
NASA Technical Memorandum 85752

O NASA-TM-85752 19840009832

Pascal/48
ReferenceManual
January 1984 _o__-,_,,_,-_,,-___,_,-_

t -?

NDTTo 1_E TAKEN I:T'_OMTIlT,q ROOM

-Central Scientific
ComputingComplex

" DocumentM=3

NationalAeronauticsand
SpaceAdministration

LangleyResearchCenter
Hampton.Virginia 23665





NASA TechnicalMemorandum85752

Central Scientific
ComputingComplex

Document M-3

.41

PASCAL/ 48

REFERENCE MANUAL

John C. Knight

Analysis and Computation Division

May 1981

Revised
Roy W. Hamm

Computer Sciences Corporation
January 1984





PASCAL/48 REFERENCE MANUAL

I. INTRODUCTION AND OVERVIEW ................................... 1

2. LEXICAL DEFINITIONS ......................................... 2

3. CONSTANTS AND VARIABLES ..................................... 4

4. PROGRAM STRUCTURE ................................... ........ 7
4.1 Label Declaration Part ................................ 9

4.2 Constant Definition Part ............................. I0

4.3 Variable Declaration Part ............................ II

4.4 Value Part ........................................... 14

4.5 Procedure Declaration Part ........................... 16

4.6 Compound Statement ................................... 19

5. OPERATORS .................................................. 20

6. EXPRESSIONS ................................................ 23

7. PREDECLARED VARIABLES ...................................... 26

8. STATEMENTS ................................................. 28

8.1 Assignment Statement ................................. 29
_-_ 8.2 IF Statement ......................................... 30

8.3 WHILE Statement ...................................... 32

8.4 REPEAT Statement ..................................... 34

8.5 FOR Statement ........................................ 35

8.6 CASE Statement ....................................... 37

8.7 GOTO Statement ....................................... 39

8.8 Procedure Call Statement ............................. 40

8.9 Predeclared Procedures ............................... 41

9. INTERRUPTS ................................................. 43

i0. USE OF THE COMPILER ........................................ 45

II. APPENDIX A - SAMPLE PROGRAMS ............................... 48

12. APPENDIX B - SAMPLE LISTING ................................ 60

13. APPENDIX C - SYNTAX DIAGRAMS ............................... 70

14. APPENDIX D - ERROR MESSAGES ................................ 77

15. INDEX ...................................................... 85

iii





f___ PASCAL/48

1 INTRODUCTION AND OVERVIEW

Pascal/48 is a programming language for the Intel MCS-48 series of
microcomputers. In particular, it can be used with the Intel 8748. It

is designed to allow the programmer to control most of the instructions

being generated and the allocation of storage. The language has

sufficient expressive power that it can be used instead of assembly
language in most applications while allowing the user to exercise the
necessary degree of control over hardware resources.

A thorough knowledge of the MCS-48 hardware (Microcontroller
Handbook, Intel Corporation, May 1983) is assumed in this manual. Some
knowledge of Pascal would be useful.

Although it is called Pascal/48, the language differs in many ways

from Pascal. The program structure and statements of the two languages
are similar. The major differences are in the expression mechanism and
the data types.

The syntax diagrams in this manual precisely describe the syntax of

the Pascal/48 language. Upper case quantities and special symbols

indicate items which are actually written in a Pascal/48 program and

lower case quantities are names of other diagrams. They must be located
and used to generate valid instances of the named diagram. Below is the

diagram for "program' (see also section 4) and it indicates that a

Pascal/48 program consists of the word PROGRAM followed by an ident,

followed by a semicolon, followed by a block, followed by a period.
Ident and block are names of other diagrams because they are in lower

case. Starting with the diagram named 'program', any path through the

diagram defines a syntactically correct program.

/

<<< program >>>

---> PROGRAM ---> ident ---> ; ---> block ---> . -.... >

For reference purposes, all of the syntax diagrams are repeated in
Appendix C.

if--

January 1984 1



PASCAL/48

2 LEXICAL DEFINITIONS

Pascal/48 is a free format language. Column numbers have no

meaning except that the compiler only reads columns I to 72 inclusive of

the input records (usually card images). The number of columns read can

be changed with a compiler option (see section I0). Blanks may not be

used inside identifiers, reserved words, constants or multi-character -

operators but otherwise can be used freely to improve program

readability. Blank lines are specifically allowed. A blank character

is assumed between input records and so a single word cannot be
continued across two input records.

Identifiers are defined by the following syntax diagram:

<<< ident >>>

---> letter---4 ...... >

-<-- letter <---

<-- digit <---

m

letter means a letter of the alphabet,

digit means 0,1,2,3,4,5,6,7,8, or 9.

Example:
COUNTER MY PROGRAM DIGIT3 are valid identifiers.

Identifiers can be of any length but only the first ten characters

are used by the compiler. Thus identifiers must be unique in the first
ten characters.

Certain words called reserved words are used to build statements

and other constructs and may not be used as variable names.

Example:
The identifiers IF, &_{EN, and ELSE are reserved.

2 January 1984



PASCAL/48

The list of reserved words is:

AND ARRAY BEGIN CASE

CONST DOWNTO DO ELSE

END FOR GOTO IF

LABEL NOT OF OR

PROCEDURE PROGRAM REPEAT THEN

TO UNTIL VALUE VAR

WHILE

Comments are any sequence of characters beginning with the special

symbol (* and ending with the special symbol *). Comments may appear
anywhere that a blank may appear.

Example:
(* THIS IS A COMMENT *)

Comments may extend over several lines. It is important to

correctly terminate a comment with the *) characters. If they are not

present or extend past the last column the compiler reads (usually 72),

the rest of the program will be taken as comment.

January 1984 3



PASCAL/48

3 CONSTANTS AND VARIABLES

Variables may be scalars or arrays. Scalar variables can be of

type integer, character or Boolean. Integer variables occupy one word

(eight-bit byte) and can take on values in the range 0 to 255 inclusive.

The syntax of inteser constants is:

<<< int const >>>

-- digit _ A-_--_-> digit --+- ....>

T-> _> IL> letter _

Example:
8748 Decimal representation.

16 222C Hexadecimal representation of 8748.

8 21054 Octal representation of 8748.

If the first integer and underscore are present they designate the
base of the constant. The second integer is then a constant in that

base'. The base is specified in decimal. Letters are used in the

conventional way for constants with bases larger than I0. The base may

be any integer between 2 and 36 inclusive but a warning is issued for

any base other than 2, 8 or 16. If there is only one integer in the
constant (i.e., no base is specified) then it is assumed to be a decimal
constant.

Boolean variables occupy one word and can take on the values TRUE
and FALSE. TRUE and FALSE are the Boolean constants. The internal

representation of TRUE is any eight bits with the least significant bit

one. The internal representation of FALSE is any eight bits with the

least significant bit zero. A special provision to specify a Boolean as

a bit reference is provided (see section 4.3) to permit packing several

Boolean variables in one word. In this case all eight bits are

considered significant so the compiler will generate extra code to

preserve the bit pattern of the word.

Character variables occupy one word and take on values defined by

the 128 character ASCII subset. Character constants which are printable

on standard CYBER computers are represented as a single character

4 January 1984



PASCAL/48

contained within quotes, except for the quote character which is
represented as two quotes within quotes. A single character is used for
upper case letters, digits and special characters. Lower case letters
are represented by the string LC followed by the corresponding upper
case letter.

Example:
'A' Upper case A.

"%" Percent sign.

LC A Lower case A (i.e., a).

.... The quote character.

Other non-prlntable character constants are represented by the

corresponding ASCII name. These names are:

ASCII Hex Code Name ASCII Hex Code Name

00 NUL I0 DLE

Ol SOH II DCI

02 STX 12 DC2

03 ETX 13 DC3

04 EOT 14 DC4

05 ENQ 15 NAK
06 ACK 16 SYN

___ 07 BEL 17 ETB
08 BS 18 CAN
09 HT 19 EM

OA LF IA SUB

0B VT IB ESC

0C FF IC FS

0D CR ID GS
0E SO IE RS

OF Sl IF US

7B L BRACE 7E TILDE

7C BAR 7F DEL

7D R BRACE

Arrays are limited to one dimension. They can be of any size

within the limits of the machine. Array elements can be any scalar type
except for a bit specified Boolean. Arrays must be indexed when

referenced and the resulting element used anywhere that a scalar of the

element type can be used. The notation for indexing is the array name

followed by either a scalar variable or an integer constant surrounded

by brackets. There are no array constants. However, strings of

characters can be used in the VALUE part of a program (see section 4.4)

to initialize an array of characters.

Example:
Suppose A is an array.

A[I] - the Ith element of A.
_ A[5] - the 5th element of A.

January 1984 5



PASCAL/48

For the rulesgoverningthe use of arrays in expressionssee
sectlon6. The declarationof arraysis coveredin section4.3.

6 January1984



PASCAL/48

4 PROGRAM STRUCTURE

The syntax of a Pascal/48 program is:

<<< program >>>

-'-> PROGRAM ---> ident ---> ; ---> block ---> • -.....>

<<< block >>>

_> val__part _> proc_part _-->cmpnd_stmt^ .... >

A program describes a set of instructions which can be placed in an

MCS-48 computer and executed. As with an MCS-48 assembly language

program there is no operating system or other software to support a

Pascal/48 program. It is the user's responsibility to ensure that a

program is totally self-contalned.

The following is a very simple Pascal/48 program:

Example:
(* ECHO BUS TO PORT2 *)

PROGRAM DEMO;

BEGIN

WHILE TRUE DO

PORT2 := BUS;
END.

January 1984 7



PASCAL/48

This program reads BUS and outputs tile value to PORT2. It

continues to do this forever. The compller will generate an
unconditional branch to the program instructions at location O. When

the computer Is reset, this will branch past the memory locations

reserved In the hardware for interrupt processing. For thls example,

the program instructions will be placed in memory beginning at address
9.

At tile end of a Pascal/48 program, an unconditional branch to

itself Instruction [s generated. This helps to prevent an Incorrect
program from executing data or untnitialized ROM.

Each of the subsections of tileremainder o[ section 4 will conclude

with expanded versions of this program. The expanded versions are

merely examples of the syntax and may not be meaningful.

8 January 1984



PASCAL/48

4.1 LABELDECLARATIONPART

The syntax of the label declaratlon part is:

<<< lab__part >>>

---> LABEL -+-> int const T> ; u_-->
_----?< ....-+

Example:

LABEL I,I00,I000;

The purpose of the label declaration part is to declare integer
constants which will be used as statement labels. The labels can then

be used in GOTO statements. All the labels used in a program must be

declared. The use of labels and GOTO statements is discouraged because

other control statements (WHILE, IF etc) are provided and their use is

preferred.

No code is generated for a label declaration part and labels bear
no relation whatsoever to machine addresses.

Example:
(* USE GOTO AND LABEL *)

PROGRAMDEMO;

LABEL 100;

BEGIN
100:PORT2 :ffiBUS;
GOTO 100;

END.

This program generates the same machine instructions as the
previous version of the program which used a WHILE statement. Efficient

programs do not need to use GOTO statements.

January 1984 9



PASCAL/48

4.2 CONSTANT DEFINITION PART

The syntax of the constant definition part is:

<<< con part >>>

_-> CONST -+->i ident _> .... > constant ---> ; T-->

Example :
CONST MASK = 2 01111111;

COUNT REG = 5T

LOOP COUNT = I00;

ESC m ,R = ' ';

The meaning of a constant definition is the association of an

identifier with a constant value. Subsequent references to the

identifier are equivalent to references to the constant. This is a

similar capability to an assembly language EQUATE. No code is generated
for a constant definition part.

Example :
(* OUTPUT THE 7 LEAST SlGNIF. BITS OF BUS TO PORT2 *)

PROGRAM DEMO;

CONST MASK = 2 01111111;

BEGIN

WHILE TRUE DO

PORT2 := BUS AND MASK;
END.

i0 January 1984



PASCAL/48

4.3 VARIABLEDECLARATIONPART

The syntax of the variable declaration part is:

<<< vat_part >>>

<<< addr_spec >>>

---> [ > int const --+-> , --_-> RAM --+-> ] ---->
--

-> ROM ->'

-> XRAM->.

<<< type__spec >>>

> array_spec--> OF --b->scl type ---->

A

<<< array_spec >>>

--->ARRAY---> [ --->int const--> ..---> intconst--> ] ....>

January 1984 ii



PASCAL/48

<<< scl_.__ype >>>

.... -----> INTEGER ----+--->

> [ -> int cons t -> ]

--> CHAR

The variable declaration part of a program declares variables which

a program can use. The address specification is required for each
variable and indicates the address to be used for the variable and the

type of memory it will occupy; random access - RAM, read only - ROM,
external random access - XRAM. The memory type is optional and RAM is

assumed if no type is specified. RAM addresses are in the range 0 to 63
inclusive, but may be expanded by the data RAM option (see section I0).

XRAM address must be in the range 0 to 255 inclusive. ROM addresses

must be in the range 0 to 255 inclusive. Variables which are declared

in the main part of a program are called global variables. Global ROM

variables are allocated space in page 3 and their address is a

displacement into page 3. An address must be specified for global

variables. They are accessable throughout the entire program.
Variables may also be declared inside procedures (see section 4.5).

They are called local variables. Local ROM variables are allocated
space in the page in which the procedure resides. Their address

specification is required but the actual integer constant specifying the

address may be omitted. If present, it is a displacement into that

page. If absent, the ROM variable will be allocated space

automatically, ahead of the instructions for the procedure. It is the

programmer's responsibility to relocate instructions and place variables

in ROM so that the required access is possible. Relocation can be

achieved with the origin option (see section i0). Booleans may be
defined as a bit within a word. The value of the integer constant

following the scalar type BOOLEAN specifies the bit of the word and is
limited to the range 0 to 7. The array specification is not allowed

with the bit specification of Boolean variables.

Example:

VAR X[4],Y[5] : INTEGER;

Z[6] : BOOLEAN;

S[7] : BOOLEAN[O];

T[7] : BOOLEAN[I];

A[0,ROM] : ARRAY[I..IO] OF INTEGER;

CH[20,XRAM] : CHAR;

12 January 1984



__. PASCAL/48

In the above example, X and Y are one word integer variables which
will occupy words 4 and 5 of RAM. Z is a Boolean variable which will

occupy word 6 of RAM. S and T are Boolean variables which will occupy

bits 0 and 1 of word 7 of RAM. A is an array with ten elements each of

which is an integer. Assuming it is global, it will occupy ten words of

ROM beginning at word 300(hex), i.e., the first word of the third page.

CH is a character variable which will occupy word 20 of external RAM.

Since the hardware defines RAM addresses 0 to 7 inclusive as

registers, the address specification allows the programmer control of

the registers. Registers 0 and 1 should not be used by the programmer.

They are reserved for use by the compiler and if used explicitly may

produce unpredictable results. If register bank one (see section 8.9)

is selected, RAM addresses 24 and 25(dec) will become registers 0 and 1
respectively. Note that RAM addresses 8 through 23(dec) are used by the

hardware for a stack of procedure call return addresses and other data.

The programmer should not use these addresses unless explicit

modification of the stack is required. Warning messages are issued for

variables defined at RAM addresses 0, I and 8 thru 23 but not for

register bank one RAM addresses 24 and 25.

No code is generated for a variable declaration part.

Example:

_-_ (* ADD 7 LEAST SIGNIF. • BITS OF BUS TO PEG 4 *)

(* STORE RESULT IN REG 4 AND OUTPUT TO PORT 2 *)

PROGRAM DEMO;

CONST MASK = 2 01111111;

VAR X[4] : INTEGER;

BEGIN

X := 0;
WHILE TRUE DO

BEGIN

X := BUS AND MASK + X;

PORT2 := X;
END;

END.

January 1984 13



PASCAL/48

4.4 VALUE PART

The syntax of the value part is:

<<< val_part >>>

---> VALUE -+->i ident ---> .... > val_con --- ; T-->

<<< val con >>>

, <

.................... > constant

The value part associates a constant with a previously declared

variable which is in ROM. The value is placed into ROM with the program
thereby defining the variable. This is the only way to assign a value

to a variable in ROM. No executable code is generated for a value part.

The identifier preceedlng the equals sign is the variable to be

initialized. The value is either a single quantity (for a scalar) or a
llst contained in parentheses (for an array). A replication factor can

be used to generate many copies of a value in a list. It precedes the
value and is separated from it by the reserved word OF. It indicates

the number of copies of the value that are required.

A special case is provided for the initialization of arrays of

characters where all the characters required are printable. Instead of

writing each character within quotes and separating each pair in the

llst with a comma, the characters may be written as a string within a

single pair of quotes. Note that non-prlntable characters may not

appear in the string and must be listed individually if required.

14 January 1984



P_CAL/48

; Example:
VAR MESSAGE[0,ROM]: ARRAY[I..II]OF CHAR;

VALUE MESSAGEffi('ENTERDATA",CR);

Example:
VAR X[0,ROM] : INTEGER;

Y[I,ROM] : ARRAY[I..10]OF INTEGER;
VALUE X = 5;

Y = (3 OF I, 4 OF 2, 5, 8, II);
(* X IS THE FIRST WORD OF PAGE 3. IT IS PRESET TO 5 *)

(* Y IS NEXTTEN WORDS.IT IS SETTO *)
(* I, I, i, 2, 2, 2, 2, 5, 8, II *)

Example:
(* SIMULATION OF A 7447 BCD TO 7 SEGMENT DECODER *)
(* BCD INPUT IS ON LEAST SIGNIF. NIBBLE OF PORT I*)
(* GENERATES 7 SEGMENT DRIVER SIGNALS ON PORT 2 *)

PROGRAMBCD TO 7SEG;

CONSTMASK= 16__OF;

VAR TABLE [O,ROM] : ARRAY [I..16] OF INTEGER;

DIGIT[2] : INTEGER;

VALUE TABLE = (200000001, 201001111, 2_01101101,

2 00000110, 2 01001100, 200100100,

 01100000, 2-00001111,2_00000000,
201110010, 6 OF 211111111);

BEGIN

WHILE TRUE DO

BEGIN

DIGIT := PORT1 AND MASK;

PORT2 := TABLE[DIGIT];

END;
END.

January 1984 15



PASCAL/48

4.5 PROCEDUREDECLARATIONPART

The syntax of the procedure declaration part is:

<<< proc__part >>>

-+-> proc hdr m_> proc body m_> ; _#___>

l1

<<< proc_hdr >>>

---> PROCEDURE ---> ident ---> ; ..... >

<<< procbody >>>

--> EXTERNAL ---> [ ---> int const ---> ] --b--->

---> FORWARD -t....... > block

Procedures are merely subroutines. They may be called from the
main program or other procedures.

The machine code for a procedure will be generated following the
previous procedure or at location 9 if it is the first procedure. The

origin option (see section I0) can be used to change the location
counter at any point in a program but an important special use is to

relocate procedures. This facility must be used to relocate procedures

appropriately in the various pages of ROM. Many MCS-48 instructions are

only able to generate "within page" addresses. The boundary (default)
option will ensure that no problems will occur with page boundaries,
however, the machine code generated will not be optimal. If the

boundary problems are nested redundant code will probably be generated.

16 January 1984



PASCAL/48

It is the programmer's responsibility to adjust the location counter to

ensure optimal code at the page boundaries. If the boundary option is
not selected and the compiler encounters difficulty with a page

boundary, a diagnostic will be issued and it will be necessary for the

programmer to explicitly relocate the code as necessary.

The body of a procedure may take one of three forms. If it is the
word FORWARD then it indicates that the procedure will be defined lower

down in the program but it informs the compiler of its existence. This
allows forward references to procedures. If a FORWARD declaration is

not present, a procedure must be defined before it can be called.

If the body of a procedure is the word EXTERNAL followed by an

integer inside brackets, it indicates that the procedure will be

produced separately from this program (an assembly language subroutine

for example) but will occupy this location at execution time. The

integer following the word EXTERNAL indicates the size of the procedure

in bytes and this amount of space is left empty by the compiler.

The third form a procedure body may take is a block and so all of

the components of a program may appear inside a procedure (see section
4). Any identifier declared inside a procedure is only known (i.e., can

only be used) inside that procedure or others nested inside it.

Pascal/48 uses the same scope rules for identifiers as Pascal (Pascal

User Manual and Report, Second Edition: Jensen, Kathleen; Wirth, I.

Niklas; 1974; Sprlnger-Verlag Berlin Heldelburg New York).

Example:
PROCEDURE CONVERT;

CONST ASCII__ZERO = 1630;

VAR DIGIT[10] : INTEGER;

BEGIN

DIGIT := DATA ASCII - ASCII__ZER0;
IF DIGIT > I0 THEN

DIGIT := DIGIT - 7;

DATA HEX := DIGIT;

END;

In this example, the constant ASCII ZERO and the variable DIGIT can

only be used inside procedure CONVERT_ The procedure CONVERT takes a
character in a variable called DATA ASCII which is assumed to be the

character representation of a hex digit and converts it to the

corresponding binary integer, e.g., character I (ASCII hex code 31) is
converted to binary I. The result is placed in the variable DATA HEX.

The variable DIGIT is not required but is used as an example. Variables

declared in procedures must still have an address specified for them and

storage will be allocated statically.

January 1984 17



PASCAL/48

The Pascal/48 compiler will generate machine code for each

procedure in order and place it into R0M beginning at address 9 if the

origin option is not used. A program may contain any number of

procedures within the memory limits of the machine. It is not necessary
(nor is it possible) to write an PET instruction at the end of a

procedure. The compiler will automatically generate the RET instruction

when the END statement of a procedure body is encountered.

Example:

PROGRAM ECHO;

PROCEDURE COPY;

CONST MASK = 2 I0111110;

VAR X[2] : INTEGER;

BEGIN

X := PORT1 AND MASK;

PORT2 := X;

END (* COPY *);

BEGIN

WHILE TRUE DO

COPY;
END.

18 January 1984



PASCAL/48

4.6 COMPOUND STATEMENT

The syntax of a compound statement is:

<<< cmpnd__stmt >>>

---> BEGIN -+-> statement T> E_ ......>___u;<

This is just a sequence of statements (see section 8) separated by

semicolons. In the case of a program, this compound statement

constitutes the body of the program. The sequence of statements will be

compiled into machine code and placed into ROM following the machine

code for the last procedure. A branch instruction to the beginning of

the code for this compound statement is placed into ROM location 0.

For a procedure, the compound statement constitutes the body of the

procedure and it is the sequence of statements which will be executed

when the procedure is called. The BEGIN-END pairs contained in examples

in other sections of this manual are examples of compound statements.

January 1984 19



PASCAL/48

5 OPERATORS

Operators are used to build expressions and they give access to

many of the MCS-48 instructions. Operators are either monadlc or
dyadic. Monadlc operators have one operand and dyadic operators have

two operands.

Each monadic operator may be used in two different ways in

expressions (see section 6) but the operator actually generates either
zero or one instruction. A monadic operator can only be used with an

operand of the correct type and the appropriate instruction is applied

with the operand in the accumulator. The compiler generates the

instructions necessary to evaluate the operand (if it is an expression)

or load the operand into the accumulator (if it is a variable) prior to

generating the instruction for the monadic operator. The monadlc

operators and their meanings are given by the following table:

OPERATOR OPERAND RESULT MEANING
TYPE TYPE

DEC ADJ Integer Integer Decimal adjust.

NOT Int/Bool Int/Bool Invert each bit.

CHR Integer Character Character representation of integer.

ORD Any scl. Integer Integer representation of any scalar
type (in particular character).

ADDRPAGE Program Integer Page number inwhlch a
label program label occurs.

ADDR WORD Program Integer Word offset in which a

label program label occurs.

DEC ADJ performs the normal decimal adjustment algorithm necessary
to generate a BCD result after binary arithmetic with BCD quantities.

NOT merely performs a bit by bit inversion. CHR and ORD are for

switching types between type INTEGER and CHARACTER. They allow

programmers to indicate explicitly that arithmetic on scalar,

non-lnteger quantities is required. In particular, ORD(FALSE) is 0 and

ORD(TRUE) is I. ADDR PAGE and ADDR WORD take a programmer defined label

as their operand and return the page number and withln-page word offset

respectively of that label. The labels must be between 0 and 255. The

results of these operators are the actual machine address corresponding

to the label. These operators do not generate any code. They give
access to machine addresses so that in the few necessary cases, machine

addresses can be used in a Pascal/48 program. A possible use would be

the explicit modification of the hardware stack to provide a
non-standard return from an interrupt (see section 9).

20 January 1984



_-'- PASCAL/48

Example:

Y := DEC ADJ(X+I);
Z := ORD CH + I;

C := CHR Z;

In the above example, one is added to X, the result is decimal

adjusted, and assigned to Y. The numeric representation of the
character CH is made available, one is added to it, and the result

assigned to Z. The character corresponding to the integer in Z is

assigned to the character variable C.

The rules governing the use of monadlc operators in expressions are

given in section 6.

Dyadic operators are either one or two special characters, or a
meaningful sequence of letters. In either case they are written between

their operands (infix) in the usual way. Each operator generates either
one or a small number of MCS-48 machine instructions. The dyadic

operators and their meanings are given by the following table:

OPERATOR MEANING

+ Eight-blt addition.

_-_ - Eight-bit subtraction (see below).

++ Eight-bit addition with carry (see below).

-- Eight-blt subtraction with borrow (see below).
< Test for less than.

<= Test for less than or equals.

= Test for equality.

>= Test for greater than or equals.

> Test for greater than.

<> Test for inequality.

AND Logical and.

OR Logical or.
XOR Logical exclusive or.

ROTL Rotate left without carry (carry not affected).

ROTR Rotate right without carry (carry not affected).

ROTLC Rotate left through carry.

ROTRC Rotate right through carry.

SHL Shift left, insert zeros (carry affected).

SHR Shift right, insert zeros (carry affected).
BIT Select bit.

For the operator -, subtraction means negate the right operand and

add. Negate means complement each bit and add one (two's compliment).

The operators add with carry (q-b) and subtract with borrow (--) should

only be used in a double precision context with the elght-bit addition
and subtraction. To insure the setting of the carry bit, the expression

should be simple.

January 1984 21



PASCAL/48

Example:
A[2] := A[2] + B[2];
A[I] := A[1] 4-+ B[2];
(* DOUBLE PRECISION ADDITION _)

A[2] := A[2] - B[2];
A[I] := A[I] -- B[I];
(* DOUBLE PRECISION SUBTRACTION *)

For the rotate and shift operators, the left operand is the operand to
be acted on and the right operand gives the rotate or shift count.

These operators are implemented with some special case analysis. For
example, a rotate without carry by four is implemented as a SWAP NIBBLES

instruction. The rules governing the use of dyadic operators in
expressions are given in section 6.

The operands for the dyadic operators must be of type integer,

except the logical operators which take either Boolean or integer

operands. The result type is integer for all of the dyadic operators

except the BIT and relational operators which produce Boolean results
and the logical operators which produce Boolean results if their
operands were Boolean.

The dyadic operator BIT is used for bit selection. Its left

operand must be an integer and its right operand must be an integer

constant in the range 0 to 7. It is particularly useful in testing
individual bits of the I/0 ports.

Example:
IF PORT1 BIT 7 THEN . . .

WHILE PORT1 BIT 2 DO • • •

22 January 1984



-----. PASCAL/48

6 EXPRESSIONS

The syntax of an expression is:

<<< expression >>>

> monadlc op ---> ( ---> expression ---> ) --t--->

> monadic op ---+----_--> constant .... >_

dyadlc__op<..................

<<< variable >>>

---> ident > int const -+-> ] -4---->

I>- i> ident

Expressions define sequences of MCS-48 instructions for operating
on data. The rules which govern expressions are designed to allow

flexibility in these expressions but allow the programmer to retain
control of machine resources.

Recall that any path through the syntax diagram labelled
<<< expression >>>--_elds a valid expression. A variable is either an

identifier (i.e., a scalar variable) or an array element. An array
element can have either a constant or a variable index.

There is no operator hierarchy and dyadic operators in an
expression are executed strictly in order from left to right. Note that

January 1984 23



PASCAL/48

parentheses cannot be used to force a priority on dyadic operator
evaluation. For a monadlc operator whose operand is in parentheses (and

can therefore be an expression), the operand is evaluated first and then

the monadlc operator is applied. For a monadic operator whose operand
is not in parentheses (and must therefore be a constant or variable) the

monadlc operator is applied directly to the operand. The result may
then become an operand of a dyadic operator.

Example:

_' DEC ADJ(X+I)

Valid expression. Add X and I and decimal adjust the
result.

DEC ADJ X+l

Valid expression. Decimal adjust X and add 1 to the result.

DEC ADJ(X.I) AND Y

Valid expression. Add X and I, decimal adjust the result,
and mask Y with the ensuing result.

DEC ADJ(0RD CHI + ORD CH2)

Valid expression. Decimal adjust the sum of the ordinals of
the character variables CHI and CH2.

DATA[l] 44- DATA[I+1]

Invalid expression. Array index must be a constant or a

variable. This expression would have to be broken into two

parts - first I+I would have to stored in a variable; second
_ DATA would have to indexed by that variable and then added

to DATA[l].

A + B[I] - C ROTL 2 ++ TABLE[3]

Valid expression. Add A and the first element of B,
subtract C, rotate left two, add the third elementof array
TABLE with carry.

24 January 1984



I.i

i _ PASCM,/48

PORTI+ PORT2+ TABLE[4] XORI6 82

Valid expression.ReadPORTIandPORT2andaddjaddfourth
element of array TABLEj exclusiveor the result with the
hexadecimalconstant82.

I

F

January 1984 25



)

i
I

I

t PASCAL/48
t

I 7 PREDECLARED VARIABLES

Access to many parts of the MCS-48 computer is provided by a set of

predeclared variables. These are variables which can be used in

programs without being declared by the programmer. They represent data °

items or similar which are not part of the machine's memory. Use of a
predeclared variable in an expression causes the data item to be

referenced and assignment to the variable causes the data item to be
set.

Example:

CARRY is a predeclared variable.

CARRY := TRUE; (* THIS TURNS THE CARRY BIT ON *)

IF CARRY THEN X := X + 1

ELSE X := 0;

(* THIS INCREMENTS X IF THE CARRY BIT IS ON *)

(* OTHERWISE IT SETS X TO ZERO *)

Example :

TIMER is a predeclared variable.

TIMER := I00;

(* THIS SETS THE MACHINE'S TIMER TO I00 *)

The table below shows all of the predeclared variables, their type
and meaning.

VARIABLE TYPE MEANING

ACCUMULATOR Typeless The accumulator.
BUS INTEGER The bus.

CARRY BOOLEAN The accumulator carry bit.
COUNTER INTEGER The built-in counter.

FLAG0 BOOLEAN Flag 0.

FLAG1 " Flag I.
INT " Interrupt pin.

PORT1 INTEGER I/O port I.

PORT2 " I/0 port 2.

PORT4 " I/0 port 4.

PORT5 " I/O port 5.

PORT6 " I/0 port 6.

PORT7 " I/0 port 7.
PSW " Program status word.
TIMER " The built-in timer.

TIMERFLAG BOOLEAN Timer flag.
TO " Pin TO.

T1 " Pin TI.

26 January 1984



PASCAL/48

The predeclared variable ACCUMULATOR is typeless and can be
assigned to any scalar variable and can have any scalar value assigned
to it. It is used when the accumulator must be stored or initialized

(in handling interrupts for example - see section 9). Great care must
be exercised in dealing with the accumulator and carry since the
compiler will generate instructions which will affect these variables
for almost every statement.

The predeclared variables PORT1 through PORT7 and BUS are
particularly important because they give access to most of the machine's
input/output features. Assignment to them causes data to be output and
reference to them causes data to be read.

Example:
DATA := PORT1;
PORT2 :ffi2 I0101100;

Single bits can be set on a port or the BUS by referencing and
assigning the appropriate predeclared variable in the same statement.

Example:
PORT1 := PORT1 AND 2 00000001;

(* THIS WILL GENERATE ANL PI,#I *)

January 1984 27



PASCAL/48

8 STATEMENTS

The syntaxof a statementis:

<<< statement >>>

> int const ----> : _ .... > assgn stmt +-.... >

J

m--> if stmt ->-

.... > while stmt .......

----> rept_stmt -->

.... > for stmt ........ >-

.... > case stmt ->

----> call stmt ........ >

----> goto._stmt ->

----> cmpnd stmt ....... >

Note that a statement may be labelled only once and that a

statement can be empty. Empty statements are used in many examples in
this manual. Also, since a compound statement is defined to be a

statement_ anywhere that a statement can appear a compound statement can

appear. Each of the statements is explained in the following sections.

28 January1984



PASCAL/48

8.1 ASSIGNMENT STATEMENT

The syntax of the assignment statement is:

<<< assgn stmt >>>

---> variable ---> := _> expression ......>

The expression is evaluated and the variable is given that value.
If the variable is an array element, the array index is evaluated before

the expression. The type of the expression must match the type of the
variable. Note that Boolean expressions and assignment are specifically

allowed. Assignments to bit specified Boolean variables will generate

code to preserve the bit pattern of the word and modify only the bit

referenced. For the definitions of variables and expressions, and the
rules governing the construction of expressions see section 6.

Example:
TIMER := i00; (* SET TIMER TO I00 *)

_ X := A + B SHL i; (* ADD A AND B, SHIFT LEFT 1 *)
V[l] := V[1] + C; (* ADD C TO V[1] *)
A[I] := B[I]; (* COPY B[I] TO A[I] *)

January 1984 29



PASCALI48

8.2 IF STATEMENT

The syntax of the IF statement is:

<<< if stmt >>>

---> IF ---> expression ---> THEN ---> statement -]

[
L--> ELSE---> statement --+---->

The expression must be of type Boolean. It is evaluated and if it

is true, the statement following the THEN is executed. If it is false,

the statement following the ELSE is executed if an ELSE is present,
otherwise nothing is executed.

Example:

IF A[I] > MAX THEN MAX := A[I];

(* MAX IS REPLACED BY A[I] IF A[I] EXCEEDS MAX *)

Example:

IF RESET THEN PORTI := 0 ELSE PORT1 := DATA;

(* RESET IS A BOOLEAN - ITS VALUE IS TESTED *)

Example: ..
IF COUNT > LIMIT THEN

BEGIN

COUNT := I;

PORT1 := NEWDATA;
END

ELSE

BEGIN

COUNT := COUNT + I;

PORTI := OLDDATA;
END

(* NOTE THE USE OF COMPOUND STATEMENTS. *)

30 January 1984



._. PASCAL/48

Example:
IF A < B THEN

IF B < C THEN
PORT1 := C

ELSE PORT1 := B
ELSE

IF A < C THEN
PORT1 := C

ELSE PORT1 := A
(* THIS EXAMPLEOUTPUTSTHE LARGEST*)
(* OF THREE INTEGERSA, B, AND C *)

Care should be taken with nested if-then-else constructs in
avoiding the problem of the "dangling else." An else clause is
associatedwith the nearestif. Consequently,in the followingexample,
the variable C would be undefined if A is false even though the
indentingmight lead the reader to infer that C should be assigned 1
when A is false.

Example:
IF A THEN

IF B THEN
C :=0

ELSE
_ C := 1

(*THIS EXAMPLEDEMONSTRATESTHE POSSIBILITY*)
(* OF A DANGLINGELSE CLAUSE *)

To preventthe problemof the "dangling else" a compound statement
(BEGIN-ENDpair) is necessary.

Example:
IF A THEN

BEGIN
IF B THEN

C :=0
END

ELSE
C := 1

(* THIS EXAMPLEDEMOSTRATESTHE METHOD *)
(* OF PREVENTINGA DANGLINGELSE CLAUSE *)

January1984 31



PASCAL/48

8.3 WHILESTATEMENT

The syntax of the WHILE statement is:

<<< while stmt >>>

_m> WHILE --> expression m-> DO ---> statement ---->

The expressionis evaluated. It must be of type Boolean. The
statementis repeatedlyexecuteduntil the expressionbecomes false. If
its value is false at the beginning,the statementis not executed at
all.

Example:
(* INTEGERDIVISIONBY REPEATEDSUBTRACTION*)

DIV := 0;

WHILE NUMERATOR> DENOMINATORDO
BEGIN
DIV := DIV + i;
NUMERATOR := NUMERATOR- DENOMINATOR;
END;

REMAINDER := NUMERATOR;

A useful specialcase of the WHILE statement involves using the
Boolean constantTRUE as the expression. Since TRUE is always true (by
definition)this generatesan infiniteloop. This constructis used in
the exampleprogram in section4.

Anotheruseful specialcase is the use of one of the I/O ports (or
the BUS) as part of the expression,providedthe port is being used for
input. Evaluationof the expressioncauses the port to be read and,
since its value changesindependentlyof the microcomputer,the WHILE
statementcan be used to wait for changesin the port. The statement
part of the WHILE statementcan be empty and so the effect is continuous
loopinguntil a certaininput occurs.

Example:
WHILE PORT1 > 0 DO;

(* LOOP UNTIL PORT1 CHANGESTO ALL ZEROS *)

32 January1984



I

i _ PASCAL/48

, Example:
WHILE PORT2 BIT 7 DO;

._ (* LOOP UNTIL PORT2 BIT 7 GOES LOW *)

Example:
"' CONST STATUS = 7;

WHILE NOT(PORT1 BIT STATUS) DO;

(* LOOP UNTIL PORT1 BIT 7 GOES HIGH *)

January 1984 33



|

f

PASCAL/48

8.4 REPEAT STATEMENT

The syntax of the REPEAT statement is:

<<< rept__stmt >>>

---> REPEAT -+-> statement T> UNTIL ---> expression ---->
i ;<____+

The expression is evaluated. It must be of type Boolean. The

sequence of statements between the symbols REPEAT and UNTIL is executed

repeatedly (and at least once) until the expression becomes true.

Example:

I :=0;
REPEAT

I := I+I;

R := R- S;

UNTIL R < S;

(* INTEGER DIVIDE BY REPEATED SUBTRACTION *)

(* ASSUMES R > S INITIALLY *)

A useful special case of the REPEAT statement has an empty
statement between the REPEAT and UNTIL (i.e., no text). In this case,

the condition is repeatedly tested until it is true. As with the WHILE

statement, if the expression involves the I/0 ports or the BUS_ this
allows a loop to be written which will continue to execute until an
outside event occurs.

Example:
REPEAT

UNTIL PORT1 = O;

In this example_ PORT1 will be read and compared with zero and this
will be repeated until PORTI becomes zero.

34 January 1984



._ PASCAL/48
i

8.5 FORSTATEMENT

The syntaxof the FOR statementis:

.' <<< for stmt >>>

---> FOR--> for llst --> DO --> statement-_---->

<<< for list >>>

> DOWNTO

The FOR statement indicates that a statement called the controlled

statement is to be executed zero or more times. The identifieris
_ called the controlvariable. The first con vat in the definition of

for list is called the initialvalue and the second is called the final
Valu--e.These valuesmust be of type integer.

The initialvalue expressionand the final value expression are
evaluated. The control variable is given the initialvalue. If the
initialvalue is greater than (less than) the final value in the TO
(DOWNT0)case, the controlledstatementis not executed. Otherwise,the
controlvariable is given a progressionof values up to (down to) the
final value and the controlledstatementis executedfor each one.

Example:
FOR I := 1 TO I00 DO

PORTI := I;

(* OUTPUT THE INTEGERS 1 THROUGH I00 IN SEQUENCE ON PORT1 *)

Example:
SUM :=0;
FOR I := 1 TO I0 DO

SUM :=A[I]+ SUM;

(* ADD UP THE ELEMENTSOF AN ARRAY*)

January 1984 35



PASCAL/48

Example:
FOR I := I0 DOWNTO 1 DO

BEGIN

A[I]:=o;
B[I]:=0;
C[I]:=0;
END;

(* INITIALIZEARRAYS *)

Example:
FOR I := 200 DOWNTO I DO

FOR J := 200 DOWNTO 1 DO;

The last example generates two nested Decrementand Jump on Non-Zero
instructions(DJNZ) if I and J are registers. Nothingwill be executed
by these loops but they constitutea convenientform of 'busy wait',
i.e., a delay (see also the predeclaredprocedureDELAY in section8.9).

The FOR statementis implementedwith a DJNZ instruction if the
DOWNTO case is used, the final value is the constant I, and the control
variable is a register. This is the most efficient form of counting
loop on the MCS-48 computers. Other forms of the FOR statementare
implementedwith explicitincrementatlonfor the arithmeticand explicit
comparisonfor the loop control.

The value of the control variable is Undefined after the FOR
statement completes execution, i.e., the programmercannot assume it
will have any particularvalue.

36 January 1984



PASCAL/48

I 8.6 CASESTATEMENT
[
.i

The syntax of the CASE statementis:

<<< case stmt >>>

V

---> CASE--> expression--->OF ---> casellst_flit-_-->END ---->

I ; <.....__+
I

<<< case llst elt >>>

-+-> constant T-> : m_> statement ..... >

The expression (called the selector) is evaluated. The statement

labelled with a constant (called a case label) equal to the selector

value is executed. Upon completion of the selected statement, control

is transferred to the end of the case statement, provided no GOTO
statement was executed. If the selector value is not within the limits

of the case labels, the results are undefined. It is the programmer's

responsibility to ensure that this does not occur. The case statement

is implemented with a table of the addresses of the statements in the
case list elements. This table is indexed with the expression. The

size of the table is determined by the range of constant values used as
case labels but not their absolute values. Thus the smaller the range

of values, the smaller the size of the table generated. Case labels

must have ordinal values in the range 0 to 255. A case statement must

not cross a page boundary. When the compiler corrects for a page
boundary problem the whole case statement is shifted to the beginning of
the next page.

It is importan _ to realize that the case labels are no____tstatement
labels. They cannot be used as the targets of GOTO statements and their

scope is limited to the case statement in which they appear.

January 1984 37



PASC/&/48

Example:
CASEI OF

I: PORTI := X; (* EXECUTE THIS IF I = I *)

2:PORT2 := Y; (* EXECUTE THIS IF I = 2 *)

3,4: BEGIN

• (* EXECUTE THIS IF I = 3 OR 4 *)

END;

5:PORT1 := 21 (* EXECUTE IF I = 5 *)
END

Example:

CH := CHR(PORTI);
(* READ A CHARACTER FROM PORT! *)

CASE CH OF

"D': PORT2 := DATA[I];

"C': DATA[I] := PORT2;

"M': IF DATA[J] > 128 THEN
BEGIN

DATA[I] := PORT2;

DATA[K] := BUS;

END;
END

(* NOTE THE TABLE RANGE IS II. *)

(* "E'.,'L" TRANSFER CONTROL TO THE END *)

(* OF THE CASE. "A', "B', 'N'..'Z" *)

(* PRODUCE UNDEFINED RESULTS. *)

38 January 1984



_-_ PASCAL/48

8.7 GOTO STATEMENT

The syntax of the GOTO statement is:

<<< got_stmt >>>

---> GOTO m-> int const _-->

Execution of a GOTO statement causes to control to be transferred

to the statement labelled with the integer constant. This constant has

to have been declared in a LABEL part.

It is possible to branch to any label defined on any statement.
This means that it is possible to Jump into or out of a procedure. If

this is done, the Pascal/48 compiler will generate the necessary

unconditional branch only. The stack will remain unchanged. It is the
programmer's responsibility to modify the stack and PSW as necessary in

these special cases. The use of labels and GOTO statements is

discouraged because other control statements (WHILE, IF etc) are

provided and their use is preferred.

Example:

GOTO I;
(* BRANCHES TO STATEMENT LABELLED WITH 1 *)

January 1984 39



PASCAL/48

8.8 PROCEDURECALLSTATEMENT

The syntax of a PROCEDURE CALL statement is:

<<< call stmt >>>

---> ident .... >

A procedure call statement causes the named procedure to be
executed and then control returns to the statement following the call.
The call is effected with an MCS-48 CALL instruction which places the
return address on the hardware stack. As in assembly language
programming, the programmer must take care not to overflow the stack
since it wraps around and will overwrite previous stack frames. Recall
that the stack has a capacity of eight frames.

40 January 1984



PASCAL/48

8.9 PREDECLARED PROCEDURES

Certain procedures are predeclared (i.e., do not have to be

declared by the programmer in order to be used) and they provide access

to some of the MCS-48 instruction set. They may be called anywhere that

a procedure call can occur and the effect is to generate a either one or
a small number of MCS-48 instructions. Each takes a variable number of

parameters (i.e., one or more as the user choosesl but the parameters

are of a special type in some cases.

The procedures are:

ENABLE

Use: Enable interrupts, timer or clock output.

Parameters: COUNT_NT, TIMER INT, EXTERN INT, CLOCK OUT.

Example : ENABLE(COUNT INT_ EXTERN_ INT_; --
(* ENABLE COUNTER AND EXTERNAL INTERRUPTS "1

DISABLE

Use: Disable interrupts.

Parameters: COUNT INT, TIMER INT, EXTERN INT.

Example: DISABlE(COUNT INT, EXTERN INT-_;
(* DISABLE COUNTER AND EXTERNAL INTERRUPTS "1

DELAY

Use: Generate a delay loop. Since this depends

on crystal frequency, see the M option in
section i0.

Parameters: Integer expression(s) (delay(s) in millisecs).

Example: (*$M3.6 SET XTAL FREQUENCY *)

DELAY(100);
(* GENERATE I00 MILLISEC DELAY *)

START

Use: Start the timer or counter.

Parameters: TIMER, COUNTER.

Example: START(TIMER);
(* TURN ON TIMER "1

STOP

Use: Stop the timer or counter•

Parameters: TIMER, COUNTER•

Example: STOP(TIMER);

" (* TURN OFF TIMER *)

F

January 1984 41



PASCAL/48

INCREMENT

Use: Increment the value of varlable(s).

Parameters: Any integer varlable(s).

Example: INCREMENT(I,PORTI);
(* INCREMENT I AND PORT1 *)

DECREMENT

Use: Decrement the value of varlable(s).

Parameters: Any integer varlable(s).

Example: DECREMENT(I,PORTI);
(* DECREMENT I AND PORT1 *)

SELECT

Use: Select register banks.

Parameters: REG BANK0, REG BANKI.

Example: SEL_CT(REG BANff1);
(* SELECT_EGISTER BANK 1 *)

COMPLEMENT

Use: Complement the value of variable(s).

Parameters: Any Boolean varlable(s).

Example: COMPLEMENT(F0,CARRY,B);

(* COMPLEMENT F0, CARRY AND B *)

INLINE

Use: Inline insertion of code into the object file.

Parameters: Any integer constant(s).

Example: INLINE(16 27,16_97);
(* INSERT INSTRUCTION TO CLEAR THE *)

(* ACCUMULATOR AND CARRY BIT *)

Note that the DELAY procedure generates loops to cause the machine

to perform a "busy wait'. The maximum value for any one operand is 255

so the maximum delay is 255 milliseconds. The delay is determined by

the computers operating frequency and to implement DELAY correctly the

compiler needs to know the crystal frequency (see the M option in

section I0). Since the DELAY capability depends on the execution time

of the machine instructions generated, the compiler will not correct any

page boundary problems (see section 4.5) and will issue an error

message. The programmer must then relocate the code as necessary. The

INCREMENT, DECREMENT and COMPLEMENT procedures are implemented using the

corresponding instructions of the machine where possible. This meads

that INCREMENT(I) is considerably more efficient than the asslgnment

statement I := I + I and does not affect the carry bit. Similarly the

efficiency of COMPLEMENT(B) for a bit specified Boolean is considerable

compared to B := NOT B. The INLINE procedure allows the programmer to
enter machine instructions directly into the object file. This facility

is provided as a precaution in the event that the required instructions

cannot be generated from other features of Pascal/48. The INLINE

procedure should seldom be needed.

42 January 1984



_, PASCAL/48

9 INTERRUPTS

Interrupt handlers are wrlttenas procedures with special names.
The names are TIMER INT or COUNT INT for timer and counter interrupts
EXTERN INT for external interrupts. If procedures by these names are

• presenT, they should not be called anywhere in the program. If they
are, the compiler will issue a warning but will generate the required
instructions for the call. The compiler will generate machine code for
for these procedures and place branch instructions to them at address 3
(external) and address 7 (timer or counter). When an interrupt occurs,
the effect is an automatic call to the appropriate procedure• When the
procedure completes, control returns to the instruction following the
one which preceded the interrupt. This return is done by an RETR
instruction which the compiler generates. If no interrupt handler is
provided, the compiler will generate an unconditional branch to location

, 3 at location 3 and to location 7 at location 7. Thus, if an interrupt
occurs and no handler was provided, the machine will enter an infinite
loop at the appropriate address•

Interrupts are enabled and disabled by calling Pascal/48
predeclared procedures (see section 8.9). The compiler will not
generate any instructions in the interrupt handling procedure to switch

_-- register banks or save and restore the accumulator. These actions are
not always required and are left to the programmer. Register banks can
be switched with the SELECT predeclared procedure and the accumulator
can be saved and restored using the predeclared variable ACCUMULATOR.
The interrupt handlers will reset the register bank when the control is
returned to the appropriate code.

" Example:
PROCEDURE TIMER__INT;

VAR SAVE__ACC[60]: INTEGER;

BEGIN

SELECT(REG__BANKI);
SAVE ACC := ACCUMULATOR;

(* REGISTER BANK IS RESET AUTOMATICALLY *)

ACCUMULATOR := SAVE_.ACC;
END (* TIMER INT *);

It is not always appropriate to return to the point of interruption
following an interrupt. For example, the external interrupt may be used
to perform some sort of partial reset of the computer• In such cases,
it may be preferable to return to a statement in the program which is
labelled• One way to achieve this is to modify the hardware stack
withln the interrupt handler and the allow the RETR instruction at the

January 1984 43



PASCAL/48

end of the interrupt handling procedure to transfer control to the
labelled statement• The following example shows how this can be done.

Example:
PROGRAM EXAMPLE;

LABEL I00;

PROCEDURE EXTERNINT;

VAR I[3], J[4] : INTEGER;
STACK[8] : ARRAY[0.•IS] OF INTEGER;

BEGIN
I := PSW - 1 AND 16 07 SHL 1;
(* DECREMENT THE PROGRAM STATUS WORD. *)
(* MASK THE STACK POINTER BITS WHICH *)
(* POINT TO THE STACK PAIRS• SHIFT *)
(* FOR THE INDEX IN THE STACK ARRAY. *)

STACK[I] "= ADDR WORD i00;
(* THE FIRST STAC--KENTRY CONTAINS THE *)
(* LOCATIONWITHINTHE PAGE. *)

INCREMENT(I);
J := STACK[l] AND 16 F8 + ADDR PAGE I00;
STACK[l] .;=J;
(* THE SECONDSTACKENTRYCONTAINS *)
(* THE PAGE NUMBER IN THE LOWER TItREE*)
(* BITS. *)

END (* EXTERN INT *);

BEGIN

i00:

END.

44 january 1984



PASCAL/48

I0 USE OF THE PASCAL/48 COMPILER

The Pascal/48 cross compiler is an indirect access file on the

Langley CYBER/NOS complex and is called PAS48 on the user number MICRO.

It uses a single input file which contains the program to be compiled.

It produces three output files which contain the listing, the object

file, and an assembly language program equivalent to the machine

instructions which the compiler generated. This last file could be

assembled to produce the same object file as the compiler produced. The

necessary NOS control cards are:

GET,PAS48/UN=MICRO.

PAS48,input,output,object,assembl.

The lower case names are the default files which the Pascal/48 compiler

will use if no file is specified by the user. All files are rewound

before a compilation.

The listing that the compiler generates shows the source program

annotated with the corresponding llne numbers and the approximate value
of the location counter as it was at the beginning of each printed line.

The value is approximate because of the non-uniform mapplng between the

_-- source text and the generated instructions. If the compiler corrects

for a page boundary problem the location counter will be further

affected, since the listing is generated before the machine code is

modified. The locatlon counter values are useful in determining the

points in programs where page boundaries are crossed.

Following the source program listing is the cross reference of

identifiers and a map of the variables of RAM by their location. The

RAM map provides an indication of the overloading of variables.

Following this is the pseudo-assembly listing of the instructions that

the compiler generated. Each instruction has a llne number in its

comment field and once again, these llne numbers are only approximate.

Several options are available to control the Pascal/48 compiler's

output. Options may be included in source programs inside comments or

they may appear on the execute llne. If they are used inside comments,

a dollar sign must follow the opening (* and the options follow the
dollar sign. Many options may appear in which case they are separated

by commas.

Example:

(*$A+,I+ TURN ON ASSEMBLY LIST AND ROM IMAGE *)

Options may follow the last file name on the execute llne and are

separated from it by a slash.

Example:

PAS48,MYPROG,LISTING,MYOBJ/A+,X-,I+.

January 1984 45



PASCAL/48

The options and their meaning are given in the following table:

A+ Turn assembly listing on (default).
A- Turn assembly listing off.

B+ Code is modified for conditional jumps
cross page boundaries (default).

B- Code is not modified and errors emitted.

B= Restore previous setting.

C+ Read 80 columns of the input records.
C- Read 72 columns (default).
Cn Read "n" columns (I0 < n < 120).
C= Restore previous setting.

Dn Number of internal data RAM-64 byte blocks
(I <= n <= 4). Default is I.

H+ Turn on complete page headings (default).
H- Turn page headings off.
H Turn on partial headings (page ejects).
H= Restore previoussetting.

I+ Generate ROM image listing.
I- No R0M image listing (default).

L+ Turn listing on (default).
L- Turn listing off, error messages listed.
L* Page eject.
L= Restore previous setting.
L'cs" cs is a character string used as a title.

Mn Crystal frequency of "n" hertz (if an integer)
or megahertz (if n contains a decimal point),
Default is 5.9904 MHz.

O+ Origin at next page boundary.
On Origin at address "n'.

P+ Print 52 lines per page.
P- Print 40 lines per page (default).
P= Restore previous setting.
Pn "n" lines per page (II < n < I000).

R+ ROM size is eight 256-byte pages.
R- ROM size is four pages (default).

T+ Equivalent to A-,H-,L+,X- (suitable for terminals).
T- Restore previous listing option settings.
T= Restore previous T option setting.

W+ Print warning messages (default).

46 January 1984



PASCAL/48

W- Suppress warning messages.

W= Restore previous setting.

X+ Turn on cross reference listing (default).

X- Turn off cross reference listing.

The assembly listing is a pseudo-assembly listing of the

instructions that the compiler generated. The ROM image listing shows

the contents of the ROM as it would look if the object program were

loaded into an MCS-48 computer. The page heading and llne count options

are designed to allow the terminal user to disable the headings and page

control because they are of most use when the listing is sent to a line
printer. Since options can be specified on the execute line, the

listing format can be changed temporarily when a compilation is being

done at a terminal and the results displayed on the terminal. The cross
reference is a cross reference of the identifiers used in the program.

Extended program memory addressing has not been implemented in the

Pascal/48 language, so the ROM size is limited to eight 256-byte pages.

The crystal frequency option should only be included in the source

program inside a comment and not on the execute line. The CYBER Control

Language limits fields to seven characters so defining of the frequency

in hertz is impossible. The decimal point in the megahertz notation
terminates the the execution line and therefore the option list is also

_-_ terminated.

January 1984 47



PASCAL/48

II APPENDIX A - SAMPLE PROGRAMS

Four programs are included here as examples of the use of
Pascal/48. The first takes ASCII characters from a keyboard and
translates them into Morse code. The remaining examples are different
methods of turning the MCS-48 microcomputer into a simple stopwatch.
These programs are examples and are intended to be used for reference
purposes. None of the programs is written to be particularly functional
or efficient.

The Morse code example reads an ASCII character on PORT1 and

outputs Morse code on pin seven of PORT2. The BUS is not used. The

seven least significant bits of PORT1 contain the character and the most

significant bit is on while a key is pushed. The keyboard is assumed to

generate both upper and lower case letters and the program takes account

of this. The Morse code corresponding to the letters is contained in an

array in ROM and the end of the code for each letter is indicated by a

one followed by all zeros. A one in the code indicates a DAH and a zero

a DIT. For example, the letter A is coded as the bit string 01100000

which gives a DIT then a DAH and then the end code.

The first stopwatch program assumes that a control switch is

connected to bit seven of the BUS. Pushing the switch changes this bit

from zero to one. The output is presented on PORT1 and PORT2 as BCD

digits. The upper half of PORT1 is a minute count_ the lower half and

the upper half of PORT2 is a second count, and the lower half of PORT2

is a tenths of a second count. Upon initialization the display is all

zeros. Pushing the switch once causes the watch to start counting in
minutes, seconds and tenths of a second. Pushing the switch a second

time causes the watch to stop counting and pushing it a third time

resets the watch. The second stopwatch program uses the decimal adjust

capability for a BCD counter, and outputs the minute count on PORT1 and
the second count on PORT2. The third program uses an INTERSIL ICM 7218

LED driver for output displays.

48 January 1984



t'ASCAL/48

-- Example Program I --

(* THIS PROGRAMCONVERTSASCII KEYBOARD INPUT TO MORSE CODE OUTPUT *)

PROGRAMMORSECODE;

CONST
FIFTY MILLISECONDS= 50;

VAR
CH[4] : INTEGER;

PROCEDUREGETKEY;

VAR
CODETABLE[,ROM]: ARRAY [0 .. 63] OF INTEGER;

VALUE
CODETABLE=

(2_00000000, 7 OF 2._10000000,
_-_ 2__10110110 2__10110110 2 10000000j2__I0000000

2__110011102__I0000000 201010110, 2__I0010100
2__IIIIii002__01111100200111100, 2__00011100
2__000011002__00000100210000 I00, 2__ii000100
2 11100100 2 11110100 2 11100010,2 10101010
2-'10000000._ 2--10000000_ 2_10000000, 2"-00110010.
2 10000000 2 01100000. 2__10001000, 2 10101000.
2 10010000 2 01000000 2__00101000, 2 11010000.
2_00001000 2_00100000. 201111000, 2_10110000.
2_01001000 2_11100000. 210100000, 2_11110000.
2_01101000 2_11011000. 2-01010000, 2_00010000.
2 11000000 2 00110000 2-00011000, 2 01110000.
2 10011000 2 10111000. 2 11001000j 2 10000000.
2--10000000 2--10000000. 2_.--10000000, 2_--00000000 ;

BEGIN (* GET KEY *)
REPEAT
UNTIL PORT1 BIT 7; (*PIN 7 HIGH MEANS KEY PUSHED *)

CH := PORTI AND 2 01111111;

REPEAT
UNTIL NOT PORT1 BIT 7; (* WAIT FOR PIN 7 LOW *)

(* CONVERTLOWER CASE LETTERSTO UPPER CASE *)
IF CH > 16 60 THEN CH := CH- 16 40

I-- ELSE CH := CH- 1620;

CH := CODETABLE[CH] (* LOOK UP MORSE CODE *)
END; (* GET KEY *)

January 1984 49



PASCAL/48

-- Example Program I --

PROCEDURE SEND;

VAR

I[2] : INTEGER;

PROCEDURE DIT;

BEGIN

PORT2 := PORT2 AND 2 11111110;

DELAY(FIFTY_MILLISEC-ONDS);

PORT2 := PORT2 OR 2_.00000001;
DELAY(FIFTY MILLISECONDS)

END; (* DIT *Y

PROCEDURE DAH;

BEGIN

PORT2 := PORT2 AND 2 11111110;
DELAY(150); (*T $0 MILLISEC DELAY *)

PORT2 :=PORT2 OR 2 00000001;
DELAY(FIFTY MILLISECONDS)

END; (* DAH *5"

BEGIN (* SEND *)

IF CH = 0 THEN (* MEANS ILLEGALCHARACTER*)
FOR I := 8 DOWNTO 1 DO

DIT
ELSE WHILE CH <> 2 I0000000DO

BEGIN
IF NOT CH BIT 7 THEN

DIT

ELSE DAH;
CH := CH SHL 1
END (* WHILE *)

END; (* SEND *)

BEGIN (* THE MAIN PROGRAM:MORSE CODE *).
PORT2 := PORT2 AND 2 11111110;-
PORT1 := PORT1 OR 2 00000001;
WHILE TRUE DO

BEGIN

GETKEY;
SEND
END (* WHILE *)

END. (* THE MAIN PROGRAM*)

50 January 1984



'i

i
k

'. I--- P,,_SCAL/48

,?
-- Example Program 2

(

.!' PROGRAM STOP WATCH;
I m

(* MAKE MCS-48 INTO A SIMPLE STOP WATCH *)
- (* INPUT - BIT 7 OF THE BUS *)

' (* OUTPUT - UPPER HALF PORT I MINUTES *)

(* LOWERHALFPORTI TENSOF SECS *)
(* UPPERHALFPORT2 UNITSOF SECS *)
(*, LOWERHALFPORT2 TENTHSOF SECS*)

CONST
TENMILLISEC= 128;

VAR
DIGITS[60] : ARRAY[I..4]OF INTEGER;
SWITCH_.COUNT[2], INT COUNT[3], I[4]

: INT-EGER;

PROCEDURE DISPLAY;

(* DISPLAY TO 9:59.9 ON PORT I AND PORT 2 *)

BEGIN

PORTI := DIGITS[I] SHL 4 + DIGITS[2];
PORT2 := DIGITS[3] SHL 4 + DIGITS[4];

END (* DISPLAY *);

January 1984 51



1.

PASCALI48

-- Example Program 2

PROCEDURE TIMER INT;

VAR
SAVE ACC[7] : INTEGER;

BEGIN
SAVE ACC := ACCUMULATOR;
TIMER := TEN MILLISEC;
START(TIMER)T

IF INT COUNT= 9 THEN
BEGIN
INT COUNT := 0;

IF DIGITS[4] = 9 THEN
BEGIN
DIGITS[4] := O;
IF DIGITS[3] = 9 THEN

BEGIN
DIGITS[3] := 0;
IF DIGITS[El = 5 THEN

BEGIN
DIGITS[2] := 0;
IF DIGITS[l] ffi9 THEN

DIGITS[If '= 0
ELSE

INCREMENT(DIGITS[If)
END

ELSE

INCREMENT(DIGITS[2])
END

ELSE
INCREMENT(DIGITS[3])
END

ELSE
INCREMENT(DiGITS[4])

END
ELSE

INCREMENT(INT__COUNT);

DISPLAY;

ACCUMULATOR := sAVE__ACC;
END (* TIMER INT *);

52 January 1984



PASCAL/48

-- Example Program 2 ---

BEGIN
SWITCHCOUNT:- 0;

WHILETRUEDO
BEGIN
CASESWITCHCOUNTOF

0 : BEGIN
FOR I := 4 DOWNTOI DO

DIGITS[I]:-O;
DISPLAY;
END(*0 *);

1 : BEGIN
INTCOUNT:-0;
TIMER:-TEN MILLISEC;
START(TIMER)7

ENABLE(TIMER INT);
END(*1 *);--

2 : BEGIN
STOP(TIMER);
DISABLE (TIMER_ INT) ;

_ END (* 2 *);
END (* CASE*);

WHILE BUS BIT 7 DO;

WHILENOT(BUSBIT 7) DO;

INCREMENT(SWITCHCOUNT);
IF SWITCHCOUNT= 3 THENSWITCHCOUNT:-0;
END (* WH_LE*)

END (* STOPWATCH*).

January 1984 53



PASCAL/48

-- Example Program 3 --

PROGRAMSTOP__WATCH;

(* MAKEMCS-48INTOA SIMPLESTOPWATCH*)
(* INPUT - BIT 7 OF THE BUS *)
(* OUTPUT- PORTI CONTAINSMINUTES *)
(* PORT2 CONTAINSSECONDS *)

CONST
TENMILLISEC= 128;

VAE
SWITCH COUNT[2] : INTEGER;

INT COUNT[4] : INTEGER;

SECT5 ] : INTEGER;

MIN[6] : INTEGER;

PROCEDURE DISPLAY;

(* DISPLAY BCD TO 99:59 ON PORTS I AND 2 *)

BEGIN

PORT1 := MIN;

PORT2 := SEC;

END (* DISPLAY *);

54 January 1984



PASCAL/48

' -- ExampleProgram3 --

PROCEDURETIMER__INT;

(* WHEN THE TIMER FLAG IS SET, THEN THE INT COUNT *)
(* REGISTER IS INCREMENTED ONE. IF INT COUNT IS *)
(* FILLED THIS PROCEDURE INCREMENTS I_IE_SECONDS *)
(* AND DISPLAYS THEM. *)

VAR

SAVE__ACC[7]: INTEGER;

BEGIN
SAVEACC :=ACCUMULATOR;
TIMER:=TEN MILLISEC;
START(TIMER)?
IF INTCOUNT= 99 THEN

BEGIN
INT COUNT := 0;
IF SEC= 16 59 THEN

BEGIN

SEC := 0;

.MIN := DEC__ADJ(MIN+ I)
END

ELSE
SEC := DEC ADJ(SEC + I)

END
ELSE

INCREMENT(INT__COUNT);

DISPLAY;
ACCUMULATOR := SAVE ACC;

END (* TIMER INT *);

January 1984 55



PASCAL/48

-- Example Program 3

BEGIN
SWITCH COUNT := 0;

WHILE TRUE DO
BEGIN
CASE SWITCH COUNT OF

0 : BEGIN
SEC := 0;
MIN := O;
DISPLAY;
END(*0 *);

I : BEGIN
INT COUNT := O;
TIMER := TEN MILLISEC;
START(TIMER)?

ENABLE (TIMER__INT);
END(*1 *);

2 : BEGIN
STOP(TIMER);
DISABLE (TIMER__INT) ;
END(*2 *);

END(,CASE*);

WHILE BUS BIT 7 DO;

WHILE NOT(BUSBIT 7) DO;

INCREMENT(SWITCHCOUNT);
IF SWITCH COUNT--3 THEN SWITCH COUNT := 0;
END (* WH_LE *)

END (* STOP WATCH *).

56 January 1984



PASC_/48

-- Example Program 4 --

PROGRAM STOPWATCH;

(* THIS PROGRAM IS THE SAME AS THE PREVIOUS EXAMPLE *)

(* EXCEPT IT USeS AN INTERSlL ICM 7218 LED DRIVER *)

(* TO OUTPUT TO 7-SEGMENT DSPLAYS, AND IT ALSO *)

(* DISPLAYS .01 SECOND. THE OUTPUT IN THIS EXAMPLE *)

(* USES THE BUS AND BIT 0 OF PORT 1 TO CONTROL THE *)

(* 7218. INPUT IS ON BIT 7 OF PORT 2. *)

CONST

TEN MILLISEC = 128;

VAR

SWITCH COUNT[2] : INTEGER;
INT COUNT[3] : INTEGER;

SECT4 ] : INTEGER;

MIN[5] : INTEGER;

_ PROCEDURE DISPLAY;

(* DISPLAY WITH THE INTERSIL ICM 7218 LED DRIVER *)
(* DISPLAY T0 99:59.99 *)

VAR

DSPL[46] : ARRAY[I..8] OF INTEGER;

I[6] : INTEGER;

BEGIN

DSPL[I] := MIN ROTR 4 AND 16F; (* TENS OF MIN *)

DSPL[2] := MIN AND 16F; (* UNITS OF MIN *)
DSPL[3] := 15; (* NOT USED *)

DSPL[4] := SEC ROTR 4 AND 16 F; (* TENS OF SEC *)

DSPL[5] := SEC AND 16F; (* UNITS OF SEC *)
DSPL[6] := 15; (* NOT USED *)
DSPL[7] := INT COUNT ROTR 4 AND 16 F; (* 0.I SEC *)

DSPL[8] := INT--COUNT AND 16F; (* 0.01 SEC *)

PORT1 := 16_0--I;(* MODE LINE OF 7218 TO PORT1 BIT 0 *)
BUS := 16 90; (* MODE WORD FOR B CODE *)
PORTI := 16 00; (* MODE LINE LOW TO START DATA *)
FOR I := 8 DO_RqTO1 DO (* LOAD ALL 8 DISPLAYBITS *)

BUS := DSPL[I]OR 16 80

END (* DISPLAY*);

January 1984 57



PASCAL/48

-- Example Program 4 --

PROCEDURE TIMERINT;

(* WHEN THE TIMER FLAG IS SET, THEN THE INT COUNT *)

(* REGISTER IS INCREMENTED ONE. IF INT COU_T IS *)

(* FILLED THIS PROCEDURE INCREMENTS THE--SECONDS *)

(* AND DISPLAYSTHEM. *)

VAR
SAVE__ACC[7]: INTEGER;

BEGIN
SAVE ACC := ACCUMULATOR;
TIMER := TEN MILLISEC;
START( TIMER)?

(* DECIMAL ADJUST WILL SET THE CARRY *)

(* BIT IF OVERFLOW IS DETECTED. *)

INT__COUNT := DEC ADJ(INT__COUNT + i);
IF CARRY THEN

IF SEC = 16 59 THEN
BEGIN

•SEC := 0;

MIN :ffiDEC ADJ(MIN + I)
END

ELSE

SEC := DEC ADJ(SEC + I);

DISPLAY;

ACCUMULATOR := SAVE__ACC;
END (* TIMER INT *);

58 January 1984



PASCALI48

-- Example Program4 m

BEGIN

SWITCH COUNT := O;

WHILE TRUE DO

BEGIN

CASE SWITCH COUNT OF

0 : BEGIN

INT COUNT := O;

SEC := O;

MIN :ffi0;

DISPLAY;

END (* 0 *);
1 : BEGIN

TIMER := TEN MILLISEC;

START(TIMER)_

ENABLE(TIMERINT);
END(*1 *);

2 : BEGIN
STOP(TIMER);
DISABLE(TIMER._INT);
END(* 2 *);

END(* CASE*);

WHILE PORT2 BIT 7 DO;

WHILE NOT(PORT2 BIT 7) DO;

INCREMENT(SWITCH__COUNT);
IF SWITCH COUNT = 3 THEN SWITCH COUNT := O;

END (* WH_LE *)

END (* STOP WATCH *).

January 1984 - 59



PASCAL/48

12 APPENDIX B - SAMPLE LISTING

The fourth program of Appendix A is included here as an example of
the output listing and object file generated by the Pascal/48 cross
compiler. The Langley CYBER/NOS control cards used to generate the
files from the input source STOPWAT are:

GET,STOPWAT.
GET,PAS48/UN=MICRO.

PAS48,STOPWAT,LISTING,OBJECT/I+,P48.

The file OBJECT is the object code of the stopwatch program. The

appropriate record format, which is generated for the object file,

includes the record mark, byte count, address, and type, the program

memory, and the record checksum. All records of program memory are 16
bytes long starting at an even 16-byte address. The object code of the
stopwatch program is:

:I000000004700004030000044DFD47530FB82EAOF8

:I0001000230F5DB82FAOB830B00FFC47530FB83195

:I0002000A0230F5CB832AOB833B00FFB47530FB812

:I000300034A0230F5BB835A0230139239002273960
:I0004000BE08FE032DA8F0438002EE4283AF23805A

:I0005000625523016B57ABE66C2359DC966727ACDE

:I000600023016D57AD046C23016C57ACI409FF9349

:I000700027D727AAFA038DB327AB27AC27ADI409DE

:100080000490238062552504906535049078828918

:I00090000A37F29604900AF29B04961A2303DA9622
:I000A000A327AA047404A5000000000000000000BB
:00000001FF

The file LISTING is the output listing of the compiler. The

compiler options, I+ and P48, are selected to include the image of the

object code and 48 lines per page for documentation purposes.

60 January 1984



PASCAL/48

NASA, LANGLEY RESEARCH CENTER PASCAL MCS-48 VERSION 83/12/30 PAGE I

84/01/03. 14.44.36. CSC/NASA

009 1 PROGRAM STOP._.NATCH;
009 2

009 3 (* THIS PROGRAM IS THE SAME AS THE PREVIOUS EXAMPLE *)

009 4 (* EXCEPT IT USES AN INTERSIL ICM 7218 LED DRIVER *)

009 5 (* TO OUTPUT TO 7-SEGMENT DSPLAYS, AND IT ALSO *)

009 6 (* DISPLAYS .01 SECOND. THE OUTPUT IN THIS EXAMPLE *)
009 7 (* USES THE BUS AND BIT 0 OF PORT 1 TO CONTROL THE *)

009 8 (* 7218. INPUT IS ON BIT 7 OF PORT 2. *)
009 9
009 I0 CONST

009 II TEN MILLISEC = 128;
009 12

009 13 VAR

009 14 SWITCH COUNT[2] : INTEGER;

009 15 INT COUNT[3] : INTEGER;
009 16 SECT4] : INTEGER;

009 17 MIN[5] : INTEGER;
009 18

009 19

009 20

009 21 PROCEDURE DISPLAY;
009 22

009 23 (* DISPLAY WITH THE INTERSlL ICM 7218 LED DRIVER *)

009 24 (* DISPLAYTO 99:59.99 *)
009 25
009 26 VAR

009 27 DSPL[46] : ARRAY[I..8] OF INTEGER;
009 28 I[6] : INTEGER;
009 29

009 30 BEGIN

009 31 DSPL[I] := MIN ROTR 4 AND 16F; (* TENS OF MIN *)

010 32 DSPL[2] := MIN AND 16 F; (* UNITS OF MIN*)
016 33 DSPL[3] := 15; (* NOT USED *)

01A 34 DSPL[4] := SEC ROTR 4 AND 16_F; (* TENS OF SEC *)

021 35 DSPL[5] := SEC AND 16F; (* UNITS OF SEC*)
027 36 DSPL[6] := 15; (* NOT USED *)

02B 37 DSPL[7] :ffiINT COUNT ROTR 4 AND 167; (* 0.I SEC *)
032 38 DSPL[8] :ffiINT--COUNT AND 16_F; (* 0.01 SEC *)
038 39 PORT1 := 16 0--1;(* MODE LINE OF 7218 TO PORT1 BIT 0")

03B 40 BUS := 16--__90;(* MODE WORD FOR B CODE *)
03E 41 PORT1 := 16 00; (* MODE LINE LOW TO START DATA *)

040 42 FOR I :ffi8 DOWNTO 1 DO (* LOAD ALL 8 DISPLAY BITS *)
042 43 BUS := DSPL[I] OR 16 80
042 44

042 45 END (* DISPLAY *);
04D 46

04D 47

04D 48

January 1984 61



PASC_/48

NASA, _GLEY _SE_CH CENTER PASC_ MCS-48 VERSION 83/12/30 PAGE 2
84/01/03. 14.44.37. CSC/NASA

04D 49 PROCEDU_ TI_RINT;
04D 50

04D 51 (* MEN _ TIeR FLAG IS SET, _N _ INT COUNT *)1

04D 52 (* _GISTER IS INC_NTED ONE. IF INT COU_ IS *)

04D 53 (* FILLED _IS PROCEDU_ INC_NTS _ SECONDS *)

04D 54 (* _ DISPLAYS THe. *)
04D 55

04D 56 V_

04D 57 SAVEACC[7] : INTEGER;
04D 58

04D 59 BEGIN

04D 60 SAVE ACC := ACC_LATOR;

04E 61 TIeR := TEN MILLISEC;
051 62 ST_T(TI_R)?
052 63

052 64 (* DECI_ _JUST WILL SET _E C_Y *)

052 65 (* BIT IF OVE_LOW IS DETECTED. *)

052 66 INT COUNT := DEC_J(INT__COUNT + I);
057 67 IF C_Y _EN

059 68 IF SEC = 16 59 _N

05E 69 BEGIN

05E 70 SEC := 0;

060 71 MIN := DEC _J(MIN + I)
060 72 END
067 73 ELSE

067 74 SEC := DEC _J(SEC + I);
06C 75

06C 76 DISPLAY;

06E 77 ACC_ULATOR := SAVEACC;
06F 78 END (* TIeR INT *);
070 79

070 80
070 81

070 82 BEGIN

072 83 SWITCH COUNT := 0;
074 84

074 85 MILE _UE DO

074 86 BEGIN

074 87 CASE SWITCH COUNT OF

078 88 0 : BEGIN

078 89 INT COUNT := 0;

078 90 SEC := 0;

07A 91 MIN := 0;

07C 92 DISPLAY;

080 93 END (* 0 *);
082 94 1 : BEGIN

082 95 TIeR := _NMILLISEC;
085 96 ST_T(TI_R);

62 January 1984



PASCAL/48

NASA, LANGLEYRESEARCHCENTER PASCALMCS-48 VERSION83/12/30 PAGE 3
84/01/03. 14.44.40. CSC/NASA

086 97 ENABLE(TIMER__INT);
087 98 END (* I *);

089 99 2 : BEGIN

089 I00 STOP(TIMER);

08A I01 DISABLE(TIMERINT);
08B 102 END (* 2 *);

08D 103 END (* CASE *);
090 104

090 105 WHILE PORT2 BIT 7 DO;

096 106

096 107 WHILE NOT(PORT2 BIT 7) DO;

09B 108

09B 109 INCREMENT(SWITCHCOUNT);
09C II0 IF SWITCH COUNT = 3 THEN SWITCH COUNT := O;

0A3 iii END (* WH_LE *)

OA5 112 END (* STOP WATCH *).

January 1984 63



PASCAL/48

NASA, LANGLEY RESEARCH CENTER PASCAL MCS-48 VERSION 83/12/30 PAGE 4

SYMBOLIC CROSS REFERENCE MAP 84/01/03. 14.44.41. CSC/NASA

MODULE DEC REFERENCES

STOP WATCH 1

VARIABLE TYPE-LENGTH DEC REFERENCES

ACCUMULATO T(PRE I) 60 77

BUS I(PRE I) 40 43

CARRY B(PRE I) 67

PORT1 I(PRE I) 39 41

PORT2 I(PRE I) 105 107

TIMER I(PRE I) 61 62 95 96 I00

TRUE B(LIT I) 85

VARIABLE TYPE-LENGTH DEC REFERENCES

INT COUNT I(REG, I) 15 37 38 66 66 89

MIN I(REG, I) 17 31 32 71 71 91

SEC I(REG, I) 16 34 35 68 70 74 74 90
SWITCH COU I(REG, I) 14 83 87 109 II0 ii0

TEN MILLIS I(LIT, I) II 61 95

MODULE DEC REFERENCES

DISPLAY 21 76 92

VARIABLE TYPE-LENGTH DEC REFERENCES

DSPL I(RAM, 8) 27 31 32 33 34 35 36 37 38 43
I I(REG, I) 28 42 43

MODULE DEC REFERENCES
TIMER INT 49

VARIABLE TYPE-LENGTH DEC REFERENCES

SAVE ACC I(REG, I) 57 60 77

PROCEDURE LIST - INDENTATION INDICATES LEVEL OF NEST

STOP WATCH

DISPLAY

TIMER INT

64 January 1984



PASCAL/48

NASA, LANGLEY RESEARCH CENTER PASCAL MCS-48 VERSION 83/12/30 PAGE 5
RAM DATA MAP 84/01/03. 14.44.41. CSC/NASA

RAM MODULE VARIABLE TYPE LEN DEC REFERENCES

02 STOP WATCH SWITCH COU INTEGER 1 14 83 87 109 II0 ii0

RAM MODULE VARIABLE TYPE LEN DEC REFERENCES

03 STOP WATCH INT COUNT INTEGER 1 15 37 38 66 66 89

RAM MODULE VARIABLE TYPE LEN DEC REFERENCES

04 STOP WATCH SEC INTEGER i 16 34 35 68 70 74

74 90

RAM MODULE VARIABLE TYPE LEN DEC REFERENCES

05 STOP WATCH MIN INTEGER 1 17 31 32 71 71 91

RAM MODULE VARIABLE TYPE LEN DEC REFERENCES

06 DISPLAY I INTEGER 1 28 42 43

RAM MODULE VARIABLE TYPE LEN DEC REFERENCES

07 TIMER INT SAVE ACC INTEGER 1 57 60 77

_-_ RAM MODULE VARIABLE TYPE LEN DEC REFERENCES

2E DISPLAY DSPL INTEGER 8 27 31 32 33 34 35
36 37 38 43

January 1984 65



PASCAL/48

NASA_ LANGLEY RESEARCH CENTER PASCAL MCS-48 VERSION 83/12/30 PAGE 6
OBJECT CODE TABLE 84/01/03. 14,44.42. CSC/NASA

00 01 02 03 04 05 06 07 08 09 OA OB OC 0D OE OF

000 04 70 00 04 03 00 00 04 4D FD 47 53 OF B8 2E A0
010 23 OF 5D B8 2F AO B8 30 B0 OF FC 47 53 OF B8 31
020 A0 23 OF 5C B8 32 A0 B8 33 B0 OF FB 47 53 OF B8
030 34 A0 23 OF 5B B8 35 A0 23 01 39 23 90 02 27 39
040 BE 08 FE 03 2D A8 F0 43 80 02 EE 42 83 AF 23 80
050 62 55 23 01 6B 57 AB E6 6C 23 59 DC 96 67 27 AC
060 23 01 6D 57 AD 04 6C 23 01 6C 57 AC 14 09 FF 93
070 27 D7 27 AA FA 03 8D B3 27 AB 27 AC 27 AD 14 09
080 04 90 23 80 62 55 25 04 90 65 35 04 90 78 82 89
090 0A 37 F2 96 04 90 0A F2 9B 04 96 IA 23 03 DA 96
OA0 A3 27 AA 04 74 04 A5 00 00 00 00 00 00 00 00 00

66 January 1984



PASCAL/48

NASA, LANGLEY RESEARCH CENTER PASCAL MCS-48 VERSION 83/12/30 PAGE 7
ASSEMBLY LISTING 84/01/03. 14.44.45. CSC/NASA

LOC OBJ CODE SOURCE STATEMENT

000 04 70 L000: JMP L070

ORG 003H

003 04 03 L003: JMP L003

ORG 007H

007 04 4D LO07: JMP L04D

; PROCEDURE DISPLAY

009 FD L009: MOV A,R5 ; LINE 21

O0A 47 SWAP A ; LINE 31

00B 53 OF ANL A,#0FH ; LINE 31

00D B8 2E MOV R0,#2EH ; LINE 31

00F A0 MOV @R0,A ; LINE 31

010 23 OF MOV A,#0FH ; LINE 32

012 5D ANL A,R5 ; LINE 32
013 B8 2F MOV R0,#2FH ; LINE 32

015 A0 MOV @R0,A ; LINE 32

016 B8 30 MOV R0,#30H ; LINE 33

018 B0 OF MOV @R0,#0FH ; LINE 33

OIA FC MOV A,R4 ; LINE 34

01B 47 SWAP A ; LINE 34
01C 53 OF ANL A,#0FH ; LINE 34

01E B8 31 MOV R0,#31H ; LINE 34

020 A0 MOV @R0,A ; LINE 34
021 23 OF MOV A,#0FH ; LINE 35

023 5C ANL A,R4 ; LINE 35

024 B8 32 MOV R0,#32H ; LINE 35
026 A0 MOV @R0,A ; LINE 35

027 B8 33 MOV R0,#33H ; LINE 36
029 B0 OF MOV @R0,#0FH ; LINE 36

02B FB MOV A,R3 ; LINE 37

02C 47 SWAP A ; LINE 37

02D 53 OF ANL A,#0FH ; LINE 37

02F B8 34 MOV R0,#34H ; LINE 37

031 A0 MOV @R0,A ; LINE 37

032 23 OF MOV A,#0FH ; LINE 38

034 5B ANL A,R3 ; LINE 38
035 B8 35 MOV R0,#35H ; LINE 38

037 A0 MOV @R0jA ; LINE 38

038 23 Ol MOV A,#OIH ; LINE 39

03A 39 OUTL PI,A ; LINE 39

03B 23 90 MOV A,#90H ; LINE 40

03D 02 OUTL BUS,A ; LINE 40

03E 27 CLR A ; LINE 41

03F 39 OUTL PI,A ; LINE 41
040 BE 08 MOV R6,#08H ; LINE 42

042 FE L042: MOV A,R6 ; LINE 43

January 1984 67



PASCAL/48

NASA_ LANGLEY RESEARCH CENTER PASCAL MCS-48 VERSION 83/12/30 PAGE 8
ASSEMBLY LISTING 84/01/03. 14.44.45. CSC/NASA

LOC OBJ CODE SOURCE STATEMENT

043 03 2D ADD A,#2DH ; LINE 45

045 A8 MOV R0,A ; LINE 45

046 F0 MOV A,@RO ; LINE 45

047 43 80 ORL A,#80H ; LINE 45

049 02 OUTL BUS,A ; LINE 45

04A EE 42 DJNZ R6,L042 ; LINE 45

04C 83 RET ; LINE 45

; PROCEDURE TIMER INT

04D AF L04D: MOV _RT,A ; LINE 49

04E 23 80 MOV A,#80H ; LINE 61

050 62 MOV T,A ; LINE 61

051 55 STRT T ; LINE 62

052 23 01 MOV A,#01H ; LINE 63

054 6B ADD A,R3 ; LINE 66

055 57 DA A ; LINE 66

056 AB MOV R3,A ; LINE 66

057 E6 6C JNC L06C ; LINE 67

059 23 59 MOV A,#59H ; LINE 68

05B DC XRL A,R4 ; LINE 68

05C 96 67 JNE L067 ; LINE 68
05E 27 CLR A ; LINE 69

05F AC MOV R4,A ; LINE 70
060 23 01 MOV A,#OIH ; LINE 71

062 6D ADD A,R5 ; LINE 72

063 57 DA A ; LINE 72

064 AD MOV R5,A ; LINE 72

065 04 6C JMP L06C ; LINE 72

067 23 Ol L067: MOV A,#OIH ; LINE 73

069 6C ADD A,R4 ; LINE 74

06A 57 DA A ; LINE 74

06B AC MOV R4,A ; LINE 74

06C 14 09 L06C: CALL L009 ; LINE 75

06E FF MOV A,R7 ; LINE 77

06F 93 RETR ; LINE 78

; PROGRAM STOP WATCH
070 27 L070: CLR A ; LINE 79

071 D7 MOV PSW,A ; LINE 82

072 27 CLR A ; LINE 83

073 AA MOV R2,A ; LINE 83

074 FA L074: MOV A,R2 ; LINE 84

075 03 8D ADD A,#8DH ; LINE 87

077 B3 JMPP @A ; LINE 87

078 27 L078: CLR A ; LINE 88

079 AB MOV R3,A ; LINE 90

07A 27 CLR A ; LINE 91

07B AC MOV R4,A ; LINE 91

January 1984



PASCAL/48

NASA, LANGLEY RESEARCH CENTER PASCAL MCS-48 VERSION 83/12/30 PAGE 9
ASSEMBLY LISTING 84101103. 14.44.46. CSC/NASA

LOC OBJ CODE SOURCE STATEMENT

" 07C 27 CLR A ; LINE 92

07D AD MOV R5,A ; LINE 92
07E 14 09 CALL L009 ; LINE 92

: 080 04 90 JMP L090 ; LINE 93
082 23 80 L082: MOV A,#80H ; LINE 94

! 084 62 MOV T,A ; LINE 95

i 085 55 STRT T ; LINE 96

086 25 EN TCNTI ; LINE 97

087 04 90 JMP L090 ; LINE 98

089 65 L089: STOP TCNT ; LINE 99

08A 35 DIS TCNTI ; LINE I01

08B 04 90 JMP L090 ; LINE 102

08D 78 L08D: DB 78H ; LINE 103
08E 82 DB 82H ; LINE 103

08F 89 DB 89H ; LINE 103

090 0A L090: IN A,P2 ; LINE 104

091 37 CPL A ; LINE 105

092 F2 96 JB7 L096 ; LINE 105

094 04 90 JMP L090 ; LINE 105

096 0A L096: IN A,P2 ; LINE 106
097 F2 9B JB7 L09B ; LINE 107

099 04 96 JMP L096 ; LINE 107

09B IA L09B: INC R2 ; LINE 108

09C 23 03 MOV A,#03H ; LINE II0
09E DA XRL A,R2 ; LINE II0

09F 96 A3 JNZ LOA3 ; LINE II0

0AI 27 CLR A ; LINE II0

OA2 AA MOV R2,A ; LINE Ii0

0A3 04 74 LOA3: JMP L074 ; LINE III

OA5 04 A5 LOAS: JMP LOA5 ; LINE 112

January 1984 69



PASCAL/48

13 APPENDIX C - SYNTAX DIAGRAMS

<<< program >>>

---> PROGRAM --> ident ---> ; ---> block ---> . ----->

<<< ident >>>

---> letter ----t --.....>
A

•<-- letter <---

I
k<-- digit <---

<<< int const >>>

+-> letter

<<< block >>>

70 January 1984



PASC_/48

<<< lab__part >>>

---> LABEL -+-> intconst -T-> ; .... >

° 1 <-----+

<<< conpart >>>

---> CONST -+->_ ident ---> = ---> constant ---> ; T-->

<<< var__part >>>

<<< addr__spec >>>

---> [ > int cons t ----+-> , _--> RAM --+-> ] .... >

-> ROM -

-->XRAM->-

January 1984 71



PASCAL/ 48

<<< type_spec >>>

> array_spec ---> OF _> scl_type .... >

<<< array__spec >>>

---> ARRAY ---> [ ---> int const ---> .. ---> int const --> ] .... >

<<< scl type >>>

....... > INTEGER b--->
^

_-> BOOLEAN_ _ _>> [ -> int const -> ]

--> CHAR

<<< val_part >>>

---> VALUE -+->iident ---> .... > val_con --- ; T-->

<<< val con >>>

<m--m

......... > constant

\

72 January1984



PASCAL/48

<<< proc_.part >>>

<<< proc hdr >>>

---> PROCEDURE ---> ident ---> ; .... >

<<< procbody >>>

---->EXTERNAL ---> [ ---> int const ---> ] -d---->

...............> FORWARD --_- ........... i............... > block

<<< cmpndstmt >>>

---> BEGIN -+-> statement -T-> END .... >
A

!
<<< expression >>>

T> monadlc__op ---> ( ---> expression ---> ) -_-->

> monadic op --+----T-> constant .>-
-- ' i 4---> variable

dyadlc__op<..................

January 1984 73



PASCAL/48

<<< variable >>>

_N> ident > int const -+-> ]

[ _> - j -+--->> ident

<<< statement >>>

> int const N--> : -+--.... > assgn stmt +-.... >m__> if stmt ....... >

.... > while stmt ........ >.

.... > rept__stmt ....... >.

.... > for stmt ....... >.

-----> case stmt ....... >

.... > call stmt ........ >"

.... > goto__stmt ........ >

.... > cmpnd stmt ........ >"

<<< assgn_stmt >>>

---> variable ---> :.... > expression .... >

74 January 1984



___ PASCAL/48

<<< if stmt >>>

_ ---> IF --> expression ---> THEN--> statement

> ELSE --> statement --+---->

<<< while stmt >>>

N_> WHILE _> expression _-> DO m_> statement _-->

<<< rept__stmt >>>

_-_ ---> _PEAT A-_> statementT> UNTIL --> expression--->
L-N_ ; <----+

<<< for stmt >>>

-_> FOR _-> for list _-> DO _-> statement m-_>

<<< for llst >>>

_-> ident _-> := _-> con var -%-> TO -+--> con var _->

> Dowbrro
.e°

January 1984 75



PASCAL/48

<<< case stmt >>>

_u> CASE _-> expression -u> OF >
^ case list elt -11> END ..... >

. I - _-__.__I
<<< case llst elt >>>

-+-> constant --_--> : _-> statement .... >
A

l_ .<

<<< goto__stmt >>>

---> GOTO ---> int const ..... >

<<< call stmt >>>

---> ident .....>

76 January 1984,.



PASCAL/48

14 APPENDIX D - ERROR MESSAGES

Four classes of error messages are provided to aid the Pascal/48
programmer in generating correct programs. The lower case notation in
the messages are compiler derived from the Pascal/48 program source.

ch A single character.
id The significant characters of an identifier.
sym An internal Pascal/48 symbol.
num A decimal number.
hex A hexadecimal number,

The internal symbols are the reservedl words, special symbols, and
terminals of the language grammar. Thetermlnals include the special
notation of <CONST> for a constant and <IDENT> for an identifier.

WARNING AT LINE num
The rules of the language are not violated, however, the code
generated may not be what the user intended. The assembly listing
should be checked for correctness.

BASE num IS NOT 2, 8 OR 16
The base specified is non-standard and may detract from the
meaning of the program.

CASE STATEMENT CODE IS SHIFTED hex LOCATIONS TO NEXT PAGE

A page boundary was crossed during a CASE statement. The
complete CASE statement is moved to the next page boundary.

GOTO num IN id POSSIBLE PSW ERROR

A GOTO out of a procedure has occurred but the compiler will
not modify the program status word or the program stack.

Id INTERRUPT HANDLER REFERENCED

Interrupt routines should be referenced through the hardware
interrupt mechanism and not with software references.

INTERUPT REDEFINED BY Id
The hardware locations for the timer interrupt and counter
interrupt interface are the same. Either the timer or counter
interrupt can be defined in one program.

LINES FOLLOWING END OF PROGRAM IGNORED

Non-comments follow the program terminating period.

id LOCATED WITHIN COMPILER TEMPORARIES
Registers 0 and I are used by the compiler and should not be
used by the programmer.

January 1984 77



PASCAL/48

id LOCATED WITHIN PROGRAM STACK

RAM locations 8 through 24 contain the program stack and

redefinition of the stack will affect the procedure
communication.

MAXIMUM STRING LENGTH num EXCEEDED

A character string has exceeded the compiler limits and will
be truncated.

ORIGIN OF hex LESS THAN LOCATION hex

The current location counter is greater than the specified

origin option value.

id REDEFINED BY PROGRAM

A predeclared variable has been redefined by the program for
the current scope.

ROM VARIABLE id NOT INITIALIZED

A ROM variable has not been initialized with the VALUE

statement.

TOO FEW VALUES SPECIFIED FOR id

An array of a ROM variable is not completely initialized with
the VALUE statement.

UNREFERENCED LABEL :num

A label has been defined but has not been referenced within

the scoping limits.

UNREFERENCED PROCEDURE id

A procedure has been defined but has not been referenced

within the scoping limits.

78 January 1984



PASCAL/48

SEMANTIC ERROR AT LINE num

The rules of the language are violated and the code generation is
terminated. The program semantics and syntax will be continually

" checked.

ADDRESS SPECIFICATION REQUIRED FOR Id
Declarations of variables must include an address

specification.

ARRAY REFERENCE EXPECTED FOR id

The variable has been declared as an array and all references
to the variable must be indexed.

CONSTANT num EXCEEDS RANGE FOR id

The range of a hardware memory device has been exceeded by the
constant.

CONTROL VARIABLE id IS REDEFINED

The control variable of a FOR loop has been redefined within
the loop.

DIGIT ch GREATER THAN BASE num

A digit in a constant is greater than the base specified.

EMPTY INPUT FILE
The source file specified is not local to the control point.

num ERRORS PER LINE EXCEEDED

The internal stack for errors per line is exceeded. The
errors are continued for the error summary but not noted in
the source listing.

FORWARD PROCEDURE id NOT DEFINED t

A procedure has been declared as a forward reference but has
not been defined.

GLOBAL ROM REQUIRES ADDRESS
The optional address specification for ROM variables is
required for global variables.

IDENTIFIER id DECLARED TWICE
The identifier has been declared more than once within the

current scope level.

IDENTIFIER id NOT DECLARED
The identifier referenced has not been declared.

ILLEGAL ADDRESS REFERENCE num

An arrayed ROM variable initialization crosses the page
boundary in the VALUE statement.

January 1984 79



PASCAL/48

ILLEGAL BASE num SPECIFIED

A base value of 0 or greater than 35 is specified.

ILLEGAL CHARACTER ch
An invalid Pascal/48 character is encountered and is ignored.

ILLEGAL MEMORY REFERENCE id
The identifier is not a valid memory reference. Variable
declarations must be RAM, ROM or XRAM. The optional address
specification for variables and the value initialization of
variables must be ROM.

ILLEGAL STRING REFERENCE
A character string is only valid in the VALUE statement to
initialize arrays of characters.

INDEX num OUT OF BOUNDS FOR id
The index exceeds the declared array limits of the variable.

INVALID ARRAY REFERENCE FOR id
The variable has been referenced as an array but has not been
declared as an array.

INVALID BIT BOOLEAN REFERENCE
A bit specified Boolean has been reference in an illegal
context.

_INVALID BIT REFERENCE num
A bit reference can only be in the range 0-7.

INVALID EXPRESSION REFERENCE

An expression is encountered in a predeclared procedure
reference.

INVALID LITERAL EXPRESSION
A forward label reference with an ADDR WORD or ADDR PAGE

monadlc operation is contained in a literal expression. The
monadic operations are treated as literals so the compiler
attempts to evaluate the literal expression and therefore
would destroy the internal code for patching the forward
reference.

INVALID LOOP CONTROL VARIABLE Id

A loop control variable can only be a simple integer.

INVALID SCOPE REFERENCE FOR id

The Pascal scoplng rules have been violated with the
identifier reference.

INVALID TRANSLATE OPERATOR FOR OPERATION Id
An invalid internal operator has been generated. This error
should not occur and if it does it should be reported.

80 January 1984



PASCAL/48

INVALIDTYPE SPECIFICATIONid
Only BOOLEAN,INTEGERand CHARtypesare legal.

id IS NOT A CONSTANT
• The identifier referenced has not been declared as a constant.

id IS NOT A PREDECLARED PROCEDURE

r Arguments are only valid for the predeclared procedures.

LOW BOUND EXCEEDS HIGH BOUND

The array specification is in error.

MULTIDECLARED LABEL :num

A label number is declared more than once.

MULTIDEFINED CASE LABEL :num

A case label has been assigned to more than one statement.

MULTIDEFINED LABEL :num

A label has been assigned to a statement more than once.

NULL STRING INVALID

Strings must contain one or more characters.

PAGE BOUNDARY ERROR ENCOUNTERED AT hex REFERENCED AT hex

A conditional jump cross a page boundary has been generated by

the compiler. The programmer can either select the boundary

compiler option or adjust the code with the origin compiler
option.

PARSE TERMINATED

A compiler abort has occurred. The listing is continued but

no supplement information is provided beyond this point.

READ ONLY VARIABLE id

Assignments cannot be made to ROM variables or specialized
predeclared variables.

REDEFINED ROM AT LOCATION hex

ROM is redefined by overloaded variables or code is generated
at a ROM variable data location.

REFERENCE MUST BE id

The identifier specifies the structure allowed in the context
of the source.

RUNAWAY NESTED COMMENT

The beginning comment symbol (* has not been matched by the
terminating symbol *).

January 1984 81



PASCAL/48

STATEMENT TOO COMPLICATED

The internal stack limits have been exceeded. This implies
the nesting levels are excessive or a statement is too complex
for the compiler parsing scheme.

TOO MANY VALUES SPECIFIED FOR id

The initialization list in a VALUE statement exceeds the range
of the array.

id TYPE IS EXPECTED

The identifier specifies the only data type allowed in the
source structure.

Id TYPE IS UNEXPECTED

Mixed mode has occurred and the type specified is the first

conflicting type.

UNABLE TO PATCH LABEL num ADDRESS

The compiler was unable to patch the label address for a

forward reference by the ADDR WORD or ADDR PAGE monadlc

operators.

UNDECLARED LABEL :num

A label referenced has not been declared.

UNDEFINED LABEL :num

A label referenced has not been assigned to a statement.

UNEXPECTED IDENTIFIER id

Either an identifier is not expected in the context or a key
word is expected.

82 January 1984



PASCAL/48

SYNTAX ERROR AT LINE num

The grammar rules of the language are violated. An attempt is made

to fix the syntax and the parsing is continued. Syntax errors

occur in pairs. The first error points to the symbol where the

• error is detected. The recovery scheme scans ahead in the source

and an attempt is made to fix the error with respect to the

context. The second error specifies the fix to obtain the correct

grammar syntax with respect to the symbol specified in the first

error. The fix of the syntax error may not be what the programmer

intended so the code generation and semantic checking are
terminated.

<EOF> ENCOUNTERED DURING RECOVERY

While attempting a syntax error recovery an end-of-file was

encountered. This error commonly occurs when the BEGIN-END

pairs of compound statements do not match.

EXPECTED SYMBOL : sym

The symbol specified is necessary in the source context and to

obtain exceptable syntax the symbol is inserted.

RECOVER FAILURE LIMIT EXCEEDED

More than three recovery failures has occurred in the program.

It is assummed that any errors occurring beyond this point

f-_ will be meaningless. The parsing is terminated but the
listing is continued.

RECOVERY ATTEMPTED AT SYMBOL : sym

The symbol specified violates the syntax rules of the grammar.

An attempt will be made to correct the syntax by deleting or

replacing the symbol, or by inserting a symbol before the

symbol specified.

RECOVERY FAILED, CONTINUE SCAN AT : sym

Usually more than one syntax error is encountered in a

statement and the recovery method cannot correct the error

with a simple deletion, insertion or replacement. The

compiler searches forward until parsing can be resumed.

SUBSTITUTED SYMBOL : sym

The symbol specified replaces another symbol in the source to

obtain exceptable syntax.

• UNEXPECTED SYMBOL : sym

The symbol specified is not valid in the source context and to

obtain exceptable syntax the symbol is deleted.

January 1984 83



PASCAL/48

COMPILER ERROR AT LINE num

Compiler errors should not occur and indicate that the compiler is
in error. If encountered such errors should be reported. Compiler
errors are caused by semantic errors which generate erroneous
internal variable values. The compiler should define exceptable
internal data when an error condition is encountered. Abnormal

termination of the compiler other than the compiler halt with a
dayfile message should also be reported.

NUMBER hum id num

Compiler information for problem evaluation.

84 January 1984



PASC,_.,/48

INDF_

Accumulator, 20, 26, 27, 43.

ADDR PAGE, 20, 44.

ADDR NORD, 20, 44.

Array, 5, 6, 11, 12, 13, 14, 15.

ASCII, 4, 5.

Assembly, 45, 46, 47.

Assignment, 26, 27, 29, 42.

BCD,' 20.

BEGIN-END, 3, 19, 31.

BIT, 21, 22.

Boolean, 4, 5,12, 13, 30.

Boundary, 16, 17, 37, 42, 45, 46.

BUS, 26, 27, 32, 34.

CARRY, 26, 27.

CASE OF, 3, 37, 38.

Character, 2, 4, 5, 12, 13, 14.

CHR, 20, 21.

CLOCK OUT, 41.

Comments, 3, 45.

COMPLEMENT, 42.

Constant, 4, I0, 14.

COUNTER, 26, 41.

COUNT INT, 41, 43.

DECREMENT, 42.

January 1984 85



PASCAL/48

DEC__ADJ, 20, 21.

DELAY, 41, 42.

DISABLE,41.

ENABLE, 41.

Expression, 23, 24, 25.

EXTERNAL, 16, 17.

EXTERN INT, 41, 43, 44.

Flags, 26.

FOR TO(DOWNTO) DO, 3, 35, 36.

FORWARD, 16, 17.

Frequency, 41, 42, 46, 47.

GOTO, 3, 9, 39.

Identifier, 2.

IF THEN ELSE, 2, 3, 30, 31.

INCREMENT, 42.

INLINE, 42.

Input, 45, 46.

Integer, 4, 5, 12, 13.

Interrupts, 41, 43, 44.

Label, 9, 20, 37, 39.

Listing, 45, 46, 47.

NOT, 4, 20.

Object, 42, 45, 47.

Operand, 20, 21, 22, 23, 24, 42.

Operator, 20, 21, 22, 23, 24.

Option, 45, 46, 47.

86 January 1984



PASCAL/48

0RD, 20, 21.

Origin, 12, 16, 18, 46.

Output, 45.

Page, 12, 13, 16, 20, 37, 42.

PAS48, 45.

Pin, 26.

PORT1, 26, 27, 32, 34.

PORT2, 26, 27, 32, 34.

Ports, 26.

Predeclared Procedure, 36, 41, 42, 43.

Predeclared Variable, 26, 27.

Procedure, 16, 17, 18, 40, 41, 42, 43, 44.

Program, 7, 8.

PSW, 26, 39, 44.

RAM, II, 12, 13, 45.

Registers, 13, 36, 42.

REGBANK0, 42.

REGBANKI, 42, 43.

REPEAT UNTIL, 3, 34.

Reserved Words, 2, 3.

ROM, 8, II, 12, 13, 14, 16, 17, 46, 47.
P

Rotation, 21, 22.

Scope, 17, 37.

SELECT, 42, 43.

Shift, 21, 22.

Source, 45, 47.

January 1984 87



PASCAL/48

Stack, 13, 20, 39, 40, 43.

START, 41.

Statement, 19, 28, 29, 30, 32, 34, 35, 36, 37, 39, 40.

STOP, 41.

TIMER, 26, 41.

TIMER__FLAG,26.

TIME_INT, 41, 43.

Type, 4, 5, 12.

T0, 26.

TI, 26.

VALUE, 3, 5, 14, 15.

Variable, 2, 4, 5, ii, 12, 13, 14, 26, 27.

WHILE DO, 3, 32, 33.

XRAM, II, 12.

88 January 1984





1. Report No. _12. GovernmentAccessionNo. 3. Recipient'sCatalogNo. /

I JNASA TM 85752

4. Title and Subtitle 5. Report Date _

January 1984
Pascal/48 Reference Manual 6. Performing Organization Code

505-31-83-02

7. Author(s) C_J_r_k_n9 _,_ni_t NO.

John C. Knight and Roy W. Hamm Computing Complex M-3
10. Work Unit No.

9. PerformingOrganizationNameand Address

NASA Langley Research Center 11. Contractor Grant No.

Hampton, VA 23665

13. Type of Report and PeriodCovered

12. Sponsoring Agency Name and Address Technical Memorandum

National Aeronautics and Space Administration 14.SponsoringAgencyCode
Washington, DC 20546

15. SupplementaryNotes

16. Abstract

Pascal/48 is a programing language for the Intel MCS-48 series of
microcomputers. In particular, it can be used with the Intel 8748.
It is designed to allow the programer to control most of the
instructions being generated and the allocation of storage. The

language can be used instead of assembly language in most applications
while allowing the user the necessary degree of control over hardware
resources. Although it is called Pascal/48, the language differs in
many ways from Pascal. The program structure and statements of the
two languages are similar, but the expression mechanism and data types
are different.

The Pascal/48 cross-compiler is written in Pascal and runs on the CDC
CYBER NOS system. It generates object code in Intel hexadecimal
format that can be used to program the MCS-48 series of
microcomputers.

This reference manual defines the language, describes the predeclared

procedures, lists error messages, illustrates use, and includes
language syntax diagrams.

17. Key Words(Suggestedby Author(s)) 18. DistributionStatement

microprocessor, microcomputer, Unclassified--Unlimited
compiler, Pascal, and HOL

Subject Category 61

*ForsalebytheNationalTechnicallnformationService,Springfield,Virginia22161



©




