NASA-TM-85646 19840009716

Flight Measurement and Analysis of AAFE RADSCAT Wind Speed Signature of the Ocean

FOR REFERENCE

not to be taken from this reout

Lyle C. Schroeder, W. Linwood Jones, Philip R. Schaffner, and John L. Mitchell

JANUARY 1984

.

LINARY COPY

FA 2804

LONGLEY RESEARCH CENTER LIBRARY, NASA HAUIPTON, VIRGINIA

Flight Measurement and Analysis of AAFE RADSCAT Wind Speed Signature of the Ocean

Lyle C. Schroeder Langley Research Center Hampton, Virginia

W. Linwood Jones Satellite Television Corporation Princeton Junction, New Jersey

Philip R. Schaffner Research Triangle Institute Hampton, Virginia

John L. Mitchell Kentron International, Inc. Hampton, Virginia

National Aeronautics and Space Administration

Scientific and Technical Information Office

1984

Use of trade names in this report does not constitute an official endorsement of such products, either expressed or implied, by the National Aeronautics and Space Administration.

CONTENTS

SUMMARY	1				
INTRODUCTION	1				
SCATTEROMETER DESCRIPTION					
SURFACE MEASUREMENTS					
NORMALIZED RADAR CROSS SECTION (NRCS) DATA	4 4 6				
CONCLUDING REMARKS 1	1				
APPENDIX A - REGRESSION FIT RESULTS FOR NRCS VERSUS WIND SPEED IN RATIO FORM FOR RADSCAT STRAIGHT LEVEL LINE DATA	3				
APPENDIX B - REGRESSION MODELS FOR RADSCAT WIND CIRCLES	1				
APPENDIX C - SECOND-ORDER REGRESSION RESULTS FOR RADSCAT CIRCLE FLIGHT DATA 20	6				
REFERENCES	4				
SYMBOLS AND ABBREVIATIONS	5				
TABLES	8				
FIGURES	2				

ļ

SUMMARY

About 10 years ago, the advanced aerospace flight experiment radiometer scatterometer (AAFE RADSCAT) made its first successful measurements of ocean radar scattering cross section from a NASA C-130 aircraft. This instrument was developed as a research tool to evaluate the use of microwave frequency remote sensors (particularly radars) to provide wind speed information at the ocean surface. The AAFE RADSCAT helped establish the feasibility of the satellite scatterometer for measuring both wind speed and direction. Probably the most important function of the AAFE RADSCAT was to provide a data base of ocean normalized radar cross section (NRCS) measurements as a function of surface wind vector at 13.9 GHz. NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT aircraft missions from 1973 to 1977.

Presented in this report are analyses of data from 26 of these flights during which the quality of the sensor and the surface wind measurements were felt to be understood. This data base was used to model the relationship between k_u-band radar signature and ocean surface wind vector. The models developed therefrom are compared with those used for inversion of the SEASAT-A satellite scatterometer (SASS) radar measurements to wind speeds. This report represents a comprehensive analysis of the complete RADSCAT data base.

INTRODUCTION

About 10 years ago, the AAFE RADSCAT¹ made its first successful measurements of ocean radar scattering cross section from a C-130 (NASA 929) aircraft. The AAFE RADSCAT instrument, which was similar to the S-193 RADSCAT that flew on Skylab, was developed in part as a research tool to evaluate the use of microwave frequency remote sensors (particularly radars) to provide wind speed information at the ocean surface (ref. 1). The previous data (refs. 2, 3, and 4) were inconsistent; some data predicted very low sensitivities of normalized radar cross section (NRCS) to winds, whereas others indicated sensitivities proportional to the square of the wind speed. The AAFE RADSCAT established that the greater sensitivity prediction was correct (ref. 5), and this helped to establish the feasibility of a satellite scatterometer as a wind sensor. Of equal significance, however, was the demonstration by RADSCAT during circular flight lines over the ocean that the NRCS is anisotropic with respect to surface wind direction, with peaks when the radar looks upwind and downwind, and with minimums near the crosswind directions (ref. 6).

Probably the most important function of the AAFE RADSCAT was to provide a data base of ocean NRCS measurements as a function of surface wind vector at 13.9 GHz. NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT aircraft missions from 1973 to 1977. Presented herein are analyses of data from 26 of these flights (shown in table I) during which the quality of the sensor and the surface wind measurements were felt to be understood. Data from five of these flights have been previously reported in

¹Compound acronym for advanced aerospace flight experiment radiometer scatterometer.

reference 6, and other analyses of the JONSWAP and 1976 East Coast flights have been published in references 7 and 8. RADSCAT-inferred wind measurements were compared with sonic anemometer measurements in the 1977 West Coast flights (ref. 9). Subsets of this data base were used to model the relationship between k -band radar signature and ocean surface wind vector. The models developed therefrom were used for inversion of the SEASAT-A satellite scatterometer (SASS) radar measurements to wind speeds (ref. 10). The present report represents a comprehensive analysis of the complete RADSCAT data base.

SCATTEROMETER DESCRIPTION

A combined microwave radiometer scatterometer (RADSCAT) operating at 13.9 GHz was developed to measure the microwave brightness temperature and scattering cross section of the ocean from aircraft altitudes. The radiometer measurement capability was found to be coarse (\pm 10 K), and is not discussed further in this report. A detailed description of the AAFE RADSCAT and its operation is given in reference 11; therefore, only a brief description of the scatterometer portion from reference 6 is given herein. A simplified block diagram of the scatterometer subsystem is given in figure 1. During normal operation, the radiometer and scatterometer measurements were time shared through the use of a single pencil beam antenna. For the scatterometer measurement, "long" pulses (i.e., 32 µsec at 1524-m altitude) were transmitted to the surface such that the area illuminated was defined by the antenna pattern, that is, beam-limited conditions.

For smooth seas and light winds, the backscattered signal at 13.9 GHz has a dynamic range of approximately 60 dB for measurements from nadir to 55° incidence angle. Since the useful power measurement range of a square-law detector is typically 20 dB, four receiver channels were used in parallel with staggered sensitivities to insure continuous operation over the complete receiver dynamic range. In each channel, the signal was square-law detected and then integrated for a selectable period ranging from 300 to 924 ms. The integrator outputs were analog-to-digital converted and recorded in a PCM format on an analog magnetic tape recorder.

In making scatterometer measurements of the ocean, the quantity of interest is the normalized scattering cross section (NRCS), which is the same as scattering coefficient σ^{o} . This quantity is independent of the type of radar performing the measurement. In terms of the RADSCAT transfer function, the expression for σ^{o} is

$$\sigma^{0} = (16\pi)^{2} \frac{A^{2}}{\lambda^{2}} \frac{V_{\text{sea}}^{\tau} \text{cal}}{V_{\text{cal}}^{\tau} \text{sea}} \frac{\alpha(GXR)}{G^{2}\beta^{2} \cos \theta}$$
(1)

where

A altitude of aircraft, m

G antenna gain

GXR receiver calibration loop attenuation

- V output voltage of scatterometer integrator, V
- α calibration attenuator value for given channel
- 2

- β equivalent beamwidth, rad
- θ incidence angle, deg
- λ free-space wavelength, m
- τ scatterometer integration time, s

and subscripts are defined as follows:

cal during calibration

sea during sea operation

The measurements presented in this paper were obtained with RADSCAT operating on a C-130 cargo aircraft (NASA 929). The instrument was mounted on the cargo ramp (lower door on the fuselage aft end). For in-flight operation, the ramp was lowered and the RADSCAT extended to its operational position outside the fuselage. In this configuration, the antenna had an unobstructed view of the ocean surface without the use of a radome.

SURFACE MEASUREMENTS

For each flight, the local ocean surface wind vector and temperature (and, at times, wave) conditions were measured by either in situ instrumentation or by onboard These measurements are commonly called "surface truth" for remoteaircraft sensors. sensing measurement missions. A summary of these measurements is given in table II. Extrapolations of these measurements using meteorological analyses and time-space interpolations to the ocean surface at individual flight times is provided in table III. Typical in situ measurements consisted of 10-min averages of wind speed and direction; air temperature and near-surface sea temperature were obtained hourly during the scatterometer experiment. Onboard surface truth was usually obtained at the beginning and the end of the flight, with these observations typically separated by 3 to 4 hours. Flight lines were about 30 km long and were flown in upwind and downwind directions at an altitude of 50 to 150 m. Wind speed and direction measurements were obtained from the aircraft inertial navigation system (Litton LTN-51). Wave measurements were obtained on certain flights using a laser profilometer (Spectra-Physics Geodolite 3A) but were generally not reduced to geophysical values. Wave conditions reported in this document were obtained from weather stations and buoys.

To be consistent with previous investigators, the surface wind measurements are presented at an altitude of 19.5 m. The wind direction measured by the aircraft at altitudes of 100 to 150 m was assumed to be the same as at 19.5 m. The wind speed, however, was extrapolated by using a boundary-layer wind profile model by Cardone (ref. 12). In this model, the wind speed was first extrapolated to the ocean surface value with a profile determined by the air-sea temperature difference, and then extrapolated back to 19.5 with a profile for zero air-sea temperature difference (neutral stability conditions). This wind speed is considered to be proportional to the surface wind stress and is not the actual wind speed at 19.5 m. During the low altitude flight lines, the required temperatures were measured onboard with a Barnes PRT-5 infrared radiometer for sea surface temperature and a Rosemont Model 103 temperature sensor for total air temperature.

NORMALIZED RADAR CROSS SECTION (NRCS) DATA

The experimental data used in these analyses were acquired during aircraft flight missions between 1973 and 1977, as given in table I. The list identifies the aircraft mission and flight number assigned by NASA, the average location of the flight lines, and a characterization of the data which were acquired.

The quality of the sensor measurements varied from flight to flight. In the early missions (1973-1974), the instrument was under development, and henceforth many caveats qualify the use of the data. The most important of these have to do with uncertainties in NRCS caused by lack of temperature stabilization of the radiofrequency (RF) system and band-pass filters and the stability of the periodic gain calibrations. (A discussion of these and other findings during the development and calibration of the instrument is given in ref. 11.) These and other shortcomings in the data are indicated in table I and later in the text where important.

The measurements reported herein came from two basic flight line patterns: straight level lines and circular flight lines. The resulting data are discussed separately.

Straight Level Lines

The straight level lines were flown (fig. 2, upper part) with a level aircraft platform at a constant altitude and with aircraft heading held constant within about $\pm 7.5^{\circ}$. The flight direction was usually selected so that the antenna was pointed in the upwind, downwind, or crosswind direction. The instrument generally operated in the fixed-angle mode (ref. 11) with polarization automatically switched between horizontal (H) and vertical (V). In this mode, the antenna gimbal system automatically scanned the incidence angle through six positions, taking three measurements in each polarization at each position. A summary of data from straight level lines is presented in table IV. These data are organized chronologically by flight. For each entry, the mission, flight, line, and date are presented. The table presents, for each polarization, the average and standard deviation of incidence angle θ , the ratio average and normalized standard deviation of NRCS, an estimate of instrument error, the sample time, and the time-interpolated neutral stability wind speed at 19.5 m above the sea surface. Data are tabulated separately for upwind, downwind, and crosswind measurements.

Since the circular flight lines also provide measurements at upwind, downwind, and crosswind directions, these data are also included in table IV. These data represent an average of all NRCS measurements from the circle flight made at the desired wind azimuth, $\pm 10^{\circ}$.

The trends of the data from table IV were analyzed with regression techniques. The dependence of NRCS on incidence angle was examined in a two-step process. (See fig. 3.) First, each set of measurements was fit by a least-mean-squares polynomial curve of time-weighted NRCS versus incidence angle. Because of the multiple curvatures required to fit these data sets, the regressions were applied piecewise; a third- or fourth-order fit was used for incidence angles from 0° to 40°, and a linear fit was used for incidence angles greater than 40°. Most of the analyses of the straight level flight data were performed in this manner. Even using this piecewise approach, the value of the regression fit was often poor at nadir; for this reason, the value obtained from the regression fit was not used in any subsequent analysis for incidence angles less than 10°. Later, it was determined that for convenience and uniformity, these piecewise curves could be represented within ± 2 dB with a sixth-order regression constructed by sampling the piecewise curves every 1°. The sixth-order regression coefficients are shown in table V and were used in subsequent analysis of the flight data. Except near nadir, the resulting regression fits for NRCS versus incidence angle and the related surface truth wind speed and direction, interpolated to the time of the data set, were assumed to experimentally characterize the radar signature of the ocean.

As the next step, a linear regression of NRCS (dB) values at selected incidence angles versus the log of wind speed was performed. (The NRCS values for every 10° in incidence angle from 10° to 70° were obtained with the curve fits just discussed. Nadir values were obtained from the mean measured value of the near-nadir measurements. These values are given in table VI.) This type of parametric relationship was used in an earlier paper (ref. 6) and as the basis of the SASS I model which converted the SASS NRCS measurements to wind speed (ref. 10). The results of this analysis are provided in figure 4. Trends from the SASS I model function, which is based in part on these data and also on SASS measurements, are shown in these plots for comparison (dashed lines).

The trends exhibited by these data are for the most part consistent. All data at 0° incidence have negative slopes, the data at 10° incidence are nearly flat, and for the data at 20° incidence, the slope is of the order of 10 dB/decade. From 30° to 60° at horizontal polarization and from 30° to 50° at vertical polarization, the slope is near 20 dB/decade. At 60° incidence, there is a trend at vertical polarization to lower slopes. Also, at incidence angles of 30° and above, the magnitude of NRCS tends to decrease uniformly with incidence angle for both vertical and horizontal polarization, but the decrease is considerably less for vertical polarization. All these observations are in agreement with the earlier results (ref. 6) based on only five such aircraft flights. The comparison with the SASS I model shows that the same basic slope trends exist except that the SASS I does not model the decrease in slope at 60° incidence. Both data sets are suspect for this case: the RADSCAT because measurement errors at low signal levels are more likely and because the regression interpolation to 60° may not be accurate, and the SASS I model because of a sparsity of data used in the model. For wind speeds greater than 3 m/s, the plots show biases of from 2 to 3 dB in some cases, with SASS I higher in most cases. The reason for this is not known. Perhaps the dependence of an additional parameter, such as surface water temperature (personal communication from Peter M. Woiceshyn of Jet Propulsion Laboratory), which is present in the aircraft data but has been tuned out from the SASS JASIN (ref. 10) calibrations is responsible for the biases.

In a second analysis, NRCS in ratio form was analyzed as a function of linear wind speed. The advantage of this kind of analysis is that all errors in wind speed are represented as a constant band of errors, independent of wind speed, which is not the case for the first analysis. Since the dynamic range of the instrument is about 60 dB, the NRCS in ratio spans about 6 decades; hence, the analysis for each incidence angle must be plotted separately.

Typical results of this analysis are shown in the plots of downwind horizontal polarization data (fig. 5). In addition to the data points, the least-mean-squares polynomial curve fit (lines) are shown. The curve fits for the other directions and polarizations are shown in appendix A. Linear regression fits appeared best at incidence angles of 0°, 10°, and 20°, whereas second-order fits were better for 30° through 60°. To force the slope of the second-order fit to be 0 at a wind speed of 0, the mirror image of the data (i.e., the same NRCS at negative wind speeds) was input to the regression model. The trends from the SASS I model are also shown as

dashed lines on these plots for comparison. Regression coefficients for all polarizations and directions are given in table VII.

An examination of the plots for 0° , 10° , and 20° shows that, in general, the linear fit describes the data pretty well. The scatter is greater at 10° than for the other angles; this is a surprise, since NRCS at this angle is considered to be somewhat invariant. The nadir data show the least scatter, but at 20° , the trend is also good. The SASS I trend is, in general, higher than the aircraft data by 0.4 to 2.2 dB at nadir, 1 to 2.2 dB at 10° , and 0 to 2.4 dB at 20° . At 30° incidence and above, the scatter appears to be less except for three or so points (outliers) on each plot. These outliers indicate that NRCS measurements from mission 306, FCF (21.5 m/s) and mission 288, flight 5 (22.2 m/s) are too high at 40° and above or that the wind speed measured for these missions is incorrect. For mission 306, FCF both situations are likely since wind speed and direction had to be interpolated in time and space from ships of opportunity and because there were problems in calibrating the receiver during earlier RADSCAT flights. The data from mission 288, flight 5 may be distorted because of shifts in the gain correction characteristics for the bandpass filter.

Circle Flight Lines

The circle flight lines were made with the aircraft flying circles with fixed bank angles and with the antenna set in a fixed antenna gimbal position. (See fig. 2, lower part.) Thus, data were obtained for a complete rotation in azimuth with a nearly constant incidence angle. In a typical flight, such azimuth scans were obtained at up to five different incidence angles, which spanned from about 10° to nearly 70°.

The analysis of these data as illustrated in figure 6 was accomplished in three steps: (1) a ninth-order model in which (NRCS) = $f(\theta, \cos \phi, \sin \phi, \cos 2\phi, \sin 2\phi)$ was used to characterize the data (where ϕ is azimuth angle); (2) the ninth-order model was used to correct the data to the value for the average incidence angle for each circle; and (3) a second-order model in which (NRCS) = $f(\cos \chi, \cos 2\chi)$ was used to fit the data corrected to constant incidence angle (where χ is the wind azimuth relative to upwind). (Previous modeling studies of radar circle flight data are given in ref. 8.) The mathematical model development is given in appendix B. These steps are summarized further in the following paragraphs.

The first step in the analysis of the circle data was to attempt to find a model which could generally be used to fit the data. The model used was

$$(NRCS) = \sum_{n=0}^{2} \left[\left(a_n + b_n \theta \right) \cos n\phi + \left(c_n + d_n \theta \right) \sin n\phi \right]$$
(2)

(ninth-order model)

$$(NRCS) = A_0 + A_1\theta + A_2 \cos \phi + A_3\theta \cos \phi + A_4 \sin \phi$$
$$+ A_5\theta \sin \phi + A_6 \cos 2\phi + A_7 \theta \cos 2\phi + A_8 \sin 2\phi$$
$$+ A_0\theta \sin 2\phi$$
(3)

All data from a circle flight line at a given incidence angle were used to find the least-mean-squares fit for this model. Figure 7 shows a plot of NRCS versus azimuth which results from this process for a typical case. Three separate data sets are shown in this figure. The dots represent the input data. Note that there is considerable scatter in these data, not only from measurement noise but also from normal flight variation in incidence angle. The plus symbol represents values obtained from the input incidence and azimuth angles used with the ninth-order model coefficients. These values provide a judgment of how well the model characterizes the data. The normalized standard deviation (NSD) and the multiple correlation coefficient (R^2) of the differences between input and model data are calculated and printed at the top of the plot along with the regression coefficients. The solid line shows a fairing of the model evaluated at the average incidence angle for 1° increments in azimuth. The critical points of this curve, used to estimate the upwind and downwind peaks and the crosswind minima, are also tabulated.

The ninth-order fit was obtained for all data from circle flight lines reported herein, and the resulting coefficients are given in table VIII. However, the ninthorder model had certain disadvantages; it was too complex, and it showed a tendency for the variation due to wind speed to exceed that due to incidence angle change for variable wind conditions. Prior modelers (ref. 8 and unpublished work done under NOAA Grant No. 04-4-158-11 during 1974 by Willard J. Pierson, Vincent J. Cardone, and J. Arthur Greenwood of City University of New York) have shown that if the incidence angle can be held constant and wind direction is known, the data can be expressed more simply as

$$(NRCS) = \sum_{n=0}^{Z} A_{n} \cos n\chi \qquad (second-order model) \qquad (4)$$

where χ is the wind azimuth relative to upwind.

The wind direction can be estimated from the maximum in the ninth-order model closest to the surface truth wind azimuth. To remove incidence angle as a parameter, we previously, in reference 6, used upwind, downwind, and crosswind data from the same flight, such as in table IV, to provide a means to correct the data to a constant incidence angle. The corrections to the NRCS data were interpolated in azimuth by calculating the vectorial sum of corrections from the two orthogonal directions (upwind-crosswind or downwind-crosswind) surrounding the azimuth of the data as follows:

$$\Delta \sigma'|_{\chi} = \Delta \theta \frac{d\sigma''_{u} \text{ or } d}{d\theta} \cos \chi + \Delta \theta \frac{d\sigma''_{c}}{d\theta} \sin \chi$$
(5)

where subscripts are defined as follows:

u upwind

- d downwind
- c crosswind

However, in this analysis, a more direct calculation of the correction was obtained by calculating from equation (2) or (3)

$$\Delta(\text{NRCS}) \Big|_{\chi} = d(\text{NRCS})/d\theta \Big|_{\chi} \Delta\theta$$
(6)

It was considered desirable to use this method of correction so that the reduction of circle azimuth scans would be independent of other auxiliary flight lines. The other flight lines represent possible error sources because they are performed at different times and locations. Figure 8 shows an example of a plot of $d(NRCS)/d\theta$ versus azimuth corresponding to the conditions of figure 7. The correction curve shows for this case that the slope is bounded between values of -0.31 to -0.81 dB, as should be expected. Other cases, particularly at conditions of high incidence angle and low wind speed show singular points in the derivative and hence do not model the data well. These cases are pointed out in subsequent discussion or tables but, in general, the behavior of the derivative must be examined before equation (6) is used to correct for incidence angle.

After subtraction of the wind azimuth from ϕ to obtain χ and correction of the NRCS for incidence angle by equation (6), the second-order model of equation (4) was used to fit the data. Figure 9 shows an example of the fits for the azimuth scans at the various incidence angles of mission 335, flight 5. Horizontal and vertical polarizations are shown in figures 9(a) and (b), respectively.

The dots show the NRCS data after having been corrected to the constant average incidence angle by equation (6). The lines are the least-mean-squares fits of these data. The symbols at the maxima of these lines refer to the table at the top of each plot, which indicates the flight conditions, the regression coefficients, the R² multiple correlation coefficient, and the normalized standard deviation of the data. In like manner, data from all circle flight lines of this data set were fit with the second-order model, and results are presented in appendix C. The results of the regression fits are provided in table IX. In general, the fits of the second-order model are more stable than those for the ninth-order model, and the fits are quite good. The NSD of the corrected data is usually small except for data for high incidence angle or low wind speed.

To display the trends and check the consistency of the data, measurements of NRCS from circles flown at approximately the same incidence angle were plotted as a function of wind azimuth on the same plot. Circle line data were divided in incidence into groups $\pm 5^{\circ}$ wide centered at 10°, 20°, 30°, 40°, 50°, 60°, and 70°. The NRCS measurements were corrected to the mean incidence angle. The measurements required corrections as high as 5°. Since this amount of correction generally exceeded the range of incidence angle experienced during a circle flight, sizable errors could result if the corrections were computed with $d(NRCS)/d\theta$ from equation (6). Therefore, the amount of correction was computed by using equation (4).

The resulting plots are given in figures 10 through 16. The horizontal and vertical polarization data are shown as parts (a) and (b), respectively. A legend at the top of each plot identifies each flight line shown, along with the pertinent second-order regression results. (The CHI. SIGMA MIN. refers to the azimuth of σ° mimima). Shown additionally in these plots for comparison are the trends (dashed lines) predicted from the SASS I model at wind speeds of 5, 15, and 25 m/s.

The 10° circles show a very weak wind dependence. The data (except for mission 306, FCF) are clustered at about 6.0 ± 1 dB at upwind and downwind and 5.5 ± 0.1 dB at crosswind (figs. 10(a) and (b)). Anisotropy is not strongly evident, except for mission 306, FCF; the stronger anisotropic behavior for this flight may be due to data actually being taken at about 15° incidence and, hence, more likely to exhibit anisotropy. Upwind NRCS for a given data set is less than downwind for wind speeds greater than 5.4 m/s (table X). These results agree on the average with the data from the SASS I table, as can be seen by a comparison of the upper and lower plots for these figures.

At 20°, a wind dependence is evident; from the lowest to the highest wind speeds shown, the NRCS increases by about 9 dB for vertical polarization and about 7.5 dB for horizontal polarization. The increase is pretty much monotonic with wind speed, keeping in mind the variance to be expected in wind speed and NRCS. It is noticeable that some circles result in "flatter" responses at crosswind than others. The reason for this has not been determined, but some researchers have suggested a similar effect could be produced by swell. It is also possible that the flatter curves could result when correcting from a lower to a higher incidence angle and, hence, from a lower to a higher wind speed sensitivity. There appears to be a bias such that these NRCS signatures are lower than those of the SASS I by as much as 2 dB at both horizontal and vertical polarization.

At 30°, the wind speed dependence is much stronger. The general trend that NRCS increases with wind speed is violated only by the circle from mission 288, flight 5, for which the NRCS is much lower than expected for a wind speed of 22.5 m/s. This anomalous result could be due to an incorrect band-pass filter (ref. 10) or to an incorrect wind speed measurement, or to both. The rest of these data appear to be biased lower than the SASS I table also.

At 40° and 50°, the results show anisotropy and NRCS wind speed sensitivity at about the same level as for 30°. The winds increase nearly monotonically with wind speed. Some "shallowness" at the crosswind nulls is observed for low wind speeds. The 50° data set consists of only 3 sets of input data, and hence the results may not be general. The high NRCS for mission 306, FCF establishes doubt about the accuracy of the measured wind speed. The trends for the other two cases are slightly lower but within about 1 dB of the SASS I.

At 60°, a much smaller range of wind speeds has been observed because only a few circles fell into this incidence angle bin. This limited data set is also partly due to the dynamic range of the instrument; that is, NRCS values are too low to be sensed by the RADSCAT if the wind speeds were low at these high incidence angles. For the measurements taken, however, the trend was reasonable. The data from mission 306, FCF again clearly lie questionably above the trend of the other data.

At 70°, the trends become more complex. For horizontal polarization (fig. 16(a)), upwind increases monotonically with wind speed but crosswind NRCS shows an extremely shallow level for the 5.5 m/s circle line. This is probably due to the receiver reaching the minimum detectable signal and not responding to lower levels. The vertical polarization data (fig. 16(b)) exhibit the possible effects of some other parameters. It appears that the low (5.5 m/s), the medium (7 to 9 m/s), and the high (10 to 16 m/s) wind speeds, in general, cause increased levels, but the clusters of data do not vary strictly with wind speed. For example, at upwind, the data from four flights are within about 0.5 dB of each other; at crosswind, these same flights show differences as high as 3 dB; at downwind, they show the lowest wind speed point to be about 2 dB higher than the others. The reasons for these results are not known.

trends of the SASS I model are extrapolations at this incidence angle. The agreement is reasonably close at low wind speeds but diverges to 4 to 5 dB at higher wind speeds.

To further aid in understanding the trends of these groups of circle flight data, a linear least-squares regression fit of NRCS (dB) versus log (Wind speed) was performed at upwind, downwind, and crosswind for each data set. Crosswind calculations were performed at both 90° and at the angle where the second-order fit shows a minimum. These results are given in table X.

In general, the regression coefficients are in reasonable agreement with the results given for straight level lines for incidence angles from 0° through 40°. At 30° incidence, the regression fit was applied including and excluding the data from missions 288 and 306. The results show that the correlation is much higher with the data in question excluded. Regression results for incidence angles at or above 50° show some results in disagreement. In particular, the present wind speed slope factor at 50° is considerably higher (2.5 to 4.0) even when questionable flight data are removed from the analysis. Also, the slope factor is lower at 60° than that at lower incidence angles, with values of 1.2 to 1.8 and 0.4 to 1.0 for horizontal and vertical polarization, respectively. These results should not be taken to be too general since, in all these cases, the number of samples are low.

The regression coefficients A_0 and A_2 for the third-order fit have been observed to vary as a function of wind speed (ref. 8) and show the same trends herein. (See the trend in the tabulation of fig. 14, for example.) This behavior is predictable, since for this model the upwind, downwind, and crosswind values can be determined by inspection to be:

$$(NRCS)_{u} = A_{0} + A_{1} + A_{2}$$
 ($\chi = 0 \text{ or } 2\pi$) (7)

$$(NRCS)_{d} = A_{0} - A_{1} + A_{2}$$
 $(\chi = \pi \text{ or } -\pi)$ (8)

$$(NRCS)_{c} = A_{0} - A_{2}$$
 $(\chi = \pi/2 \text{ or } 3\pi/2)$ (9)

Thus, it can be shown that, as in reference 8,

$$A_{0} = \frac{(NRCS)_{u} + (NRCS)_{d} + 2(NRCS)_{c}}{4}$$
(10)

$$A_{1} = \frac{(NRCS)_{u} - (NRCS)_{d}}{2}$$
(11)

$$A_{2} = \frac{(NRCS)_{u} + (NRCS)_{d} - 2(NRCS)_{c}}{4}$$
(12)

Since NRCS at upwind and downwind are nearly equal, it is seen from equation (10) that A_0 is near the mean value of NRCS for the circle. Likewise, from equa-tion (12), A_2 is approximately equal to the difference between upwind or downwind

and crosswind NRCS values; for incidence angles 20° or greater, this difference is 3 dB or greater. Hence, the wind speed dependence of A_0 and A_2 should be similar to that shown earlier for NRCS. This result is supported by figures 17 to 20, where A_0 or A_2 is plotted against wind speed on a log-log scale. The first-order regression line and coefficients are given in the plots. Some selected outliers have been removed from certain plots as indicated.

The fits and wind speed sensitivities for A_0 and A_2 are in good agreement with the results from the straight level flights reported earlier for cases where enough points are available (50° and 60° data sets have only 2 or 3 points). The scatter is within reasonable bounds of the expected variance in surface truth wind speeds; this is illustrated in figure 17 for $\theta = 20^\circ$, where boundaries for wind speed errors of ± 2 m/s are dashed in around the regression fit line. All the scatter is contained within the ± 2 m/s bounds.

The A_1 coefficient trend with wind speed was also examined, but the results were not easily interpreted. Since A_1 can be either positive or negative depending on whether NRCS is higher in the upwind or downwind direction (eq. (11)), linear A_1 was plotted against wind speed. These plots are shown in figures 21 and 22. Whereas there seems to be some consistency in some data sets, no trend stands out. Coding the points by location seems not to be significant. No conclusion can be drawn for this case.

CONCLUDING REMARKS

This report presents a comprehensive analysis of the ocean scattering cross section signature obtained from the AAFE RADSCAT scatterometer sensor. All scatterometer data for which the quality of the sensor and the corresponding surface truth are known are provided in measurement summary form and also in least-mean-squares curve fit studies.

Straight level flight lines in the upwind, downwind, and crosswind directions have been shown to exhibit approximate wind speed sensitivities of -0.5 dB/log decade of wind speed at incidence angle of 0°, 0 at incidence angle of 10°, and increasing values up to 2.2 for incidence angles from 40° to 60°. These values are consistent with earlier flight results (from Jones, Schroeder, and Mitchell, IEEE Journal of Oceanic Engineering, January 1977) based on only five early AAFE RADSCAT (advanced aerospace flight experiment radiometer scatterometer) flights and with the SASS (SEASAT-A satellite scatterometer) I model function. The slopes for wind speed versus NRCS (normalized radar cross section) are about the same level as the earlier data, but the SASS I NRCS is higher by from 2 to 3 dB. This bias indicates that either the SASS I algorithm absolute NRCS values have been compromised by the JASIN calibration or that the AAFE RADSCAT NRCS data has a bias, or both.

Circle flight line NRCS has been modeled by a ninth-order function

NRCS =
$$\sum_{n=0}^{2} \left[\begin{pmatrix} a_{n} + b_{n} \\ n \end{pmatrix} \cos n\phi + \begin{pmatrix} c_{n} + d_{n} \\ n \end{pmatrix} \sin n\phi \right]$$

and a second-order function

NRCS =
$$\sum_{n=0}^{2} a_n \cos n\chi$$

11

for each circle flight. (The symbols θ and ϕ are defined as incidence angle and azimuth angle, respectively, and χ is the wind direction relative to upwind.) The ninth-order fit is useful to determine and correct the circle flight NRCS data for variations in wind direction and incidence angle but of limited usefulness otherwise because of complexity and instabilities at certain conditions. Also, use of the ninth-order θ dependence for corrections outside the incidence angle limits of the data set was found to be suspect. The second-order fit is more stable and less complex and appears to model the data well but requires knowledge of wind direction and incidence angle dependence. Regression analyses of the upwind, downwind, and crosswind NRCS at a fixed incidence angle show consistent trends with the straight level line data. Plots of NRCS against azimuth for lines corrected to the nearest 10° in heta showed wind speed trends consistent with the straight level line data and earlier RADSCAT data analyses. These plots show that the SASS I model NRCS is biased higher than the RADSCAT data and the bias increases with wind speed. These plots also show variation in the azimuth of minimum NRCS; thus, the actual signature of NRCS versus azimuth may be more complex than this simple model allows.

The wind speed trends of the regression coefficients A_0 , A_1 , and A_2 of the second-order regression model have been analyzed. The slopes of the A_0 and A_2 coefficients versus wind speed show good agreement with the upwind, downwind, and crosswind NRCS trends, but the trend for A_1 is too complex to be understood by this analysis.

The analyses of these data which were taken over 5 years of intensive flight tests, show gaps at certain parametric ranges and large scatter in others. The trends with wind speed show biases, when compared with the best known model, SASS I. The presence of undocumented second-order parameters are suggested by several results. Thus, it is fair to conclude that these data are but a supplement to a growing data bank on ocean NRCS. For instruments which require these empirical data to be finely tuned such that model function error is removed as a factor from operational satellite scatterometer wind sensors, this data base is still incomplete at this frequency and little known at others.

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 November 10, 1983

APPENDIX A

REGRESSION FIT RESULTS FOR NRCS VERSUS WIND SPEED IN RATIO FORM FOR RADSCAT STRAIGHT LEVEL LINE DATA

The NRCS versus wind speed data for AAFE RADSCAT straight level lines were obtained as described in the section entitled "Straight Level Lines." The results are given in the plots of figures A1 through A7. A general description of the results can be found in the section of the report referred to earlier.

Figure A1.- Regression of NRCS versus wind speed for $\theta = 0^{\circ}$, with SASS I model function line (dashed) for comparison.

-

.

Figure A2.- Regression of NRCS versus wind speed for $\theta = 10^{\circ}$, with SASS I model function line (dashed) for comparison.

Þ

.

Figure A3.- Regression of NRCS versus wind speed for $\theta = 20^{\circ}$, with SASS I model function line (dashed) for comparison.

۰,

Figure A4.- Regression of NRCS versus wind speed for $\theta = 30^{\circ}$, with SASS I model function line (dashed) for comparison.

•

•

17

Figure A5.- Regression of NRCS versus wind speed for $\theta = 40^{\circ}$, with SASS I model function line (dashed) for comparison.

.

•

۰.

.

Figure A6.- Regression of NRCS versus wind speed for $\theta = 50^{\circ}$, with SASS I model function line (dashed) for comparison.

-

•

•

Figure A7.- Regression of NRCS versus wind speed for $\theta = 60^{\circ}$, with SASS I model function line (dashed) for comparison.

.

.

APPENDIX B

REGRESSION MODELS FOR RADSCAT WIND CIRCLES

Philip R. Schaffner Research Triangle Institute Hampton, Virginia

The response of the scatterometer has been shown to be a function of incidence and azimuth angles over the ocean surface in the presence of winds of constant direction and speed and can be modeled by an equation of the form (see ref. 8):

$$(NRCS) = \sum_{n=0}^{2} \left[\left(a_n + b_n \theta \right) \cos n\phi + \left(c_n + d_n \theta \right) \sin n\phi \right] + e$$
(B1)

where

(NRCS) normalized radar cross section

 θ incidence angle

 ϕ azimuth angle

a,b,c,d parameters related to actual wind speed and direction

e error in observation of NRCS

Equation (B1) can be rewritten as

$$(NRCS) = A_0 + A_1\theta + A_2 \cos \phi + A_3\theta \cos \phi + A_4 \sin \phi + A_5\theta \sin \phi$$

+
$$A_{\beta} \cos 2\phi + A_{\gamma}\theta \cos 2\phi + A_{\beta} \sin 2\phi + A_{\gamma}\theta \sin 2\phi + E$$
 (B2)

where the coefficients A_i represent linear combinations of a, b, c, and d in equation (B1).

If the dependence on incidence angle is removed from the data and the azimuth angle of the antenna is replaced by azimuth with respect to the wind direction (χ) , then an adequate model (ref. 8) is

$$(NRCS) = \sum_{n=1}^{2} A_n \cos n\chi + E$$
(B3)

APPENDIX B

In order to fit experimental data to these models a general least-squares regression technique may be employed. Either of these models may be expressed as a matrix equation of the form:

$$\overline{Y} = \overline{\overline{XB}} + \overline{E}$$
(B4)

where

Y	vector	of n	observations of NRCS
Ī	n × p	matrix	of functions of independent variables
B	vector	of p	parameters of model (of order p - 1)
Ē	vector	of n	error terms due to random variation in data

It can be shown (ref. 13) that the least-mean-squares-error solution for the coefficient vector B is:

$$\overline{B} = \left(\overline{\overline{X}}' \,\overline{\overline{X}}\right)^{-1} \overline{\overline{X}}' \,\overline{Y} \tag{B5}$$

Since a large number of observations were to be included in each regression fit, the computer program would have required a large amount of storage had this equation been implemented directly. As an alternative to the direct matrix manipulation approach, expressions were obtained for the elements of the matrices as follows. Let

$$\overline{\overline{A}} = \overline{\overline{X}}'\overline{\overline{X}}$$
 (p × p matrix) (B6)

and

$$\bar{Q} = \bar{\bar{X}}'\bar{Y}$$
 (p-element vector) (B7)

Thus, equation (B5) can be written as

$$\overline{B} = \left(\overline{\overline{A}}\right)^{-1} \overline{Q} \tag{B8}$$

For the ith observation, the ith row of $\overline{\bar{x}}$ can be represented as the vector:

$$\bar{x}_{i} = \left\{ x_{i0}, x_{i1}, x_{i2}, \dots, x_{ip-1} \right\}$$
(B9)

where X_{ii} represents functions of the independent variables.

22

For the model of equation (B2),

For the model of equation (B3),

$$x_{i0} = 1$$

$$x_{i1} = \cos \chi_i$$

$$x_{i2} = \cos 2\chi_i$$

An element of $\overline{\overline{A}}$ can then be expressed as

$$A_{ij} = \sum_{k=0}^{n-1} \left(X_{ki} X_{kj} \right)$$
(B10)

The vector of n observations, \bar{Y} can be written as

$$\bar{Y} = \left\{ Y_0, Y_1, \dots, Y_{n-1} \right\}$$
 (B11)

and an element of \overline{Q} can be expressed as

$$Q_{i} = \sum_{k=0}^{n-1} \left(Y_{k} X_{ki} \right)$$
(B12)

The sums in equations (B10) and (B12) are formed as the data are read, and when the end of the data for a particular run is reached, the \overline{A} matrix is inverted and the vector \overline{Q} is premultiplied by the result to arrive at the estimates of the model coefficients in the vector \overline{B} . The total sum of squares error (SS), the sum of the

APPENDIX B

residuals (SR), the multiple correlation coefficient (R^2) , and the normalized standard deviation (NSD) are then calculated as follows (ref. 14):

$$(SS) = \sum_{i=0}^{n-1} E_i^2 = Sum \text{ of squares error}$$
(B13)

$$(SR) = \sum_{i=0}^{n-1} E_i = Sum \text{ of residuals}$$
(B14)

$$R^{2} = \frac{\sum_{j=0}^{p-1} B_{j}Q_{j} - \left(\sum_{i=0}^{n-1} Y_{i}\right)^{2}/n}{\sum_{i=0}^{n-1} Y_{i}^{2} - \left(\sum_{i=0}^{n-1} Y_{i}\right)^{2}/n}$$
(B15)

$$(\text{NSD}) = \frac{\left\{ \left[n(\text{SS}) - (\text{SR})^2 \right] / \left[n | (n - 1) \right] \right\}^{1/2}}{\left(\sum_{i=0}^{n-1} y_i \right) / n}$$

where

$$E_{i} = Y_{i} - \sum_{j=0}^{p-1} B_{j}X_{ij} = \text{Error in ith observation (ith residual)}$$
(B17)
= Y_{i} - Y_{i}'

 $B_{j} = jth$ element of coefficient vector \bar{B}

Y' = Model estimate of value of dependent variable for ith set of independent variables

APPENDIX C

SECOND-ORDER REGRESSION RESULTS FOR RADSCAT CIRCLE FLIGHT DATA

After having been preprocessed to correct for effects of incidence angle variations, the RADSCAT circle flight data were fit by the second-order model described in appendix B (eq. (B3)). The results are given in figures (C1) through (C27). A general description of the results can be found in the section "Circle Flight Lines."

•

•

•

.

Figure C1.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 230, FCF.

Figure C2.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 238, flight 20.

Figure C3.- Second-order regression fit of NRCS versus azimuth relative to upwind

for circle flight line data for mission 238, flight 27.

Figure C4.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 288, flight 5.

Figure C5.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 288, flight 6.

Figure C6.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 306, FCF.

Figure C7.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 306, flight 3. Horizontal polarization.

(a) Horizontal polarization.

(b) Vertical polarization.

Figure C9.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 318, flight 14.

Figure C10.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 318, flight 16.

Figure C11.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 318, flight 17.

(a) Horizontal polarization. (b) Vertical polarization.

Figure C12.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 318, flight 18.

Figure C13.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 318, flight 19.

Figure C15.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 335, flight 3.

Figure C16.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 335, flight 4A.

Q

Figure C17.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 335, flight 4B.

(a) Horizontal polarization. (b) Vertical polarization.

Figure C18.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 335, flight 5.

NSPD

NSD SYMBO

LINE/RUN ST. TIME RV.IN. PTS. CHI.SIGMRO MAX.&MIN.

NSD SYMBOL

LINE/RUN ST. TIME RV.IN. PTS. CHI.SIGMAD MAX. MIN.

19.2 39.1 57.8 .79 .58 .98

10

748 0.0 180.0 68.7 271.3 680 0.0 180.0 101.6 258.4 622 0.0 180.0 107.5 252.5 350 0.0 180.0 80.1 273.9

15.0 .687301 15.0 .020482 15.0 .003002 15.0 4.354154

Figure C19.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 335, flight 6.

Figure C20.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 353, flight 9.

Figure C21.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 353, flight 10.

Figure C22.- Second-order regression fit of NRCS versus azimuth relative to upwind

(b) Vertical polarization.

Figure C23.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 353, flight 13.

A0

A1

A2

NSD SYMBOL

NSO SYMBOL

LINE/RUN ST. TIME AV.IN. PTS. CHI.SIGMAD MAX. MIN. WSPD.

Figure C24.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 353, flight 14.

LINE/RUN ST. TIME RV.IN. PTS. CHL.SIGNAD MAX. MIN.

Figure C25.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 353, flight 15.

(a) Horizontal polarization.

(b) Vertical polarization.

APPENDIX G

10

0

-10

-20

-30

σ°,dB

Figure C27.- Second-order regression fit of NRCS versus azimuth relative to upwind for circle flight line data for mission 353, flight 21.

REFERENCES

- Moore, Richard K.; and Pierson, Willard J., Jr.: Worldwide Oceanic Wind and Wave Predictions Using a Satellite Radar-Radiometer. J. Hydronaut., vol. 5, no. 2, Apr. 1971, pp. 52-60.
- Daley, John: An Empirical Sea Clutter Model. NRL Mem. Rep. 2668, U.S. Navy, Oct. 1973.
- 3. Bradley, G. A.: Remote Sensing of Ocean Winds Using a Radar Scatterometer. Ph. D. Thesis, Univ. Kansas, 1971.
- 4. Claassen, John P.; Fung, H. S.; Moore, Richard K.; and Pierson, Willard J., Jr.: Radar Sea Return and the RADSCAT Satellite Anemometer. Engineering in the Ocean Environment, IEEE, 1972, pp. 180-185.
- Jones, W. Linwood; and Schroeder, L. C.: Radar Backscatter From the Ocean: Dependence on Surface Friction Velocity. Boundary-Layer Meteorol., vol. 13, no. 1, 2, 3, 4, Jan. 1978, pp. 133-149.
- 6. Jones, W. Linwood; Schroeder, Lyle C.; and Mitchell, John L.: Aircraft Measurements of the Microwave Scattering Signature of the Ocean. IEEE J. Oceanic Eng., vol. OE-2, no. 1, Jan. 1977, pp. 52-61.
- 7. Wentz, Frank J.: A Two-Scale Scattering Model With Application to the JONSWAP '75 Aircraft Microwave Scatterometer Experiment. NASA CR-2919, 1977.
- 8. Moore, R. K.; Fung, A. K.; Dome, G. J.; and Birrer, I. J.: Wind Speed and Directional Properties of Radar Backscatter at 13.9 GHz. RSL TR 343-3 (Contract NSG 1397), Remote Sensing Lab., Univ. Kansas Center for Research, Inc., 1979. (Available as NASA CR-166090.)
- 9. Brucks, John T.; Jones, W. Linwood; and Leming, Thomas D.: Comparison of Surface Wind Stress Measurements: Airborne Radar Scatterometer Versus Sonic Anemometer. J. Geophys. Res., vol. 85, no. C9, Sept. 20, 1980, pp. 4967-4976.
- Schroeder, Lyle C.; Boggs, Dale H.; Dome, George; Halberstam, Isadore M.; Jones, W. Linwood; Pierson, Willard J.; and Wentz, Frank J.: The Relationship Between Wind Vector and Normalized Radar Cross Section Used To Derive SEASAT-A Satellite Scatterometer Winds. J. Geophys. Res., vol. 87, no. C5, Apr. 30, 1982, pp. 3318-3336.
- 11. Schroeder, Lyle C.; Jones, W. L., Jr.; and Mitchell, John L.: Laboratory Calibration of AAFE Radiometer/Scatterometer (RADSCAT). NASA TM X-73900, 1976.
- 12. Cardone, Vincent J.: Specification of the Wind Distribution in the Marine Boundary Layer for Wave Forecasting. Geophys. Sci. Lab. TR-69-1 (Contract Nos. Nonr 285(57), N62306-1589, and N62306-68-C-0249), School of Eng. & Sci., New York Univ., Dec. 1969. (Available from DTIC as AD 702 490.)
- 13. Draper, N. R.; and Smith, H.: Applied Regression Analysis. John Wiley & Sons, Inc., c.1966.
- 14. Walpole, Ronald E.; and Myers, Raymond H.: Probability and Statistics for Engineers and Scientists. Macmillan Co., c.1972.

SYMBOLS AND ABBREVIATIONS

A	altitude of aircraft, m
AAFE RAD	SCAT advanced aerospace flight experiment radiometer scatterometer
AV.IN.	average incidence
A _i ,B _i	regression coefficients (Ai and Bi in computer plots)
^A n	nth coefficient of polynomial
a,b,c,d	parameters related to actual wind speed and direction
amp	amplifier
C,D,U	crosswind, downwind, and upwind (XW, DW, and UW in computer plots)
c ₁ ,c ₂	angles of crosswind minima for circle NRCS versus χ plots
CUNY	City University of New York
D _{max}	angle of downwind maximum for circle NRCS versus χ plots
dev	deviation
dir	direction
err	error
FCF	functional check flight
f	function
fl,FLT	flight
G	antenna gain
GMT	Greenwich mean time
GXR	receiver calibration loop attenuation
H,V	horizontal and vertical (polarization)
lat	latitude
long	longitude
max	maximum
min	minimum
miss	mission

٠

4

.

•

NASA	National Aeronautics and Space Administration
NRCS	normalized radar cross section (or σ^{o}), dB
NSD	normalized standard deviation
n	integer
PTS	points
pol, P	polarization
R ²	multiple correlation coefficient (R**2 in computer plots)
SASS	SEASAT-A satellite scatterometer
SR	sum of residuals
SS	sum of squares error
ST	start
std	standard
temp	temperature
U	velocity, m/s
v	output voltage of scatterometer integrator, V
WDIR	wind direction
WSPD	wind speed
α	calibration attenuator value for given channel
β	equivalent beamwidth, rad
θ	incidence angle, deg (INC. ANG. in computer plots)
λ	free-space wavelength, m
σ	scattering coefficient or NRCS, dB (SIGMAO in computer plots)
τ	scatterometer integration time, s
φ	azimuth angle, deg (AZ in computer plots)
χ	wind direction relative to upwind (CHI in computer plots)

.

Subscripts:

.

c,d,u	crosswind,	downwind,	and	upwind
-------	------------	-----------	-----	--------

- cal during calibration
- sea during sea operation

.

						At	line sta	art			At	: line s	cop	Number	Average			Data	Archiv	e tape
Mission	Flight	Date	Line	Run	Tin H M	ne, 1 S	N.lat., deg	E.long., deg	ті н	ime, M	s	N.lat., deg	E.long., deg	of samples	altitude, ft	Mođe (a)	Pol (b)	quality (c)	Number	File
230	FCF	4/11/73	2	2	19 1	2 45	38.9317	-74.5533	19	19	03	39.0801	-74 7533	407	1789	FA	UU 17 17	1.2	M230	1
230	rer	4/11//3	2	3	19	22 50	39.0317	-74.7626	19	30	30	38.7973	-74.3539	461	4783	FA	HH.VV	1,2	M230	
			2	4	19 3	34 34	38.7983	-74.4092	19	45	31	39.0583	-74.7617	612	4825	FA	HH.VV			3
			2	5	20 0	01 00	38.9783	-74.7129	20	07	51	38.7950	-74.3334	314	4840	FA	HH.VV			4
			2	6	20 1	0 53	38.7066	-74.1783	20	37	52	37.8283	-72.8867	1470	4837	SS, FA, AA	HH.VV			5
			3	1	20 4	10 56	37.8833	-72.7600	20	52	21	37.9100	-72.6467	600	4824	SS, FA, AA	HH,VV			6
			4	1	21 0	01 18	37.7533	-72.9972	21	13	48	37.6965	-72,8833	1362	4820	ss	нн, уу			7
238	20	6/5/73	2	3	17 5	55 26	24.6550	-92.2654	18	07	10	24.9621	-92.7567	660	5423	FA	HH.VV	1.2	M238	1
		-, -, -	2	4	18 1	0 44	24.9867	-92.7033	18	20	20	24.7867	-92.2838	499	5515	FA	HH.VV	.,		2
			2	5	18 2	27 28	24.7128	-92.1133	18	33	34	24,6000	-91.8418	345	5451	FA	HH,VV			3
			3	1	18 3	8 06	24.4314	-91.8750	18	48	50	24.0033	-92.1317	603	5311	FA	нн, vv			4
			5	1	19 0	04 27	24.5185	-92.0156	19	25	55	25.2761	-92.7533	1189	5271	FA	нн, vv		[5
			4	2	19 2	29 41	25.3100	-92.7730	19	40	03	25.3367	-92.7700	1129	5277	SS	нн, уу			6
			5	2	19 4	19 36	25.4408	-92.9342	20	11	24	26.2010	-93.6694	1190	5117	FA	нн, vv			7
			4	9	20 1	5 16	26.3383	-93.7883	20	28	15	26.3709	-93.8317	1421	5372	SS	HH,VV			8
			5	4	21 3	85 01	27.5722	~95.1639	21	38	15	27.6884	-95,2817	204	5294	FA	HH,VV			9
			5	5	21 4	0 53	27.7762	-95.3780	22	01	35	28.5496	-96.1147	1066	5193	FA	нн, vv			10
			4	17	22 0	05 00	28.4850	-96.0383	22	18	47	28.5250	-96.0767	1509	5215	SS	нн, vv			11
238	27	6/11/73	2	3	16 3	10 32	26.4250	-88.5944	16	40	56	26.2768	-88.0984	584	5489	FA	нн, vv		M238	12
			2	4	16 5	50 00	26.5241	-88.3986	17	01	10	26.6862	-88.9333	621	5508	FA	нн, vv			13
			3	1	17 C	3 15	26.5997	-88.9667	17	03	48	26.5752	-88.9750	38	5514	FA	vv			14
			3	1	17 (04 21	26.5540	-88.9850	17	16	30	26.1333	-89.2683	684	5512	FA	HH,VV			15
			3	2	17 1	9 27	26.2683	-89.2233	17	30	40	26.7864	-89.0452	661	5515	FA	нн, vv			16
			5	1	17 3	39 54	26.7850	-89.4074	18	02	20	27.5966	-90,1683	1235	5522	FA	нн, vv			17
			4	2	18 C	94 57	27.6267	-90.1500	18	17	37	27.6505	-90.1500	1256	5509	SS	нн, vv			18
			5	2	18 2	27 13	27.6331	-90.0883	18	48	49	28.4393	-90.7993	1142	5518	FA	нн, vv			19
			4	12	18 5	51 41	28.4505	-90.7972	19	03	39	28.5083	-90.7800	1306	5488	SS	нн, vv			20

TABLE I.- AAFE RADSCAT FLIGHT EXPERIMENTAL OCEAN NRCS DATA

^aFA indicates fixed angle mode; AA, alternating angle mode; SS, short scatterometer mode. All modes defined in reference 11. ^bHH is horizontal polarization, transmit and receive; VV, vertical polarization, transmit and receive; VH, vertical polarization transmit and horizontal polarization receive; HV, horizontal polarization transmit and vertical polarization receive.

^C1 - thermal environment of band-pass filter estimated rather than controlled; 2 - average calibration voltage of flight because periodic calibrations exhibited drift; 3 - bandpass filter characteristics reconstructed subsequent to flight; 4 - additional -2.33 dB added to calibration loop gain to normalize average flight NRCS to 5.5 dB at incidence angle of 10°; 5 - surface truth shows variability or questionable quality.

TABLE I .- Continued

•

.

						At	line st	art			A	t line s	top	Number	Average				Archive	tape
Mission	Flight	Date	Line	Run	Tim	e,	N.lat.,	E.long.,	Т	'ime	2,	N.lat.,	E.long.,	of	altitude,	Mode	Pol	Data quality		
					н м	s	deg	deg	н	м	s	deg	deg	samples	ft	(a)	(b)	(c)	Number	File
288	5	11/11/74	4	,	11 3	1 5 2	57 0533	0 8696	1,	40	30	57 0817	1 1363	964	9398	55	нн уу	3.4	M288	, ,
200		11/11//4	2	1 2		2 16	57 0772	1 1693	11	50	37	57 5267	2 0326	512	9512	FA		57.4	11200	
	1		2			1 24	57 5620	2 1022	112	11	10	57 1226	1 9250	309	9524	FA				2
			2		12 10	4 24 5 7/	57.3050	1 5556	12	25	16	56 9450	0.9950	024	9524	FA			1	
					12 10	5 24 1 41	57.2830	1.3530	12	50	- 10 - 10	50.9450	2 2666	700	9585	FA				5
			2	1	12 4.	1 41	57.1027	2 2767	12	00	20	57.0950	2.3000	120	0/90	FA				6
				1	113 00	0 44	57.8100	2.2/0/	13	209	21	50.0303	1.0107	429	9409	FA				7
			2	2	12 2	2 38	57.9901	1.8532	113	20	1 30	57.7591	2.3143	102	0620	FA		ļ		
					12 2	1 40	57.5665	2.5750	1.2	10	20	57.4447	2.7900	193	9629	FA				
			2	4	12 34	4 05	57.4350	2.7533	13	40	10	57.0007	2.4217	333	9564					10
					13 4.	5 4 3 5 E 0	57.0350	2.2700	13	39	24	57.3133	2 5070	1016	9606	55				10
1			4	8	14 0	9 58	57.5067	2.2145	14	26	34	57.6189	2.5978	1810	9582		нн, vv		L	11
	6	11/14/74	4	1	13 0	544	56.8417	3,9800	13	14	02	56.9496	4.0350	908	9426	SS	HH,VV	3,4	M288	12
			2	3	13 24	4 20	57.0183	4.0043	13	37	39	56.5708	3.8600	637	9549	FA	HH VV			13
			2	4	13 41	1 06	56.4533	3.8200	13	54	30	56.0033	3.6759	633	9568	FA	HH			14
			2	5	14 02	2 16	55.7615	3,6000	14	14	40	55.3683	3,4790	610	9541	FA	HH.VV			15
			2	6	14 20	0 10	55.3367	3.4580	14	33	13	56.0349	3.6900	620	9466	FA	HH,VV			16
			2	7	14 3	7 30	56,2583	3,7583	14	52	11	57.0302	4.0119	699	9450	FA	HH.VV			17
		1	4	7	14 59	5 09	57.0800	4.0133	15	07	56	57.2083	4,1283	1387	9380	SS	HH.VV			18
			3	1	15 4	7 19	56.8129	3.8712	16	01	00	56,9133	2,8867	643	9482	FA	HH.VV		1	19
			3	2	16 04	4 09	56.8833	2,9306	16	17	40	56.7512	4,1301	654	9513	FA	HH.VV		1	20
	ŀ		2	10	16 26	5 10	56.5929	3,9003	16	39	30	57.2803	4.0956	626	9458	FA	HH,VV			21
	<u> </u>			1															1	1
306	FCF	4/4/75	4	1	20 01	1 32	38.0600	-72.4183	20	09	49	37.9974	-72.2729	444	5327	FA	hh,vv	5	M306	1
			4	4	20 09) 53	37.9933	-72.2731	20	17	09	37.9514	-72.1800	347	5333	FA	hh,vv	1		2
			4	7	20 17	7 19	37.9433	-72.1800	20	27	04	37.8517	-72.0450	594	5337	FA	HH,VV			3.
			4	11	20 30	57	37.8984	-72.1667	20	39	01	37.8219	-72.0751	436	5312	FA	hh,vv			4
			4	14	20 39	9 08	37.8183	-72.0717	20	48	45	37.7414	-71.9278	414	5307	FA	нн, VV			5
			3	2 '	20 54	4 54	37.4817	-72.0183	21	04	49	37.0817	-72.2083	455	5428	FA	нн, VV			6
		4 (17 /75			1.4.0		40 4750							4.2.4	0770			1	1 1200	
	3	4/1///5			14 0	/ 50	40.4752	-/3.856/	14	1/	49	40.4133	-/3.8356	434	9772	FA CC	нн		M306	
		1			14 34	44	40.4317	-/3.4994	14	45	01	40.3667	-/3.5148	1049	9790	55	нн		1	l o
			6		14 48	3 10	40.2150	-73.4767	14	59	10	40.1367	-73.4450	1131	9815	55	нн		1	9
		l	5		15 05	5 02	40.1317	-73.5433	15	15	30	40.0583	-73.5464	1068	9827	55	нн			10
			13		15 19	9 51	39.8643	-73.5950	15	30	35	39.//1/	-/3.564/	1121	9834	55	нн		1	
		l l	12		15 3	1 58	40.0489	-/3.4500	15	48	15	39.9650	-/3.4462		9833	55	нн			
1					15 52	50	40.0855	-/3.1860	16	04	39	39.991/	-/3.1/17	1095	9824	55	^{нн}			13
1				1.		1 34	40.25/6	-/3.20/4	10	22	02	40.1733	-/3.2250	1066	9831	55	нн 	1		14
1					16 24	± 24	40.2533	-/3.1/33	10	21	59	40.3/6/	-/3.081/	228	9838	55	HH III	1		15
1					16 29	າ∠ປ ເລາ	40.4302	-/3.0586	10	- 39	20	40.3508	-/3.0900	10/9	9844	55	нн			1 10
1	ļ					L 21	40.3940	-/3.1532	10	45	30	40.5233	-/3.3083	206	9826	55	нн			110
1	ł				10 46	5 5U	40.5633	-/3.3631	110	5/	21	40.4817	-/3.3967	109/	9841	55				10
		1	l î	4		5 14	40.4442	-/3.5/1/	1	03	29	40.4400	-/3./683	145	9838	55	нн			1 20
1	1	1	1 1	1.2	11/ 03	צב כ	140.4001	−/3. 886/	11/	10	-⊃4	140.3820	1 -13.9049	1048	9898	55	г нн	4	1	1 20

See footnotes on page 58.

-

~

					At	line sta	irt			A	t line st	:op	Number	Average				Archive	tape
Mission	Flight	Date	Line	Run	Time, H M S	N.lat., deg	E.long.,	г	ime M	, s	N.lat.,	E.long.,	of samples	altitude, ft	Mode	Pol	Data quality	Number	File
			····- ·										ļ		(a)	(b)	(c)		
318	13	8/29/75	3	1	08 22 37	54.9333	7.6117	08	26	03	54.8383	7.8367	157	10247	FA	HH.VV		матя	1
			3	2	08 38 55	55.2067	7.1167	08	42	13	55,3133	6.8983	158	10228	FA	HH.VV			2
			6	1	09 15 27	54.8900	7.1633	09	19	20	54.8900	6.8433	149	10224	FA	HH, VV			3
			2	2	09 55 57	55.1483	7.6267	10	01	17	54.9617	7.3483	217	10193	FA	HH,VV	1		4
			2	22	10 01 33	54.9533	7.3367	10	02	21	54.9250	7.2933	35	10192	FA	HH,VV			5
			4	1	10 12 05	54.9767	7.8767	10	16	00	55.0117	7.8183	226	10176	FA	нн, vv			6
			4	2	10 16 05	55.0083	7.8167	10	16	55	54.9883	7.8550	48	10179	FA	нн, vv			7
			4	3	10 17 24	55.0078	7.8817	10	22	26	55.0317	7.8783	284	10160	FA	нн, vv			8
1			4	.9	10 33 36	55.1233	7.8617	10	38	12	55.1217	7.8417	241	10148	FA	HH,VV			9
			4	11	10 39 04	55.1500	7.8733	10	51	31	55.1783	7.7983	614	10158	FA	нн, vv			10
	14	9/2/75	2	3	08 26 16	54.8933	6.7700	08	35	38	55.2267	7,2683	422	10042	FA	HH.VV		M318	11
			3	1	08 51 42	55.3667	7.2750	08	58	42	55.1500	7.7183	318	10040	FA	HH.VV		11510	12
			3	11	08 59 26	55.1260	7.7624	09	01	31	55.0583	7.8883	92	10040	FA	HH,VV			13
!			3	2	09 13 29	54.8283	8.1267	09	18	30	54.9783	7.8133	234	10030	FA	HH,VV			14
			3	22	09 19 08	54.9967	7.7717	09	20	38	55.0417	7.6750	64	10022	FA	HH,VV	1		15
			4	1	09 44 35	54.9800	7.8650	09	58	26	54.9983	7.8250	809	9982	FA	нн, vv			16
			4	6	09 58 41	55.0100	7.8300	10	00	13	54.9800	7.8667	76	10033	FA	нн, vv			17
			4	7	10 00 44	54.9800	7.8283	10	12	15	54.9933	7.7433	624	9970	FA	нн, vv			18
			4	11	10 12 27	55.0033	7.7433	10	13	17	55.0067	7.7950	33	10074	FA	HH,VV			19
			4	12	10 13 32	54.9950	7.8017	10	25	31	54,9667	7.7233	480	10068	FA	HH,VV			20
	15	9/4/75	2	3	08 36 00	54.9400	8.0183	08	39	10	55.0017	7.8363	325	2552	55	177		M210	21
			3	1	08 45 02	54.9067	7.9117	08	47	03	54.9817	7,9500	217	2558	SS	vv		11510	21
			2	4	08 51 17	54.9383	8.0933	08	54	35	54.9700	7.8767	343	2541	SS	vv			22
			3	2	08 59 29	54.8750	7.9300	09	02	40	55.0033	7,9517	285	2559	SS	vv			24
			2	5	09 07 33	54.9333	8.0567	09	10	18	54,9650	7.8717	274	2563	SS	нн			25
			3	' 3	09 14 32	54.8833	7.9100	09	17	06	54.9883	7.9500	219	2575	SS	нн			26
			2	6	09 21 48	54.9767	7.8367	09	24	22	54.9567	8.0367	252	2566	SS	vv			27
			3	4	09 29 56	55.0033	7.9800	09	31	34	54.9383	7.9350	182	2578	SS	vv			28
			2	2	09 35 39	54,9333	8.0750	09	38	34	54.9817	7.8883	293	2572	SS	нн			29
			3	5	09 43 26	54.8883	7.9350	09	46	20	55,0000	7.9733	259	2576	SS	нн			30
	16	9/8/75	2	5	14 52 58	54.7201	7.8517	14	59	20	55.0117	8,1133	280	10129	FA	UU 1777		w210	
			4	4	15 30 35	54.9550	7.8517	115	44	52	55.0200	7,9519	791	10080	FA			M318	1 22
			4	9	15 45 02	55.0217	7,9417	15	59	02	55.1283	8,0500	747	10077	FA				32
			4	14	15 59 14	55.1283	8.0350	16	13	13	55,2117	8.0600	535	10044	FA	HH-VV			33
]			3	2	16 21 24	55.1414	7.5593	16	23	57	55.1933	7.3817	117	10105	FA	нн. уу			34
			3	22	16 24 23	55.2030	7.3517	16	30	54	55.3217	6.8950	277	10097	FA	HH.VV			36
			3	3	16 35 54	55.2950	6.8267	16	46	37	55.0267	7.6550	416	10094	FA	HH,VV			37

See footnotes on page 58.

. **.**

TABLE I.- Continued

٠

-

				1	At	: line sta	art	A	t line st	ор	Number	Average				Archive	tape
Mission	Flight	Date	Line	Run	Time, H M S	N.lat., deg	E.long., deg	Time, H M S	N.lat., deg	E.long., deg	of samples	altitude, ft	Mode (a)	Pol (b)	Data quality (c)	Number	File
318	17	9/9/75	2 3 4 4 4 4 4 4	2 3 4 1 6 8 11 12	07 50 16 08 08 35 08 17 54 08 33 53 08 46 54 08 53 08 08 53 08 08 53 08 08 54 55 08 59 42 09 01 50	54.9333 55.0083 54.9617 54.8517 54.9233 54.9883 54.9733 54.9783	7.9467 7.6583 8.1717 7.5689 7.6483 7.7133 7.7517 7.8150	08 00 22 08 15 09 08 25 09 08 46 23 08 53 00 08 59 29 09 01 12 09 12 58	54.7350 54.8883 55.1467 54.9200 54.9883 54.9683 55.0017 55.0217	7.7467 8.2083 7.7133 7.6800 7.7000 7.7633 7.8200 7.9283	416 288 329 731 318 337 73 444	9878 10074 10076 9989 9977 9938 10169 10199	SS,FA FA FA FA FA FA FA	HH, VV HH, VV HH, VV HH, VV HH, VV HH, VV HH, VV HH, VV		М318	38 39 40 41 42 43 44 45
	18	9/9/75	4 4 4 4	1 2 6 11	13 58 01 13 59 33 14 10 43 14 23 21	54.8083 54.8600 54.9533 55.1033	7.5960 7.6358 7.7867 7.9783	13 58 55 14 10 18 14 23 10 14 36 06	54.8450 54.9467 55.1000 55.2717	7.5833 7.8100 7.9900 8.1583	61 648 694 493	6165 6142 6149 6140	FA Fa Fa Fa	нн, vv нн, vv нн, vv нн, vv		м318	46 47 48 49
	19	9/10/75	2 3 4 4 4 4 4 4 4 4 4	6 3 5 6 7 8 10 12 13 17	13 14 57 13 27 36 13 50 46 13 55 22 13 56 30 13 56 30 14 58 59 14 03 13 14 09 26 14 11 35 14 19 51	55.1133 55.0717 54.8883 54.9300 54.9017 54.9183 54.9783 54.9783 54.9850 55.0117 55.0650	8.2267 7.8433 7.7467 7.7517 7.7733 7.8000 7.8383 7.8933 7.9450 7.9550	13 21 45 13 34 19 13 52 46 13 56 06 13 57 59 14 01 23 14 08 54 14 11 08 14 18 53 14 34 26	54.9883 54.8183 54.9167 54.9100 54.9450 54.9383 54.9967 55.0267 55.0783 55.1917	7.7950 8.1317 7.7320 7.7867 7.7757 7.8283 7.9133 7.9317 7.9967 8.0433	291 297 115 52 100 143 333 107 409 383	9988 10017 9992 9981 9937 9937 9957 9942 9955 9947	FA FA FA FA FA FA FA FA FA	HH, VV HH, VV HH, VV HH, VV HH, VV HH, VV HH, VV HH, VV HH, VV		М318	50 51 52 53 54 55 56 57 58 59
	24	9/17/75	2 2 4	10 11 1	14 00 30 14 14 19 14 27 32	55.0317 54.8367 54.8733	7.9905 7.5600 7.7867	14 11 58 14 20 08 14 37 26	54.7650 55.0417 54.9417	7.4567 8.0350 7.9567	502 276 589	10127 10079 10028	FA FA FA	HH,VV HH,VV HH,VV		M318	60 61 62
335	3	1/16/76	2 2 4 4 4 4 4 4 4	3 33 1 2 3 6 9 10	16 20 15 16 23 13 16 36 47 16 40 00 16 42 53 16 50 07 16 58 29 17 02 58	36.8586 36.7600 36.3167 36.3550 36.3721 36.3950 36.4400 36.4250	-72.4433 -72.3333 -71.9467 -71.8977 -71.8550 -71.8217 -71.7483 -71.7317	16 23 02 16 33 35 16 39 42 16 42 46 16 50 00 16 58 10 17 02 50 17 03 15	36.7639 36.3983 36.3483 36.3733 36.3883 36.4317 36.4217 36.4250	72.3406 71.9867 71.9167 71.8633 71.8283 71.7683 71.7267 71.7350	162 955 216 213 494 503 238 18	10054 10062 10011 10033 10010 10016 9984 10032	FA FA,SS FA FA FA FA FA	HH, VV HH, VV, VH HH, VV HH, VV HH, VV HH, VV HH, VV HH, VV		M335	1 2 3 4 5 6 7 8

See footnotes on page 58.

ų.

-

TABLE I.- Continued

[At	line sta	irt		А	t line st	op	Number	Average	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	[Data	Archive	tape
Mission	Flight	Date	Line	Run	Time, H M S	N.lat., deg	E.long., deg	Ti H N	me, 1 S	N.lat., deg	E.long., deg	of samples	altitude, ft	Mode (a)	Pol (b)	quality (c)	Number	File
335	4A	1/22/76	4 4 4 4 4 4 4 4 4 4 4 3 3 4 4	1 2 3 5 7 8 3 9 11 15 16 19 1 11 17 18	H M S 16 51 08 16 53 10 16 56 49 17 00 36 17 06 19 17 10 04 17 15 52 17 36 37 17 51 25 17 53 37 17 58 12 18 13 28 18 17 42	38.7483 38.7483 38.7433 38.7633 38.7400 38.7167 38.7383 38.7600 38.8783 38.8600 38.8250 38.8250 38.8267 38.8200 38.8200 39.2133 39.3217 39.3200	-73.9617 -73.9083 -73.8950 -73.8033 -73.7500 -73.6917 -73.8300 -74.2601 -74.1833 -74.0500 -74.0233 -74.0200 -73.8767 -73.5133 -73.5133 -73.2283	16 16 17 17 17 17 17 17 17 17 17 18 18 18 18 18	1 5 53 03 55 29 00 16 05 58 09 44 11 21 31 50 53 09 55 09 55 09 55 09 55 09 55 09 55 09 55 09 55 09 55 09 56 00 00 11 14 17 36 26 35	38,7533 38,7500 38,7533 38,7210 38,7317 38,9117 38,8183 38,8283 38,8283 38,8250 38,8210 39,2067 39,3267 39,3250 39,2933	73.9050 73.9050 73.8100 73.7367 73.7117 73.6700 74.4533 74.2017 74.0667 74.0539 74.0333 73.9867 73.5217 73.4017 73.2400 73.1333	145 251 264 395 271 108 864 321 665 135 100 26 504 163 233 498	10090 9987 10010 10018 9991 9970 10029 10007 9980 10016 10100 10033 9982 9922 10020 10046	FA FA	(B) HH, VV HH, VV HH, VV HH, VV HH, VV HH, VV, VH HH, VV HH, VV		M335	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
	48	1/22/76	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	22 1 5 6 7 7 8 9 10 11 12 13 14 16 17 11 111 111 33 2	18 27 58 19 41 23 19 51 12 19 54 59 19 56 54 19 58 52 20 00 43 20 04 47 20 08 53 20 11 02 20 12 42 20 17 31 20 20 52 20 24 57 20 53 39 20 56 52 20 59 47 21 07 14 21 13 57 21 24 50	39.3200 38.1267 38.1367 38.1600 38.1367 38.1800 38.1483 38.1850 38.1933 38.1517 38.1567 38.1483 38.1567 38.1483 38.16567 38.1483 38.0056 37.7683 37.2683 37.2683	-73.1550 -71.3567 -71.1633 -71.1517 -71.1167 -71.0600 -71.0583 -70.9567 -70.9563 -70.9400 -70.8783 -70.9400 -70.8783 -70.5233 -70.5233 -70.5233 -70.5233 -70.5333 -70.5333 -70.8533 -70.8533 -71.2033	18 19 19 20 21 21	39 12 50 54 51 54 56 258 28 200 22 33 24 25 40 220 33 324 25 46 40 45 36 16 59 01 38 23 32 21 33 10	39.2617 38.1483 38.1483 38.1483 38.1367 38.1683 38.1717 38.1750 38.1850 38.1700 38.1550 38.1550 38.1633 38.1033 37.7700 37.6567 37.2917 37.3783 37.3783 37.9583	72.9517 71.1633 71.1583 71.050 71.0683 71.0797 71.0067 70.9900 70.9800 70.9800 70.9803 70.8783 70.8783 70.8783 70.5267 70.5300 70.5330 70.5583 70.5583 70.8563	654 605 268 135 132 126 240 256 117 103 312 213 239 1140 316 155 272 355 538 544	9997 10057 10021 10076 10113 10014 10043 10012 9948 10045 10045 10045 10061 10025 10099 10145 10165 10626 11106 11111 11074	FA FA FA FA FA FA FA FA FA FA FA FA FA F	HH, VV HH, VV		M335	25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

-

,

See footnotes on page 58.

~

TABLE I Co	ntinued
------------	---------

- **-**

					At	line sta	art			At	line st	op	Number	Average			Data	Archive	tape
Mission	Flight	Date	Line	Run	Time, H M S	N.lat., deg	E.long., deg	Ti H	ime, M S		N.lat., deg	E.long., deg	of samples	altitude, ft	Mode (a)	Pol (b)	Quality	Number	File
335	5	1/23/76	Δ	1	18 48 50	38 1367	-71 1700	1.8	53 1	7	38 1517	71 1150	325	10021	FA	uu 174		M225	10
555	5	1, 20, 10	4	3	18 53 42	38,1567	- 71.0833	19	11 1	5	38.1017	70.7950	1258	10062	FA	HH, VV		1333	40
			4	9	19 11 33	38.1033	- 70.8050	19	13 2	2 3	38,1150	70,7367	141	10167	FA	HH VV			48
			4	10	19 13 48	38.0983	-70.7383	19	33 0	3 3	38.0200	70.3317	1297	9976	FA	HH, VV			49
			4	17	19 33 10	38.0183	-70.3367	19	33 5	4 3	38.0417	70.3383	47	10020	FA	HH,VV			50
			4	18	19 34 22	38.0550	- 70.3067	19	38 0	7 3	38.0067	70.2033	226	9954	FA	HH,VV			51
			4	19	19 38 11	38.0033	-70.2033	19	47 1	7 3	37.9733	70.0567	500	10028	FA	HH,VV		:	52
			4	22	19 47 38	37.9883	-70.0467	19	54 3	5 3	37.9433	69.8683	404	10011	FA	HH,VV			53
			2	5	19 59 35	37.9733	-69.8767	20	05 3	0 3	38.0717	70.0600	345	10027	FA	HH,VV			54
			2	55	20 06 49	38.0950	-70.1017	20	16 2	7 3	38,2500	70.3990	551	9995	FA	HH,VV,VH			55
			3	1	20 19 04	38.1967	-70.4500	20	35 2	4 3	37.4217	70,5233	923	10052	FA	HH,VV,HV			56
			• 3	2	20 38 44	37.4683	-70.5333	20	55 2	5 3	38.0817	69.7483	937	9998	FA	hh,vv			57
			4	25	21 21 47	37.8650	-70,7833	21	35 1	0 3	37.8033	70.4933	833	9992	FA	нн, vv			58
	6	1/20/70	4	,	20 40 21	20 2567	71 2600	20				71 0200	470	00.45					
	0	1/28/76	4	Ţ	20 49 31	38.2567	-71.3600	20	56 Z	4	38.3353	71.2300	4/9	9945	FA	HH,VV		M335	59
			4	4	20 56 56	30.3203	-71,0912	21	15 O	2 2	38.4350	71.1050	1045	9932	FA	HH,VV			60
			4 4	11	21 11 34	38 4617	-71 0233	21	15 U 22 I	7 3	38 4900	71.0383	212	9958	FA				61
			4	13	21 22 17	38 4890		21	33 0	5	38 53/9	70 9047	625	9900	FA				62
1			4	17	21 33 33	38.5550	-70.8834	21	43 5	7	38 5933	70.7600	689	9899	FA	HH WV			64
			4	21	21 44 06	38,6017	-70.7533	21	55 0	3	38.6567	70 5800	624	9900	FA	HH WV			65
			3	1	22 00 22	38,5817	-70,6833	22	06 1	o la	38,3667	70,7183	331	9944	FA	HH.VV			66
			3	11	22 06 35	38.3517	-70.7233	22	13 1	1	38.1100	70.7567	382	9912	FA	HH.VV			67
			2	3	22 15 26	38.1500	-70.8183	22	30 2	8	38.6933	71.1600	713	9917	FA	HH .VV			68
			3	2	22 33 02	38.6000	-71,1617	22	46 5	9	38.2067	71.5317	730	9888	FA	HH,VV			69
			4	25	22 49 07	38.2200	-71.4667	23	00 2	6 3	38.2400	71.2983	704	9856	FA	нн, VV			70
								1											
353	9	3/2/77	4	1	20 10 00	32.7617	-117.5083	20	23 5	3 3	32.6633	-117.4218	1348	9684	SS	HH,VV		M3531	1
			4	6	20 38 02	32.9767	-117.6100	20	50 0	9 3	32,9000	-117.5433	473	9757	SS	HH,VV			2
			4	11	20 51 00	32.8683	-117.5150	21	03 4	6 3	32.7800	-117.4283	1222	9748	SS	нн, vv			3
			4	16	21 03 53	32.7733	-117.4300	21	16 3	4 3	32.6933	-117.3633	1245	9728	SS	нн, vv			4
			3	3	22 14 22	32.0133	-117.7983	22	24 1	9 3	32.2483	-117.3383	818	9742	SS	HH,VV			5
			د	55	22 26 13	32.2517	-117.3698	22	28 3	3 3	32,1617	-117.4517	204	9732	55	нн, vv			6
	10	3/3/77	Δ	1	20 25 42	32 7582	117 4993	20	20.2		22 7002	-117 2022	1272	05.20	55			M2521	
	10	5, 5, 1,	4	ĥ	20 42 49	32.8217	-117 4633	20	54 1	4	32 7600	-117 3693	1168	9520	SS			112221	
			4	11	21 02 22	32,9100	-117.5633	21	16 1	6	32.8283	-117.4583	1373	9519	SS				å
						1-2-2-00	1	1~-	-~ -	~ [-			1 10/0	1 2222			1		1 2

See footnotes on page 58.

•

-

TABLE I.- Concluded

					At	line sta	art	A	t line s	top	Number	Average			Data	Archive	tape
Mission	Flight	Date	Line	Run	Time, H M S	N.lat., deg	E.long., deg	Time, H M S	N.lat., deg	E.long., deg	of samples	altitude, ft	Mode (a)	Pol (b)	quality (c)	Number	File
353	11	3/8/77	2 3 2 4 4 4	5 2 6 1 6 11	21 45 03 22 10 17 22 27 28 22 40 44 22 53 41 23 06 46	43.4167 42.8517 42.5005 42.3783 42.5017 42.5983	-129.8200 -129.9083 -129.6400 -130.0917 -129.8367 -129.5950	21 50 56 22 19 45 22 37 34 22 53 29 23 06 39 23 19 22	43.3200 42.5183 42.4050 42.5000 42.5983 42.6683	-129.9917 -129.4417 -129.9800 -129.8283 -129.5900 -129.3167	503 802 840 1126 1251 1238	9352 9514 9513 9537 9539 9335	SS SS SS SS SS SS	нн , VV нн , VV нн , VV нн , VV нн , VV нн , VV		M3531	10 11 12 13 14 15
	13	3/10/77	4 4 4 4 4 2	1 6 11 16 20 6	00 04 27 00 27 13 00 42 37 00 59 42 01 09 58 01 21 54	32.8775 32.9317 32.7750 32.8067 32.7400 32.7367	-117.7500 -117.5550 -117.4933 -117.4983 -117.4867 -117.5217	00 17 40 00 41 06 00 56 10 01 09 49 01 19 58 01 30 40	32.7183 32.8283 32.6833 32.7350 32.6800 32.8967	-117.7117 -117.5300 -117.4983 -117.4867 -117.4700 -117.9283	1302 1374 1335 560 967 733	9583 9535 9595 9645 9650 9635	55 55 55 55 55 55	HH, VV HH, VV HH, VV HH, VV HH, VV HH, VV		M3531	16 17 18 19 20 21
	14	3/11/77	2 3 4 4 4	5 2 1 6 11	22 57 36 23 09 24 23 56 38 00 09 54 00 23 29	42.5183 42.3733 42.3567 42.4017 42.4533	-129.9217 -130.2467 -130.2617 -130.1233 -129.9783	23 03 22 23 24 00 00 09 42 00 23 21 00 28 42	42.5780 41.7647 42.4050 42.4533 42.4667	-130.2167 -130.2200 -130.1367 -129.9883 -129.9333	500 1243 1046 1304 505	9486 9514 9481 9473 9485	SS SS SS SS SS	нн, vv нн, vv нн, vv нн, vv нн, vv		M3532	1 2 3 4 5
	15	3/14/77	4 4 4 4	1 6 11 16	20 12 58 20 31 02 20 48 17 20 56 35	32.8650 32.8333 32.9217 32.9260	-117.5450 -117.4517 -117.5583 -117.5083	20 25 45 20 36 29 20 56 27 21 09 09	32.8500 32.8317 32.9283 32.9233	-117.4883 -117.4317 -117.5150 -117.4650	1253 13 782 1135	9492 9586 9498 9503	SS SS SS SS	нн, vv vv нн, vv нн, vv		м3532	6 7 8 9
	20	3/22/77	4 4 4 4 4 4	1 6 11 16 21 26	19 45 03 20 04 13 20 22 14 21 09 56 21 21 47 21 35 21	32.7500 32.8133 32.8500 32.8983 32.9067 32.9300	-117.5583 -117.2767 -117.5067 -117.3317 -117.3883 -117.4383	195843201828203600211807213514214841	32.7699 32.8550 32.8683 32.9233 32.9300 32.9400	-117.5800 -117.3217 -117.5450 -117.3450 -117.4317 -117.5150	1348 1385 1335 139 1305 995	9756 9663 9687 9697 9729 9765	SS SS SS SS SS SS	HH, VV HH, VV HH, VV HH, VV HH, VV HH, VV	5	М3532	10 11 12 13 14 15
	21	3/24/77	4 4 4 3	1 7 12 3	20 07 17 20 24 32 20 37 20 21 57 27	32.7617 32.8333 32.8483 33.0950	-117.5867 -117.5533 -117.4617 -117.4433	20 19 46 20 37 11 20 49 58 22 09 12	32.7800 32.8417 32.8733 32.6150	-117.5083 -117.4650 -117.3567 -117.4333	1228 1243 1007 919	9416 9459 9500 9519	SS SS SS SS	HH, VV, HV HH, VV HH, VV HH, VV, HV		M3532	16 17 18 19

• •

See footnotes on page 58.

.

Mission	Flight	Date		Locati	on, deg	Time	Neutra 19.5	l stability -m winds	Temp	•, •c	Anem	ometer	Wave height,	s	well	Data
MISSION	rigne	Date		N.Lat.	E.Long.	нм	Speed, m/s	Direction, deg	Air	Sea	Height, m	Average time, min	m	Height, m	Direction, deg	quality (a)
306	FCF	4/4/75	NASA 929 S.S. Wilmington Geddy	37.391 37.6 38.1	-72.730 -73.7 -74.1	19 48 18 00 24 00	21.5 ^b 28.3 ^b 15.4	300 290 330	4.5 9.0	13.9 12.2	135	23	°3.0 °4.5			Average
306	3	4/17/75	Ambrose Tower	40.444	-73.846	14 00 17 00	4.3 1.7	315 270								Good
318	13	8/29/75	Land Station	54.926	8.305	8 45 9 45	^b 2.8 ^b 3.0 ^b 3.8	124 146 146			>20		Smooth			Fair
			List	55.021	8.425	11 45 9 45 10 45 11 45	^b 3.8 ^b 4.9 ^b 4.9 ^b 5.1	146 149 149 149			>20					
318	14	9/2/75	Land Station	54.926	8.305	8 15 9 15 10 15	^b 4.7 ^b 5.1 ^b 5.1	34 34 34					1.1			Good
			List	55.021	8.425	11 15 8 15 9 15 10 15	^b 4.2 ^b 5.4 ^b 5.6 ^b 4.7	34 50 50 70								
			Pisa	54.995	7.906	11 15 8 15 9 15 10 15 11 15	^b 4.1 4.4 5.0 5.7 5.3	70 45 47 46 60			17	10				
318	16	9/8/75	Land Station	54.926	8.305	14 45 15 45 16 45	^b 4.9 ^b 4.5 ^b 4.5	214 214 191					1.1			Good
			List	55.021	8.425	17 45 14 45 15 45 16 45	^D 4.2 ^b 6.1 ^b 5.5 ^b 5.6	191 240 230 220	15.6	17.9						
			Pisa	54.995	7.906	17 45 14 45 15 45 16 45	^b 5.7 7.9 8.0 7.8	220 198 198 188								
			Hornum Pile	54.958	8.210	17 45 14 45 15 45 16 45	8.3 5.7 5.6 5.9	184 238 236 232								
			NASA 929	54.986	7.913	17 45 14 45	6.5 7.3	230 212		ŀ	225.5	258				

TABLE II.- SURFACE TRUTH FOR RADSCAT MISSIONS

**

^aData quality is defined in terms of the standard deviation of wind speed and wind direction, respectively, as follows: Good - 1.0 m/s, 10°; Fair - 1.5 m/s, 15°; Average - 2.0 m/s, 20°. ^bMeasurements uncorrected for height and stability. ^CMeasurements were in World Meteorological Organization units of half-meters, and hence were divided by 2 before entry into this table.

TABLE II.- Continued

Mission	Flight	Date	Data source	Location, deg		Time	Neutral stability 19.5-m winds		Temp., °C		Anemometer		Wave height,	Swell		Data
TIBSION	111911	Date	ala source	N.Lat.	E.Long.	нм	Speed, m/s	Direction, deg	Air	Sea	Height, m	Average time, min	m	Height, m	Direction, deg	quality (a)
318	17	9/9/75	Land Station	54.926	8.305	7 45	^b 9.4 ^b 8.8	214 214		*			1.5		240	Good
			List	55.021	8.425	945 745 845	^b 9.8 ^b 10.9	230 230	17.9	17.7						
			Pisa	54.995	7.906	945	12.1 12.2 12.3	230 209 205								
			Hornum Pile	54.958	8.210	945 745 845 945	11.5	237								
			NASA 929	54.982	7.798	7 45	13.0	233			161.5	52				
318	18	9/9/75	Land Station	54.926	8.305	14 15 15 15	^b 7.6 ^b 7.9	191 191					1.8		240	Fair
			List	55.021	8.425	14 15 15 15	^b 10.6 ^b 10.1	220 220	18.7	17.7						
			Hornum Pile	54.958	8.210	14 15 15 15 14 15	10.9	188								
			NASA 929	55.029	7.811	15 15 14 15	9.7 12.5	236 202			228.6	174				
318	19	9/10/75	Land Station	54.926	8.305	11 15 13 15 14 15	^b 9.5 ^b 8.5 ^b 8.6	214 214 214					2.4		240	Good
			List	55.021	8.425	15 15 11 15 13 15 14 15	^b 8.8 ^b 8.2 ^b 8.0	214 270 270 270	16.9	17.4						
			Pisa	54.995	7.906	15 15 11 15 13 15 14 15	7.6 9.2 7.8 8.0	270 248 245 245								
			Hornum Pile	54.958	8.210	11 25	7.9	244 260								
318	24	9/17/75	Land Station	54.926	8.305	13 15 14 15 15 15	^b 10.4 ^b 10.4 ^b 8.9	214 214 214					2.7		226	Goođ
			List	55.021	8.425	13 15 14 15	^b 11.8 ^b 10.9	240 240	17.0	16 ± 1.0						
			Pisa	54.995	7.906	15 15 13 15 14 15 15 15	13.0 12.5 9.5	222 216 233								

^aData quality is defined in terms of the standard deviation of wind speed and wind direction, respectively, as follows: Good - 1.0 m/s, 10°; Fair - 1.5 m/s, 15°; Average - 2.0 m/s, 20°. -^bMeasurements uncorrected for height and stability.

· · ·
TABLE II.- Continued

-

L.

Mission	Flight	Date	Data source	Locati	on, deg	Time	Neutral 19.5-m	stability winds	Temp	., •c	Anem	ometer	Wave height,	s	well	Data
	. II gine	Duce	Data Source	N.Lat.	E.Long.	нм	Speed,	Direction,	Air	Sea	Height,	Average	m	Height,	Direction,	quality
							iny s	ueg	ļ		m	time, min			aeg	(a)
335	3	1/16/76	NASA 929	36.7	-72.7	16 00	14.6	159	18.0	19.0	137	30	2.0			Fair
335	4A	1/22/76	NOAA buoy EB-41	38.7	-73.6	15 00	17.0	280	6	7.9	5	10	3.0		1	Good
1						16 00	26.7	275	6	7.9	5	10	3.0			1 1
1			NASA 929	38.82	-73.61	16 10	17.5	289	.0	8.5	98	22				
1			NOAA buoy EB-41			17 00	16.9	291	6	8.0	5	10	3.0			
}						18 00	17.0	287	5	7.9	5	10	2.6			
335	4B	1/22/76	Weather ship Hotel	38.0	-71.0	15 00	21.6	290	3.7	12.8	21	1	5.5			Good
1			-			18 00	20.2	300	3.4	13.4	21	1	5.5			0000
1			NASA 929	38.06	-71.15	19 15	21.1	290	2.9	13.3	162	18	5.0			
1			Weather ship Hotel			21 00	25.2	290	2.1	12.8	21	1	5.5			
						23 00	25.6	300		í I	21	1				
						24 00	22.7	290	2.7	12.8	21	1	6.0			
335	5	1/23/76	Weather ship Hotel	38.0	-71.0	15 00	19.5	310	-3.0	11.9	21	1	4.5	5.5	340	Good
			NASA 929	38.07	-71.06	17 45	17.0	295	3	11.4	101	24		515	540	0000
				38.07	-71.07	18 10	15.4	293	3	12.0	158	30				
1			Weather ship Hotel			18 00	18.8	300	2	11.5	21	1	4.0	5.0	330	l t
!						19 00	15.2	300	3	11.5	21	10	3.0	3.4	285	
1						20 00	12.1	294	3	11.5	21	10	3.8	1.8	281	
						21 00	13.8	291	3	11.5	21	10	3.4	2.3	280	
						21 00	16.8	300	.4	11.5	21	1	3.5	2.7	330	
1						22 00	12.1	294			21	10 -	2.8	2.1	288	1 1
			NASA 929	38.20	-71.29	22 00	12.9	286	1.3	13.2	146	44				
				38.00	-70.70	22 15	13.4	288	1.3	13.2	98	44				
			Weather ship Hotel			24 00	12.1	270	2.0	13.3	21	1	2.5	4.0	300	
335	6	1/28/76	Weather ship Hotel	38.0	-71.0	18 00	17.7	300	9.2	15.0	21	1	2.5	4.0	300	Good
			_			20 00	16.0	292	9.2	15.0	21	10	1.8	4.6	185	
			NASA 929	38.25	-71.26	20 25	15.0	294	7.9	13.7	101	44				
			Weather ship Hotel	[21 00	12.1	250	7.9	13.7	21	10	3.8	3.7	189	
				- 1		21 00	16.8	300	7.7	13.4	21	1	2.5	4.0	240	dSnow
		!				22 00	11.3	316	7.7	13.4	21	10	2.4	3.7	180	
						23 00	11.0	315	7.7	13.4	21	10	2.7	2.7	180	
353	9	3/2/77	NASA 929	32.75	-118.57	19 34	13.6	318	10.4	14.3	190.5	20				Good
1 1		1	Sonic anemometer	32.78	-117.29	21 00	5.4	320	12.5	14.2	8.0					
1 1			NASA 929	32.82	-117.45	22 47	^e 7.1 (6.9)	294	10.5	14.4	175.3	8				
			Sonic anemometer	32.78	-117.29	24 01	6.1		13.6	14.1	8.0					
353	10	3/3/77	Sonic anemometer	32.78	-117.29	20 05	5.2	180	12.8	13.7	8.0					Fair
	[NASA 929	32.75	-117.38	21 37	e5.6 (5.4)	234	12.4	14.4	100.6	6				raii
252		,,,,,,	NACA 020		120.0-											
353		3/8/11	NASA 929	42.45	-130.08	20 38	17.7	246	10.0	11.0	211.8	11	5.5			Good
			NACA DUDY 28-16	42.50	-130.00	21 00	15.1	250	ا م		10.0	8				
1 1			NOAA buoy FR-16	42.50	-130.00	24 00	15.5	277	8.6	10+6	103.6	10			i	
				420.50		A- 00		2/0			10.0	8	6.0	- 1		

^aData quality is defined in terms of the standard deviation of wind speed and wind direction, respectively, as follows: Good - 1.0 m/s, 10°; Fair - 1.5 m/s, 15°; Average - 2.0 m/s, 20°. ^dSnow could affect the quality of RADSCAT data. ^eWind speeds in parentheses are from reference 9.

.

•••

TABLE II.- Concluded

Mission	Flight	Date	Data source	Locati	on, deg	Time	Neutral 19.5-m	stability winds	Temp	., °c	Anem	ometer	Wave height,	s	well	Data
		hatt	bild source	N.Lat.	E.Long.	нм	Speed, m/s	Direction, deg	Air	Sea	Height, m	Average time, min	m	Height, m	Direction, deg	quality (a)
353	13	3/10/77	Sonic anemometer NASA 929 Sonic anemometer NASA 929	32.78 32.92 32.78 32.88	-117.29 -117.86 -117.29 -117.53	21 25 22 5 23 35 01 46	4.4 7.9 5.7 13.1	315 295 315 306	14.0 13.0 14.2 11.0	14.3 15.2 14.5 14.4	8.0 85.3 8.0 100.6	10				Good
353	14	3/11/77	NOAA buoy EB-16 NASA 929 NASA 929 NOAA buoy EB-16	42.50 42.43 42.75 42.50	-130.00 -130.25 -130.00 -130.00	21 00 21 3 23 45 24 00	13.2 10.5 13.7 18.9	290 276 252 280	5.6 4.9	10.2 10.7	10.0 207.3 96.0 10.0	8 18 11 8	3.5			Fair
353	15	3/12/77	Sonic anemometer	32.78	-117.29	20 10	4.2	270			8.0					Good
353	20	3/22/77	Sonic anemometer	32.78	-117.29	20 05 21 00 21 40	2.4	245 245 245	13.3 13.6	15.1 15.1	8.0					Variable
r.			NASA 929	32.67	-117.51	22 13	2.8 to 8.3	265	10.2	14.7	86.9	19				
353	21	3/24/77	Sonic anemometer NASA 929	32.78 32.79 32.76 32.78	-117.29 -117.67 -118.11 -118.02	18 20 19 30 21 10 22 43 23 00	5.9 5.5 ^e 5.4 (4.7) 6.0	300 300 284 282	10.1 10.8 10.6	15.5 14.2 14.2	8.0 71.6 91.4 84.4	5 30 30				Fair

^aData quality is defined in terms of the standard deviation of wind speed and wind direction, respectively, as follows: Good - 1.0 m/s, 10°; Fair - 1.5 m/s, 15°; Average - 2.0 m/s, 20°. ^eWind speeds in parentheses are from reference 9.

. ..

Mission	Flight	Line	Run	Date	Start	t ti SMT	me,	θ,	Wind speed	Wind	Direction	Data source	0.2114
					н	м	s	deg	m/s	deg	to wind		(a)
306	FCF	4 4 4 4	1 to 3 4 to 6 7 to 10 11 to 13 14 to 17	4/4/75	20 20 20 20 20 20	01 09 17 30 39	31 53 19 56 07	52 62 32 14 28	21.5	300.3	Circle	Inertial navigator with temp from ships	Fair
306	3	1 1	1 5	4/17/75	14 17	07 05	50 39	29.0 28.4	4.1 1.7	315 270	Circle	Ambrose Tower	Good
318	13	6 4 4 4	1 1 to 3 4 to 9 11	8/29/75	09 10 10 10	15 12 33 39	27 05 37 04	0 to 48 20.3 40.6 50.3	4.5 4.6 4.6 4.6	149	Upwind Circle Circle Circle	JONSWAP analysis	Fair
318	14	2 3 3 4 4 4 4	3 1, 11 2, 22 1 6, 7 11, 12	9/2/75	· 08 08 09 09 09 09 10	26 51 13 44 58 12	16 42 29 35 41 27	0 to 48 0 to 48 0 to 48 18.9 39.9 67.2	5.5	50	Cresswind Upwind Downwind Circle Circle Circle	JONSWAP analysis	Good
318	16	2 4 4 4 3 3	5 4 9 14 2, 22 3	9/8/75	14 15 15 15 16 16	52 30 45 59 21 35	58 35 02 02 24 54	0 to 48 18.5 39.4 66.2 0 to 48 0 to 48	7.7 8.6 8.75 8.9 8.9 9.1	200 193 198 205 200 200	Crosswind Circle Circle Circle Circle Circle	JONSWAP analysis	Good
318	17	2 3 3 4 4 4 4	2 3 1 6, 8 11, 12	9/9/75	07 08 08 08 08 08 08	50 08 17 33 46 59	16 35 54 53 54 42	0 to 48 0 to 48 0 to 48 19.3 40.8 68.1	12.0 12.1 12.0 13.5 12.75 12.25	190 190 190 188 190 193	Crosswind Downwind Upwind Circle Circle Circle	JONSWAP analysis	Good
318	18	4 4 4	1, 2 6 11	9/9/75	13 14 14	58 10 23	01 43 21	19.6 40.4 65.5	12.0 11.3 10.5	175 175 175	Circle Circle Circle	JONSWAP analysis	Fair
318	19	2 3 4 4 4	6 3 5 to 8, 10 12, 13 17	9/10/75	13 13 13 14 14	14 27 50 09 19	57 36 46 26 51	0 to 48 0 to 48 19.7 40.9 67.1	8.0 7.7 7.5 7.5 7.5 7.5	230	Crosswind Downwind Circle Circle Circle	JONSWAP analysis	Good

TABLE III.- NEUTRAL STABILITY WIND VECTOR FOR EACH RADSCAT FLIGHT LINE

7

}

1

^aData quality is defined in terms of the standard deviation of wind speed and wind direction as follows: Good - 1.0 m/s, 10°; fair - 1.5 m/s, 15°.

Mission	Flight	Line	Run	Date	Star	t ti GMT	me,	θ,	Wind speed at 19.5 m,	Wind direction,	Direction relative	Data source	Quality
					н	м	S	,	m/s	deg	to wind		(a)
318	24	2 2 4	10 11 1	9/17/75	14 14 14	00 14 27	30 19 32	0 to 48 0 to 47 30.3	9.5	230	Downwind Upwind Circle	JONSWAP analysis	Good
335	3	2 4 4	3, 33 3 10	1/16/76	16 16 16	20 36 50	15 47 07	0 to 45 29.4 48.3	14.2	159	Crosswind Circle Circle	CUNY analysis	Fair
335	4A	4 2 4 3 4 4	1 to 8 3 9, 11, 16, 19 1, 11 17, 18 22	1/22/76	16 17 17 17 18 18	51 15 36 58 13 28	07 51 10 12 28 03	18.9 0 to 44 39.1 0 to 45 58.2 9.7	19.1 19.4 20.0 19.9 19.8 19.7	289	Circle Crosswind Circle Upwind Circle Circle	CUNY analysis	Good
335	4B	4 4 3 2 3	1, 5 to 9 10 to 14, 16 17 1 to 111 3, 33 2	1/22/76	19 20 20 20 21 21	41 04 24 48 07 24	23 47 56 04 13 50	19.0 38.7 58.0 0 to 44 0 to 44 0 to 44	19.1 19.4 19.6 19.8 20.0 20.1	290	Circle Circle Circle Downwind Crosswind Upwind	CUNY analysis	Good
335	5	4 4 2 3 3 4	1, 3 9, 10 17, 18, 19, 22 5, 55 1 2 25	1/23/76	18 19 19 20 20 21	48 11 33 59 49 38 21	50 33 10 35 30 44 46	19.9 39.4 58.5 0 to 44 0 to 44 0 to 44 9.2	15.5 15.2 15.1 14.8 14.6 14.4 13.9	297	Circle Circle Circle Crosswind Downwind Upwind Circle	CUNY analysis	Good
335	6	4 4 4 3 2 3 4	1, 4 9, 11 17 13 21 1, 11 3 21 25	1/28/76	20 21 21 21 21 22 22 22 22 22	49 11 33 22 44 00 15 36 49	30 58 33 23 05 21 25 45 07	19.2 39.1 39.1 57.8 57.8 0 to 45 0 to 45 0 to 44 0 to 45 9.0	15.0	310	Circle Circle Circle Circle Downwind Crosswind Downwind Circle	CUNY analysis	Good
353	9	4 4 4	1 6 11	3/2/77	20 20 20	10 38 50	00 02 59	11.4 67.3 19.7	12.19 11.28 10.84	305	Circle Circle Circle	^b Inertial navigator	Good

TABLE III.- Continued

^aData quality is defined in terms of the standard deviation of wind speed and wind direction as follows: Good - 1.0 m/s, 10°; fair - 1.5 m/s, 15°. ^bData from reference 9.

Mission	Flight	Line	Run	Date	Stai	t ti GMT	ime,	θ,	Wind speed	Wind	Direction		
	 				н	м	s	deg	m/s	deg	to wind	Data source	(a)
353	9	4 3 3	16 3 33	3/2/77	21 22 22	03 14 26	53 22 13	39.7 0 to 48 0 to 48	10.3 8.2 8.2	305	Circle Upwind Downwind	^b Inertial navigator	Good
353	10	4	1, 6 11	3/3/77	20 21	25 02	42 23	19.9 10.3	5.4	234	Circle	Inertial navigator	Fair
353	11	3 2 4 4 4	2 6 1 6 11	3/8/77	22 22 22 22 22 23	10 27 40 53 06	17 28 44 41 46	0 to 47 0 to 47 67.3 19.3 39.7	16.5 16.3 16.0 15.9 15.7	270	Downwind Crosswind Circle Circle Circle	Inertial navigator	Good
353	13	4 4 4 2	1, 6 11 16 20 6	3/10-11/77	00 00 00 01 01	04 42 59 09 21	27 50 41 58 54	20.3 10.0 67.7 40.5 0 to 48	10.4 11.2 11.7 12.0 11.7	305	Circle Circle Circle Circle Crosswind	İnertial navigator	Good
353	14	2 3 4 4 4	5 2 1 6 11	3/11-12/77	22 23 23 00 00	57 09 56 09 23	36 24 38 54 29	0 to 47 0 to 48 67.1 19.3 39.4	13.0 13.6 14.3 14.3 14.3	252	Crosswind Downwind Circle Circle Circle	Inertial navigator	Fair
353	15	4 4 4	1 11 16	3/14/77	20 20 20	12 48 56	58 17 35	10.4 20.0 40.1	4.2	270	Circle	Sonic anemometer	Good
353	20	4 4 4 4 4 4	1 6 11 16 21 26	3/22/77	19 20 20 21 21 21 21	45 04 22 09 21 35	03 13 14 56 47 21	20.0 20.9 11.0 67.8 20.0 38.9	2.5	245	Circle	Sonic anemometer	Variable
353	21	4 4 4 3	1 7 12 3	3/24/77	20 20 20 21	07 24 37 57	17 32 20 27	10.3 19.6 39.6 0 to 47	4.7 4.7 4.7 6.2	282	Circle Circle Circle Downwind	Inertial navigator	^C Fair

TABLE III.- Concluded

^aData quality is defined in terms of the standard deviation of wind speed and wind direction as follows: Good - 1.0 m/s, 10°; fair - 1.5 m/s, 15°. ^bData from reference 9. ^CWinds may be high.

2

			[Horiz	ontal po	larizat	ion				tical po	larizat	ion		
Lina	Dun	Antenna	┣───-				[Sample		<u> </u>				Samulo	Wind
Line	Run	position	0 mean	θ _{std dev}	o mean' dB		σerror' ±dB	time,	θ mean	⁰ std dev	σ _{mean} , dB		σ _{error} ' ±dB	time,	m/s
		·	·	-		Miss:	ion 306,	FCF; Apri	4, 1975						
								Upwind							
4	1-3	4	53.24	0.35	-14.82	9.83	0.36	7.8	53,12	0.35	-10.66	9.56	0.59	9.2	21.5
4	4-6	5	62.18	.18	-17.09	17.96	.37	7.2	62.26	.37	-13.74	11.09	.38	8.8	
4	11-13	4	13.09	2.08	-4.89	23.06	.37	7.8	13.06	1.58	5.99	40,14	.39	7.8	
4	14-17	6	28.13	.50	-2.72	31.11	.33	12.0	27.57	1.00	-1.20	36.44	, 34	12.0	1
				·		r——·	D	ownwind							
3	2	1	-0.07	1.88	9.76	15.13	0.48	15.6	0.62	1.78	9.65	18.03	0.48	39.3	21.5
		3	22.72	1.02	1.52	57.35	.53	24.1	22,78	1,01	2.20	29.59	.54	24.1	
		4	33.79	.80	-4.37	46.15	.55	22.3	33.73	.62	-2.51	28.87	.55	26.8	
+	•	6	42.76	.48	-10.43	31.50	.80	30.4	42.84	.33	-7.35	23.31	.78	27.7	
4	1-3	4	53.19	. 49	-13.63	26.55	.81	8.5	52.99	.51	-10.09	22.14	.97	9.2	
4	4-6	5	62.67	.26	-16.98	16.43	.85	10.4	62.76	.21	-12.74	45.63	.82	6.4	
4	11-13	4	13.93	.95	6.98	20.54	.42	11.2	14.01	1.19	6.55	29.33	.42	9.2	
4	14-17	6	28.45	.49	-1.73	36.21	.50	12.0	28.60	.58	.00	33.19	.65	10.1	*
		· · · ·					Cr	osswind			———		 ,		
4	1-3	4	53.47	1.40	-17.64	24.38	0.54	19.7	53.84	1.28	-13.77	21.09	0.51	16.9	21.5
4	4-6	5	62.20	2.44	-20.96	88.48	.59	17.6	61.93	2.55	-16.27	23.59	.57	16.8	
4	11-13	4	13.21	1.10	5.23	24.50	. 50	16.9	13.18	1.04	5.36	21.09	.51	12.0	
4	14-17	6	27.68	1.67	-4.45	46.79	.50	21.2	27.33	2.30	-3.31	43.51	.51	22.1	
					M	lission	318, Fli	ght 13; Au	gust 29,	1975					
								Upwind			_ .				
6	1	<u> </u>	0.45	0.23	12.28	5.47	0.40	9.9	0.49	0.07	10.89	5 52	0.28	87	4.5
Ĭ.	Ī	2	10.79	.04	6.18	9.27	.21	6.5	10.81	.00	5.07	4.20	. 27	4.2	
		3	20.88	.05	-6.58	10.66	.30	10.2	20.89	.07	-7.50	8.97	.34	8.3	1
		5	40.98	.06	-27.21	17.10	.35	10.8	40,96	.07	-25.94	9.25	.30	10.6	
1		6	48,13	. 07	-31.95	10.74	1.24	6.5	48.16	.06	-29.38	6.82	1.22	6.5	+
4	1-3	1	19.50	.38	-6.44	29.20	.25	13.9	19.49	.33	-8.03	29.58	.26	12.1	4.6
4	11	4	49.06	.35	-30.08	12.80	2.08	16.9	49.16	.32	-26.25	15.13	1.19	14.1	
		L		·		<u> </u>	rD	ownwind			L	1			
4	1-3	1	21.12	0.46	-8.80	20,86	0.40	8.7	21,13	0.64	-10.52	30.84	0.45	8.1	4.6
4	4-9	3	43.21	.15	-29.95	7.75	1.10	1.9	43.05	.06	-25.19	8.51	.76	2.5	
4	11	4	52.37	.81	-38.05	43.47	2.06	9.2	52.5	.87	-29.04	14.62	1.06	12.0	+
ļ		1 —·	, . _	T	<u> </u>	r	t	rosswind.			r	T	·		
4	1-3		20.49	0.77	-10,02	38.28	0.38	20.8	20.39	0.81	-10.98	35.17	0.44	18.5	4.6
4	4-9	4	40.54	.39	-30.37	30.38	2.08	18.3	40.69	.39	-29.09	18.95	1.10	9.5	
		L,	L	L	<u>1 </u>	ssion 3	18. F140	ht 14. sor	tember 3	1975	L	I	L	L	└ ``-
-	<u>, , , </u>		-0.76				<u> </u>	Upwind	0.55		10.40	1	1		
1	, 1, 11	2	10.83	.27	6.32	13.00	,23	19.0	-0.55	.28	5.98	9.00	.24	25.5	5.5
		3	20.91	.15	-7.62	14.45	.32	22.9	20.92	.16	-7.80	13.52	. 32	24.2	
		4	30.69	.05	-18.41	29.16	.35	19.8	30.69	.05	-17.90	30.99	.35	23.3	
	•	6	48.10	.05	-31.70	61.97	1.23	24.9	48.08	.05	-27.56	59.43	1.22	24.9	
4	1	1	20.15	.69	-5.87	18.06	. 27	12.1	20.12	.63	-6.04	15.65	.26	11.0	
4	11,12	6	67.02	1.00	-28.47	36.09	1.44	15.2	41,48	.46	-22.37	15.24	.40	14.6	
1		1	1	1	F	1	1	1		1	1	1	1	1	1 1

TABLE IV.- STATISTICS OF SCATTERING COEFFICIENT, σ°

TABLE IV.- Continued

— — I				Hori	zontal po	 larizat	ion —			Vert	ical pola	arizatio	on		
Line	Run	Antenna position	0 mean	θ _{std dev}	σ ^o mean' dB	$\frac{\Delta \sigma^{o}}{\sigma^{o}}$	o ^o error' ±dB	Sample time, s	0 mean	⁰ std dev	σ ⁰ mean' dB	<u>A</u> do	o ^o error' tdB	Sample time, s	wind speed, m/s
					Mis	sion 31	8, Fligh	t 14; Sep	otember 2,	1975					
							Do	wnwind							
3	2,22	1 2 3 4	-0.23 10.75 20.83 30.56 40.79	1.04 .10 .08 .12	12.07 6.66 -5.42 -18.66 -26.41	6.16 10.09 11.83 28.22 41.98	0.35 .23 .27 .36 .56	18.0 19.0 13.4 21.2 9.6	-0.56 10.76 20.82 30.57 40.81	1.22 .13 .08 .08 .08	11.89 6.57 -5.43 -17.22 -22.21	6.88 9.89 10.43 30.34 44.00	0.34 .23 .27 .36 .40	20.3 19.0 14.6 19.8 8.8 21.2	5.5
4	1 6,7	6 1 3	47.99 17.80 38.39 67.04	.06 .42 .53 .79	-30.62 -2.88 -26.80 -40.28	26.62 13.17 21.55 14.31	1.23 .26 .72 2.66	18.5 19.5 15.2 6.5	47.96 17.90 38.47 66.87	.09 .38 .51 .78	-23.31 -3.23 -22.74 -29.40	13.77 24.81 12.63	.26 .41 1.14	14.5 14.6 11.1	
4	11,12						 c:	rosswind		1					
			- 10	0.67	12.41	7.85	0.36	19.7	0.13	0.73	12.19	7.14	0,43	19.1	5.5
2	1	1 2 3 4 5 6 1 3 6	10.48 20.63 30.48 40.75 47.98 19.10 39.81 67.37	.17 .13 .20 .09 .10 .34 1.08	6.24 -8.14 -21.29 -32.90 -36.86 -5.45 -28.97 -39.38	11.17 22.61 29.32 23.98 36.96 12.71 20.55 26.12	.22 .38 .39 1.25 1.50 .26 1.09 2.48	22.6 28.0 24.0 24.9 29.6 26.6 32.4 23.05	10.46 20.66 30.53 40.73 47.97 19.10 39.91 67.54	.16 .12 .15 .10 .09 .38 1.13 1.19	6.02 -8.30 -21.08 -30.07 -31.95 -5.77 -26.70 -34.40	11.11 21.08 24.64 25.29 27.45 13.91 20.04 18.13	.23 .38 .38 1.22 1.24 .27 .85 1.22	21.4 21.7 27.6 23.3 34.2 26.0 28.6 25.0	
4						ssion 3	1 18, Flig	ht 16; Se	ptember 8,	, 1975					
								Upwind							
3	2,23	2 1 2 3	-0.06 10.64 21.01	1.49 .28 .30	10.94 6.79 -3.33	19.48 11.38 10.50	0.34 .21 .24	15.7 24.4 22.9 29.0	-0.19 10.63 20.96 30.59	1.53 .25 .29 .49	10.72 6.23 -3.79 -10.56	8.05 8.74 11.65 13.06	0.34 .20 .24 .44	18.6 24.4 22.3 25.5	8.9
4 4	4 9 14	4 5 6 1 3 6	41.03 48.19 18.33 37.29 63.87	.21 .28 .58 .89 1.03	-17.39 -20.92 -2.81 -19.16 -31.88	17.60 7.72 30.13 23.44 18.21	.35 .36 .24 .34 1.14	28.1 15.7 15.6 14.0 20.3	40.12 48.15 18.30 37.32 63.86	.22 .32 .60 .82 1.00	-14.87 -16.51 -3.21 -17.27 -22.24	12.86 13.43 29.14 25.39 14.88	.36 .35 .24 .34 .34 .44	24.9 19.4 15.0 15.2 20.3	8.6 8.2 8.9
						1		Downwind							
3 4 4 4	3 4 9 14	1 2 3 4 5 6 1 3 6	0.92 10.92 21.18 30.99 41.16 48.1 19.11 41.5 69.3	0.86 .29 3 .37 5 .17 5 .16 .11 8 .35 7 .77 0	11.08 6.78 -4.36 -13.64 -20.66 -24.66 -3.14 -25.08 -36.90	7.99 10.56 22.84 13.54 19.27 19.01 30.34 22.19 21.99	0.54 .25 .26 .37 .38 .47 .26 .37 .38 .47 .26 .47 .26 .1.47	27.8 23.2 21.7 21.9 30.5 23.1 6.4 12.1 8.3	0.86 10.97 21.05 30.94 41.18 48.07 19.14 41.34 69.43	0.83 .41 .37 .14 .14 .14 .13 .14 .36 .59 .80	10.66 6.11 -4.59 -12.88 -16.2 -17.9 -3.4 -20.1 -25.0	3 7.2 2 11.80 5 29.83 0 7.83 1 15.93 4 9.00 8 27.4 5 21.7 5 22.9	7 0.34 .24 .26 .38 .37 .0 .37 .26 .38 .37 .37 .26 .37	28.4 22.6 22.3 12.7 29.7 24.9 6.9 10.2 12.0	9.1 8.6 8.2 8.9
	_ /							Crosswind	1 			-1			
2	5	1 2 3 4 5 6 1 3 6	-0.7 10.3 20.5 30.2 40.4 47.4 18.4 39.6 67.1	4 0.07 3 .10 6 .08 8 .09 6 .10 3 .06 4 1.05 57 1.76 4 1.14	$ \begin{array}{r} 11.82\\ 7.05\\ -6.34\\ -17.72\\ -27.76\\ -31.22\\ -3.22\\ -24.64\\ -31.20\end{array} $	2 8.51 5 9.69 4 8.83 3 13.78 5 18.59 2 56.19 4 34.1 6 39.2	L 0.40 9 .21 3 .26 3 .35 7 .77 9 1.22 0 .26 7 .57 2 2.29	15.7 18.4 14.0 14.8 18.4 15.7 34.7 29.8 19.4	-0.7 10.3 20.5 30.3 40.4 47.4 18.4 39.4 67.5	5 0.09 4 .09 8 .03 1 .09 8 .10 5 .06 8 1.08 5 1.83 6 .97	11.3 6.6 -6.6 -17.3 -25.5 -28.2 -3.9 -22.1 -29.5	5 6.3 2 10.8 9 10.4 13.5 2 18.4 1 20.0 1 60.0 2 32.6 52 41.8	5 0.35 0 .21 0 .26 .3 .35 .6 .54 .5 .83 .00 .25 .64 .52 .64 .52 .64 .52 .64 .52 .64 .52 .60 1.14	12.8 19.0 17.2 11.3 17.6 17.6 27.2 31.1 24.9	7.7 8.6 8.2 8.9
+		_1			_	Mission	318, F1	ight 17;	September	9, 1975					
-								Upwind							
3	4	1 2 3 4 5 6 1 8 3	-1 9. 19. 29. 39. 46. 18. 38. 66.	21 0.57 23 .25 46 .25 46 .10 70 .09 70 .11 59 .77 84 1.37 92 1.24	10.3 7.6 -1.1 -8.4 -14.9 -18.9 6 -14.7 -26.6	5 7.8 9 9.3 4 14.8 9 12.2 0 12.6 0 14.9 52 19.2 7 16.3 59 10.6	17 0.34 16 .25 11 .25 28 .32 50 .36 56 .35 23 .26 32 .34 59 1.10	25.5 17.8 15.3 2 13.4 20.5 20.5 20.5 13.5 13.5 13.5 13.5 12.0	$ \begin{array}{cccc} -1.1\\ 9.2\\ 1.9.4\\ 29.4\\ 39.3\\ 3.46.\\ 3.46.\\ 3.8.46.\\ 3.8.5\\ 3.8.5\\ 0.67. \end{array} $.6 0.63 .22 .24 .17 .07 .17 .07 .16 .11 .17 .11 .132 .7 .132 .7 .132 .7 .132 .7 .14 1.5 .15 .10	2 9.4 4 7. 3 -1. 7 -8. 1 -13. 0 -15. 5 -1. 9 -12. 0 -19.	B3 9. 13 8.' 61 10.' 64 20. 18 11. 09 12. 35 11. 71 16. 47 7.	14 0.31 53 .21 72 .24 07 .33 34 .36 00 .36 80 .24 73 .36 25 .4	26. 16. 4 15. 2 14. 5 19. 5 20. 4 13. 6 9. 1 15.	1 12.0 1 9 8 2 3 9 13.5 5 12.6 7 12.2

TABLE IV .- Continued

				Hor	izontal	polariz	ation			Ver	tical po	larizati	Lon		Τ-
Line	Run	Antenna position	0 mean	θ std dev	σ ⁰ mean dB	$\frac{\Delta \sigma^{o}}{\sigma^{o}}$	σ ⁰ error ±dΒ	Sample time, s	θ _{mean}	⁰ std de	v dB	, $\frac{\Lambda\sigma^{o}}{\sigma^{o}}$	c ^o error	Sample time,	Wind speed m/s
					Mi	ssion 3	18, Flig	ht 17; Ser	tember 9.	1975				£	
								Downwind							
3	3	1	-0.44	0.33	10.37	13.10	0.34	14.5	-0.44	0.33			1	Τ	1
		2	10.88 20.71	.62	6.62	10.11	.24	13.7	10.94	.67	6.21	1 11.40	.24	13.3	
		4	30.53	.06	-10.87	12.67	.50	21.9	30.51	.08	-2.48	3 10.02 4 11.59	.28	18.5	
		6	47.67	.11	-20.77	16.09	.38	15.2	40.65	.10	-13.94	1 11.37	. 39	15.2	
4	6,8	1 3	20,59 41,51	.44	-2.21	13.54	.28	13.3	20.44	.69	-2.07	19.72	.38	17.6	13.5
4	11,12	6	67.75	.64	-31.34	24.67	1.14	16.6	42.16 67.82	1.21	-15.03	8 13.99 2 8.91	.36	14.0 16.6	12.8 12.2
							Cr	osswind					1	L	
2	2	1 2	0.19	0.37	10.90	12.46	0.34	15.1	0.18	0.38	10.65	7.30	0.29	14.5	12.0
		3	21.28	.24	-5.27	15.65	.33	10.1	11.09 21.31	.31	5.67	12.06	.34	10.1	1
		4 5	30.86	.09	-14.46	18.14	.38	12.0	30.88	.10	-14.06	17.48	.28	16.6	
4	1	6	48.06	.09	-24.81	22.96	.53	12.0	41.08	.11	-18.77	12.55	. 37	19.2	
4	6,8	3	41.03	.48	-3.97	17.91 17.29	.26	26.0	19.96	.54	-4.50	18.97	.26	27.7	13.5
_4	11,12	6	68.34	1.41	-32,50	36.23	1.18	23.0	68.08	1.22	-19.86	12.65	.36	21.6 21.2	12.8
					Mi	ssion 3	18, Flig	ht 18; Ser	tember 9,	1975	·		 _	I	
	<u>, , , </u> ,							Upwind							
4	6	3	39.60	0.24	-2.16 -16.93	24.55 16.02	0.27	13.3	19.35	0.18	-2.93	16.00	0.26	15.6	12.0
4	11	6	65.68	.42	-27.08	9.76	.50	12.0	65.76	.40	-13.96	7.46	.52	10.2 15.6	11.3
		— — r	— — ₁				D	wnwind				-			
4	1,2	1	19.77	0.28	-2.61	15.73	0.31	9.2	19.84	0.22	-2.73	12.20	0.31	11.0	12.0
4	11	6	69.35	.44	-32.73	26.01	1.12	10.2 8.3	41.71 69.23	.42	-16.05	15.29	.41	9.5	11.3
							C1	osswind							10.5
4	1,2	1	19.74	0.99	-3.28	33.05	0,28	25.4	19.56	1.03	-3,62	35,57	0.28	24 3	12.0
4	11	6	65.88	3.15	-21.57	31.39 46.60	.35	21.6 28.6	39.70	2.01	-20.33	23.63	.35	22.2	11.3
				L	 Miss	l	 B. Elight		ambor 10	3.41	-27.01	54.12	.54	23.0	10.5
							U	pwind							
4 5	5-8,10	1	19.15	0.53	-2.68	27.29	0.24	15.0	19.4	0.59	-3 39	30 72	0.24		
4	17	6	39.25 65.14	.76	-19.06	18.37	.34	10.2	39.39	.93	-16.89	14.58	.34	9.5	7.5
						l					-22.50	19.68	.50	18.4	7.5
3	3	1	-0.71	0.17	11 42		Dow	nwind							
		2	10.37	.13	7.06	10.21	.24	20.9 14.3	-0.70	0.14	10.79	7.96	0.34	21.5	7.7
		4	30.46	.10	-3.78	14.73	.27	12.7	20.66	.12	-3.96	8.27	.22	14.3	
		5 4	40.61	.11	-21.86	17.79	.41	20.0	40.60	.12	-12.93	15.52	.39	20.5	
4 5	-8,10	1 2	20.59	.28	-3.73	22.33	.57	18.5	47.40	.13	-19.47	16.20	.39	15.7	•
$\begin{bmatrix} 4 \\ 4 \end{bmatrix}$	17	3 4	13.41	.82 -	-24.59	23.91	.54	7.0	43.07	.30	-3.74 -18.99	23.44	.28	12.7	7.5
l		<u>-</u>							70.46	1.54	-24.80	20.55	.94	12.9	7.5
2	6	1 -	0.76	0.27	11.25	8.36	0.35	22 C			<u> </u>				
		2 1	0.48	.23	6.64	10.21	.23	15.5	-0.75	0.27	10.65 6.19	6.98 7.80	0.34	21.5	8.0
		4 3	0.32	.12 -	-5.19	1.64	.31	12.7	20.90	.68	-5.75	13.42	.26	14.0	
↓	↓	5 · 4 6 4	0.65	.08 -	24.18	5.92	.48	18.4	40.63	.07	-15.16	13.33	.35	17.0	
4 5-	8,10	1 1	9.50	1.61	-3.19 4	6.61	.26	20.8	47.59	.15	-25.63	16.75	.57	14.8	•
4	17	6 4	0.9/	1.56 -	25.33 2	9,66	.72	18.4	41.12	1.81	-23.51	18.70	.45	18.4	7.5
				l_			L		67.22	.99	-33.22	49.18	1.32	28.6	7.5

TABLE IV .- Continued

				Hori	zontal po	larizat	ion —	T		Vert	ical pola	rizatio	on		
Line	Run	Antenna position	θ mean	θ std dev	σ ^o mean' dB	$\frac{\Delta \sigma^{O}}{\sigma^{O}}$	o error' żdB	Sample time, s	⁰ mean	^θ std dev	o ^o mean' dB	$\frac{\Delta \sigma^{O}}{\sigma^{O}}$	σ ^o error' ±dB	Sample time, s	Wind speed, m/s
<u>├</u> ── -					 Miss	ion 318	, Flight	24; Sept	ember 17,	1975					
								owind							
├		r			10.50	0.74	0.29	7.0	0.32	0.40	9.86	9.82	0.28	9.3	9.5
2	11	1 2	10.44	.30	5.97	7.88	.25	17.4	10.78	.29	5.29	12.71	. 28	18.4	
		3	20.59	.47	-1.21	19.75	1.92	15.3	20.61 30.60	.72	-1.64	12.26	1.92	15.9	
		4	40.82	.30	-15.84	20.43	2.57	20.9	40.88	. 27	-13.03	24.05	2.32	18.4	
	*	6	46.81	.19	-20.77	17.84	1.74	21.3	46.82 29.88	.14	-15.75	16.03	.34	8.7	+
4	1		29.83	.81	-12.07									<u> </u>	
			·				Do	wnwind	0.73	0.10	10.20	<u> </u>	0.29	19.1	9.5
2	10		0.67	0.11	10.62	10.48	0.32	18.0 35.1	11.37	.12	5.43	17.46	.25	31.5	
		3	21.65	.19	-3.82	16.06	.36	35.7	21.69	.20	-3.80	15.02	.36	35.0	
		4 5	31.54	.29	-12.93	18.44	2.30	35.3	41.80	.28	-14.68	17.65	1.85	30.5	
1	•	6	47.89	.50	-21.87	18.62	2.06	24.9	47.91	.54	-15.22	15.02	1.68	23.97	
4	1	1	30.69	.98	-14.40	35.85	-36	C.V		1.01			L		<u> </u>
		1	30 51	0.82	-15.74	25.76	0,36	19.7	30.40	0.78	-14.48	21.96	0.35	15.0	9.5
			1	L	 M	ission :	335, Fliq	ht 3; Jar	huary 16,	1 1976	<u> </u>	L		<u> </u>	.
							t	Jpwind							
4	3	1	29.32	0.76	-8.33	16.47	0.49	15.4	29.26	0.87	-7.85	12.95	0.47	16.6	14.2
4	10	4	47.21	.45	-19.01	13.19	.39	17.6	47.34	.36	-15.17	10.87		10.9	14.2
							De	ownwind			_	·	·		
4	3	1	29.59	0.41	-8.98	22.95	0.54	12.5	29.56	0.42	-7.60	19.49	0.77	11.8	14.2
4	10	4	49.82	.45	-20.70	14.98	.43		49.78		13.50	1			
	·				1						0.31	112 00	29	35.8	14.2
2	^a 33	1	0.83	0,12	9.24	13.96	0.30	27.6	10.32	.13	3.21	13.80	.25	33.3	
		3	20.20	.18	-5.82	21.79	.43	33.3	20.01	.16	-5.71	14.46	.42	22.0	
		4	29.52	.20	-13.33	24.11	.38	33.8	39.14	.14	-17.09	13.47	.39	33.3	
1	+	6	44.72	.14	-21.85	14.34	.91	34.8	44.72	.12	-17.56	12.92	.41	34.3	
4	3 10	1 4	29.22	.82	-12.40	18.10	.52	28.2	48.40	.62	-18.94	15.28	.37	28.2	+
	1	.			Mi	ssion 3	35, Flig	ht 4A; Ja	nuary 22,	1976					
								Upwind				- <u>1</u>	-r		
3	1,11	1	0.14	0.92	9.43	10.15	0.31	34.7	0.52	0.68	9.08	9.44	0.30	27.2	19.9
		2	10.37	.27	6.01	8.63	.23	34.4	20.50	.36	-1.28	17.40	.24	31.8	
		4	29.56	.38	-6.85	19.47	.27	47.9	29.53	.39	-6.17	18.26	5 .25	46.5	
		5	39.13	.89	-12.42	19.33	.59	36.0 47.9	39.20	.86	-12.45	26.5	7 .48	44.3	+
4	22	5	9.29	.74	6.14	13.56	.24	17.6	9.27	.79	5.87	12.64	4 .24	12.8	19.
4	1-8	19 3	18.8	5 .71 7 .90	.63	20.43	.46	24.3	38.70	1.10	-10.53	16.79	9 .34	26.0	20.0
4	17,1	8 5	57.7	9,36	-21.48	19.50	.44	9.6	57.86	.18	-16.56	12.3	1 .36	8.0	19.6
	-1				<u>-</u>	·		Nownwind	· · · · · ·	1			1	<u> </u>	
4	22	5	12.7	9 4.08	5.10	47.96	0.27	16.0	10.01	0.85	6.02	2 13.7	0.26 9.46	14.4	19.
4	9-16,	19 3	39.7	3 .75	-13.53	22.94	.34	18.4	39.71	.80	-10.94	1 21.7	0 .36	19.1	20.0
4	17,	18 5	58.0	2 .78	-24.62	24.39	.55	20.8	57.79	.85			<u></u>		
	 .	<u> </u>				112.00	0.46	,rosswind	_0 5'	7 0 51	9.55	3 9.6	3 0.46	40.5	19.
2			-0.5	ο 0,51 0 .65	9.71	13.46	.32	42.1	9.7	3 .58	5.1	2 16.4	5.34	43.9	
		3	19.5	1.49	-3.80	21.84	.28	54.6	19.5	1 .47	-3.9	4 22.6 5 25.0	2 .28	54.0	
		4	28.9	3 .49 8 .36	-17.52	24.68	.36	43.2	38.6	2 .33	-15.5	3 24.0	7 .38	47.1	
•		6	43.7	3 .67	-20.50	21.28	.36	60.9 32 8	43.7	2 .64	-17.5	U 22.7 9 16.9	2 .37	64.5	19.
4	1-8		9.2	5 1.27	-2.52	26.67	.27	39.9	18.9	5 1.38	-2.5	5 26.4	2 .26	43.4	19.
4	9-16	,19 3	39.0	9 1.66	-17.40	29.69	.36	43.2	38.9	5 1.48 1 1.01	-15.2	2 22.9	7 .41	30.4	19.
1 4	1 1 1 1 1 1	~ _ ~	1 2017	- 1		1	1	1		1	1	1	L _	_ 1	-

^aAll are short scan mode, with timing of 0.3 s.

TABLE IV .- Continued

				Hor	izontal	polariz.	ation			Ver	tical po	larizat	ion		Ţ
Lin	e Run	Antenna position	0 mean	θ _{std dev}	σ ⁰ mean' dB	$\frac{\Delta \sigma^{o}}{\sigma^{o}}$	o ^o error ±dB	Sample time,	θ mean	^θ std dev	o ⁰ mean' dB	$\frac{\Delta \sigma^{o}}{\sigma^{o}}$	o ^o error' ±dB	Sample time,	Wind speed m/s
	_,					Mission	335, F1	ight 4B; J	anuary 22,	1976	<u> </u>	<u> </u>	-I		I
								Upwind				_			
3	2 1,5-9 10-14,16	1 2 3 4 5 6 1 3	-1.33 9.68 19.55 28.75 38.54 43.67 18.68 40.34	0.87 .25 .34 .40 .77 .65 .57 .76	8.45 5.63 68 -6.52 -12.61 -14.62 .26 -12.39	13.19 12.93 19.89 20.94 16.05 23.36 19.52 15.31	0.40 .34 .30 .49 .38 .56 .27 .36	30.6 32.0 32.4 28.2 28.8 38.7 24.3 19.0	-1.57 9.73 19.54 28.74 38.40 43.58 18.71 40.34	0.43 .22 1.07 .44 .67 .69 .62 .70	8.17 5.16 -1.13 -6.17 -10.83 -12.18 .02	11.51 24.07 18.77 15.95 12.54 17.87 23.72 16.31	0.40 .34 .26 .48 .41 .46 .27	30.1 30.2 31.8 26.8 25.6 35.0 25.4	20.1
ļ-	′	5	59.69	1.00	-20.87	20.50	.40	26.4	59,56	1.11	-16.99	13.78	. 36	28.0	19.4
	1					<u> </u>		ownwind	r			,	.		
4 4 4	1,11,111 1,5-9 10-14,16 17	1 2 3 4 5 6 1 3 5	0.32 10.32 19.82 29.16 38.97 44.22 19.35 37.56 57.25	0.93 .61 .51 .40 .56 .71 1.02 .95	8.40 6.09 92 -6.99 -12.83 -15.76 02 -12.59 -21.44	11.41 18.24 23.65 23.43 25.13 22.20 22.09 31.08 21.71	0.27 .34 .29 .26 .45 .35 .31 .36 .38	37.0 45.1 29.2 26.8 36.8 32.3 22.0 24.8 20.8	0.34 10.32 19.70 29.24 38.91 44.49 19.23 37.53 56.98	0.95 .54 .52 .35 .56 .67 .84 .99	8.13 5.75 48 -5.81 -10.26 -13.24 .49 -10.46 -17.24	11.41 15.02 29.23 16.21 20.57 15.92 28.45 23.30 14.63	0.27 -34 -31 -24 -40 -51 -46 -31 -36	40.5 40.3 29.2 29.6 35.2 34.1 21.4 24.1 24.0	19.8 19.1 19.4 19.6
								rosswind							
2	3,33 1,5-9 10-14,16 17	1 · 2 3 4 5 6 1 3 5	-0.97 9.72 19.52 28.62 38.45 43.84 19.00 38.27 57.96	1.02 .85 .50 .27 .21 .31 1.47 2.19 1.87	8.71 5.05 -3.05 -10.64 -16.52 -18.83 -2.17 -14.75 -20.82	14.38 21.07 18.78 24.18 26.15 20.27 34.39 39.96 23.87	0.30 .27 .34 .36 .36 .27 .36	45.1 50.4 47.0 55.7 53.6 59.0 53.7 45.1	-0.94 9.61 19.51 28.62 38.53 43.81 18.87 37.91	1.10 .53 .42 .32 .18 .29 1.51 2.08	8.65 4.78 -3.27 -10.03 -14.57 -16.12 -2.16 -12.82	14.79 22.77 22.49 19.21 26.01 19.15 32.07 29.91	0.30 .28 .27 .49 .36 .36 .26 .38	40.4 48.0 52.7 55.0 53.6 57.2 52.6 45.7	20.0 19.1 19.4
	1 <u> </u>				Mi	ssion 3		40.0	58.30	2.02	-17.42	19.18	. 39	43.2	19.6
								Inwind					<u> </u>		
3 4 4 4 4	2 25 1,3 9,10 17-22	1 2 3 4 5 6 4 1 3 5	-0.75 9.64 19.28 28.52 38.28 43.99 10.13 19.53 39.64 58.97	0.72 1.04 1.03 .56 .46 .51 .91 .71 1.14	9.69 6.05 92 -7.52 -13.88 -16.99 5.63 23 -14.15 -22.35	13.31 20.98 27.81 26.76 25.45 24.58 16.92 23.53 25.27 24.33	0.43 .36 .32 .34 .42 .48 .24 .26 .34 .76	48.6 52.2 54.6 55.7 54.4 59.0 21.6 42.4 27.3 26.4	-0.76 9.66 19.23 28.47 38.28 43.99 10.02 19.49 39.85 59.01	0.72 1.17 1.06 .81 .58 .48 .72 .92 .76 1.08	9.35 5.64 86 -7.03 -11.86 -13.87 5.40 33 -12.29 -17.03	12.92 25.11 26.74 22.13 25.40 18.71 12.10 25.82 13.91 11.45	0.42 .36 .32 .50 .49 .24 .27 .36 .66	50.3 51.0 55.9 57.2 54.4 55.3 21.6 39.6 30.5 25.6	14.4 13.9 15.5 15.2 15.1
						·	Dc	wnwind					1		
3 4 4 4 4	1 25 1,3 9,10 17-22	1 2 3 4 5 6 4 1 3 5	-0.76 10.02 19.43 28.32 38.87 43.70 8.40 21.26 38.73 57.56	0.75 .83 1.13 .66 .93 .64 .80 1.50 1.50 1.04 1.17	9.77 6.59 -1.11 -8.61 -16.17 -18.88 7.20 -1.77 -15.31 -25.16	11.71 15.07 25.03 25.64 29.46 32.73 15.37 31.14 28.66 30.96	0.42 .36 .30 .32 .36 .37 .28 .24 .38 .68	46.2 47.4 49.5 57.1 60.8 57.2 18.4 43.3 24.1 35.2	0.79 10.07 19.41 28.23 38.90 43.80 8.29 21.36 38.87 57.28	0.75 .78 1.08 .56 .96 .62 .90 1.51 1.20 1.07	9.47 6.30 -1.05 -7.49 -12.58 -14.87 6.97 -1.65 -12.16 -18.13	10.80 18.50 27.08 26.52 34.13 22.92 12.73 26.65 27.78 14.59	0.42 .36 .29 .42 .38 .27 .24 .39 .52	43.9 48.0 49.5 57.1 60.0 58.1 16.8 44.3 24.8 31.2	14.6 13.9 15.5 15.2 15.1
. 1	<u> </u>						Cr	osswind							
4444	25 1,3 9,10 17-22	1 2 3 4 5 6 4 1 3 5	-0.28 9.45 19.20 28.14 38.70 43.36 9.02 19.25 39.51 58.81	0.76 1.22 .82 .72 .69 .77 2.39 1.06 .77	9.96 5.94 -3.70 -11.30 -18.26 -21.47 5.49 -2.61 -18.42 -28.03	11.65 22.65 25.13 28.08 24.74 35.82 13.71 41.89 34.54 31.22	0.30 .26 .26 .46 .35 .38 .22 .27 .37 .33	34.1 57.5 55.9 47.9 60.0 59.0 38.4 82.1 49.5 50.4	-0.28 9.41 19.22 28.23 38.80 43.30 9.03 19.45 39.62 58.72	0.80 1.27 .83 .75 .97 .78 .74 2.52 1.10 .84	9.87 5.77 -3.85 -11.04 -16.27 -18.21 5.25 -2.72 -16.34 -21.48	13.24 26.75 24.07 29.68 23.04 30.38 17.27 44.89 27.86 26.54	0.29 .26 .25 .33 .35 .22 .27 .36 .46	34.7 55.7 56.5 50.1 58.4 51.6 39.2 85.7 51.4 55.2	14.8 13.9 15.5 15.2

TABLE IV.- Continued

				Hori	zontal p	olariza	tion			Vert	ical pol	arizati	on		
Line	Run	Antenna position (b)	0 mean	θ std dev	σ ⁰ mean' dB	<u>vao</u>	σ ^ο error' ±dB	Sample time, s	0 mean	⁰ std dev	o ^o mean, dB	Δσ ^ο σ ^ο	σ ^o error' ±dB	Sample time, s	Wind speed, m/s
					м	ission	335, Flig	ht 6; Jan	uary 26,	1975					
							U	pwind							
4 4 4 4	1,4 9,11,17 13,21 25	1 3 5 4	18.71 39.97 59.58 8.14	0.29 .73 1.00 1.18	-0.33 -15.06 -22.90 7.06	21.06 23.17 19.06 19.58	0.26 .36 .49 .27	22.5 20.3 24.8 14.1	18.71 39.99 59.39 8.57	0.28 .69 1.36 1.29	-0.71 -12.61 -17.03 6.74	19.66 14.00 9.41 23.53	0.26 .37 .36 .25	22.5 21.0 20.0 12.0	15.0
							 Do	wnwind							
3	1.2	1	0.01	0.91	9,95	11.61	0.33	33.5	-0.12	0.84	9.78	9,95	0.32	31.8	15.0
4444	1,4 9,11,17 13,21 25	2 3 4 5 6 1 3 5 4	10.52 20.12 29.28 38.91 44.58 20.19 38.14 57.64 8.79	.45 .43 .27 .21 .15 1.38 .95 1.11 .84	5.98 -2.38 -10.10 -17.74 -20.75 -1.31 -15.89 -25.28 6.90	13.89 14.99 24.21 24.36 25.30 29.84 24.74 28.36 18.37	.23 .29 .41 .37 .34 .29 .37 .56 .27	40.3 37.5 47.9 43.2 43.3 24.3 31.8 26.4 12.0	10.51 20.11 29.25 38.90 44.56 20.17 38.20 57.66 8.67	.45 .44 .26 .24 .14 1.46 .91 .90 .54	5.92 -2.15 -8.76 -13.97 -15.91 -1.09 -12.65 -18.47 6.65	14.97 15.45 20.35 23.60 14.41 27.57 24.55 13.70 16.24	. 23 . 30 . 34 . 28 . 35 . 29 . 35 . 37 . 26	40.9 37.5 45.8 42.4 49.8 24.3 33.7 28.0 11.3	
	L		L	<u> </u>			Cr	osswind			<u> </u>	L			
2 4 4 4 4	3 1,4 9,11,17 13,21 25	1 2 3 4 5 6 1 3 5 4	-0.67 10.16 19.75 28.99 38.87 44.26 19.32 38.93 57.40 8.96	0.47 .45 .42 .39 .32 .21 2.54 1.83 1.85 1.07	9.81 5.45 -3.56 -11.93 -18.74 -21.00 -2.35 -18.59 -27.08 6.06	11.78 15.34 22.82 34.22 26.28 20.07 64.15 32.51 28.39 26.57	0.46 .34 .32 .46 .34 .36 .29 .35 1.07 .25	38.7 40.9 28.6 46.5 40.8 49.8 46.2 55.9 59.2 26.8	-0.70 10.17 19.84 29.00 38.93 44.29 19.50 38.92 57.02 8.66	0.44 .53 .55 .42 .36 .12 2.49 1.83 1.86 1.02	9.64 5.18 -3.54 -11.14 -16.47 -17.57 -2.59 -16.73 -21.30 6.47	9.79 19.40 26.46 25.29 25.95 15.61 58.88 24.36 20.14 28.92	0.46 .34 .32 .48 .36 .36 .28 .34 .42 .24	38.1 39.1 29.8 47.9 42.4 47.0 49.7 58.4 52.8 25.4	15.0
						Mission	353, Fli	ght 9; Ma	rch 2, 19	77					
L		<u> </u>				r	u 	pwind	r	,		· · — —	r		
3 4 4 4 4	3 1 6 11 16	1 2 3 4 5 6 55 55 55 55 55 55 55	-0.04 9.39 19.46 30.01 39.52 47.20 11.68 67.71 20.39 39.60	0.98 .42 .49 .44 .77 .71 1.40 .87 1.20 .89	11.55 7.17 -1.75 -10.65 -16.38 -20.64 4.65 -31.11 -3.36 -17.56	9.90 19.66 22.75 20.64 23.02 31.00 34.68 93.49 23.39 20.27	0.49 .46 .47 .39 .45 .49 .22 1.14 .43 .54	23.5 38.4 39.9 29.2 35.3 36.9 18.4 9.7 18.9 16.9	0.12 9.42 19.48 29.90 39.69 47.19 11.89 63.13 20.59 39.94	1.00 .50 .52 .48 .70 .59 1.38 1.47 1.35 1.16	11.06 7.31 -2.08 -9.98 -13.77 -15.68 4.07 -21.72 -3.39 -14.83	11.42 18.43 18.54 19.74 21.05 17.73 36.80 16.40 24.92 20.68	0.50 .46 .48 .39 .38 .43 .22 1.14 .44 .43	31.2 35.3 40.4 32.2 33.8 34.8 23.0 17.9 15.4 19.5	8.2 12.19 11.28 10.84 10.30
			_				Do	wnwind							
3	33	1 2 3 4 5 6 \$\$ \$\$ \$\$ \$\$ \$\$	-0.68 8.94 19.42 30.08 39.92 47.00 11.68 20.01	0.52 .75 .21 .05 .44 .58 .78 1.19	11.35 7.85 -2.68 -12.58 -20.65 -24.70 4.72 -3.18	7.91 15.85 18.77 24.14 42.87 11.91 27.93 34.34	0.49 .51 .52 .50 1.15 1.15 .32 .44	8.7 10.8 7.7 1.0 10.8 12.3 15.4 21.0	-0.68 9.02 19.49 30.18 39.85 47.39 11.66 66.75 20.00	0.76 .79 .28 .05 .53 .62 .95 .89 .88	11.01 7.24 -1_66 -11.38 -16.21 -17.94 4.58 -25.97 -3.40	10.70 17.87 15.89 8.55 29.05 11.60 33.93 77.98 33.97	0.50 .46 .48 .40 .55 .67 .32 1.14 .46	7.7 12.3 6.7 2.6 12.3 11.8 15.4 15.9 17.9	8.2 12.19 11.28 10.84
-	1 10		39.4/		-25,40	33.32	1.14		39.45	.62	-20.31	51.84	.59	18.9	10.30
	1	55	11 50	1,13	0 70	32.96	0.26	42 5	11 42	0.93	4.30	26.00	0.27	41.5	12.10
4 4 4	6 11 16	SS SS SS	19.40	1.40	-4.82 -25.00	53.03 46,51	.38	38.4 36.9	68.69 19.21 39.01	1.51 1.44 2.04	-30.03 -4.62 -22.99	37.62 65.97 41.71	1.14 .37 1.07	41.5 15.9 37.9 36.4	11.28 10.84 10.30
						Mission	353, Fli	.ght 10; M	arch 3, 1	971					
<u> </u>		r	·	·	·	,	rt	Ipwind		,	,	,		· ·	·
4 4	1,6 11	SS SS	19.10 10.83	1.34	-6.36 5.35	51.82 42.93	0.32 .24	32.8 18.9	19.15 10.80	1.59 1.03	-6.38 5.19	66.34 37.50	0.32	34.8 21.0	5.4 5.4

 $^{\mathrm{b}}\mathrm{SS}$ indicates timing was 0.512 s, independent of antenna position.

TABLE I	V	Contir	nued
---------	---	--------	------

				Hor	izontal	polariz.	ation		<u> </u>	 Ver	tical po	larizat	ion		
Line	Run	Antenna position (b)	θ mean	^θ std dev	σ ⁰ mean' dB	$\frac{\Delta \sigma^{o}}{\sigma^{o}}$	σ ^o error ±dB	Sample time, s	0 mean	⁰ std dev	dB	$\frac{\Delta \sigma^{o}}{\sigma^{o}}$	σ ⁰ error' ±dB	Sample time,	Wind speed m/s
L						Mission	1 353, Fl	ight 10; /	March 3, 1	977	·	<u> </u>	<u> </u>		L
							D	ownwind							
4	1,6 11	SS SS	20.21 11.28	1.07	-8.42 4.60	39.17 45.32	0.41	36.4 21.5	20.22 11.11	1.15	-8.60 4.30	38.77 43.73	0.41	41.0 20.0	5.4 5.4
			T	r— —		-	с	rosswind					·		_
4	1,6	SS 	19.41 9.46	1.18 1.81	-6.00 7.19	47.55 48.55	0.36	60.9 35.3	19.41 9.55	1.29 1.81	-5.85 6.70	48.53 58.23	0.36	59.4 35.8	5.4 5.4
						Mission	353, F1	ight 11; M	March 8, 1	977				·	
4	1		67.25	0.35	24.00	1		Jpwind			r	r -			
4	6 11	SS SS	19.12 39.32	1.29	-24.99 25 -13.57	25.39 32.15 30.08	1.15 .38 .40	15.36 17.9 15.9	67.04 19.21 39.33	0.48 1.21 .96	-18.05 .17 -11.36	18.16 33.97 18.37	1.16 .38 .35	16.4 20.5 18.9	16.0 15.9 15.7
— - · r			· – –		<u>. </u>		Do	wnwind				<u> </u>	L		
3	2	1 2 3 4 5 6 SS	-0.95 9.34 19.11 29.41 39.72 46.88 67.77	0.45 .47 .31 .36 .41 .48	9.77 6.87 85 -9.68 -15.97 -19.53 -30.23	13.64 18.32 21.13 22.41 27.39 30.93 26.21	0.50 .42 .51 .80 1.48 1.83	31.7 33.8 36.9 36.9 32.3 35.3	~0.84 9.24 19.01 29.47 39.64 46.78	0.45 .41 .35 .43 .30 .39	9.76 7.14 06 -8.17 -12.49 -14.63	15.1 22.87 23.67 20.76 22.36 20.74	0.54 .42 .50 .80 1.46 1.72	26.6 38.9 32.3 32.3 36.9 36.9	16.5
4	6 11	SS SS	20.58 39.96	.49 .68	76 -16.25	30.40 25.72	.32 .39	20.0 16.4 18.4	67.75 20.55 39.78	.56 .58 .77	-20.42 -1.00 -12.89	15.58 25.99 15.77	1.21 .29 .38	17.9 15.9 16.4	16.0 15.9 15.7
							Cr	osswind					1		
2	6 1 6 11	1 2 3 4 5 6 SS SS SS SS	-0.67 9.38 19.06 29.70 39.72 46.88 67.03 18.71 39.49	0.45 .54 .46 .36 .41 1.18 2.17 .63	9.50 6.06 -1.72 -11.18 -18.91 -22.36 -31.33 -1.54 -18.55	13.23 18.95 23.99 26.93 25.66 24.09 21.63 47.86 22.33	0.54 .50 .51 .76 1.14 1.11 .32 .57	24.1 32.3 42.0 46.1 33.8 35.8 31.2 34.3 36.4	-0.61 9.49 19.20 29.74 39.68 46.87 67.40 19.12 39.54	0.54 .55 .43 .48 .43 .60 1.10 2.15 .84	9.68 6.47 -1.36 -10.13 -15.84 -17.74 -24.40 -1.78 -16.51	13.30 19.50 17.55 26.37 20.17 19.55 24.54 46.54 20.75	0.54 .50 .52 .56 .68 1.09 .37 .49	21.0 37.4 39.9 46.1 35.3 36.4 33.8 33.8 33.8 33.8	16.3 16.0 15.9 15.7
			_		Mi	ission 3	53, Flig	nt 13; Mar	ch 10, 19	77	- <u>-</u> - <u>-</u>				
		- <u> </u>					U)	owind							
4 4 4	1,6 11 16 20	SS SS SS SS	20.30 11.37 68.64 40.75	1.47 3.30 .54 1.67	-2.96 5.72 -30.49 -17.80	33.68 71.67 12.84 28.36	0.39 .24 1.09 .52	43.0 13.8 7.7 13.8	20.25 12.90 69.16 40.39	1.62 2.45 .69 1.77	-2.57 3.61 -20.40 -14.06	32.20 49.30 9.17 22.53	0.39 .24 1.08 .37	34.8 7.2 11.3 12.8	10.4 11.2 11.7 12.0
4	1,6	SS	20.29	2.23	-2 51	63 E0	Dow	/nwind	<u> </u>						
4 4 4	11 16 20	SS SS SS	12.12 38.89	2.66	4.94	58.58 55.97	.29 1.07	22.5 12.8	19.99 12.78 68.20 38.30	2.03 2.77 .79 1.83	~1.62 4.64 -22.59 -15.04	48.67 52.65 16.90 21.23	0.40 .29 1.11 1.09	38.4 25.1 14.3 12.8	10.4 11.2 11.7 12.0
							Cro	sswind					1_	I	
4444444	6 1,6 11 16 20	1 2 3 4 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-1.40 9.99 19.32 28.87 39.49 47.50 20.38 9.20 40.94	1.36 1.32 1.46 1.62 .66 1.55 2.07 1.50 1.75	10.38 5.89 -4.05 -13.55 -21.82 -5.22 6.70 -23.85	11.05 34.08 41.28 36.73 22.86 32.57 56.41 32.87 38.92	0.56 .50 .58 .54 1.15 1.14 .37 .23 1.09	21.5 26.1 35.3 35.3 30.2 37.4 73.2 38.4 28.2	-1.33 9.95 19.38 28.98 39.52 47.43 20.35 9.31 67.81 41.23	1.20 1.57 1.06 1.32 .53 1.62 2.08 1.52 2.07 1.72	10.56 5.98 -4.03 -12.85 -18.45 -21.11 -4.97 6.90 -28.75 -20.80	14.40 35.37 29.25 32.51 17.93 27.91 59.77 30.37 32.16 29.25	0.54 .50 .58 .54 .68 1.14 .37 .26 1.10 .46	21.0 31.7 30.7 32.8 35.8 36.9 78.3 38.9 29.2 31.2	11.7 10.4 11.2 11.7 12.0
					Mis	sion 35	3, Fligh	t 14; Marc	h 11, 197	 7	I				
		· <u> </u>		,-			Upv	wind							
	1 6 11	SS C SS 2 SS 4	57.53 20.41 10.48	0.59 - .63 .96 -	26.58 2 -3.11 2 17.43 2	24.96 25.20 27.78	1.09 .32 .42	17.4 18.9 5.6	67.56 20.64 40.56	0.55 .93 .61	-19.43 1 -3.02 2 -15.33 2	0.80 9.15 9.45	1.09 .31 .38	21.5 18.4 5.6	14.3 14.3 14.3
															1

 $^{
m b}_{
m SS}$ indicates timing was 0.512 s, independent of antenna position.

TABLE IV.- Continued

				Hori	zontal p	olarizat				Vert	ical pola	irizati	on		
Line	Run	Antenna position	θ _{mean}	⁰ std dev	σ ^o mean'	$\frac{\Lambda\sigma^{o}}{\sigma^{o}}$	σ ^o error	Sample time,	0 mean	θ std dev	o mean' dB	$\frac{\Lambda\sigma^{o}}{\sigma^{o}}$	o error' tdB	Sample time, s	Wind speed, m/s
		(d)													
					M.	ission 3	353, Flig	ht 14; Mai	rch 11, 1	977					
							Do	wnwind		<u> </u>					
3	2	1	-0.85	1.07	10.61	13.64	0.32	53.8	-0.45	0.96	11.10	11.73	0.32	15.9 21.5	13.6
		2	9.68	1.27	-1.18	30.58	.29	84.5	19.45	1.11	12	29.96	. 36	33.8	
		4	29.53	1.03	-10.16	27.62	.42	69.1	29.98	.99	-8.52	23.23	.42	47.6	
1		5	40.18	1.03	-16.74	30.11	.50	69.1 58 9	39.88	1.33	-12.65	19.16	.43	43.5	•
4	1	5S	67.51	.49	-31.45	21.72	1.14	3.1	67.42	1.41	-21.42	11.48	1.14	17.9	14.3
4	6	SS	19,67	1.18	-2.39	31,00	.40	21.5	19.67	1.12	-1.77	33.03	.36	19.5	14.3
4	11	SS	40.56	1,99	-19.33	41.47	.56	9.2	40.80	2.14	-15.42	20.07			
					Ci	osswind					r	· — –			
2	5	1	-0.15	1.32	10.04	11.48	0.56	23.0	0.02	1.23	10.31	14.25	0.54	23.6	13.0
Ē	11	2	9.23	.63	6.72	18.45	.47	15.4	9.52	.70	6.61	14.98	.46	23.0	
		3	19.20	.63	-2.86	24.27	.49	22.5	29.87	1.19	-12.81	28.45	.46	23.0	
		5	40.04	.83	-21.72	38.78	1.13	23.0	39.86	. 50	-19.11	39.25	.83	23.0	
•	+	6	47.08	.50	-25.79	35.90	1.13	21.0	47.11	.46	-21.93	49.32	1.12	45.1	14.3
4		SS	65.91	.91	-29.46	20.93	.39	32.3	17.92	.97	24	26.55	.38	39.9	14.3
4	11	SS	38.67	1.38	-17.26	31,19	1.08	18.9	38.27	1.44	-14.41	21.35	, 58	15.4	14.3
			. <u> </u>	I	м	lission	353, Fli	ght 15; Ma	irch 14, 2	1977					
								Upwind							
	<u> </u>				1 7 12	10 07	0.24	16.4	9.02	0.65	7.68	18.10	0.29	18.4	4.2
4		SS	20.19	1.49	-5,35	45.72	.37	10.2	20.41	1.32	-5.02	53.18	. 37	10.8	4.2
4	16	SS	39.96	.79	-25.41	23.43	1.13	16.9	39.40	.87	-22.51	34.18	1.13	18.9	4.2
							D	ownwind							
4	1	SS	10.33	1.45	6.35	36.31	0.29	15.9	10.67	1.32	5.79	37.75	0.29	24.1	4.2
4	11	SS	20.10	1.38	-5.65	38.97	.42	12.3	19.84	.95	-5.30	32.76	1.13	11.3	4.2
4	16	SS	40.16	1.10	-30.72	61.18	1.14	20.0	40.04		24.25	40101			
							c	rosswind			- 	<u></u>	T		
4	1	SS	10.29	1.49	5.94	41.32	0.27	36.4	10.12	1.55	6.22	37.20	0.25	33.3	4.2
4	11	SS	19.81	.97	-7.21	42.61	.40	22.5	19.68	1.66	-6.43	48.28	1.08	33.3	4.2
<u> </u>	10	55	40.03			25.44					I		1	<u> </u>	<u> </u>
<u> </u>						Mission	353, Fli	ght 20; M	arch 22,	1977					
							·	Upwind	·						
4	1,21	SS	19.29	1.22	-5.29	42.03	0.49	41.0	19.38	1.18	-5.19	38.72	0.52	41.0	C2.5
4	11	SS	10.42	.61	5.85	20.24	.23	20.0	10.30	.53	.6.07	20.37	.23	20.0	¢2.5
4	26	SS	38.65	.64	-28.62	40.45	1.13	21.5	38.46	.40	-26.05	34.35	1.13	17.9	°2.5
Downwind															
	1, 21	55	20.50	1.77	-6.29	59.33	0.34	40.4	20.79	1.75	-6.17	59.86	0.35	41.0	°2.5
4	111	SS	11.72	.36	3.87	14.58	.24	18.9	11.79	.39	3.85	15.62	.24	20.5	2.5
4	16	SS	67.76	.63	-15.03	44.91	1.13	12.8	68.01	.44	-15.61	23.72	1.13	10.8	c2.5
4	26	55	39.10		-31.85	37.96	1,12	11.0	39,6			1			
						<u> </u>		Crosswind			-1	<u> </u>			
4	1,21	SS	20.1	2 1.80	-8.35	60.02	0.33	73.2	20.04	1.69	-7.95	53.58	0.33	70.7	°2.5
4	11	SS	10.80	1.48	4.43	51.88	.24	42.0	10.7	1.4/	4,81	49.0.	.24	1 34.3	°2.5
4	26	SS	39.1	2 1.59	-33.98	16.88	1.09	3.6	39.1	5 1.53	-31.07	32.3	2 1.07	31.2	2.5

 $^{\rm b}_{\rm SS}$ indicates timing was 0.512 s, independent of antenna position. $^{\rm c}{\rm Variable}$ - 1.7 + 5.5 m/s.

				Hori	zontal j	polariza	tion			Vert	ical pol	larizati	on		
Line	Run	Antenna position (b)	θ mean	θ std dev	σ ^ο mean' dB	<u>Δσ</u> ο σο	o error' ±dB	Sample time, s	θ mean	⁰ stđ dev	o ^o mean' dB	$\frac{\Delta \sigma^{o}}{\sigma^{o}}$	σ ^o error' ±dB	Sample time, s	Wind speed m/s
					N	lission	353, Fliq	ht 21; Ma	irch 24, 1	977	_			•	·
							t	pwind.							
4 4 4	1 7 12	55 · 55 55	9.65 19.83 39.17	0.69 .67 .65	6.92 -6.90 -29.91	19.14 29.48 28.4	0.24 1.13 .34	20.0 20.0 14.8	9.55 20.00 39.76	0.66 .69 .70	6.89 -6.92 -27.44	13.08 17.53 18.57	0.24 1.13 .36	15.9 12.8 17.9	4.7 4.7 4.7
— 1						_	Do	wnwind				L	I	L	L
3 4 4 4	3 1 7 12	1 2 3 4 5 6 SS SS SS SS	-0.43 9.77 19.55 30.07 40.14 47.26 11.36 19.59 39.21	0.49 .27 .23 .33 .35 .34 1.16 .70 .79	12.81 7.47 -4.96 -19.75 -29.89 -31.85 4.75 -6.28 -33.89	13.67 13.25 24.79 38.52 51.42 35.01 30.88 24.63 20.68	0.50 .46 .56 .94 1.14 1.14 .29 1.14 .38	30.2 40.4 46.1 43.5 13.3 13.8 16.9 15.4	-0.54 9.77 19.48 30.13 40.03 47.17 11.47 19.52 39.76	0.40 .24 .28 .18 .31 .24 1.07 .59 .80	12.94 7.42 -4.70 -17.63 -24.07 -26.86 4.75 -6.11 -29.55	10.64 12.40 26.50 39.70 54.44 75.95 26.99 26.17 24.82	0.50 .46 .60 .65 1.14 1.14 .29 1.14 .38	32.8 37.4 45.1 46.1 45.1 44.5 21.5 22.0 13.8	6.2 4.7 4.7
	<u> </u>						Cro	osswind		_					
4 4 4	1 7 12	55 55 55	10.56 19.57 39.37	1.97 1.05 .80	6.06 -7.04 -33.43	54.17 51.86 28.43	0.27 1.09 .40	40.4 36.4 15.9	10.46 19.45 39.26	1.79 1.25 .83	6.15 -6.64 -30.16	53.43 63.82 45.38	0.25	34.3 36.9 30.2	4.7

TABLE IV.- Concluded

bSS indicates timing was 0.512 s, independent of antenna position.

TABLE V.- REGRESSION COEFFICIENTS FOR NRCS (dB) VERSUS θ FOR ALL UPWIND, DOWNWIND, AND CROSSWIND STRAIGHT LEVEL LINES

					θ. (lea	Wind						.	۸.
Miss	EI	Date	Po1	Wind	но , , ,		speed,	AO	A ₁	A2	A ₃	A ₄	^A 5	⁴ 6
	·			air	Min	Max	m/s		_					
110	666	4 /11 / 73	н	- 11	0	60	14.5	.1108E+02	-,4112E+00	2538E-01	.6730E-03	.4014E-05	2848E-06	.2322E-08
230	FCF	4/11/73	t v	ŭ	ŏ	60	14.5	.1059F+02	4192E+00	2649E-01	.7377E-03	.6323E-05		-28YUE-08
230	FCF	4/11/73	Ĥ.	n	0	60	14.5	+1108E+02	4112E+00	2538E-01	.6730E-03	•4014E-02	20402-00	2890F-08
230	FCF	4/11/73	V I	D	0	60	14.5	.1059F+02	4192E+00	26496-01	+/ 3//E=03	4113E-04	2104E-07	1926E-08
230	FCF	4/11/73	H H	c	0	60	15.0	.9799E+01	+1266E+00	67155-01	2059F-02	64885-05	4343E-06	.4203E-08
230	FCF	4/11/73	V	C	e e	60	10.0	11216+02	-6532E=01	7776E-01	1533E-02	.1922E-04	7717E-06	.5550E-08
238	20	6/ 5/73	H			60	6.5	.1114F+02	.1113E+00	8744E-01	.1892E-02	.1999E-04	9020E-06	.6678E-08
238	20	6/ 5/73	H H	l ñ	l ŏ l	60	6.5	.9614E+01	.1663E+00	7686E-01	.1089E-02	.3104E-04	8590E-06	•5540E-08
238	20	6/ 5/73	l V	l n	0	60	6.5	.9191E+01	.2805E+00	9548E-01	.1905E-02	.2503E-04	- 00565-06	-7525E-08
238	20	6/ 5/73	н	c	0	60	6.5	.1064E+02	.5202E+00	1201E+00	11995-02	.3918F-04	1008E-05	6220E-08
238	20	6/ 5/73	V	c	0	60	6.5	• 1054E+02	- 2547E+00	9166F-01	-2511E-02	4609E-05	8079E-06	.692?E-08
238	27	6/11/73	H	U U	0	60	3.0	-11975+02	2754E+00	8448E-01	.1936E-02	.2259E-04	1006E-05	.7531E-08
238	27	6/11/73	н		ŏ	60	3.0	.1265E+02	1568E+00	8640E-01	.1986E-02	.1568E-04	8833E-06	•6945E=08
238	27	6/11/73	v	l ò	0	60	3.0	•1231E+02	1364E+00	9021E-01	•2127E-02	.1681E-04	9233E-00	9267E-16
238	27	6/11/73	н	C	0	60	3.0	.1353E+02		- 1077E+00	.12695-02	-4557E-04	1285E-05	8605E-08
238	27	6/11/73	V	С	0	60	3.0	+1323E+02	21025+00		-1353E-02	1112E-04	1837E-13	1147E-15
288	5	11/11/74	H	U U		53	22.2	.6593F+01	.2257E+00	5092E-01	.1369E-02	1115E-04	1866E-13	.1165E-15
288	5		l ů			53	22.2	.6270F+01	.3489E+CO	5372E-01	.1242E-02	9402E-05	1333E-13	•8332E-16
288	5	11/11/74	l v	D	l õ	53	22.2	.62528+01	•3267E+00	5170E-01	.1240E-02			-1458F-15
288	5	11/11/74	<u>н</u>	c	0	53	22.2	.6318E+01	•2296E+00		.1351E-02		1859E-13	1161E-15
288	5	11/11/74	V	c	0	53	22.2	+6316E+01	•2370E+00	49275-01	1186F-02	8703E-05	1620E-13	.9629E-16
288	6	11/14/74	H	U U	0	55	8.9	.90526+01		4776E-01	.1184E-02	8487E-05	1456E-13	.8645E-16
288	6	11/14/74				55	9.7	9470E+01	2234E+00	5876E-01	.1292E-02	8959E-05	1305E-13	•7761F-16
280	6	11/14/74	ΙŸ	Ď	İŏ	55	9.7	.9344F+01	. 2507E+00	6256E-01	.1508E-02	1112E-04	21628-13	•1280E=12
288	6	11/14/74	ÌЙ	Ċ.	0	55	11.2	.9165E+01	.1774E+00	6504E-01	.1504E-02	10/42-04	-1064E-12	6724E-15
288	6	11/14/74	V	c	1	55	11.2	.9148E+01	.2803E+00	- 12395-01	1401E-02	2780E-06	2208E-15	.1106E-17
306	FCF	4/ 4/75	H	I U	0	60	21.5	9/4/2+0			7381E-03	5145E-05	.2507E-14	1360E-16
306	FCF	4/ 4/75				60	21.5	9798E+01	1705E+00	3948E-01	.8444E-03	5864E-05	•5593E-14	3039E-16
306	FCF	4/ 4/75	17	1 ŏ	Ĭŏ	60	21.5	.9610E+01	1197E+0	3344E-01	•7433E-03	5301E-05	•2842E-14	
306	FCF	41 4/75	ЦĤ	l c	1 0	60	21.5	•9755E+0	.4227E-01	3870E-01	.8111E-03		+4224E-14	3367E-16
306	FCF	4/ 4/75	V	C	0	60	21.5	+9577E+0	18705+0	99865-01	.2631E-02	2115E-04	.1817E-14	7798E-17
316	13	8/29/75	1 1			50	4.5	1086E+0	2408E+0	1064E+00	.2864E-02	2278E-04	7631E-14	.5505E-16
310	113	8/29/75	Н	ĬĎ	Ĭŏ	50	4.5	.1197E+0	.5420E+0	1226E+00	.1256E-02	•1139E-03		.2637E-07
318	13	R/29/75	V I	Ď	0	60	4.5	.1120E+0	27363E-0	L - 7429E-01	.1266E-02	2 •2764E-04		2781E-07
318	13	8/29/75	H	C C	0	50	4.5	•1349E+0	2 .5010E-0	- 8057E-01	2003E-02	1351E-04	2655E-13	1711E-15
31	113	8/29/75		L C		67	5.5	1276F+0	21611E+0	- 5802E-01	.9478E-0	3 ,7584E-05	2494E-06	.1334E-08
311		9/ 2/75	v v	- Ť	0	67	5.5	.1262F+0	21564E+0	05714E-01	•6264E-0	2599E-04		54305-08
31	14	9/ 2/75	5 H	. D.	0	67	5.5	.1247E+0	21604E+0	0 - 7516E-01	- 6165E-0.		-1456E-05	.8310E-08
31	3 14	9/ 2/75	<u> </u>	<u> </u>	0	67	5.5	+1262E+0	2 +1271ETV	0 - 6556E-01	-1358E-0	2 - 7763E-0	.7083E-14	3338E-16
31	9 14	9/ 2/75	2	- -		67	5.5	1272F+0	2 = 71845=0	1 - 6900E-01		32115E-04		
31		9/ 8/75	i i	- <u> i</u>	L õ	65	8.8	.1133E+0	2	1 - 6882E-01	.1582E-0	2 .3166E-00	3507E-06	2787E-08
31	8116	91 8/7	5 . V	. u	. 0		. 8.8	. +1108E+0	2 .4708E-0	16587E-01	•1313E-0	2 .1355E-0		2972E-08
31	2 16	9/ 8/75	5 H	. D	. 0	70	9.0	+1131E+0	2 +1616E+0	0 66998-03	. 6075E-0	3 .3692E-0	4 - 8439E-06	.4963E-08
31	B 16	.9/_8/7	5 Y	D		70	9.0	12156+0	2 - 3225E-0	1 - 5960E-01	.6843E-0	3. 1954E-0	4 - 4438E-00	.2421E-08
31	8 16	1-9/ 8/7	2 H			67	8.1	1172E+0	2 -+1120E+0	05817E-0	.1068E-0	2 .2775E-0	51687E-00	.8607E-09
21	8 17	9/ 9/7	5 1	ĪŪ	0	67	12.2	.1053E+0	2 8015E-0	13608E-01	.3584E-0	31 .1522E-0	4 - 3408E-00	- 329AE-08
31	8 17	9/ 9/7	5 1	u u	٥	_67	12.2	.1005E+0	212750E-0	1 - 4298E-0	LI .4058E-0	3 .17705-0	4 - 47295-0	2914E-08
31	8 17	9/ 9/7	5 +	D	0	68	12.3	+1053E+0	2 .1061E+0	1	6262E-0	3 .2214E-0	4 - 5509E-0	.3338E-08
31	8 17	9/ 9/7	2 }		1 %	60	12.4	+1108F+0	2 1719E-C	1 5324E-0	1 .5637E-0	3 .2421E-0	4 5611E-0	.3287E-08
31	8 17	0, 0,7			1 ŏ	68	12.4	.1086E+0	2 .2144E-0	16032E-0	1 .7426E-0	3 .2838E-0	4 7032E-0	6 4275E-08
31	8118	9/ 9/7	5 1	i u	lõ	66	11.3	1078E+C	2 .2909E+0	08505E-0	1 .1918E-0	21 .2536E-0	5 - 4628E-0	
31	8 18	91 917	5 1	ט י	0	66	11.3	•1021E+0	2 .4425E+0	01133E+0	0 .3502E-0	2 - 54205-0	5 - 29275-0	6 .2364E-08
31	8 18	9/ 9/7	5 1	0	0	70	11.	1051E+C	2 .4025E+C	0 1068F+0	0 .2853E-0	21849E-0	4 - 2135E-0	6 2294E-08
31	8 18	9/ 9/7	5			10		3 .1084E+0	2 .1727E+0	06352E-0	1 .4943E-0	3 .3630E-0	47951E-0	6 .4673E-08
31	8110	9/ 9/7	5 1	ilč	Ĭŏ	66	11.	.1065E+0	2 .2105E+0	06995E-0	1 .6468E-0	31 .3970E-0	4 9051E-0	6 -5414E-08
31	8 19	9/10/7	5 i	4 Ũ	Ō	65	7.	.1159E+0	2 .3427E+0	0 9901E-0	1 •2383E-0	2 .6509F+0	56890E-0	6 5295E-08
31	8 19	9/10/7	5	/ 1		65	7.	5 •1101E+0	2 .15778+0	0 - 7396E-0	1 .1726E-0	21238E-0	4 .1406E-1	38947E-16
31	8 19	9/10/7	2			70	7.	1096E+0	2 .8375E-0	16216E-0	1 .9020E-0	3 .2108E-0	4 5722E-0	6 .3482E-08
31	8 10	9/10/7	51	i l c	1 0	50	7.	B .1140E+0	2 .1107E+	07023E-0	1 .1535E-0	21009E-0	4 .1573E-1	4 - 1//2t-17
31	8 19	9/10/7	5	v č	0	67	7.	B .1090E+	2 .4135E-(1 - 5901E-0	1 • 5850E=0	2847E-0	41141F-0	5 .8641E-08
31	8 24	9/17/7	5 1	ט י	0	50	9.	5 •1068E+0	JZ - 1298E+	0 31/31-0	1 .95556-0	3 - 8462E-0	5 .7066E-1	5 3222E-17
33	8 24	9/17/7	5	V U			9.	5 .1040E+	2 - 203164	00 - 7654E-0	1 .2603E-0	26227E-0	4 .1087E-0	58177E-08
31	8 24	9/17/7	2			50	9.	5 1002F+	2591F+	0 - 7874E-0	1 .2037E-0	21536E-0	48094E-1	5 .8668E-17
31	8 24	9/17/7	51	й I й		5 50	7.	8 .1002E+	2591E+	00 - • 7874E-0	1 .2037E-0	21536E-0	4 8094E-1	5 8668E-17
31	8 24	9/17/7	5	vlč	d	50	7.	8 .1002E+	02 .2591E+	007874E-0	1 .2037E-0	021536E-0		

TABLE V.- Concluded

1	- 1			_		· ·		T		T	T				
14	أجدا	C 1	Data	D-1	Wind	θ,	deg	Wind							
Γ^{α}	122	гі	Date	POL	dir	112	<u> </u>	speed,	A ₀	A1	A2	A ₂	A	Ar	Ac
					1	min	Max	m/s		-	-		4		<u>^6</u>
12	35	2	1/14/74				1								
12	25	3	1/10/70				20	14.2	•9887E+01	6133E+00)2047E-0	9 •1608E-10	5900E-12	.1016E-13	6640E-16
12	35	2	1/10//0	<u>*</u>	0	0	50	14.2	•9626E+01	-•6580E+00	•2753E-0	2 •1224E-10	4476E-12	.7692E-14	5014E-16
2	33	3.	1/10//0	<u>H</u>	D	0	50	14.2	•9892E+01	-•6182E+00	6853E-10	0 .5825E-11	2261E-12	4062E-14	2742E-16
13	32	6	1/16//6	V	D	0	50	14.2	•9562E+01	6366E+00	.24458-02	2 .1147E-10	4244E-12	.7360F-14	- 48345-16
13	35	3	1/16/76	ГН	L C	0	50	14.2	•9729E+01	2929E+00	4192E-0	1 .1223F-07	16235-04	18185-04	- 16215-09
3	35	3	1/16/76	V	C	0	50	14.2	+9463E+01	1893E+00	5510E-0	1 .1667E-02	-16925-04	.90555-07	- 79755-00
3	35	4▲	1/22/76	Н.	U	0	60	19.8	•9412E+01	4036E-01	3735E-01	.8614E-03	62805-05	29615-14	- 22055 24
3	35	44	1/22/76	V.	U	0	60	19.8	+9175F+01	76475-01	31225-01	27145-02	14045 04	• 3001E-14	
3	35	44	1/22/76	Н.	0	0	60	19.6	-9414F+01	58606-01		L (0705 00	.14902-04	3/99E-06	•2396E-08
3	35	44	1/22/76	V	D	0	60	19.6	-9140E+01	- 82255-01	- 22025-01	•00/0E-03	3992E-05	+1113E=14	5984E-17
3	35	44	1/22/76	н.	l c	0	60	19.4	.07335+01	- 13505400	- 45105-01	· · · · · · · · · · · · · · · · · · ·	.8015E-05	2209E-06	•1421E-08
.3	35	44	1/22/76	V I	C C	l õ	60	19.4	.9662E+01	- 16015400	- 37805 01	.1080E-02	7617E-05	•5719E-15	3174E-17
13	35	4B	1/22/76	н	l ū	Ĩõ	1 60	10.0	85105401	- 31345-01		•3119E-03	-2842E-04	6644E-06	•4212E-08
13	35	48	1/22/76	l ü	l ñ	1 0	60	10.0	97695401	- 71045 01		•5714E-03	.2607E-05	1301E-06	.7738E-09
3	35	4B	1/22/76	l i l	15	ő	60	10.7	84045401	/100E-01		2282E-03	•2021E-04	4666E-06	.2914E-08
13	35	4B	1/22/76	v v		l õ	57	17.1	01565.01	1445E+00	4434E-01	•6156E-03	.1151E-04	3360E-06	•2123E-08
Ĩã	351	40	1/22/76	i i i				1941	.0190E+01	+0055E-01	3806E-01	L •7133E-03	•1528E-05	1400E-06	.8879E-09
15	361	20	1/22/76					19.5	.8757E+01	-•2116E-01	4850E-01	1445E-02	2551E-04	.3530E-06	2320F~08
1.5		20		*	<u></u>		27	14.8	-+86 <u>96Ę+01</u>	<u></u> 9419E <u>-</u> 01	4593E-01	1260E-02	1349E-04	.1023E-06	6952E-09
12	221	2	1/23/10	н.	<u>u</u>	0	_60	-14.6	. •9627E+01	1241E+00	3252E-01	.6726E-03	4094E-05	.5325F-14	29295-16
2	321	2	1/23//0	V I	U	0	60	14.6	•9289E+01	9632E-01	3677E-01	.8024E-03	6097E-05	+ 3768E-14	- 20475-16
1	121	2	1/23/76	범	D	0	60	14.7	.9846E+C1	.6149E-01	4977E-01	.1082E-07	7289F-05	-831AF-14	45575-14
3	121	2	1/23/76	Y	D	0	60.	14.7	+9593E+01	•2231E-01	4450E-01	7466E-03	-8967F-05		-18035-00
3	12	2	1/23/76	H	C	0.	60	14.9	•1005E+02	1317E+00	- 4346E-01	.6039F-03	14875-04	- 40475-04	25125 00
3	35	5	1/23/76	V	¢	0	.60	14.9	.9925E+01	1101E+00	4627F-01	5770E-03	23505-04	- 50255-04	+2313E-08
3	35.	6	1/28/76	. н.	υ.	0	.60.	.15.0	_9999E+01	1368E-01		37145-03	20115-04	- 45440 01	1 . 20 YUE-08
3:	35	6	1/28/76	v	U	0	60	15.0	.9827E+01	.7428F-01	51246-01	.60205-03	20255-01		AZDY8E-08
3	35	6	1/28/76	- н	ņ	o	58	15.0	-1003E+02	6650E-02	- 46815-01	-0029E-03	•2932E=04	/226E-06	.4930E-08
3	35 (6	1/28/76	v í	D	ō	58	15.0	.98195+01	- 3200E-01	- 40075-01			•3520E-14	2006E-16
3:	35	6	1/28/76	н	Ċ	o I	58	15.0	.9871F+01	.58005-02	- 51025-01	.1003E-02	•2552E-05	2070E-06	•1291E-08
33	35 1	6	1/28/76	v I	č		57	15.0	07255407	300075-02	5102E-01		•1805E-04	4732E-06	.2880E-08
.3	531	9	3/ 2/77	- й I	- Ŭ	ŏ	67	A. 0	11545402	- 12125 01		•8181E-03	•1926E-04	5349E-06	.3306E-08
3	531	• I	3/ 2/77	- v 1	-ŭ -	6	60		110/5/02	-•1213E-01	6961E-01	•2361E-02	3464E-04	•2224E-06	4568E-09
3	53 0	<u>,</u>	3/ 2/77	- i l	5	ŏ	50	0.7	11046402	•2394E+00	1023E+00	•3681E-02	6367E-04	-4806E-06	1355E-08
3	53 0	ý I	31 2177	- V 1	ň	ň	47	0.7	•1142E+Q2	+151E-01	7078E-01	.2010E-02	2267E-04	.8579E-07	.4928E-10
3	53 0	9	3/ 2/77	ů l	÷ i	ŏ	20	11 2	+11146+02	.1690E+00	9522E-01	-3545E-02	5814E-04	.4492E-06	1335E-08
3,	53 0	6 1	31 2177		č I	i š l	7.0	11+4	+11506+02	-1400E+00	8794E-01	•2340E-02	2395E-04	.8625E-07	.9037E-15
34		ا ما	3/ 3/77	Ľ	ä	10	20	11.4	+1101E+02	•7576E-01	8093E-01	.2214E-02	2277E-04	.8209E-07	2359E-16
3.	5		3/ 3/77			10	20	2.3	•1902E+02	1273E+01	−•1537E-05	.1398E-06	7074E-08	.1887E-09	2074F-11
3.	51	i i	2/ 2/77	Ľ.		10	20	2.3	•1862E+02	1248E+01	•1283E-04	1177E-05	.6005E-07	1614E-08	.1788F-10
2.		1 6	3/ 3/17	- 2 - 1		10	20	2.3	+2081E+02	-+1399E+01	.1421E-04	1308E-05	.6691E-07	1805E-08	.2005F-10
2.			3/ 3///			10	20	5.3	•2015E+02	1359E+01	1782E-04	.1635E-05	8342E-07	2243E-08	2485E-10
35			3/ 3///		C I	10	20	5.3	•2040F+02	1403E+01	•1931E-04	1778E-05	.9094E-07	2453E-08	-27255-10
37			3/ 3/77	V	C	10	20	5.3	2001E+02	1402E+01	1411E-04	.1296E-05	6619F-07	1782E-08	10765-10
32			3/ 8/77	- H	0	0	67	15.9	•9770E+01	1973E-01	3334E-01	+4852E-03	-2914E-05	99726-07	51185-00
33	1 2 3		3/ 8/77	V I	υļ	0	67	15.9	•9770E+01	•7219E-01	5475E-01	.1701E-02	2330E-04	15385-06	- 40825-00
32	311		3/ 8/77	H I	D	0	68	16.4	.1008E+02	-1514E+00	6522E-01	1928E-02	2616E-04	-1701E-06	
33		<u>.</u>	31 8/11	<u> </u>	D	0	68	16.4	+1011E+02	1976E+00	7381E-01	.2408E-02	- 3406F-04	-2207E-06	- 52865-00
22	211		3/ 8///	H	c	0	67	16.2	•9268E+01	1213E+00	6339E-01	•1765F-02	2110E-04	10785-06	- 17115-00
37	211		3/ 4///	V	C	0	67	16.2	•9570E+01	•2710E+00	8752E-01	.2963E-02	4431E-04	-30865-06	- 81465-00
37	3 1	3	3/10///	1	U	0	69	11.0	•1060E+02	•1713E-01	6067E-01	.1710E-02	1912F-04	.76135-07	-10355-15
37	311	3	3/10/77	V I	U	0	70	11.0	1060E+02	.2739E-01	7063E-01	.2510E-02	38745-04	2853E-06	- 82675-00
35	1 6	3	3/10/77	. 변	2	0	40	11.1	.1040E+02	.4287E-01	5379E-01	-1208E-02	1084F-04	35405-07	- 5816C-1-
35	3 1	3	3/10/77	V	D	0	68	11.1	.1060F+02	.2802E-01	5199E-01	-1095F-02	-30495-05	- 93905-07	+20105-12
35	3 1	3	3/10/77	- Ч	C	0	40	11.4	•1075E+02	1247E+00	8237E-01	-2432E-02	31775-04	21285-04	- 43745 001
35	3 1	.3	3/10/77	v	С	0	68	11.4	+1105E+02	+1092E+00	8612E-01	2685F-02	- 32355-04	13685-00	
35	3 1		3/11/77	H	U	0	68	14.3	.1040E+02 -	3273E-01	5140E-01	1459F-02	16716-04	.68905-07	IUU4E-IO
35	3 1	•	3/11/77	V	U	0	68	14.3	.1040E+02	4691E-01	5307F-01	-1602F-02	-18325-04	.73205-07	-+1240E-10
35	3 1	4	3/11/77	н	r	0	68	13.7	.1070E+02	5258E-01	5795F-01	.1517F-02	-15755-04	- 5845C-07	-+17//E+16
35	3 1	4	3/11/77	V	D	0	68	13.7	•1122E+02	.2624E-01	5948E-01	-1765F-02	-19995-04	.78005-07	-+2040E-16
35	311	4	3/11/77	H	c	0	67	13.5	.1007E+02	+1361E+00	6887E-01	17035-02	-16265-04	-55115-07	13U0E-16
35	3 1	4	3/11/77	V	¢	0	67	13.5	.1030E+02	.1584E+00	7383E-01	1984F-02	-20305-04	.73545-07	
35	3 1	5	3/14/77	н	υļ	10	40	4.2	.1882E+02 -	1289F+01	4610E-02	24865-08	70025-10	•/3566-0/	3814E-10
35	3 1	5	3/14/77	V	U	10	40	4.2	•1931F+02	-1359E+01	.7633E-02	62756-00	20165-00	1310E-11	+0/48E-14
35	3 1	5	3/14/77	н	D	10	40	4.2	1894F+02	-12305+01	75725-08	45205-00	- 14405 10	33101-11	•2197E-13
35	3 1	5	3/14/77	V	D	10	40	4.2	.2035E+02	-1469F+01	- 8804F-02	17395-09		+2413E-12	1605E-14
35	3 1	5	3/14/77	нГ	c I	10	40	4.2	+2127F+02	-1538F401	52216-02	- 15305 00		.4040E-12	600ZE-14
35	3 1	5	3/14/77	vl	c l	10 1	40	4.2	.2121F+02	-15546101	77045-02	- +1 J30E-U8	• 4 45 (E=10	0133E-12	• > 3 9 2 E - 1 4
35	3 2	0	3/22/77	ч	0 1	10	40 1	2.5	.1952F+02	13365401	23435-02		.1840E-10	3144E-12	•2152E-14
35	3 2	01	3/22/77	vl	υĺ	10 Í	40	2.5	20465402	-14645-01	44755-02	+1031E=0H	-• 3287E-10	•5381E-12	3547F-14
35	3 2	0	3/22/77	Ĥ L	ōΙ	10 1	40	2.5	14656402	*1700E+V1	.00/5E-U2	+1546E-08	4921E-10	.8038E-12	5288E-14
35	3 2	0	3/22/77	v	0	10	40	2.5	15775402	.08525100	- 91405 02	4123E-10	-3481E-11	6578E-13	•4976E-15
35	3 2	0	3/22/77	н	c l	10	40	2	21145402	15005400	2148E-U2	-•2006E-08	.8522E-10	1398E-11	•9235E-14
35	3 2	o	3/22/77	v I	c I	10	40	2.5	21075102	- 1605E+01	• • • • • • • • • • • • • • • • • • •	•1144E-07	3670E-09	•6041E-11	4001E-13
35	3 Z	1	3/24/77	н	ΰl	ōl	40	4.7	-12105-02	31605401	•0094F=02	5075E-09	.1676E-10	2833E-12	•1921E-14
35	3 2	1	3/24/77	v	ŭΙ	ō	40	4.7	1290FA02	15455400		• 3 10 7E-02	3252E-04	+1203E-06	•9971F-15
35	3 2	1	3/24/77	Ĥ I	δİ	ŏİ	50	5.0	1242F402	-71265-00	-+10/4E+00	•3126E-02	3381E-04	.1275E-06	•1585E-14
35	3 2	1	3/24/77	vI	ρĺ	οl	50	5.0	13055402	-11246400	1426E+00	-3968E-02	4231E-04	•1598E-06	•1873E-15
35:	3 2	1	3/24/77	H I	c	õl	60	4.7	12105402	+20U3E+00	-+1149E+00	•3429E-02	3899E-04	+1551E-06	.1507E-15
35	3 Z	1	3/24/77	vi	c I	ŏ	40	2.4	+1200E+02	+11346+00	-•8445E-01	.2098E-02	1801E-04	•5261E-07	.6846E-15
	1.	<u> </u>		<u> </u>	<u> </u>				++2406+02	•0+10E+01	-•9481E-01	.2498E-02	2526E-04	.9093E-07	.1164E-14

TABLE VI.- NRCS EVERY 10° OF INCIDENCE FOR UPWIND, DOWNWIND, AND CROSSWIND DIRECTIONS

r		Wind		Wind			NRCS, dE	3, at incide	ence angle	of -	
Miss	F1	speed, m/s	Po1	dir	00	10 ⁰	20 ⁰	30 ⁰	40 ⁰	50 ⁰	60 ⁰
230	FCF	14.50	н	U	10.3	5.1	-2.0	-7.9	-12.2	-16.5	-20.8 *
230	FCF	14.50		U	10.3	4.5	-2.4	-11.0	-15.2	-19.4	-23.5 *
230	FCF	15.00		Ċ	10.0	4.2	-4.5	-10.9	-13.5	-16.2	-19.0 +
238	20	6.50	Ч	Ü	11.2	5.7 +	-5.3 *	-14.6	-19.5	-22.7	-25.8 *
238	20	6.50	v	Ū	11.2	5.5 *	-5.7 +	-14.0	-17.0	-18.0	-19.1 *
238	20	6.50	н	n	9.7	4.9 *	-6.5 *	-16.9	-22.9	-26.0	-24.1 +
23R	20	6.50		D	9.4	4.5 *	-0.8 =	-17.9	-23.9	-28.3	-32.7 *
238	20	6.50	V V	ř		5.9 +	-6.7 *	-17.9	-23.4	-24.3	-25.1 *
238	27	3.00	Ĥ	υ	12.4	3.1 *	-10.7 *	-21.2	-26.3	-31.3	-36.3 *
238	27	3.00	V	Ŭ	12.0	2.8 *	-10.9 *	-20.8	-24.5	-26.5	-28.6 *
238	27	3.00	Н	D	12.7	4.5 *	-9.0 *	-20.1	-20.0	-26.6	-29.6 *
238	27	3.00	V u		12.5	9.1 T	-10.4 +	-23.2	-29.8	-31.9	**
238	27	3.00	١Ÿ.	Ċ	13.1	3.7 *	-11.2 *	-22.1	-26.2	-26.9	-27.6 *
288	5	22.20	Ĥ.	Ū	6.8	5.2	0.0	-5.0	-7.9	-10.1	**
288	5	22.20	v	U	6.R	4.9	•2	-4.7	-6.6	-8.0	
288	5	22.20	1 #		6.7	5 e I	• 7	-9.2	-8.3	-11.2	**
298	12	22.20	L.	ľč	6.4	4.1	-2.2	-8.9	-13.6	-17.3	**
288	5	22.30	V.	Ĭč	6.3	3.9	-1.9	-8.0	-11.8	-14.2	**
288	6	13.40	H.	U	9.1	5.5	2	-6.0	-12.8	-15.8	**
288	6	17.40	N.		9.0	5.8	•1	-7.2	-15.9	-20.1	**
288	6	14.00			0.2	1+1 6+8	•6	-8.0	-12.9	-15.6	**
288	6	13.10	H	l č	9.5	5.8	-2.2	-12.3	-18.8	-23.7	**
288	6	13.10	I V	C	9.5	5.9	-2.2	-11.0	-16.3	-19.1	++
306	FCF	21.50	H	U U	9,8	6.5	1.8 *	-3.7	-6-9 1	-13.0	-12.8
306	FCF	21.50			9.8	8.3	3.2	-2.6	-7.5	-11.5	-15.7
306	FCF	21.50	l v	Ď	9.7	8.2	3.7	-1.1	-5.1	-8.2	-11.7
306	FCF	21.50	Ĥ.	Č	9.8	7.1	•8 *	-6.2	-12.0	-16.4	-20.1
306	FCF	21.50	V V	C	9.7	7.3	1.1 *	-2.3	-10.1 *	-31.3	-36.8 +
1318	13	4.50			10.9	5.3	-7.6	-18.6	-24.8	-27.4	-30.1 *
318	13	4.50	Ĥ Ĥ	Ď	12.4	7.2	-6.9	-17.3	-31.4	-32.9	-40.7 *
314	13	4.50	v	n	11.1	4.5	-7.8	-18.3	-24.3	-28.1	-31.9 *
318	13	4.50	H	C	13.3	5.4	-9.6	-23.1	-32.5	-35.0	-37.6 *
318	1 13	5.50	H H	16	12.5	6.3	-5.6	-17.6	-26.5	-31.6	-34.5
118	14	5.50	V.	Ū	12.4	6.2	-5.8	-17.1	-24.2	-26.8	-28.3
318	14	5.50	H H	D	12.1	7.5	-5.3	-18.1	-26.9	-31.9	-30.8
316	14	5.50	2 2	D	11.8	7.4	-5.3	=20.2	-31.0	-37.3	-39.4
318		5 50			12.3	6.2	-7.1	-20.0	-28.5	-31.9	-33.3
318	116	8.80	5 Ĥ	1 ŭ	11.0	6.8	-2.7	-11.6	-17.6	-23.0	-28.0
316	16	6.60	• v	U	10.7	6.3	-3.2	-11.3	-15.5	-1/.8	-31-8
316	16	0.00	H H	0	10.8	7.3	-2.4	-12.4	-17.1	-18.3	-21.1
319		9.00	, ,		11.8	6.7	-5.0	-17.1	-26.3	-31.6	-35.5
318	16	8.10	v	č	11.3	5.9	-5.3	-16.3	-24.1	-27.7	-28.8
310	17	12.20) H	U	10.3	6.6	-1.2	-9.2	-13.5	-15.7	-17.9
310	17	12.20	2 V		10.4	7.1	-1.5	-10.4	-17.1	-22.1	-27.3
31		12.30	śΙΫ	n		6.6	-1.6	-9.4	-14.2	-16.6	-19.1
31	8 17	12.40	5 4	c	10.6	6.3	-3.7	-13.7	-20.8	-25.1	-24.2
31	8 17	12.40	2 V	C	10.4	6.0	-4.3	-13.7	-17-1	-21.0 *	-24.9
31		11.30			10.3	6.5	-3.6	-11.5	-14.1	-16.2 *	-18.3
11	0 118 0 119	11.3	ŏЦч	0	12.7	7.4	-2.9	-13.0 4	-19.5	-23.9 *	-28.5
31	ล โล	11.3	0 V	0	9.9	7.0	-2.9	-11.9		-17.8 *	-20.0
31	8 18	11.3	0 H	C C	10.6	7.0	-3.6	-14.4	-21.4	-22.9	-25.5
31	H 11A	11.3	о I ч		11.4	7.4	-3.7	-13.7	-19.4	-24.6	-29.8
11	P 10	7.5	o I v	U U	10.8	6.8	-4.4	-13.5	+ -17.0	-19.2 4	-21.4
31	A 19	7.6	0 H	n l	11.4	7.4	-3.0	-13.7	-21.7	-20-1	-22.4
31	P 19	7.6	o V	15	10.8	6.6	-3.A	-15.2	-24.1	-29.8	**
121	r 19 a 10	7.8	8 N	ÌÌč	10.7	6.2	-4.5	-15.0	-22.4	-26.5	-30.4
31	P 24	9.5	õ H	1 ŭ	10.6	6.5	9	-9.2	-15.1	-23.4	**
31	8 24	°.5	olv	U	9.9	5.5	-1.0	-7.2	-12.3	-22.6	**
31	B 24	9.5	014	; p	10.6	1.0	-2.3	-10.5	-14.5	-15.2	**
[31	0 1 24	U 403	v V	, 1 , 6	1 44.00						· · · · ·

[Data derived from weighted regressions of table IV data]

 $\overset{*}{}\text{Extrapolated from data greater than 5^0 removed in incidence angle.$ $<math display="inline">\overset{*}{}^{*}\text{No}$ data.

TABLE VI.- Concluded

Min		Wind		Wind			NRCS, d	B, at incide	ence angle	of -		
MISS	5 71	speed, m/s	PO	dir	00	10 ⁰	20 ⁰	30 ⁰	40 ⁰	50 ⁰	60 ⁰	
335 335	3	14.20	нн	0	9.7 9.7	3.8 3.8	-2.4 * -2.5 *	-8.5	-14.6 * -14.9 *	-20.8	-26.9	*
335	3	14.20	H	C C	9.7	3.7	-5.2	-13.5	-19.6	-23.7	-27.7	*
335	3	14.20	V		9.6	3.3	-2.4 *	-7.6	-12.3 *	-16.4	-19.9	*
335	1 3	14.20	1 v		0.6	3.4	-2+2 *	-7.3	-12.0 *	-16.2	-19.8	*
335	44	19.80	H H	ŭ	9.4	6.1	-5.5	=7.2	-12.9	-17.4	-22.0	•
335	44	19.80	V V	Ű	0.1	5.8	5	-6.5	-10.9	-14.0	-17.2	
335	4 ▲	19.60	1 11	0	9.4	6.3	.1	-7.0 *	-13.7	-19.8 *	-25.9	
335	44	19.60	V	0	9.1	6.0	•1	-6.0 *	-11.1	-15.2 *	-19.2	
335	44	19.50	1	ļç	9.7	4.9	-3.6	-12.0	-18.4	-22.6	-26.5	
335	48	19.00	L.	1.5	9.0	4.7	-3.7	-11.2	-16.1	-18.9	-21.4	
335	48	19.90	V V	Ιŭ	8.2	5.0	-1.1	= 7.4	-12.9	-1/+1	-21.0	
335	48	19.70	Ĥ.	n I	8.4	6.1	6	-7.8	-13.6	-18-2	-22.7	
335	49	19.70	V	D	8.1	5.7	2	-6.4	-11.2	-14.8	-18.3	
335	48	19.80	H	C C	6.8	4.6	-3.2	-11.2	-17.1	-19.7	-21.0	
332	1 5	14,40	1.	C	8.7	4.3	-3.4	-10.4	-14.8	-16.5	-17.6	
335	5	14.60	I.C.	l ii	9.0	5.5	-1.1	-8.5	-14.8	-19.4	-22.7	
335	5	14.70	Ĥ.	I P	9.8	6.5	-1.3	-9.8	-16.7	-15+2	=26.3	
335	5	14.70	V	l e -	9.6	6.2	-1.2	-8.3	-13.2	-16.2	-18.9	
335	5	14.90	H	C	10,0	5.1	-3.9	-12.7	-19.2	-24.0	-28.6	
335	5	14.90			9.9	4.9	-4.0	-12.0	-16.9	-19.4	-21.8	ļ
335	Å	15.00			0.7	0.4	-1.4	-9,2 *	-15.1	-19.1 *	-23.1	
335	6	15.00	Å,	ľċ.	10-0	6.3	-1-8	-10-4	-12.0	-14.9 *	-17.2	
335	6	15.00	V V	D	9.8	6.1	-1.7	-9.1	-14.1	-16.7	-19.0	
335	6	15.00	ч	С	9.8	5.6	-3.5	-12.5	-19.2	-23.7	-28.3	
335	5	15.00	N.	c	9.7	5.5	-3.5	-11.8	-16.8	-19.5	-22.1	
353		8.90	v		11.0	6.5	-7.5	-10.7	-17.0	-22.1	-27.1	
153	. 9	9.70	Ĥ.	Ď	11.5	6.6	-3.3	-13.0	-20.6	-10.0	-19+4	
353	9	9.70	v	0	11.5	6.3	-3.2	-10.9	-15.9	-19.2	-22.2	
353	9	11.20	H	C I	11.5	6.3	-5.6	-17.4 *	-26.1	**	**	1
323	10	5.40	L N		11.0	5.7	-5.5	-16.2 +	-23.6	-27.4 *	-28.9	
353	10	5.40	v v	l ŭ l	**	6.1	-6.3	**	** ·	**	**	
353	10	5.40	н	D	**	6.8	-7.2	**	**	**	**	
353	10	5.40	V	D	**	6.6	-7.0	**	**	**	**	
373	10	5 40	H.	C	**-	. 5.4	-7.7	**	**	**	**	1
353	11	15.90	н	Ŭ	9.8	6.7 *	-8.0	-7.4 *	-14 0	-10 0 +	-22 5	
353	11	15.90	v	- 13	9.8	6.5 *	3	-6.9 +	-11.6	-14.7 *	-16.8	
353	11	16.40	н	2	10.1	6.8	-1.2	-9.4	-16.1	-21.5	-26.2	1
323		16.40	1 2 1	2	10.1	6.8	-1.0	-8.0	-12.7	-15.7	-18.1	
353	11	16.20	v	l à l	9.6	6.1	-2.5	-11.1	-18.0	-23.3	-27.8	
353	13	11.00	н	0	10.4	6.2	-2.5	-11.0 *	-17.5	-22.2 *	-21.0	
353	13	11.00	V	11	10.6	6.0	-2.4	-9.4 *	-14.0	-16.8 *	-18.8	
353	13	11.10	н	D	10.4	6.6	-2.2	-12.0 *	-20.8	**	**	ļ
353	12	11.40	L L L	° č –	10.7	6.7 5.0	-1.6	-10.1 *	-16.2	-19.6 *	-21.2	
353	13	11.40	V I	è	10.6	5.9	-4.5	-13.6	-19-3	-20.4	-24.5 *	
353	14	14.30	н	Ū	10.4	6.2 *	-1.6	-9.3 +	-15.5	-20.3 *	-24.5	
353	14	14.30	V	U	10.4	6.1 *	-1.6	-R.6 #	-13.3	-16.0 *	-17.9	
333	14	13.70	∵		10.7	6.8	-1.6	-10.2	-17.1	-22.0	-25.6	
353	14	13.50	Ιμ̈́Ι	čl	10,1	6.1	-3-6	-8.2	-13.0	-15+8	-17.8	1
353	14	13.50	v	č	10.3	6.3	-3.2	-12.6	-19.2	-22.9	-24-6	
352	15	4.20	н	U	**	6.4	-5.1	-15.7 *	-25.4	**	**	
353	15	4.20	21	v	**	6.5	-4.8	-14.6 *	-22.8	**	**	
353	12	4.20	Ϋ́Ι	n l	**	0.0	-5.7	-17.9 *	-30.2	**	**	
353	15	4 20	нI	čl	**	6.4	-7.4	-17.8 #	-24.3	**	## #=	1
353	15	4.20	v	ċ	**	h.4	-6.8	-18.5 +	-28.7	**	**	
353	20	2.50	н	U	**	6.4	-6.3	-18.5 *	-30.2	**	**	1
353	20	2.50	N L	U	**	6.5	-6.2	-17.5 +	-27.5	**	**	
353	20	2.50	7	"	**	2.0	-5.4	-18.3 *	-33.3	**	**	
353	20	2.50	нI	čl	**	5.6	-8.9	-22.5 #	-21.1	**	**	1
353	20	2.50	v	Ċ	**	5.9	-8.5	-21.1 *	-31.9	**	**	1
323	21	4.70		U I	12.1	6.6	-7.2	-20.7 *	-30.0	-34.7 *	++	1
353	21	5.90	H.	p	12.4	0.5 8.6	-7.Z	-19.5 *	-27.0	-29.9 *	**	1
353	21	5.90	v	'n	13.0	7.2	-6.0	-17.8	-24.9	-27.0	**	
353	21	4.70	н	c	12.1	6.2	-7.5	-22.0 +	-33.6	-40.7 +	**	
353	21	4.70	V	c	12.9	6.5	-7.1	-20.7 *	-30.9	-37.2 *	**	

^{*}Extrapolated from data greater than 5⁰ removed in incidence angle. **No data.

TABLE VII REGRESSION ANALYSIS RESUL	S FOR NRCS (RA	TIO) VERSUS WIND SPEED
-------------------------------------	----------------	------------------------

.

Wind direction	Pol	θ, deg	B ₀	^B 1	^B 2	Std err	R ²	Comment (a)
U	Н	0 10 20 30 40 50 60	17.97893 4.76453 .14488 .20341E-1 .52740E-2 .29094E-2 .36137E-3	-0.56525 61307E-1 .41391E-1 62803E-16 19165E-17 60146E-17 15428E-17	0.53160E-3 .14699E-3 .57893E-4 .18732E-4	0.0238 .0282 .0422 .0445 .0591 .0991 .0409	0.8758 .2726 .7724 .8419 .7704 .5848 .8790	2 2, 3 2
D	Н	0 10 20 30 40 50 60	17.43249 5.83647 38630E-1 .90680E-2 70691E-4 .24983E-3 .22539E-3	-0.51515 83903E-1 .57366E-1 30019E-16 76994E-17 17086E-17 17846E-18	0.44506E-2 .10715E-3 .34600E-4 .97390E-5	0.0420 .0451 .0638 .0315 .0346 .0520 .0816	0.6736 .1740 .7377 .9073 .9352 .8392 .7467	1 2 1, 2 2 2
с	Н	0 10 20 30 40 50 60	21.64335 4.6170 1.07437 .13601E-1 .10421E-2 .87777E-4 15039E-2	-0.76927 76068E-1 .21604E-1 19370E-16 .71432E-17 22832E-17 49692E-18	0.17795E-3 .47768E-4 .21210E-4 .16488E-4	0.0386 .0275 .0441 .0504 .0673 .0929 .1753	0.8472 .4897 .6850 .8112 .7570 .6765 .6019	5 2 2 2 2 2 1, 2, 4
υ	v	0 10 20 30 40 50 60	16.96216 4.58217 .12151 .22667E-1 .10176E-1 .93569E-2 .73282E-2	-0.50510 62594E-1 .41536E-1 .76412E-16 34462E-16 44957E-16 58224E-17	0.61815E-3 .22967E-3 .12384E-3 .40944E-4	0.0265 .0310 .0489 .0465 .0562 .0809 .0413	0.8849 .2549 .7221 .8304 .7651 .5808 .6978	5 2 2 2 2 2
D	v	0 10 20 30 40 50 60	16.12915 4.6872 60917E-1 .12425E-1 .38442E-2 .53939E-2 .57356E-2	-0.46316 30126E-1 .62357E-1 .54671E-16 83137E-18 .57945E-17 57621E-17	0.60577E-3 .19459E-3 .86501E-3 .26529E-4	0.0506 .0428 .0757 .0292 .0296 .0476 .0515	0.5910 .0374 .6991 .9241 .9355 .7627 .6462	1 2 2 2
С	v	0 10 20 30 40 50 60	20.78353 4.42424 .10190 .12743E-1 .12927E-2 .12851E-2 17752E-2	-0.71340 70002E-1 .21997E-1 66526E-16 .48132E-17 46227E-17 34135E-17	0.23273E-3 .84863E-4 .47182E-4 .37199E-4	0.0372 .0326 .0472 .0562 .0636 .0704 .0816	0.8641 .3454 .6699 .8004 .8008 .7746 .7919	5 2 2 1, 2

 $a_1 - NRCS < 0$ at low wind speeds; 2 - SASS I line is better at low winds; 3 - SASS I line is better at high winds; 4 - fit is not too good; 5 - higher order fit might be better.

TABLE VIII.- REGRESSION RESULTS FOR NRCS (θ , ϕ) FOR RADSCAT CIRCLE DATA FOR NINTH-ORDER MODEL

$$\begin{bmatrix} (NRCS) = A_0 + A_1\theta + A_2\cos\phi + A_3\theta\cos\phi + A_4\sin\phi + A_5\theta\sin\phi \\ + A_6\cos 2\phi + A_7\theta\cos 2\phi + A_8\sin 2\phi + A_9\theta\sin 2\phi \end{bmatrix}$$

r	1	<u> </u>	T	<u> </u>	r		-	· · · ·	r													
			Wind	[0			1											, ¢	critical	points	s, deg
Miss	ET .	Run	sneed.	Pol	"mean"	Α.	Δ.	4	۸ ا							No.		~2	· · · ·		· · · · · · · · · · · · · · · · · · ·	
1			m/s	ľ	deg	0'' 1	^1	<u>^2</u>	1 "3	^4	~5	[*] 6	77	* 8	^ 9	points	I N2D	K-	Umax	Claria	D	C2
	+	<u> </u>	11/ 3													[·				-0114	IIId A	-min
230	FCF	1 1	11 . 0	н	30.3	- 592 5+00	1625-01	. 961 5-01	- 2016-02	1405400	- 4585-07	- 1245400	2076-02	- 1375.00	2016.02		277	4.0.0	107 0	22.2	110 0	218 2
230	FCF	i i	15.0	v	30.3	.7435+00	2028-01	21 66+00	.7285-02	4655-01	- 2495-02		- 3435-02		1 1 1 2 2 - 02	4.03	••••	4.60	300.0	36.6	1 2 2 4	217.7
23R	20	2	6.5	н	31.0	.113F+00	3036-02	521E-01	-1575-02	- 1955-01	.7435-03	5385-02	- 1665-02	1075-01	- 4705-01	1740	270		126 5	747 4	216 7	26.7
239	20	2	6.5	v	31.0	-151E+00	3995-02	3756-01	.1126-02		2765-02	- 1755-02	5676-03			2012	207		130.9	270 6	310.7	29.7
236	27	5	1.1.1	i i i	12.0	1005-01	- 3745-02	0075-03	- 3175-02	- 7765-07	2/01-02		.3526-01		2301-04	2044		+ 2 3 2	133.4	228.2	21107	34.3
229	1 27		1.0		32 6	8545+02	7765-04	3335-01	- 1026 03		*2412-03	102E-01	· 519E-03	•10/E=01	447E-03	1111	+201	.041		176.4	223.4	397.0
1 200	1 6	ŝ	22.4	L.	32.00	1276400	- 2036 03			1412-03	.400E-04		.875E-03	•210E-01	634E-03	1317	• 22		91.3	142.4	264.0	351.0
2.0.0	1 6	;	23.0	5	33.1	3211000	- 7932-02	.2017-01		1146+00	+303E-02	150E+00	•402E+02	.407E-01	6868-03	e 23	• 21.5	+695	247.2	330.8	62.7	158.5
	1 1		· · · ·		33.1	.3402400	/	.1012+00		• 208E-01	107E-02	2048-01	.930E-04	•613E-01	109E-02	319	.247	.665	241.9	321.7	62.9	163.4
1 200			· · · ·			.2936+00		• 36 VE-01	1291-02		.333E-03	#36E-02	•389E-03	.476E-01	756E-03	978	+22f	+66#	214.8	309.9	42.3	126.7
1 200	1 2		23.0		34.4	.3071+00	0026-02	·518E-01	+.1426-02	.629E-01	147E-02	339E-01	.108E-02	•111E+00	241E+02	877	•220	.640	217.9	306.8	44.9	137.2
200	1 2		13.7		37.4	.2201+00		1245+00	-4302-02	212E-01	.716E-03	•791E-01	192E-02	758E-01	•203E-02	403	.184	•602	165.4	266.3	355.0	71.6
1 422	1 71	<u> 1</u>	13.7		37.4	.0351-01	8401-03	*08E-01	117t-02	3298-01	.896E-03	.589E-01	115E-02	•310E+02	121E-03	410	•14 [#]	.R4P	179.5	268.8	357.3	#7.1
1 425	2		13.7		30.4	.0347-01	136E-02	•213E+01	649E-03	.196E-01	441E-03	.399E-01	901E-03	.235E-02	201E-04	258	.183	.917	196.3	2*1.3	4.7	90.0
1 327	1002	Ľ.	1347		30.4	•/#IE-01	159E-02	433E-01	•115E-02	.453E-02	160E+03	• 560E-01	127E-02	.104E-01	291E-03	345	.151	. 977	192.3	271.9	358.0	86.5
1 202	1212	1	21.02		23.4	*162E+00	259E-02	.550E+01	110E-0Z	480E-01	•946E-03	268E+00	+496E-02	159E-01	•121E-03	225	.207	.701	303.6	30.1	127.5	221.9
1 200	1.1.1		1	v	23.4	*2P6E+00	4166-02	.189E+00	3666-02	205E+00	.391E-02	394E+00	.7228-02	343E-01	.280E-03	214	.171	•726	300.7	29.9	125.1	217.6
100	1251	11	21.02	- M	14.1	•7F9E+01	+.321E+00	304E+01	.185£+00	.438E+01	279E+00	266E+01	+156E+00	.362E+00	637E-01	210	.245	.429	289.7	13.4	118.3	217.8
306	FC.	-11	21.5	• I	14.1	+102F+92	474E+00	•176E+01	138E+00	+155E+01	7656-01	325E+01	.193E+00	125E+01	.576E-01	221	.275	.37P	289.3	9.1	110.2	210.7
306	FCF	- 1	21.5	- <u>H</u> I	62.4	.3168-01	304E-03	129E+00	.204E-02	+115E+00	187E-02	636E-01	.947E-03	461E-02	650E-05	169	•204	.746	292.0	26.1	116.5	202.1
306	FCF		21.2	×	62.4	.3#3F+00	553E-02	132E+00	2078-02	+111E+00	1698-02	843E-01	.130E-02	823E-01	.119E-0Z	170	.140	.775	315.0	27.9	116.4	219.7
306	FCF		21.07	별	31.4	+138E+01	362F-01	+.388E+00	•124E-01	+112E+00	425E-02	301E+00	.810E-02	723E+00	.201E-01	287	.319	.651	300.4	34.5	123.3	208.9
306	FCF	. 7	71.5	v	31.4	+128F+01	303E-01	422€+00	.125E-01	.158E+00	446E-02	839E+01	.119E-02	578E+00	.147E-01	283	.301	.639	302.6	30.9	125.6	217.9
306	FCF	14	21.5	- 14	2°.1	.437E+01	139E+00	833E-01	.502E-02	486E+00	.206E-01	343E+00	.954E-02	223E+01	•727E-01	205	.379	.560	311.8	30.8	117.7	217.2
304	FCF	14	21.5	V I	29.1	•346E+01	103E+00	949E+00	.3356-01	.454E+00	114E-01	561E+00	+154E-01	153E+01	.468E-01	200	.311	•590	303.3	22.1	116.3	215.9
31	13	3	4.6	. "	20.3	*111E+01	4826-01	179E+00	•937E-02	•793E+00	384E-01	• 327E+0C	141E-01	~.221E+00	.105E-01	285	.231	.720	169.1	251.9	359.8	88.2
31*	13	3	4.6	×	20.3	.826E+00	363E-01	1395+00	•733E-02	•722E+00	3526-01	.507E-01	+.1216-02	189E+00	.917E-02	265	.238	+69E	170.5	261.6	.4	90.A
316	13	°	4.6	н	40.6	.1566-01	342E-03	3475-02	.750E-04	545E-03	.161E-04	.353E-02	722E-04	588E-02	.127E-03	116	.125	. 953	155.1	251.7	333.5	5P.5
31 P	13	٩	4.6	× 1	40.6	+135E-01	264E-03	.174E-02	434E-04	326E-02	•782E-04	.338E-02	5726-04	340E-02	.523E-04	121	.123	• 922	155.6	244.7	334.2	65.0
316	13	11	4.5	н	50.3	.242E-02	422E-04	3548-02	.655E+04	338E-03	.825E-05	.223E-02	417E-04	312E-02	.580E-04	269	• 200	.940	154.7	258.9	328.6	47.7
319	13	11	4.5	v	50.3	.409E-02	5918-04	270E-02	• 475E-04	135E-02	.288E-04	· 327E-02	547E-04	508F-02	.896E-04	306	.186	.899	156.8	252.3	335.4	60.1
318	14	1	5.5	н	14.9	•207E+01	919E-01	2448+00	120E-01	440E+00	.229E-01	281E-02	.475E-03	.237E+00	105E-01	401	.115	.883	43.1	124.0	218.3	316.3
316	14	1	5.5	v	18.0	*189E+01	834E-01	429E+00	.2198-01	592E+00	.307E-01	.626E-01	301E-02	+201E+00	131E-01	407	.105	.908	40.7	122.A	219.7	317.3
318	14	7	5.5	н	30.9	.140E-01	2998-03	.1€4€-02	2846-04	.384E-02	786E-04	328E-03	.602E-05	.194E-02	281E-04	3 5 2	.105	.P01	47.4	155.5	229.3	300.0
31 8	14	7	5.5	V	30.9	.200E-01	401E-03	.133E-02	1978-04	103E+02	.406E-04	8256-02	.205E-03	.146E-02	.853E-05	347	.204	.751	46.4	142.7	226.1	309.8
318	14	12	5.5	н	67.2	147E-03	.432E-05	725E-03	.113E-04	137E-03	.206E-05	•971E-03	145E-04	•219E-03	287E-05	214	.324	.438	53.5	195.2	247.5	53.5
31 ^A	14	12	5.5	¥	67.2	.259E-02	270E-04	7+0E-03	·119E-04	•213E-03	197E-05	• 597E-03	994E-05	+132E-02	-,135E-04	267	.151	. 880	50.7	142.9	229.1	317.0
318	16	4	A.6	-	18.5	.22RE+01	982E-01	.741E-02	.367E-02	828E+00	.429E-01	164E+00	123E-01	980F+00	.547E-01	383	.264	-607	206.7	267.6	5.4	114.6
316	16	- 4	P.5	v	18.5	.2075+01	+.897E-01	7225-01	•748E+02	663E+00	.349E-01	.196E+00	729E-02	977E+00	.542E-01	380	.297	.546	200.2	266.7	6.6	113.9
316	16	•	A • 2	н	30.4	.379E+01	834E-03	178F-01	• 4 0 4 E - 0 3	2346-01	.557E-03	.136E-01	292E-03	.142E-01	+.320E-03	366	. 229	. 882	701.9	301.1	12.7	97.7
319	16	୍ୟ	6.5	V	39.4	+4855-01	101E-02	316E-01	.771E-03	339E-01	.829E-03	.125E-01	194E-03	.244E-01	542E-03	369	232	.P29	198.2	290.1	13.9	102.6
319	16	14	8.9	- H	66.2	142E-02	175E-04	+.156E-02	.216E-04	•452E-03	815E-05	.160E-02	231E-04	.145E-02	197E-04	214	251	. 653	212.7	316.2	31.7	108.9
316	16	14	F.9	v	65.2	.102E-01	2316-03	7765-02	.116E-03	.468E-02	7292-04	•614E-02	722E-04	.158E-01	212E-03	272	.227	. 196	206.R	297.2	25.6	115.3
318	17	1	13.5	- H	10.0	.3128+01	129E+00	.986E-01	3078-02	118F+00	.586E-C2	• 542E+00	2356-01	.495E+00	189E-01	365	.125	. 847	211.2	295.8	27.2	122.2
316	17	1	13.5	v	19.F	+276E+01	113E+00	.240E+00	9538-02	167E-01	166E-02	188E+00	577E-02	.406E+00	140E-01	363	.106	.877	211.3	294.9	29.0	125.0
318	17	•	17.9	- H	40.F	.740E-01	1478-02	229E-01	•447E-03	133E-01	.270E-C3	.188E-01	368E-03	.616E-01	135E-02	313	.146	. 942	209.3	309.7	30.6	109.7
316	17	٩	12.8	×	40.8	*82E-01	153E-02	7896-02	.108E-03	115E-C1	.235E-03	.399E-01	777E-03	.920E-01	194E-02	329	.132	.929	208.9	302.6	28.8	115.2
316	17.	12	17.3	H	68.1	.507E-02	599E-04	124F-02	.929E-05	309E-02	.412E-04	146E-02	+245E-04	.207E-02	2456-04	255	164	.923	209.4	322.1	35.0	98.1
314	17	12	12.3	v	69.1	-317E-01	3739-03	111F-02	176E-05	359E-02	.386E-04	• 367E-02	275E-04	.132E-01	145E-03	258	.179	. 920	211.6	306.9	30.1	115.1
315	1.	- 7	12.0	"	14.5	•314F+01	133E+00	141E+00	.e47E-02	836E-02	.558E+03	162E+00	568E-02	• 375 E+00	181f-01	355	.195	.528	191.6	274.2	10.4	107.5
312	1.6	- 11	12.0	V I	14.6	.725F+01	+.915E-01	398E+00	• 2 22 E -0 1	913E+00	.451E-01	391E+01	.507E-02	.294E+00	147E-01	354	.201	. 25	190.5	262.5	356.0	99.7
318	17	- 21	11.3	방	40.4	.7136-01	153E-02	960E-01	.228E-02	375E-01	.901E-03	.358E+01	773E-03	.746E-02	196E-03	343	.157	. 907	140.4	2=0.2	352.0	75.7
	1.7	<u>, ^</u> l	11.1	<u>.</u>	*0.4	.97RE-01	199E-02	178E+00	+ 28 E-0 Z	100E+00	.244E+02	•753E-01	154E-02	•112E-01	278E-03	344	.152	. 905	181.8	275.3	357.9	85.0
	1.	[10.31	21	n?•?	.122t-01	1698-03	.205E-02	361E-04	117E-02	.195E-04	• 292E-02	354E-04	•407E-02	5668-04	195	.142	• 332	193.7	293.4	22.8	101.2
1 31 1	15	믮	*¥•2		22.2	.H26F=01	114E-02	.228F-01	346E-03	.336E-01	4839-03	• 380E-02	4876-05	.430E-01	615E-03	189	.111	. 952	192.5	286.5	24.6	111.9
315	14	- 121	(•?)		10.7	•369E+01	166F+00	+121E+01	-+6248-01	102E+01	•563E-01	460F+00	.212E-01	124E+00	+102F-01	370	.144	.P10	225.2	320.4	69.1	163.4
419	19	10	7.2	× I	19.7	.297F+01	131F+00	.676E+00	3462-01	-,663E+00	.379E-01	504E+00	•233E-01	171E+00	+116E-01	371	.152	. 904	233.1	321.4	70.5	171.0
319	10	-11	· · ?		40.9	.345E-01	7168-03	275E-02	• 4 22 E-0 4	189E-01	.416E-03	753E-02	+156E-03	•220E-01	487E-03	255	.174	.922	244.6	343.P	60.1	142.6
110	10	13	<u>(•</u> 2)		40.9	•443F-01	827E-03	.159E-02	411E-04	117E-01	.260E-03	177E-01	.334E-03	.338E-01	7038-03	247	·158	.907	245.1	336.5	63.4	152.1
111	14	-14	(*?)		0/-1	- 4366-01	.146E-02	100E+00	+155E-02	-+100E+00	.156E-02	esse-05	.854E-04	433E-01	.674E-03	69	.161	.634	323.2	52.1	233.2	143.2
1 11	14	-1/1		N I	67+1	•040F=02	570E-04	.2PPE-02	455E-04[619E-02	.872E-04	110E-01	■145E=03	.120E-01	154E-03	279	.199	.904	243.6	336.6	63.9	151.1
314		- 1		21	30.3	.24AF+00	692E+02	.21 AF-01	8248-03	271F-01	•643E-03	518E-01	.151E-02	.855E+01	245E-02	297	.163	.835	240.1	334 . 2	57.3	140.0
	24	1	. ?•?]	<u>.</u>	30.3	+ 32 92 +00	890E-02	211E-01	-609E-U3	.275E-01	125E-02	277E-01	.498E-03	.151E+00	425E-02	292	.153	.862	241.4	335.9	5P.1	144.3
335	3	- 11	14•2	31	44.3	•••5E-01	766E-03	262E-01	• 5 2 3 E - 0 3	.460E-02	875E-04	.470E-02	712E-04	728E+02	.906E-04	376	+14A	.P10	147.6	241.2	325.8	52.4
1 3 3 5 1	3	<u></u>	19.4	<u>×</u>	• P • 3	843F-01	131E-02	241E-02	•210E-04	454E-01	.930E-03	•\$14E-01	964E-03	478E-01	.812E-03	3#3	.123	. 869	150.0	239.1	329.0	60.0
335	3	- 1	14.2	4	19.4	• 948E+00	154F-01	.7465-01	279E-02	146E+00	+204E-02	.138E+00	393é-02	304E+00	.883E-02	467	.175	• P28	149.2	240.6	327.8	56.5
335	3	1	14.2	V I	Z9.4	• 554E+0C	1494-01	+152F+00	5058-02	15AE+00	.521F+02	• 21 FE +00	651E-02	251E+00	.667E-02	453	.162	.839	148.1	236.3	327.3	59.1
3.5	4 A	22	19.7	21	2.7	•912 ^r +01	5492+00	831E+00	•770E-01	•304E+00	374E-07	.855E+01	485E-01	554E+00	.397E-01	322	.10Z	. CA3	283.7	2.5	102.0	201.7
335	4.8	22	19.7	<u>v </u>	9.7	.849F+01	504E+00	5478+00	•511E-01	+44PE+00	157E-01	. 290E+00	630E-01	558E+00	4356-01	317	.101	.690	281.0	359.1	102.1	204.5
335	44	- 1	10.1	별	10.9	•335E+01	132E+00	449E+00	.236E-01	.155E+00	919E-02	116E+01	.474E-01	350E+00	.8985-02	715	.131	. R35	287.1	17.1	107.3	197.2
335	6.4	1	19,1	¥	19.9	•326F+01	128E+00]	541F+00	.Z80E-01	.128F+0C	532E-02	103E+01	.403E-01	-,3496+00	.921E-02	717	.120	· P41	296.3	15.1	106.6	197.A
375	44	3	20.0	4	30.1	.203F+00	4396-02	150E-01	.396E-03	• 371E-01	101E-02	+.114E+00	.256E-02	637E-01	.141E-02	627	.213	. 777	286.1	18.3	106.4	194.2
335	4 🛦	9	20.0] ۷	39.1	-2555+00	5116-02	.345E-01	893E-03	.296E-01	736E-03	153E+0C	.3376-02	953E-01	+204E-02	£22	.195	.785	297.4	17.7	107.9	197.6
335	44	17	19.4	4	53.2	+235E-01	327E-03	.764E-02	123E-03	348E-02	.211E-04	.562E-02	117E-03	411E-02	.585E-04	361	.269	.711	294.1	39.5	107.0	170.2
335	44	17	19	v į	59.2	+5P7E-01	749E-03	.209F-01	3436-03	679E-02	.380E-04	.253E-01	5078-03	.131E-02	7295-04	364	.177	.762	285.1	29.9	109.1	184.0
·			1						لسسا							·		- 1	-			

TABLE VIII Co	ncluded
---------------	---------

1].] Wind		,		j											.2	φς	ritical	points,	, deg
Miss	F1	Run speed,	Po1	mean'	A _O	A1	A2	(^A 3	A4	1 ^A 5	^۸ 6	A ₇	1 ^A 8	A ₉ .	NO.	NSD	к-	U.	C1 .	D	62.
		deg		ueg									···		pornes			max	*m1n	max	-min
124	4 R	1 19.1	н	19.0	+ 360E+01	146E+00	BO3E+00	+16E-01	+376F+00	177F-01	633F+00	.210E-01	207E+00	.493E-02	755	.192	.685	282.8	10.7	103.1	195.2
335	48	1 19.1	v I	10.0	+339E+01	136E+00	421E+00	.206E-01	223E+00	696F-02	535E+00	.170E-01	429E+00	.158E-01	749	210	.642	285.5	10.2	105.8	201.2
335	48	10 19.4	Ĥ.	34.7	.277E+00	- 602E-02	323E-01	.935E-03	102E+00	.228E-02	919E-01	.202E-02	495E-01	.101E-02	611	.221	.654	286.9	29.8	107.8	184.5
335	1 4 B	10 19.4	V	30.71	.383E+00	811E-02	538E-01	.158E-02	569E-01	.112E-02	113E+00	.234E-02	817E-01	.175E-02	621	.192	.676	287.3	24.0	103.6	108.1
335	4.9	17 19.6	H	58.0	.176E-01	190E-03	709F-02	.118E-03	.129E-01	257E-03	288E-01	.485E-03	307E-01	• 536E-03	563	.274	• 35 Z	256.3	346.3	33.6	126.8
335	48	17 19.6	v	5 A.O	.535E-01	627E-03	453E+02	.666E-04	.3578-01	665E-03	604E-01	.101E-02	383E-01	+660E-03	571	.190	.354	266.4	20.4	98.4	155.2
335	1 5	1 15.5	H	19.0	.322E+01	-,130E+00	615€+00	.318E-01	476F+00	.238E-01	500E+00	.169E-01	678E+00	.257E-01	785	.184	.837	293.5	23.3	111.9	207.1
335	5	1 15.5	v	10,0	.299E+01	119F+00	7215+00	.3616-01	493E+00	.247E-01	354E+00	.993E+02	-+656E+00	•242E-01	777	.181	*654	294.1	23.7	114.2	204.7
335	5	9 15.2	H	39.4	118f+00	242E-02	119E-01	.367E-03	280E-01	.543E+03	337E-01	.636E-03	325E-01	.681E-03	719	.250	.701	287.3	26.5	105.5	186.9
335	(5	9 15.2	V I	39.4	.154E+00	299E-02	419E-01	.110E-02	.871E-0Z	360E-03	672E-01	.132E-02	461E-01	.903E-03	717	.218	.717	287.1	21.6	107.4	192.8
335	5	17 15.1	н	58.5	.216E-01	318E-03	893F-03	.229E-04	1178-02	774E-05	•419E-02	915E-04	102E-01	.161E+03	583	.340	+ 63	286.7	34.2	107.8	179.6
375	5	17 15.1	v	58.5	.509E-01	654E-03	.1216-01	194E-03	816E-03	376E-04	.417E-02	139E-03	308E-01	.471E-03	594	.165	.791	289.1	28.4	110.8	191.0
335	5	25 13.9	н	9.Z	.941E+01	606E+00	133F+01	+134E+00	.104E+01	H52F-01	-542E-01		251E+00	2148-02	419	.120	• 0 Y Z	289.8	10.4	109.9	200.1
335	5	25 13.9	V	9.2	.H42E+01	523E+00	337E-01	9161-02	+11*E+01	942E-01	.539E-01	376E-01	- 414E+00		919	124	.07/	290.7	2.0	110.0	211.2
335	1 6	1 15.0	H	10.2	• 363E+01	1541+00			425E+00	44726-01	- 3055+00	1602-01	- 5775+00	1025-01	767	1.210	607	300 0	26.6	110.5	213.6
335	1 2	1 15.0	X	19.2	.3436+01	1446+00		+3/4E-01	- 3475-01	7776-01	- 4155-01	•130E-01	- 3145-01	. 6625-03	1.00	220	.721	203.4	14.0	113.2	101.7
337	12	0 15.0	5	20.1	+1350+00	- 3416-02	- 2386-01		- 4205-02	- 4935-04	- 1016+00	.2258-02		.824E=03	680	203	.763	291.1	26.5	111.2	195.8
335	1 2	12115 0	2	57 0	1665-01		- 3555-02	7216-04	2586-02	2125-04	650F-02	.975F-04	+- 599F-03	502E+05	622	.230	.753	293.2	40.4	112.1	185.5
335	1 2	13 15 0	5	57.01	5146-01		- 1055-01	.203E-03	-1635-01	+.332E-03	1915-01	.2631-03		-303E-03	621	142	.836	291.4	20.8	110.8	192.6
1 3 3 5		25 15.3	L L	6.0	105E+02	682E+00	-984E+00	114E+00	.883F+00	717F-01	458F+00	.197E-01	+138E+00	375E-01	350	142	.636	289.3	7.5	106.6	207.5
1 3 3 5	6	25 15.0	W.	9.0	-104E+02	678E+00	+111E+01	123E+00	551F-01	258E-01	.549E+00	744E-01	.681E+00	925E-01	352	.158	.578	303.1	12.6	110.9	214.3
352	l ő	1 12.2		11.4	121F+02	789E+00	9355+00	.707F-01	+981E+00	8336-01	170F+01	.144F+00	.462F+00	500F-01	676	156	.779	298.4	24.4	120.9	215.2
1 351	1 6	1 12.2	V I	11.4	-120E+02	798E+00	1498+01	-130E+00	278F+00	.317E-01	167E+01	.141E+00	+481E+00	556E-01	672	.170	.782	306.6	26.1	120.2	219.2
353	6	6 11.3	v I	67.3	-184F-01	241E-03	270E+02	.331E-04	779E-02	.683E-04	.888E-02	116E-03	115E-01	-123E-03	427	.245	.799	313.1	59.2	157.8	226.0
353		11 10.8	H I	19.71	+254E+01	109E+00	709F-01	.150E-02	.504E+00	291E-01	172E+00	.854E-02	.195E+00	157E-01	605	.208	.707	304.5	46.2	144.3	220 B
353	9	11 10.8	۷	10.7	.244F+01	103E+00	346E+00	.157E-01	.7938-01	7205-02	284E+00	.141E-01	655E-01	202E-02	616	.226	•688	304.1	45.5	143.1	219.8
353	9	16 10.3	H	39.7	.307E-01	628E-03	321F-03	.468E-04	186E-01	.347E-03	334E-02	.593E-04	6418-02	.659E-04	615	.416	.763	302.A	53.5	137.0	197.5
353	9	16 10.3	۷I	39.7	.5018-01	944E-03	210F-01	.556E-03	957F-02	.262E-04	.121E-01	348E-03	975E-02	.Z88E-04	630	.413	.719	303.3	50.0	139.0	205.6
353	10	1 5.4	H	19.9	•144E+01	6285-01	244E+00	•117€-01	157E+00	829E-02	208E+00	.919E-02	.139E+00	625E-02	1217	.316	•720	251.3	349.8	79.0	159.1
353	10	1 5.4	v [19.9	.140E+01	606E-01	2P3E+00	.136E-01	727E-01	.303E-02	221E+00	.951E-02	+15BE+00	730E-02	1207	.331	.713	255.2	374.7	83.7	162.4
353	10	11 5.4	н	10.3	150F+02	107F+01	880E+00	#21E-01	+132E+01	125E+00	-+157E+01	+145E+00	+106E+01	902E-01	667	.179		235.	329.2	65.0	151.9
353	10	11 5.4	V	10.3	140E+02	101E+01	~.771E+00	.642E-01	•198E+01	199F+00	1512+01	.141E+00	+156E+01	137E+00	677	.201		232.4	335.7	02.1	137.0
353	11	1 16.0	4	67.3	. A79E-03	.R17E-05	941+-03	.101E-04	3936-02		979E-02	.1342-03	05+E-02	.4475-04	1 . 0 .	1.330		202.1	13.4	01 1	122.2
353	11	1 16.0	V	67.3	.279E-01	287E-03	.138E-01	ZZOE-03	.161E-01	2812-03		.502E-03	113E-01	•173E-03	021	103	679	20201	2.3		100.1
373	11	0 1 2 9	81	14.3	• 3212 + 01	1272+00	- 1405403	+075-01	7116+00	- 1675-01	- 8446400	3765-01	- 4615400	2145-01	6.26	241	660	272.8	2.7	08.5	1 80.1
354	11	0 1 2 . 9	<u>.</u>	14.3	.3547401	- 2076-02	1425-01		- 7515-01	1495-02	8625-01	.1936-02		.4716-03	618	.251	.746	270.7	12.4	90.8	169.1
373	11		21	30.7	1505400	- 2955-02		1735-02		-195F+02	1006+00	2046-02	.4255-01	1085-02	620	.174		270.6	5.7	89.9	174.8
353	112	1 10.4	. I.	20.3	2675+01	101 E+00	380F+00	178F-01	.274F+00	132E-01	356E+00	-144F-01		-181F-01	1299	233		297.8	27.9	120.9	211.1
353	111	1 10.4	v I	20.3	249F+01	100F+00	451F+00	207E-01	102E+00	835E-02	280E+00	.102E-01	506E+00	.186E-01	1304	.205	.864	298.6	29.2	122.3	213.0
353	13	11 11.2	41	10.0	+125F+02	817E+00	.230E+00	3265-01	5406+00	.399E-01	388E+00	.165E-01	.372F+00	553E-01	637	.140	.PA5	117.2	194.1	24.1	283.3
353	13	11 11 2	v	10.0	.129E+02	844F+00	+190E+00	162E-01	493E+00	.4025-01	.830E-01	Z89E-01	.961E+00	-+112E+00	624	.137	.873	108.9	193.7	23.9	28F.6
353	113	16 11.7	V I	67.7	.296E-01	367E-03	25902	.486E-04	7408-02	.819E-04	146E-01	.202E-03	168E-01	+198E-03	492	.184	.913	305.2	44.7	129.9	209.2
353	13	20 12.0	н	40.=	.616E-01	131F-02	.487E-02	724E-04	141E-01	.266E-03	9508-02	.203E-03	3386-01	.735E-03	475	.209	.868	305.0	48.9	127.9	202.7
353	13	20 12.0	V	40.5	.868E-01	1606-02	.7495-02	135E-03	291E-02	168E-04	• 707E-02	275E-03	326E-01	•516E-03	478	.199	.839	305.0	40.1	126.0	210.7
353	14	1 14.3	H	67.1	211E-02	.514E-04	.706E-0Z	110E-03	804E-02	.119E-03	.310E-02	531E-04	268E-02	•389E-04	407	. 4 6 6	.270	267.4	5.0	103.4	162.11
253	14	1 14.3	V I	67.1	.244E-01	255E-03	.532E-01	788E-03	233E-01	.317F-03	297E-01	.392E-03	231E-01	•335E-03	639	• Z I 7	.804	277.07	1 3. 1		170.4
353	14	0 14+3		19.3	+ 376E+01	135E+00	-691F-01	370E-02	162E+00	.847E-C2		1721-02		• 277E=01	1 2.64	1.02	1	205 4	1 57.21	111.0	201.0
323	1.2	14.3		1943	+ J721+01	2216-00		2045-02	- 433E-01	0755-03	- 2076-01		- 6225-07	2175-01	261	194		296.3	37.1	112.7	1103.4
373	111			39.	1386400	- 2705-02	1285-02	- 2225-03		1686-03		.7125-03	3725-02	-6535-07	256	177	1.001	205.7	28.6	110.0	198.7
1 3 3 3	1.2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 H	10.1	1515402		- 8145400			-153E-02	850F+00	.7246-01		- 3225-01	629	1.154		267.2	336.01	55.A	162.9
1 353	15		C L	10.4	-1566402		2795+00	405E-01	524 F+00	426E-01	6495+00	571E-01	4276+00	- 3096-01	624	1.1.54	.863	258.9	329.1	39.5	149.2
353	18	11 2.5	41	20.0	1616401	687F+01	1975+00	963E-02	9146-01	-341E-02	279E-01	+-367E-07	406F+00	1816-01	1 394	187	.850	250.6	342.7	64.8	153.6
1 3 5 3	1 1 5 1	11 4.2	v I	20.0	-178F+01	767E-01	.799F-02	405E-03	481F+01	129F-02	+.113E+00	-345F-02	+439E+00	197F-01	386	.220	. 14	249.0	342.2	65.1	152.6
351	1 1 5	16 4.2	Ĥ.	40.1	.116F-01	262E-03	317E-02	.697E-04	596F-02	.129E-03	285E-02	.562E-04	.509E-02	120E-03	525	.448	.706	254.4	5.5	A4.1	146.7
351	15	16 4.2	V I	40.1	-192E-01	385E-03	152E-02	.251E-04	517E-02	.109E-03	623E-02	.123E-03	.251E-02	479E-04	603	.403	.627	255.0	356.2	A1.7	154.3
353	20	26 2.5	Ĥ L	38.9	.106E-01	252E-03	.166E-02	341E-04	979E-02	.241E-03	101E-02	.209E-04	128E-02	.300E-04	366	.471	.499	294.3	24.3	114.3	170.5
353	20	26 2.5	v []	38.9	.1498-01	3915-03	.1528-02	227E-04	135E-01	.342E-03	6126-03	.3296-05	191E-02	.480E-04	573	.407	.497	284.4	4.0	65.0	172.7
353	20	1 2.5	н	20.0	+148E+01	643E-01	.1545+00	754E-02	255E+00	.134E-01	369E+00	.160E-01	.926E-01	+.351E-02	1325	.232	+P24	257.P	344.0	77.4	171.1
353	20	1 2.5	V I	20.0	+158E+01	683E-01	+147E+00	708E-02	282E+00	.151E-01	395E+00	.173E-01	.613E-01	184E-02	1324	•22A	+P22	256.9	341.3	76.4	171+9
353	20	11 2.5	н [11.0	123E+02	873E+00	+188F+01	169E+00	188E+01	+162E+00	767E+00	+404E-01	.248E+00	539E-02	669	•144	. R99	256.3	148.1	73.2	161.7
353	20	11 2.5	¥ []	11.0	.130E+02	919E+00	.163E+01	146E+00	18PE+01	.164E+00	+.596E+00	.283E-01	.224E+00	132E-02	666	1.134	.001	253.6	1344.5	69.9	129.3
353	21	1 4.7	H	10.3	.137E+02	956E+00	.478E+01	+50E+00	553E+00	Z49E-01	•113E+01	132E+00	117E+00	•763E-02	612	+121 11-		280.6	1 27.00	140 4	100.0
353	21	1 4.7	×	10.3	137E+02	-+952E+00	+447E+01	-+19E+00	344E+00	.Z7HE-01	+1546+01	100E+00	ZH0E+00	•224E-01	010	+117		240.3	34.0	102.5	200.3
373	21	<u>'</u> <u>*</u> • <u>'</u>	21	10.0	.1/11+01			• 32 40 -01	.1526+00	- 1746 -02	+2301+00		+ +223E+00		622	243	1 784	270.3	350 1	87.7	187.1
353	21	1.1 2.1	11	19.0	+1/20+01	01	+/UE+00	1285-01	+ 3716+00	3776-01	- 2105-03		+107E+00	2755-04	420	385	1.512	206.2	50.0	113.6	1101.1
1 373	21	1:51 2.7	C		+015-0Z	- 1735-03	4345-02	- 0035-04		4805-04	1746-02	3515-04		1505-04	1	365	1.515	288.4	23.7	17.7	1180.01
1 3 2 3	1 < 4	1 1 6 1 7 1 /	· • •		• ····································		1	1-02426-04		1		1	1-41046-03	1 *********	1 213	1.240	1	1-0-04	,		

TABLE IX.- REGRESSION COEFFICIENTS OF NRCS VERSUS χ for the second-order model

•

$$(NRCS) = \sum_{n=0}^{2} A_n \cos n\chi$$

				Т									
142			WSPD.									Xmi	, deg
1111	SSFI	Kun	m/s	Į F		A _O	Α,	A	NO.	NSD	R ²		·
			117.3		aeg		1 1	2	points			1st	24
				+-	<u> </u>								24
23	CFCF	1	15.0	н	30.3	+10CE+0C	306F-02	414E-01	646	1.287	504	04.0	242.2
23	10 FC F	1	15.0	V	30.3	.133E+00	548E-02	5105-01	402	1 227			207.3
23	0 1	13	3.0	1 H	29.3	.316F-02	144E-02	2005-02	1 512	1	1.248	1 65.3	268.7
23	0 1	1	3.0	١v	27.3	279F-01	1125-01	5000 002	1 219		1354	105.0	198.8
123	0 1	5	1 3.0	1v	26.3	1205-01	- 10/5 -01		194	+ 561	•246	119.4	270.0
23	o ī	113	3.0	١v	20.3	F475-02		.0724-02	570	•774	+438	54.2	279.1
23	8 20	1.	A R	Ľ	121 0	1.476-02	C97E-03	• 333E-C2	404	.533	•4 CP	02.6	191.4
23	8 20	1 2		17	31.0	+190E-01	.505E-02	-436E-02	1748	.314	.377	106.9	253.2
23	P 27	15	5.0	Ľ	121.0	-2/3E-01	-287F-C2	. P84E-02	2088	.306	.379	93.1	263.9
23	A 27	1 12	1 2 0	15	131.0	• 500E=02	•211E-02		558	.243	.700	106.4	257.3
1 2 2	1 27		1 2.0	12	133.0	+38F-0Z	•230E-C2	-138F-02	613	.329	.636	116.8	270.0
23	0 27	1.5	1 4.6	1.	31.7	. PO 9F-02	•350E-02	•314F-C2	656	.216	.784	107.1	255.5
1 2 3	5 4	12	3.0	V	33.0	•°47F-02	.248F-02	•26CE-02	658	.169	.709	1103.1	255.6
152	21 2	1	23.6	1H	33.7	•670E-01	264E-01	.287E-01	623	.239	.744	73.0	280.0
28		8	123.6	н	34.4	+24E-01	676E-02	.232E-01	928	280	401	07 4	202 5
20		1	23.6	V I	33.7	.°57E+01	546F-01	.451E-01	319	343	.714	72.7	200 0
28	" 5	1 8	23.6	v	34.4	.P335-01	2735-01	.338F-C1	877	287	620		1200 0
28	8 6	1	13.5	н	35.9	•212F-C1	.566E-02	.1065-01	400	217	747	100 0	207.5
158	8 6	7	13.5	н	36.9	•130E-01	.26PE-02	688F-C2	25.8	140	• • • • •	100.0	200.2
28	8 6	1	13.5	v	35.0	.331E-C1	1065-02	1755-01	410	•104		97.00	263.7
28	8 6	7	13.5	۷	36.9	.194E-CT	-105E-02	8605-02	345	1 1 1 2 2	1.423	90.3	266.6
30	6 FCF	1	21.5	н	53.4	-262E-01	4015-02	1015-01	340	• 100	. 180	1 40.0	266.3
30	6 FCF	111	21	н	14.1	13305101	- 5715-02	.1016-01	225	•211	1.659	86.5	278.2
20	6 FCF	4	21.5	ч	62.5	1255-01			210	•281	.301	84.1	288.1
30	6 FCF	1 7	21.5	н	31.4	2445400	2057 07	5/4F-02	168	.218	•761	94.1	270.1
30	6 FCF.	114	21	μ	20,	4435.00	•200E-01	+103E+00	287	• 342	.428	94.1	268.5
120	6 FCF	1	21 6	v.	52 /	4205 00	3418-01	•199E+0C	205	.434	• 3 4 4	70.C	265.4
30	AFCE	111	21 5	Ň	1/ 1	•029E-C1	-•617E-02	•216E-01	214	•175	.680	P8.2	276.9
30	6 FCF	1	21 8	v.	1	• * * * * * * * * * * * *	:OPE+CO	+676E+00	221	•271	.293	70.8	281.4
30	S FCF	-	21 5		02.5	•379E-01	2815-02	.887F-C2	170	.184	.473	72.9	264.7
1 30	S ECE	114	21 5		31.4	• 32 9E + 00	304E-01	126E+00	289	.321	•432	P8.3	275.2
130		1.	4 1		24.1	+>66E+C0	11PE+00	•249E+00	200	.331	.531	78.P	272.6
1 30			2.41	н	20.0	•267E-C1	676F-04	.147F-01	428	.233	.384	89.0	269.1
1 3 3			1.1	2	28.4	·1866-01	•119E-02	•979E-C2	1034	+321	.587	94.1	270.7
		1 3	4.0	H	20.2	•133E+00	769F-02	.426F-01	285	.279	.428	92.A	279.1
1.11			4.6	۲ļ	40.6	•177E-02	436E-03	•936E-C3	116	.133	.907	95.6	262.4
31	13	111	4.6	H	50.3	.307E-03	.257E-03	.236E-03	269	235	.896	104.2	253.0
1 31 9		1 31	4.6	v	50.3	•011E-01	P14F-02	.264E-01	245	203	360	01.1	280.3
1 310	13	1 . 1	4.6	۷ļ	40.6	.2795-02	1978-05	-1655-02	121	122	918	20.1	240 4
1 31 2	13		4.6	v	50.3	-112F-C2	.329F-03	.769F-03	306	.191	.886	05.5	263.3
1 21	14	1 1	2.2	41	16.0	•327E+CG	1608-01	•384E-01	401	122	.364	80.0	273.2
	14	7	5.5	н	30.0	.202F-C2	•96E-03	.F10F-03	352	182	865	108.1	252.6
		12	5.5	н	57.2	+145E-03	•610E-04	.258E-C4	214	. 331	473	131.7	~~~~
312	14	1	5.5	٧l	18.9	.304E+CO	167E-01	·333F-01	407	.113	3.92	92 1	274 4
315	14	7	5.5	۷I	39.0	.297F-02	.808E-03	.180F-02	347	.205	762	04 3	262 6
316	14	12	5.5	٧l	67.2	•783E-03	.P12E-04	.416F-03	217	.153	. 974		203.4
316	16	4	8.6	нļ	18.5	.470F+00	646F-01	.664E-01	383	205	1 44		27.2 • 3
318	16	9	P.2	нļ	30.4	.504E-C2	.223F-02	.260F-02	366	. 284	7 20	00.9	201.4
318	16	14	P.C	H	66.2	.267E-03	·154F-03	-163E-03	214	. 272	742	102 6	22764
31	1.16	4	P. 6	¥	18.5	•411E+0C	63?F-C1	.646E-01	380	. 116	1.16	46.51	575 * 1
318	16	9	P.2	۷ſ	30.4	.915E-02	.150F-02	.565F-02	340	. 271	722	01.0	244 4
318	16	14	8.9	۷	54.39	.287E-02	·1616-03	.223F-02	272	.235	851	00.4	268 6
31	17	1	13.5	4	10.0	+555F+00	304E-01	-143E+CO	366	.129	. 4 6 8	84 4	271 0
1 21 8	17	.!!	12.8	11	40.P	.141E-01	.526E-02	.761F-02	313	.154	800	100.4	260.4
1 218	1 17	12	12.3	11	68.1	•G77E-03	.681F-03	.462E-03	2*6	.168	014	112.7	248.7
318	17	1	13.5	1	1¢.8	-5175+00	516F-01	.149F+00	263	.107	. 811	83.6	272 7
18	1 17	P	12+6 1	1	40.P	•222E-C1	.398E-02	.154F-01	320	124	1.011	03 7	266 3
316	17	12	12.3	1	68.1	.631E-02	.151F-02	3755-02	258	130	.013	05.2	260.5
318	18	2]	12.0	비	19.6	.533E+00	251E-01	.542F-01	355	104	1 20	P2 4	275.0
318	1 1 9	6	11.3	4 ·	40.4	.9415-02	.386E-02	444F-02	343	205	. 8 2 2	60 6	268 2
316	18	11 1	10.5 F	+ þ	55.5	.107E-02	.376E-03	.657E-03	105	184	017		
316	18	_ 2] I	12.0 1	1	19.6	.456E+CO	3COF-01	-564E-01	354	. 210	1 4 4	77.0	207.3
318	1 P	6 1	11.3 \	1	40.4	•175E-01	.463F-02	1275-01	344	201	077	02 6	207.2
318	18	11 [1	LO.5 V	1	55.5	. 6 6 7E-C2	.45FE-03	484F-02	180	.136	026	-3.7 A	270 2
318	19	10	7.5	<u>:[</u> ا	19.7	.411E+CO -	479F-01	827F-01	370	. 744	.201	05 0	100 0
318	19	13	7.5 +	1	0.0	-F18E-02	.1665-02	255F-02	255	102	. 8 34	77.02	260 0
316	19	10	7.5 V	1	¢.7	.383F+00 -	.642F-01	-707E-01	371	104			0.00
318	19	13	7.5 V	1	0.9	.105E-01	927F-03	639F-02	247	7410	• 7 7 •	5.0.7	247.9
316	19	17	7.5 1	1	7.1	.257E-02	-389E-03	202F-02	570	107	· 6 / 9	41.4	0.00
31 P	24	1	9.5 H	13	80.3 I	.3P6E-01	.F09F-02	12PE-01	567	162	• n • 4	26.5	(° / • 3
318	24	1	0.5 V		C.3	-591E-01	1025-01	2525-01	271	• 103	• / 42	47.1	() • • • • • • •
335	3	5 1	4.2 H	4	9.3	752F-02	.0676-01	• 275F ~ U1	242	-126	.815	C4.5 2	65.0
335	3	11	4.2 H	12	6.4	9305-01	7125-02	• 31 4E -02	3/6	•177	.749	93.6	264.8
335	3	5 1	4.210		P 3	2105-01	•1130-02	• 4 4 1 2 - 0 1	467	•177	. 810	01.4	267.3
335		1 1	4.2 V	12	9.4	116F400	- 583E-03	• 4/2E=CZ	383	.]24	· e 73	80.1 2	70.0
	<u> </u>	1^		ľ			• Je se =02	•COL6=01	•23	•163	.835	88.5 3	271.0
											·		

TABLE IX.- Concluded

<u> </u>		— _ _		-1-	г—	T		·					X _{min} ,	deg
Miss	F1	Run	WSPD m/s	• P	θ, deg		A ₀	A ₁	A2	NO. points	NSD	R ²	1st	2d
226		22	10.0	- u	0.	, .	281E+01	278E+00	.420E+00	322	.103	.451	e1.8 2	1.0
335	44	1	10.1	P H	15.	9	844E+CC	413F-03	.320F+00	715	.133	.797	90.0 2	70.1
335	44	9	20.0	е (н	30.	1 .	3175-01	.233E-02	.159E-01	622	•211	.706	114.4	46.1
335	4.6	17	19.	8 H	58.	? ·	443E-02	.230E-02	-347F+00	317	.101	.446	78.1 2	83.5
335	4 4 4	22	19.	ρ Iv	18.	έΙ:	P34E+00	297E-C1	.321F+00	717	.131	.807	88.8 2	271.5
335	44	à	20.	c v	30.	1 .	552E-C1	.113E-03	.2675-01	622	192	.760	90.3	270.2
335	44	17	19.	۶ V	58.	? .	1515-01	.464E-02	.518E-C2	368	.178	• / 5 3	87.9	272.4
335	4P	1	19.	1 H	19.	1.	448E-01	4078-01	.166F-01	611	.223	.703	102.0	257.6
23:	49	10	19.	214	58	01	+58E-02	.204E-02	.792F-03	563	.282	.413	90.0	232.5
335	4P	1	10.	i v	10.	1	603E+C0	94°E-01	.248E+00	740	.212	.539	CA.7	260.8
335	48	10	19.	4 V	38.	7 '	1775-01	.150F-01 286F-02	-185E-02	571	.192	.357	114.0	248.8
335	4 P	11	15.	ΞĤ	119.	9 3	.641E+00	.107F-01	.235E+CC	785	.193	.642	89.8	268.6
335	Ē	9	15.	2 4	30.	4	228E-01	.703E-02	.103F-C1	719	.252	.699	99.2	259.6
335	5	17	15.	1 H	50.	5	.301E-02	.168E-02	-141E-02	410	. 120	.350	BOLE	279.3
335	1 2	25	15.	C H	1 9.	2	.283E+C1		.2358+00	777	191	.655	69.6	270.6
337	5		15	2 1	130	4	.395E-01	.569F-02	.185F-01	717	.221	.706	94.5	265.7
335	5	17	15.	1 1	58.	5	124E-C1	.310E-02	.513E-02	504	170	.789	76.9	283.1
335	5	25	15.	CV	1. 2.	2	.360E+01	- 3316+00	-365E+00	748	229	.517	P8.7	271.3
1335	1 2		115.		130	lí	205E-01	6945-02	BEZE-C2	680	.233	-72R	101.5	258.3
335	6	13	15.	0 +	1 57.	8	.300E-02	.150F-02	.125E-02	622	.731	.105	78.2	278.2
335	l e	25	15.			· ;	+435E+C1	43PE-01	184F+CC	757	227	.437	85.7	272.7
335			115		130	1	.377E-01	.654F-02	-174E-01	680	.206	.748	95.4	264.7
335	e	13	15.	0	1 57	. e	.125E-01	.317E-02	.531F-02	671	.143	1.056	69.5	273.2
335	e e	25	15	• 0	1.5	· ^	.431E+01		124E+CC	676	159	.031	P6.C	276.8
353			110	- C '	110	.7	.402E+C0	.328E-01	.112F+00	605	.265	.374	101.7	276.3
353	6	16	10	3 1	4 39	.7		.483E-02	-382E-02	615	•446	.731	110.7	272.6
353	9	1	12	• 2	V 11	•4	•290E+01	686E-01	-205E-02	427	.330	.622	106.1	272.9
353		11			v 1 0	.7	.406E+00	.309E-01	.104E+00	616	.261	.347	101.4	275.7
353	¢	1	ic	.3	v 30	.7	.128E-C1	•757E-02	.844F-02	630	.472	.630	68.5	267.8
353	10	1.3	L 5	•4	H 19	• ?]	.193E+CC	.113E-01	.148F+00	667	.188	.020	93.5	276.1
353			1 5		v 119		190E+CC	.153E-01	.341E-01	1207	.338	•145	99.5	267.2
353	1 10	1	1 5	.4	viic	.3	.360E+01	.120E+00	.164F+CC	677	•211	+035		263.2
353	11		1 16	•0	H 67	• 3	.144E-C2	.110E-02	.POFE-03	625	.267	.363	89.0	271.9
353		: I .	5 15	• 9	H 19 H 20	• 3	.228E-01		.977F-C2	618	.251	.700	101.7	258.4
353		1.	1 14	. 0	V 67	.3	.P62F-0	.283F-02	.434E-02	154	.197	.82	5 101.5	263.0
35	3 11		6 15	• •	V 19	• 3	.761F+0	0 565F-01	.2368+00	620	.173	.792	95.1	264.2
35		1	1 1 5	•7	V 39 H 20	.7	.412E+0	128F-01	.122F+00	1299	.237	.44	90.1	273.3
35			011	.2	H 10	.c	.4265+0	1º46 -01	.291E+0C	637	•143	1.10	L 76.9	166.1
35	3 13	3 2	0 17	••	H 40		.852E-C	2 .386F-02	4258-02	1304	208	.56	89.6	274.4
35	3 1		1 10	. 4	V 20		.439E+0	1 - 934E-01	.262F+00	624	.139	.0*	9 84.9	179.7
35	3 1	1	5 11	.7	V 6	.7	.470F-0	2 .192E-02	.3515-02	492	.201	.89	5 99.5 1 CF.1	265.7
35	3 1	3 2	0 12	2.0	V 40	1.5	.220E-0	3 .410E-02	125E-01	407	485	.21	100.6	276.7
35	$\frac{3}{3}$		1 14	4.3	H 1	/+1 9.9	661E+0	01105-01	.116E+00	640	.18	.31	4 88.4	271.0
35	3 1	4 1	i i	4.3	H 3	9.4	.158F-0	1 .580F-0	2 .697F-02	251	. 19	[•P]	0 100.8 4 09.2	260.9
35	2 1	4	1 14	4.2	V 5	7.1	.73CE-0	Z .713E-0	2 .303E-02	656	.189	5 .3c	2 84.6	271.5
35	3 1	4 1		4.3		₩.5 C.4	.716F-0	1 .574E-0	2 .154F-01	254	.18	.70	4 93.1	263.0
35	3 i	÷۱'	i	4.2	+ í	c.4	.40CE+0	1 .1375-0	1 .11CE+00	620	160	01	5 02.1	263.0
35	3 1		1	4.2	비민	0.0	-23PE+0	C .199E-0	3 .636F-01	52	46	65	3 111.1	252.3
35	3 1	\$ 1		4.2 4.2		0.1	-414E+0	1 .5335-0	1 .956F-01	624	1.15	.01	3 70.2	250.3
35	3 1	5 3	ii	4.2	v 2	0.0	-257E+0	C .205E-0	1 .611E-CI	380	.22	39	3 93.2	263.0
35	2 1	5 1	16	4.2	V 4	C•1	.260E-0	2 .919E-0	3 .1445-07	00 00 16	47	4 .48	90.0	236.2
35	3 2		25	2.5		C.O	197E+C	01338-0	1 .537F-0	1 132	5 .23	9 .40	5 84.	2 273.3
3	2 2	č i :	11	2.5	H 1	1.0	.2725+0	1 .PRCE-C	1 .373E+00	66	2 1 • 1 5	4 • 30	4 91.	5 248.2
35	3 2	c 1	26	2.5	V 3	P.5	159F-0	2 .433E-0	3 .464E-0	1 <u>7</u> 7 1 1 7 2	8 23	4 4	1 84.	275.0
3	2 7	0		2.5		C.0	+214t+0 +285E+0	1 .710F-0	1 .352E+0	0 6	6 .14	6 .2	0 90.	9 265.7
3	53 2	ñ [-i	4.7	H 1	¢•3	.3P6F+1	.317E+0	0 .2315+0	0 61	2 .] 3	2	82 107.	9 274.7
3	3 3	21	.7	4.7		9.6	.201E+	201784F-0	3 .172F-0	3 42	9 .40	3 .4	90 114.	7 244.9
3	53 2		12	4.7		0.3	.391E+	.2978+0	0 .173E+C	c 61	6 .12	8 .1	PP 112.	7 0.0
3	53 2	1	7	4.7	v i	9.6	•215E+	00P53E-C	2 .146E-0] 62] 67	2 .25	4	70 95-	3 252.2
3	53 2	21	12	4.7	' V 3	30.4	•122E-	CZ .339E-0		3 37	• • • • •	<u> </u>		

θ, Pol deg		Wind dir or	Во	B ₁	R ²	Wind speed, m/s		NRCS, dB		No.	No.			
		χ, deg				Low	High	Low	High	points	U > D	Comments		
10	н	U D 90	6.728 5.673 5.775	-0.0346 .1001 0083	-0.1729 .3770 0459	2,5	21.5	5.41 5.97 4.83	7.68 8.94 6.34	10	3	U < D for speeds >5.4 m/s		
	v	79.6 U D 90 88.4	(a) 6.875 5.811 6.004 (a)	(a) 0584 .0734 0345 (a)	(a) 2229 .2555 1784 (a)			4.80 5.01 5.74 4.62	6.34 7.95 8.94 6.52	10	3	U < D for speeds >5.4 m/s		
20	н	U D 90 87.8	-11.756 -11.549 -12.697 (a)	0.865 .863 .750	0.9258 .9240 .9232	2.5	19,1	-7.41 -7.04 -10.00	29 29 -3.19	18	14			
	v	U D 90 86.2	-12.082 -11.946 -12.801 (a)	.875 .900 .750 (a)	.8773 .8876 .8658 (a)			-10.00 -9.30 -8.68 -11.50 -11.50	-3.2 406 142 -2.94 -2.94	18	14			
30	н	U D 90	-26.225	1.501	0.911	3.0	22.5	-18.7 -19.5	-3.14 -2.71	9	6			
	v	U D 90 C	-23.511 -23.616 -26.123 -27.869 (a)	1.371 1.346 1.593 1.327 (a)	.904 .886 .913 .887 (a)			-21.5 -17.1 -17.9 -19.8 -20.0	-6.89 -2.63 -1.32 -5.92 -6.0	9	3			
30	н	U D 90	-26.205 -28.247 -27.490	1.494 1.621 1.233	0.995 .971 .989	3.0	15.0	-18.7 -19.5 -21.5	-8.45 -8.27 -12.2	5	4	Miss 306 and 288 data removed		
	v	U D 90 C	(a) -24.104 -25.896 -25.789 (a)	(a) 1.405 1.558 1.180 (a)	(a) •994 •990 •977 (a)			-21.5 -17.1 -17.9 -19.8 -20.0	-12.2 -2.63 -7.10 -10.8 -10.8	5	3			
40	н	U D 90	-39.079 -44.687 -44.727	2.034 2.364 2.062	0.9600 .9671 .9634	2,5	20.0	-30.3 -34.2 -34.2	-11.8 -13.9 -16.2	18	18			
	v	U D 90 95.1	-36.744 -36.744 -38.759 -41.557 -41.849	2.036 2.146 1.988 2.004	.9656 .9600 .9628 .9642 .9637			-35.1 -27.7 -29.5 -30.9 -31.1	-16.4 -9.9 -11.2 -14.2 -14.4	18	18			
	a _{Not}		- <u> </u>		L									

TABLE X.- REGRESSION OF UPWIND, DOWNWIND, AND CROSSWIND NRCS VERSUS 10 LOG (WIND SPEED) FROM CORRECTED CIRCLE LINES

 $^{\rm a}{\rm Not}$ computed because NRCS within 0.1 dB of value at 90°.

TABLE	X	Conc	luded
-------	---	------	-------

θ, Pol		Wind dir	Bo	В,	R ²	Wind speed, m/s		NRCS, dB		No.	No. cases	Comments
đeg	g χ, deg	or χ, deg	U	'		Low	High	Low	High	Pornes	U > D	
50	н	U D	-47.308 -57.193	2.444 3.259	0.9926 .9933	4.6	21.5	-30.8 -35.2	-13.9 -12.7	3	1	
ļ		90	-64.855	3.564	.9993	1 l		-41.1	-17.0	1		
		94.3	-70.412	3.998	.99999			-43.9	-10.3	3	2	
1	V V		-42.197	2.304	.9900			-28.0	-9.6		ł i	
	1		-55.726	3.170	.9979			-34.5	-12.9			
		90.3	-56.332	3.218	.9982			-34.8	-12.9			
50	н	U	-45.016	2.145	1.0	4.6	14.2	-30.8	-20.3	2	0	Miss 306 data removed
		D	-54.290	2.880				-35.2	-21.1			
		90	-63,845	3.432				-41.1	-24.3			
	.,	100.2	-10.300	2.165				-26.4	-15.8	2	1	
	l v		-44.653	2.513				-28.0	-15.7			
1		90	-54.131	2.962				-34.5	-20.0		1	
		92.8	-54.837	3.023				-34.8	-20.0	<u> </u>		
60	н	U	-63.826	3.431	0.8445	15.0	21.5	-23.5	-16.3	4	4	
1	1	D	-84.115	4.853	.7914			-26.6	-10.3		1	
1		90	-68.504	3.385	.9097		1	-20.5	-22.1	4	3	
1		104.5	-72.891	3.095	.8275	1		-17.5	-12.6		-	
	^v		-57.120	3.212	.7580		İ	-19.1	-12.0			
1]	90	-64.292	3.581	.8100			-21.9	-14.4			
		96.2	-65.096	3.635	.8040			-22.1	-14.4			
60	н	U	-37,606	1.227	0.9305	15.0	19.8	-23.5	-21.7	3	3	Miss 306 data removed
		D	-38.393	1.010	.9925		1	-26.6	-25.3			
		90	-49.673	1.802	.9980	1	ļ	-28.5	-20.3		-	4
		109.4	-50,336	1./99	9622			-17.5	-16.5	3	3	
1	V V		-23.004	.382	.8763			-19.1	-18.5	-		1
		00	-32.705	.926	.9909			-21.9	-20.7			
	ł	100.2	-32,380	.886	.9755			-22.1	-20.9			
70	н	U	-55.478	2.497	0.9406	5.5	16.0	-36.7	-26.2	5	5	
		D	-54.427	2.085	.8420			-39.5	-29.2		1	
1		90	-54.826	1.766	.8078		.	-41.1	-33.0			
		106.6	-52.826	1.569	.7708			-41.6	-19.0	8	6	
1	V V		-44.074	2,194	-9297			-30.0	-18.8	l	Ĭ	
			-40.294	2,339	.9245	i l	1	-34.7	-24.2			
1		93.5	-52.338	2.300	.9102			-34.8	-24.4			

Figure 1.- Block diagram of scatterometer.

STRAIGHT LEVEL LINES

Figure 2.- Flight line (course) and resulting ocean signature scenario for RADSCAT flights.

Figure 3.- Data processing flowchart for straight level flight line analysis.

(a) Upwind; horizontal polarization.

Figure 4.- Linear regression of RADSCAT NRCS versus log (Wind speed), with SASS I model function line (dashed) for comparison.

Figure 4. - Continued.

Figure 4.- Continued.

(e) Crosswind; horizontal polarization.

Figure 4. - Continued.

Figure 4.- Concluded.

STD. ERR.=.0420, ERR. NSD.=.0410, R**2=.6736, B0=17432488 x 10⁻⁵, B1=-51514547 x 10⁻⁸

(a) $\theta = 0^{\circ}$.

Figure 5.- Regression of NRCS versus wind speed, with SASS I model function line (dashed) for comparison. Downwind; horizontal polarization.

STD. ERR.=.0451, ERR. NSD.=.0441, R**2=.1740, B0=58364723 x 10-7, B1=-8390342 x 10-8

(b) $\theta = 10^{\circ}$.

Figure 5.- Continued.

STD. ERR.=.0315, ERR. NSD.=.0308, R**2=.9073, B0=90680519 x 10-10, B1=-30018705 x 10-2*, B2=44505576 x 10-11

Figure 5.- Continued.

(e) $\theta = 40^{\circ}$.

Figure 5.- Continued.

(f) $\theta = 50^{\circ}$.

Figure 5.- Continued.

Figure 5.- Concluded.

Figure 6.- Data processing flowchart for circle flight line analyses.

Figure 7.- Ninth-order regression fit of NRCS versus azimuth for typical RADSCAT circle flight line. Mission 335, flight 5; $\theta = 39^\circ$; horizontal polarization.

Figure 8.- Rate of change of NRCS with incidence angle $d(NRCS)/d\theta$ versus azimuth for ninth-order regression fit of typical RADSCAT circle flight line. Mission 335, flight 5; $\theta = 39^{\circ}$; horizontal polarization.

(a) Horizontal polarization.

Figure 9.- Second-order regression fit of NRCS versus azimuth relative to upwind for typical RADSCAT circle flight line. Mission 335, flight 5.

Figure 9.- Concluded.

(a) Horizontal polarization.

Figure 10.- Second-order regression fit of NRCS versus azimuth relative to upwind for all RADSCAT circle flight lines at $\theta = 10^{\circ}$, with SASS I regression lines (dashed) for comparison.

(a) Horizontal polarization.

Figure 11.- Second-order regression fit of NRCS versus azimuth relative to upwind for all RADSCAT circle flights at $\theta = 20^{\circ}$, with SASS I regression lines (dashed) for comparison.

Figure 11.- Concluded.

(a) Horizontal polarization.

Figure 12.- Second-order regression fit of NRCS versus azimuth relative to upwind for all RADSCAT circle flights at θ = 30°, with SASS I regression lines (dashed) for comparison.

(b) Vertical polarization.

Figure 12.- Concluded.

(a) Horizontal polarization.

Figure 13.- Second-order regression fit of NRCS versus azimuth relative to upwind for all RADSCAT circle flights at $\theta = 40^{\circ}$, with SASS I regression lines (dashed) for comparison.

Figure 13.- Concluded.

(a) Horizontal polarization

Figure 14.- Second-order regression fit of NRCS versus azimuth relative to upwind for all RADSCAT circle flights at $\theta = 50^{\circ}$, with SASS I regression lines (dashed) for comparison.

(b) Vertical polarization.

Figure 14.- Concluded.

(a) Horizontal polarization.

Figure 15.- Second-order regression fit of NRCS versus azimuth relative to upwind for all RADSCAT circle flights at $\theta = 60^{\circ}$, with SASS I regression lines (dashed) for comparison.

Figure 15.- Concluded.

(a) Horizontal polarization.

Figure 16.- Second-order regression fit of NRCS versus azimuth relative to upwind for all RADSCAT circle flights at θ = 70°, with SASS I regression lines (dashed) for comparison.

Figure 17.- Second-order regression coefficient A₀ versus wind speed (log-log scale) for horizontal polarization.

Figure 18.- Second-order regression coefficient A₀ versus wind speed (log-log scale) for vertical polarization.

Figure 19.- Second-order regression coefficient A₂ versus wind speed (log-log scale) for horizontal polarization.

Figure 20.- Second-order regression coefficient A₂ versus wind speed (log-log scale) for vertical polarization.

353 14

14.3

3.2979E-3

(a) $\theta = 10^{\circ}$.

Figure 21.- Second-order regression coefficient A₁ versus log (Wind speed) for horizontal polarization.

(b) $\theta = 20^{\circ}$.

Figure 21. - Continued.

(d) $\theta = 40^{\circ}$.

Figure 21. - Continued.

.

134

.

Figure 21. - Continued.

.

(f) $\theta = 60^{\circ}$.

Figure 21. - Continued.

Figure 21.- Concluded.

Figure 22.- Second-order regression coefficient A, versus log (Wind speed) for vertical polarization.

. .

Figure 22.- Continued.

Figure 22.- Continued.

Figure 22.- Continued.

Figure 22.- Continued.

Figure 22.- Continued.

-

(g) $\theta = 70^{\circ}$.

Figure 22.- Concluded.

.

,

, .

1. Reck No. 2. Government Accession No. 3. Recipient's Catalog No. NASA TWH=85646 2. Government Accession No. 3. Recipient's Catalog No. 4. This and Substite F. Report Dass January 1994 5. PELOST MEASUREMENT AND ANALYSIS OF AAFE RADSCAT WIND 5. Recipient's Catalog No. 5. Petforming Organization Code 146-40-05-05 7. Author(s) L-15651 L-15651 19. Petforming Organization Report No. L-15651 10. Work Unit No. 10. Work Unit No. 12. Scontoring Agency Name and Address 11. Type of Report and Pariod Covered 12. Scontoring Agency Name and Address 11. Type of Report and Pariod Covered 12. Scontoring Agency Name and Address 11. Type of Report and Pariod Covered 12. Scontoring Agency Name and Address 11. Type of Report and Pariod Covered 12. Scontoring Agency Name and Address 11. Type of Report and Pariod Covered 13. Supplementary Nots 13. Type of Report and Pariod Covered 14. Spontoring Agency Case 13. Type of Report and Pariod Covered 13. Standity Of Desizes Satellite Television Corporation, Princeton Junction, New Jersey 13. Durbatice Satellite Television Corporation, Princeton Junction, New Jersey 14. Spontoring Agency made its first successful						
4. The and Subults 5. Report Date FLIGHT MEASUREMENT AND ANALYSIS OF AAFE RADSCAT WIND 5. Report Date SPEED SIGNATURE OF THE OCEAN 5. Performing Organization Code 1. Author(1) 1. Author(1) 8. Performing Organization Report No. Philip R. Schaffner, and John L. Mitchell 10. Work Unit No. 9. Performing Organization Name and Address 11. Contract or Grant No. NASA Langley Research Center 11. Contract or Grant No. Hampton, VA 23665 13. Type of Report and Period Covered Type C. Schroeder: Langley Research Center, Hampton, Virginia. 14. Spontaring Agency Cade 12. Spontaring Agency Name and Address 13. Type of Report and Period Covered Type C. Schroeder: Langley Research Center, Hampton, Virginia. 14. Spontaring Agency Cade 13. Supplementary Notes 13. Type of Report and Period Covered Total Memorandum 14. Spontaring Agency Cade 14. About 10 years ago, the Advanced Aerospace Flight Experiment Radiometer Scatterometr (AAFE RADSCAT) made its first successful measurements was developed as a research to to to evaluate the use of aircrowave frequency remote sensors (particulary radars) to provide wind speed information at the ocean surface. The AAFF RADSCAT was to provide data base of ocean normalized radar cross section (NCCS) measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT was	1. Report No. NASA TM-85646	2. Government Acces	sion No.	, 3. Rec	ipient's Catalog No.	
SPEED SIGNATURE OF THE OCEAN 6. Performing Organization Code 1 Author(3) Like4-00-05-05 1 Author(3) E. Performing Organization Report No. Lipte C. Schroeder, W. Linwood Jones, II. Contract or Grant No. Philip R. Schaffner, and John L. Mitchell 10. Work Unit No. 2. Performing Organization Name and Address 11. Contract or Grant No. NASA Langley Research Center 11. Contract or Grant No. Hampton, VA 23665 13. Type of Report and Period Covered 72 Scensoring Agency Name and Address 13. Type of Report and Period Covered National Acronautics and Space Administration 14. Spennering Agency Code 15. Supplementary Nots: Lyle C. Schroeder: Langley Research Center, Hampton, Virginia. 16. Abstract Mitchell: Kentron International, Inc., Hampton, Virginia. 16. Abstract National Actional first successful measurements of ocean radar scattering crossection from a NASA C-130 aircraft. This instrument was developed as research to provide wind speed information at the ocean surface. The AAFR RADSCAT helped establish the feasibility of the satellite scatterometer for measurements as a function of surface wind vector at 13.9 GRs. NRCS measurements over a wide parametric range of incidence angles, azinuth angles, and winds wore obtained in a series of RADSCAT was to provide from 26 of these flights during which the quality of the sensor and the surface wind measurements were felt to be understood. This data base wa	4. Title and Subtitle FLIGHT MEASUREMENT AND	RADSCAT W	5. Rep JIND Ja	ort Date nuary 1984		
7. Autordii B. Performing Organization Report No. 1. Lybe C. Schroeder, W. Linwood Jones, Philip R. Schaffner, and John L. Mitchell B. Performing Organization Name and Address NASA Langley Research Center Hampton, VA 23665 10. Work Unit No. 12. Sponsoring Agency Nume and Address 11. Contract or Grant No. National Aeronautics and Space Administration Washington, DC 20546 11. Contract or Grant No. 15. Supplementary Notes Lyle C. Schroeder: Langley Research Center, Hampton, Virginia. 14. Sponsoring Agency Code 15. Supplementary Notes Lyle C. Schroeder: Research Triangle Institute, Mampton, Virginia. 14. Sponsoring Agency Code 16. Abutrat About 10 years aqo, the Advanced Aerospace Flight Experiment Radiometer Scatterometr. (AAFF RADSCAT) made its first successful neasurements of ocean radar scattering cross section from a NASA C-130 altercat. This instrument was devoloped as a research to to evaluate the use of microwave frequency remote sensors (particularly radars) to provide wind speed information at the ocean surface. The AAFE RADSCAT Was to provide data base of ocean normalized radar cross section (NRCS) measurements as a function of surface wind vector at 13.9 GHz. NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT alter provide wind speed information, those used for inversion of the SARD-A state. If we dischere Kband radar signature and ocean surface wind vector. The models developed therefrom are compared with those used for inversion of the series a function of the SARD-Ta state. If we wind sensor Radar cross section	SPEED SIGNATURE OF THE OCEAN			6. Perf 14	orming Organization Code 6–40–05–05	
Philip R. Schaffner, and Jonn L. Mitchell 10. Work Unit No. 9. Performing Organization Name and Address 11. Contract or Grant No. NSAS Langley Research Center Hampton, VA 23665 11. Contract or Grant No. 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Technical Memorandum National Aeronautics and Space Administration Washington, DC 20546 13. Type of Report and Period Covered Technical Memorandum 14. Sponsoring Agency Name and Address 14. Sponsoring Agency Code 15. Supplementary Notes Lyle C. Schroeder: Langley Research Center, Hampton, Virginia. 14. Sponsoring Agency Code 14. Sponsoring Agency Code 15. Mutchell: Kentron International, Inc., Hampton, Virginia. 14. Sponsoring Agency Code 16. Abstract About 10 years ago, the Advanced Aerospace Flight Experiment Radiometer Scatterometric (AAFE RADSCAT) made its first successful measurements of ocean radar scattering crossection from a NASA C-130 aircraft. This instrument was developed as a research to to evaluate the use of microwave frequency remotes sensors (particularly radars) to provide wind speed information at the ocean surface. The APER RADSCAT halped estabilish the feastbility of the satellite scatterometer for measuring both wind speed adar cross section (NRCS) measurements as a function of surface wind wector at 13.9 CHz. NRCS measurements or a wide pereative radie as a research to incidence angles, azimuth angles, and winds wore obtained in a series of RADSCAT has de to measurements as function measuremenents were feit to be understood. This data b	7. Author(s) Lyle C. Schroeder, W. I		8. Perf L-	orming Organization Report No. 15651		
9. Ferring Organization have and Address NASA Langley Research Center Hampton, VA 23665 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, DC 20546 15. Supplementary Notes Lyle C. Schroeder: Langley Research Center, Hampton, Virginia. W. Linwood Jones: Satellite Television Corporation, Princeton Junction, New Jersey Philip R. Schaffner: Research Triangle Institute, Hampton, Virginia. John L. Mitchell: Kentron International, Inc., Hampton, Virginia. About 10 years ago, the Advanced Aerospace Flight Experiment Radiometer Scatterometr (AAFE RADSCAT) made its first successful measurements of ocean radar scattering crossection from a NASA C-130 aircraft. This instrument was developed as a research tor to evaluate the use of microwave frequency remote sensors (particularly radars) to provide wind speed information at the ocean surface. The AAFE RADSCAT helped establish the feasibility of the satellite scatterometer for measuring both wind speed an direction. Probably the most important function of the AAFE RADSCAT was to provide data base of ocean normalized radar cross section (MRCS) measurements as a function of surface wind vector at 13.9 GHz. NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT was to provide data base of ocean normalized radar cross section (SCS) measurements as a function of surface wind vector at 13.9 GHz. NRCS measurements were a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT was to	Philip R. Schaffner, an		10. Wor	k Unit No.		
NASA Langley Research Center 11. Contract or Grant No. Hampton, VA 23665 13. Type of Report and Period Covered Technical Aeronautics and Space Administration 13. Type of Report and Period Covered National Aeronautics and Space Administration 14. Sponsoring Agency Notes Lyle C. Schroeder: Langley Research Center, Hampton, Virginia. W. Linwood Jones: Satellite Television Corporation, Princeton Junction, New Jersey Phillp R. Schaffner: Research Triangle Institute, Hampton, Virginia. John L. Mitchell: Kentron International, Inc., Hampton, Virginia. John L. Mitchell: Kentron International, Inc., Hampton, Virginia. About 10 years ago, the Advanced Aerospace Flight Experiment Radiometer Scatterometr (AAFE RADSCAT) made its first successful measurements of occan radar scattering croc section from a NASA C-130 aircraft. Ish the feasibility of the satellite scatterometer for measuring both wind speed and these of occan normalized radar cross section (NRCS) measurements as a function of surface wind vector at 13.9 GHz. NRCS measurements or ore and the surface wind vector at 13.9 GHz. NRCS measurements of mathematic radge from 26 of these flights during which the quality of the sensor and the surface wind vector form are compared with those used for inversion of the SESAFT-A sate from 26 of these flights during which the quality of the sensor mathematic respont represent: a comprehensive analysis of the complete RADSCAT data base. 17. Key Work (Supgested by Author(s)) 18. Distri						
12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address 14. Sponsoring Agency Code National Aeronautics and Space Administration 14. Sponsoring Agency Code 15. Supplementary Notes Lyle C. Schroeder: Langley Research Center, Hampton, Virginia. W. Linwood Jones: Satellite Television Corporation, Princeton Junction, New Jersey Philip R. Schaffner: Research Triangle Institute, Hampton, Virginia. John L. Mitchell: Kentron International, Inc., Hampton, Virginia. 16. Abstratt About 10 years ago, the Advanced Aerospace Flight Experiment Radiometer Scatterometri (AAFE RADSCAT) made its first successful measurements of ocean radar scattering crossection from a NASA C-130 aircraft. This instrument was developed as a research too to evaluate the use of microwave frequency remote sensors (particularly radars) to provide wind speed information at the ocean surface. The AAFE RADSCAT Masto provide data base of ocean normalized radar cross section (NRCS) measurements as a function of surface wind weetor at 13.9 GHz. NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT aircraft missions from 1973 to 1977. In this report, analyses of data are presenter from a Compared with those used for inversion of the SEASAT-A satel developed therefrom are compared with those used for inversion of the SEASAT-A sate intership between k ₁ —band radar signature and ocean surface. This report represent: a comprehensive analysis of the complete RADSCAT data base. 17. Kwy Words (Suggested by Author(s)) 18. Distribution Statement <td< td=""><td>Hampton, VA 23665</td><td></td><th>11. Con</th><td>tract or Grant No.</td></td<>	Hampton, VA 23665		11. Con	tract or Grant No.		
National Aeronautics and Space Administration Image: Construct of the second of th	12 Sponsoring Agency Name and Address	13. Type of Report and Period Covered				
Washington, DC 20546 14. Sponsoring Agency Code 15. Supplementary Nots Lyle C. Schroeder: Langley Research Center, Hampton, Virginia. W. Linwood Jones: Satellite Television Corporation, Princeton Junction, New Jersey Philip R. Schaffner: Research Triangle Institute, Hampton, Virginia. John L. Mitchell: Kentron International, Inc., Hampton, Virginia. 16. Abstract About 10 years ago, the Advanced Aerospace Flight Experiment Radiometer Scatterometr (AAFE RADSCAT) made its first successful measurements of ocean radar scattering crossection from a NASA C-130 aircraft. This instrument was developed as a research too to evaluate the use of microwave frequency remote sensors (particularly radars) to provide wind speed information at the ocean surface. The AAFE RADSCAT helped establish the feasibility of the satellite scatterometer for measuring both wind speed aidirection. Probably the most important function of the AAFE RADSCAT was to provide data base of ocean normalized radar cross section (NRCS) measurements as a function of surface wind vector at 13.9 GHz. NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT aircraft missions from 1973 to 1977. In this report, analyses of data are presented from 26 of these flights during which the quality of the sensor and the surface wind wector. The models developed therefrom are compared with those used for inversion of the SEASAT-A sate: lite scatterometer (SASS) radar measurements to wind speeds. This report represents a comprehensive analysis of the complete RADSCAT data base. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement kband scatterometer Ocean wind sensor	National Aeronautics ar	ation	16	conical Memorandum		
15. Supplementary Notes Lyle C. Schroeder: Langley Research Center, Hampton, Virginia. W. Linwood Jones: Satellite Television Corporation, Princeton Junction, New Jersey Philip R. Schaffner: Research Triangle Institute, Hampton, Virginia. John L. Mitchell: Kentron International, Inc., Hampton, Virginia. 16. Abstract About 10 years ago, the Advanced Aerospace Flight Experiment Radiometer Scattering crossection from a NASA C-130 aircraft. This instrument was developed as a research too to evaluate the use of microwave frequency remote sensors (particularly radars) to provide wind speed information at the ocean surface. The AFF RADSCAT helped establish the feasibility of the satellite scatterometer for measuring both wind speed at direction. Probably the most important function of the AFF RADSCAT was to provide data base of ocean normalized radar cross section (NRCS) measurements as function of surface wind vector at 13.9 GHz. NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT mesurements were felt to be understood. This data base was used to model the relationship between k _u -band radar signature and ocean surface wind vector. The models developed therefrom are compared with those used for inversion of the SEASAT-A satellite scatterometer (SASS) radar measurements to wind speeds. This report represent: a comprehensive analysis of the complete RADSCAT data base. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement k _u -band scatterometer Ocean wind sensor 20. Security Classif. (of this page) 21. No. of Paget 22. Price	Washington, DC 20546		14. Spor	nsoring Agency Code		
Lyle C. Schroeder: Langley Research Center, Hampton, Virginia. W. Linwood Jones: Satellite Television Corporation, Princeton Junction, New Jersey Philip R. Schaffner: Research Triangle Institute, Hampton, Virginia. John L. Mitchell: Kentron International, Inc., Hampton, Virginia. 16. Abstract About 10 years ago, the Advanced Aerospace Flight Experiment Radiometer Scatterometr (AAFE RADSCAT) made its first successful measurements of ocean radar scattering crossection from a NASA C-130 aircraft. This instrument was developed as a research too to evaluate the use of microwave frequency remote sensors (particularly radars) to provide wind speed information at the ocean surface. The AAFE RADSCAT helped establish the feasibility of the satellite scatterometer for measuring both wind speed aid irection. Probably the most important function of the AAFE RADSCAT was to provide data base of ocean normalized radar cross section (NRCS) measurements as a function of surface wind vector at 13.9 GHz. NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT aircraft missions from 1973 to 1977. In this report, analyses of data are presenter from 26 of these flights during which the quality of the sensor and the surface wind weelore. The models developed therefrom are compared with those used for inversion of the SEASAT-A sate] lite scatterometer (SASS) radar measurements to wind speeds. This report represents a comprehensive analysis of the complete RADSCAT data base. 17. Key Words (Suggested by Author(s)) ku-band scatterometer 18. Distribution Statement Junclassified - Unlimited 19. Security Classif. (of this report] 20. Security Classif. (of this page) 21. No. of Pages	15. Supplementary Notes					
16. Abstract About 10 years ago, the Advanced Aerospace Flight Experiment Radiometer Scatterometr (AAFE RADSCAT) made its first successful measurements of ocean radar scattering crossection from a NASA C-130 aircraft. This instrument was developed as a research to to evaluate the use of microwave frequency remote sensors (particularly radars) to provide wind speed information at the ocean surface. The AAFE RADSCAT helped estab- lish the feasibility of the satellite scatterometer for measuring both wind speed and direction. Probably the most important function of the AAFE RADSCAT was to provide data base of ocean normalized radar cross section (NRCS) measurements as a function of surface wind vector at 13.9 GHz. NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT aircraft missions from 1973 to 1977. In this report, analyses of data are presenter from 26 of these flights during which the quality of the sensor and the surface wind measurements were felt to be understood. This data base was used to model the rela- tionship between ku-band radar signature and ocean surface wind vector. The models developed therefrom are compared with those used for inversion of the SEASAT-A satel lite scatterometer (SASS) radar measurements to wind speeds. This report represents a comprehensive analysis of the complete RADSCAT data base. 17. Key Words (Suggested by Author(s)) ku-band scatterometer Ocean wind sensor Radar cross section 18. Distribution Statement Unclassified - Unlimited 19. Security Classif. (of this report] 20. Security Classif. (of this page) 21. No. of Pages 22. Price	Lyle C. Schroeder: Langley Research Center, Hampton, Virginia. W. Linwood Jones: Satellite Television Corporation, Princeton Junction, New Jersey. Philip R. Schaffner: Research Triangle Institute, Hampton, Virginia. John L. Mitchell: Kentron International, Inc., Hampton, Virginia.					
About 10 years ago, the Advanced Aerospace Flight Experiment Radiometer Scatterometer (AAFE RADSCAT) made its first successful measurements of ocean radar scattering crossection from a NASA C-130 aircraft. This instrument was developed as a research to to evaluate the use of microwave frequency remote sensors (particularly radars) to provide wind speed information at the ocean surface. The AAFE RADSCAT helped estab- lish the feasibility of the satellite scatterometer for measuring both wind speed and direction. Probably the most important function of the AAFE RADSCAT was to provide data base of ocean normalized radar cross section (NRCS) measurements as a function of surface wind vector at 13.9 GHz. NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT aircraft missions from 1973 to 1977. In this report, analyses of data are presenter from 26 of these flights during which the quality of the sensor and the surface wind measurements were felt to be understood. This data base was used to model the rela- tionship between k _u -band radar signature and ocean surface wind vector. The models developed therefrom are compared with those used for inversion of the SEASAT-A sate! lite scatterometer (SASS) radar measurements to wind speeds. This report represents a comprehensive analysis of the complete RADSCAT data base. 11. Key Words (Suggested by Author(s)) k _u -band scatterometer Ocean wind sensor Radar cross section 18. Distribution Statement Unclassified - Unlimited 12. No. of Pages 22. Price	16. Abstract					
17. Key Words (Suggested by Author(s)) 18. Distribution Statement ku-band scatterometer Unclassified - Unlimited Ocean wind sensor Subject Category 48 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price	About 10 years ago, the Advanced Aerospace Flight Experiment Radiometer Scatterometer (AAFE RADSCAT) made its first successful measurements of ocean radar scattering cross section from a NASA C-130 aircraft. This instrument was developed as a research tool to evaluate the use of microwave frequency remote sensors (particularly radars) to provide wind speed information at the ocean surface. The AAFE RADSCAT helped establish the feasibility of the satellite scatterometer for measuring both wind speed and direction. Probably the most important function of the AAFE RADSCAT was to provide a data base of ocean normalized radar cross section (NRCS) measurements as a function of surface wind vector at 13.9 GHz. NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT aircraft missions from 1973 to 1977. In this report, analyses of data are presented from 26 of these flights during which the quality of the sensor and the surface wind measurements were felt to be understood. This data base was used to model the relationship between k_u -band radar signature and ocean surface wind vector. The models developed therefrom are compared with those used for inversion of the SEASAT-A satellite scatterometer (SASS) radar measurements to wind speeds. This report represents a comprehensive analysis of the complete RADSCAT data base.					
ku-band scatterometer Unclassified - Unlimited Ocean wind sensor Unclassified - Unlimited Radar cross section Subject Category 48 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price	17 Key Words (Suggested by Authorita)					
Subject Category 48 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price	k _u -band scatterometer Ocean wind sensor Radar cross section		Unclassified - Unlimited			
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price					Subject Category 48	
	19. Security Classif, (of this report)	20. Security Classif. (of this	page)	21. No. of Pages	22. Price	
Unclassified Unclassified 148 A07	Unclassified	Unclassified		148	A07	

For sale by the National Technical Information Service, Springfield, Virginia 22161

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business Penalty for Private Use, \$300 Postage and Fees Paid National Aeronautics and Space Administration NASA-451

.

,

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return