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Modelling Algorithm Execution Time on Processor Arrays

by

Loyce M. Adams

Institute for Computer Applications in Science and Engineering

Thomas W. Crockett
Kentron Technical Center

Abstract

A model for the execution time of parallel algorithms on proces-

sor arrays is described. The model is validated for the conjugate

gradient algorithm on the eight processor Finite Element Machine at

NASA Langley Research Center. Model predictions are also included for

this algorithm on a larger array as the number of processors and sys-

tem parameters are varied.
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first author was in residence at ICASE and by NASA Contract No. NASI-
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Introduction

The usual measure of the performance of a numerical algorithm on a

sequential computer is the number of arithmetic operations required for

completion of the algorithm. This number is generally expressed as a func-

tion of the size of the application problem. For instance, it iswell

known that the solution of a system of n linear equations using Gaussian

elimination takes O(n3) arithmetic operations [i]. On sequential machines,

the assumption is made that the execution time of the algorithm will be

directly proportional to the arithmetic operation count. This approach has

worked well as a means of comparing sequential algorithms.

However, it has been pointed out repeatedly in the literature

[2,3,4,5] that this standard arithmetic complexity analysis is not suffi-

cient to analyze parallel algorithms. Additional operations such as data

transmissions between processors, synchronization of processors, and global

decision-making may add to the execution time of the algorithm. The number

of these operations and the time required per operation may vary with each

algorithm, with the number of processors used to solve the problem, and

with the problem size. The time for these operations is dependent not only

upon the particular architecture in use, but also upon the software

required to implement these operations. These considerations suggest that

an adequate analysis of the performance of a parallel algorithm must

include a model for its execution time.

This paper describes an approach for modelling the execution time of

algorithms on parallel arrays as a function of the number of processors and

particular system (hardware and software) parameters. The general charac-

teristics of an execution time model are first described and then we show



how to apply the model for a specific algorithm on an actual processor

array. We next describe a procedure for validating this model and then

show how the model can be used to predict algorithm performance on larger

processor arrays with different system parameters.

Performance Model

The execution time of an algorithm running on multiple processors that

are cooperating to solve a given problem is the elapsed time from when the

first processor begins execution to when the last processor finishes. For

example, Figure I shows two processors working together to solve a problem.

The solid line indicates busy time and the dotted line represents idle

time.

!

processor1 I.........

processor 2 1
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Figure I. Cooperating Processors

The total execution time of the algorithm is 4 seconds even though proces-

sor I is busy for 2 seconds and processor 2 is busy for 3 seconds. By

defining the execution time of the algorithm on a given processor to be the

sum of the busy and idle times of that processor, the execution time will

be the same for all processors. However, the execution time on all proces-

sors may need to be modelled if the interaction of the processors influ-

ences the components of the execution time.



The execution time (E) of a parallel algorithm can be broken down into

four broad categories: arithmetic time (A)_ communication time (C), syn-

chronization time (S), and idle or wait time (W) as shown in equation (I).

(i)
E= A+ C+ S+ W

This model assumes one process per processor and no overlap of arithmetic_

communication_ and synchronization times.

The value for A includes the time for floating point operations,

integer arithmetic_ loop overhead, and array indexing. These integer

operations are rarely included in sequential algorithm analysis but may be

a function of the number of processors as well as the problem size in the

parallel environment and should be included.

The value for C includes the time to communicate values from one pro-

cessor to another. If the processors are connected to a shared memory_

this time will be realized as the time to read and write into the shared

memory. If_ instead 9 the processors communicate directly with each other

by passing messages over communication links_ this time will be the time to

send information to as well as receive information from cooperating proces-

sors.

The value for S includes the time the processor spends synchronizing
m

with other processors and participating in global decision making. Syn-

chronization followed by global decision making is necessary, for example,

in parallel iterative algorithms. Each iteration_ all processors must syn-

chronize to determine if a global stopping criterion is met. For proces-



sors connected to a shared memory, this represents the time for all proces-

sors to write and then read a shared variable. If the processors are con-

nected to special hardware for this purpose, this is the time for the

hardware and its software interface to perform the operationS. For some

hardware array designs_ synchronization and global decision making may be

more appropriately modelled as communication time.

The value for W includes the time the processor spends waiting on

values from other processors to arrive if communication links are used, or

the time contending for shared memory if the processors communicate in that

fashion. Also included in W is the time a processor is idle either prior

to or following the execution of a task as shown in Figure I.

In the next section, we show how to apply this model to predict the

execution time of an iterative algorithm on NASA Langley°s Finite Element

Machine (FEM). The algorithm will first be described and the number of

each operation summarized. The architecture and system software for the

FEM is then discussed and the parameters of this machine that lead to the

determination of A, C, and S in the model will be given.

Example Iterative Algorithm

The conjugate gradient algorithm [6] for solving a system of linear

equations that arise from the discretization of a partial differential

equation problem domain was chosen to illustrate how the number of opera-

tions in equation (i) are determined. A rectangular domain is discretized

into computational nodes as shown in Figure 2 with an x by y block of nodes



assigned to each processor in the processor array.
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Figure 2. Problem Assignment to Processors

For this example problem suppose that each computational node contrl-

butes two equations to the system of linear equations to be solved. Each

processor is therefore responsible for the solution of 2xy equations. If

there are N equations total and p processors are used, the value of 2xy

- will be N/p. We now describe the components of the execution time for a

processor in the interior of the processor array.

The parallel conjugate gradient algorithm for the problem described

above can be shown [7] to require the following number of floating point



arithmetic operations, l_represents the number of iterations of the algo-

rithm.

multiply/add pairs 19Nl/p

adds 21(p-1) (2)

divides 21

On each iteration_ two values for each computational node on the

border of the x by y block must be sent to adjacent processors. Values

going to the same processor may be sent as one or more packages depending

on the structure of the particular architecture. Likewise_ on each itera-

tion_ a processor must receive the two values for each border node of adja-

cent processors. Again_ the values coming from a given processor may be

•ij

received in one or more packages. In addition_ the algorithm requires one

value to be broadcast to the p-I other processors and p-1 values to be

received from the other processors twice each iteration. These communica-

tion components are summarized below where we assume that c numbers are

sent per package and d numbers received per package:

packages sent: 41(x+y+l)/c

numbers sent: 41(x+y+1)

packages broadcast: 21
(3)

numbers broadcast: 21

packages received: 41(x+y+l)/d + 21(p-1)

numbers received: 41(x+y+l) + 21(p-l)



" _ Each iteration, the processors must be synchronized ,and the global

convergence test made. Therefore, the number of these components are:

number of synchronizations : I
(4)

number of convergence checks: I

• On sequential computers, the time for convergence checking is .rarely

counted in the complexity of the algorithm. However, this operation

requires cooperation between the processors for the parallel algorithm and

may be costly depending on the hardware and system software available to

perform these operations.

The wait time for this algorithm is assumed to be zero since each pro-

cessor in the interior of the processor array has the same amount of work

to perform and the same code to execute. Unlike the situation shown in

Figure I, the processors will calculate, communicate_ and synchronize more

or less at the same time for this algorithm.

The times for each of the operations for the conjugate gradien t algo-

rithm depend upon the parallel array and its software. We address these

factors for the Finite Element Machine in the following discussion.

- The Finite Element Machine

The Finite Element Machine (FEM) [8,9910,II] is a research computer

being built at NASA's Langley Research Center to investigate the applica-

tion of parallel processing to structural engineering analysis. FEM con-
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slsts of a minicomputer front-end, called the Controller, attached to an

MIMD array of asynchronous microcomputers, referred to as the Array (Figure

3). Each processor in the Array is based on a THS9900 microprocessor [12]

with an associated Am9512 floating-point unit [13], 32K bytes of RAM, and

16K bytes of EPROM. Each processor has its own clock and runs its own pro-

gram on its own data. There is no shared memory in the system. Additional

circuitry provides a rich interconnection environment for communication and

Cooperative computation, which includes:

l) Local communication links. Each processor has twelve bi-directional

serial ports which provide dedicated I/0 paths to neighboring proces-

sors. For this study, we choose the interconnect ion topology to be an

eight nearest neighbor planar mesh leaving four [inks unused.

(2) Global bus. A 16-bit parallel time-multiplexed bus provides point-

to-polnt and broadcast communications among all of the processors in

the Array. The global bus also connects the Controller to the Array,

and is used to load programs and data to the processors, and to

retrieve results.

(3) Signal flags. Each processor has eight binary hardware flags which

can be set to either True or False. Distributed circuitry allows each

processor to inspect the global status of each flag. Status signals

include ANY (one or more processors have set the flag to True), ALL

(every processor has set the flag to True), and a special SYNC signal

which is used for synchronization.
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Figure3. 16-processorFinite ElementMachine.
(Flagnetworkand sum/maxtree omittedfor clarity.)



I0

(4) Sum/maximum network. The sum/max network aids in global calculations

by determining the sum and maximum of the inputs from all processors

[14]. This network is logically a tree with special-purpose computa-

tion nodes residing on each processor. The results of the computation

are made available to all processors in the Array.

The current machine has eight processors operational (minus the

sum/max network), and plans call for expansion first to 16, and eventually

to 36, processors.

System software for FEM consists of three major components: (I) FEM

Array Control Software (FACS), (2) Nodal Exec operating system, and (3)

PASLIB subroutine library. FACS [15] is a set of about 40 programs which

provide the user interface to the Array. Nodal Exec is a small special-

purpose operating system which resides in EPROM on each processor in the

Array. It is divided into two major sections_ one of which provides the

usual operating system support services such as memory management, I/O

primitives9 interrupt handlingy and timing. The other section is a set of

routines which carry out operations requested by the FACS software.

Application programs for the Array are written in Pascal. Programs

are compiled and linked on the Controller, and downloaded to the appropri-

ate processor(s) using FACS. Access to the special architectural features

of the machine is provided by a library of subroutines called PASLIB [16].
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" Some PASLIB operations are implemented directly_ while others are carried

out through Nodal Exec. Services provided by PASLIB include communication

with the Controller and other processors_ flag and sum/max operations_

mathematical subroutines_ and timing.

Interprocessor communication is provided by three subroutines: SEND_

SENDALL_ and RECV. SEND transmits the requested number of data words at a

given address to a particular neighboring processor. SENDALL is similar_

but transmits the data to all neighboring processors. RECV accepts the

requested number of data words from a neighboring processor and stores them

at the given address. Nodal Exec provides buffering services so that com-

municating processors need not be tightly synchronized.

Model Parameters For FEM

Table 1 lists the execution time model parameters for the Finite Ele-

ment Machine.
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Cost Parameter Time (milli-sec)

Multiplication/Addition Pair 0.997-1.195 (1.032 typical)

Addition 0.475-0.662 (0.516 typical)

Division 0.520-0.538 (0.526 typical)

Package Receive Overhead 1.308

Receive a Number 0.510

Package Send Overhead 1.672

Send a Number 0.221

Package Broadcast Overhead 1.672

Broadcast a Number 0.221

Synchronize 0.129

Global Flag Check 0.278

Table i. FEM Model Parameters

In all cases, the software component of these operations dominates the

hardware time required. Although proposed parallel architectures are fre-

quently analyzed based on hardware arguments_ our experience indicates that

performance estimates can only be justified when the times for realistic

software implementations are included. In many cases 9 accurate estimates

of software overhead can only be obtained by writing the code and determin-

ing the execution time_ either by summing instruction times_ simulating

execution at the instruction level 9 or running on the actual hardware.

The figures in Table i were obtained by either of two techniquesy (I)

adding up the instruction times required for the operation_ or (2) perform-

ing timing experiments on the actual hardware. The time accounted for in

each of these model parameters is discussed briefly.
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" The time for single precision floating-point operations on FEM are

dominated by the time required to load operands and retrieve results from

the Am9512, which has an 8-bit wide data path. Since actual computation

time is operand dependent, a range of times for floating point arithmetic

operations are given_ along with a typical time.

Communication times include software overhead for parameter valida-

tion9 table look-ups_ buffering_ and interrupt overheads. The times used

here are based on a study of the PASLIB SEND and RECV routines done by J.

Knott [17]. Broadcast times for FEM have not been measured, but are simi-

lar to those for non-broadcast SENDs. These times are subject to some

variation caused by dynamic interactions among asynchronous processors.

The synchronization operation uses the SYNC flag signal to achieve

synchronization among all processors. The synchronization value in Table I

excludes any time which is spent waiting for slower processors to catch up.

Actual wait times are dependent on the algorithm used and the variation in

workload between processors; minor effects are caused by operand dependen-

cies in floating-point operations and slight differences in clock speeds

between processors. This is one of the most efficient operations imple-

mented by PASLIB; most of the software time is attributable to subroutine

call overhead.

Global flag status checks, like synchronization operations, are rela-

tively efficient with subroutine entry and exit code constituting the major

overhead. These are used by parallel iterative algorithms_ for example, to

determine global convergence.
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Performance Measurement Tools

System software for FEM provides several tools which aid in the

analysis of program behavior on the Array. These include timers, operation

counters_ and a statistical trace facility. Two interval timers are avail-

able on each processor. Nodal Exec uses one of them to measure elapsed

program execution time_ with a resolution of 16 milliseconds. This timer

can be interrogated from user programs to yield the elapsed execution time

at any point. The second timer can be started and stopped under control of

the user program_ and has programmable resolution from I to 349 mil-

liseconds.

In addition_ Nodal Exec and PASLIB maintain counters during program

execution which record the number of floating-point and flag operations_

send and receive calls_ buffer allocations, I/0 interrupts, and data words

transmitted and received. This information can be retrieved by the Con-

troller and post-processed to give an execution statistics report which

includes not only the operation counts, but derived performance measures

such as average input and output data rates, average number of data words

processed per I/O interrupt_ and overall floating-point rate. The operand

counts provide accurate data to validate the numbers in the performance

model_ and the derived statistics give a rough idea of communication and

floating-point efficiencies.
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While the execution statistics can be used to validate the number of

operations in the model, an additional tool is needed to validate the per-

centage of time spent in these operations and to pinpoint discrepancies

between predicted and observed behavior. This capability is provided by

Nodal Exec in the form of a statistical tracer. The tracer works by sam-

piing the processor's program counter at regular intervals and sending the

observed value to the Controller, where it is stored in a file. If enough

samples are taken, the resulting distribution of program counter addresses

will reflect the time spent in various portions of the program, including

system code. The trace file saved by the Controller is sorted by processor

number and program counter address, and the result can be correlated with

the program's link map to give the approximate percentage of time spent in

each routine. Since the trace resolution is at the instruction level, time

spent in specific loops can be pinpointed.

Because the trace data is only a statistical sample, it is subject to

some error, and trace results may vary somewhat from run to run. The

recommended procedure is to make several runs of the same program and aver-

age the trace results. There is sufficient asynchrony between the trace

mechanism (driven by a timer interrupt) and program execution that identi-

cal trace results from one run to the next have not been observed. The

variance of trace results among several runs can be used to obtain a meas-

ure of confidence for the mean result.
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Results

The conjugate gradient algorithm was run on an eight processor Finite

Element Machine arranged as 2 rows and 4 columns of processors for two

problems. For the first problem, each processor was assigned a ix3 block

of computational nodes; for the second problem, each processor had a 3x3

block of nodes. Each problem was run and the execution statistics matched

exactly the number of operations predicted by the model. The problems were

then run three times each with the tracer enabled using a 50 millisecond

trace interval. The tracer increased execution time by about 0.9% and no

noticeable effect on execution behavior was seen in the execution statis-

tics. The results of the three runs were averaged and compared against

those predicted by the model. Tables 2 and 3 summarize the findings.

Tracer Results Model Predictions

Time(sec) % Time Time(sec)

Floating Point Arithmetic 8.96 56.7 8.57

Integer Arithmetic and Indexing 2.81 17.8

Communication and Synchronization 4.03 25.5 4.33

Table 2. ix3 Block of Nodes/Processor
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" Tracer Results Model Predictions

Time(sec) % Time Time(sec)

Floating Point Arithmetic 34.93 67.3 34.44

Integer Arithmetic and Indexing 10.27 19.8

Communication and Synchronization 6.70 12.9 6.28

Table 3. 3x3 Block of Nodes/Processor

Observe that the model predictions agreed closely with the trace results

for the time required for the floating point arithmetic and communication

and synchronization operations. The tracer also indicated that integer

arithmetic, array indexing, and loop overhead should be modelled since this

accounted for about 20 percent of the execution time in both problems.

This model can be used to predict the performance of the example

iterative algorithm on larger processor arrays. As an illustration, assume

that one number is sent and received per package and that the time to

broadcast a package is equal to the time to send or receive a package.

Furthermore, define the ratio of the communication time to arithmetic time,

_, as below:

time to send a package
=

time to do a multiply-add pair

With this definition, the execution time for our example algorithm can be

expressed in terms of _ and p, the number of processors. As an example, we

consider the problem size to be fixed at a 16x48 block of nodes and let the

number of processors vary from 1,4,16,64, to 256 (the block of nodes per



18

processor will vary from 16x48, 8x24, 4x12, 2x6, and lx3 respectively).

Figures 4 and 5 show the execution time of this problem as a function of

the number of processors for machines with an C_ parameter of i0 and 1

respectively. Note that in both cases, there will be a point where adding

more processors to solve the problem is not beneficial since the execution

time will increase. The reason for this is that as the number of proces-

sors increases, the adds in equation (2) and the receives in (3) that are

both O(p) begin to dominate the execution 'time. To avoid this situation,

these operations could be done with special hardware like the sum/maximum

circuit on the Finite Element Machine which requires only O(log p) opera-

tions.

Conclusions

A model for the execution time of parallel algorithms on processor

arrays has been presented which captures many of the additional complexity

measures unique to a parallel environment. The model was applied to a

parallel implementation of the conjugate gradient algorithm on NASA

Langley's Finite Element Machine. Experiments were performed to compare

the model predictions against actual behavior, and results showed that the

floating point arithmetic, communication, and synchronization components of

the parallel algorithm execution time were being modelled correctly. In

particular, these results pointed out that the overhead caused by the

interaction of the system software and the actual parallel hardware must be

reflected in the model parameters.
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The model was used to predict the performance of the conjugate gra-

dient algorithm on a given problem as the number of processors and machine

characteristics varied. In fact, the model can be used to address other

issues such as algorithm speedup as a function of the number of processors;

machine reliability as a function of the number of processors and machine

parameters; algorithm comparisons as a function of problem size, number of

processors, and machine parameters; and comparison of parallel and serial

algorithms.
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