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Abstract

Accurate approximations are presented for the time development of
both edge conditions and internal structures of a blast wave with
shock heated electrons; and equal ion and electron témperatures at the
shock. The cases considered evolve in cavities with power law ambient
densities (including the uniform ambient density case) and have
negligible external pressure. Account is taken of possible saturation

\of the thermal conduction flux. The structures evolve smoothly from
those given by Cox and Edgar (1981) to the adiabatic structures given

by Cox and Franco (1981).
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This work continues a project begun in Cox and Edgar (1983,
hereafter Paper 1), modelling spherically symmetric supernova blast
waves In a power-law ambient density distribution. The gas is assumed
to be ideal, totally ionized; and the helium abundance is 107 of the
hydrogen abundance by number. We have'assumed also that non-coulomb
processes heat the electrons in the shock, so that the electron and
ion temperatures are equal immediately behind the shock. Thermal
conduction is then important at early times when the temperature 1is
high; but less important- later; when the electron temperature and
conductivity are lower. Our formulation of the thermal conduction
flux follows that of Cowie (1977), which accounts for saturation
effects.

We report here an approximate solution to the evolution of
kemperature, density; and pressure structures of such a supernova
remnant. We separate; via physically reasonable approximations; the
immediate postshock behavior from the evolution of the system as a
whole; and solve for the evolution of the postshock conditions.’ We
then separate; again by ;easonabie approximations; the dynamical and
thermal evolution of individual gas parcels from that of the overall
structure; and foilow conditions in these parcels. Knowledge of the
history of each parcel would f;cilitate the calculation of ionization
frac;ions; which may be far from equilibrium.

We thus continue a study of the first order effects of thermal
conduction on. the structure; spectrum, and.  surface brightness
distribution of a "non-radiative"” remnant; including as much physics
as possible; while avoiding the numerical solution of coupled partial

differential equations.
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The notation for the variables we have used is listed in Table 1,
along with that of their post-shock derivatives (3fn f/34n R) and
normalized forms. As in Paper I, the jump conditions and theilr

derivatives are given by

xs-l
Pg = povg ( ),
S -
Fs xs-l L
= 4
_0—573 —2;{-3-( xs)’ (D)
xs—l
u =
s Xq Vs
and
*
_1 Xg
Vg - -2—((1)"3 - X _1)’
s
\
*
1 X3
uk = i(“’._3 + —1)’ (2)

pE = x*-uw,

where p « R~ % was assumed for the ambient density, the asterisk

represents the logarithmic derivative f: = 3fn fs/azn R,, Fg is the-

thermal conduction flux just inside the shock; and Vg is the shock

velocity. 1In addition; ambient pressure has been neglected, and

* .
Pg = -3 has been assumed. This last is equivalent to assuming png is
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constant, which cannot be exactly correct, but reflects the general
effect of conservation of energy. 1In Paper I it was shown that the
early and late asymptotes have png which differ by only a few percent
at most (depending on w). This assumption may tend to smooth over
real short term excursions in pressure but prevents spurious
approximation-induced variatioms and thus provides a physically based
stability to the behavior.

Writing the post-shock equations of motion for a gas parcel in
terms of the logarithmic derivatives given in Table 1 produces several

relations among these quantities. Mass and momentum conservation give

3 XgX§ 3 ‘ 1 1
g=_9% _2 + x_, - 2 - ax L— - ] (3
xs-l 2 xs—l 2's 59 xs—l
4-xg Ry 5 5 5
35(_?.5_5.) = (B - ‘§°") + xs(3 +3-x§ - .gm)

c L e

The energy equations for the ions and electrons can be separated

.(faper I) and written in the form

D T3/2, 3
2 ED - ED 2 @)

) [(Eﬁ;g)T]s/z

1.2 _ . (2.3y(2.3_ (1-g)
e T )i (%)

where T = (1.1Ti + 1.2Te)/2.3 is the average temperature, g = Te/T;
and £ = (1/R2)(3/3R)(R2F) is the divergence of the thermal conduction

flux. We have assumed here- that Te > TiIZOOO; The constant



-5-

Y
14

g0 A/153 cgs where & A= fa[l.2 x 105 (T1/21_/al/2)}.  Also,
n =ny +ng, = L.lng, py = nkTy, p, = (1.2/1.1)nkTe, so that the ideal
gas law becomes p = (2.3/1.1)nkT.

"Equation (5) can be solved at R = Rg (using the assumed gg=1

appropriate to electron and i{fon temperature equilibration by

non-coulomb processes in the shock) for v = (3&n g/93&n R)S to produce

v = 11 b—=xg4 Rsg's) (6)
1.2 3 F_ /"
s
Writing equation (4) in terms of n = - (alnTe/aln R)S and making.

use of the fact that -n=vH(B-a), it follows that

(55 - 8)(n + v) = (6x2 - Uxg - 4) - wxg(bxg - 7) + xgx}(5xg = 7)

Rsis

>
FS

(N

~(xg = 2)(4 - xg)

which; together with equation (6) gives us n as a function of xg, x:,
and Rszs/Fs.
To evaluate the thermal conduction flux, we use the form given by

Cowie (1977) for the ratio of true flux to classical (i.e.

non—-saturated) flux:

S — , (8)
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where ¢, is a plasma parameter of order unity (we have used ¢; =1

throughout), and A is the mean free path for electron energy exchange.
In our case; for conditions just insidé the shock front, the

second . term in the denominator can be written (using

A=ml’/2 bT2/(1.31n,k3/2) where b = 6x107’ (30/fnA) cgs, from Cowie and

McKee (1977), the jump conditions relating Fo, vg, povg, pg> and the

ideal gas law)

46 ma _ 1 4% Fe 9
dRg 109 _pl/2 F’

s (xs

whence it follows that

4—x :
F 1 s
) =1- (10)
Fo's L0 (x_-1)1/2

Notice that the degree of saturation of the thermal conduction

flux just behind the shock is simply related to Xg- The conduction is

never heavily saturated and becomes classical as Xy approaches 4. The

classical flux at Rs can be written

. 5T bT7/2
F = 572 __© = s . 11
c)s b Tg 3R )s R n (11)

Hence
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n = . (12)

bT l -
] [ 10 ¢s (xs—l)IYZ]

In this equation, T, and Fg éan be eliminated using equation (1) and

S

the 1deal gas law. The result can be written

3
x2(4=x) 7—-3W .

n=_> fiz z > (13)

(Xs-l) 1 (a—xs)
[1- I/Z]
10¢s (xs—l)

where z is a normalized radius defined by

27-3w - (Rs)7—3w - 1 [2.3 ]7/2 Rsng : (14)

: i—l a7z e bpZ”

The z’ 3% dependence follows from n  « R;w and p, « R;3. In this
formula; m = p/n = (1-4/1-1)mH. The forﬁula for determining the
costant R; depends on energy integrals whichvwe shall discuss later.

. From eqﬁation (13); it is clear that n depends very sensitively
on R, in the vicinity of Ry. For small values of 2z, n will be
extremely small and the electron temperature will be flat. For large

values of z; however; x_ is driven to 4 to keep n from becoming very

s
large. 1In fact; n approaches 4-3w in the adiabatic limit.
In order to reduce the evaluation of the dynamics of this ylast

wave to the solution of ordinary differential equations, one further

piece of information is required, namely the behavior of the parameter
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RSQS/FS. This parameter was discussed at some length in Paper I for

the early time asymptote. In particular we can write

F 1 1
L= Jr28dr = f rzxcf)dr =S L > B (15)
RS ° o X X 3-w

where <%/x> is the mass average of the energy loss rate per n,
particles due to conduction. If all electrons lose energy at
approximately equal rates via this mechanism, then <&/x> ~ ls/xs and
LR /Fg = x,(3-w). It was found in Paper I that in fact /x varies
.very little over thé structure of the young blast wave (see.figures
1b; 2b, and 3b 6f Paper I) and that Rszles = x5(2.53-w) fit the edge
results very Qell. This 1is certainly the value we need at the
beginning of our evolution; but we aref about to argue that it is
probably an adequate approiimation tﬁroughout.

At late times (z just slightly greater than 1 constitutes iate
times) Xg is driven to 4 as we have seen. Since RS,Q,S/FS is everywhere
in the equation multipligd by (Q-is), the particular form of RSR,S/Fs
is unimportant. -Thermal conduction simply fades away.

During the transition period; howevef; there'ié a very complex
set of interactions. Thermal cénduction is suddenly finite; allowing
significant gradients in Te to develop behind the shock. At the same
time (e.g. Cox and Anderéén; 1982; hereafter CA), coulomb heating is
becoming importan£ near the edge; The coulomb heating is proportional
_td T;{-T,, however. If thermal conduction is truly insignificant, T,

will remain at Ty behind the shock and coulomb .heating will do

nothing. 'If thermal conduction is still 1mportant; Te will fall just

®
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far enough below Ti that coulomb heating can supply the losses. Thus
a competition develops between two processes for .control of ‘the
gradient in T, At some moment, control will pass -decisively to
coulomb heating, and the difference between T, and T; will become
imperceptible over a progressively larger region. This kind of
behavior is shown in both CA and Cox and Franco (1981, CF) for blast
waves ;ith coulomb heating only.

Because of the sensitivity of both coulomb heating and thermal
conduction to the post shock gradient of T, as. one enﬁérs the
transition; the conduction flux and Ti—Te will be difficult to
approximate reliably from first principles. The ratio ls/Fs, however,
can be expected to vary rather smoothly. 'Apart from a very short
lived transient during which near equilibration has been achieved only
at the immediate edge; the ratio should never be very far from the
mass average. (The mass is far too heavily concentrated near the edge
for the result to 'be otherwise.) 1In short; approximating kszs/FS
.throughout by X5(2.53-w) may provide a very slight smoothing of the
behavior near the onset of the rapid tramsititon, but as a rule it
shoﬁldibe very nearly cbfrect; it makes no a priori judgement abouf
the magnitudes of Fs or f;; it is exact at ear1y times when thermal
conduction 1s most important; and it does not interfere with the
approach to negligibility of thermal conduction at late times.

With this approximation; equations (6) and (7) combine to produce

an ordinary differential equation x:(z,xs):
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dx 1 ' 1.1 4%
K = = - PR . -
xE = = — eI {(5xg-8) [n + 15 —5— %(2.53-w) ]  (16)

- (6x2-11x_-4) + wx (4xg=T) + (xg~=2)(4=xg)% (2.53-w)}

with n given in (13).

The initial condigions for this equation are provided by Paper I.
In the early time (small z) 1limit, x:=0, and the n term can be
neglected (thus'reducing equation (16) above to equation (17) of Paper
), éo that the solutions for the compression fgctor xs(w) given in
Table 1 of Paper I can be adopted as initial values.

It should be.noted here that the Paper 1 results for X (w) and
that (Rsls/FS) = (2.53-w)xg; follow from the assumption that the
interior density structure is approximately that given by Kahn (1975)
as generalized by CA. This approximation (which automatically
conserves Mmass) was tested against analytic results fdr adiabatic
blast waves by CF and found to be accurate to within a few'perceﬁt
(and much closer near the edée where the mass 1s concentrated). |

We have found solutions to equation (16) by numerical integration
for w= 0, -2; and -4 (uniform density and cavities of varioﬁs
steepness). The integration provides X, and x¥ as functioms of z; and
introducing these into the post-shock derivative equations supplieé a;
B, v, and n all as functions of z. When the results are combined with
the jump conditions and ideal gas law; they completely specify the
1mmediéte post—-shock values of Pg» ng, T, and T, and their spatial
derivatives. The results are shown in Figure 1. A good approximate

method for generating these functions for application to a particular
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problem 1is presented in section III. A few properties of these
solutions are given in Table 2.

Shock radius as a function of time follows from the first jump

condition in equation (1):

(17)

where e(w) = 2E0/3VSps is the energy integral given in Paper I, and
repeated in Table 2 for reference. Here V_ is the volume of the

remnant. Defining a natural time unit of

27 e(w)po(Rl)R?

Eo

t = [ ]1/2’ (18)

we obtain the ordinary differential equation

s 23"(1)]1'/2 (19)

for the age of the remnant T = t/tl as a function of "shock radius
z = Rs/Rl' ‘Numerical integration is straightforward.  The results are
well approximated by a power law T « z(S—w)/Z’ the maximum discrepancy

_amounting to about 3%. Figure 2 shows the behavior predicted by this

-integration.
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II. The Interior Structure

In this section we will derive the appfoximate internal density,
pressure; and temperature structures of the remnant. The approach we
will follow ié to solve the equations of motion for selected gas
parcels from the time they are shocked as they move into the iﬁterior
of the remnant.

A convénient coordinate to use in tracking gas parcels 1is the
mass fracFion T M(R)/M; where M(R) is the mass enclosed within a-
radius R (which is constant for a given gas parcel, though R changes)
and M 1is the total mass of the remnant; which increases as the shock
encoﬁpasses more material.

The density structure will be assumed (as above) to be given by
the approximation of Kahn (1975) as generalized by CA:

x= 2+ (xg - Drd] KB

u(r) = {,_-5/2 exp[(xs - %)E_iq;];]}:;—m - (20)

xs(3+a) - (BTw)xg ' -
5

X~ 3

q=

The approximation conserves mass, provides the correct density and
élopeqat R., and fhe correct logarithmic slope at R<{<Rg.

For a given gas parcel i which was shocked at zy, we can
calculate its present radius r = R/Rs by noting that p; = (zi/z)3_w

(since M(R) has increased in.proportion to 23—“’), and solviang. the
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second of equation (20) numerically for r. Using (20) we then have the
local density, since n= x n (z=1) z~ W,
To find the remaining quantities of interest (p, T, and Te), we
need two equations (plus the ideal gas law). These equations are
provided by equations (4) and (5) ébove. It is convenient to choose

as variables the “"adiabatic constant™ K, conveniently normalized, and

another quantity C:

_1713/2 ‘
K2g—0 ~ (21)
_ r2.3
¢=liz-el?x
5/2 -
A = L4 (1.4)3/3 i pg(z=1) 3/2

2.3 k372 "[p (z=1)]1°73 ’

where my is the mass of a hydrogen atom and g=Te/T as before. The
normalization constant A is chosen so that the initial value of K is
particularly simple in form; see below. Then using the first 2
members of éq;aéio; (1); eqﬁation'(6), and replacing time derivativés
with .z derivatives wusing z(D/Dz) = (RS/VS)(D/Dt) we can réwrite

equations (4) and (5) in the more convenient form

DK Ki3 x 12 v )
bz zlzxZ D ;x(u)], (22)

and
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3-w
—— ...1
DC 2.3 172 (1-g) 2 *s"'y1/2
= - - S 2
5z -~ ¢z e g37Z ? ( xq ) (23)
- - 5/3 2/3 _a (2.3, _
vhere y = p/pg = (x/xg)”/2(K/KR)?/3, G =< (ﬁ)tl— 11.37, and

x(w) = (2/p)/(2,/pg) 1s the normalized divergence of the thermal

conduction flux.
Using equation (16) from Paper I and the approximation discussed

above that Rszs/FS = x5(2.53-w), a bit of algebra produces the result

1.2 2 x° )
s

x(w) = 2.3(2.53-0) (4% (0-50-Zz5z v

(24)

where x° = 93x/9r and r is given in terms of p by inverting equations
(20). This formula was derived assuming self-similarity,l and is
therefore only valid at early times (the situation addressed in
Paper I). We will take the same functional form for y(u) at all
times; which necgssitates using early-time asymptotic values for Xy
and q in equation (24) and the supporting equations (20). Thus at
early times when the thermal conductivity is large it is correctly
accounted for; and while the approximation is less accurate at later

times, the right-hand side of equation (22) is approaching zero since

ve(4-x_ ). Thus the approach to the final adiabatic (K«T3/2/n

.= constant) condition is preserved, though the rate of approach may

not be correct.

We now have a pair of coupled equations, which can be solved ..

subject to the 1initial conditions (i.e. post—-shock values) derived

above, rewritten in the form
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2
Kg = [xg(2)] 2z 2
cg = [%:_2 -1]3/2k,. (25)

The solutions to these equations for representative parcels has
been carried out; and snapshots of the resulting structure are
presented in Figures 3, 4; and 5. The density plots are normalized to
po(z=1) or ?o(z=l)’ the pre-shock density at RS=R1. The temperature

and pressure graphs are plotted in units of the post-shock values at

Rg=R):
T.(z=1) = 1.03x107 K (E51 ) ! (12.2 pc)3
s * e(w) xs(z=1)n°(z=1) Rl
(26)
-9 -2 51 12.2 pcy3
pg(z=1) = 2.97x10 ° dyne cm (e(m)) ( R ) ’
S

where €(w) is the energy integral from table 2, E is the explosion

S1

energy E, in units of 105! ergs, and R, can be calculated from

equation (27) below.

R
ol
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The reader will notice the small waves near the edges of the last
snapshots in the temperature and pressure plots given in Figures 3-5.
We expect the sudden transition to introduce such waves, but the
particular form shown is probably rather heavily influenced by our
approximation scheme, in particular the constraints of the density
structure to the Kahnian form and the post shock ~pressure to R;3
development. Considering that the model was probably forced to evolve
somewhat more smoothly than the actual transition, the wave amplitudes
should probably be regarded as a lower limit to both the uncertainty

on local conditions and the expected transient amplitudes.

I1I1I. Application of These Results

In general one wishes to calculate the conditions in a remnant
with some particular explosion energy, Eo’ shock radius Rs, and
pre—shock density po(RS)ocR;m and one is hopefully content with one of
the values w = 0, -2, or —-4. If one wishes to assume that there is no
non—-coulomb heating in the shock or no thermal conduction, one turns
directly to CF. If one wishes to include a significant external
pressure; is content with w=0; and either no non-coulomb heating or no
thermal conduction, one turns to CA. Those two papers are also useful
if one is interested in an epoch significantly later than the electron
equilibration time (discussed in either paper). If one is interested
in a case with non—-coulomb heating.(Te=Ti at the shock) and strong
thermal conduction for times_much less than the equilibration time,

one turns to Paper I. Only if one 1is forced to be interested in the

structure of a remnant with non-coulomb heating and thermal conduction
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in the vicinity of the equilibration epoch will one wish to follow the
procedure below.

For given values of Eys Rg, po(Rg) and w, one first finds
e(m)=2Eo/3VspS from Table 2. One can choose a value for the early
asymptote, the late asymptote, or somewhere in between, depending on
whether the ﬁime of 1interest 1is vrelatively -early, 1late, or
intermediate in the transition. (The values are very similar and one
should worry very little over the choice.) From this choice, one can
then calculate Pg- The mean mass per nucleus is m=1l.4my/l.1 and
n,=p,/m.

The radius and time units R1 and t, can then be calculated from

1

R Esy -
_ s -3uw 2 30 -3,7-3w
Ry =122 pe {gzzo2) () g [Ro®) )
(27)
: E 3w 5-w 1
_ Y Rg 4w 51 75~ (3042 [ -4.7-3w
t, = 3.19x10% {(m) (W) (‘fﬂ) n (Rg) |7}

which follow from equatibns (14), (17), (18), the ideal gas law, and
the fact that no(Rs)xR;m. The present maturity of the shock is then
zp=Ré/R1, and the age of the shock can be read from Figure 2. The
postshock temperature and pressure and the preshock density at z =1
(whicﬁ are the units of the ordinates in Figures 3-5) can then be

found from
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RS
Po(R)) = po(Rg) (=—

Ry

)¢ (28)

and equations (26).

If one is interested in only a cursory picture of the remnant state,
the postshock compression can be read from the appropriate figure.
The shock velocity, postshock mass velocity, and thermal conduction
flux are found from equation (1) and the postshock temperaturé (and
electron temperature since To = T was assumed at the shock) from
T =1.1 p/(2.3 nk). The logarithmic derivatives of p, p, T, T,, and
T,/T, can all be read from the graphs. If Zy is close to one of the
those represented in Figure 3, the remainder of the normalized
structure is shown.

1f, however, one requires a rigorous numerical description in
order, for example, to calculate the past evolution to RS and the

ionic concentrations now present, this is most easily carried out by

using an analytical approximation to our calculated behavior of X

This approximation must be exceedingly accurate to -allow the
derivation of the other parameters. We have found that writing Xg in

the form

1+ cW + coW? + cqu’
xg = x(0) { 5} (29)
1 + d1W + dyW° dgW ' :

where the coefficients are as given in Table 3 and W = z7_3m provides

sufficient accuracy. Then X% = (7-3w)W(dxs/dW)/xs is straight-
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forward. The postshock quantities then follow directly for any

radius: ps(z) = ps(Rl)z—3, pg(z) = xs(z)po(Rl)z—“ﬁ v F and u

s? s? ]

follow from equation (l1). The quantity Rszs/Fs = %5(2.53-w) can then
be used in the two equations (3)'to find a and B. Equation (13) is
used to find n and v follows from the identity o8B = vin. Your
algebra can be checked by comparing the results with those found from
equation (7). This procedure supplies the postshock conditions and
their derivatives at any value of z. The complete density structure is
provided by equation (20). 1In order to find the remainder of the
structure or the time evolution of an individual parcel, one performs
numerical integrations as in Section II.

Suppose one wishes to learn the past history of a pgrticular gas
parcel now located at Ty = Rf/RS. Equation (20) provides its current
mass fraction ug and at any other epoch, u= uf(zp/z)3_w. Thus the
parcel was first encountered by the shock when z = zy = zé(uf)1/(3_m)
when y = uy = 1. Conditions in the parcel at that moment are found as
before since it i; then the postshock gas. From these conditions omne

evaluates K; = [xs(zi)]‘5/2 zi(5“"‘9)/2 a

nd ¢; = [1.1/1.2]2 k.

From that point, one steps forward in z, following the time with
equation (19) and the evolution of K and C with equations (21). At
each new shock position z,\one must calculate u for the parcel, invert
equation (20) to find r and then x (using the new postshock values of
xg, and a), find n = xno(Rl)z—w; calculate T and g = Te/T from C and k,
calculate (if desired) p from n and T, calculate any desired-
ionization and recombination rates and derivatives of ionic

concentrations, and finally calculate new derivatives of K and C from

equations (22), (23), and (24) using the contemporary values of K, C,
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g, X, ¥, x~ and p for the parcel and of z, x v at the shock. The

s’
procedure appears somewhat messy but it adds very little to the number
of integrals which have to be performed anyway to follow the evolution

of the ion concentrations.

IV. Discussion

The present work shows that Iincluding the effects of saturated
thermal conduction depresses the shock compression factor Xg only
modestly from the value of 4 appropriate to adiabatic calculations.
We also find that tﬁe solution undergoes a sharp transition from the
early time asymptote where thermal conduction dominates to the late
asymptote where the structure is essentially adiabatic and the
eléctron and ion temperatures are nearly equal over a large fraction
of the.remnant. The radius at which this occurs is quite similar to
that given by Cowie (1977) for the equilibration of the two
temperatures.

An error in the captions of Figures 2 and 3 of Paper I should be
pointed OuFS actually the ambient dénsity should be Py @ R:Z and boR;4

fespectively.

This work was supported in part by NASA grant NGL 50-002-044 at

the University of Wisconsin-Madison.
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Table 1

Variables, Derivatives, and Normalizations

Symbol Postshock Derivative

Variable f (alnf/BEnR)S Normalized Form
radius R r = R/Rs
shock radius RS z = RS/R1
time t ‘ T=t/t
density p a = (Blnp/alnR)s X = p/po(Rs)
nuclear number n = p/(l.4 mH/I.l)

density
pressure ) B = (3fnp/3%nR) y = p/pg
average temperature T (8-a) = (aznT/BEnR)S
electron temp;rature Te' ns= —(aznTe/aan)S
mass velocity u G = (anu/BQnR)s
shock velocity Vg
thermal conduction F
flux

div F L
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Table 2

Solution Properties

e(w)P
w 28 « x,(0) Early Late
0 .858 3.2383 0.643 0.655
-2 .970 2.9121 0.578 0.581
~4 .998 2.7721 0.511 0.549

8the value of z where x% is maximum

bs(w) = Eo/[3VSpS/2]; from Paper 1
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Analytical Fit Coefficients

Table 3

x4(0)

3.2383
2.9121

2.7721

C1

.37903
.50027

«54857

€2

.069789
.11527

.13277

€3

.014860
.040463

.054586

]

dy

.32173
.38703

- 40554

dy

.059507
.091284

10147

dj

.012030
.029458

.037829
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Figure Captions

Fig. 1 = Values of edge parameters and derivatives plotted as

functions of normalized shock radius z=Rs/R1, for ambient densities

-w
Po=Rg

W

a) The compression factor x, = p./p,

b) x% = 3gnx/dnRg

c) The logarithmic postshock density aerivative
(3%np/3NR)

d) The logarithmic postshock pressure derivative
(Ganlaan)S .

e) The logarithmic postshock electron temperature derivative

~(a40T,/220R) g

f) The logarithmic' derivative of the electron-to-average

temperature ratio v = [azn(Te/T)/anR]s

Fig. 2 - Normalized age of the remnant 1 = t/tl as a function of

normalized shock radius z = R_/R;

a) w= 0, a uniform ambient density
b) p,=RZ

c) po«R“

Fig. 3 - Snapshots of the internal remnant structure for

po = constant

a) Pressure in units of ps(Rl)

b) Average temperature (solid .lines) and electron

temperature in units of T4(Ry)
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c) Density in units of po(Rl)' Also plotted are ambient

density (lower line) and post-shock density (upper line).

.o

Fig. 4 - Same as Figure 3 but with Py Ré;

Fig. 5 — Same as Figure 3 but with Py R:.
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