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Abstract

Accurate approximations are presented for the time development of

both edge conditions and internal structures of a blast wave with

shock heated electrons, and equal ion and electron temperatures at the

shock. The cases considered evolve in cavities with power law ambient

densities (including the uniform ambient density case) and have

negligible external pressure. Account is taken of possible saturation

of the thermal conduction flux. The structures evolve smoothly from

those given by Cox and Edgar (1981) to the adiabatic structures given

by Cox and Franco (1981).

Also, Department of Space Physics and Astronomy, Rice University
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This work continues a project begun in Cox and Edgar (1983,

hereafter Paper I), modelling spherically symmetric supernova blast

waves in a power-law ambient density distribution. The gas is assumed

to be ideal, totally ionized, and the helium abundance is 10% of the

hydrogen abundance by number. We have assumed also that non-coulomb

processes heat the electrons in the shock, so that the electron and

ion temperatures are equal immediately behind the shock. Thermal

conduction is then important at early times when the temperature is

high, but less important later, when the electron temperature and

conductivity are lower. Our formulation of the thermal conduction

flux follows that of Cowie (1977), which accounts for saturation

effects.

We report here an approximate solution to the evolution of

temperature, density, and pressure structures of such a supernova

remnant. We separate, via physically reasonable approximations, the

immediate postshock behavior from the evolution of the system as a

whole, and solve for the evolution of the postshock conditions.' We

then separate, again by reasonable approximations, the dynamical and

thermal evolution of individual gas parcels from that of the overall

structure, and follow conditions in these parcels. Knowledge of the

history of each parcel would facilitate the calculation of ionization

fractions, which may be far from equilibrium.

We thus continue a study of the first order effects of thermal

conduction on . the structure, spectrum, and surface brightness

distribution of a "non-radiative" remnant, including as much physics

as possible, while avoiding the numerical solution of coupled partial

differential equations.
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The notation for the variables we have used is listed in Table 1,

along with that of their post-shock derivatives ( 3£n f / 9ta R) and

normalized forms. As in Paper I, the jump conditions and their

derivatives are given by

xs

(4̂ 0, . (1)

us

and

x*Ac

X*•*•<!

where p « R-aj was assumed for the ambient density, the asterisk

represents the logarithmic derivative f_ H 3JLn f_/8£n R0, F0 is the
o o o S

thermal conduction flux just inside the shock, and v is the shocks

velocity. In addition, ambient pressure has been neglected, and

pg = -3 has been assumed. This last is equivalent to assuming PgRg is
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constant, which cannot be exactly correct, but reflects the general

effect of conservation of energy. In Paper I it was shown that the

early and late asymptotes have pgRj which differ by only a few percent

at most (depending on u>). This assumption may tend to smooth over

real short term excursions in pressure but prevents spurious

approximation-induced variations and thus provides a physically based

stability to the behavior.

Writing the post-shock equations of motion for a gas parcel in

terms of the logarithmic derivatives given in Table 1 produces several

relations among these quantities. Mass and momentum conservation give

n 1 xsxs 3 rl 1 TU j £> o j n r 1. i. i - — N

r ~ -* r + -̂ -s ~ 2 ~ ̂ s LT ~ rJ (3)TT —1 X V —I 2 ** ® Z TC —1xs x ^ xs L z ^ xs 1

The energy equations for the ions and electrons can be separated

(Paper I) and written in the form

n ' v n ' p

' 3/v » (5)

where T = (1.1̂  + 1.2Te)/2.3 is the average temperature, g = T /T,

and X. = (1/R2)(3/3R)(R2F) is the divergence of the thermal conduction

flux. We have assumed here that T » Ti/20CK>i The constant
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a = in A/153 cgs where £n A - £n[1.2 x 105 (T1/2Te/n
1/2) ]. Also,

n = nH + nHe = l.lnE, pi = nkTj, pe = (1.2/1.l)nkTe, so that the ideal

gas law becomes p = (2.3/l.l)nkT.

Equation .(5) can be solved at R = R0 (using the assumed g =1
S - S

appropriate to electron and ion temperature equilibration by

non-coulomb processes in the shock) for v = (3to g/3Jln R) to produce

i i 4-x,, R_ &„

Writing equation (4) in terms of n = - (3AnTe/3ta R)g and making

use of the fact that -TP\H-( g-a), it follows that

(5xs - 8)(n + v) = (6x| - llxs - 4) - aKs(4xs - 7) + xgx*(5xs - 7)

-(XR - 2)(4 - xs)!i!i, (7)

which, together with equation (6) gives us ri as a function of x , x ,

and R
sW

To evaluate the thermal conduction flux, we use the form given by

Cowie (1977) for the ratio of true flux to classical (i.e.

non-saturated) flux:

= _____ (8)Fc i + *-6 nX'



-6-

where <J>g is a plasma parameter of order unity (we have used $s = I

throughout), and X is the mean free path for electron energy exchange.

In our case, for conditions just inside the shock front, the

second . term in the denominator can be written (using

X=ml/2 bT2/(1.31nek
3/2) where b = 6xlO~7 (30/£nA) cgs, from Cowie and

McKee (1977), the jump conditions relating Fg, vg, P0v|, ps, and the

ideal gas law)

4.6 nX „ 1 *-*s Fc
A-Q 1 O A. I /O f '<PCKC J-Ud) / _ - , x l / 2 r

O O O I A_ ^ I

whence it follows that

-Ll = i - 1 4"Xs do)J 1/2

Notice that the degree of saturation of the thermal conduction

flux just behind the shock is simply related to x . The conduction iss

never heavily saturated and becomes classical as x approaches 4. Thes

classical flux at R can be written
S

bT 7/2

Hence
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R F
l̂! ; (12)

10 4>s (x8-l)T77-

In this equation, Tg and Fg can be eliminated using equation (1) and

the ideal gas law. The result can be written

x(4-x

r 1 <4-xs> /[l - .L s ]

where z is a normalized radius defined by

Z7-3U) = r_1^7-3tO = 1 r^.Ju17/2[-. 1LT7TkJ

The z dependence follows from n. « R~u) and p « R~ . In this
O & o b

formula, m = p/n = (1.4/l.l)mH. The formula for determining the

costant R^ depends on energy integrals which we shall discuss later.

From equation (13), it is clear that n depends very sensitively

on R in the vicinity of Ri. For small values of z, T\ will be

extremely small and the electron temperature will be flat. For large

values of z, however, x is driven to 4 to keep n from becoming verys

large. In fact, n approaches 4-3uj in the adiabatic limit.

In order to reduce the evaluation of the dynamics of this blast

wave to the solution of ordinary differential equations, one further

piece of information is required, namely the behavior of the parameter
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R & /Fg. This parameter was discussed at some length in Paper I for

the early time asymptote. In particular we can write

-—-II. *Ui. - / r
2x(—)dr = <_> -— , (15)

Rs
 J

0 o Sc; x 3-<o

where <fc/x> is the mass average of the energy loss rate per n

particles due to conduction. If all electrons lose energy at

approximately equal rates via this mechanism, then <&/x> ~ ̂ s/
x
s
 an^

£gRs/Fs = xs(3-io). It was found in Paper I that in fact Jl/x varies

very little over the structure of the young blast wave (see figures

Ib, 2b, and 3b of Paper I) and that RD£0/F0 = x0(2.53-co) fit the edgeS o o o

results very well. This is certainly the value we need at the

beginning of our evolution, but we are1 about to argue that it is

probably an adequate approximation throughout.

At late times (z just slightly greater than 1 constitutes late

times) x is driven to 4 as we have seen. Since R-A-XF,, is everywhere
o o o o

in the equation multiplied by (4-x_). the particular form of R_ JL/F_
S . S S S

is unimportant. Thermal conduction simply fades away.

During the transition period, however, there is a very complex

set of interactions. Thermal conduction is suddenly finite, allowing

significant gradients in Tg to develop behind the shock. At the same

time (e.g. Cox and Anderson, 1982, hereafter CA), coulomb heating is

becoming important near the edge. The coulomb heating is proportional

to T^-Tg, however. If thermal conduction is truly Insignificant, Te

will remain at T^ behind the shock and coulomb heating will do

nothing. If thermal conduction is still important, T will fall just
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far enough below T. that coulomb heating can supply the losses. Thus

a competition develops between two processes for control of the

gradient in T . At some moment, control will pass decisively to

coulomb heating, and the difference between T and T^ will become

imperceptible over a progressively larger region. This kind of

behavior is shown in both CA and Cox and Franco (1981, CF) for blast

waves with coulomb heating only.

Because of the sensitivity of both coulomb heating and thermal

conduction to the post shock gradient of T as one enters the

transition, the conduction flux and T.-T will be difficult to

approximate reliably from first principles. The ratio ^S/FS, however,

can be expected to vary rather smoothly. Apart from a very short

lived transient during which near equilibration has been achieved only

at the immediate edge, the ratio should never be very far from the

mass average. (The mass is far too heavily concentrated near the edge

for the result to be otherwise.) In short, approximating R0JL/F_So S

throughout by x (2.53-u) may provide a very slight smoothing of the
S

behavior near the onset of the rapid transititon, but as a rule it

should be very nearly correct; it makes no a priori judgement about

the magnitudes of F or £ ; it is exact at early times when thermal

conduction is most important; and it does not interfere with the

approach to negligibility of thermal conduction at late times.

With this approximation, equations (6) and (7) combine to produce

an ordinary differential equation x (z,x ):
S S
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*x*
Xs dz Xsx~8

* _7) U5xs-8) [n + ±± i xs(2.53-u» ] (16)
s

- (6X2-llxs-4) + oKs(4xs-7) + (xs-2)(4-xs)xs(2.53-<u)}

with TI given in (13).

The initial conditions for this equation are provided by Paper I.

In the early time (small z) limit, x =0, and the n term can be
5

neglected (thus reducing equation (16) above to equation (17) of Paper

I), so that the solutions for the compression factor x (iu) given in
S

Table 1 of Paper I can be adopted as initial values.

It should be noted here that the Paper I results for x (u) and
S

that (Rŝ s/Fs)
 = (2.53-<i>)xg follow from the assumption that the

interior density structure is approximately that given by Kahn (1975)

as generalized by CA. This approximation (which automatically

conserves mass) was tested against analytic results for adiabatic

blast waves by CF and found to be accurate to within a few percent

(and much closer near the edge where the mass is concentrated).

We have found solutions to equation (16) by numerical integration

for u = 0, -2, and -4 (uniform density and cavities of various

steepness). The integration provides x0 and x* as functions of z, ando o

introducing these into the post-shock derivative equations supplies a,

3, v, and n all as functions of z. When the results are combined with

the jump conditions and ideal gas law, they completely specify the

immediate post-shock values of p , ng, T, and Te and their spatial

derivatives. The results are shown in Figure 1. A good approximate

method for generating these functions for application to a particular
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problem is presented in section III. A few properties of these

solutions are given in Table 2.

Shock radius as a function of time follows from the first jump

condition in equation (1):

E°

where e(<o) = 2EQ/3Vsps is the energy integral given in Paper I, and

repeated in Table 2 for reference. Here V is the volume of the

remnant. Defining a natural time unit of

e(u))p (R

g
o

- [ - - — ]1/2, (18)

we obtain the ordinary differential equation

dz

for the age of the remnant T '= t/t^ as a function of shock radius

z = Rg/R^. Numerical integration is straightforward. The results are

well approximated by a power law T « z'5~<|0'2> t^e maximum discrepancy

amounting to about 3%. Figure 2 shows the behavior predicted by this

integration.
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II. The Interior Structure

In this section we will derive the approximate internal density,

pressure, and temperature structures of the remnant. The approach we

will follow is to solve the equations of motion for selected gas

parcels from the time they are shocked as they move into the interior

of the remnant.

A convenient coordinate to use in tracking gas parcels is the

mass fraction y = M(R)/M, where M(R) is the mass enclosed within a

radius R (which is constant for a given gas parcel, though R changes)

and M is the total mass of the remnant, which increases as the shock

encompasses more material.

The density structure will be assumed (as above) to be given by

the approximation of Kahn (1975) as generalized by CA:

x = F
5 + (^ _ 5,rqi H(r)

12 QXs 2} J ~^~

y(r) = {r5/2 e x p X _ j ]}-u, (2Q)

xs(3+cx) - (3-u>)x|
q-

The approximation conserves mass, provides the correct density and

slope .at RS, and the correct logarithmic slope at R«Rg.

For a given gas parcel i which was shocked at z., we can

calculate its present radius r = R/R by noting that y. = (zj/z)3"03

(since M(R) has increased in...proportion to z3~u), and solving- -the
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second of equation (20) numerically for r. Using (20) we then have the

local density, since n= x nQ(z=l) z~
u.

To find the remaining quantities of interest (p, T, and T ), we

need two equations (plus the ideal gas law). These equations are

provided by equations (4) and (5) above. It is convenient to choose

as variables the "adiabatic constant" K, conveniently normalized, and

another quantity C:

3/2

(21)
A n

c =

- 1-4 fl.4^3/8
 m

where m^ is the mass of a hydrogen atom and g=Te/T as before. The

normalization constant A is chosen so that the initial value of K is

particularly simple in form; see below. Then using the first 2

members of equation (1), equation (6), and replacing time derivatives

with z derivatives using z(D/Dz) = (Rg/vs)(D/Dt) we can rewrite

equations (4) and (5) in the more convenient form

DK . , . /o-i\
(22)

and
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3-u

Dz

x0-l
(23)

where y = p/pg = (x/xs)
5/3(K/Kg)

2/3, G - * (Ĵ V 11-37, and

X(u) = (£/P)/(fc/P) is the normalized divergence of the thermals s

conduction flux.

Using equation (16) from Paper I and the approximation discussed

above that Rgfcs/Fs = xg(2.53-u)), a bit of algebra produces the result

2.3(2.53-o))(4-xs)

where x' = 3x/8r and r is given in terms of y by inverting equations

(20). This formula was derived assuming self-similarity, and is

therefore only valid at early times (the situation addressed in

Paper I). We will take the same functional form for x(w) at aH

times, which necessitates using early-time asymptotic values for x
S

and q in equation (24) and the supporting equations (20). Thus at

early times when the thermal conductivity is large it is correctly

accounted for, and while the approximation is less accurate at later

times, the right-hand side of equation (22) is approaching zero since

v«(4-xs). Thus the approach to the final adiabatic (K°T3/2/n

= constant) condition is preserved, though the rate of approach may

not be correct.

We now have a pair of coupled equations, which can be solved

subject to the initial conditions (i.e. post-shock values) derived

above, rewritten in the form
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[xQ(z)]"5 / 2 z

(25)

The solutions to these equations for representative parcels has

been carried out, and snapshots of the resulting structure are

presented in Figures 3, 4, and 5. The density plots are normalized to

P0(z=l) or nQ(z=l), the pre-shock density at Rg=R . The temperature

and pressure graphs are plotted in units of the post-shock values at

T /__i-k = i mxlO KT(z-l) 1.03x10 K

E

(26)

p£!(z=l) = 2.97x10 9 dyne cm 2 (-7—r-1 f12 '2
Rl

where e(u) is the energy integral from table 2, E is the explosion

energy EQ in units of 1051 ergs, and R can be calculated from

equation (27) below.
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The reader will notice the small waves near the edges of the last

snapshots in the temperature and pressure plots given in Figures 3-5.

We expect the sudden transition to introduce such waves, but the

particular form shown is probably rather heavily influenced by our

approximation scheme, in particular the constraints of the density

structure to the Kahnian form and the post shock pressure to R~s

development. Considering that the model was probably forced to evolve

somewhat more smoothly than the actual transition, the wave amplitudes

should probably be regarded as a lower limit to both the uncertainty

on local conditions and the expected transient amplitudes.

III. Application of These Results

In general one wishes to calculate the conditions in a remnant

with some particular explosion energy, EQ, shock radius Rg, and

pre-shock density P-CR,,)̂ ^03 an^ one is hopefully content with one of
O o o

the values u = 0, -2, or -4. If one wishes to assume that there is no

non-coulomb heating in the shock or no thermal conduction, one turns

directly to CF. If one wishes to include a significant external

pressure, is content with oj=0, and either no non-coulomb heating or no

thermal conduction, one turns to CA. Those two papers are also useful

if one is interested in an epoch significantly later than the electron

equilibration time (discussed in either paper). If one is interested

in a case with non-coulomb heating (Te=Ti at the shock) and strong

thermal conduction for times much less than the equilibration time,

one turns to Paper I. Only if one is forced to be interested in the

structure of a remnant with non-coulomb heating and thermal conduction
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in the vicinity of the equilibration epoch will one wish to follow the

procedure below.

For given values of EQ, Rg, pQ(Rg) and u>, one first finds

e(u))=2E0/3Vspg from Table 2. One can choose a value for the early

asymptote, the late asymptote, or somewhere in between, depending on

whether the time of interest is relatively early, late, or

intermediate in the transition. (The values are very similar and one

should worry very little over the choice.) From this choice, one can

then calculate pg. The mean mass per nucleus is m=1.4mjj/l.l and

n0=p0/m.

The radius and time units R and t can then be calculated from

(27)

3+w ' 5-oj 1

which follow from equations (14), (17), (18), the ideal gas law, and

the fact that n_(R_)«R~to). The present maturity of the shock is theny o o

z =Rg/R , and the age of the shock can be read from Figure 2. The

postshock temperature and pressure and the preshock density at z = 1

(which are the units of the ordinates in Figures 3-5) can then be

found from
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Po<Rs> (l1)"03 (28)

and equations (26).

If one is interested in only a cursory picture of the remnant state,

the postshock compression can be read from the appropriate figure.

The shock velocity, postshock mass velocity, and thermal conduction

flux are found from equation (1) and the postshock temperature (and

electron temperature since T£ = T was assumed at the shock) from

T = 1.1 p/(2.3 nk). The logarithmic derivatives of p, p, T, T , and

Te/T, can all be read from the graphs. If z is close to one of the

those represented in Figure 3, the remainder of the normalized

structure is shown.

If, however, one requires a rigorous numerical description in

order, for example, to calculate the past evolution to R_ and thes

ionic concentrations now present, this is most easily carried out by

using an analytical approximation to our calculated behavior of x .
S

This approximation must be exceedingly accurate to allow the

derivation of the other parameters. We have found that writing x in
5

the form

1 + ciW + c2W
2 + CoW3

xs(0) { - - - ±_} (29)

where the coefficients are as given in Table 3 and W = z provides

sufficient accuracy. Then x* = (7-3co)W(dxs/dW)/xs is straight-
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forward. The postshock quantities then follow directly for any

radius: Ps(z) = ps(R1)z~
3, pg(z) = xg(z) p0(R1)z~

a); vg, Fg, and ug

follow from equation (1). The quantity R0£0/F0 = x0(2.53-u) can theno o S o

be used in the two equations (3) to find a and g. Equation (13) is

used to find n and v follows from the identity ct-f5 = \M-ri. Your

algebra can be checked by comparing the results with those found from

equation (7). This procedure supplies the postshock conditions and

their derivatives at any value of z. The complete density structure is

provided by equation (20). In order to find the remainder of the

structure or the time evolution of an individual parcel, one performs

numerical integrations as in Section II.

Suppose one wishes to learn the past history of a particular gas

parcel now located at rf = Rf/Rg. Equation (20) provides its current

mass fraction y^ and at any other epoch, y = ŷ (z /z) . Thus the

parcel was first encountered by the shock when z = z. = z D(u

when y = y, = 1. Conditions in the parcel at that moment are found as

before since it is then the postshock gas. From these conditions one

evaluates K± = [xs(Zi) ]~
5/2

 Zi
(5u3~9)/2 and C± = [l.l/1.2]

3/2 K±.

From that point, one steps forward in z, following the time with

equation (19) and the evolution of K and C with equations (21). At

each new shock position z, one must calculate y for the parcel, invert
\

equation (20) to find r and then x (using the new postshock values of

s and a), find n = xnQ(R1)z , calculate T and g = Te/T from C and K,

calculate (if desired) p from n and T, calculate any desired

ionization and recombination rates and derivatives of ionic

concentrations, and finally calculate new derivatives of K and C from

equations (22), (23), and (24) using the contemporary values of K, C,
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g, x, y, x' and y for the parcel and of z, x , v at the shock. The

procedure appears somewhat messy but it adds very little to the number

of integrals which have to be performed anyway to follow the evolution

of the ion concentrations.

IV. Discussion

The present work shows that including the effects of saturated

thermal conduction depresses the shock compression factor x only

modestly from the value of 4 appropriate to adiabatic calculations.

We also find that the solution undergoes a sharp transition from the

early time asymptote where thermal conduction dominates to the late

asymptote where the structure is essentially adiabatic and the

electron and ion temperatures are nearly equal over a large fraction

of the remnant. The radius at which this occurs is quite similar to

that given by Cowie (1977) for the equilibration of the two

temperatures.

An error in the captions of Figures 2 and 3 of Paper I should be

pointed out: actually the ambient density should be p. a 1C and pJl
^ O S 0 S

respectively.

This work was supported in part by NASA grant NGL 50-002-044 at

the University of Wisconsin-Madison.
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Table 1

Variables, Derivatives, and Normalizations

Variable
Symbol Postshock Derivative

f (3£nf/3£nR)c Normalized Form

radius R

shock radius Rs

time t

density p

nuclear number n
density

pressure p

average temperature T

electron temperature T^

mass velocity u

shock velocity v
&

thermal conduction F
flux

a = (3£np/3JlnR)

g = (3Jlnp/3JlnR)s

(S-a) = (-3£nT/3£nR),

n - -(3£nTe/3£nR)s

a = (3£nu/3fcnR)0

r = R/R£

z = R0/RS L

T = t/t ]

x = p /p_(ROv S"

P/P

div F
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Table 2

Solution Properties

(1)

0

-2

-4

za
max

.858

.970

.998

e(u>:

xs(0) Early

3.2383 0.643

2.9121 0.578

2.7721 0.511

>b

Late

0.655

0.581

0.549

athe value of z where x* is maximums

be(w) = E /[3V p /2]; from Paper 1
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Table 3

Analytical Fit Coefficients

CO

0

-2

-4

xs<°>

3.2383

2.9121

2.7721

cl

.37903

.50027

.54857

C2

.069789

.11527

.13277

C3 dl

.014860 .32173

.040463 .38703

.054586 .40554

d£ ^3

.059507 .012030

.091284 .029458

.10147 .037829
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Figure Captions

Fig. 1 - Values of edge parameters and derivatives plotted as

functions of normalized shock radius Z=RS/RI, for ambient densities

PO<"

a) The compression factor x = p /pns s o

b) x* = 3Jlnxs/3nRs

c) The logarithmic postshock density derivative

a = 05

d) The logarithmic postshock pressure derivative

8 = (3£np/3£nR)_
O

e) The logarithmic postshock electron temperature derivative

f) The logarithmic derivative of the electron-to-average

temperature ratio v = [3)ln(Te/T)/9JlnR]s

Fig. 2 - Normalized age of the remnant T = t/t^ as a function of

normalized shock radius z = Rg/R^

a) a) = 0, a uniform ambient density

b) P0=R
2

c) p^R*

Fig. 3 - Snapshots of the internal remnant structure for

PQ = constant

a) Pressure in units of pg(R )

b) Average temperature (solid lines) and electron

temperature in units of T s(Ri)
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c) Density In units of Po(Ri)« Also plotted are ambient

density (lower line) and post-shock density (upper line).
r- **_

")Fig. 4 - Same as Figure 3 but with p « R£.

Fig. 5 •— Same as Figure 3 but with pQ « R^.
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