominator and numerator poly-

nomials, respectively.

l
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Subroutine listing of FORTRAN code for LMS Adaptive Filter.

SUBROUTINE LMS(IORD,XMU,ALPHA,BETA,YoNY,YNORM,U,NU
2 ,UNORM,XS,US,YP,ERR,IOUT)

* SUBROUTINE LMS IS THE LMS ADAPTIVE FILTER USED AT EACH *
* TIME STEP. IT IS USED FOR ADAPTIVE ESTIMATION *
* AND PARAMETER IDENTIFICATION. *

* INPUTS: *

* lORD IS THE ORDER OF THE DENOMINATOR *
* _ XMU IS THE STEP SIZE FACTOR *
* ALPHA ARE THE DENOMINATOR COEFFICIENTS *
* BETA ARE THE NUMERATOR COEFFICIENTS *
* Y IS THE MEASUREMENT OF THE OUTPUT *
* U IS THE INPUT (CONTROL) *
* XS IS A STORAGE ARRAY OF LAST Y'S *
* US 1S A STORAGE ARRAY OF LAST U'S *
* XNORM AND UNORM ARE NORMALIZING FACTORS *
* NY AND NU ARE THE DIMENSIONS OF Y AND U *
* IOUT=I FOR OUTPUT *

* OUTPUTS: *

* ALPHA & BETA ARE UPDATED EACH TIME STEP *
* XS AND US ARE UPDATED EACH TIME STEP *
* YP IS THE PREDICTED OUTPUT FOR THE CURRENT TIME *
* ERR IS THE ERROR OF PREDICTION FOR THE CURRENT TIME *

REAL ALPHA(1),BETA(2,2,2),Y(1),U(1),XS(2,2),US(2,2)
REAL YP(1),ERR(1)
INTEGER NY(1),NU(1)
IMEAS=NY(1)
ICTRL=NU(1)

C
C COMPUTE PREDICTION
C

DO 200 L=I,IMEAS
XSTO=0.
USTO=0.
DO 190 I=I,IORD
XSTO=XSTO+ALPHA(1)*XS(I,L)

190 CONTINUE
DO 195 I=I,IORD
DO 195 J:I,ICTRL
USTO=USTO+BETA(I,J,L)*US(I,J)

195 CONTINUE
YP(L)=USTO+XSTO
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200 CONTINUE
C
C COMPUTE ERR & NEW WTS
C

DO 250 L:I,IMEAS
ERR(L)=Y(L)-YP(L)

250 CONTINUE
DO 300 I=I,IORD
DO 300 L=I,IMEAS
ALPHA(I)=ALPHA(I)+2.*XMU*XS(I,L)*ERR(L)

300 CONTINUE
DO 305 J=I,ICTRL
DO 305 I=I,IORD
DO 305 L=I,IMEAS
BETA(I,J,L)=BETA(I,J,L)+2.*XMU*US(I,J)*ERR(L)

305 CONTINUE
C
C UPDATE MEAS & CTRL STATES
C

DO 320 L=I,IMEAS
DO 310 II=2,IORD,I
I=IORD+2-II
XS(I,L)=XS(I-I,L)

310 CONTINUE
XS(I,L)=Y(L)/YNORM

320 CONTINUE
DO 330 J=I,ICTRL
DO 325 II=2,IORD,I
I=IORD+2-II
US(I,J)=US(I-I,J)

325 CONTINUE
US(I,J)=U(J)/UNORM

33O CONTINUE
C
C DEBUGGING OUTPUT
C

IF(IOUT.EQ.O) GO TO 500
WRITE(6,410) IORD,IMEAS,ICTRL

410 FORMAT(/5X" LMS ALGORITHM OUTPUT "/IOX,"SYSTEM ORDER= "
I ,IS/IOX,"NO. OF MEAS.= ",I5/IOX,"NO. OF CTRLS.= ",I5)
WRITE(6,415)(ALPHA(1),I:1,IORD)

415 FORMAT(T20,"ALPHA:"5(T20,SF12.5/))
WRITE(6,420)

420 FORMAT(IOX,"BETA:")
DO 430 J=I,ICTRL
DO 430 L=I,IMEAS

' WRITE(6,425)J,L,(BETA(I,J,L),I=1,IORD)
425 FORMAT(IOX,"CTRL= ",IS,SX,"IMEAS= ",IS,5(TSO,SF12.5,))

, 430 CONTINUE
WRITE(6,440)

440 FORMAT(/IOX,"STATES:")
DO 450 L=I,IMEAS
WRITE(6,445) L,(XS(I,L),I=I,IORD)
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445 FORMAT(IOX,"MEAS= ",I5,5(T30,5F12.5,))
450 CONTINUE

WRITE(6,455)

455 FORMAT(/IOX,"CONTROL STATES:")

DO 460 J=I,ICTRL

WRITE(6,458) J,(US(I,J),I=I,IORD)

458 FORMAT(IOX,"CONTROL= ",I5,5(T30,5F12.5,))
460 CONTINUE

500 RETURN

END
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Subroutine listing of FORTRAN code for IMLMS Adaptive Filter.

SUBROUTINE IMLMS(IDEN,INUM,XMUD,XMUN,ALPHAF,BETA,IDAD,ALPHAI
2 ,Y,NY,YNORM,U,NU,UNORM,XS,US,YP,E_R,IOUT)

* SUBROUTINE IMLMS IS THE INCREMENTAL MODE LMS *
* ALGORITHM APPLIED AS A RECURSIVE IDENTIFIER *
* ON PART OF THE MODEL. *

* INPUTS: *

* IDEN IS ORDER OF FIXED PART OF DENOMINATOR *
* INUM IS ORDER OF NUMERATOR *
* XMUD IS ARRAY OF DENOMINATOR STEP SIZE FACTORS *
* XMUN IS ARRAY OF NUMERATOR STEP SIZE FACTORS *
* ALPHAF ARE COEFFICENTS OF FIXED PART OF DENOM. *
* BETA ARE NUMERATOR COEFFICIENTS *
* IDAD IS ORDER OF UNKNOWN PART OF DENOM. *
* ALPHAI ARE THE COEFFICENTS OF INCREMENTAL PART *
* Y IS OUTPUT MEASUREMENT *
* US IS CONTROL INPUT *
* NU AND NY ARE DIMENSIONS OF U & N *
* UNORM AND YNORM ARE NORMALIZING FACTORS *
* XS AND US ARE STORAGE ARRAYS *
* IOUT=I FOR OUTPUT *
* §

* OUTPUTS: *

* ALPHAI & BETA ARE UPDATED EACH TIME STEP *
* XS & US ARE UPDATED EACH TIME STEP *
* YP IS THE PREDICTED OUTPUT AT CURRENT TIME *
* ERR IS THE ERROR OF PREDICTION *

REAL ALPHAF(1),BETA(2,2,2),Y(1),U(1),XS(2,2),US(2,2)
REAL YP(1),ERR(1)oALPHAI(1),XMUD(1),XMUN(1)
INTEGER NY(1)oNU(1)
IMEAS=NY(1)
ICTRL=NU(1)
NEWD=IDEN+IDAD

IF(IOUT.EQ.I) WRITE(6,410) IDEN,IMEAS,ICTRL
C IDELAY = I
C
C COMPUTE PREDICTION
C

DO 200 L=I,IMEAS
XST01=O.
XST02=O.
XST03=O.
UST01=O.
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DO 190 I:I,IDEN
XSTOI:XSTOI+ALPHAF(I)*XS(I,L)

DO 190 K=I,IDAD

XSTO3=XSTO3-ALPHAF(I)*ALPHAI(K)*XS(I+K,L)

190 CONTINUE

DO 192 K=I,IDAD

XSTO2=XSTO2+ALPHAI(K)*XS(K,L)

192 CONTINUE

DO 195 I=I,INUM

DO 195 J=I,ICTRL
USTOI=USTOI+BETA(I,J,L)*US(I,J)

195 CONTINUE

YP(L)=USTOI+XSTOI+XSTO2+XSTO3
200 CONTINUE

C

C COMPUTE ERR & NEW WTS
C

DO 250 L=I,IMEAS
ERR(L)=Y(L)-YP(L)

250 CONTINUE
C

C COMPUTE NEW PARAMETERS
C

IF(XS(NEWD,I).EQ.O) GOTO 309

DO 300 K=I,IDAD

DO 300 L=I,IMEAS
TI=O.

F=2.*XMUD(K)*ERR(L)

DO 299 I=I,IDEN

TI=TI-ALPHAF(I)*XS(I+K,L)

299 CONTINUE
UPDATE=F*(XS(K,L)+TI)

ALPHAI(K)=ALPHAI(K)+UPDATE

IF(IOUT.EQ.O) GOTO 300

WRITE(6,40) K,ALPHAI(K),XS(K,L),TI,UPDATE

40 FORMAT(IOX"K,ALPHAI,XS,TI,UPDATE== ",I5,4F15.6)

300 CONTINUE
IF(IOUT.EQ.O) GOTO 301

WRITE(6,42) yp(1),Y(1),ERR(1),XSTOI,XSTO2,XSTO3,USTOI

42 FORMAT( 1OX"YP,Y,ERR="3F12.6,5X,"XSTO( I,2,3) =" ,3F12.6,

I 5X, "USTO=" ,F12.6)
C

C

301 DO 305 J=I,ICTRL
DO 305 I=I,INUM

DO 305 L=I,IMEAS
F=2.*XMUN(I)*ERR(L)

BETA(I,J,L)=BETA(I,J,L)+F*US(I,J)

305 CONTINUE
C
C UPDATE MEAS & CTRL STATES

C

309 DO 320 L=I,IMEAS
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DO 310 II:2,NEWD, I
I:NEWD+2-II

XS(I,L)=XS(I-I,L)

• 310 CONTINUE

XS(I,L)=YP(L)/YNORM
32O CONTINUE

DO 330 J:I,ICTRL
IF(INUM.LT.2) GOTO 326

DO 325 II=2oINUM,I
I=INUM+2-II

US(I,J)=US(I-I,J)

325 CONTINUE

326 US(I,J)=U(J)/UNORM

330 CONTINUE
C

C DEBUGGING OUTPUT

C

IF(IOUT.EQ.O) GO TO 500

410 FORMAT(/5X" LMS ALGORITHM OUTPUT "/IOXo"SYSTEM ORDER= "

I ,I5/IOX,"NO. OF MEAS.= ",I5/IOX,"NO. OF CTRLS.= ",I5)

WRITE(6,415)(ALPHAI(I),I=1,IDAD)

415 FORMAT(10X,"ALPHAI:"5(T20o5F12.5/))

WRITE(6,420)

420 FORMAT(IOX,"BETA:")

DO 430 J=I,ICTRL
DO 430 L=IoIMEAS

WRITE(6,425)JoL,(BETA(I,J,L),I=1,INUM)

425 FORMAT(IOX,"CTRL= ",I5,5X,"IMEAS= ",I5,5(T50,5F12.5,))

430 CONTINUE

WRITE(6,440)

440 FORMAT(10X,"STATES:")

DO 450 L=I,IMEAS

WRITE(6,445) L,(XS(I,L),I=I,NEWD)

445 FORMAT(IOX,"MEAS= ",IS,5(T30,SF12.5,))
45O CONTINUE

WRITE(6,455)

455 FORMAT(IOX,"CONTROL STATES:")
DO 460 J=IoICTRL

WRITE(6,458) Jo(US(I,J),I=I,INUM)

458 FORMAT(IOX,"CONTROL= ",I5,5(T30oSF12.5,))
460 CONTINUE

500 RETURN

END
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