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INTRODUCTION

The documentation for the NASTRAN computer program consists of four manuals: the Theoretical
Manual, the User's Manual, the Programmer's Manual and the Demonstration Problem Manual. Since an
effort has been made to avoid duplication of material, a brief statement of the content of the
other three manuals will serve as a useful point of departure in introducing the Thegretical Manual.

The intent of the User's Manual is that it provide all of the information needed to solve
problems with NASTRAN, Users should find it to be both instructional and encyclopedic. It
includes instruction in structural modeling techniques, instructicn in input preparation and infor-
mation to assist the interpretation of output. It contains descriptions of all input data cards,
restart procedures and diagnostic messages. [t is hoped that it can serve as a self-help instruc-
tion book.

The intent of the Programmer's Manual is that it provide a complete description of the program
code, including the mathematical equations that are implemented in the Functional Modules. It des-
cribes the Executive System and the coding practices that have been employed.” It contains the in-
formation that is required for maintenance and modification of the program.

The intent of the Demonstration Problem Manual is to illustrate the formulation of the types
of problems that can be solved with NASTRAN and to show that the results obtained are valid.
Generally, this manual discusses the nature of the problem, the underlying theory, the specific
geometric and physical input quantities, and the comparison of theoretical and NASTRAN results.

At least one problem for each of the rigid formats and nearly all of the elements is provided.

One of the roles that has been assigned to the Theoretical Manual is that of a commentary on
the program. It is, first of all, intended to be an introduction to NASTRAN for all interested
persons, including those who will go on to use the program and those whose interests are less
direct. For this purpose, the structure and the problem solving capabilities of the program are
described in a narrative style. The manual's most important function, however, is to present
developments of the analytical and numerical procedures that underlie the program.

The selection of material for the Theoretical Manual has not been an easy task because not
everyone has the same concept of what the word "theory" means when it is applied to a computer
program. For some, theory is restricted to include only the formulation of the equations that
will be solved; for others, theory also includes the development of the procedures, or algerithms,
that will be used in the solution; still others regard the organization of the program and the

flow of data through the computer as important theoretical topics.
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A broad view concerning the selection of material has been adopted, and the reader will find
that all of the above aspects of the program are treated. Some structural analysts may be sur-
prised at the emphasis on proéram organization and data processing, particularly in the early
sactions of the manual. These subjects are emphasized because they are vitally important to fhe
success of a large computer program and should not be taken for granted.

In regard to the more mathematical subjects, such as the derivation of the equations for
structural elements and the development of eigenvalue extraction procedures, the reader will find
that the level of sophistication is geared to the difficulty of the subject matter. Thus, it is
assumed that a reader with an interest in an advanced topic (such as shell elements) will have the
necessary theoretical background. In most cases the derivations are intended to be complete and
rigorous. For a few of the structural elements, the reader is referred to the Programmer’'s Manual
for thé detailed expression of matrix coefficients that are regarded as too combersome to have
general interest. -

The Theoretical Manual is divided into seventeen major sections and numerous subsections.
Section 1 deals with some of the organizational aspects of NASTRAN and Section 2 with utility
matrix routines. Sections 3, 8, 5 and 7 deal with static structural analysis. It will be noted
that no materiai has been included in Section 6, which is reserved for topics to be defined in
the future. Section 8 treats heat transfer. Sections 9 through 12 deal with dynamic structural
analysis. Sections 13 through 15 deal with miscellaneous topics, including computer graphics,
special structural modeling techniques and error analysis. Section 16 deals with the interaction
between structures and fluids. Section 17 deals with aercelastic anmalysis.

The style of the Theoretical Manual, like that of the other three manuals, has been designed

to accommodate future additions and modifications. Each major subsection stands alone with its

own page numbers, equation numbers and figure numbers, so that changes can be made without signif- .

icant disruption.
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1. PROGRAM ORGANIZATION
1.1 OVERVIEW OF THE PROGRAM

NASTRAN is a finite element computer program for structural analysis that is intended for
general use. As such it must answer to a wide spectrum of requirements. The program must be
efficient, versatile and convenient to use. It must be standardized to permit interchange of
input and output between different users. It must be structured to permit future modification and

extension to new problem areas and to new computer configurations without major redevelopment.

The intended range of applications of the program extends to almost every kind of structure
and to almost every type of construction. Structural elements are provided for the specific
representation of the more common types of construction including rods, beams, shear panels,
plates, and shells of revolution. More general types of construction are treated by combinations
of these elements and by the use of "general" elements. Control systems, aerodynamic transfer

functions, and other nonstructural features can be incorporated into the structural problem.

The range of analysis types in the program includes: static response to concentrated and
distributed loads, to thermal expansion and to enforced deformation; dynamic respanse to transient
loads, to steady-state sinusoidal loads and to random excitation; determination of real and com-
plex eigenvalues for use in vibration analysis, dynamic stability analysis, and elastic stability
analysis. The program includes a limited capability for the solutfon of nonlinear problems,
including piecewise linear amalysis of nonlinear static response and transient analysis of non-

linear dynamic response.

NASTRAN has been specifically designed to treat large problems with many degrees of freedom.
The only Timitations on problem size are those imposed by practical considerations of running
time and by the ultimate capacity of auxiliary storage devices. The program is decidedly not a
core program. Computational procedures have been selected to provide the maximum obtainable

efficiency for large problems.

Research was conducted during the design of the program in order to ensure that the best
available methods were used. The areas of computer program design that are most sensitive to
state-of-the-art considerations are program organization and numerical analysis. The organiza-
tional demands on the program design are severe in view of the multiplicity of problem types and
user conveniences, the multipiicity of operating computer configurations, the requirement for -

large problem capability, the requirement for future modification, and the requirement faor

1.1-1 (12/31/77)

pAGE [57  INTENTIONALLY BLAi )

PRECEDING PAGE BLANK NOT FILMED



PROGRAM ORGANIZATION

responsiveness to improvements in programming systems and computer hardware. The organizational
problems have been solved by applying techniques that are standard in the design of computer
operating systems but have not, as yet, been extensively used in the design of scientific applica-
tions programs. The mafn instrument of program organization in the program {s an executive system
that schedules the operating sequence of functional modules and that pians and allocates the
‘storage of files. An important aspect of the executive routine concept used in NASTRAN is that

it greatly reduces the cost of program coding and checkout by eliminating most module interface

problems and by reducing the remainder to a form that permits systematic treatment.

Most difficulties in numericai analysis ariserin connection with three basic impiicit opera-
tions: matrix decomposition (or inversion), eigenvalue extraction, and integration of differential
equations. The major difficulties that occur in the application of these operations to large
problems are excessive computing time, error accumulation and instability. Many methods that work

well with small or moderate sized problems are not acceptable for large problems.

The method employed for matrix decomposition is especially important due to its extensive
use as a base for the other two implicit operations. The method that is employed in the program
takes maximum advantage of matrix sparsity and bandedness. The latter aspect is particularly
important due to the enormous gain in efficiency that accrues when banding techniques are properly

employed by the user in setting up problems for the displacement method.

In general the solution time for a large structural analysis of any type can be greatly
reduced by taking full advantage of the sparsity and bandwidth of the matrices that describe the -
structurai problem. Other means, in addition to the matrix decomposition routine mentioned
above, have been used to improve efficiency for iarge problems These include storing sparse
matrices in packed form, the avoidance of operations that reduce sparsity or destroy bandwidth,
well designed Input/Qutput strategies, the use of advanced techniques for eigenvalue extraction,
and specially tailored numertcal integration algorithms.

The needs of the structural janai;sit have been considered fn jair'i::aspects of the design of the
program. The first thing to be remembered is that, in view of the wide range of possible appli-
cations of the program. we do not know exactiy what these rieeds may be. For this reason a high
degree of fiexibiiity and generality has been incorporated into certain areas of the program.

For example, in addition to the usual list of structurai elements that refer to specific types

of construction, the user is provided with more general elements that may be used to construct
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OVERVIEW OF THE PROGRAM

any type of special element, to represent part of a structure by deflection influence coefficients,
or to represent part of a structure by its vibration modes. For the more conventional types of
structural analysis, the user is presented with a large number of convenience features, including

plotting routines, which are definite necessities for large problems.

A major difficulty that the user faces in the solution of large problems is the avoidance of
errors in the preparation of input data. Card formats and card ordering are made as simple and
flexible as possible in NASTRAN in order to avoid errors caused by trivial violations of format

rules. A number of aids for the detection of legal but incorrect data are also provided.
The problems that can be solved by NASTRAN-inCIude the following general classes:
1. Static Structural Problems
2, é]astic Stability Problems
3. Dynamic”Structural Problems

4. General Matrix Problems
5. Heat Transfer Problems

6. Aeroelasticity Problems

Each general problem class is further subdivided into case types which differ with regard to
the type of information desired, the environmental factors considered, or the method of analysis.
The mathematical computations required to solve problems are performed by subprogram units called
functional modules. Each case type requires a distinct sequence of functional module calls that

are scheduled by the Executive System.

For structural problem types the sequence of module calls and hence the general method of
solution is established internally for each case type according to a rigid format stored in the
Executive System. Execution of a structural problem proceeds in one run to final solution, or,

at the option of the user, to a desired intermediate point.

A more flexible procedure 1s provided for the solution of general matrix problems. A1l of
the matrix operations (such as addition, multiplication, triangular decomposition, and eigenvalue
extraction) used in the program can be directly addressed by the user according to a system of
macro instructions called OMAP(for Direct Matrix Abstraction Program). The user constructs a —

chain of DMAP instructions in order to effect the solution of general matrix problems.
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PRNGRAM ORGANIZATION

1.2 THE NASTRAN EXECUTIVE SYSTEM
1.2.1 Introduction

The overall effectiveness of a general purpose program depends in Targe measure on how well
the available programming techniques have been employed in the design of its organizational and
cantrol features. It may, therefore, be useful to precede the usual treatment of the engineering
aﬁd mathematical aspects of the program with a discussion of a relatively unfamiliar feature of

general purpose programs, namely the Executive System.

NASTRAN has been designed according to two classes of criterfa. The first class relates to

functional requirements for the solution of an extremely wide range of large and complex problems

in structural analysis with high accuracy and computational efficiency, which are met by develop-
ing advanced mathematical models of the physical phenomena and incorporating their computation
algorithms into the program. The second class of criteria relates to the operational and organiza-
tional aspects of the program, These aspects are somewhat divorced from structural analysis itself;
yet they are of equal importance in determining the usefulness and quality of the program. Chief

among these criteria are:
1. Simplicity of problem input deck preparation.
2. Minimization of chances for human error in problem preparation.
3. Minimization of need for manual intervention during program execution.
4, Capability for step by step problem solution, without penalty of repeated problem set up.

5. {Capability for problem restart following unplanned interruptions or problem preparation

error.
6. Minimization of system overhead, in the three vital areas:
a. Diversion of core storage from functional use in problem solution.
b. Diversion of auxilfary storage units from functional to system usage.

¢. System housekeeping time for performing executive functions that do not directly

further problem solution.

7. Ease of program modification and extension to new functional capability. =

Sl
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PROGRAM ORGANIZATION

8. Ease of program extension to new computer configurations and operating systems, and
generality in ability to operate efficiently under a wide set of configuration
capabilities.

The second class of eight objectives is achieved in NASTRAN through modular separation of

functional capabilities organized under an efficient, probIem-independent executive system. This

approach is abso1ute1y essential for any complex multioperatfon, muTtifile application program
such as NASTRAN. To see this, one must examine the implications of modularity in program

organization.
- Any application computer program provides a selection of computational sequences that are
controlled by the user ihrough externally promidéd'opiions and parameter values. Since no user

will wish to observe the result of each calculation, these options also provide for the selection

of the data to be output. In addition to externally set options, internal decision switches whose

settings depend upon tests performed during the calculations will control the computation

sequences. There is, therefore, a natural separation of computations into functional blocks.

The principal blocks are called functional modules; modules themselves, of course, may and usually

must be further organized on a submodular basis.

Despite this separation, however, 1t {5 clear that moduTes cannot be completeTy independent,

since they are all directed toward solution of the same general problem. In particular, they must

intercommunicate data between themselves. The principal problem in organizing any application

program, large or small, is designing the data interfaces between modules.

For small programs. the standard techniques are to communicate data via subroutine calling
sequences and common data regions in core storage ' For programs that hand]e 1arger amounts of
data, auxiliary storage is used; however, strict specifications of the devices used and of the
data record formats are usually imposed. The penalty paid is that of "side effects". A change
in a2 minor subroutine initiates a modification of the data interfaces that propagates through the
entire program. When the program is small, these effects may not be serious. For a complex pro-

gram 1ike NASTRAN, however, they may be disastrous. -

This problem has been solved in NASTRAN by a separation of system functions, performed by an
executive routine, from problem solution functions, accomplished by modules separated strictly
along functional Tines. Each module is independent from all other modules in the sense that

modification of a module, or addition of a new module, will not, in general, require modfficat1on
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THE NASTRAN EXECUTIVE SYSTEM

of other modules. Even so, programming constraints on module development are minor. The essential

restrictions are:

1. Modules may interface with other modules only through auxiliary storage files that con-

tain data blocks.

2. Since the availability of the auxiliary files required for the execution of a module
depends on the execution of other modules, no module can specify or allocate files for
its input or output data. A1l auxiliary storage allocation is reserved as an executive

function.

3. Modules operate as independent subprograms, and may not call, or be called by, other

modules. They may be entered only from the executive routine.

4, Modules may interface with the executive routine through a parameter table that is main-
tained by the executive routine. User specified options and parameters are communicated
to modules in this way. The major line of communication is one-way, from user to execu-
tive routine to module. However, in addition, an appreciable two-way communication from
module back to executive routine {and, therefore, to other modules) is permitted via the

parameter table.

No other constraints, except those imposed by the resident compilers and operating systems,

are required for functional modules.
The essential functions of the executive system are:

1. To establish and control the sequence of module executions according to options specified

by the user.
2. To establish and communicate values of parameters for each module.

3. To allocate files for all data blocks generated during program execution and perform

input/output to auxilfary files for each module.

4. To maintain a full restart capability for restoring a program execution after either a

schedu]ed or unscheduled interruption.

Each of these functions is essentially independent of any particular feature of structural
analysis and applies to the operational control of any complex multimodule, multifile application

program. The executive system is open-ended in the sense that it can accommodate an essentially
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unlimited number of functional modules, files, and parameters. Modification of the executive
system necessary for modification or extension of functional modules is restricted to changes in

entries in control tables stored within the executive routine.

A description of the way in which these cbjectives and functional capabilities are accom-

plished by the NASTRAN Executive System is included in the following sections.

1.2.2 Executive Operations During the Preface

Program execution is divided into a preface and the program body proper. During the preface
the NASTRAN Executive System analyzes and processes the data which define user options regarding
the structural problem to be‘solved and organizes the overall problem solution sequence. The
sequence of operations during the preface is presented in Figure 1 and is described in detail in
succeeding subsections. During the program body proper, the NASTRAN Executive System controls the

step-by-step problem solution sequence.

1.2.2.1 Generation of the Initial File Allocation Tables

Two file allocatfon tables are maintained by the NASTRAN Executive System. One table defines
the fiTes to which data blocks generated during solution of the problem will be allocated. The
second table 1nc1udes files to which permanent executive data blocks, such as the New Problem

Tape, the 01d Problem Tape, the Plot Tape, and the User's Master File are assfgned.

The New Problem Tape will contain those data blocks generated during the solution that are
necessary for restarting the problem at any point. The 01d Problem Tape contains the data blocks
saved from some previous execution that may serve to bypass steps in the solution of the new
problem. The Plot Tape includes output data and plotting imstructions in a form that will be
accepted by an automatic plotter selected by the user. The User's Master File {s a permanent
collection of useful information, such as material properties, that may be used to generate input

data.

The generation of the file allocation tables is an operation that depends on the particular
“computer model being used since direct interface with the operating system of the computer must be
made. The routine which accomplishes this function interrogates file tables that are located in
the nucleus of the computer's own resident operating system. Files which are available for use

by the NASTRAN program are reserved and the unit numbers are stored in the NASTRAN file allocation

"
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THE NASTRAN EXECUTIVE SYSTEM

tables. An indication of which units are physical tapes is noted. I[f the number of files avail-

able is Insufficient, an error message 15 generated and the run is aborted.
1.2.2.2 Analysis of the Executive Control Deck

The first purpose of executive control is to provide a level of regulation for the many
options within NASTRAN. At this level the executive distinguishes between the broad approaches to
problem solution, e.g., between a matrix abstraction approach by the analyst or a rigid format
approach according to problem ¢lass. Also at this level, the executive distinguishes between
several operational modes, e.g., a first attempt, a continuation, or a modification. Certain
other functions of a general nature are convenient tc include with the executive control such as

problem identification, selection of a level of diagnostics, and the estimation of solution time.

The executive control deck includes cards which describe the nature and type of the solution
to be performed. These include an identification of the problem, an estimated time for sclution
of the problem, a selecticn of an approach to the solution of the problem, a restart deck from a
previous run if the solution is to be restarted, an indication of any special diagnostic printout
to be made, and a specification of whether execution of the problem is to be completed in a single

run, or whether execution will be stopped (check-pointed) at some intermediate step,

Each of the cards comprising the executive control deck is read and analyzed. Depending on
the card, information is either stored in various executive tables maintained in core storage or
written in a Control Table on the New Problem Tape for further processing during a later phase of

the preface.
1.2.2.3 Processing of the Case Control Deck

When the rigid format solution route is selected, further details of control are provided by
the 'Case Control' portion of the executive. In effect, the analyst can manipulate his problem
by means of entries he inserts in the Case Control. He can make choices amongst the sats of data
reprasenting different physical situations which are allowed to be assembled in the Bulk Oata
portion of the problem input. Here also the analyst can regulate his output. Fundamental to the
method of control in this section is the notion of sets. Boundary conditions, loading cases, and —_

output selections are controlled by set selection.

The case control deck includes cards that indicate the following options: selection of
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specific sets of data from the bulk data deck (i.e., from the data deck that describes the details
of a problem), selection of printed or punched output, definition of subcases, and the definition

of plots to be made.

The case control deck is read and processed. Information defining data set selection, output
format selection and subcase definition is written in the Case Control data block. Information

defining plot requests is written in the Plot Control data block.

If the problem is a restart, a comparison with the Case Control data block from the previous
run (stored on the 01d Problem Tape) is made. Differences are noted in an executive restart

table.
1.2.2.4 Sorting of the Bulk Data

In NASTRAN the input to the mathematical operations performed in functional modules is pro-
vided in the form of previously organized data blocks. The data blocks derive from two sources:
those that derive from the bulk input data and those that are generated as output from previous
functional modules. Those that derive from the bulk data are organized into data blocks by the
IFP routine, but prior to the execution of IFP, XSPRT sorts the bulk data. Operation of the XS@RT
routine is influenced by the type of run. If thg run is a cold start (that is, an initial sub-
mittal for a given job) the bulk data 1s read from the system input unit or the User's Master File,
1s sorted, and is written on magnetic files in preparation for problem execution. If the analyst
wants to provide for a future restart, the SORT routine prepares a file on the New Problem Tape
which contains the sorted bulk_data. If the run is a restart, the bulk data is copied from the
01d Problem Tape with the addition of any changes from the system input unit.

An echo of the unsorted bulk data is given if requested. Similarly, the sorted bulk data is

echoed on request.

Since the collating sequence of alphanumeric characters varies from computer to computer, the
sort routine converts all characters to an ihternal code prior to sorting. Following the sort,
the characters are reconverted. In this way, the collating sequence is made computer independent.

The algorithm used by the sort routine is biased toward the case where the data is in sort or
nearly in sort. Consequently, bulk data decks which are nearly in sort will be processed efff-
ciently by the routine.

1.2-6

75

E ¥

A

LR



THE NASTRAN EXECUTIVE SYSTEM

The sorted bulk data is read from the New Problem Tape by the Input File Processor. Each of
the cards is checked for correctness of format. If any data errors are detected, a message is

written and a switch is set to terminate the run at the conclusion of the preface.

Processing of the bulk data cards depends on the type of jnformation on the card. Each set
of data cards of the same type is written as one Togical record in the data block to which the

card has been assigned.
1.2.2.5 General Problem Initialization

The general pruoblem initialization is the heart of the preface. Its principal function is to
generate the QOperation Sequence Control Array (@SCAR) which defines the sequénce of operations for
an entire problem solution. The #SCAR consists of a sequence of entries, with each entry contain-
ing all of the information required to execute one step of the problem solution. The PSCAR is

generated from {nformation supplied by the user in the executive control deck.

If the problem is a restart, the restart dictionary (contained in the Control Table) and the
executive restart table are analyzed to determine which data blocks are needed to restart the

solution and which operations need to be executed to complete the solution.

To aid in efficient assignment of data blocks to files, two ordinals are computed and includ-
ed with each data block in each entry of the @SCAR. These ordinals are the @SCAR sequence number
indicating when the data block is next used and the GSCARVsequencefnbﬁbé;iiﬁdicating when the data
block will be used for the last time.

when generation of the @SCAR is complete, it is written on the PPPL (an executive data
block). If the problem is a rg;tart, data blocks needed for the current solution are copied from

the 01d Problem Tape to the P@@L, augmented by entries to provide for new current requirements.

1.2.3 Executive Operations During Problem Solution

1.2.3.1 Sequence Monitor

when the preface has been completed, solution of the problem {s initiated. The solution is

controlled by the sequence monitor.
The sequence monitor reads an entry from the PSCAR which defines one step in the problem -

solution in terms of the operation to be performed, data blocks required for input, data blocks to

1.2-7

A



PROGRAM ORGANIZATION

be output, scratch (i.a., temporary) files required, and parameters. A status table 1s generated o
which relates the names of data blocks required for operation to the position in the file alloca-

tion table where information about the data block is contained. When the status table is complete

and the parameters required for the operation have been retrieved from the parameter storage

table, the appropriate functional module is called to execute the operation.

1.2.3.2 Segment File Allocation

The segment file allocator is the administrative manager of data blocks for NASTRAN. ANl
large modern computers have sufficient auxiliary storage to accommodate the needs of NASTRAN The
number of separate files into which the storage can be divided is, however. severely limited on
most computers. In general, the number of data blocks required for solution of a problem far ex-

ceeds the number of files avaflable, so that the assignment of data blocks to files is a critical
operation for efficient execution of NASTRAN. ’

The segment file allocator is called whenever a data block is required for execution of an
operation but is not currently assigned to a file. When the segment file allocator is called, it
attempts to allocate files for as much of the problem solution as possible. This depends on the
. type of problem, the nuber of files available, and the range of use of the data blocks. 7

e ———

The segment file allocator reads entries from the §5CAR from the point of current operation
to the end of the problem solution. A table is assembled in which information about data blocks.
Including thefr next use and their last use, s stored. Data blocks which are currently assigned
to files but are no longer required for problem solution are deleted. In certain cases, when the
range of use of a data block {s large, it may not be possbee to allocate a fi1e to the data block
throughout its entire range of use. In this case, pooling of the data block into a single file
with other data blocks is required so that the file to which the data block was assigned may be

freed for another a110cat10n In general, those data blocks whose next use is furthest from the
current point are pooled.

When the segment file allocator has completed its task, a new file allocation table has been
generated. This table is used until the solution again reaches a point where a data b1ock is

required to execute an operation but {s not assigned to a file.
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THE NASTRAN EXECUTIVE SYSTEM
1.2.3.3 Input/Output Operations

A11 {input/output operations in NASTRAN (except reading data from the system input file or
writing data on the system output file) are controlled by a collection of executive routines
called GING (General Input Output) which act as a buffer between the NASTRAN functional modules
and the operating system of the computer. This design feature eliminates computer dependent code
from the functional module programs which are, consequently, written exclusively in FORTRAN. The
use of computer dependent code for the selection of the operating system routines to accomplish

the actual input/output functions is isolated to a single routine within GING.
1.2.3.4 Other Executive Operations
Additional operations in support of a problem solution which are performed by the NASTRAN

Executive System include checkpoint, purge, equivalence and save.

The checkpoint routine copies data blocks required for problem restart onto the New Problem

Tape and makes appropriate entries in the restart dictionary.

The purge and equivalence routines change the status of data block entries in the file allo-
cation table. They are called whenever the nature of a given problem requires less than the full

generality provided within NASTRAN, thereby permitting some computational steps to be bypassed.

The save routine stores the values of parameters in the parameter storage table where they

are retrieved for subsequent use by the sequence monitor.

1.2-9
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Generate Initial File Tables

Read and Analyze
Executive Control Deck

Process Case Control Deck

Sort Bulk Data

Process Bulk Data

Perform General Problem
Initialization

Figure 1.

Flow of operations during the preface.
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1.3 USER CONTROL OF PROBLEM EXECUTION

A11 general purpose programs have formal procedures by which the user controls the calcula-
tions that are performed. In NASTRAN several modes of operation and a large number of options
within each mode are provided to the user. A short discussion of these matters is presented here

for completeness. More extensive treatment will be found in the User's Manual.

During the solution of a problem, the NASTRAN executive system calls a sequence of func-
tional modules that perform the actual calculations, as explained in the preceding section. Two
general types of solution are provided: solution by Rigid Format according to a sequence of module
calls built into the program; and solution according to a sequence of module calls generated by
the user. The latter capability is provided in order to make the program's matrix routines
available for general use and also to provide the sophisticated user with the means for solving
structural problems with features not accounted for in any of the built-in module sequences. It
is intended, however, that the great majority of structural problems will be solved via the rigid

formats.

There are, at present, a total of twelve rigid formats in NASTRAN with provision for adding
an unlimited number in the future. Each corresponds to a particular type of solution or to a
particular method of analysis, such as: Static Analysis, Buckling Anmalysis, Direct Transient
Response, Modal Transient Response, etc. The five Rigid Formats associated with static analysis
are described in Section 3.2. The seven Rigid Formats associated with dynamic analysis are des-

cribed in Section 9.1.

Each rigid format consists of two parts. The first is a sequence of instructions (including
jnstructions for Executive aperations as well as for Functional Module operations) that is stored
in tables maintained by the Executive System. The second part is a set of restart tables that
automatically modify the sequence of instructions to account for any changes in the input data
when a restart is made after partial or complete execution of a problem. The restart tables can
accommodate a change of rigid format such as occurs, for example, when vibration modes are re-
quested for a structure that was previously analyzed statically. The restart tables are, as can
be imagined, quite extensive and their generation constitutes a significant part of the effort
expended in developing a rigid format. They are, however, one of the more important cost-saving —_

features of NASTRAN.
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Many options are available with each rigid format. One such option removes the possibility v
of branching back to previously executed functional modules, and it should, of course, be exer-
cised only when it is known in advance that Tooping will not occur. This option permits the
Executive System to discard files that would otherwise be saved. Other options define the sub-

cases to be executed and the desired output formats, see Section 1.2.2.3.

It 1s also possible for the user to modify a rigid format via the ALTER feature described in
Section 2 of the User's Manual. Typical uses of the ALTER feature are to schedule an exit at an
intermediate point in a solution for the purpose of checking intermediate output, to schedule the
printing of a table or a matrix for diagnostic purposes, and to add or delete a functional module
from the sequence of operating fnstructions.

"For more extensive modifications the user can write his own §équeﬁce of'execdt#ve instruc-
tions. The system by which this is done is called DMAP (for Direct Matrix Abstraction Pragram).
OMAP is a user-oriented programming language of macro instructions which, Tike FORTRAN, has many
rules which must be followed to be interpretable by NASTRAN. DMAP is also used in the construc-
tion of rigid formats, which differ from user-generated sequences mainly in that restart tables

are provided.

The rules for generating a DMAP sequence are explatned in Section 5 of the User's Manual.
The DMAP sequence itself consists of a series of sfatements consisting of Egecutive Operation
instructions and Functional Module calls. Each statement contains the name of the instruction
(or Functional Module), the nameé of the input data blocks, the names of the output data blocks,
and the names and values of parameters. Typical examples of parameter usage are to'indicate
whether an operatfion is to be performed with single or double precision arithmetic, which mathe-

matical method will be used (when there are options), or the desired format of the output.

The names of some of the executive operations are BEGIN; CHKPNT (used when it is desired to
copy data blocks onto the Problem Tape in case an unscheduled restart is necessary); FILE (used
to save an intermediate data block); REPT (used to provide looping capability); PURGE (used to
prevent storage of data blocks); and END.

The functional modules belong to one of the fo11ow1ng categories structural modules, matrix
operatfons uti11ty moduTes' and user moduies The Structura1 Modules are the main subprograms

of NASTRAN. Some exampies of structural modules, taken from dynamic analysis, are: READ (ReaT -
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USER CONTROL OF PROBLEM EXECUTION

aigenvalue analysis); GKAM (Modal dynamic matrix assembler); TOR (Transient Dynamic Response}; and
DDR (Oynamic Data Recovery). The Matrix Operations (add, multiply, transpose, etc.) that are
available to the user of NASTRAN are described in Section 2. The Utility Modules are mainly
concerned with the formats of output data. The User Modules are dummy modules that provide the
user with the ability to write new functional capability that will automatically be recognized by

the executive system.

The usual methods of output for NASTRAN are the operating system print or punch files and the
NASTRAN plot tapes. Procedures for normal output selection are described in Section 2.3 of the
User's Manual. The printing of tables or matrices generated by NASTRAN is controlled by a group
of Utility Modules descriheg in Section 5.3.2 of the User's Manual. In many cases, it is desir-
able to save matrices and tables for use in restart operations. When using rigid formats, it is
possible to save preselected tables and matrices by using the Checkpoint option described in
Section 2.2 of the User's Manual. Checkpointed files are written on the New Problem Tape. It is
also possible for the user to save selected matrices on tape by inserting one of the User Modules
described in Section 5.3.3 of the User's Manual into the DMAP sequence by means of the ALTER

option.

The usual method of input for NASTRAN is the operating system card reader. When performing
restarts, the New PFob1em Tape from a previous run is redesignated as the 01d Problem Tape and
used as an additional source of input., Tapes that have been prepared with User Modules on pre-
vious runs can also be used as additional {nput sources by inserting one of the input User

Modules into the DMAP sequence by means of the ALTER option,
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2. MATRIX OPERATIONS

2.1 ELEMENTARY OPERATIONS
2.1.1 Introduction

The operations to be considered (matrix add, multiply, transpose, partition and merge) are
sufficiently elementary that the formal mathematical procedures which accomplish them may safely
be assumed to be well-known tovall readers of the Theoretical Manual. What is not likely to be
known fs the corresponding sequence of physical data manipulations that are performed by the com-
puter. Such matters are not usually considered to be required reading for users or for others
with an interest in "the theory"; they are, accordingly, buried in the programmers' manual as ref-
erence material for maintenance and modification of the program. This practice is not followed

here because the success or failure of NASTRAN depends, to a far greater extent than for smaller

programs, on the efficiency of the subroutines that perform the basic matrix operations. Al]l

matrix operations in NASTRAN are performed by specially designed subroucines.

Questions regarding accuracy, which is an equally important aspect of numerical calculation,
fall into two categories: those that relate to analytical approximations, such as occur in
iterative solutions, and those that relate to simple round-off error accumulation. Elementary
matrix operations do not involve analytical approximations. Nor do the triangular decomposition
of matrices and the solution of simultaneous 1inear equations, described in Sections 2.2 and 2.3.
The errors that occur in efgenvalue extraction and in numerical integration due to analytical

approximation are discussed in the sections dealing with those topics.

Trigonometric and other elementary irratjonal functions are evaluated by library subroutines

provided by the manufacturer of the computer, who guarantees them to be accurate.

The effects of round-off error accumulation in structural analysis are treated in Section
15.1, where reasons are presented for adopting double precision arithmetic (54 or more bits) fn
critical calculatfons. No other measures are employed in NASTRAN for combating round-off error
accumulation. The usual measures of this sort (e.g., rounding rather than truncating arithmetic
rasults, or accumulating sums by starting with the smallest numbers) are only mildly effective and
have the disadvantages that they require machine language coding, or that they substantially

increase running time, or both.

From the viewpoint of data processing, the computer has two main parts: a central processor

that contains an arithmetic unit and a randomly accessible memory device (core storage) with very

2.1-1 (W2731717)
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MATRIX OPERATIONS

short access time; and a collection of peripheral storage devices (tapes, disks and/or drums) with
high capacity but relatively long access times. In general the data contained on the peripheral

storage devices can be accessed effectively by the central processor only in relatively large
blocks, due to the time required to locate the first word in any record. Thus, from the viewpoint
of matrix algebra, data should be sequentially read from and written on peripheral storage devices
as one or two-dimensional arrays. An important convention employed in NASTRAN is that all matrices
are stored on peripheral devices by columns. This fact {s important to the discussion of the mat-

rix multiply and transposition subroutines described below.

1t is assumed, in the design of NASTRAN, that a typical matrix is so large that it cannot all
be held in (high-speed) core storage at any one time, even if it is a sparse matrix that is ex-
pressed in packed form (i.e., by means of its nonzero elements and their row-column indices). In
such situations, the computing time tends to be dominated by the relatively slow rate of data
transfer from peripheral storage to core storage, and optimum computing strategies are designed to

minimize the number of data transfers.

The time to transfer a sparse matrix from peripheral storage to the central processor will be
decreased if only the nonzero terms are stored. The matrices in NASTRAN are packed in nonzero
strings in the following manner. The record for each column begins with a three-word header.

This is followed by an integer (fixed-point number) describing the position (row index) of the
first nonzero term and by a second integer describing the number of consecutive nonzero terms in
the string. The integers are followed in consecutive locations by the floating point numbers
describing the values of the nonzero terms in the string. The remaining nonzero strings follow
in order until the end of the column is reached. The data record describing a typical column

will appear as follows:
I, 1, 1, 2, 2, (X,X), 8, 3, (X,X,X), 17, 1, (X), 27, 1, (X), E.

The three I's are the header for the column. The X's are the numerical values of terms, and E
1nd1éates the end of the record. The nonzero terms in the column are the 2nd, 3rd, 8th, 9th, 10th,
17th, and 27th. Once the record is transferred to core storage, it may, if required, be fully
expanded by addition of the zero terms.

In the case of triangular factors, the integers describing the row position and the number of

consecutive nonzero terms, are placed at the end, as well as the beginning of each nonzero string.

2.1-2 (12/31/74)
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This manner of storing sparse matrices allows the matrix to be read backward in the same manner as

it is read forward, and thereby allows for improved efficiency in the backward substitution part

of equation solution operations.
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2.1.2 Matrix Multiplication

The multiplication of large matrices can be a time consuming operation. If the matrices are
full, then the time to multiply two matrices of order nxm and mxr is proportional to nmr, If the
matrices are sparse, but no attempt is made to take advantage of the sparsity, the running time

w111 be the same as if the matrices were full.

Most of the matrices used in structural analysis are initially very sparse. They may, how-
ever, become relatively dense as the result of transformations. Consequently, the NASTRAN pro-
gram requires a matrix multiplication routine that works well for sparse matrices as well as for

full matrices.

The matrix multiplication routine in NASTRAN provides two alternative methods of matrix mul-
tiplication. Both of the methods take advantage of sparsity in different ways. The second method
might be described as a truly sparse matrix method in that only the nonzero terms in either the
left-hand or the right-hand matrices are processed. The method which results in the minimum exe-

cution time is automatically selected by the routine.

For the discussion which follows, the general multiply-add form, [D] = [A][B]+[C], s assumed.

In Method One, core storage is allocated to hold as many columns 6f (8] and D] in unpacked
form as possible (columns of [C] being read initially into the storage space for [0]). The [A]
matrix is read interpretively one nonzero element at a time. For each nonzero element in [A], all
combinatorial terms for columns of [B] currently in core are computed and accumulated in the stor-
age for [D]. Let a;, be a nonzero element of [A] and blj be an element of [B]. The formula for
an element of [D] is

dyy = Eamsz*-cij , m

where j runs across the columns of Bl and [0} currently in core. At the completion of one complete
pass of the [A]matrix through the central processor, the product is completed to the extent of the
columns of [B] currently in core. The process is repeated until the [B} matrix is exhausted. It ‘may
be seen that the number of passes of the [Almatrix equals the total number of columns of [B] divided
by the number of columns of {8 that can be held in core at one time. Method One s effective if -
the number of columns of [B] is not large, e.g., when [B] is a small number of load vectors.

Method One is also more effective than Method Two when [8] is a dense matrix.
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In Method Two, only a single term of the [B] matrix is required in main memory at any one time.
One full column in unpacked form of the partially formed [D] matrix fs ;lso stored in core at the
same time. The remaining storage is allocated to as many columns of [A] in packed form as can be
stored, i.e., only nonzero terms and corresponding row positions are stored. For the columns of
[A] in storage at one time, the [8] matrix is passed through the central processor, column by

column, forming partial answers on each pass.

Each column of [B] forms partial answers which are added to the corresponding column of [D].
As may be seen from Equation 1, only the elements in the rows of sz corresponding to the columns
of ay, currently held in core are used. After all columns of [8] have been processed once, new
columns of [A] are placed in core and the [B] matrix is passed through again, The process is

repeated until all the columns of [A] have been used.

In Method Two the [A] matrix is passed through core once and the number of passes of the [B]
matrix equals the total number of columns of [A] divided by the number of columns of [A] that can
be held in core in packed form at one time. The number of passes of the [B] matrix {s the con-
trolling factor in determining computing time. If the [A] matrix is large and sparse, the number of
passes of the [B] matrix in Method Two will typically be less than five. In Method One, on the oo
other hand, the numberrof passes of the [A] matrix will be much Targer if the number of columns T
of [B] is large. The reason fs that, in Method One, the columns of the [B] matrix are not stored

in packed form, whereas, in Method Two, the columns of the [A] matrix are stored in packed form.

Both methods one and two include variations for premultiplication of a matrix by the trans-
pase of another matrix, [D] -’[A]T[B]+[C]. where [A] is stored by columns. This is done in order
to avoid transposing the [A] matrix, which is by no means trivial (see Section 2.1.4). In fact,
the second matrix multiply method provides an efficient means for matrix transposition of sparse

matrices, by setting [B] = [1] and [C] = 0.

A third option is provided for the transpose case 1n order to efficiently handle the case of
[B] sparse and [A] dense. The operations for method three are similar to those described for the
nontranspose case of method two, except the columns of A (rows of [A]T) are held in unpacked
rather than packed form. In the transpose case for method two the computing time is proportional
to the density of the [A] matrix, whereas in method three the computing time is proportional to
the density of the [B] matrix. A nontranspose option is not needed for method three as the com-
puting time for the nontranspose option in method two is proportional to the product of the
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densities of the [A] and (B] matrices.
2.1.3 Matrix Addition
The addition routine computes the general matrix sum,
[C] = a[A] +b[B] , (2)

where a and b are scalars and [A] and [B] matrices. Special provision is made for the case b = 0,

to allow scalar multiplication. No compatibility of types (such as single or double precision,
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real or complex numbers) between a, b, (A], and [B] is required. The nonzero terms of [A] and [B]
are read interpretively one nonzero element at a time. The appropriate sum is formed into [C] and

{mmediately transferred to peripheral storage. The required amount of core storage is very small.

2.1.4 Matrix Transposition

The transposition of large matrices is a distressingly awkward operation. The optimum strat-
egy depends on the location of the nonzera terms, the density of the matrix, and its size. The
NASTRAN algorithm which is used in the transposition of dense matrices is described below. Sparse

matrices are transposed by the matrix multiply subroutine (see above).

If the matrix order is i x j and if only a fraction of the matrix may be held in core at one
time, the usual technique is to read the whole matrix from a peripheral storage device, saving, in
core, the elements from the first R rows of the matrix; these elements are then written row by row
on a peripheral storage device. The operation {s then repeated until all { rows have been rewrit-
ten. The matrix may then be said to be "transposed" because the segments of a sequentially stored

two-dimensional array are treated by NASTRAN as the columns of a matrix. The number of times that

the matrix must be transferred from peripheral storage to high-speed core is T = i/R. The time
for data transfer {1/0 time) will be equivalent to that taken to jnput the full matrix T times and

to output it once.

If the matrices are very large, matrix partitioning may be used effectively to reduce the
computer time. The matrix is first partitioned by rows and the partitions are then transposed as

shown below,

[A] = A, —— | AT A - AT . (3)

The technique is as follows. The matrix [A] is read into core one column at a time, and the ele-
ments in the first P rows of each column are extracted and placed in a peripheral storage file.
The operation is repeated, reading the elements in the next P rows by columns into a second peri-
pheral storage file, etc. Thus, since the[A]matrix has | rows, the [/@ time for partitioning is

equivalent to that for 1/P reads and one write of the complete matrix. Next the[@ﬂ matrix is

2.1-5
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transposed by the first-described method which, since[?ﬂ has P rows, requires P/R reads and one
write, Because the columns of[}ﬂT are also columns of MF, the transposition is complete when all
of the partitions have been transposed. The I/@ time for transposing the partitions is equival-
ent to P/R reads and one write of the complete [A] matrix. Assuming that reads and writes take

the same time, the total time is proportional to the parameter
T -%+l+§+l =T-§+%+2 . (4)

The number of rows in each partition, P, may be freely selected. The minimum value of the time
parameter obtained when 3t/3P = 0, is

T,

min = 20+7T) : - (8)

and occurs when P = R/T . (6)

The time for the second method is less tham that for the first when

200 +7/7 ) < T+ . (7

which is satisfied when T > 6. The second method is automatically selected by the program when
this condition is satisfied.

2.1.5 Matrix Partitioning and Merging

In structural analysis, vectors describing the system variables are frequently separated into
subsets which are then treated differently. For example, in the displacement method matrix parti-
tioning may be applied to the displacement vector {uf}. resulting in two subsets: {uo}. degrees of
of freedom removed by partitioning, and {"a}’ degrees of freedom not removed (see Section 3.5.3).
A1l of the arrays associated with {uf}. such as the load vector, {Pf}, and the stiffness matrix,
[Kff]. must also be partitioned. The partitioning operations are formally indicated as follows;

P
(P} = =% | (8)
PO
1
K22 ! Kao 7
[Kff] = ""r-" . (9)
KaoT’ KOO
2.1-6
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Later in the analysis it will be necessary to recombine the elements of {uo} and {“a}' This

operation, called the "merge" operition, is formally indicated by

--2_.L {u,} . (10)

. 0

The essential feature of the operation is that the original order of the members of {uf) must be

restored. Order must also be maintained during the partition operation,

The partition and merge operations are accomplished in the program with the aid of USET, an
array that describes the membership of each degree of freedom in each of the defined vector sets.
There are approximately fifteen such sets (see Section 3.3). One word of USET is assigned to each
degree of freedom. One binary bit in each word of USET corresponds to a different vector set. A
bit is set equal to unity if the degree of freedom is a member of the corresponding vector seti
USET may, consequently, be regarded as a table with marks in appropriate row-column intersections

as shown below.

ug -- ug Uy Uy -
Y v 4

% 4 4

v % 4

v 4 4
4 v 4

% 4 4
v

4 4 v

4

v/ Y 4
v

4 4 v

In partitioning [Kff] (Equation 9) for example, USET is called into core storage along with
the first column of [Kff]. USET is scanned and the ordinals of the nonzero bits in the positions

corresponding to Ugs Ug» and u, are noted and copied onto separate lists. The Tists are then used

u
o
to separate the elements in the first (and succeeding) colum(s) of [Kff] into [Kaa] and [Kao]T'
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which are then read out of core onto separate files. In the merge operation (Equation 10), the
lists are scanned to determine whether a number from {ua} oF a number from {uo} will be the next

number to be copied into {uf}.

2.1-8
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2.2 TRIANGULAR DECOMPOSITION

The factoring of a matrix into upper and lower triangular forms is a central feature of
structural analysis as performed with the NASTRAN program. For large problems a substantial
fraction of the total computing time is associated with triangular decompositions. The NASTRAN
program requires a decomposition routine that works well for both full and sparse matrices.
Matrices encountered in structural analysis, including structural dynamics, may be efther real

or complex.

Most of the matrices used in structural analysis are initially very sparse; however, they
tend to fill in various degrees as the problem solution proceeds. Under some conditions, matrix
multiplications will fi11 a matrix prior to the beginning of the triangular decomposition. Under
other conditions an initially sparse matrix may completely fill during the triangular decomposi-
tion. However, for many matrices used in structural analysis, much of the original sparsity {s
maintained in the triangular factors. In order to handle all of these situations effectively,
the decomposition routines treat all matrices as sparse. The procedures efficiently treat the

general sparse case as well as the limiting cases of a full matrix or of a simple band matrix.

2.2.1 Trianqular Decomposition of Symmetrical Matrices

It is well known (see, for instance, Reference 1) that any square matrix [A], having nonzero
Teading minors, can be expressed in the form [A] = [L1[D][UT], where [L] and [U] are unit-lTower and
unit-upper triangular matrices respectively, and [D] is a diagonal matrix. The matrix {0] can be
incorporated entirely within either [L] or [U] or part with each. The different ways of incorpora-
ting [D], combined with different orders of operations in determining the terms of [L] and [UT,

have given rise to many named procedures for performing triangular decompositions.

The following discussion will be based on the equation
(Al = [LIV] (M

where {L] is a unit lower triangle. The elements of the upper triangle may be computed by the

following recursion formula:

i-1
Uiy * 345 - RZI Bk Ykt (2) -
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For symmetric matrices without pivoting, the upper and lower triangular elements are related as

follows:

b, = okl - (3)

The substitution of the relation in Equation 3 into Equation 2 gives

j=1 Uy
Ugy T 3y - kZI T Uy (8)
Now, k < f <J, so that only previously computed results occur on the right-hand side of Equation
4 if the elements ugy are computed in order starting with the first row. The unit lower triangle

and the associated diagonal elements are saved on secondary storage for later use in equation

solution operations,--

Figure 1 shows the triangular factor for a sparse matrix. Initial nonzero terms are indi-
cated by X's with 0's indicating nonzero terms created as the decomposition proceeds. The terms

in triangles indicate the relative locatfons for nonzero contributions to the upper triangular

_factor when the first row of the matrix fs the pivotal row. If there fs sufficient main storage ~

to hold all of the nonzero terms associated with éiéﬁ;ﬁfVBta1 row, the decompositidn may proceed
without the need for writing intermediate results on secondary storage. In general, no nonzero
terms will appear in any column of [U] until a nonzero term appears in [A]. The apperance of

the first nonzero term in [A] defines the beginning of an "active column.* Columns 1, 2 and 9

" dre active when the first row 1s the pivotai row. The terms in ‘squares indfcate the refative

locations for nonzero contributions to thg upper triangular factor when the third row of the

matrix is the pivotal row. At this point in the decomposition, rows 3, 7, 9 and 13 are active.

If at some point in the decomposition, the dfagonal term of the pivotal row initiates a new
active column, all existing active columns will terminate in the previous row (change status
from active to passive). In row 4 of Figure 1, columns 7, 9 and 13 become passive. Also in row
7, colums 11 and 14 become passive. Prior to using row 4 as a pivotal row, the passive terms in
rows 7, 9 and 13 (in squares on Figure 1) are transfarred to secondary storage. These terms
remain on secondary storage until gach of the rows 7, 9 and 13 become pivotal rows, at which time
they are transferred to main storage and combined with the original nonzero terms to form each of

the pivotal rows. Columns remain passive until a nonzero term appears in that column for a later _

2.2-2 (12/31/74) g
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TRIANGULAR DECOMPQSITION

pivotal row. Nonzero terms which change the status of columns from passive to active may be either
in the original matrix, such as column 11 of row 10, or they may be created prior to the column
becoming passive, such as columns 9 and 13 of row 7. Figure 1 indicates that these later nonzero

terms were created when row 3 was the pivotal row.

If there is sufficient main storage for all of the terms generated by the second term of
Equation 4 for each pivotal row, the triangular decomposition can be campleted with a single pass
through the matrix. When the number of active columns exceeds the capacity of the working storage
space, an automatic spill logic 1s provided. The decomposition p;oceeds by holding the nonzero
terms for as many rows as possible in main storage. Following the completion of all possible
pivotal row operations, the intermediate results are transferred to temporary storage. All
possible pivotal row operations are then performed on the next group of rows in the matrix, and
the intermediate results are transferred to temporary storage. Next, the temporary file 1s re-
wound and pivotal operations are continued on the first and second spill groups. This sequence
of operations continues, adding the next group of rows an each pass through the matrix, until

each pivotal row is complete and transferred to permanent secondary storage.

A preliminary pass is made over the original matrix in order to estimate the execution time
and create tables which assist in the efficiency of the decomposition operation. The computing
time to perform any calculation may be estimated by counting the number of elementary operations
that it involves and assigning experimentally determined values of time to the various types of
elementary operations. In the case of triangular decomposition by the method described above,

the estimated time is
T-‘Mrfczu(m)gc;zﬂx{czﬂ(;’ +p)Tceep Pfc (5)
2'1,11 1,1112' s 2'Vp g t Pyl 1

where M = time for multiply-add loop,

—
L]

time to read and write one term on spill file,

time to put one term in write buffer,

time to get one term from read buffer,

= a4 o
"

= order of matrix,

Ci = pumber of active columns in the ith row, -

x
[ ]

i number of [/@ transfers for the ith row. R1 may be approximated by the integral part

2.2-3 (12/31/74)
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4

of ci/s, where S = number of core-held rows in the current spill group,

Cs = number of active columns at beginning of spill operations that are out of range of
first spill group (column numbers greater than last row in spill group) for each time
that spill operations begin, _

Ct = sum of number of passive columns on secondary storage and number of active columns
in working space for each time that active column termination occurs, and

n = number of words per term.

The computing time is dominated by the first term in Equation 5, which is assocfated with the
arithmetic operations in the step-by-step elimination procedure. Since the number of active
columns is a function of the ordering of the matrix, the user can shorten the computing time by
ordering the matrix in the most favorable manner. A discussion of the sequencing of grid points
to minimize the time required for triangular decomposition is given in Section 1 of the User's

Manual.

The second and third terms of Equatfon 5 are zero, unless spill operations require the
transfer of intermediate results to secondary storage. The fourth term is the modest overhead
associated with passive columns, and the last term is the time required to transfer the final %%;3

result of the triangular decomposition to secondary storage.

In order to assist the user in locating singularities, or near singularities in the matrix,
information relative to the magnitude of the diagonal elements of the triangular factor is fur-
nished to the user. The absolute value (e) of the ratio of the diagonal element in the original
matrix to the diagonal element in the triangular factor is determined for each row of the matrix.
The maximum value of ¢ along with the distribution of the values of ¢ is furnished as diagnostic
information. The row numbers for the five largest values of ¢ are also furnished along with the

number of negative values for the diagonal element in the triangular factor.
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Figure 1. Triangular factor for sparse matrix
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2.2.2 Triangular Decomposition of Unsymmetrical Matrices

The pracedures for the triangular decomposition of unsymmetrical partially banded matrices
are similar to those used for symmetrical matrices. The lack of symmetry means that the upper
and lower triangular faétors are not related, and that the widths of the upper and Tower bands
(which replace the symmetrical semi-bands of the symmetrical matrix) may be different. However,

the band structure of the original matrix will be maintained in the triangular factors.

Although the Jack of symmetry means that the pattern of scattered terms outside the upper
band may be different than the pattern outside the lower band, it still remains true that no non-
zero terms will appear in any column of the upper triangular fac;gr until a nonzero term appears
in the same column of the orig{nal matrix. Likewise, nb nonieroriénms will appear in any row
of the lower triangular factor until a nonzero term appears in the same row of the original
matrix. Hence the partially banded nature of the matrix is maintained after the completion of

the triangular decompositon.

The lack of any assurance that all leading minors are nonsingular requires that pivoting
(i.e., interchange of rows) be used to mafntain the numerical stability of the triangular decompo-

sition. Pivoting is restricted to take place within the lower band. This will increase the band-

width of the upper triangular factor by the width of the lower band, but will not otherwise affect

the partially banded character of the triangular factors.

The general procedure for an unsymmetrical decomposition will be discussed with reference to
Figure 2, which shows an unsymmetrical partially banded matrix of order N, upper bandwidth B,
and Tower bandwidth B, with several nonzero terms outside the bands. Initial nonzero terms
are' indicated by x's, with Q's indicating nonzero terms created outside the original bands as
the decomposition proceeds; The 0's within the expanded upper band B indicate the maximum number
of nonzerc terms that can be created by the pivoting. The existence of initial zero tarms inside
the lower band B and the expanded upper band 8 + B {s ignored as, in general, these tarms will

become nonzero as the decomposition proceeds.

If there is sufficient core storage to hold B + B columns of the lower triangular factor, as
indicated inside the solid parallelogram of Figure 2, along with the associated active column
and active row terms, the triangular decomposition can be cdmp1eted with a single pass through

the matrix. OQtherwise secondary storage must be used for intermediate results and provision is

2.2-6 (4/1/72)
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TRIANGULAR DECOMPQSITION

made in main storage to hold R columns of the lower triangular factor, a single column of the

upper triangular factor, and the current active columns and active rows.

The decomposition begins by reading the original matrix one column at a time, pivoting the
largest term in absolute value within the Tower band to the diagonal position, and determining
the inner products for the current column, including the active row terms, The portion of the
column in the lower triangular factor, including active row terms, 15 Eetained in working storage.
The portion of the column in the upper triangular factor within the expanded upper band is com-
plete and no longer needed; hence it can be written on a secondary storage device, This contin-
ues until R columns have been processed. At this point the procedure is changed cnly to the
extent that the portion of the current column within the lower band is temporarily stored on a

sacondary device.

The decomposition continues until 8 + B columns have baen processed. At this point, the
First column of the lower triangular factor, including the active row terms, is no Tonger needed
and can be written on a secondary storage device. This releases B spaces in working storage.

This procedure continues until the decompositiecn is completed.

The active column terms are transposed prior to beginning the decomposition, so they are
available by rows and can be read into main storage as needed, If an active column term exists in

the 1th row, it is stored along with the 1 + B column of the upper triangu1af factor.

A prelimirary pass {s made over the original matrix in order to locate the extreme non-
zero terms for each row in the lower triangle and each column in the upper triangle. The maximum
number of active columns is determined by counting the maximum number of intersections for any
row with columns defined by drawing lines from the most extreme nonzero term in the upper tri-
angle to the outside edge of the upper band. The maximum number of active rows is determined by
counting the maximum number of intersections for any column with rows defined by drawing lines
from the most extreme nonzero term in the lower triangle to the outside edge of the upper bard.
An examination of the matrix shown in Figure 2 reveals that the maximum number of active columns
{s 2 even though the total number of nonzero columns cutside the upper band is 3. The lower

triangle contains 3 active rows and 4 nonzero rows outsida the lower band,

As with the symmetrical decomposition, the routine selects the bandwidths that give the
minimum computing time based on the ordering of the matrix presented. Proper sequencing is -

similar to that used for symmetrical matrices.

2.2-7 (4/1/72)
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The computing time will again be a function of the working storage available fcr the
execution of the routine, Working storage consists of space for R columns of terms inside the
band for the Tower triangular factor, B + 8 spaces for the current column of the upper triangular

factor, BC spaces for active column terms, (B + 8)T spaces for active row terms, CC spaces for

interaction of active row and active column terms, and B + B spaces for the permutation matrix.

This results in working storage as follows:
W o= BR+ 2B+ 28+ CB+ C(B+8) +CT, (14)

where R > 1, Rs B+ B, R <N, ¢ is the maximum number of active columns, and C is the maximum

number of active rows.

The computing time to perform an unsymmetrical triangular decomposition is:

T = T] + Tz + T3 + T4 ’ (15)

where T is the time r‘;quired to process the first N V-V 8 - 28 colums of terms inside the upper
and lower bands, T3 is the time required to process the last B columns of terms inside the bands,
and T2 is the time required to process the remaining intermediate B + B columns of terms inside

the bands. T4 is the time required to process the active row and active column terms.

T = K.l[MBER +18(B+ 8 -R)+pP(B+28)] , (15)

where MB is the arithmetic time required to process one term inside the bands, [ is the time
required to store and retrieve one term inside the lower band, and P is the time required to
store one term of the final result ¢n a secondary storage device. If N > B + 28, then

Ky = N-B8-28. If N< B+ 28, then K, = 0.

K
Ty = 2 I + (Ky - RI(I = Mg)E + 208 + PR)] (17)

IfFN2B+2B, thenkK, = K, = 8+8 . IfN<B+2B, thenK, = N -5 and K. = 8+ 8,
2 3 2 3

unless N < B + 8, then Ky = N

—‘
w

[]
c.1cm

K3
A S (18)
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!
i

U1 AN |

Ty



ORIGINAL PAGE IS
OF POOR QUALITY
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IFN28+28, thenk, = B+8-RandKs=8+ % B, unless B > R, then K, = § . If
N < B + 28, then Ky = N - Rand K = N, unless N - R > B, then Ky = B.

T, = (N - E)[Mc(ﬁc +8C + BE + c) +p(C+ T (19)

4

where MC {s the arithmetic time required to process one active row or active column term.

If N is assumed large compared to both B and B and the final storage terms are neglected,

Equation 15 can be simplified as follows:

T = N[MBB'R + Mc(ic + BT+ 3T+ CT) + IB(B +F -R)]. (20)

This simplified equation is used for making timing calculations in selecting the optirum band

widths and active elements.

Tre sequence of events in selecting the bandwidths and active elements cutside the bands

may be summarized as follows:

1. Locate extreme nonzero lerms in each column for the upper triangle and in each row of
the lower triangle.

2. Prepare a table of unique pairs of upper bands and active columns.

3. For the working storage available, compute R using Equation 14,

4. Assuming B = § and C = T, and using Equation 2¢ determine the upper bandwidth and the
asscciated number of active columns that result in minimum computer time to perform the
triangular decomposition.

5. Using the previously determined upper band and active columns, determine the lower
bandwidth and the associated number of active rows that result in minimum computer time
to perform the triangular decomposition according to Equations 14 and 20.

6. Select the values of the bandwidths and active elements that result in minimum time to
perform the trangular decomposition and recalculate the time using Equatior 15. This
more accurate time estimate is needed because decisions are made by modules using the
decomposition routines that are based on the estimated running time.

The complex decomposition routine is the same as the real unsymmetric routine, except that

twice as much storage is needed for complex numbers and the real arithmetic is replaced with

complex arithmetic.

2.2-9 (4/1/72)
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Figure 1.

TRIANGULAR DECOMPOSITION
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2.3 SOLUTION OF [Al{x} = {b}
The solution of the eguation
[Al{x} = ({b} , {1

is accomplished using the results of the decomposition procedure described in Section 2.2.

Replacing [A] by its triangular factors, Equation 1 becomes
[LIudixy = (b} . {2)

where [L] is a lower unit triangle and [U] is an upper triangle.

Cefine

{y} = [Ulx} . (3)

Then, substituting into Equation 2,
[LIy} = {b} . (4)

The solution of Equation 4 for {y} is called the forward pass, and the subsequent solution of

Equation 3 for {x} is called the backward pass.

In the solution algorithm, N is evaluated from the leading element of [L], and the nonzero
elements in the first column of (L] are multiplied by v, and transferred to the right hand side
of Equation 4. The procedure 1s repeated for the secand and succeeding columns of [L] until
all elements of {y} have been evaluated. The algorithm for obtaining {x} is similar except that
the columns of [U] are required in reverse order. Multiple {b} vectors can be handled simul-
taneously up to the limit of the working space available in main memory. The same general pro-

cedures are uysed for both symmetric and unsymmetric matrices.

The forward pass requires the reading of both the right hand vectors and the lower triangular
factor from secondary storage devices. In the case of symmetric matrices, the processor time
associated with the Tocation of the terms in the lower triangular factor is minimized by working
directly in the I/@ buffers. Also, in the case of symmetric matrices, successive values of {y}
are tested for zero prior to the multiplication. In this manner full advantage is taken of the

sparsity of the right hand side on the forward pass. =
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For symmetric matrices, a term in the upper triangular factor is easily obtained from the cor-
responding term in the transposed Tocation of the lower triangular factor (see Equation 3 of
Section 2.2.1). Thus, the backward pass utilizes a special packing format which allows for the
backward reading of the lower triangular factor. For unsymmetric operations, the backward pass’
is accomplished in two steps. First, the upper triangular factor is read backward and written
forward on a separate file so that the last column of [U] appears first. This 1s part of the
triangular decomposition routine and takes place immediately after the completion of the decom-
posftion. The second step consists of solving Equation 3 for {x}. It is made part of the

equation solution routine. -
Following the determination of the solution vectors, a residual vector is determined for
each solutfon vector as follows:

(éb} = {b} - [AJ{x} . (4)

The residual vector is used to calculate the following error ratio which is printed with the

output.

T
{x} {éb}

€ wSy— . (5)
{x}"{b} - - ’ - T

The magnitude of this error ratio gives an indication of the numerical accuracy of the solution
vectors. The computer time required to calculate this error ratio is only a small fraction of

the time required to determine the solution vector.
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3, STATIC ANALYSIS BY THE DISPLACEMENT METHOD

3.1 INTRODUCTION

From a theoretical viewpoint, the formulation of a static structural problem for solution by

the displacement method is completely described by the matrix equation
[kJfu} = ({P}L. (m

As a matter of practical calculation, there is rather more to the problem than this simple
Formula would imply, since it is necessary to generate the stiffnass matrix [X] and the load vec-
tor (P} from the available information about the structure, and to calculate stresses and other
quantities of interest from the independent displacement vector, {u}. In the early days of com-
puter-aided analysis these tasks were left to the analyst and the computer busied itself with
obtaining the solution to Equation 1. It was soon discovered that, for most practical problems,
the computer had oniy partly unburdened the user and that larger savings of time and cost could
be achieved if the computer took over the major share of input data preparation and output data
processing. Automatic performance of these additional tasks requires that a particular approach

to structural analysis be selected and incorporated into the program.

NASTRAN embodies a Tumped element approach, i.e., the distributed physical properties of a
structure are represented by a model consisting of a finite number of idealized substructures or
elements that are interconnected at a finite number of points. A1l input and output data per-

tain to the idealized structural model.

The {dealized structural model in NASTRAN consists of "grid points " (G) to which "loads"
(P) are applied, and at which degrees of freedom are defined, and "elements" (E) that are connec-
ted between the points, as shown in Figure 1. Two general types of grid points are employed in

static analysis. They are:

1. Geometric grid point - a point in three-dimensicnal space at which three components of
displacement and three components of rotation are defined. The coordinates of each grid
point are specified by the user. Components of displacement and rotation can be elimi-

nated as degrees of freedom by means of "single-point constraints".

2. Scalar point - a point in vector space at which one degree of freedom is defined. A
geometric grid point contains from one to six scalar points. Scalar points may exist -
that are not associated with grid points. Such points can be coupled to geometric grid

points by means of scalar structural elements and by constraint relationships.
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(

The structural element is a convenient Tocalizing concept for specifying many of the proper-
ties of the structure, including material proserties, mass distribution and some types of applied

Toads. In static analysis by the displacement method, stiffness properties are input exclusively

by means of structural elements. Mass properties (used in the generation of gravity and inertia
Toads) are input either as properties of structural elements or as properties of grid points. In
dynamic analysis mass, damping, and stiffness properties may be input either as the properties of

structural elements or as the properties of grid points.

The structural elements are described in detail in Section 5 of the Theoretical Manual.

There are four general classes of structural elements as follows:

1. Metric elements which are connected between geometric grid points. Examples include rod,

plate and shell elements.

2. Scalar (or zero-dimensional) elements which are connected between pairs of scalar points,
or between one scalar point and “ground". Note that, since each geometric grid point

contains a number of scalar points corresponding to specific components of motion, sca-

1 IRPHOARER 1 |

Tar elements can be connected between selected components of motion at geometric grid

¢

points.

3. General elements, whose properties are defined in terms of deflection infTuencercoeffi-

L LTI

cients (i.e., compliance matrices), and which may be 1nterconhécted between any number of

geometric and scalar grid points. An important application of general elements is the

representation of large pieces of structure by means of test data.

i

4, Constraint E!eﬁeﬁtér(or Constraints). The existence of a constraint element implies a

Tinear relationship among the degrees of freedom to which it is attached of the form

11}

IRegly = Ve 2)

where ug are degrees of freedom and Yc is an enforced displacement. A linear relation-

ship among the forces of constraint is also implied, since it is required that the forces

of constraint do no work.

RRE

Constraint eiements are émp1oyed for the following purposes:

a. To introduce enforced'dfsplaceﬁeﬁts.

b. To enforce zero motion in specified directions at points of reaction.

3.1-2 -
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¢. To simulate very stiff (rigid) structural members.

d. To describe part of a structure by experimentally determined vibration mcdes. (The
matrix of eigenvectors expresses a relationship of constraint between physical and

modal coordinates.)

e. To generate nonstandard structiural elements by combining scalar structural elements

and constraints,

The constraint concept is important for the displacement method in order to eliminate
ill-conditioning genérated by very stiff members. Two types of constraint elements are
provided: single-point constraints, wherein Equation 2 includes only a single term on
the left hand side; and multipoint constraints and rigid elements wheraein Equation 2
includes more than one term. The main reason for the distinction is that due to the

simplicity of single-point constraints, they are processed separately {n the proaram.

Solution of a linear static structural problem by the displacement method requires a set of
preliminary operations which reduce the input data tc the matrix form given in Equation 1., Among
these operations are the elimination of displacement compdnents that are declared to be dependent
by virtue of constraints and the transfer of all applied loads to the independent displacement

companents.
As input data in static analysis, the loads are specified in a variety of ways including:
1. Concentrated loads at geometric and scalar grid points.
2. Pressure Toads cn two-dimensional structural elements.
3. Indirectly, by means of the mass and thermal expansion properties of structural elements,

Enforced deformations are also reducad to a set of equivalent loads on the independent dis-

placement components. See Section 3.6.1.

Once Equation 1 has been formed it is solved for each specific loading condition. Stresses
in the structura! elements and other desired results are then obtained from {u} by a set of data

recovery operations,
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Figure 1. Topology of the idealized structural model,
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3.2 GENERAL PROBLEM FLOW

As has been explained in Section 1 (Program Organization), NASTRAN consists of a number of
subprograms, or modules, that are executed according to a sequence of macro-instructfons that is
controlled by the Executive System. A number of such sequences, called Rigid Formats, are per-
manently stored in the program and can be selected by means of control cards. Each rigid format
corresponds to a particular type of structural analysis. The user may, in addition, devise his
awn sequence of module calls (referred to as a DMAP sequence) for problems that do not conform to

one of the available rigid formats.

The following rigid formats are currently avajlable for the solution of static problems by

the displacement method:
1. (Basic) Static Analysis
2. Static Analysis with Inertia Relief
4, Static Analysis with Differential Stiffness
5. Buckling
6. Piecewise Linear Analysis
14, Static Analysis using Cyclic Symmetry

Figure 1 shows a simplified flow diagram for Basic Static Analysis. Each block in the flow
diagram represents a number of program modules. The actual number of modules called is approxi-
mately equal to thirty. The functions indicated in Figure 1 are described in succeeding subsec-
tions of the Theoretical Manual. It suffices at present to indicate the general nature of the

tasks performed.

The Input File Processor, as the name implies, reorganizes the information on input data

cards into Data Blocks consisting of Tists of similar quantities.

The Geometry Processor generates coordinate system transformation matrices, tables of grid
point locations, a table defining the structural elements connected to each grid point, and other

miscellaneous tables such as those defining static Toads and temperatures at grid points.

The Structure Plotter generates tape output for an automatic plotter that will plot the _
structure (i.e., the location of grid points and the boundaries of elements) in one of several
available three-dimensional projections. The structure plotter is particularly useful for the .

detection of errors in grid point coordinates and in the connection of elements to grid points.
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STATIC ANALYSIS BY THE DISPLACEMENT METHOD

Note that the structures plotter may also be used at the end of the program to superimpose images

of the deformed and undeformed structure.

The Structural Matrix Assembler generates stiffness and mass matrices referred to the grid
points from tabular information generated by the Input File Processor and the Geometry Processor.
The mass matrix is used in static analysis for the generation of gravity loads and inertia Toads

on unsupported structures.

In block 5 of Figure 1, the stiffness matrix is reduced to the form in which it is finally
solved through the imposition of single and multi-point constraints, and the use of matrix par-

titioning {optional).

Load vectors are then generated from a variety of sources (concentrated loads at grid points,
pressure loads on surfaces, gravity, temperature, and enforced deformations) and are reduced to

final form by the application of constraints and matrix partitioning.

The solution for independent displacements is accomplished in two steps: Decomposition of
the stiffness matrix [K] into upper and lower triangular factors; and solution for {u} for speci-
fic load vectors, (P}, by means of successive substitution into the equations rebresgnted by the
triangular factors of [K] (the so-called forward and backward passes). All load vectors are pro-

cessed before proceeding to the next functional block.

In block 8 of Figure 1, dependent displacements are determined from the independent displace-
ments by means of the equations of constraint. The internal forces and stresses in each element
are then computed from knowledge of the displacement components at the corners of the elements
and the intrinsic structural equations of the element. Finally the Output File Processor pre-

pares the results of the analysis for printing.

The Loop for Additicnal Constraint Sets shown in Figure 1, fs introduced to facilitate solu-
tions for different boundary conditions, which are applied by means of single point constraints.
In particular, the symmetric and antisymmetric responses of a symmetric structure are treated in

this manner.

’

The flow diagram for Rigid Format No. 2, Static Analysis with Inertia Relief, is, to the
Tevel of detail considered here, jdentical to Figure 1. The inertia relief effect consists of a
modification to the load vector to include inertia loads due to the acceleration of an unre-

strained structure. The manner in which the 1ncrementél load is calculated is explained in

3.2-2
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GENERAL PROBLEM FLOW

Section 3.6.3

A simplified flow diagram for Rigid Format No. 4, Static Analysis with Differential Stiffness,
is shown in Figure 2. A comparison between Figures 1 and 2 shows that the first eight blocks are

identical.

Contributions tc the differential stiffness matrix are not defined for all elements currently
in NASTRAN, and they may not be defined for a new element. The differential stiffness matrix,
which is a first order approximation to larage deformation effects, is a function of the most
recently iterated displacement. Functional Module, DSCHK, (block 23 of Figure 2) performs differ-
ential stiffness calculations based on user-supplied iteration parameters. The solutfon strategy
basically involves a load adjustment (the "inner” loop) in order to satisfy iterated displacements

within a specified converaence critericn.

A simplified flow diagram for Rigid Format No. 5, Buckling, is shown in Figure 3. In it the
differential stiffness matrix [Kd] corresponding to a particular applied loading condition is

used in conjunction with the structural stiffness matrix [K] to formulate an efgenvalue problem
el =
(K + xK"J{u} = 0. (1)

The eigenvalues, Ay, are the load level factors for various buckling modes. They and the corres-
ponding eigenvectors,{ai}, are extracted by the Real Eigenvalue Analysis module. Additional data
(constrained displacement components and stress patterns for each buckling mode) are recovered in
Block 15, which is virtually a duplicate of Block 8, and the buckling mode shapes are plotted, if

desired.

A simplified flow diagram for Rigid Format No. 6, Piecewise Linear Analysis, is shown in
Figure 4. In piecewise linear analysis solutions are obtained for structures with nonlinear,
stress-dependent, material properties. The load level is increased to its full value by small
increments, such that stiffness properties can be assumed to be constant over each increment.
After each increment, the combined strains in nonlinear elements due to all load increments are
used, in conjunction with stress-strain diagrams, to determine the appropriate stiffnesses for

the next load increment. The procedures, summarized in Figure 4, are described in Section 3.8.
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Figure 2. Simplified flow diagram ror Static Analysis with Differential Stiffness.

3.2-5 (3/1/76)

7z



STATIC ANALYSIS BY THE DISPLACEMENT METHOD
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STATIC ANALYSIS BY THE DISPLACEMENT METHOD

3.3 NOTATION SYSTEM

Many of the operations performed in computerized structural analysis are conveniently
expressed in the notation of matrix algebra. In NASTRAN matrix arrays are represented by a root
symbol that indicates the type of physical quantity and by one or more subscripts and superscripts
that act as modifiers. The root symbols used in static analysis by the displacement method are
listed in Table 1. Square brackets, [ ], indicate two-dimensional arrays and twisted brackets,

{ }, indicate column vectors. Row vectors, which are less common, are usually indfcated by ap-

pending the transpose symbol, T, to the twisted brackets.

Subscripts are used exclusively to designate the subsets of displacement components to which

the root symbol applies as for example in the equation,
T
lagd = -(Pg} + [KeD fugh + K Hugh, (M

which is used to recover single point forces of constraint, (qs}. from displacements at constrai-
ned points, {us}, and at unconstrained {free) points, (uf}. Nearly all of the matrix operations
in static analysis are concerned with partitioning, merging and transforming matrix arrays from
one subset of displacement components to another. A11 the components of displacement of a given
type (such as all points constrained by single-point constraints) form a vector set that is dis-
tinguished by a subscript from other sets. A given component of displacement can belong to se-
veral vector sets. The mutually exciusive vector sets, the sum of whose members are the set of

all physical components of displacement, {up}, are listed in Table 2a.

In addition, a number of vector sets are defined as the union of two Or more independent

sets. See Table 2b.

In dynamic analysis, additional vector sets are obtained by a modal transformation derived

from real eigenvalue analysis of the set {"a}' See Table 2¢.

In aeroelastic analysis, additional vector sets are defined by the aerodynamic degrees of

freedom. See Table 2d.

The nesting of the vector sets in Table 2 is depicted by the following diagram:
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In static analysis we are concerned only with the grid point set, {u }, and its subsets. i
The application of constraints and partitioning to the stiffness matrix 1nvoTves essentially,
the elimination of {um} (us} {uo} and {ur} from {ug} to form a stiffness matrix referred to
(“z}‘
The physical and computational sianificances of these operations are explained In Section
3.5. For the present it will only be emphasized that the concept of nested vector sets is ex-
tremely important in the theoretical develooment of NASTRAN. The reader may, in fact, find it
useful at some point to memorize the relations, defined in Table 2, among the displacement sets.
Load vectors are distinguished by the same notation. Rectangular matrices are, whenever
necessary to clarify the meaning of the symbol, distinguished by double subscripts referring to
the vector sets associated with the rows and columns of the array. Supersc¢ripts have no ten-
sorial character and are used to identify arrays of different type or origin that refer to the
same sets such as in the eqdatidn.
Mgl = Mg + 2] (2)
dd dd dd ’ -
whare [M;d] is the structural mass matrix and [Mid] is the direct input mass matrix. .
3.3-2 (12/31/77) b
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NOTATION SYSTEM '

Two types of operations occur repeatedly. These are the partitioning (or sort) operation,

for example,

% . (3)

. 1l

and the recombining (or merge) operation

In the sort operation indicated, the elements of {ug} are sorted into two lists. In the
merge cperation {un} and {um} are combined into a single list. In all sort and marge operations
the resulting arrays are ordered according to the grid point sequence numbers of the displacement

components.,

In addition to the formal symbols used in matrix operations, many other symbols are
required in the reduction of physical properties to matrix form. No special system is used for
the Tatter class of symbols. An attempt has been made, however, to adhere to established engineer-

ing conventions.
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Table 1.

{u}
{P}
{q}
v}
(]
M1
(e]
(R]
(6]
(o]
[m]
(x]
{t]
(ul

STATIC ANALYSIS BY THE DISPLACEMENT METHOD

vector of displacement components

vector of applied Toad components

vector of forces of reaction

vector of enforced displacements

stiffness matrix

mass matrix

damping matrix

matrix of constraint coefficients, as in [R]
transformation matrix, as in {um} = [Gm]{u
rigid body transformation matrix

rigid body mass matrix

rigid body stiffness matrix

Tower triangular factor of [K]

upper triangular factor of [K]

3.3-4 (12/31/77)
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= £, + Ugs the set used in dynamic analysis by the modal method.

NOTATION SYSTEM

Table 2a. Mutually Independent Vector Sets. '

coordinates eliminated as independent degrees of freedom by multi-point constraints
and rigid elements ’

coordinates eliminated by single point constraints

coordinates omitted by structural matrix partitioning

coordinates to which determinate reactions are applied in static analysis
the remaining structural coordinates used in static analysis (points left over)

extra degrees of freedom introduced in dynamic analysis to describe control sys-
tems, etc.

Table 2b. Combined Vector Sets.

U+ Uy, the set used in real eigenvalue analysis
Uy * ugs the set used in dynamic analysis by the direct method

u. + u_, unconstrained {free) structural coordinates

all structural coordinates not constrained by multi-point constraints
or rigid elements

u +u_, all structural (grid) poirts including scalar points
Uy + Ugs all physical coordinates

Note: (+) sign indicates the union of sets.

Table 2c. Modal Coordinate Sets.

rigid body (zero frequency) modal coordinates

finite frequency modal coordinates

= Eo * & the set of all modal coordinates.

A

Note: (+) sign indicates the union of sets. -
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STATIC ANALYSIS BY THE DISPLACEMENT METHOD
Table 2d. Aerodynamic Coordinate Sets.

Uy aerodynamic box and body coordinates

Uga permanently constrained aerodynamic coordinates

Uy =y + Ueps all aerodynamic cocordinates

U = Up * Uga

upA = up + Up» all physizal and aerodynamic coordinates

Note: (+) sign indicates the union of sets.
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3.4 PROBLEM FORMULATION

The explanation of any complex activity must be subdivided into phases or steps in order to
be intelligible. In the case of a computer program for structural analysis 1t {s convenient to
divide the total effort into a Problem Formulation Phase and a Problem Solution Phase. The ter-
mination of the Problem Formulation Phase is arbitrarily chosen to occur at the point where the
properties of the structure have been reduced to matrix form. (In the case of basic static an-

alysis this occurs between blocks 4 and 5 in the flow diagram of Figure 1, Section 3.2.)

3.4.1 Structural Modeling

The beginning of the Problem Formulation Phase occurs in the mind of the analyst. He con-
templates the problem, decides what he needs to know, and constructs a mathematical model whose
solution, he hopes, will provide relevant answers to his questions. He will, naturally, require
computational tools to solve his mathematical problem and, fortunately or unfortunately, the
available tools have a strong influence on the analyst's choice of a mathematical problem. It

would, after all, do no good to formulate a problem that could not be solved.

The range of choice in mathematical problem formulation provided by NASTRAN is, however rich
in detail, 1imited to0 one Easic approach, namely the use of finite element structural models.
This means that the substitute mathematical problem refers to an idealized model with a finite
number of degrees of freedom, a particular selection of topologfcal objects (grid points and ele-
ments), and a limited range of structural behavior. The relevance of the behavior of the ideal-
ized structural model to the analyst's questions clearly depends on tha particular choice of
components for the model. This procedure, referred to as "structural modeling,” is the most im-
portant step in the problem formulation phasa, since the results of an analysis can be no better

than the initial assumptions.

The User's Manual contains a chapter on structural modeling. Section 14 of the Theoretical
Manual describes some advanced modeling techniques that utilize special features of NASTRAN. For
the present, a small example will serve to indicate the general nature of the modeling process

and some of the features of NASTRAN that relate to t.
Figure 1a shows a typical aircraft structure, a ring frame with a partial bulkhead acting as

a floor support. Although poor results are obtained when such structures are analyzed without

3.4-1 (12/31/77)
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considering the shell to which the frame is attached, the analyst may have a special reason for -
doing so. The resulting idealized model of the frame can, in any case, serve as part of the model

for the complete shell.
The idealized model selected by the analyst, Figure 1b, contains
13 grid points
4 Bar elements (B)
2 Rod elements (R)
2 Triangular Plate Elements (T)
3 Quadrilateral Plate Elements (Q)

Each grid point has six degrees of freedom (three translations and three rotations). The
analyst has, however, elected to analyze the response of the frame to a pair of vertical loads so
that it is unnecessary to consider out-of-plane motions of the frame. The out-of-plane motions
are eliminated by applying single point constraints to three of ihgmdegrees of freedom (two rota- |
tions and one translatign) at each gridpoint (This can be implemented with a single data card).

One of thg necessary tasks in preparing input data is to specify the location of grid points. = =

In NASTRAN grid point locations can be specified by rectangular, cylindrical or spherical coordi-

ng;gﬁ;ystems (seevFigure 2)7§nd”;here may be an un]imitg@inumbgr of coordinate systems gﬁteach

type in a given problem. A1l that is required is that they be related, directly or indirectly,
to each other and:to a “Easic" coordinate systeﬁ, which is rectangular. In the eximple of Figure
1, the analyst found it convenient to Tocate grid points on the ring frame (points 1 to 4) with a
cylindrical coordinate system and to locate points on the floor bulkhead (points 5 to 13) with a

rectangular coordinate system.

. A separate task is the selection of coordinate systems to express the components of motion
at grid points. In the example of Figure 1, the coordinate systems for motion have been salected

to be identical to the coordinate systems for grid point location, although this is not required.

It will be noted in Figure 1b that the grid points for the ring frame are located on the outer
edge of the frame rather than along its centerline. This will not result in poor accuracy if the

_provision for offsetting the neutral axis of Bar elements is exercised. Reinforcing Rod elements

11BN C OO A

(RT and R2), which have axial stiffness only, are placed bétween grid points 11, 12, and 13 to
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simulate the stiffener along the centerline.

The Plate elements (T's and Q's) are selected to contain membrane {plane stress) properties
only, since out of plane bending s precluded by the nature of the loading. No restraint on in-
plane rotation (ez) is provided by the plate elements so that the 6, component of motion must be
eliminated by more single point constraints at gridpoints 6 to 13. A special problem occurs at
grid point 5 because of the requirement to maintain compatibility of inplane rotation between the
adjacent bar element (84) and the adjacent triangular plate (T1). The problem is solved by means
of a multipoint constraint between inplane rotation (ez) at grid point 5 and the vertical motions
(uy) at grid points 5 and 6. Tha equation of constraint is

u

- 5
8zS

L ()

*s = %

Additional single point constraints are required along the centerline of symmetry to con-
strain motions in the x direction {including the 6 direction at gridpoint 1). A special type of
single point constraint, known as a reaction, is used to constrain vertical motion at grid point
13. Constraints of this type are automatically removed when a static analysis is followed by a
dynamic analysis. In addition, & special check calculation is provided {see Section 3.5.5) to

determine whether the input impedance at reaction points is correct.

It will be noted that the grid points in Figure 1 have been numbered consecutively starting at
the top. More than a sense of orderiiness is involved since the sequencing of grid point numbers
affects the bandwidth of the stiffness matrix and the resulting computer solution time (see
Section 2.2). Grid point sequencing strategy is discussed in the User's Manual., The main idea is
that the arithmetic differences between the sequence numbers of grid points that are physically

adjacent should be minimized.

In order to facilitate grid point sequencing for the preservation of bandwidth, the user is
permitted to specify grid point numbers in two different ways. The external identification numbers
can be assigned to grid points in any manner the user desires. Element connaction and load infor-
mation prepared by the user refers to the external identification numbers. The internal sequence
numbers are generated by the user in a paired list that relates externalvand internal numbers.
Since the internal sequence numbers appear nowhere else in the input data, they may easily be -

changed, {f desired, to reflect an improved banding strategy. Preparation of the paired list is
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1
|

(

optional and the sequence of the external identification numbers will be used if the naired list

is not provided.

Another sequencing feature of NASTRAN is the ability to insert new grid point sequence numbers
anywhere in an established Tist. This is done by the use of Dewey decimal notation, similar to

that found in public Tibraries.

3.4.2 Input Data Analysis

We have now arrived at the point in problem formulation where the digital computer appears on
the scene. The user assembles the information discussed above (plus a great many details that
weré not mentioned) and enters it an punched cards that are input to the computer. In problems
that have many grid points arranged in regular patterns he may elect to write a small auxiliary
program that will prepare and punch most of the input data cards (or their card images on magnetic
tape). Such "supermarket" programs (so called because they can produce a shopping cartload of
data cards) are a reqular internal feature of some structural analysis programs but not of
NASTRAN. They were not included because they become guite intricate, and hence, difficult to use,
as they are given the generality that is needed for diverse applications. It is easfer, on fhe )
average, to write a new supermarket program for each type of application. The user can, by means Ao

of the ALTER feature (see Section 1.2), incorporate such subroutines into NASTRAN.
When assembled the NASTRAN data deck consists of the fallowing four parts:

1. Executive Control Deck

2. Substructure Control Deck (optional)

3. Case Control Deck

4. Bulk Data Deck

The Executive Control Deck fdentifies the job and the type of solution to be performed. It

also declares the general conditions under which the job is to be executed, such as, maximum time
allowed, type of system diagnostics desired, restart conditions and whether or not the Job is to be
checkpointed. If the job s to be executed with a rigid format, the number of the rigid format fis
declared along with any alterrations to the rigid format that may be desired. If Direct Matrix

Abstruction is used, the complete DMAP sequence must appear in the Executive Control Deck.

The Substructure Control Deck is included only when Automated Multi-stage Substructuring is -
used. It defines the general attributes of the Automated Multi-stage Substructuring capability
and establishes the control of the Substructure Operating File (S@F)

3.4-4 (12/31/77)
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The Case Control Deck defines the subcase structure for the problem, makes selections from
the Bulk Data Deck, and makes output requests for printing, punching, and plotting. The subcase
structure for each of the rigid formats is described in the User's Manual. Loading conditions,
boundary conditions, and other items are selected from the Bulk Data Deck in order to define the

structural model for eacn subcase.

The Bulk Data Deck contains all of the details of the structural model. Much of this deck is
associated with the definition of the grid points (grid cards) and the manner of connacting the

grid points with elements (connection cards).

A number of important preliminary operations are performed on the data deck by the Input File
Processor. It sorts the Bulk Data Deck, and stores 1t on the New Problem Tape. It checks the
data cards for fatal errors. It creates the data blocks used by functional modules. If fatal

errors are detected, suitable error messages are written and the execution is terminated.

3.4.3 Geometry Processor and Structure Plotter

The various parts of the Geometry Processor (see Figure 1 of Section 3.2) perform the follow-

ing general tasks:

1. Generate all required coordinate system transformation matrices and determine the

locations of all grid points in the basic coordinate system.
2. Replace external grid paint numbers with their internal (sequential) indices.
3. Generate multipoint constraint equations and 1ists of single-point constraints.

4. Generate flags indicating the displacement components which zre members of each displace-

ment vector set (see Section 2.1.5).

Grid points may be defined in terms of the basic coordinate system or in terms of "Tocal”
coordinate systems (see Section 3.4.1). The Geometry Processor calculates the location and orien-
tation of each local coordinate system relative to the basic system. This information is saved
for later use by the various modules in making coordinate system transformations. The basic

system is used for plotting (see Section 13).

As explained in Section 3.4.71, coordinate systems for expressing components of motion can be
freely selected so that, for example, each grid point may have a unique displacement coordinate -

system associated with 1t. The collection of all displacement component directions in their own
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coordinate systems is known as the "global" coordinate system. All matrices are formed and all

displacements are calculated in the global coordinate system.

The Structure Plotter is run after the second phase of the Geometry Processor. At this stage
of the execution there is sufficient geometrical information in suitable form to prepare a plot of

the undeformed structurs.

3.4.4 Assembly of Structrual Matrices

The Element Matrix Generator (EMG) and the Element Matrix Assembler (EMA) generate the
stiffness, mass, and damping matrices for the structural model. For efficiency in restart,
particularly when changing from statics to dynamics problems, the structural matrices, [Kgg],
[qug]’ [Mgg] and [ng], are assembled by four separate executions of EMA. EMG generates the var-
fous types of structural matrices on a selective basis. A third part of the matrix assembly matrix
operation (SMA3) adds the contributions of the general elements {see Section 5.7) to the stiffness

matrix.

The Element Matrix Generator refers to the appropriate "element” routines for calculation

of the stiffness, mass and damping matrices for each element. The elements available for use are

described in Section 5. The matrices for each element are initially generated in an element \ " 4

coordinate system that is characteristic for each element type. The element matriceé afevtrans-

formed to the global coordinate system prior to transfer to direct access secondary storage.

The Element Matrix Assembler assembles several columns of the structural matrices at one
time. The number of columns assembled in one operation is limited by the space avajlable in
main storage. The required element matrices are transferred from secondary storage using the
direct access read operation. The completed columns of the structural matrices are written on

secondary storage by using the regular NASTRAN pack routines.

Prior to writing the éompleted matrices for each grid point on secondary storage devices, they
are checked for singularities at the grid point level. Singularities remaining at this level,
following a check of a 1ist of the single-point constraints and the dependent coordinates of the
multipoint constraint equations and/or riéid elements, are treated as warnings to the user or, on
option, are automatically constrained. They are treated only as warnings because it cannot be
determined at the grid point level whether or not the singularities are removed by other means, -
such as by general elements or by multipoint constraints and/or rigid elements in which these

singularities are associated with independent coordinates. -
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The user has the option* of requesting the program to automatically remove the strongest com-
bination (weakest structure) singularities. However, this is not failsafe since the orientation
of the actual grid point singularities may not be parallel to the displacement coardinate systems
at the corresponding grid points and, in dynamic problems, the inertial forces due to the masses
may be constrained incorrectly. Also, if the user has specified omitted points, rigid body support
points, and/or multipoint constraint equations and rigid elements, these affected degrees of freedom

may be averridden by requesting autamatic removal of the strongest combination singularities.

Singularities are detected by examining the diagonal term for scalar grid points and the 3x3
matrices located along the diagonal of the stiffness matrix and associated with the rotational and
translational degrees of freedom for geometric grid points. If the diagonal term for a scalar
point is null, this fact is noted in the Grid Point Sinqularity Table (GPST). [If either of the
3 x 3 matrices, associated with a geometric point, is singular, the diagonal terms and the 2 x 2
minors are examined to determine the order of singularity and the column or columns associated
with the singularity. The order and locations of any singularities at gecmetric grid points are

added to the GPST.

Although the matrices generated by the Structural Matrix Assembler are symmetric, complete
columns are generated and retained for efficiency in succeeding matrix operations. This is nec-
essary because all matrix operations are performed one column at a time (see Section 2) and in
dynamics applications the matrices are not necessarily symmetric. Moreover, the availability of

symmetric matrices by rows or by columns is advantageous in some of the matrix operations.

'At present, this option can be exercised only by means of a DMAP alter in the Executive Control
Deck. See Section 5.10 of the User's Manual for details.
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a. Ring frame with floor bulkhead .

b. Idealized structural model.

Figure 1. Example of structural modeling.
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(a) Rectangular
L

Local System

us - 2 direction

- 0y

uy - g direction

up - T direction

(b) Cylindrical Grid Point

Local System

uy - p direction

uy - ¢ direction

(c) spherical u, - @ direction

Local System Grid Point

Figure 2. Displacement coordinate systems.
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3.5 CONSTRAINTS AND PARTITIONING

Structural matrices are initially assembled in terms of the set, ug of all structural grid
points, which excludes only the set, Ug» of extra points used in dynamic analysis. This section
will describe the subsequent reduction of the structural matrices to the set, u,, which is the
set of coordinates that remain after all constraint and bartitioning operations have been perfor-

med, and which is, therefore, the first set to be evaluated in static analysis.
The structural matrices whose assembly is discussed in the preceding section are:
[Kgg] the structural stiffness matrix due to elastic structural alements
[Kgg] the structural damping matrix of imaginary stiffness coefficients
[ng] the viscous damping matrix due to damper elements
[ng] the structural mass matrix

The reduction procedures will be explained in full for the [Kgg] matrix. Procedures for the

other matrices will be shown only when they differ from those for [Kgg].

Repeated use will be made of the notation system described in Section 3.3, to which the

reader's attention is directed.

3.5.1 Multipoint Constraints and Rigid Elements

Multipoint constraints and rigid elements are used to constrain one or more degrees of
freedom to be equal to linear combinations of the values of other degrees of freedom. In
the former case, the user must provide explicitly the coefficients of the constraint equa-
tions while, in the latter case, he needs to provide only the connection data; the program
internally generates the required coefficients. The mathematical details of the generation

of these coefficients are discussed in Section 3.5.6.

The constraint equations resulting from the use of multipoint constraints and rigid ele-

ments together can be expressed in the form

[Rg] {ug} =q, M

3.5-1 (12/31/77)
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where the coefficients are either supplied explicitly by the user (in the form of multipoint -
constraint equations} or are internally generated by the program (in the case of rigid elements;
see Section 3.5.6). The user also specifies the degrees of freedom that are made dependent by
the equations of multipoint constraint and by the rigid elements, so that the {ug} matrix may
immediately be partitioned into two subsets,
Un]
{u} = {'D s (2)
9 {Un}
where the set, Ups is the set of dependent degrees of freedom. The matrix of constraint coeffi-
clients is similarly partitioned
Ry = Ry R, (3)
so that Equation 1 becomes
(Rn](un} + [Rm]{um) = 0 . (4)
[&“] is a nonsingular matrix. The constraint matrix can, therefore, be formed as
-1 L=
6, = -[RI7'IRJ, , (5)
so that Equation 4 may be stated as
{um} = [Gm]{un} . (6)
Prior to the imposition of constraints, the structural problem may be written as
K = ’
[ gg]{”g} {Pg} (7)
or, partitioning in terms of the coordinate sets, u, and Un
‘ —
nn { nm U"Z P
iyl Al (8)
Knm : \um 4 pm
3.5-Ta (12/29/78) N
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, \ 4
Bars over symbols are used to designate arrays that are replaced in the reduction process.
The addition of constraints to the structure requires that the forces of constraint be added
to the equilibrium equations. It is shown in Section 5.4 that the forces of constraint are pro-
portional to the corresponding coefficients in the constraint equations. Thus, writing the equi-
Tibrium and constraint equations together in partitioned form,
-— Tom # 5
Kon | ¥am :Gm U L i
aal e _P- _
Kam :Kmu! T3l * 3P ’ (9)
———===-f|-- -
Gp 171 4 0dlqn \0
where (qz:} is the vector of constraint forces on {um}. Straightforward elimination of u, and q;"'
gives
- T, T, T T E
(Kan * KomBn * Gy Kam * Gp KpmSpllu b = Pb + (6,1 (P} : (19) =
or )
(Knpllugt = P}, () E
where \ 4
. % T, T T
[Knn] l:Krm + Kanm * Gm Kmn * Gm ‘me] ' (12) =
and =
=
T =
{Pn} = {Fn} + [Gm] {Pm} . (13)
The initial partition of Kgg and the operations indicated by Equations 5, 12 and 13 are per- E

formed by appropriate modules of the program. The constraint matrix, Gm, is used in structural

matrix reduction (Equation 12), load vector reduction {Equation 13) and data recovery

(Equation 6). It is saved for these purposes in an auxiliary storage fila.

The other structural matrices, [Kgg]’ [ng] and [Mgg], are transformed by formulas that are

!

identical in form to Equation 12.

m
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The forces of constraint due to multipoint constraints and rigid elements are not available as
part of the standard calculations in the program, but may be obtained in statics and real eigen-
value problems by ALTERing in the module EQMCK and requesting these forces in the Case Control

Deck.

The vector of constraint forces {qm} on {u_} is obtained from the middle row of Equation 9
m m

as
@M o= - pd e Ik 1T Cugd e o] Gud (13a)

Let q: be the vector of constraint forces on {un}. Then, from the first row of Equation

9, it is clear that
s ST (-3 LR CUS T (13b)

The resultant forces of constraint due to multipoint constraints and rigid elements are

therefore given by

—— e,

(q';‘} = ----% . (13¢)

Fa -
EETRIE]

3.5.2 Single Point Constraints

Single point constraints are applied to the set, Ugs in the form

ugd v 0, (14)

where {Ys} is a vector of enforced deformations, any or all of whose elements may be zero, The

set, U, is partitioned into ug and uf(the free or unconstrained set)

u
tu} = -0 (15)

(Ys

The stiffness matrix, K is similarly partitioned

Kee !K
[X,,] = [.Kff. :.Kfi . (16)
fs | s

The complete structural equations including the single point forces of constraint, qg» may be

nn’

written in partitioned matrix form as

3.8-3 (12/3/77)
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! 1 g s
fﬁ;fﬁLESﬁz fi
§
Kes 1 Kss }'I ug> * <P (17)
0 | I t 4] qs‘ YS;
Straightforward elimination gives
(Keplugl = Pe} - [k TG = Pey , (18)
The forces of constraint are recovered by means of the middle row of Equation 17, i.e.,
.} = -Pb+ [Ke T Tlugd + (K. T(u} (19)
s’ s fs f TEALN '
Thus all three of the distinct partitions of Knn {i.e., Kff, Kfs and Kss) are needed in subse-
quent calculations, and are placed in auxiliary storage. For the other structural matrices
(K:n, Bnn‘ and Mnn) only the (ff) partitions are saved. The assumption is made, implicitly, that
the effects of the other structural matrices on the single point forces of constraint may be ig-
nored.
3.5.3 Partitioning ; L
) ) -
At user option the set of free coordinates, Ugs may be partitioned into two sets, Uy and Ugs
such that the Uy set is eliminated first. Thus
” )
fugd = ¢35 .
f %u (‘ (20)
o
The equilibrium equations after the elimination of constraints (Equation 18) may be written
in partitioned form as
— 1 N
aa 1%, Sua ﬁ;
- e dee = - - O
T ( = ; (21}
Kao IKoo Uy o/
Rearrange the bottom half of Equation 21:
kK Ju} = (P} =[x 1{u} (22)
00" 0 0 a0 a ’
mdsﬂvefM'mqh =
i o= 0k, 1Py -tk 17k, 1)
0 00 0 00 20 a’ . {(23) -
-
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(Note that in practice stiffness matrices are never inverted due to excessive computer running
time. The practical alternative will be explained presently.)

Substitute for u, into the top half of Equation 21:

-1, T -1
Cﬁéa - KaoKoo Kao ]{ua} = (BA} - [Kao][Koo] {po} ’ (24)

It is convenient to define the matrix
6] = -0x 17k, 17 (25)
o] 00 ao ’
so that Equation 24 becomes

(R, + Kyolollu,t = (Fb + [6,1(R.) (26)

where advantage is taken of the symmetry of [Koo].

Following the practice of condensation established in preceding subsections,

[Kaa]{ua} = (Pa} s (27)
where
[kl = [Ryad + (K, I06,] (29)
w = Pl T . (29)
The [Go] matrix defined in Equation 25 is obtained practically from the solution of
Ik, 16,1 = [k, (30)
00 0 ao”

whare [Kao]T is treated as a set of load vectors. Each such vector produces 2 column of [GOJ,
The [Koo] matrix is first decomposed into lower and upper triangular factors, using a subroutine
based on the technigues described in Section 2.2. The additional steps required in solving the

matrix equation [A]J{(x} = (b} are described in Section 2.3.

Once {ua} is obtained the set of omitted coordinates, {uo}, js obtained as folTows. Define

the set {ug} as the solution ofr
[Kyollugt = (P} . (31) =

Note that the triangular factors of [Koo] obtained in connection with Equation 30 are saved N

3.5-5
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for use 1in connection with Equation 31 which cannot be solved until the load vector {PO} is for-

ned, Then, using Equations 25 and 31 in Equation 22,

b = (ud} + [6 1y} . (22)

Partitioning, which is an optional feature of the program, has a number of important usas.
The first 1s as an aid to improved efficiency in the solution of ordinary static problems where it
functions as an alternative to the Active Column technique (see Section 2.2) in reducing matrix
bandwidth. In this application the user puts into the set uy those degrees of freedom that are

excessively coupled to the remainder,

In a related application, members of the set u, are placed along lines or in planes of the
structure such that the remainfng Uy grid points in differént re;ions are uncoupled from each other
as shown in the wing structure of Figure 1. The grid points are sequenced so that all grid points
in region (1) precede those in region (2), etc. As a result the decomposition of [Koo] is faster
oecause the bandwidth {s smaller (reduced to approximately 1/3 in the exampie). The u, set is
small compared to u, so that its solution is not particularly time consuming. Even here proper

grid point sequencing can introduce banding into the [Kan matrix.

Matrix partitioning also improves efficiency when salving a number of similar cases with
stiffness changes in local regions of the structure. The u, and U, sets are selected so that the
structural elements that will be changed are connected only to grid points in the u, set. The
[Koo] matrix is then unaffected by the structural changes and only the smaller [Kaa] matrix reed be
decomposed for each case. An application of partitioning that is important for dynamics is the

Guyan Reduction, described in the next subsection.

3.5.4 The Guyan Reduction

The Guyan Reduction (Reference 1) is a means for reducing the number of degrees of freedom
used in dynamic analysis with minimum loss of accuracy. Its basis is that many fewer grid points
are needed to describe the inertia of a structure than are needed to describe its elasticity with
comparable accuracy. If inertia properties are rationally redistributed to a smaller set of grid
points, the remaining grid points can be assigned to the u, set described in the preceding sub-

section and eliminated, leaving only the smaller u, set for dynamic analysis.

3.5-6 (12/29/78)
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In the Guyan Reduction, the means by which inertia (and damping) are redistributed is to

consider the [Go] matrix of the preceding subsection as a set of rigid constraints, such that

lugt = [Go](ua} . {33)

The [Go] matrix now has the same impiications for the Uy coordinates that the muitipoint con-
straint matrix, [Gm], has for the u coordinates (see Equation 6). The reduced structural mass

matrix is, by analogy with Equation 12,

. " Ty T T,
(Aaa] = [Maa + Maoeo + Go Mo * G, AooGo] . (34)
The reduced damping matrices, [Kaa4] and [Baa]' are formed in the same manner. The structural

stiffness matrix, [Kaa]' is given by Equation 28. The reduced dynamic load vector is, by analogy

with Equation 13,
.} = (P, +6 P} (35)
a a Q0 0 ’

The approximation made in the Guyan Reduction is that the term (ug} in Equation 32 is neglec-
ted; i.e. that the deformations of the Uy set relative to the Uy set due to inertia and other
loads applied to the Uo set are neglected. The error in the approximation is small provided that
the u, set is judiciously chosen. The selection should be based, in part, on an estimate of the
relative deformations, {ug}. Thus the members of u, should be uniformly dispersed throughout the
structure and should include all Jarge mass items. The basic assumption made in the Guyan
Reduction is identical to that made in forming consistent mass matrices for individual elements,

see Section 5.5.

3,5.5 Special Provisions for Free Bodies

A free body is defined as a structure that is capable of motion without internal stress.
The stiffness matrix for a free body is singular with the defect equal to the number of stress-
free {or free body) modes. A solid three-dimensional body has six or fewer free body modes.
Linkages and mechanisms can have a greater number. No restriction is placed in the program on

the number of stress-free modes in order to permit the analysis of mechanisms.

The presence of free body modes alters the details of many of the calculations in structural
analysis. In static analysis by the displacement method, for example, the free body modes must be

restrained in order to remove the singularity of the stiffness matrix. We are concerned, in this

3.5-7
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section, with some of the special provisions of the program for the treatment of free bodies in-
cluding the specification of determinate reactions for use in static analysis, the evaluation of
the inertia properties of free body modes for use in dynamic analysis, and a special diagnostic
procedure for the detection of inconsistent constraints. Other special provisions are the calcu-
_ lation of inertia relief loads, treated in Section 3.6.3, and the procedures employed in the mode

acceleration method of dynamic data recovery, treated in Section 9.4.

If a problem concerning a free body includes both static and dynamic solution cases, a sub-
set, s of the displacement vector, Uys must be constrained during static analysis. The subset,
U, is specified by the user such that the members of the set are just sufficient to eliminate the
stress-free motions without introducing redundant constraints. The complete static equilibrium

equations are

K Ju} = P}, (36)
or, partitioning uy into u. and Ugs
K, 1k, Jlu P
'
e R (37)
Kzr | Krr Y Pr

In static analysis the u. set is rigidly constrained to zero motion so that the final prob-

Tem solved in static analysis is
[Kzz]{ul} = {Pg} . (38)

The forces of reaction, {qr}, which are of interest in thefr own right and which are also

needed in the solution of inertia relief problems, are evaluated from the equation
(b = -(P)+ [k, 1w} (39)
or, substituting for {“z} from the solution to Equation 38,
(b = -t} + [k, 170K, 17T ep, 0 (40)
It is convenient to define the matrix

0] = [k, 17k, 1, (41)
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so that, taking advantage of the symmetry of [Kzz]’
@} = -(}-[017P,) (42)
r r PR

The [D] matrix is also used in the evaluation of the free body inertia properties of the structure.

It is obtained practically by solution of the matrix equation
(k0] = [K,J. (43)

[Kgg] is decomposed into triangular factors, [LQE] and [UIQ]' which are saved and used in the

solution of Equation 38 after the load vector {Pz} has been evaluated.

It may be seen from Equation 37 that, in the absence of forces on the u, coordinates,
= - -1 =
tud = =[x, 17 K T ) = [0JGu} (44)

Thus the [D] matrix expresses the rigid body motions of the structure in response to displace-

ments imposed at the reaction points.

The mass matrix, partitioned according to the u, and u,. sets, is

I
”zz I er

] - |-=a--| - (45)
M Tim
ar o e

If Equation 44 is taken as an equation of constraint for free body motion, the reduced mass

matrix referred to the . coordinates fs, by analogy with Equation 34,

T

. T T
(m.] (Mo # My 0 # DMy +0°M,, 0] . (46)

The free body mass matrix, [mr], and the rigid body transformation matrix, [D], complete the spe-

cification of the free body inertia properties that are used in dynamic analysis.

It is desirable to have a check on the compatibility of the single point and multipoint con-
straints previously placed on the structure (including the constraints imposed by the rigid
elements) with the constraints placed on the reaction points, U Such a check is obtained
by noting that, jf the u, set is eliminated from Equation 37, the reduced stiffness matrix

referred to the u,. set should be completely null. The reduced stiffness matrix is

3.5-9 (12/31/77)

75



STATIC ANALYSIS BY THE DISPLACEMENT METHOD

X1 = [K.. -k 'k, "'k

rr ™ Kor Koo Kgpd

T

[Ker + Ky

0] . (47)

The [X] matrix is computed by the program and its largest term is given to the user so that
he may take appropriate action. No automatic test is built into the program. The [X] matrix may

be nonzero for any of the following reasons:
1. Round-off error accumulation
2. {ur} is overdetermined (redundant supports)
3. {ur} is underdetermined (Klz is singular)
4. The multipoint constraints and/or rigid element connectivities are incompatible.

5. There are too many single point constraints.

3.5.6 Rigid Elements

3.5.6.1 Introduction

Rigid elements provide a convenient means of specifying very stiff connections. The user
does not provide the required coefficients of the constraint equations directly. The program

internally generates them from the connaction data.

Four rigid elements are presently available. One of them is a rigid pin-ended rod element
(RIGDR) and the other three are rigid body elements (RIGDT, RIGD2, and RIGD3). The use of these

elements is discussed in Section 1.4.2.2 of the User's Manual.
3.5.6.2 The RIGOR Element

The RIGDR element (specified by the CRIGDR bulk data card) represents a pin-ended connection
between two grid points that is rigid in extension-compression.

Let A and B be two grid points connected by a RIGDR element and let ”A1’ qu, uA3 and uB],
uBZ, u83 represent the translational components of motion (in the basic coordinate system) at
these points respectively. Let 21. 22, and 23 be the directfon cosines (with respect to the
basic coordinate system) of the 1ine joining A to 8. Then, since the distance between the points

A and 8 remains unchanged, the following condition is satisfied for small displacements:

3.5-10 (12/29/78)
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(uy =up Y + (uy =g Y2 + (u, =ug 2o =0 {48)
A1 B] 1 AZ B2 2 A3 B3 3
or, in matrix form,
u u
A 8
u - u
[z] % 23] A, [z] %, 9,3] B, . (49)
u u
A3 B3

Let u! , u! , ut and ul , u, , uh be the translational components of motion at A and B 1in
Ay AT Ay 8" By’ By

in their respective local displacement coordinate systems. These are related to the motion in the

basic coordinate system by the equations

UA1 UA]
Uny p = [T,] S YA, : (50)
uA3 UAB
and
UB] ué1
ug, o= [Tg1 48, - (51)
‘8 ‘8

where [TA] and [TB] are (3 x 3) transformation matrices from the respective Tocal displacement

coordinate systems to the basic coordinate system.

Substitution of Equations 50 and 51 in Equation 49 gives

uI ul
A B
[2y 2, £4][T,] u'l‘z = [2) 2, 4,][T,] uéz . (82)
u, T
A3 B3
The above equation can be rewritten as
TH U
A B
[2, 2, 2, ] Zu; = (2, 2, Zn 1 Jug . (53) =
Ay TRy AT YA, B; "B, 83" (B
uI uI
A3 . 83

3.5-11 (12/31/77)
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where 2A1’ EAZ, 1A3 and EB]' 282' 283 represent the modified direction cosines and are given by

2 L A = (2, 2, 2 T 54
[A] A2A3] [123][A] s (54)

and

["B] 9.32 9.83] =02 2, 2,0(Tg] | (55)

Equation 53 is the single equation of constraint that represents a rigid pin-ended rod element
connection between the grid points A and B. Note that only the three translational components of
motion at each of the two points are involved in this equation. The rotations at the points are
not involved. Any one of the six translational components may be specified as the dependent degree
of freedom in a RIGDR element. The other five translational components are considered as reference

deqrees of freedom. This is summarized in Table 1.

If Equation 53 is to be valid, it is necessary that the grid points A and B be non-coincident.
Otherwise, the direction cosines 11, 12, and 23 will be undefined. The program checks for this

condition.

Equation 53 will also not be meaningful if the direction of motion defined by the dependent
translational degree of freedom is perpendicular (or nearly perpendicular) to the rod element
because, in that case, the corresponding modified direction cosine will be zero (or nearly zero).

The program checks for this condition also.
3.5.6.3 The RIGD! and RIGD2 Elements

The RIGDT and RIGD2 elements (specified by the CRIGD! and CRIGDZ2 bulk data cards) are similar
in that they both involve a single reference grid point and one or more dependent grid points. The
RIGD1 element is the simpler and defines a rigid element connection in which all six degrees of
freedom of each of the dependent grid points are coupled to all six degrees of freedom of the ref-
erence grid point. The"RiéDéhelement is more gené}al ahd defines a rigid element connection in
which selected degrees of freedom of the dependent grid points are coupled to all six deqrees of

freedom of the reference grid point.

Consider a dependent grid point A that is rigidly coupled by means of a RIGD] or RIGD2 element
to a reference grid point B. For small displacements, the motion {uA} at the point A is related to

the motion {uB} at the point B by the equation

3.5-12 (12/29/78)
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r .

(UA1 \ 1 00 0 (ZB-ZA) '(.YB‘.YA) (UB1\
UAZ 0 ] 0 ‘(ZB‘ZA) o (XB'XA) uBZ

< uAa > 0 01 (-YB'yA) -(xB-xA) 0 < u83
g, {10 0 0 1 0 0 w (56)
A4 34
u 0 00 0 1 0 u
As Bs
u 0 0 @ 0 0] 1 u

\ A/ L I\ %)

whera the motions are in the basic coordinate system and Xp Ypr 2 and Xgs Yg» Zg are the basic

coordinates of the points A and B'respective1y.

Using relations similar to Equations 50 and 51, Equation 56 can be expressed in terms of the

motion in the local displacement coordinate systems of A and B by

(ot ) o] Lo zey ] ; (0 )
A] : ¥ 1 B]
T | - - '

TH ! I t-z2 0 x ; Up
Ay T b0 b Tg i 0 B,
up ! 1ty -x 0 ! ug
) T - SN I —— R TR i S — {3y o

up i | | Up
\ » s | \
YA, 0 iT 0 i I 0 ! T U8
TH ! ! I u’

\ %6 / L i 4 L : 4 L : . \ % /

where TA and TB are (3 x 3) transformation matrices from the local displacement coordinate systems

to the basic coordinate system and X = Xg=Xp s y= Yg=Ya and z = 2g-2y. I is a (3 x 3) unit matrix.

Equation 57 can be written in compact form as

fup} = [Glpglug) (58)

where [G]AB is a (6 x 6) matrix. Each row of this [G]AB matrix corresponds to a dependent degree
of freedom of grid point A, and each column corresponds to a reference degree of freedom of grid
point B. Each element of this matrix represents a coefficient that corresponds to the coupling
of a particular dependent degree of freedom of grid point A with a particular reference degree

of freedom of grid point 8.
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Equation 58 defines a set of six linear equations of constraint that mathematically repre-
sent the rigid coupling of dependent grid point A to reference grid point B. In the case of a
RIGDT element, six equations of constraint are generated for each of the specified dependent grid
points. In the case of a RIGD2 element, the equations generated correspond to those rows of

[G]AB that represent the specified dependent degrees of freedom of grid point A.

Let m be the total number of dependent degrees of freedom specified on a RIGDT or RIGD2
element. Then, the combination of Equations 58 for all of the dependent grid points yields m linear

equations of constraint represented in matrix form by
{u'} = [G]B{ué} » (59)

where {u'} is an (m x 1) vector of dependent degrees of freedom (in global coordinate system) and
[G]B is an (m x 6) matrix that rapresents the rigid coupling of the m dependent degrees of free-
dom to the six degrees of freedom of reference grid point B. Note that, in the case of a RIGD
element, m is equal to six times the number of dependent grid points specified for the element.

The above results are summarized in Table 1.

3.5.6.4 The .RIG-DB Element .- <7
The RIGD3 element (speéified b} the CRIGD3 bulk data card) is the most general rigid element
and defines a rigid connection in which selected degrees of freedom of the dependent grid points
are coupled to six selected reference degrees of freedom. The six reference degrees of freedom can
be selected at one or more (up to six) reference grid points, but they should together be capable
of fully describing rigid body motion. In other words, the six reference degrees of freedom should

be so selected that they together represent six independent components of motion. The program checks

for this condition since otherwise it leads to the inversion of a singular matrix.

Let B be one of the (up to six) reference grid points in a RIGD3 element and let m be the
total number of dependent degrees of freedom specified on the element. Then, for small displace-
ments, just as in the case of a RIGD] or RIGDZ element, the m equations of constraint can be
expressed in terms of the motion of grid point B by the matrix equation
{u'} = [G]B{ué} ’ (60} °
which is a re-statement of Equation 59. Note, however, in this case that the six degrees of

freedom of grid point B will not, in general, all be the required six reference degrees of freedom.
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Hence, Equation 60 does not give the required constraint equations.

Let uh]. uhzs Ués, U§4, uﬁs. and Uﬁs be the six specified reference degrees of freedom (at least
some of which will be the degrees of freedom of grid point B) in the global coordinate system. Then,

these six degrees of freedom are related to the motion of grid point B by the matrix equation
{U&} = [G]Ra{ué} ) (6])

which is similar to Equation 60 and where [G]RB is a (6 x 6) matrix.

Equation 61 can be re-written as

) = ‘] i
{ug} [G]RB{UR} . (62)
Note that [G]Eé will not exist if the six specified reference degrees of freedom do not together

define six independent components of motion. The program checks for this condition.

Substitution of Equation 62 in Equation 60 yields

fu'} = [6]glGeglug}t . (63)

The above matrix equation gives the required equétions of constraint for a RIGD3 element.

‘This is summarized in Table 1.
3.5.6.5 Resultant Constraint Equations

The constraint equations for the rigid elements are generated in subroutine CRIGGP in module
GP4. This routine computes the required constraint equations for all rigid elements in a model by
means of Equation 53 (for all RIGDR elements), Equation 59 (for all RIGDI and RIGD2 elements}),
and Equation 63 (for all RIGD3 elements). Module GP4 then combines these constraint equations
for all rigid elements with the multipoint constraint equations suppiied by the user to obtain the
resultant constraint equations (Equation 1 in Section 3.5.1) for the model as a whole. Once the
rigid elements and the multipoint constraint data are processed and the resultant constraint
equations are obtained by module GP4, no distinction is subsequently made between those constraint

equations that are due to rigid elements and those that are due to multipoint constraint data.

3.5-15 (12/29/78)

104



STATIC ANALYSIS BY THE DISPLACEMENT METHOD

o
REFERENCE
1. Guyan, R. J., "Reduction of Stiffness and Mass Matrices," AIAA Journal, Vol. 3, No. 2, February
1965, p. 380.
v
3.5-16 (12/29/78) \ ™ 4

T pmE ey

o5

i



2
by =3
m.m.
o3
ol

]
S0
Gd
[14

o]

CONSTRAINTS AND PARTITIONING

£9 uoijenby
65 uoijenby
65 uoljenb3
€5 uojjenb3

n 9 v o

90|

W0p9344 40 s33ubap Juspuadsp Jo uaquny

topasuy jo saaubap juspuadap jo uaquny

(s3upod prab juspuadap Jo Joqmny) x 9
|

€01y
2091y
La91y
y091y

WoJ4} pauLe3qo

suoijenba jupeaysuoy

(1uaueia aad) paajoaug wopaauy
40 s3aubap 434 jo uaquny

(Juswaa 43d) sjupod
PLab *jou jo saquny

(uaumid uad) pajeasusb
suoijenbs jujea3suod jo saquny

P |2
J0 3uey

SJuawd|3 pibiLy 40y pajessusn suoyjenby JuLRLISU0) Jo Asewmms | a|qe)

3.5-17 {12/29/78)

e



L AN

STATIC ANALYSIS BY THE DISPLACEMENT METHOD

=4
ORIGINAL PAGE iS
OF POCR QUALITY
Grid points in the
interiors of regions
are placed in the
u, set
(1) (2) (3)
- Grid points along
these interior lines
are placed in the
~ N \ ‘\ u, set
(4) (s) (6)
AR R A RN
Figure 1, Use of partitioning to decouple regions of the structure,
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3.6 STATIC LOADS

3.6.1 Generation of Loads

In NASTRAN, static loads are applied to geometric and scalar grid points in a variety of

ways, including
1. Loads applied directly to grid points.
2. Pressure on surfaces.
3. Gravity Toads, (internally generated).
4. Centrifugal forces due to steady rotation.
5. Equivalent loads resulting from thermal expansion.
6. Equivalent loads resulting from enforced deformations of structural elements.
7. Equivalent Toads resulting from enforced displacements of grid points.

A force or a moment applied directly to a geometric grid point may be specified in terms of
components along the axes of any coordinate system that has been defined. Alternatively, the di-
rection of a force or a moment may be specified by a vector connecting a pair of specified grid
points or as the cross-product of two such vectors. A load on a scalar point is specified by a

single number since only one component of motion exists at a scalar point.

pressure Toads may be applied to trianqular and quadrilateral plates and to axisymmetric
shell elements. The posi;ive direction of loading on a triangle is determined by the order of the
corner grid points, using the right hand rule. The magnitude and direction of the load is auto-
matically computed from the value of the pressure and the coordinates of the grid points. The

Toad is divided equally to the three grid points.

The direction of pressure load on a quadrilateral plateris determined by the order of its
corner grid points which need not 1ie in a plane. The grid point Toads are calculated by dividing
the quadrilateral into triangles in each of the two possible ways and applying one-half of the
prassure to each of the four resulting triangles. Severaly warped quadrilaterals should ba sub-

divided into triangles by the user in order to provide better definition of the surfaca.

The user specifies a gravity load by providing the components of the gravity vector in any -~

defined coordinate system. The gravitational acceleration of a translational component of motion,

3.6-1
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a;, at a geometric grid point is
a‘i = a'ei ’ (])

where § is the gravity vector and Ei is a unit vector in the direction of uy- For rotations, L

is zero. The gravity Toad is then computed from
PITy = (M
="} [ gg] fa} (2)

where (Mgg] is the mass matrix referred to the ug displacement set. It should be noted that the
gravitational acceleration is not calculated at scalar points. The direction of motion at scalar
points s established indirectly by constraints and by other forms of coupling with geometric grid

points. The user is required to introduce gravity loads at scalar points directly.

A centrifugal force load is specified by the designation of a grid point that lies on the
axis of rotation and by the components of rotational velocity in a defined coordinate system. The
companents of force acting on a rigid body in a centrifugal force field are most simply expressed
in a Cartesian coordinate system that is centered at the center of gravity of the body with axes

directed as shown below.

3.6-2
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The components of load are

Px mr'°
P 0
y
p 0
cf z 2
{P-"'} = = Q ’ (3)
M 'Iyz
My Ixz
Mz 0

where m is the mass of the body, Ixz = [pxzdV, and Iyz a fpyzdV. For use in the program, the com-
ponents of force and moment are transferred from the center of gravity to the grid point and its
local coordinate system; the elements of the mass matrix, Mgg, are used in the calculation of the
loads. Note, however, that the mass matrix is regarded as pertaining to a set of distinct rigid
bodies connected to grid points. Deviations from this viewpoint, such as the use of scalar masses

or the use of mass coupling between grid points, can result in errors.

The equivalent loads due to thermal expansion are calculated by separate subroutines for each
type of structural element, and are then transferred from the internal coordinates of the element
to the coordinates of the surrounding grid points. The equations that define the equivalent forces

and moments are derived for each element in Section 5.

The user may define temperatures by more than one method. For BARS, R@DS, and PLATES the
temperature may be specified for each individual element. The temperature specification for BARS
and R@DS includes the average temperature and, in the case of the BAR element, the effective trans-
verse thermal gradient at each end. The temperature of a PLATE element can vary arbitrarily in
the direction of the thickness, but 1t {s assumed to be independent of position on the surface.

For all other elements that permit thermal expansion, and for BARS, R@DS, and PLATES {f their tem-
peratures are not individually specified, the temperature {s obtained by averaging the temperatures
specified at the grid points to which the element is attached. Temperature-dependent thermal
expansion coefficients and elastic moduli are stored in material properties tables which the user
applies to each structural element by specifying the code number of its material. The average

temperature of an element {s used to determine its temperature-dependent material properties.

3.6-3 (4/1/72)
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Enforced axial deformations can be applied to the one-dimensional elements (BARS and RODS).
They are useful in the simulation of misfit and misalignment in engineering structures. As in the
case of thermal expansion, the equivalent loads are calculated by separate subroutines for each
type of structural element. In the case of a bar, for example, the equivalent loads placed at the
ends are equal to EASu/% where E is the modulus, A is the cross-sectional area, du is the enforced
expansion, and & is the length of the bar.
Enforced displacements at grid points are discussed in connection with single point con-
straints, Section 3.5.2.
3.6.2 Reduction of Load Vectors to Final Form and Solution for Displacements
The operations by which structural matrices and load vectors are reduced from the ug set to
the u, set have been described in Section 3.5. In the program, the reduction of load vectors to
final form is performed in a single module, {SSG2). The operations are summarized below.
1. Partition the load vector, {Pg}. whose generation is described in the preceding subsection,
according to the set of coordinates, Un» that are restrained by multipoint constraints,
and the set, Un» that are not. %
ﬁh
p 3 (== 4
{ g} (4)
Pm
2. Eliminate multipoint constraints.
P} = Fr+[6IP} . (5)
n n m m
3. Partition {Pn} according to the set of coordinataes, U that are restrained by single
point constraints and the set, Ugs of free coordinates.
Ff
{Pn} = = . (6)
ps
4. Eliminate single point constraints. -
{Pf} = {F}} - [Kfs]{Ys} . (7) o
<
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5. Partition {Pf} according to the optional partition scheme described in Section 3.5.3.

Fa

e} = - . (8)

/

6. ECliminate the set of omitted coordinates, Uy

= T
P} = P e )P} . (9)

7. Partition {Pa} according to the set of coordinates, Ups that are restrained by free body

reactions, and the set, Ugs that are not.

\
Py} = 7—-— . (10)

{Pl} is the load vector in final form.

In the program the displacement vector set, Ups is obtained from solution of the equation
[Kzzl{“z} = {Pl} . (1)

in a separate module, (SSG3). It will be recalled, Section 3.5.5, that the triangular factors of
cKlEJ were previously computed in order to form the rigid body matrix, [D]. The operations per-
formed in SSG3 are the forward and backward passes through the triangular factors of [Kmil (see

Section 2.3) for each loading condition.
The vector set, ug. that describes displacements of the omitted set relative to the re-

maining set (see Section 3.5.3) is also obtained in SSG3 from solution of the equation

[Kodtud} = (P} . (12)

The triangular factors of (KOOJ were previously computed in order to form [GOJ.

Double precision arithmetic is used in the formation and triangular decomposition of struc-
tural matrices, so that significant error due to the accumulation of round-off is regarded as un-

likely. Such errors can occur, however, in exceptionally ill1-conditioned problems (see Section

3.6-5 (7/1/70)
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15.1). A test is provided in NASTRAN on the solution of Equations (11) and (12) that will indi-

cate the presence of trouble to the user.

In the test a residual load vector is first obtained from
tsP,} = “’z} - [Ku]{ul} (13)

The work done by the residual load vector is then compared with the work done by the applied load

vector in the residual energy criterion,

r
{u,} {6P,}
g, =2 L (18)

e
T
{"2} {Pl}

Iterative fmprovement, such as might be obtained by computing second and higher order resi-

dual load vectors,
t6Mpy = sy L sy (15)

is not attempted. The gain in accuracy from iterative improvement is Targely illusory because
errors made in the formation of [K], which are of the same order as those made in the triangular

decomposition of [K], are uncorrected. This matter is discussed more fully in Section 15.7.
3.6.3 Inertia Relief

When a free body is subjected to loads that are not in equilibrium, the body is accelerated
in its rigid body (or more generally, free body) modes. I[f the time rate of change of the applied
loads is small compared to the frequency of the lowest elastic mode of the system, an approximate
state of equilibrium exists between the applied loads and the inertia forces due to acceleration.
Stresses in the body may be computed, in this case, from an applied load distribution that in-
cludes the inertia forces. The term "inertia relief" is applied to the effect that the fnertia
forces have on the stresses. In order for an "effect" to be defined, a condition in which the
effect does not exist must be imagined. In the case of inertia relief, the "effect-free" condi-
tion is one in which the free body is restrained by determinate supports. The choice of support
points is arbitrary, but usually corresponds to a natural or customary location (e.g. the inter-
section between wing and fuselage of an aircraft). Although the condition including inertia ef- -
fects s the correct solution, the analyst may also be interested in the results for the supported

condition. : -
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The general pracedure for including fnertia relief in static analysis is as follows:

1. Select, from the displacement vector {ua}, a subset (ur} of determinate support points as

has been discussed in Section 3.5.5.

2. Find the accelerations {ﬁr} due to the applied loads (Pa}. This requires evaluation of

the rigid body mass matrix [mr] referred to points {ur}.

3. Calculate accelerations at all other points {up} and the corresponding inertia forces.

4. Add the inertia force vector to the applied load vector and solve for the displacements
{ul} while the structure is rigidly restrained at points, {ur}. The forces of reaction

will be zero.

The equations of motion for the body, expressed in temms of the displacements, u., can be

written
(mJi} = ®) = -{q} . . (16)

[mr] is the mass matrix reduced to the u. coordinates. It is evaluated from partitions of the
[Maa] matrix by means of Equation 46 of Section 3.5.5. (F}} is the applied load vector reduced
to the u. coordinates. It is numerically equal to -{qr}. the set of determinate reactions, eva-

Tuated in Equation 42 of Section 3.5.5.

Solution of Equation 16 gives
o -1
(ur} = -[mr] (qr} . (17)

The accelerations of the remaining points {"z}’ assuming uniform acceleration as a rigid

body, are obtained from Equation 44 of Section 3.5.5,
{”z} = [0]{ur} . (18)

The inertia forces acting on the u, coordinates are, utilizing the partitions of the [Maa]

matrix shown in Equation 45 of Section 3.5.5.

i . .
SN 0 [ R (AR [T

-1
= M0+ M Jm] (a} . (19)

3.6-7 (7/1/70)

&4



STATIC ANALYSIS BY THE DISPLACEMENT METHOD F PCCR QUALITY
' o =
The vector {P;} is added to the applied load vector (PQ} in problems where the inertia relief ef-
fect is included. Since [mr] is usually of small order, its inversion is not troublesome.
The inertia relief effect is also included in the calculation of the displacement set, ug,
that expresses the motions of the omitted coordinates, Ugs relative to the Uy coordinates. The
inertia force vector for the omitted coordinates is
i, . . T
(Po} = {-Moouo - Mao ua} . (20)
Now, if acceleration as a rigid body is assumed,
Wy = fi% - iy« [Ymaap (21)
a i T [tMed 197 s
and
(uo} = [Go]{ua} . (22)
Thus, the inertia force vector for the omitted coordinates is
i, . T [u] -1 ]
(Po}r (MaeSo * Mo LT [mr] ta,} (23) =4
which should be added to {PO} in Equation 12.
3.6-8 (7/1/70) L
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3.7 DATA RECOVERY

Data recovery in static analysis by the displacement method is performed in two steps:

1.

Recovery of displacement sets that were eliminated during the reduction of the stiffness
matrix to final form, resulting in the formation of the complete grid point displacement
vector, u_.
g

Recovery of internal forces and stresses in structural elements, using the grid point
displacement vector, ug. to define the displacements at the corners of each element.

Margins of safety are also calculated. Separate subroutines are used for each type of

element.

The above steps are discussed in separate subsections.

3.7

Solutions for the vector sets, u

Recovery of Displacements

% and ug, are discussed in Section 3.6.2. The remaining

operations required to recover the complete grid point displacement vector, ug, are as follows:

1.

Merge Ups whose elements are all zero in static analysis, with u, to form u,-

Yy
{U;} - {ua} . (1)

Recover the omitted coordinates, Uy

fu,} = [6,]0u b + tug} . (2)

Merge Uy and uy to form the vectors of free coordinates, Ug-

u
{i—} - (ugh. (3)

Evaluate the single point constraint set, u

.

H

fugd = (Y} . (4)

(Ys} is the vector of enforced displacements. -

Merge Ug and ug to form u,-
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el oy (5) ~
=t =+ {U . 5
l"s n
6. Recover the multipoint constraint (and rigid element) set, U
{um} = [Gm] {un} (6)

The forces of constraint due to multipoint constraints and rigid elements are not available

as part of the standard calculations in the program, but may be_obtained in statics and real

eigenvalue problems by ALTERing in the module EQMCK and requesting these forces in the Case Control
Deck. The constraint forces are given by

qm
{qs} = {-;£-§ s (6a)

m
where

fagt = = Py + [k 37 Cud + (KD (o} s (6b)
and

@ = -] @ (6c) ~

7. Merge u, and uy to form u

e
su
n
- + {u} (7)
Y 9
The matrices [GOJ and [Gm], used in the data recovery process, were generated during the

reduction of the structural matrices to final form and were placed in auxiliary storage.

A miscellaneous task that 1s performed in the same module that recovers ug 1s the recovery
of the single point forces of constraint,

lagh = =g} + [k Tugh + [k Tug} (8)

3.7.2 Recovery of Stress Data

Internal forces and stresses in structural elements (as well as strains and curvatures in
certain elements) are calculated from knowledge of the displacements at the grid points bounding

the element and the physical parameters of the element, including geometric properties, elastic
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properties, and temperature. The equations by which internal forces and stresses are calculated are

contained in a separate subroutine for each type of element. They are discussed in Section 5.

In the calculation procedure, the stress recovery parameters for as many elements as possible
are placed in the high speed memory. The stresses are computed from the ug vector for the first
loading condition, and are placed in peripheral storage. The ug vectors for other loading condi-
tions are then processed sequentially. The procedure is repeated for additional structural elements
(if any) that could not be stored initially. The procedure that has been described makes minimum
use of INPUT/OUTPUT data transfers. For most elements, I/0 transfers are the 1imiting factor on

computational speed in stress data recovery.

A number of different kinds of étress data are available for each type of =lement. With the

BAR element, for example, the user can request any or all of the following:

Bending moments at both ends in two planes.
- Transverse shear forces in two planes.

- Axial force.

- Torque.

- The average axial stress.

- The extensional stress due to bending at four points on the cross-section at both ends.
The points are specified by the user.

- The maximum and minimum extensional stresses at both ends.
- Margins of safety in tension and compression for the whole element.
- Number of digits of accuracy for the element forces.

The capability exists for certain elements to indicate the number of significant digits of
accuracy for stresses and forces. Numerical problems may exist in using the differences in dis-
placements to calculate stresses and forces. For instance, displacements may be large relative
to the overall structure, yet the differences may be small relative to an individual element.
The precision is calculated by
£ S;.u
13 >13%] o,
h1 = - 10910 m = -10910—5-1—- , (8a) -
3
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where a4 is the specific stress component; Di is calculated using absolute values for the stress

equations, Sij are the stress matrix components and uj are the displacement components. The number

of signi?fcant'afgffs,'Ndi, is calculated by
Ngg = 10gy(2P) - ny (8b)

- where p is approximately the number of bits in the mantissa for the machine being used.

The‘resdits"ére printed directly in a format unique to the element type 1nstead of by the
output file processor. Only the results for those elements with an entry less than the user-

defined precision are pr1nted

3.7.3 Grid Point Force Balance and Element Strain Energy Distribution

The new method of element matrix generation introduced in NASTRAN Level 16 includes the
feature that the elastic stiffness matrix for each element is individually saved 1n peripheral
storage. This feature makes practical a number of capabi11ties which would othehwise be pro-
hibitively expensive, including the determination of force balances at grid points and the cal-

culation of the strain energy distribution by elements throughout the structure.
The vector of elastic forces exerted by a structural element on its connecting grid points
s related to the displacements at these points by
{Fe} = -[Kee]{ue} s (9)
where {ue} s the subset of the global degrees of freedom, {ug}, to which the element is con-
nected. The matrix EKee] is computed by module EMG and stored.

The grid point force balances computed by NASTRAN include the force and moment contributions
in the global coordinate system of element elastic forces computed by Equation 9, applied loads

and single point forces of constraint They do not 1n 2, at present forces due to differen-

AtiaT stiffness nu]tipoint constraints genera1 elements or any dynamic effects NASTRAN prints
the individual contributions of the fonner effects and the1r sum at each grid point. If none of
the latter effects are present, the sum is due to round-off error. The sum is not the same as

the residual used in the € tast (see Section 2.3) because {t is calculated at a different time in

a different manner.
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The straip energy within an Individya] element jsg

3.7.4

Overall Eguilibrium Check

The quality op closure in the so

Tution of 4 statics problem op the net momentum in a real
efgenvalye problem jg Indicated p

y

the equilibrium of the forcas about the basic coordinate System
origin op any selecteq grid point, T|

he forces on the structure are obtained in modyie EQMCK from
the fo]lowfng sources

1. Directly applied Joads: {Pg}

2. Forces of single-point constraint: {qs}
3. Forces due to multipoint Constraints ang rigid elements : fqg}
4. Forces of reaction: {qr}

(1)

resulting in the Summation,

2 m =
{St} fSp + Sg + Sg}

gt (12)
where qg 1s the union of the fo

rces 9 and 9.
n the [p] matrix,

and the forces resulting from »
not calculateq.

Each of the {s}

vectors in Equation 1
Mments, 1s output Separately along
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3.8 PIECEWISE LINEAR ANALYSIS

The Piecewise Linear Analysis option of NASTRAN 1s used to solve problems in material plas-
ticity. The load is applied in increments such that the stiffness properties can be assumed to
be constant over each increment. The stiffness matrix for each increment is dependent on the cur-
rent states of stress in the structural elements. The increments in displacements and stresses are
accumulated to produce the final, nonlinear results. Since the algorithm assumes linearity between
sequential Toads, the results will depend on the user's choice of Toad increments. When the user
selects large load increments and the material properties are changing rapidly, the results may be
unacceptably inaccurate. If small load increments are used when the structure is near1y411near the

solution will be very accurate but relatively costly.

3.8.1 Limitations and Available Options

The nonlinearity of a structural element is defined by the material used by the element. Any
isotropic material may be made nonlinear by including a stress-strain table defining its extension

test characteristics.

The stress-strain table must define a nondecreasing sequence of both stresses and strains.
Because the stiffness matrix for the first load increment uses the elastic material coefficients,

the initial slope should correspond to the defined Young's Modulus, E.

The nonlinear effects depend on the element type. The elements which utilize the plastic

mater1a1 properties are described in Section 3.8.4.

Linear elements and materials may be used in any combination with the nonlinear elements.
Elements with low stress states may be included in this category by providing them with "Tinear"
material properties even though their actual properties are decidedly nonlinear at high stress

levels. Linear elements are used in a more efficient manner than the nonlihearie1ements.

A1l static load options except temperature and enforced element deformation are allowed with
piecewise linear analysis. The reason for the exceptions is that the equivalent grid point Toads
depend on the stiffness of the structure and_ hence on the sequence of their appiication. For ex-
ampie, changing temperature after a load is applied gives different results than changing tempera-

ture before the load is applied. -

A1l statics constraint options are available including enforced displacement at grid points.

The use of enforced deformation in combination with applied loads has the ambiguity discussed
' 3.81
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<7
above. In the program enforced displacements are increased simultaneously with the other Toads.

No protective steps are taken to prevent the attempted decomposition of a singular stiffness

matrix. If the structure fails by buckling or yielding, a solution is still attempted and the re-

sults will be obviously erroneous.

3.8.2 Qverall Solution Logic

Although the Piecewise Linear Analysis rigid format uses many of the statics analysis modules,
the path through the various operations is substantially different. A summary flow diagram is

given in Figure 1. The various steps are given numbers corresponding to the explanations below:

1. The normal statics analysis "front end" {s used to generate the grid point, element, and

loading tables. The stiffness matrix (and the mass matrix for gravity loads) s generated

in the normal manner using the moduli of elasticity given with the materials,

2. The élement tables are separated into linear and nonlinear elements. The program recog-
nizes a nonlinear element as one that has a stress-strain table referred to by its mater-
fal. The Tinear elements are used tg generate a Tinear stiffness matrix, [K ] This

matrix will not change with loading changes. -

(

3. The load vector for the whole structure, {Pg}, is generated by the normal mefhods except
that loads due to temperatures and enforced element deformations are ignored. The con-

strained points are also identified in this staga.

4. The “current" stiffness matrix is initially the linear elastic matrix; for subsequent
load increments the matrix is changed as shown in step 8. The constraints are applied to
the matrix in the normal sequence to produce the [K 2] [K ] [K ], and [G ] matrices.

The K 1] matrix fs decomposed to produce the triangular matrices {Ulz] and [Lllj'

In a similar manner the applied loads, including enforced displacements at grid points,

are modified by the constraints to. produce a load vector for the independent coordinates,

(P }. The current load increment is:
T 1L NV S S P (1)

where @1» @» -.. N Are 2 set of Toad level factors provided by the user. =
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PIECEWISE LINEAR ANALYSIS

5, The incremental displacements are generated using the current stiffness matrix and the
current load vector increment. The dependent displacements are recovered in the normal
manner and merged to produce the 1ncrement§ for all degrees of fraedom, {Augi}. The in-
cremental forces of single-paint constraint, {Aqsi}. are also recovered. The increments

are added to the previous vactors to produce the current vectors

(ug‘} = u TNy {Aug‘} . (2)

g

1, . i-1 i

{ag'} {ag "'} * {aq'} . (3)

§. The total nonlinear element stresses are calculated for output within the loop so that
the user may have some useful information in case of an unscheduled exit before the

end of the calculaticn. The method of calculating stresses is given in Section 3.8.4.

7. The stiffness matrix for the nonlinear elements, [Kggn]. is generated six columns at a
time for all nonlinear elements connacted to a grid point. The table of element connect-
ions and properties is appended to include the current stress and strain values. The
modulus of elasticity is calculated from the slope of the stress-strain curve as

explained below,

8, The nonlinear element stiffness matrix, generated in stap 7, is added to the linear
element stiffness matrix, generated in step 2, to produce a new stiffness matrix.

The next pass through the loop will reflect the new stress state of the structure,

9. When the results for all load increments have been produced, the data are output.
Stresses for the linear elements are calculated directly from the total displacement

vector.

3.8.3 Piecewise Linear Stress-Strain Functions

In order to simplify input to the program, a single type of plastic material table is used. A
stress-strain tabular function is input for each nonlinear material, Only certain types of

elements may use the nonlinear tables.

In calculating the current elastic constants of a plastic element, an approximation to the -
siope of the stress-strain function 1s used. Because the elastic constants are to be used for

the interval between the present load and the next load, an extrapolation of current information is

3.8-3 (12-1-69)
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A 4
required. A Tinear extrapolation is used to estimate the strain due to the next load increment as
shown in Figure 3, The current strain increment, Aci. 1s computed from the current displacement
increment Aug1 by separate subroutines for each type of element. The next strain increment, Aei+‘,
is estimated by Tinear extrapolation,
By T byt ey ® Alagy) (4)
where A is obtained by the curve fit through two previously'bomputed points, €i» and €.1°
The linear elastic modulus, Eo' is used for the first increment. For all succeeding
increments
g -3
i+] i
E 3 e— (5)
i+] €i+] - Ei
where 9y and Si47 are obtained from points on the stress-strzin curve, Figure 2, corresponding to
¥ and €i4y
The actual strain components used above depend on the element type. A brief description of L
the elements used in plecewise linear analysis is given below, A4
3.8.4 Element Algorithms for Piecewise Linear Analysis
3.8.4.1 R@D, TUBE, and BAR Elements
The plasticity of these elements is assumed to depend on the state of extensional stress only.
Bending and twisting stresses are ignored in the determination of the effective elastic constants.
If bending stresses are important, the bar may be represerted in NASTRAN as a built-up structure
composed of rods, shear panels and/or plates, The estimated next extensional strain is:
Sia1 T oEg T vgley (6)
where the coef?iC?énE;?} {s the ratio of load increments
B o Il TS 7
T ey -ay Bay B
I
3.8-4 (12-1-69) )
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3

The elastic constants for the new stiffness matrices and the next stress calculations are:

a -aq G
i+] i )
E = s G = E. ’ 8
3 I vear A U B Y {8)
where G° and Eo are the elastic shear and extensional moduli given with the material. These con-
stants are used in the calculation of extensional, bending, twisting, and transverse shear stiff-

nesses in the next increment.
3.8.4.2 Plate Elements

The in-plane stresses of plate elements are used to calculate the elastic properties for in-
plane deformations. They are also used to calculate the elastic properties for bending and trans-
verse shear, except in the case of those plate elements where the bending and transverse shear

material are different from the membrane material.

Plastic, rather than nonlinear elastic, behavior is assumed. The thgqretical basis of two
dimensional plastic deformation as used in NASTRAN {s that developed by Swedlow (Reference 1).
Only a swﬁnary of the theory will be presented here. In the development, a unique relationship
between the octahedral stress, T,. and the plastic octahedral strain, eop, is assumed to exist.

The total strain components (sx, ey’ €, and ny) are composed of the elastic, recoverable defor-

mations and the plastic portions (exp, eyp, €,

are independent of a time scale and are simply used for convenience instead of incremental values.

P, and nyp)' The rates of plastic flow, (éxp, etc.),

The definitions of the octahedral stress and the octrahedral plastic strain rate are:

J ] 2 2 2
pom iy st et eyt esh )
2P e LE P 2P (i e G (10)

3.8-5 (12/29/78)
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where
St a2 -a,) ar ot
512 * Txy €12P * % nyp
: ;, - %{ch -5 522p . Eyp (1)
S33 ® -;—(cx+0y) a3 ey

The Sij array is called the "deviator” of the stress tensor. Oy» ay, and ny are the Car-

tesian stresses. The basic Prandti-Reuss flow rule is:

. P

T is (12)

ij °
where % fs a flow rate parameter.

by may be derived by multiplying Equation 12 by itself according to the rules of tensor analy-

sis to produce a scalar equation. The result 1s:
i = oo . (13)

Another basic assumption is that the material yields according to its octahedral stress and

strain. In other words, there exists a function, MT(ro), such that

T
o Mlr) . (14)

€

Combining Equations 12, 13, and 14 we obtain
) S
b P o i . (-'5)

Taking the derivatives of Equation 9 we obtain:

~a

1
0 = 3?; (SHST1 + 25125]2 + 522§22 + 333533) . (16)

3.8-6
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Substituting the relat16ns between the sij and the cij terms we obtain:

. - _l_ . . .
KR o (S50, + S22% * Bp,1,, 1 (17)

The matrix reIationship for the plastic flow is formed from Equations 1, 15, and 17:

.p 2 - .
€y an S22 B8y, Oy
: P — 1 | s 5,2 25,5 § (18)
&y = > 1122 22 22°12 y
61’0 MT(rO) )
. P .
Yay Bisiz B85, s, ] Vi

For piecewise linear analysis this matrix, [DP], is assumed constant for a given load incre-
ment, The time derivatives are replaced with incremental values., The total strain increments,

obtained by adding the plastic and linear elastic parts, ara:
P -1 -1
{ae} = ([07] + {6 "}{a0} = [Gp] {40} , (19)

where [G] is the normal elastic material matrix and [Gp] is the equivalent plastic material matrix.

A further relationship to be derived is that of the plastic moduluys, MT(TO), versus the slgpe

of a normal stress-strain curve. If 3 specimen is under an axial load, its stress and strain val-

ues are:

T
p o

e, = g + (20)
7
vo

Yay T Yyz T Yxz * 0

where E° and v are the elastic modulus and Poisson's ratio for the elastic part of the stress-

strain curve. .

Because of noncompressibility the plastic strains are eyp = g = - % gxp

3.8-7
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The stress-strain relationship given in the table is:
g = F(gx) .

X

and (21)

X 2 F'(e,)

The octahedral stresses and strains may be determined from Equations 9, 10, and 17,

- Y2
To 3%
(22)
< P
.
° vZ
The tabular relation for octahedral stress is, therefore:
- Y2
T, - F(sx) . (23)
The slope relation is from Equations 22 and 23: - T
oty = i% F'(ex) de, (24)
where from Equations 20 and 22:
» 3A1'°
= P to— hd
dey = Ty e (25)

The octahedral plastic strain-to-octrahedral stress function obtained by solving Equations 24

and 25, and substituting into Equation 24, is:

o = L (@ h e
My T a1, H EOE (ex) ’ (26)

where E1 = F' is the approximate slope of tha stress-strain curva at each increment.

3.8-8
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In applying the theory the following steps are taken:

1. The strain increments, {Asi}. are determined from the incramental displacement vector and

the geometry of the element. Using the material plastic matrix from the preceeding step

[Gpi']], the new stresses are:

(o'} = (a"‘}+[sp“‘]me‘} . 27

2. Using Equations 9, 11, and 22 the new octahedral stress, roi, and its unidirectional
equivalent, cai. are calculated. c:a’I is used with the stress-strain table to determine
i+l

a strain ¢ 1. Using the previous strain e "T. a new strain, €,

a a » 15 estimated by

linear extrapolation as in the case of extensional elements.

In case ca1 exceeds the maximum tabulated value, the incremental modulus, Ei, is set

aqual to zero on the assumption that the element has ruptured.

3. Using the stress-strain table, the next estimated stress, ca’*1. is found. The stress-

strain slope is:

s .

4, The new stiffness matrix, [Gpij, is calculated from Equations 9, 11, 26, 18, and 19

using oxi. g 1, T 1, and £ as input data. [Gp1] is then used in the normal stiffness

y Xy
matrix calculation routine.

The quadrilateral elements use extra logic since they ara ccmposed of four overlapping triangles.
The primary difference is that the stress increments are averaged aover the four triangles and the
resulting material matrices must be treated as anisotropic and rotated into each subelement's

coordinate system.

3.8-9 (4/1/72)

130



1.

STATIC ANALYSIS BY THE DISPLACEMENT METHOD
REFERENCE

Swedlow, J. L., "The Thickness Effect and Plastic Flow in Cracked Plates," Aerospace Research
Laboratories Report No. ARL 65-216, Wright Patterson Air Force Base, Ohio, October 1965.

3.8-10 (12/29/78)

/3/



PIECEWISE LINEAR ANALYSIS

1 Normal Statics Formulation

2 Separate Linear and Non-linear
Elements. Form k* stiffness
Matrix from Linear Elements

!

3 Select Constraints and Generate
Pg Load Vector

4 Partition, Reduce, and Decompose

Kgg * Yur Lus

P+ APli

7

5 Solve for Displacement Increment Aug
Solve for Dependent Displacements
and Increment u, = U, + du,

-

§ Calculate Non-linear Element
Stresses and Update Stress Tables
Output Non-linear Stresses

[

Loop \Ast/ End of Loop

7 Calculate Non-linear Element
Stresses and Form Non-1inear

ix k0
Matrix 99

!

8 Add Linear and Non-linear Matrices

. 2 n
Kgg ™ ¥gg * ¥gq
Figure 1.

for A11 Steps and Qutput Displacements,
orces, and Total Stresses in A1l Elemen

LQ Calculate Stresses in Linear Elements

Piecewise linear flow diagram,
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4. MISCELLANEOUS GENERAL PROVISIONS FOR STRUCTURAL ANALYSIS

4.1 AXISYMMETRIC STRUCTURES

The description of finite element structural analysis presented in Chapter 3 assumes a
structural model in which the degrees of freedom are defined at points in a three-dimensional
space. An entirely different formulation is available in NASTRAN for analyzing axisymmetric

structures. In this formulation, the deqrees of freedom are the harmaonic coefficients of displace-

ment components defined on the perimeter of circles, called grid circles, which Tie in planes
normal to the axis of symmetry. The special features of NASTRAN's axisymmetric structural analysis

capabilities are discussed below.

4.1.1 Axisymmetric Element Library

NASTRAN includes four different axisymmetric structural elements. They are the conical shell
element (Section 5.9), the toroidal shell element (Section 5.10), and the triangular and trape-
zoidal solid ring elements (Section 5.11). The reader is referred to the sections cited for
details. No attempt has been made to make these elements compatible with each other, or with
"ordinary” structural elements. The only axisymmetric elements that can be used together in the
same problem are the triangular and trapezoidal solid-ring elements. The conical shell element is

the only element that accepts nonaxisymmetric loads. The others require that the loading be axi-

symmetric.

4.1.2 Coordinate Systems

The "global" coordinate system for the conical shell element, and for the solid of revolution

elements, is a cylindrical coordinate system as shown below:

A

arbitrary

reference u,,d

azimuth ¢
ur'er

4.1-1 (12/31/77)
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Force components are input parallel to the global coordinates, and displacements are output
parallel to the global coordinates.
For the torcidal shell element, the "global" system is a spherical coordinate system locally

tangent to the shell.

4.1.3 Harmonic Coefficients and Degrees of Freedom

The following equations are used to define harmonic coefficients:

a. Any vector component representing motions or forces in a plane that includes the z-axis:

m m
vir,$,2) = v (r,z) + ] v {r,z)cos(ng) + | v*(r,z)sin(n¢). {1)
0 n=1 " n=1 "
b. Any vector component representing motions or forces normal to a plane that includes the
z-axis:
* m M .
u(r,$,z) = uo(r,z) + Up (r,z)sin{ne) - ¥ un(r,z)cos(n¢). (2)
n=1 n=1
The motions corresponding to different harmonic orders are uncoupled. Also, the starred and
unstarred parameters are uncoupled. The degrees of freedom are the coefficients ("rn’ u¢n, Uy

Bpps O and their "starred” counterparts) at discrete "grid circles." Note the (-) sign pre-

on’ azn
ceding the starred series for u(r,0,z). Because of the (-) sign, the starred parameters describe

motions that are shifted %% in azimuth from the motions described by the unstarred parameters, since
-cos{n¢) = sin(n¢ - %v, (3)

and
sin(ne) = cos(ng - ). ~ 7 (4)

The practical effect of the {-) sign in Equation 2 is that the stiffness matrices for the
starred parameters are identical to the stiffness matrices for the unstarred parameters for n>o.
Note that the unstarred coefficients represent motions that are symmetrical with respect to
¢ = 0, and that the starred coefficients represent antisymmetrical motions.

The harmonic order, n, represents an additional dimension of the vector space that fs not

present in "ordinary" structural analysis. The number of degrees of freedom per grid circle is

4.1-2 (4/1/72)
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equal to 6(2m+ 1).

The solutions for different unstarred harmonic orders are calculated in the same run. For
statics and inertia relief problems only (Rigid Formats 1 and 2, see Section 3.2), the results
for unstarred harmonic orders may be combined with the results for starred harmonic orders,

thereby providing solutions for general unsymmetric loading.

For vibration mode analysis (Rigid Format 3, see Section 9.1), the user selects the highest
order, m, and all modes of order m and lower are calculated in the same run. There is no pro-

vision for selecting individual harmonic orders.

The presence of harmonic coefficients complicates the selection of the order in which
degrees of freedom are processed. In NASTRAN, the degrees of freedom are sequenced first by
location and then by harmonic order and last by symmetry (starred or unstarred). Thus, all Vo
coefficients precede all v coefficients, etc. Since no coupling between different orders is

permitted, this is a sensible arrangement that minimizes bandwidth.

4.1.4 Application of Loads

The following types of static loads are available for use with the conical shell element:
a. Concentrated forces and moments applied at points on grid circles.

b. Uniform 1ine load on a sector of a grid circle.

c. Uniform pressure load on a region bounded by two gird circles and two meridians.

d. Harmonic components of force and moment along grid circles.

e. Gravity loads. The gravity vector may be arbitrarily oriented. It operates on the

global mass matrix and. generates zero and first harmonic loads.

f. Thermal loads. The temperature is defined at specified points on grid circles and is
Jinearly interpolated. The provision for harmonic components of temperature described
on Page 5.9-28 has not been implemented. The temperature on grid circles is used by

element routines to compute thermal loads.

g. Enforced displacements at grid circles. Harmonic components are constrained to user-

specified values. el

The only static loads that can be applied when the solid-ring elements are used are uniform .

4.1-3 (4/1/72)
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symmetrical 1ine forces on grid circles and thermal loads. The toroidal shell element accepts

uniform Tine forces and Tine moments on the grid circles. It also accepts thermal loading.

At present, very special procedures are required to generate dynamic Joads. The computer
generates internal gridpoint numbers for each harmonic at each grid circle. If the user knows

the algorithm by which gridpoint numbers are assigned, he can reference the internally assigned

numbers and apply a load to them. The procedure is described in Section 4.6 of the Programmer'’s

Manual.

4.1.5 Differential Stiffness

Differential stiffness (see Chapter 7) is available for the conical shell element only. It
provides a Tinear buckling capability for symmetrically loaded shells of revolution. If a non-
symmetric loading is applied, NASTRAN extracts the zero harmonic component of the load and then
computes the resulting differential stiffness for all harmonics. It will also compute the buckling

modes for all harmonics.

4.1.6 Hydroelastic Capability

C

The NASTRAN hydroelastic capability is described in Section 16.1. The properties of the
fluid are assumed to be axisymmetric, and a Fourier series expansion is used. At present, the
properties of the structure must be expressed with ordinary nonaxisymmetric structural elements

in hydroelastic problems.

4.1-4 (4/1/72) 7
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4.2 STRUCTURAL MATERIAL PROPERTIES DT e
In NASTRAN structural material properties are normally specified with a Material Property

Card. The only exceptions are the scalar damper and the scalar spring whose material properties

are imbedded in their spring and damping constants. The material properties defined on Material

Property cards include density, elastic moduli, thermal expansion coefficients, allowable stresses

used in calculating margins of safety, and structural damping coefficients. A1l of the material

properties can be made functions of temperature and elastic moduli can be made functions of

stress for pfecewise linear analysis (see Section 3.8).

At present three different types of material property cards are available. Table 1 sum-
marizes the availability of the material property types for each of the NASTRAN structural ele-
ments. The manner in which elastic moduli are treated by each of the Material Property Cards is

as follows:

MAT1 - specifies values of E, v, and/or G for isotropic materials. When two of the three
parameters are specified, the third is computed from G = E/2(1+v). If all three parameters are
specified, the value specified for G is replaced by this formula for surface and surface of revo-

Tution elements. For solid and solid of revolution elements all three parameters are used in the

form:
F 1 _y v 0 0 O—I

€x E E|"F Ix
) ] v

Ey - 'E E' - E- 0 0 0 O'y
1

g, - % - E- 0 0 0 o,

. , , (1
!
ny 0 0 0 T 0 0 Txy
1 .
sz 0 0 0 0 z 1] T2
1
Yxz 0 0 0 0 0 T Tz

Note that the material is not isotropic when G # E/2(1+v). For solid elements the materdial

axes to which Equation 1 refers are the axes of the basic coordinate system. The material

axes for solid of revolution elements are defined on Page 5.11-22.

4.2-1 (4/1/72)
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MAT2 - specifies a general anisotropic stress-strain relationship in the form
Iy (i”__f G]l ,!_G"i €y
a0 ® G]z Gyo Gog €y . (2)
Txy Gy3 + B3 G33 |[vyy
This format is available for flat surface elements only, as shown in Table 1.
MAT3 - specifies a general orthotropic stress-strain relationship with respect to three per-
pendicular axes of symmetry in the form
[ vk Vzx ml
€, £ |- EL - = 0 0 0 {o,
- Y z
v v
X 1 z
€ - - ] 0 0lo
y |5 % y
v v
XZ b4 1
€2 BT EZ_ E 0 0 ¢ 1o,
= X Y z (3)
1
¥ 0 0 0 0 0l
N D R ™ | 9
1!
Y 0 ] 0 0 0ffx N
vz % | yz L=
1
Y2x 0 ] 0 0 0 ‘ =1 T
i
The matrix is symmetric so that
e e R e * i (@)
Vyx Sy Vzy fz Vxz B
The inverse of the matrix in Equation 3 is of a similar form as that given in Equation 3
on Page 5.11-4, The MAT3 card is available for surface of revolution and solid of revolution
elements only. These elements employ appropriate subsets of the (6x6) matrix.
The coordinate axes for the NASTRAN structural elements are defined as follows:
Linear elements (RAD, CPNRPD, and TUBE) have an element x-axis which points from end A to end B
of the element. Positive extensional forces are tension; and positive torques are defined by
the right-hand rule. The material properties are E (for tension) and G (for torsion). -
4.2-2 (8/1/72) | =
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The linear bending element (BAR), has an element x-axis which points from end A to end B of
the bar. The ends may be offset from the grid points by rigid connections. The element y-axis
is determined by a user specified vector 7. The y-axis is in the plane of the vector ¥ and the
x-axis, and it is perpendicular to the x-axis. The z-axis forms a right-hand system. The
material properties are E (for extension and bending) and G (for torsion and transverse shear).
For composite beams, a reference value of E can be chosen, and the user can then evaluate the
affective area and moments of inertia. Similarly for G, the user can evaluate the effective
torsional rigidity (J) and transverse shear factors (Ky, Kz) (see Section 5.2.1). Thus, E and

G are sufficient to describe sandwich type beams.

The surface elements have an element coordinate system internal to each element. The
element 1ies in its x-y plane, with the origin at the first listed grid point, and the second
listed grid point on the x-axis. Element forces and stresses are given in this coordinate
system. References can be made to different material properties for membrane, bending and trans-
verse shear deformations to account for sandwich plates. Either MATI or MAT2 type materials may
be used. The material matrix (if it is type 2) may be specified in a material coordinate system
whose x-axis makes an angle 9§ with the x-axis of the element coordinate system, as shown in

Figure 1.
The theoretical development in Section 5.8.2.4 allows for a 2 x 2 transverse shear matrix

Yy J J v
= , ()

y Xy Yy y

relating transverse shear deflections to shear forces. At present J . = Jyy = 1/Gh and ny = 0;
where G {s the value specified on a MATT card (0.0 implies G is infinite). The entire matrix is

set equal to zero if a MAT2 card is used.

The solid elements use the basic coordinate system and allow anly isotropic material pro-

perties, except as noted above in connection with Equation 1.

The surface of revolution elements have s (meridonal), ¢ (azimuthal), z (normal) coordinate
systems in place of x, y and z. The confcal shell can specify separate isotropic (MAT1) pro-
perties for membrane, bending and transverse shear. The toroidal shell {zero harmonic only, no -

transverse shear) has a single 2 x 2 matrix

4,2-3 (4/1/72)
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where s and ¢ replace x and y and where the E's and v's may come from a MATI1 or a MAT3 format.

The solid of revolution elements use a cylindrical r, ¢, z coordinate system. Either MAT] .
or MAT3 formats can be used. D ?

Thermal expansion ccefficients are also specified on the Material Property cards. On a
MAT1 card the thermal expansion s assumed isotropic. On a MATZ card £

Ext A] .

Eyt = Az T v (7)
Yt M2 -
On a MAT3 card _
Ext Ax _
el Ay T . (8) :
Ezt A, B

=4

Note that the material is assumed to be symmetrical with respect to its axes on a MAT3 card. _
%
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Table 1. Existing NASTRAN material capability.

Element Element Kind of
Type Name Strain MAT type
Linear RPD, CONR@D, TUBE tension, torsion 1
BAR ftension, torsion, 1

|bending, shear

Surface TRMEM, QDMEM membrane 1, 2
| bending 1, 2
TRPLT, QOPLT, TRBSC {transverse shear | 1, (2*)
membrane 1, 2
TRIAT, QUADI bending 1, 2,
transverse shear | 1, (2 )
SHEAR, TWIST shear 1
Solid TETRA, WEDGE, HEXA1-2| 3-dimensional 1
Surface of membrane 1
Revoluytion CANEAX { bending 1
shear 1
TPRORG €gs € 1, 3
Solid of TRIARG, TRAPRG €pr €50 €5, Ypg 1, 3

Revolution

*If MAT2 s used, the shear flexibility is 0.0

4.2-5 (4/1/72)
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F ®

M x_ {matsria’ x-axis)

(a) Triangle

o
{ma::ria’ x-aris,
o
(b) Quadrilateral
Figure 1. Material axes for surface elements.
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4,3 MANUAL SINGLE-STAGE SUBSTRUCTURE ANALYSIS

Substructure partitioning, as here defined, is a procedure in which the structural model is
divided into separate parts which are then processed, in separate computer executions, to the
point where the data blocks required to join each part to the whole are generated. The subse-
quent operations of merging the data for the substructures, and of obtaining solutions for the
combined problem, are performed in one or more subsequent executions, after which detailed

information for each substructure is obtained by additional separate executions.

Substructure partitioning may be required for logistic reasons in problem preparation, for
reasons of computational efficiency, or simply because the high-speed or peripheral storage
capacity of the computer is exceeded by the data generated in the solution of the problem as a
single structure. The logistic reasons refer to the possibility that the task of preparing the
mathematical model of the structure may be assigned to separate groups which work at different
pilaces and times or at different rates and which require frequent access to the computer in
order to check their work. It may, in such situations, be cost effective to combine the results

of the separate computer runs, rather than their separate input data decks.

Sections 3.5.3 and 3.5.4 describe a matrix partitioning procedure which is available as an
jnternal part of the rigid formats and which does not, therefore, qualify as substructure parti-
tioning. It diQides the degrees of freedom into two sets: the "a" set, Uy which s retained,
and the "o" set, Uy which is omitted in subsequent processing. The manner in which this pro-
cedure may be used to generate true substructure partitioning is illustrated in Figure 1. If
the U, set is selected as shown, the structural matrices for the Uq grid points in different
regions will be uncoupled from each other. For example, the nonzero terms in [Koo] will only

occur in diagonal partitions as shown in Equation 1 below.

- ]
s 0 0 0
0 Kgg) 0 0
[K,] = 5 . (1)
0 o« 0
0 0 0 Etc. .
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The generation of the reduced stiffness matrix [Kaa] and the reduced Toad vector {Pa} by
Equations 28 and 29 of Section 3.5.3 can then proceed independently for each region (i.e., sub-

structure). Specifically,

[K,a] = KBV 4 ZIT (2)

= PPzl (3)
where the reduced stiffness matrix for each substructure

k{7« {1 el iy

. (4)
RN (0 I (RS M T L (L
and the reduced load vector for each substructure
@l < @l el Tl (s)

The terms‘[Kég)] and [ng)l in Equations 2 and 3 represent terms added by the user in a

(

later stage.

Substructural analysis by the NASTRAN substructuring technique is logically performed in

at least three phases, as follows:

Phase I: Analysis of each individual substructure by NASTRAN to produce a
description, in matrix terms, of its behavior as seen at the boundary
degrees of freedom, Uy

Phase II: Combination of appropriate matrices from Phase I and the
inclusion, if desired, of additional terms to form a "pseudo-structure"
which is then analyzed by NASTRAN.

Phase IIT: Completion of the analysis of individual substructures using

the (“a} vector produced in Phase II.

The NASTRAN substructuring technique is available for all rigid formats, except piecewise
Tinear static analysis. In the case of static rigid format 1, no additional approximations
are introduced into the calculation by the substructuring operation. In the case of dynamic

rigid formats, the Guyan reduction is employed in Phase I, which restricts the dynamic degrees
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of freedom to the {ua} set (see Section 3.5.4). Thus, it is advisable, when solving a dynamic
problem, to include some degrees of freedom at interior points in {ua}. Also, {ua} must, of course,

include all degrees of freedom that are connected to more than one substructure.

Under certain circumstances, the substructure analysis may use more than three phases. For
example, if differential stiffness is included, five phases are required as follows: (1) initial
static preload analysis of each substructure; (2) combination static preload analysis; (3) recovery
of static preload stress data, and calculation of the differential stiffness matrix for each sub-
structure; (4) combination analysis, including differential stiffness; and (5) completion of the
analysis of individual substructures. Note that rigid format 4, Static Analysis with Differential
Stiffness, is not used in the analysis sequence. A similar procedure is followed in the case of a
buckling analysis, except that it is advisable to include some degrees of freedom at intericr points
in (ua}; otherwise the influence of differential stiffness on the buckling mode shape at interior
points will be ignored. Another example where more phases are used is an analysis where the sub~-
structures are first combined into groups, and the groups are then combined into a complete "pseudo-

structure.”

As can be seen, a flexible substructuring capability is necessary to accommodate all practical
uses. This is proviaed by using the ALTER feature (see Section 1.3) to modify existing rigid formats

according to the user's requirements.

Figure 2 shows a typical flow diagram for the operation of substructuring in NASTRAN. It in-
volves the application of three separate phases of NASTRAN execution to two substructures. In the
NASTRAN Phase I execution, the stiffness matrix [Kaa] and {if needed) the static load vector {Pa}
are computed independently for each substructure. In dynamic analysis, the matrices [Maa]’ [K:a].
and [Baa] are also computed. All of these data are copied onto a user tape via the user module
QUTPUTT, which is altered into the rigid format. The computation of the dynamic Toad vector is
delayed until Phase II.

The first step in the NASTRAN Phase II execution is to merge the reduced matrices formed in
Phase I. This is done by the existing MERGE and ADD modules which are altered into the NASTRAN
rigid format selected for Phase II. The MERGE operation requires knowledge of the interconnections
between the degrees of freedom in the substructures. This information s contained in a partition- -
ing matrix, each of whose columns corresponds to a particular substructure. The rules for generating

the partitioning matrix are explained in Section 1.10 of the User's Manual. In Phase II, the degrees

4 3-3 (3/1/76)
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of freedom in {ua} constitute a set of scalar points, which 15 redesignated as the (ug} set of the
"nseudo-structure” and on which all normal NASTRAN operations may be performed. In particular,
direct matrix 1nput (OMI), single and muliti-point constraints (SPC's and MPC's), and both static
and dynamic loads may be applied. The partitioning matrix is employed by the user to identify the

degrees of freedom in {uq} .

In Phase III, eacn NASTRAN substructure execution is restarted with the partition of the
Phase II {ug} vector corresponding to the {ua} vector for each substructure. A1l normal data
reduction procedures may then be applied. In dynamic analysis, Phase III can be omitted if output

requests are restricted to the response quantities in the Uy set.

In a dynamic analysis the user may, if he wishes, employ the Guyan reduction in Phase [I. The
complete substructure analysis then involves a "double reduction” in which some degrees of freedom
are eliminated in Phase I and some are eliminated in Phase II. This is useful because, as noted
eariier, the {u } vector generated in Phase I contains all of the degrees of freedom on the
boundaries between substructures, as well as a selected set of freedom at interior points. The
density of the boundary freedoms may well be greater than necessary, and these freedoms can be
removed for the sake of economy by the second Guyan reduction. The final set of freedoms retained ﬁ%ii
for dynamic analysis will be those actively selected by the user and no more. The double reduction
technique is recommended for structures with very many static degrees of freedom, where it will be

competitive with component mode synthesis (see Section 14.1) in many cases.

Detailed instructions for the NASTRAN substructuring procedures are given in Section 1.10 of

the User's Manual.

4.3-4 (12/31774) v/
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Figure 1. Use of partitioning to decouple regions of the structure.
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Flow diagram for NASTRAN substructuring.
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4.4 FULLY STRESSED DESIGN OPTIMIZATION

NASTRAN includes a method of design optimization for linear static analysis (Rigid
Format 1) based on automation of a relatively simple strategy known as "fully stressed
design.” According to this concept, the cross-sectional properties of each structural element
are changed at each design iteration to produce a Timit stress {zero margin of safety) somewhere
within the element, on the assumption that the loads carried by the element are unaffec?ed by
changes in its cross-sectional properties. The assumption is strictly true only for statically
determinate structures. In indeterminate structures of low redundancy, the assumption is not
badly in error, so that a few repetitions of the algorithm will produce a stress distribution
throughout the structure which has very nearly a zero margin of safety in every element, i.e.,
a "fully stressed” design. In structures of high redundancy, the procedure will converge more
slowly (if at all), and modifications of the basic strategy may be required to achieve convergence.
There is, furthermore, no assurance that the fully stressed design of a highly redundant structure
will be an optimum desfgn in any meaningful sense. It is relatively easy to construct examples
in which the procedure converges to a "pessimum" design. Consider, for example, the simple case
of two paraliel rods which are rigidly connected together at their ends and which differ only
in their allowable stresses. Since in this case the stresses in the two rods are equal regard-
less of their areas, the algorithm will increase the area of the weaker rod at the expense of the

stronger, and in the 1imit only the weaker rod will remain.

From this example it i{s seen, at the least, that a fully stressed design algorithm cannot be
used uncritically. It is, nevertheless, very attractive because of its basic simplicity, and it
will produce excellent designs in many practical cases. On the other hand, due to its inherent
1imitations, it is not deemed to be worthy of a great deal of refinement. Consequently, in the
NASTRAN version, the criteria used to resize elements have been kept simple. User experiences

with the method may lead to improvements in later versions.

The physical quantities involved in the design algorithm are: properties, A; stresses, o;

and stress limits, o The properties may include thicknessas, cross-sectional areas or moments

.
of inertia. Most NASTRAN elements have several independent properties. They also have several
types of stresses and several places where stresses can be evaluated. The stress limits include
those for tension, compression and shear. For the simple case of an element with one property,

the design iteration algorithm is as follows. Let -

4.4-1 (3/1/76)

120



MISCELLANEQUS GENERAL PROVISIONS FOR STRUCTURAL ANALYSIS

a = Max

, (1)

e
%

where the search for a maximum value is extended over all user-identified stress components and
locations, and also over all designated loading cases. The new property for the element is

evaluated from the old property by the formula

o3
Anew = Aold(a + il-aiy) ’ (2)
where y is a parameter selected by the user. For y = 1 (the default value), Equation 2 becomes

Arew ™ @ Aglg - (3)

If the product oA were invariant, Equation 3 would give

A
old 1
g = o = —g . (4)
new Knew old o “old

so that the value of %new would just be equal to the limit stress in this special case.

For vy = 0, it {s seen that Anew = Ay1q» and for values intermediate between zero and one the <
property is changed by less than a factor of a. Thus y 1s a parameter which moderates the pro-
perty changes at each iteration and it may be employed by the NASTRAN user to improve the con-
vergence of the algorithm,

The algorithm is modified by several other practical considerations. For example, the
user may 1imit the range through which any property may be varied. In addition, a given property
may be applied to several elements simultaneously via standard NASTRAN property cards. In this
case the search indicated by Equation 1 will be extended to all elements which reference the
same property card and the property will be changed uniformly for all such elements. Thus, the
user can control the fineness of the property distribution by using a larger or smaller number
of property cards. Finally, the optimization procedures will be applied only to thase property

cards which are called out by the user.

The number of iterations is controlled by a user-supplied convergence parameter, ¢, and a
user-supplied upper 1imit on the number of iterations. The algorithm is continued until either
the 1imiting number of iterations is reached, or until the values of the a's for all properties

which are not at their upper or Tower limits are withine of unity.

4.4-2 (12/31/74) =4

57



FULLY STRESSED DESIGN OPTIMIZATION

For elements with more than one cross-sectional property (such as the BAR element), the
simple expedient has been chosen to change all of the properties according to a fixed rule. Thus,
in the case of the BAR, the moments of inertia are changed in direct proportion to the change in
area. This is equivalent to the assumption that each BAR has a thin-walled cross-section whose
thickness is being changed uniformly. The details of the rule are given in Table 1 for each of
the elements whose properties can be changed. In the table, the basic property is the one whose
new value is calculated by Equation 2. It is seen that all related properties are changed in
direct proportion to the basic properties except in the case of the homogeneous plate elements,

TRIAZ and QUAD2.

The procedures for elements with more than one cross-sectional property are admitted]y crude
and they cannot be used for the detailed design of individual elements. The incorporation of
more elaborate procedures has, however, been judged to be unwise for the present, due to the
inherent 1imitations of the fully stressed design algorithm. Indeed, it is not clear that any
fully automated general purpose design procedure can successfully cope with the simultaneous

requirements of overall and detailed design.

The calculations are performed in two modules, @PTPRT and PPTPR2 (Property Optimization
Processor, Phases 1 and 2). The first module creates a table of the relevant quantities for
each identified element property card, and the second module calculates the changes in the

values of the properties.

The output of the analysis includes a revised set of element property cards in addition to

all normal classes of output data.

4.4-3 (12/31774)
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Qaa:\':? K
i}, e

omiGiiAL T

0]
oF PO Table 1. Rules for changing the properties of elements.
: g, Stress { @, Scale Factor for Basic Related +w«
Element ! Value Inspected Use in Equation 2 Property | Properties
ROD " Axial g -0 I A* J
TUBE ' Torsional ammax (a; g, 5") 0.D.
i c s
! Maximum axial ten- |
: sion and axial ;
: . compression stresses : g, a -0 -G,
i BAR at user-selected a=max(7§lu 7?13 _Egg' _523) Ax* ..I,I].IZ.I]2
- points in the cross | t t e c
sections at ends A
) and B.
r D
i "oy = MAX PRINCIPAL - 1 3
! TRMEM ‘ « . ) 2 m
| QDMEM (9 = MAX PRINCIPAL & ma)(;% —L"c q) t | -
: " T, = MAX SHEAR :
. TRPLT, QDPLT Same as above aq -a T
[ TRBSC ? except at outer ,a-max(_El, _5223 Eﬂ) I t (:gr t;ansverse
'_Th-IAl— QAT . fiber ), 2, O c s ¢ I ear
| ’ : « (for both z; and zz) f
! v !
‘!._ - - —— 4 — et g s .+vv. -
| TRIAZ, QUAD2 Same as above Same as above t I 1= t32
!
'_ - me——— s - e e - - i -
i lfml 1 ‘
. SHEAR T, = MAX SHEAR o b ; t . -
s ' i

i ! : : -

* If A is zero, J will be used in its place.
** If A is zero, I1 will be used in its place.

*** The related properties are changed in direct proportion to the basic property
unless otherwise indicated.
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4.5 CYCLIC SYMMETRY

Many structures, including pressure vessels, rotating machines, and antennas for space com-
munications, are made up of virtually identical segments that are symmetrically arranged with
respect to an axis. There are two types of cyclic symmetry as shown in Figures 1 and 2: simple
rotational symmetry, in which the segments do not have planes of reflective symmetry and the
boundaries between segments may be general doubly-curved surfaces; and dihedral symmetry, in which
each segment has a plane of reflective symmetry and the boundaries between segments are planar.

In both cases, it is most important for reasons of economy to be able to calculate the thermal and
structural response by analyzing a subregion containing as few segments as possible.

Principles of reflective symmetry (which are not, in general, satisfied by cyclicly symmetric
bodies) can reduce the analysis reqion to one-fourth of the whole. Principles of cyclic symmetry,
on the other hand, can reduce the analysis region to the smallest repeated section of the structure.
Neither accuracy nor generality need be lost in the process, except that the treatment is limited
to linear relationships between degrees of freedom. Special procedures for the treatment of cyclic
symmetry have been added to NASTRAN. The use of cyclic symmetry allows the analyst to model only
one of the identical segments. There will also be a large saving of computer time for most prob-
lems. Details of the procedures for applying cyclic symmetry are described in Section 1.12 of the
User's Manual.

The term dihedral symmetry is borrowed from Herman Wey! who used it in his mathematical

treatment of symmetry, Reference 1. Note that dihedral symmetry is a special case of rotational
symmetry. In both cases, the body is composed of identical segments, each of which obeys the
same physical laws. The distortions {deflections or temperature changes)} of the segments are not
independent, but must satisfy compatibility at the boundaries between segments. Cyclic transforms
can be defined which are linear combinations of the distortions of the segments. The transformed
equations of compatibility are such that the "transformed segments" are coupled singly or in pairs
which can be solved independently. This feature results in a significant reduction of computa-

tional effort beyond the normal possibilities of substructure analysis.

4.5-1 (3/1/76)

5%



MISCELLANEQOUS GENERAL PROVISIONS FOR STRUCTURAL ANALYSIS

4.5.1 Theory for Rotational Symmetry

The total body consists of N fdentical segments, which are numbered consecutively from 1 to
N. The user supplies a NASTRAN model for one segment. All other segments and their coordinate
Systems are rotated to equally-spaced positions about the polar axis. The boundaries must be
conformable; 1.e., when the segments are put together, the grid points and the displacement
coordinate systems of adjacent segments must coincide; thus no point may be on the axis. This is
easiest to insure if a cylindrical or spherical coordinate system is used, but such is not required.
The user will also supply a paired list of grid points on the two boundaries of the segment where
connections will be made. For static analysis the user may also supply a set of Joads and/or en-

forced displacements for each of the N segments.

The two boundaries will be called sides 1 and 2. Side 2 of segment n is connected to side 1

of segment n+l1, see Figure 1. Thus, the components of displacement satisfy

u?+1 = ug n=1.,.N, )]

where the superscript refers to the segment index and the subscript refers to the side 1nd§x.
This applies to all degrees of freedom which are Joined together, Also let u§+] = u%, S0 i%%i
that Equation 1 will refer to all boundaries. Equation 1 is the equation of constraint between : —

the physical segments.
The rotational transformation is given by
kL

LI U F] [3° cos(n-1)ka + 3% sin(n-1)ka] + (-1)(N2)=1,-N/2 , ()

a=2n/N, n=1, 2,..., N,

n

where u_can be any component of a displacement, force, stress, temperature, etc., in the nth

segment. The last term exists only when N is even, The summation limit kL = (N-1)/2 if N is odd

and (N-2)/2 if N is even. The transformed quantities, d°. ﬁkc. Gks. and GN/Z will be

referred to as symmetrical components. They are given this designatfon by virtue of their

similarity to the synmetrical components used by electgkcal engineers in their analysis of poly-

phase networks, Reference 2. Note also the similarity of Equation 2 to a Fourier series decompo- -

sition, except that the number of terms is finite. On this account, Equation 2 could be called a

4.5-2 {3/1/76) A4
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finite Fourier transformation, Reference 3.

Equation 2, in matrix form, is

where

and

Each element in the first row vector can represent all of the unknowns in one segment.

lul = LujCT]

Luf = Lu1. 2, 3,0,

la] = L3°, a'c, a's, 3%, a%s,..., V2]

The expanded form of the transformation matrix is

(1] -

The last row exists only for even N.

1 1 1 1

1 cos a cos 2a cos(N-1)a
0 sin a sin 2a sin(N-1)a
1 cos 2a cos 4a cos(N-1)2a
0 sin kLa sin ZkLa sin(N-1)kLaD
1 -1 1 . -1

N
N/2

iy’ = [0] -

{.e., the rows of T are orthogonal.

N/2

4,5-3 (3/1/776)
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Since D is nonsingular,
Trny-1
(ri{vy o} = (1] . (6)
Thus, [1]7) = (11710777 and
- -1 Tn-1
La) = LJT) = Lugft’0™'] . (7}
In summation form, Equation 7 becomes
N
@=0m § ",
n=]
=K¢ N n
w = (2/N) 21 u' cos(n-1)ka ,
n=
" (8)
S = (2/N) J u"sin(n-lka
n=l
-N/2 N n-1 n
u’ = (I/N) Z] (-1 u' (N even only)
nl
It should be noted that Equatfons 8 apply to applied loads, and to internal forces, as well as to A4
displacement components. The validity of the symmetrical components [i] to represent the motions
of the system follows from the existence of [T]‘]. It remains only to show that they are useful.
The equations of motion at points interior to the segments are linear in displacements,
forces, and temperatures; they are identical for all segments; and they are not coupled between
segments. Thus, the equations of motion (for example, [K]{u}" = {P}" in static amalysis) can be
additively combined using one of the sets of coefficients in Equations 8, thereby obtaining the
equations of motion for one of the transformed variables which will have identically the same
form (e.g. [K]{G}kc = {P}kc) as the equations of motion for one of the physical segments.
The equations of motion at points on the boundaries between segments are treated by employing
the notion of a rigfd constraint connecting adjacent points. To transform the compatibility equa-
tion of constraint (1), notice that
K
P B ) [ch cos nka + i<° sin nka] + (-1)" ave | (9) =
1 1 -l 1 1
4.5-4 (3/1/76) o/
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By use of the identities cos nka = cos(n-1)ka-cos ka - sin(n-1)ka sin-ka and

sin nka = sin{n~1)ka-cos ka + cos(n-1}ka-sin ka, Equation 9 may be written

kL (u1 cos ka + u%s sin ka)cos(n-1)ka

n+l _ -0 n-1 =N/2
- (‘1) u] - (10)

=ks

+ (-u sin ka + uy” cos ka)sin(n-1)ka

If Equation 10 is compared to Equation 2, evaluated at side 2 as required by Equation 1, and the

coefficients of terms with the same dependence on n are equated, the following equations are obtained:

- 0
u-l Uz ’

ke =ks - ke
Uy cos ka + uy sin ka Uy

k= ]""'kL , (11)

—G%c sin ka + u%s cos ka = G;s

=N/2 , =N/2

4 u2

Equations 11 are the equations of constraint for the symmetrical components. The only symmetrical
components coupled by the compatibility constraints are lc and 1s, 2¢ and 2s, etc. Thus, there
are several uncoupled models: the K=0 model contains the e degrees of freedom; the K=1 model

contains the G'C and a's degrees of freedom, etc.

There is a somewhat arbitrary choice regarding where to transform the variables in the
NASTRAN analysis. NASTRAN structural analysis can start with a structure defined with single
and multipoint constraints, applied loads, thermal fields, etc., and reduce the problem to the

"analysis set,” {u,}, where
[Kaa]{"a} = {p,} . (12)

The vector {"a} contains only independent degrees of freedom. The decision was made in develop-
ing the cyclic symmetry capability to first reduce each segment individually to the "analysis”
degrees of freedom, and then to transform the remaining freedoms to symmetrical components.

This approach has several advantages, including alimination of the requirsment to transform
temperature vectors and single-point enforced displacements, because these quantities are first
converted into equivalent loads. More importantly, if the "GMIT" feature is used to remove
internal degrees of freedom, 1t need only be applied to one segment. The PMIT feature greatly

4.5-5 (3/1/76)

Vo2 4



MISCELLANEOUS GENERAL PROVISIONS FOR STRUCTURAL ANALYSIS

4

reduces the number of degrees of freedom which must be transformed. The user specifies all con-
straints iInternal to the segments with standard NASTRAN data cards. If constraints (MPC, SPC,
and/or GMIT) are applied to degraes of freedom on the boundaries, they will take precedence over
the intersegment compatibility constraints; i.e., an Intersegment compatibility constraint will
Dot be applied to any degree of freedom which s constrained in some other way. SUPPRT data
cards are forbidden because they are intended to apply to overall rigid body motions and will
not, therefore, be applied to each segment. In the case of static analysfs, the analysis equa-

tions for the segments are

(K]} = (p}" n=1,2,...,N . (13)

The analysis equations for the symmetrical components, prior to applying the intersegment

constraints, are
(K@} = (P} x=0,1¢c, 1s, 2¢,..., N/2 , (14)

where {P}* is calculated using Equations 8. The matrix [K] is the same for Equations 13 and 14,
and 1s the KAA stiffness matrix of NASTRAN for one segment,

Now consider the matter of applying the intersegment compatibility constraints. It is
recognized that not all of the degrees of freedom in any transformed model can be independent,
but it is easy tpﬁcﬁoo§e an independent set. In the independent set, (GJK, include all
points in the interior and on boundary 1 (for both ch and Gks, if they exist). The values of
displacement compénents at points on boundary 2 can then be determined from Equations 11. The
transformation to the new set of independent degrees of freedom 1s indicated by

@ - e @,
(15)
YA (T [ L

where each row of [Gck] or [Gsk] contains only a single nonzero term if it 1s an interior or side
1 degree of freedom and either one or two nonzero terms if it 1s a degree of freedom on side 2.
In arranging the order of terms in {G}K, the user can specify efther that they be sequenced with
all (1% terms preceding all (G}*s terms, or that they be sequenced with (3}%C and (§}*S grid
points alternating. It should be emphasized that the kind of vectors used in transformation of

Equations 3 and 15 are quite different. In Equation 3, there is one component (or column) for
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each segment; in Equations 15, there is one component (or row) for each dearee of freedom in a
segment.
Equations 15 are used to transform Equation 14 to the following set of equations which satisfy

the intersegment compatibility conditions:

k¥ = f (16)
where [)-(]k - [sz K GCk + GIk K GSkJ ’ (17)
and (F1€ = (6] JBIKE + (L IPYS . (18)

Because NASTRAN has efficient sparse matrix routines, the time for the calculatifons indicated
in Equations 17 and 18 will not be appreciable. After solving Equation 16 by decomposition and
substitution, the symmetrical component variab1es.{ﬁ}kc and (G}ks, are found from Equations 15.
The physical segment variables, {u}", are found from Equation 2. The {u}" are NASTRAN vectors of
the analysis set. They may be expanded to {ug} size by recovering dependent quantities. Stresses
in the physical segments are then obtained via the normal stress reduction procedures.

The user may take an alternate route if he knows the transformed values, {;kc} and (ﬁks}.
for the forcing functions (loads, enforced displacements, and temperatures). This will, for
example, be the case in a stress analysis which follows a temperature analysis of the same
structural model. These data may be input directly to NASTRAN, which will convert them to the
transformed load vectors, {5}K. Data reduction may also be performed on the transformed quanti-

‘ties to obtain the symmetrical components of stresses, etc.

A shortened approximate method for static amalysis is available merely by setting
@k=0 , (19)

for all K > KMAX, where KMAX is a parameter which may be set by the user, This is similar to trun-
cating a Fourier series. The stiffness associated with larger K's (short azimuthal wave lengths)

tends to be large, so that these components of displacement tend to be small.

The cyclic symmetry method can also be used in vibration analysis. The equation of

motion in terms of independent degrees of freedom is

4.5-7 (3/1/76)
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(kK - 1G5 =0, (20)

where [ﬁ]K is derived by replacing [M] for [K] in Equation 17, The symmetrical components are
recovered with Equation 15. No provision has been made to recover physical segment data in vibra-

tion analysis, because the physical interpretation of Equation 4 is straightforward. (Each row of

[T] is a vector of the factors of the segments for one Ks or Kc index). The available output data does,

however, include the symmetrical components of dependent displacem.ts, internal forces and stresses.

4,5.2 Theory for Dihedral Symmetry

Dihedral symmetry refers to the case when each individual segment has a plane of reflective
symmetry, see Figure 2. The segments are divided about their midplanes to obtain 2N half-segments,
The midplane of a segment fs designated as side 2. The other boundary, which must also be planar,
is called side 1. The two halves of the segment are called the right "R" and Teft "L" halves. The
user prepares model information for one R half segment. He must also supply a list of points on

side 1 and another list of points on sige 2.

For the case of dihedral symmetry, the cyclic transformation described earlier is used in
conjunction with reflective symmetry of the segments. The two transformations are commutable, A 4

so they may be done in either order. The reflective transform for a segment is

ms . un,A ,

(21)

Here, the superscript n refers to the nth segment, and R, L the right and left halves. The

superscripts S and A refer to the symmetric and antisymmetric reflective components.

In the R half segment, displacement components are referred to a right hand coordinate
system; in the L half segment, displacement components are referred to a left hand coordinate

' system. The inverse reflective transform is

WS . %.(un,R . un,L) ,

A . ;-(u"’R -l (22)

Reflective symmetry is seen to be very simple. The equations of motion at interior points
of the S and A half segment models are identical in form provided that unsymmetrical effects, -

4.5-8 (3/1/76) <
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such as Coriolis forces, are excluded.

n,S n,A

The u and u components may be transformed as follows using rotational principles.

k
L
uMX . g0 Y [G*C*X cos(n-1)ka + G%5*% sin(n-1)ka] + (-1 GV&x | (23)
k=1

where x may be efther S (symmetric) or A (antisymmetric). The inverse transformation can be

found by Equations 8 for both the symmetric and antisymmetric parts.

The constraints between the half-segments are summarized in Table 1. The constraints

shown apply between points joined together at the boundary planes. "Even components” include
displacements parallel to the radial planes between segment halves, rotations about the axes
normal to the planes, and temperatures in a thermal analysis. "Scalar points" in a structural
analysis have arbitrarily been categorized as aven components. "Odd components™ include dis-
placements normal to the radfal planes and rotations about axes parallel to the planes. In
Table 1 the constraint equations for the S and A half-segment model are obtained by substitut-
ing Equations 21 into the equations for the L and R half-segment model. The constraint equations

n+l

for the dihedral transform model are obtained by substituting for u™* and u" 10X from Equation

23 and comparing terms with the same dependence on n. It can be seen in the table that the k = 0
and k = N/2 models are completely uncoupled. There is coupling between the kc,S and ks,A models
and also between k¢,A and ks,S models. These two sets of constraint equations are related and

keuA 41 the con-

one can be found from the other by substituting K3 for GKS»S and GKSA for -G
straint equations. If these substitutions are made and it is noted that the equations of motion
are identical at interior points, then only one coupled pair of symmetric and antisymmetric half
segments need to be analyzed with different load sets for the (akesS, ﬁks’A) case and the

(Gks’s, -ﬁkc’A) case.

As in the case of general rotational symmetry, a combined set of independent degress of
freedom is formed from the half models. The independent set (ﬁ}k includes all interior points,
the points on side 2 of each half segment which are not constrained to zero, and new degrees of

kc,S’ Gks,A)

freedom, {GI}K, on sfde 1 such that for even components in the (i case:

=ke,S kr =K —_

u = c0s q- Uy =
1 4 (24

G%s’A = sin %} G# : )

4.5-9 (3/1/76)
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while for odd components:
-ke,S km =K
Uy -sin ) ,
s A (25)
=ks,A kr =K
Equations 24 and 25 are equivalent to the constraints in the third column of Table 1. The
transformation to the new set of independent freedoms may be expressed as
(@S = e a*
(286)
@S - g6, @k,
where each row of [GSK] or [GAK] contains at most a single nonzero term. The transformation
matrices for the (Gks’s. -ch’A) case are {dentical.
The final equation which is solved fn static analysis is
kK = ¢, (27)
where the stiffness matrix
=K T T
(K™ = [Ggy K G * Gag K G > (28)

and the load vector 1s obtained by successive application of the {nverse reflective symmetry
transform, Equations 22, the inverse cyclic symmetry transform, Equations 8, and the final reduc-

tion to independent freedoms.

The form of the latter is, for the (ch.s’ Gks’A) case,

(1K = [Gg, 7RIS + [6, JT(PISA (29)
and for the (iks’s. ke Ry case,

51K T,5:ks,A T,p1kc,A

{P}" = [GSK] (P} - [Gyg] (P} . (30)

The data reduction which follows the solution of Equation 27 in static analysfs includes the

application of the symmetry transformation to obtain u"'R and u"'L. followed by the expansion to

{ug} size for each half-segment and the calculation of internal loads and stresses. Similar to

4,5-10 (3/1/76)
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the case of rotational symmetry, the data reduction for vibratfon analysis 1s limited to the

recovery of eigenvectors, internal forces, and stresses for symmetrical component sets ch’s

and G¥S*A,

4.5.3 Advantages

The NASTRAN cyclic symmetry capability will result in a large saving of user effort and

computer time for most applications. The savings result from the following effects:

1. Grid point geometry and element data are prepared for only one segment in the case of

rotational symmetry or one half-segment in the case of dihedral symmetry.

2. The transformed equations are uncoupled, except within a given harmonic index, K,
which reduces the order of the equations which must be solved simultaneously to 1/N or
2/N (where N is the number of segments or symmetrical half-segments) times the order of

the original system.

3. Solutions may be restricted to a.smaller range of the harmonic index, K, (e.g., limited
to the lower harmonic orders) which results in a proportionatgrreduction in solution time.
Some accuracy is thereby lost in the case of static analysis but not in vibration

analysis.

4. 1In the case of static analysis, the @MIT feature may be used to remove all degrees of
freedom at internal grid points without any loss of accuracy. Since this reduction is
applied to a single segment prior to the symmetry transformations, it can greatly reduce

the amount of subsequent calculation.

It is instructive to compare the advantages of the NASTRAN cyclic symmetry capability with
those offered by reflective symmetry and by conventional substructuring techniques. The savings
offered by cyclic symmetry will always equal or exceed those provided by reflective symmetry
except for possible differences due to time spent in transforming variables. For example, when
an object has two planes of symmetry and two symmetrical segments (the minimum possible number
in this case), the minimum model sizes are both equal to one half-segment for the two methods.
They are also equal when the object has four symmetrical segments. The advantages of cyclic
symmetry for these cases are restricted to those offered by the @MIT feature fn static amalysis
and by a higher degree of input and output data organizatfon. Any larger number of symmetrical

segments increases the advantage of cyclic symmetry because the size of the fundamental region is

4.5-11 (3/1776)
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(

smaller,

A method of conventional substructuring which recognizes identical substructures can also
restrict the amount of grid point geometry and element data preparation to a single substructure
and can use the PMIT feature in the same way as cyclic symmetry. The advantage which cyclic
symmetry retains over conventional substructuring Ties in its decomposition of degrees of freedom
into uncoupled harmonic sets. This is an important advantage for eigenvalue extraction, but the
advantage for static analysis {s relatively small and depends in a complex manner on the number

of segments and on the method of matrix decomposition.

In addition to the analysis of structures made up of a finite number of identical sub-
structures, cyclic symmetry can also be used fqr purely ax1synnwtr1crstructures. In this case
the circumferential size of the analysis region is arbftrar11y selected to be some small angle,
for example, one degree. Grid points are then placed on the boundary surfaces but not in the
nterior of the region, and the region is filled with ordinary three-dimensional elements. The
principal advantage of this procedure is that ordinary three-dimensional elements are used in
place of specialized axisymmetric elements. In NASTRAN the number of available types and features

for ordinary three-dimensional elements far exceeds those avaflable for axisymmetric elements,

(

so that cyclic symmetry immediately enlarges the analysis possibilities for axisymmetric struc-
tures. In particular, the rotational symmetry option can accommodate axisymmetric structures

with nonorthotropic material properties, which the available axisymmetric procedures cannot,

4,5-12 (12/31/74)
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Segment 2

Segment 1

Segment N R
L =4
Conformable Interface
1. The user models one segment.
2. Each segment has its own coordinate system which rotates with the segment.
3. Segment boundaries may be curved surfaces. The local displacement
coordinate systems must conform at the joining points., The user gives
a paired 1ist of points on Side 1 and Side 2 which are to be joined.
Figure 1. Rotational symmetry —
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The user models one-half segment {an R segment}. The L half segments
are mirror images of the R half segments.

Each half segment has its own coordinate system which rotates with the
segment. The L half segments use left hand coordinate systems.

Segment boundaries must be planar. Local displacement systems axes,
associated with inter-segment boundaries, must be in the plane or
normal to the plane. The user Tists the points on Side 1 and Side 2
which are to be joined.

Figure 2. Dfhedral symmetry -
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4.6 AUTOMATED MULTI-STAGE SUBSTRUCTURE ANALYSIS

The automated multi-stage substructure analysis capability allows the user to repeatedly com-
bine and reduce structures, which in themselves may be composed of several component substructures.
The resulting composite structure, or pseudostructure, may be used for performing linear static or
dynamic analyses. Both static (Guyan) reduction and modal reduction (modal synthesis) may be used
in creating new pseudostructures. Although some of these operations could be performed with the
manual single-stage approach, described 1in Section 4.3, the task of controlling the sequence of
operations has been automated using simple Substructure Case Control commands, and the necessary
bulk data has been simplified for the user (See the User's Manual, Section 2.7). Additional capa-
bilities, not available with the manual single-stage approach, are included. These allow geometric
and symmetric transformations of entire substructures, modal synthesis of substructures, automatic
identification of connected grid points based on geometry, manual jdentification of connectivities
by grid point and component, release of selected components and multipoint constraints for special
modeling conditions, independent grid point numbering of each basic substructure, and automatic
internal renumbering of retained and boundary grid point degrees of freedom for the connected
substructure configurations. The automated substructuring system also features an expandable
substructuring data base file on which all substructuring data are automatically stored or from

which data are accessed. This file is described in Section 1.10.2 of the User's Manual.

Automated multi-stage substructuring analysis is organized into three basic steps or phases.
The organization of these steps is similar to the manual single-stage substructuring methods des-
cribed in Section 4.3. The Phase 1 operation consists of 2 standard NASTRAN formulation of a basic
substructure from the finite element model and its applied loads. Phase 2 performs most of the
specialized operations to combine and reduce substructures, apply constraints and loads, obtain
solutions, and recover data related to the basic substructures. In Phase 3, the solution vectors

are used to calculate the final output for each basic substructure.

The following discussion is fnvolved primarily with the mathematical operations performed by
the automated multi-stage substructuring capabilities in NASTRAN. The specific user options and

program operations are described in the User's and Programmer's Manuals, respectively.

4.6.1 Static Matrix Reduction

A powerful tool in the analysis of structures with the finite element displacement method is
the matrix reduction procedure. The desired effect of this operation is to reduce the total -

4.6-1 (12/29/78)
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number of degrees of freedom required to define a structure and thereby decrease the dimensions
of the associated matrices and vectors. Both a Guyan static reduction and a modal synthesis
reduction are available. The static reduction is described in this section, and the modal
reduction is described in Section 4.6.2.
In substructure analysis, the only necessary'degrees of freedom which must be retained for
static analyses are those associated with the grid points which will be connected to adjacent
substructures, those which will be constrained and/or those which will have loads applied to them
in a subsequent analysis phase. In order to adequately represent the inertia effects of each
substructure in a dynamic analysis, 1t will be necessary to also retain selected degrees of free-
dom on interior points and/or use modal reduction.
In this development, Tet substructure A be the structure to be reduced, and substructure B be
the resultant reduced structure. The displacement vector partition {uS} defines the boundary de-
grees of freedom of substructure A to be retained. The vector partition {u?) contains the "interior"
degrees of freedom of substructure A to be reduced.
The stiffness matrix for substructure A is partitioned so that
| o
A %bb } Kb
(K] = [semcbaee |, m
Kib § Kg3
L]
uA
where the full displacement vector (uA} is {-%} }.
Y
Using the equations for the Guyan reduction presented in Section 3, the transférmation
expression is defined as
uA
b I B
el SR B (2} (2)
o Gip
1
or M. @®d (3)
-1
where [Gib] = - [Kyy] {Kib] . (4) -
4,6-2 {12/29/78) _
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4.6.2 Modal Matrix Reduction

The modal synthesis capabilities of automated multi-stage substructure analysis are
facilitated through use of modal reduce operations. Using modal reduction, a substructure is
reduced from one set of coordinates to 2 new, smaller number of degrees of freedom consisting of
user-selected boundary displacement coordinates and modal coordinates. Modal reduction may be
performed on real, symmetric mass and stiffness matrices (real modal reduction), and on complex
or unsymmetric matrices, or on Systehs with daﬁping (comblex modal reduction). A "user mode"
option is provided so that the user may also define a substructure in terms of modal data

obtained external to NASTRAN by test or analysis.

The complete theoretical development of the modal transformation matrices is presented in
Section 4.7. A summary of the modal reduction transformation matrices is presented in the

sections which follow. The "user mode” option is described in Section 4.7.4,

4.6.2.1 Real Modal Reduction Transformations

As before for static reduction, asédmé substructure A is to be reduced and substructure B is

the new, reduced structure. (uﬁ} are the retained boundary degrees of freedom and {u?} are the %

interior degrees of freedom to be reduced.

The transformation from {uA} to {uB} is written as

O e T (13)
where
A
u
wh - : . (14)
uy
tiol o
(i [N (SR S S , (15)
Gibi Hio 1 95-64p0y
]
B
Ub )
and {uB} = 65 ’ (16) i
sB i
4.6-4 (12/29/78) -
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In the above egquations, {ug}, are the physical coordinates for substructure B, (ég} are six inertia
relief shape, free-body acceleration coordinates, and {68} are the flexible-mode coordinates. The
matrix [¢i] contains the flexible mode shapes for the interior degrees of freedom (including null
rows if interior coordinates were constrained for mode extraction), and [°b] are the flexible

mode shapes for those boundary coordinates not constrained for mode extraction. In addition, as

in static reduction using the matrix partitions of Equation 1,

[Gib] = - [Kii]-1[Kib] . (17)

The transformation partition for inertia relief shapes is
-1
[HiO] = - [Kiij ([MibJ + [Mii][Gib])[¢b0] y (18)

where [¢b°] are free-body displacement shapes computed using boundary point coordinate geometry.

The transformation matrix [GAB] is used as shown in Equations 7, 8, 9, and 10 tc define

substructure B. As before, [GAB] is the HPRG matrix for substructure A.

After solution vectors {GB}, (GB}, and {uB} are obtained, {uA} is computed using

b, (68308 (19)
- S (L (20)

and I S A [T (21)

The standard procedure to define substructure A interior coordinate displacements is defined as
A, A 4-1,,A -A
{ui} [K11] {Pi} + {uy} (22)

However, a mode acceleration technigue for improved accuracy may be requested by the user such

that

4.6-5 {12/29/78)
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F PCCOR
G =
Ay L oA 1) oA A
= 0K ({Pi} - [ 1l
A . A . A
- ) - D3y, Jeaft - 18, 2) - (23)
Note that the mode acceleration technique may be costly for transient analyses.
The improved total deflections are computed using
A A A
fugl = [G;pHupt + fau)} . (24)
4.6.2.2 Complex Modal Reduction Transformations
Structural models defined by unsymmetric matrices, matrices with complex terms, or damping
matrices may be reduced using complex modal reduction.
Using the same notation developed in the previous section for real modal reduction, a dis-
placement transformation matrix is written as
wh o= @y, (25)
, _ _ ,Agkﬁ
where wh . ].2h . (26)
ud
i
1! 0
B ¥
s [ [ S (27)
Gib i ¥4~ GipPy
B
B . JU%
and u = 4 (28)
X
In general, the mode shapes [¢1] and [wb] are complex. [Gib] is the statfc reduction transfor-
mation and {xB} are the complex, flexible mode, generalized coordinates for substructure B.
Inertia relief coordinates are not used for complex modal reduction.
A second transformation matrix is required for transformation of forces in the unsymmetric i
case. [t is defined as -
4.6-6 (12/29/78) I
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(881 = |zoedeseemneea | (29)
Gip i ¥y = Gyphp
where [éib] s - [K¥i]-1[Kbi]T , (30)

and [7] are the left-hand eigenvectors obtained by solving the eigenvalue problem using the

transpose of the mass, damping, and stiffness matrices of substructure A.

The matrices for substructure B are obtained using
G CAsHE (e (31)
and simitarly for the damping and stiffness matrices, and the forces are transformed using

81 = 8RR (32)

7

Matrix [GAB]T is used for [éAB]T when the matrices of substructure A are symmetric.

Matrix [GAB] is the HPRG matrix for substructure A and [éAB],iE the HLFT matrix item for

substructure A stored on the'substrdcture data base file,

4.6-7 (12/29/78)
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4,6.3 Substructure Combinations

The mathematical operations involved with combining substructures are very similar to the
methods of combining element stiffness matrices in the finite element displacement method. For
each element or substructure, the matrices are generated in a local coordinate system, they are

then transformed to a common gTObaT coord1nate system, expanded to the size of the comb1nat1on

matrix, and added together If adJacent e]ements or substructures are connected at the same
grid point, the combination is effected by simply adding the corresponding contributions from

each matrix,

In substructure analysis, the transfdrmatidnc between the d{sp1acements in each substructure
{uA}, {uB}, etc., and those in the combination, {uc}, are given by a set of matrices [HAC]. [HBC], :

etc., where:

wh = G

(33)
ST (T T

A

etc.

The contents of these matrices may be illustrated by the example in Figure 1. Two substructures,

A and B, must be combined using the degrees of freedom along the boundary which are sequenced

differently for each substructure. Note that grid points 2 and 6 of the original structures are =
to be connected only in their x-component of displacement. The final desired sequence is shown
in parentheses. For simplicity, only two degrees of freedom are given for each grid point. In

general, however, six-by-six matrix partitions would be used in place of these unit values.

If [KA] and [KB] are the stiffness matrices for substructures A and B, the stiffness matrix

for the combination C is:

[ILNUE

(K7 = ACTLAIACY + [HBCITDBCHBC] | (34)

4.6-8 (12/29/78) -
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o COMBINE o N .
ruxl ruxS
Uy Uyg
Ux2 Ux6

Wh - rand Wd - {0 r
Ux3 Y7
L'5/3 uy7
Uye Uxs

L) )

Displacement component fn Y direction at
grids 2 and 6 are not to be connected.

(7 Grid points 4 and 5 independently
(3) v represent Y displacements (uy2 and uys)
(4')(.5) and grid point 3 represents the combined
X displacement (ux2 and uxs) in final
(1) structure.
X
(6) Combined Structure
Basic Coordinate System
f =
u.
x1 DAF 123456789101
— -
LW 1{00100000000
J 2/00010000000
<2 A AC, . 4100000300090
WA . Al C . 00
Uy {u”} [H™1{u~} where [H"~] 5100000007000
Y 6/00000000100
U3 710000000000
c J 8(01000000000]
{u*} = u4} f: =
y 1100600701000
ug 2{00000000100
J 3000010?0000
u By . BC,,. C 8Cy ., 4/009200010000
Uog 600010000000
Y 7100000000010
U7 8_00000000001_1
Y7

Figure 1. Illustration of substructure combination matrices. -
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The mass and damping matrices would be combined with identical transformations. The load

vectors on the combination structure are:
0 = AT A+ BCT P8y (35)

The contributions to {Pc} from each basic substructure are not added at this time. They are stored
separately with the data for each combined substructure. At solution time, the user has the

option to specify arbitrary linear combinations of these loadings in order to define the total
Toading to be applied to the model. The solution vectors (uA} and {uB) for the contributing sub-
structures are recovered using Equation 33 once the displacements or mode shapes {uc} have been

computed.
This method of performing the substructure combinations offers the following advantages:

1. The [HAC] matrices are extremely sparse, they require a minimum of storage space and the

NASTRAN matrix multiply operations used are efficient.

2. For each substructure, the same transformation is applied to all its matrices, loads and

solution vectors.

|

(

3. If rotations and/or symmetry transformations are specified for the component substructures,
the directions of displacement may be transformed by simply substituting direction cosines

jnstead of unit values, as discussed below.

In many situations when structures are to be combined, it is necessary to translate and/or
rotate a component substructure in order to bring its boundary points into alignment with the other
substructures. The user may define the physical orientation of each component substructure by
specifying the orientation of the substructure basic coordinate system relative to the basic
coordinate system of the combined structure, herein defined as the overall basic coordinate system.
A symmetric mirror image of the substructure may also be cbtained by specifying the axis normal
to the plane of reflection desired. This allows the user to prepare only one half of a symmetric

model and automatically obtain the matrices for the other half via this symmetric transformation. -

Consider the horizontal stabilizer illustrated below as a component substructure defined in

its own basic x, y, z coordinate system:

4.6-10 (12/29/78) -
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This stabiTizer must now be rotated, translated, and attached to another substructure repre-
senting the fuselage. The user defines the location and orientation of the stabilizer coordinate
system in terms of the overall basic coordinate system.

This is illustrated in the following
sketch of the overall basic coordinate system x_, ¥y

g Y9 Ig°

Substructure
Basic Coordinate

-
————
o -

Overall Basic
Coordinate System

The locations of the substructure points in the overall basfc coordinate system are described
by the equation:

Ry} = [Ty (rh+ Ry} (36)

4.6-11 (12/29/78)
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where [Ttr] is a rotation matrix of unit vectors defined by the user such that:

h g K
i, 3 k (37)

13 33 Ky

7,1 =

and R° is the offset vector from the overall basic origin to the origin of the stabilizer coordi-

nate system.

The displacement vector {ug} for a grid point in the overall basic coordinate system is
similarly defined in terms of a vector {us} for the component substructure in its basic coordinate

system by the equation:

{ugd = [Tgpd tugd (38)

The symmetric reflection of a substructure is treated similarly. Note that the mirror image
model has identical stiffness and mass matrices, however, the components of displacement and

rotation are now defined in a left-handed coordinate system. Therefore, a corresponding transfor- —

mation is required to provide for compatability among combined substructures. The following

sketches illustrate the problem of a structure reflected in the overall basic z-y plane:

New Substructure
Reflected in the y-z Plane

4.6-12 (12/29/78) N
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Both the displacement and rotation components, prior to transformation, are now in a left-
handed system. Therefore, fn order to connect the reflected structure to the original model with

its right-handed coordinate system, the following transformation must be applied to every grid

point:
Fur“
X -~
- ((u
uy .
{ :
p4 u
= = z
g =4 e pt Dl { A (39)
X X
e; o
8
r z
8 “
L2
where, for the example shown:
-1 0
1
[Teymd = L (40)
-1
0 -1

Similar transformations exist for reflections in the x-z and x=-y planes.

Assuming the primary substructure and its reflected model are to be combined along the plane

of symmetry, the resulting combined model would show:

Reflected Model
{Trans formed)

Original Mode!

4.6-13 (12/29/78)
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A1l subsequent combinations using this new substructure would proceed as for any other substructure.
On data recovery, however, the user must be careful. The detailed results obtained for the basic
reflected model (Phase 3) will be output in the reflected coordinate system and, therefore, must be
interpreted with the left-hand rule. These rasults, of course, include not only displacements and

rotations at grid points, but they also include stresses and element forces and moments.

If a subsequent symmetry transformation is imposed on a model already comprising components
which themselves resulted from symmetry transformations, a left-handed coordinate system of the
earliest component substructure would again be transformed, but now to a right-handed system. For

example, a model with four identical components could be constructed as follows:

y Y y
X X
p4 4
v I
X
II1! II

where the original basic substructure (1) was reflected in the x-z plane to create substructure (11).
Substructures (I} and {1I) were combined and subsequently reflected in the y-z plane to create
substructures (III) and (IV) to complete the four part model. The final model would comprise four
basic substructures, of which substructures Il and IV would produce Phase 3 results in the left-

handed coordinate systems as shown.

The transformations and symmetric reflections of the structural matrices are easily included
in the process of combining several substructures. The combined transformation equations necessary
to define displacements and rotations of each grid point (us}. in basic, right-handed, coordinates

are:

g = [Hg] lug) (41) =

4.6-14 (12/29/78) -
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9 ( sym i {42)

and (us} are the displacements in the respective component substructure coordinate systems.

The {Hg] matrix for each grid point is assembled into the overall substructure transformation
matrix [HAC] defined previously. The stiffness matrix, mass matrix, and Toad vectors can now be
transformed to correspond to displacements and rotations in the overall basic coordinate system of
the combination structure. The [HAC] matrix 1S the HPRG matrix item for substructure A stored on

the substructure data base file.

several restrictions and rules must be imposed on these transformations in order to prevent
complications and errors. The transformations given above will be applied only to grid points
having their displacements defined in the original substructure basic coordinate system. Displace-
ments defined in a local system of the component substructure will not be transformed, i.e., their
directions will be fixed on the substructure and will travel with the substructure during its
rotation and/or translation. Provisions are made to allow the user to define new Tocal systems,

or to change Tocal systems to basic during Phase 2 processing.

Tf constraints have been applied during Phase I or if selected degrees of freedom at a grid
point have been reduced out of the matrices, additional problems may occur. These grid points
might not have all of the original three displacements and three rotational! degrees of freedom.
The transformation matrix (Hg) at these grid points could then reintroduce previously eliminated
degrees of freedom which could cause singularities. Consider the example shown in the following

sketch where two co-linear rods are connected.

Combined Substructure
Basic System ROD

Y2 Xy
ROD x1 \\\\\\/////’;ubstructure 2
y Basic System

Substructure 1
Basic System

X

4.6-15 (12/29/78)
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Assume the component uyz on the right structure was constrained out to remove a singularity,
After rotation there would again be two components, uxand|Jy,and the grid point will again be
singular. The user has two options to avoid this problem. Multipoint constraints may be imposed
during the solve step in Phase 2 if the components are left unconnected until the solution model
has been completed. Alternately, the user may define compatible local coordinate systems at both
grid points and the desired connections can be made since local grid point coordinate systems are

not transformed when the structure 1s rotated.

4.6.4 Solution and Recovery

After all pf the necessary substructures have been assembled and reduced with the operations
described above, the assembled pseudostructure may be analyzed with many of the standard NASTRAN
options. Static, dynamic, and normal modes analysis are processed automatically requiring only a
few special data cards to define the constraints and load combinations with reference to the
original basic substructure names. The mathematical steps fnvolved with the solution are

described in Section 3.

The results of the NASTRAN solution are in the form of vectors related to the pseudostructure

degrees of freedom. They are: .

1. Displacement vectors, {ug}. with one vector per solution Joad case in static analysis,
time point in transient analysis, and frequency in frequency response analysis. In
normal modes analysis, one displacement vector is produced for each eigenvector obtained

during solution.

2. Forces of constraint, {q}, with one vector per solution load case, time, frequency, or
eigenvector. These vectors are computed differently than NASTRAN single-point forces of

constraint as described later in this section.
3. For static or dynamic analysis, a set of load vectors, {Pg}, are produced.

4. In normal modes analysis, an eigenvalue, xi, the natural frequency, fi’ a modal mass, Mi'

and a modal stiffness, Ki’ are produced for each mode shape.

The recovery of displacement vectors for the original basic substructures are obtained by
tracing backwards the same path that created the structural matrices and Toads. For instance, if
substructure A were reduced to produce substructure B with the transformation matrix [GAB] as

defined in Section 4.6.1, the displacements of structure A are obtained by

4.6-16 (12/29/78) \—
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A (Al [T o (43)

Note that {u?}, as defined by Equation 12, is not produced for normal modes analysis.

Continuing the example, assume that substructure F was created by combining substructures A

and B. The displacements of these substructures may be aobtained by application of Equation 33:

LS e T (a4)
wdy - H8Fhy (45)

where [HAF] and [HBF] were created originally in order to combine these two substructures.

The forces of constraint, {q}, play a different role in substructure analysis than in ron-
substructuring NASTRAN formulations. The total set of forces on an individual substructure are
computed in Phase 2 execution as shown below and are identified by rigid format application. In
these asquations, (g} are the forces of constraint, [P} are the applied loads, fy} is the displace-
ment vector, (K] is the stiffness, [B] is the damping, {M] is the mass, mz are eigenvalues from a

real modes analysis, and p are complex eigenvalues from a complex modal reduction.

Rigid Format Equation

1 and 2 {q} = [KJ{u} - {P}
3 (real) (q} = [x){u} - ([P

3 (complex) | {q} = (KI{u} + [BIEpJlu} + [N][‘DZJ{U}

8 and 9 {q} = (xJ{u} + [BI(u} + [MICU} - Ip!

The force vectors {q} contain all the terms due to:

1. Applied forces

Inertia and damping forces
Single-point constraints
Multipoint constraints

Forces transferred from other connected substructures

= W™ T N ™ R )

Residual forces due to computer roung-off

4.6-17 (12/29/78)
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The additional solution quantities such as element forces and stresses are calculated in A4

Phase 3 using the equations in NASTRAN for each rigid format application.

4.6-18 (12/29/78)

L

[ IR YL UL

el

T T

i

! H] Hr ’

E



MTSCELLANEQUS GEWERAL PROVISIONS FOR STRUCTURAL ANALYSIS
4.7 COMPONENT MODE SYNTHESIS

Component mode synthesis shares with substructure analysis the concept of dividing a struc-
ture into separate components, reducing the order of the component matrices, and combining the
resultant matrices through the displacement equalities at the common boundary points. Modal
synthesis has the primary advantage that the dynamic response of a substructure may be represented
by a small number of modal displacements which may be more accurate than an arbitrary set of
reduced grid displacements. A secondary advantage is that modal synthesis may be used as a design
tool in that the participation of critical component modes in the gverall system response are

easily obtained.

In the following development, both real normal modes and complex eigenvectors will be used to
formulate the reduced system. The undamped mode shapes, or real normal modes, are used to repre-
sent the unconnected parts of a component structure. In the complex eigenvalue problem, the
general case of unsymmetric matrices with damping and complex matrix terms is considered. The
primary theoretical development concentrates on the real modes problem with the complex eigenvec-

tor formylation treated as a more general extension.

The NASTRAN system provides a large variety of structural and nonstructural applications.
Similariy, the modal synthesis method is a general capability. Because of potentially large-size

structural models, it is also designed to be efficient and versatile.
The modal synthesis capability has the following basic characteristics:

1. The system is compatible with the automated multi-stage substructure (AMSS) system,
No internal restrictions on the type of modes (free-free, fixed, etc.) are imposed.
Connection between modal synthesis substructures and normal substructures is allowed.

User-specified modal data is allowed.

IS, I — T S B A

Complex eigenvalue modal synthesis capability is available.

The equations for the modal synthesis formulation and data recovery are developed in this
section. The associated substructure operations such as combining substructure components and

providing overall solutions are described in Section 4.6.2.

The following development is divided into four parts. The transformations for the case of
real normal modes is developed in detail. Then, a brief development extends this method to the -

case of complex eigenvalues for damped systems. Next, the data recovery equations are provided,

4.7-1 (12/29/78)
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including the energy factor calculations for the component modes, which help the user measure solu-
tion accuracy.

The final section describes the methodology for processing user-supnlied modal data
This modal data may be derived from Structure testing or from analyses by other methods.

4.7-2 {12/29/78)
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4.7.1 Real Modal Reduction

This section presents the development of the equations for the real, normal mode, modal
reduction of a substructure. This modal reduction is applicable to undamped or 1ightly damped
structures represented by symmetric mass and stiffness matrices. The Substructure Control Deck

command MREDUCE controls execution of the real mode modal reduction.
4.7.1.1 Real Mode Transformation

Each component substructure is defined by a stiffness matrix, [K], a mass matrix, [M], and

optional damping matrices, [B] and [K4]. For the undamped case, the equations of motion are
{M1{GY + [KJ{u} = (P}, ()

where {u} are the displacement coordinates and {P} are the loads due to external forces or

boundary reaction loads from other substructures.

For the idealized case when all mode shape vectors, {aj}, of the unconstrained substructure

have been extracted, the equations of motion are uncoupled, one equation for each mode, such that

- 2, .
byley +uigyd = Py 2)
where By = {pj}T[M]{¢j} s (3)
2 . T
B UFBIERY (ST (4)
and . P, = [4.}{P}. (5)
3 3
?N ) { (s34} (6)
Also, u; = ¢..5. or {ul = La3i{&r .
i = i3]

In this development, j denotes the mode, i denotes a displacement coordinate, and N is the total
number of modes. The matrix [¢] represents the collection of all mode shape vectors, and [¢j]

represents the set of mode shape vectors to be retained in the analysis.

4.7-3 (1/30/81)
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o
Using the Laplace operator s where 3/3t = s, Equations 2, 5, and 6 are combined to obtain
the matrix equation for coordinate displacements so that
. : ]
u} = [¢] ———— | [e] (P} . (7
p (s +wl)
NREN
Equation 7 is exact when all modes of the system are used. MNormally, however, only a truncated
set, El”" Em’ is used to reduce the number of variables.
4.7.1.2 Effects of Truncated Modes
The response of the higher modes, (¢k}. where “’i >> s2 is primarily static, and Equation 7
becomes
twr = o1 [ 2,(s). | Lo 1"tP} + [0,1 [“2, .| [0, 17cP} (8)
Jj s J K ke~ k ’
where ZJ.(s) = —-21—2— for j<m, - (9)
uj(s *WJ)
. 1 1
and I, = —5 = — for k>nm, (10)
e K
and the number of retained modes is m.
The form of the last term of Equation 8 is that of a flexibility matrix, [AZ], times a load,
which produces a corrective displacement vector. This residual flexibility is obtafned from the
basic equations of motion, Equation 1, as shown next.
Equation 8 may be written in terms of free-body modes [@o], retained flexibility modes [¢j],
and residual flexibility in the form
] -1
-~ T N T
W = [‘s’f 961 [, ] T8, +Ioy1 [2(5).] [o,] +tm] O ()
where the subscript, o, denotes a free-body mode.
For constant applied loads, only free-body acceleration exists, and =
. 2 T
@ = 5P Dol ] Tog"em (s+0) . (12) :
. =

4.7-4 (1/30/81)
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Substituting Equations 11 and 12 into Equation 1 with s = 0, and noting that [K](@o} = (, we
obtain

[KILaZ](P} = (P} - (MI0s,10uy 17 L8, 1 (P}

- [K0e JLZ(O) 1L 1P (13)

Multiplying Equatfon 11 by [K] and substituting Equation 13 into that result gives an approximation,

below, which includes the static effect of all modes and the dynamic effect of selected modes

[Kltar = [KIe,102(s) - 2(0) 10 1eP
- [MI0o, 10u, 17 Ls, 1T EPY + (23 (14)

The above approximation would provide excellent results for an uncoupled structure. However,
at the boundary points, the loads P gain contributions from the connected structures due to
the displacements at the boundary. For this reason, the boundary degrees of freedom must be
separated from the interior degrees of freedom in order to proceed. But first, Equation 14 will

be simplified by introducing modal coordinates, {8}, as defined below. Let

(KICur = [KI[ey1{s} - [MI[e It8,} + (P} (15)
where (51 = [2s)-2(0)10e;17 0P}, (16)
and i) = [ud ' TagTePy . (17)

Note that {§} represents the difference between the modal displacement and the static response.

Substftuting Equation 9 into Equation 16, each modal coordinate fs obtained as

s20e,17¢P}
#ngﬂ +3 /wj)

5j {18)

The quantity Gj has units of displacement and decreases as the fourth power of mj. The response
magnitude of the high frequency modes therefore converges rapidly. Also note that 60 has units —

of acceleration and represents free-body motion.

4.7-5 (1/30/81)
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4,7.1.3 Interior/Boundary Transformations ?
For connection to other structures, Equation 15 must be separated into boundary points, Up»
and interior points, Uy For example, the matrices are partitioned such that: '
K., | K
VK,
(] - |22 (19).
Kib 1 %4y
Yb
and u - -=2-t , etc. (20)
Yy
Although the full matrix [K] may be singular, the partition [Kii] rmust be non-singular. The
interior displacements may be defined by the lower half of Equation 15 which becomes
[Kib]{ub} + [Kﬁ](ui} = [Kib% + Kh.c»‘.]{a}
- [Mib¢bo + Mﬁd’io]{éo}' + {P‘.} . (21)
Solution of Equation 21 for the interior displacements, {u.}, yields the result ==
("i} = [Gib]{"b} + [¢i - Gibmb](é}
-1 -1
- [K'H] [Mibd’bo + M‘i‘i‘b'lc]{do} + [Kﬁ] {Pi} , (22)
-1
where [Gib] - (KH] [be] . (23)
Also, note that {¢i°} = [Gib]{¢bo} for the rigid body modes and the matrix [Gib] is identical
to the transformation matrix used for the Guyan reduction technique. Without modal coordinates,
the formulation degenerates to a static matrix condensation.
A higher order approximation, {ﬁi}’ to the interior point displacements is obtained as
follows. An expression for {ﬁi} is obtained by differentiating Equation 22. Equation 1 is
rewritten in partitioned formrand {61}is used instead of {ui} so that
M : M i = K, u P —
optil )l (Segfri el | el (24) -
| -~
Min t Miq | | Y5 Kib 1 K54 | Y5 P
4,7-6 (12/29/78) =
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The second derivative of Equation 22 is substituted into the Tower expression of Equation 24, and

the expression is solved for {Gi}, yielding
-1 .
@) = 06 upd - IRy 17 (Mg, + Myi6yp 100}
-1 .
OB [N I5)
-1 -1 . N
+ 1Ky 1T DM TR 17T DMy + Mys6yy 100118,
f KR - MK TR (25)
ii i fitii i
Equation 25 is substituted into the upper expression of Equation 24 to obtain the dynamic
equations of motion for the boundary coordinates. In a similar fashion, the equations of mction
far the modal coordinates may also be developed resulting in a complete definition of the reduced

system, However, the equations of motion resulting from the operations described above are

fdentical to those obtained by application of the Galerkin principle as shown below.

The coordinate transformation matrix, [th], is defined using Squation 22 such that

Yy l.]‘.’
! 5
tlol o
where L B IVt , (27)
Sib i Hio | 01 Gip® )
(6] = - IRy KT (28)
and [io] = = Ky 17 (DMy] + [My4 1065, D0y - (29)

When the number of modes is zero and the inertia relief effects are ignored, the transforma-
tion matrix given in Equation 27 is the same as Guyan reduction or matrix condensation transforma-
tion. When modes exist, they provide dynamic motion re_1at1ve to static deformations. Free-body
motion and redundant constraint information are contained in the [Gib] transformation. Inertia -
relief deformation shapes are contained in the [Hio] matrix. The generalized coordinates, {"h}’
define the reduced coordinate set for modal-reduced NASTRAN structures.

4.7-7 (12/29/78)
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A= 4
After applying the transformations defined by Equation 22, the reduced mass and damping
matrices, [Mhh] and [th], are typically coupled between the boundary and modal coordinates, where
T
[Mhh] = [th] [M][th] » (30)
T
and [th] [th] [B][th] . (31)
However, the stiffness matrix takes the form
-
K, ! 0
b
Kyl = | -22kee| (32)
0 1K
i PP
where [Ebb] is the stiffness partition obtained from a Guyan reduction and the subscript p refers
to the modal coordinates. Note that the boundary and modal coordinates are statically uncoupled.
The externally applied loads are also transformed, resulting in system loads defined as
.3 = [H 174} (33)
h gh ' o
-wr

Examination of Equation 27 and the preceding development indicate the following major features

of the method:

1. The interior degrees of freedom of the substructure may be replaced by a much
smaller set of modal degrees of freedom. Equation 18 indicates that the effects
of the high frequency truncated modes decrease with the fourth power of their

natural frequencies.

2. Since the modal coordinates are uncoupled from the boundary grid points, as shown

in Equation 32, no approximation is used for static solutions.

3. The type of f%xed'boundaiy conditions oﬁ the normal modes is completely arbitrary.
Either interior modal deflections {¢i} or boundary deflections {°b} may contain

zero components.

4. The method gives results equivalent to those of other methods when the corresponding
restrictions are applied. Elimination of the inertia relief effects simulates the -

results of Hurty (Reference 1). 1In addition, fixing all boundary points results in

4,7-8 (12/29/78)
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exactly the same matrices as those employed by Craig/Bampton (Reference 2). The use

of free-free modes with inertia relief effects duplicates Rubin's results (Reference 3).

In summary, this method provides all of the conveniences of the automated multi-stage sub-
structuring (AMSS) system with the additional power and accuracy derived from advanced state-of-
the art modal synthesis techniques. Additional features are described in the following sections,
which develop the methods used in the complex eigenvalue option, the recovery of data from the

Final solutions, and the processing of user-suppliied normal mode data.

4.7-9 (12/29/78)
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4.7.2 Complex Modal Reduction

An extension of the real mode modal reduction is provided here for the general case of
structures described by unsymmetric or complex matrix terms of damping matrices that prohibit

a normal mode approximation of structural motion.

The basic approach used in real component-mode synthesis will be applied to the complex
elgenvector synthesis. The eigenvectors and eigenvalues are obtained by NASTRAN from the general
damped system resulting in a sat of complex eigenvalues, p, and eigenvectors, {y}, defined by the

equation

[[M]p2 + [B]p + [K]]w} = (o). (34)

As defined in Section 10.4, the orthogonality condition between the eigenvectors is

@3T[ oy o0+ 181 ] ) = 0, with 45 . (35)

where {§;} 1s the so-called left eigenvector, obtained by transposing the matrices in Equation 34.
i

The Teft eigenvector may be considered the characteristic vector of forces for the root, whereby i%i'
the right eigenvector is the characteristic vector of displacements.
As is done with real mode reduction, boundary (ub), interior ("i)’ and modal coordinates (x)
are defined, and a displacement coordinate transformation is defined as
{u} = [ng](uz} s (36)
Uy .
where {u} = §24, (37)
u
i
]
0] T (38)
H L R T . 3
g9z Yy o ’
Sib i ¥i = Sip¥o
Yy
and - {u,} = {.2 (39)
z
X
Note that, for complex mode reduction, the inertia relief coordinates, {60}, are not used.
4.7-10 (12/29/78) o
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In addition, a second transformation, required for forces in the unsymmetric case, is

defined as
!
(A_1 e {40)
A SR [P S 40
9z B 1D, -G |
Sib { U1 T
= T -1 T
where [Gib} = . [Kiil [Kbi] . (41)

The resulting system matrices are transformed to reflect the reduced set of displacements with

the equations

= H T
M1 = g1 NI, ) etc. (42)
and the forces, F, are transformed by the equation
7y = [ 1R (43)
z gz- )

The resulting solution equation is
IM 30,3 + [8,,000,) + [k, IMu,} = (F0 . (44)

With this formulation, the reduced structure may be connected to other substructures at the

boundary paints with the CPMBINE operation.

4.7-11 (12/29/78)
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4.7.3 Solution Data Recovery =

After the matrices and Toads are determined for the reduced substructure, they may be used
in further substructuring operations. The final combination structure may be analyzed for static,
eigenvalue, transient, or frequence response. The resulting solution vectors are obtained in terms
of the boundary and modal coordinates. This section describes the procedures necessary to recover

the detailed data on the interior displacements and the modal energies by component substructure.
4.7.3.1 Solution Recovery for Reduced Structures

After solution vectors, (Uh}, (&h}, and {u,}, are obtained for a modal reduced substructure,
displacements in the original coordinates are recovered in three steps using the equations

previously developed, namely
b
= " [th]{uh} , (45)
i

and similarly for the velacities and accelerations,

U . A4
{;‘2} = [HgJhy) (46)
u

i

Uy .
and bra = [th]{uh} . (47)

)
uj

If exterior loads are applied, a correction to interior coordinate displacements is added,
resulting in the total displacements, Uis defined in Equation 22 which are:

Wb o= Ky 2ee ¢ @ - (48)

However, Rubin [Reference 3] has shown that a mode acceleration technique will result in improved
accuracy. If this technique is selected, then Equation 25 may be used fn the following form for

the alternative, "improved," displacements

Bugd = [k, 37TPy + apy) (49)

4.7-12 (12/29/78)
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APb .
where 55- = - [M]{U} - [B]{(J]’ . (495)
i
The total deflections are

4,7.3.2 Modal Energy

Because interior degrees of freedom of the structure are replaced by a smaller set of modal
coordinates, use of modal synthesis techniques can be expected to result in some degradation of
modal accuracy. The magnitude of the error will be dependent on the characteristics of the
component substructure loads which are dependent on both the applied loads and the dynamic forces
due to other connected substructures. Therefore, the errors are not easily predicted, but they

may be measured only for a particular solution of the entire structure.

A measure of solution accuracy may be obtained by computing modal energy factors for the
modal coordinates' responses to a solution. The magnitude of the energy factors for modes
retained as part of the substructure description {the included modes) determines their participa-
tion and indicates whether they may be removed for subsequent analyses. Also, the energy factors
for those calculated modes, which were excluded due to limitations of frequency range or number
of modes used, may be estimated to determine if they should have been included to improve the

accuracy.

The energy factors described here are obtained via the ENERGY subcommand under the RECAVER
command. Energy factors from a normal modes or frequency response solution may be computed for

any modal reduced substructure.

The total energy factors are determined by the Rayleigh coefficients which are the ratio of
energy contained in the mode versus total energy in the system. However, the actual mode shapes
used in the formulation are modified such that motions due to boundary point displacements are
removed.' Separation of the displacement vector into that component due to the modes, {4}, and the

remainder, {ur}, results in

{u} = {u}+ {w}s , (51)

—
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v
0
where W} = {eccemaaas . (52)
{"i'eib%l
The total potential energy is
v o= LT
=3 u} [kI{u} . (53)
Therefore, the potential energy contribution of each modal coordinate, aj, for each solution
vector, {u}, is
a Lo (54)
8V, 5 {u} [K]{w}aj .
Similarly, the kinetic energy contribution is
sT, = +(aTMltids, , (55)
j H j
The definition of the velocity vector depends on the type of solution. For instance, in
normal mode analysis, éj = wdj.
The energy factors of the excluded modes are estimated from the excitatfon provided by the w
resultant solution vector. The equations used are presentéd be1o§i
The response of modal coordinate S as expressed in terms of static (s) and dynamic (d)
effects is
d S
Bk = Gk + dk . (56)
From Equation 18,
- s%6,175)
d k j
& * 3 Ta - (87)
#kwk(l +5 /Uk)
s (T
and 'dk = —ZJ— , (58)
g
where {5j) is the total load on the substructure at the jth frequency due to boundary and applied -
Toads. This total Toad is calculated from tha equation
4.7-14 (12/29/78) A4
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- - 2
Pyl [MsJ. + By + KI{ugt . (59)

For transient analysis, evaluation of Equation 57 would require costly, explicit integration of
each coordinate versus time. Therefore, this output is restricted to eigenvalue and frequency

response problems where s = fw {or s = p for complex eigenvalues).

The expressions for kinetic and potential energy for the excluded modes would narmally be

written as
1 2 2
cSTk = TS (ak) s {60)

1 2,042
and Vi = 7 He(8)7 (61)

Substituting Equation 56 into Equations 60 and 61 and noting that the static contribution of all
modes , (52)2. has been included in the solution because of the NASTRAN modal synthesis formulation,

the expressions for kinetic and potential energy of the excluded modes become

- ] 20555 dy.d
8T, 5 Bys (25k + esk)esk . (62)

) - — « ] 2/4:S dy d
and &V, x iy (28, + 8.8, (63)
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4.7.4 User Input Modes

A method for using structural test data to represent a component substructure in NASTRAN
modal synthesis is described in this section. The data which are required for the method and
additional data that may be available and used are listed below, followed by the matrix operations

used in development of the modal synthesis matrix terms for input to NASTRAN.
The following data items are used by the user mode option to modal synthesis:
1. Natural frequency, Wy and modal mass, By for each mode (required).

2. Modal deflections of the boundary points, {¢ij}‘ which were free in the modal test

(required).

3. Modal reaction forces, (qu}, acting on boundary points which were fixed for the modal
test (required). Note that all displacement coordinates must be classified as boundary

coordinates and either deflections or forces are required for every boundary point.

4. The reduced stiffness matrix for the boundary points {optional). These data may be

available from analysis or from an influence coefficient test.

5. Additional mass, not included in the modal data, on fixed boundary points (optional).

4.7.4.1 Fixed Boundary Points

Equation 27 from Section 4.7.1.3 provides the basis for this formulation. The inertia

relief modes are not included and {ub} represents the boundary coordinates fixed in the modal

uy I 1o up
ot I T I I ¥ i . 64)
{”1‘} Gy | 9 {5 (

Using Equation 64, the stiffness and mass matrices of the free (unconstrained) substructure would

test. Thus,

take the form

(Kl = |5 7 | (65)

where [“K.] is diagonal and Kj = ujw§ for the jth mode, Ebb is the reduced boundary stiffness

matrix, and

4.7-16 (12/29/78)
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T VT
M.+ Gl MG, ! Gl M. .0,
M] = -99----19-11-19-}-1?-11-1 , (66)
R T
where (6] = - [Ky17'IKgpT (67)
or K1 = - 06,1 (K] (68)
bi ib iid

and [Mbb] is the fixed-boundary mass matrix.

The problem arises that [Kii]’ [Kib]’ and [¢i] are not available from the modal test and
another expression, required for [Gi]’ must be developed as follaws. From the definition of normal

modes,

RS YR EE (O 09 VRS [ (69)
Premultiply both sides of Equation 69 by (Gib]’ so that
T T 1, 2
[G'lb] [Mii1[¢ij] = [Gib] [K11][¢1j][ ]/U:r] . (70)

The left side of Equation 70 provides the off-diagonal partitions of Equation 66. However, the

known generalized forces on the fixed points are defined by the equation
[qu] = [Kb1][¢1jl , (71)
or, substituting Equation 68 into 71,
T
[qu] = - [G‘ib] [Kii][¢1j] . (72)
Equation 72 is substituted into Equation 70 to obtain
(6, 174, J0,,] = [a.1017l] (73)
ib ii ij j ite
For simplification, a matrix, [Gs]T. is defined such that
- R 2 T
[Gs] - [ ]/ijj~][qb1-] . (74)
Substituting Equation 74 into Equation 73 and solving for [Gib] yields

4.7-17 {12/29/78)
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T . T T
[Gib] = [GS] [¢1j] . (75)
It can be shown using Equations 74 and 75 that
(6,17 IM,,106;,] = ([6.17CwIL6,] (76)
ibd tM1dL85p s LHILGGL
and (6,174 100,.1 = [6.17Cw] (77)
ipd Lh4dL845 54 LB -
Substituting Equations 76 and 77 into Equation 66, an expression for the substructure mass matrix
is obtained so that the matrix terms are computed from available test data. The result is
)
Myp * GI#GS i GI# 3
[M] = |e=caee32-22 1:7-- . (78)
KGg R
Thus, Equations 65 and 78 define the stiffness and mass matrix for the structure defined by fixed
boundary user modes.
4.7.4.2 Free Boundary Points L=
The equation of free vibration for the structure, represented by modal and fixed boundary
coordinates, developed above, is written as
T T - v 1
M _ +G.uG ! G uflu K..1 0 u
-§§----§--§.E.\.§- Sty -§§.§.:-‘.5_ SU g, . (79)
G i TR B 0 imwtif |6
where the subscript s references boundary points fixed when defining the normal modes.
Coordinates {uc} are defined as boundary coordinates which were free when defining the
normal modes. Using Equation 64 and the appropriate subscripts
fud = [6,1{us} + [o 208} . (80)
The transpose of Equation 74 defines [Gcs] and is substituted into Equation 80 to obtain
tugd = Lo J6JMug} + [o 061 . (81) -
4.7-18 (12/29/78) ~7
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Equation 81 is partitioned so that OF PCOR QUALETY

(uC} = {(bC][GS]{uS} + [¢C]]{61} + [¢C2]{62} >

where [¢c1] is square and positive definite.

Equation 82 is solved for (61} to obtain

) = Do) ugd = Loy 17 o J06 Jug} - Doy 17 [0 cp108,)

Equation 79 is partitioned so that the displacement vector is

’s u
61 = .2 = fuk},
’ - [}
52
and the transformation equation is written as
1 )
) [ PO B N |
§,0 = |-o-lo G 1ol i-ole iy
1 ellelsilely Tel7e2 () Tef
- Semesesmanmson- -
62 0 E 0 5 I 62
or {u} = [th]{uh} .

Equation 79 is transformed using Equation 86 so that
T
[ IR O L ) G

[ppd = [ ITIKIDHG,T

The displacement coordinates, u_, u

s’ ¢
coordinates which completely define the user input structure.

4.7-19 (12/29/78)
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5. STRUCTURAL ELEMENTS FOR THE DISPLACEMENT METHOD

5.1 [INTRODUCTION

Much of the individuaiity of a structures program is exhibited in the structural elements
which it employs. Here, more than elsewhere, the designers of the program express their conceo-
tion of intended applications; whether, for example, the program will be used mainly for afr-
frames, for steel frameworks, for massive concrete structures, or for pipe networks. The intended
range of NASTRAN includes all of these types of construétion and many more, so that the number of
different structural elements is Targer and their properties are less specialized than in most

other structural programs.

In NASTRAN a structural element defines the properties of a physical object that is con-
nected to a (Eelatively small) number of grid points. In static analysis, stiffness praperties
are input exclusively by means of structural elements, and mass properties (used in the generation
of loads) are input either as properties of structural elements or as properties of grid points.
In dynamic analysis, mass, damping, and stiffness properties may be input either as properties
of structural elements or as properties of grid points (direct input matrices). There are four

general classes of structural elements.

3

1. Metric elements which are connected between geometric grid points. Examples include rod,

plate, and shell elements.

2. Scalar elements which are connected between pairsﬂof scalar points (i.e. between any two

degrees of freedom) or between one scalar point and ground.

3. General elements whose properties are defined in terms of deflection influence coeffi-

cients and which can be connected between any number of grid points.
4. Constraints

The first class (metric elements) incorporates specific assumptions about the mechanical be-
havior of structural components. It is the most commonly used class of structural elements. The
latter three classes are introduced to expand the generality of the program; they can, for

example, be used to synthesize structural components not included in the 1ist of metric elements.

The description of a structural element contains several different kinds of information that

are used by the program in different ways. The description of a metric element includes

1. Connection and orientation information (e.g. identification of the grid points to which

5.1-1 (12/31/77)
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it is connected).

Geometric properties, such as thickness or cross-sectional area.

Material properties, such as density, elastic moduli, and thermal expansion coefficients.
Enforced deformations.

Data recovery information, such as the lTocation of points where stresses will be com-
puted.

Four different kinds of data cards are regqularly used to describe structural elements in

NASTRAN.

1.

4,

They are:

Material Property Definition Cards that define the material properties for each of the
materials used in the structure. The material properties include density, elastic mo-
duli, thermal expansion coefficients, allowable stresses used in calculating margins of
safety, and structural damping coefficients. Separate card forms are available for fso-
tropic and anisotropic materials. Elastic moduli can be made functions of temperature

or of stress (for plecewise linear analysis).

Elément Property Definition Cards that define geometric properties such as thickness

(of plates) and cross-sectional areas and moments of inertia (of beams). Other included
items are the nonstructural mass per unit area (or per unit length in the case of beams)
and the locations of points where stresses will be calculated. Except for the simplest
elements, each Element Property Definition Card will reference a Material Property De-

finition Card.

Element Connection Cards that identify the grid points to which each element is connect-
ed, The order of grid point identification defines the positive direction of the axis of
a one-dimensional element and the positive direction of the surface of a plate element.
The Element Connection Cards also include orientation information, such as the direc-
tions of the principal axes of a beam referred to the coordinate system of one of its
grid points, or a vector defining the offset of the end points of a beam relative to its
grid points. Except for the simplest elements, each Element Connection Card references
an Element Property Definition Card. If many elements have the same properties, this

system of referencing eliminates a large number of duplicate entries.

Constraint Cards that define the degrees of freedom involved in each equation of

5.1-2
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constraint and their coefficients.

Masses assigned direct1y'to grid points by the user are also described by means of Connection
and Element Property Definition Cards. Masses are also assigned to elements by means of the
structural and nonstructural density parameters, and are transferred to grid points by the pro-
gram. The nonstructural mass density parameters are used to describe coatings, stored fluids,
secondary structure, and other distributed items that have negligible stiffness. Two different
methods of mass transfer, known as the Lumped Mass and the Coupled Mass methods are available to

the user. They are discussed in Section 5.5.

Each of the structural elements in NASTRAN is discussed in the subsections that follow. In
the program the equations for each structural element are implemented by four or more subrou-
tines corresponding to different structural modules. One subroutine is used for computing the
stiffness matrices, another is used for mass matrices, another is used for the generation of loads,
and a fourth is used for recovering stress data. The discussion of structural elements will, in
most cases, fall short of presenting the complete set of equations that are implemented by the

program. The reader is referred to the NASTRAN Programmer's Manual for the complete equations.

Two other topics which directly involve structural elements, namely differential stiffness
and piecewise linear analysis, are respectively treated in Sections 7 and 3.8 of the Theoretical
Manual. 1In addition, the relationships involved in transferring the stiffness and mass of

structural elements to grid points are discussed in Section 3.4.

NASTRAN includes a provision for "dummy" structural elements, which allows users to investigate
new structural elements with a minimum of programming effort. The user is only required to write
FORTRAN code for the element routines and to perform a 1ink edit for selected 1inks in order to
include dummy elements in NASTRAN. The element routines are those which compute the stiffness,
mass, and damping matrices for each particular element, generate thermal loads, generate the
differential stiffness matrix, and recover stresses, No provision is made for including dummy
elements in piecewise linear analysis. Oummy elements can be plotted and changes in dummy elements
can be included in modified restarts. Input for the dummy elements is provided on connection and
property cards. The code required to fnterpret the information on these cards is put into the

element routines. )

5.1-3 (4/1/72)
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5.2 RODS AND BEAMS

Although it is one of the simplest of structural elements and one that is well known to
everybody, the beam has been a troublesome element in the development of NASTRAN, due to diffi-
culty in selecting the properties that it should have. In retrospect it seems clear that the ver-
satility of the beam concept is the cause of the difficulty. It is used by engineers to describe
the structural behavior of everything from a simple round rod to a highly tapered airplane wing.
The large number of parameters required to describe the beam element adequately in the latter ap-
plication would impose an unreasonable burden of data card preparation on the user in the former
application. Thus, if the number of different forms of the beam element is to be kept reasonably

small, compromises must be made.

There are two basic forms of the beam element in NASTRAN at the present time. The BAR which
includes extension, torsion and bending properties; and the ROD which includes only extension and
torsion. A number of important restrictive assumptions have been accepted for both forms. They
are that the elements are straight, unloaded except at their ends, and that their properties are
uniform from end to end. The first two assumptions are complementary in the analysis of continu-
ously loaded curved beams because, if such a beam is replaced by a set of straight chords, the
loads should be Tumped at the intersections in order to obtain accurate results. These two as-
sumptions were adopted in the interest of reducing the number of beam forms in the initial version

of NASTRAN. Straight elements must be included even if curved elements are not.

The third assumption (uniformity) was adopted because of the large number of parameters re-
quired to specify the several different kinds of taper that are potentially useful (linear depth
variation, linear EI variation, etc). It was, furthermore, reasoned that the Guyan reduction,
Section 3.5.4, provides a means for specifying a nonuniform beam by subdividing it into several
uniform segments without increasing the number of degrees of freedom to be used in dynamic ana-

lysis.

The complete mathematical equations that describe the beam elements may be found in Section
8 of the NASTRAN Programmer's Manual. The properties that the elements have are described below

in separate subsections.

PRECEDING PAGE BLANK NOT FILMED
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5.2.1 The BAR Element

The BAR element includes extension, torsion, bending in two perpendicular planes and the
associated shears. The orientation of the principal axes is freely selected by the user. The
shear center is assumed to coincide with the elastic axis, i.e., with the centroid of the struc-
tural material. This assumption is restrictive only when both properties are fmportant in the
same problem. It is permitted to offset the elastic axis from a line joining the grid points
to which the bar is attached. It is also permitted to eliminate the connection between any of
the six motions at either end of the bar and the adjacent grid point, provided that at least one
connection remains. This feature has several uses including, for example, the representation of

beams that are fixed at one end and pinned at the other.

The specified cross-sectional properties of the bar are its area; fts moments and product
of inertia; its torsional stiffness factor, J; the factor K (in KAG) for computing transverse
shear stiffness (see, for example, Reference 1); aﬁd the nonstructural mass per unit length. The
material properties, obtained by reference to a material properties table, include the elastic
moduli, E and G, density, p, and the thermal expansion coefficient, a, determined at the average
temperature of the element. The temperature data for the bar may be specified by either of two
methods. In the first method, the average température and the effective transverse gradient of the
temperature is specified at each end; the temperature is assumed to vary linearly along the bar.
In the second method, the temperature is assumed to be uniform throughout the bar and equal to the
average of the temperatureréssfgned to the grid points which it connects. An extensional deforma-

tion {misfit) may also be enforced.

The stiffness matrix of the bar element is a 12X12 matrix of coefficients expressing the
forces and moments acting on the degrees of freedom at its ends. The stiffness matrix is first
calculated with respect to translations and rotations parallel to an internal coordinate system
with one axis coincident with the axis of the bar (see Figure 1) and is then transformed into the

directions of the degrees of freedom assigned to the adjacent grid points.

5.2-2 (12/29/78)
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Figure 1. Bar coordinate system, showing degrees of freedom for bending in the xz plane.

For example, the portfon of the stiffness matrix that describes bending in the xz plane of

the element, assumed to be a principal plane, is given by

- j I I =
za R -R - 2a
R ___:_..I. i S
M 1,2 El | ,2 E 6
ya 2 I 2 L7 | ya
B IS e SR il 8 )
' 1]
Fab : R : %R Yzb
M T 2 e | \e
yb | SYMMETRICAL | L L | NP
where
3 \-1 '
2 L
R = (KZ—KE + m—y—) . (2)

The complete stiffness equation, including extension, torsion, and bending 1n two planes,

written in the element coordinate sysfem. may be represented in symbolic form as

{t,} = [Kee]{ue} . (3)

The degrees of freedom, Ug» at the ends of the element in its internal coordinate system are =

related to the degrees of freedom, ug, of the adjacent grid points by

5.2-3 (12/15/72)
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{ugb = [THu} » (4) 9
q
where [T] is a matrix whose elements are calculated from direction cosines and offsets.
The stiffness matrix for the element written in the global (grid point) coordinate system is
T
(gl = [TI7IK,EIIT] (s)
The structural and nonstructural mass of the bar are similarly transferred to the adjacent
grid points by either of two methods as explained in Section 5.5, The center of gravity is assumed
to lie along the elastic axis; cross-sectional rotary fnertia effects, including torsional iner-
tia, are neglected.
Equivalent thermal loads on the adjacent grid points are developed as follows. Beam theory
predicts the average strain and curvatures of an unloaded beam, for cases where o does not vary
with depth, to be:
a
e * FfTa (6)
_Tazuz 2 1z dA (7)
= B = - fz e
ax 4 T; ' ~
2 .
]
o
= B8 = - [Ty dA , (8)
3x z L f
where A = cross sectional area
o = thermal expansion coefficient
T = temperature above ambient
¥,z = coordinates of a point fn the cross section (see Figure 2)
Iy.IZ = moments of inertia of the cross section about the y and z axes respectively.

The integration is carried out over the cross section, with y = 0 and-z = 0 at the centroid.

Define the temperature resultants:

Fetfra (9)

T, = T‘;IT“‘A’ (10)

5.2-4 (4/1/72)
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-I]-ny dA . an
2

Note that if the temperature distribution has a linear gradient, the resultants Tz and Ty are the

gradients.

Let the temperature (and therefore the temperature resultants) vary linearly between the ends

of the beam. If end b (x = %) were fixed, the deflections at end a (x = 0) would be:

0 2 = 3
. S Ol U0 DT I SR (12)
Yxa Eav ¥ f"‘a T X 2 t'a’ b
2

au, r Bab = Bza TR '
eza = X = -f(sza + —2_ x)dx = T (Tya + Tyb) > (13)
A
3UZ ¥
Sya"ﬁ_"T(T ) (e)

The displacements obtained by integrating the rotations are

0 0 X 8 -8 2 , ,
= fez(x) dx = f [f <eza + -Z-"—z—-z-a-i) d{l dx = - ‘%— (2T *+ Tya) » (15)
['A

2L

and, similarly,

2 ' '
al
Yza = =78 (2T, + Tza) : (16)

The loads which must be applied to the bar to produce equivalent displacements will be a
function of the material elastic moduli, E and G; the bending inertias, Iy, Iz’ and Iyz; the shear
factors Ky and Kz; the cross sectional area, A; and the results of applying pin joints which dis-
connect various degrees of freedom of the ends of the bar from the grid points. If no pin Joints
are applied and the material properties do not vary through the depth, the equivalent loads are

neatly expressed in terms of the stiffness matrix. In element coordinates the loads are:

5.2-4a (4/1/72)
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where {Pa} and {Pb} are the six components of load on each end of the beam; [Kaa]’ [Kab]' etc. are

the six by six partitions of the stiffness matrix: {ug} and {u;) are the sets of displacements at

each end resulting from temperatures. The nonzero components of (ug} are given by Equations 12-16.

(ug} is null. The loads are transformed to grid point coordinates by premultiplying Equation 17 by
[T]T where [T] is defined in Equation 4.

If pin joints are used, the stiffness matrix is partitioned and reduced as follows:

a)

b)

c)

d)

The matrix is partitioned:

v ]
Kag TS
x] = -;---:---- ’ (18)
I
Kzo ' "Moo

where the subscript "o" refers to degrees of freedom that are disconnected.

A transformation matrix [Go] is defined as: <
6] = -Ik 17", 1T (19)
o 00 20 .

The reduced matrix with pin joints is:

Kzz E 0
0 o ’
where
Ik,1 = [k,]+ 617K, 1T (20)
22 2 0 20 ’
The loads on the reduced set are:
s T
{Pz} = {Pl} + [Go] {Po} . (21}
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where {52} and {PD} are loads on the unreduced set; see Equation 29, Section 3.5.3.
The temperature field produces loads on the unpinned bar by the equations:
By o= R uld + [k Jwd) (22)
(P} = [k 1TCul} + [k Jugh (23)
where {uz} and {ug} are the displacements due to thermal effects. Their components are

equal to the components of {u:} and {ug}, rearranged. The loads on the reduced coordin-

ates are, from Equations 21, 22, and 23:
e v 1yt t Tre 1Tint T t
{Pg} [Kzij{“z} + [Klo]{"o} + [GO] [Kzo] {Uz} + [GOJ [Koo] {uo} . (24)
Using Equation 19, the second and fourth terms cancel and the resulting load is:
- - T T\, %
e e (TR0 + 16,07k, 1)y (25)

The matrix in the parentheses is exactly equal to the reduced stiffness matrix for the

unpinned coordinates (Equation 20).

The equations used in stress data recovery for the element thermal loads are modifications
of Equatfons 12 through 17, and 25. Thée applied thermal forces and moments, {Pi}’ are subtracted

from the computed forces and moments. Stresses are calculated from the resulting internal loads.

The following types of stress data output can be requested

Bending moments at both ends in two planes

Transverse shear force in two planes

Axial force

Torque

The average axial stress

- The stresses due to bending at four points on the cross-section at both ends.
The points are specified by the user. _

The maximum and minimum extensfonal stresses at both ends

5.2-4c (12/31/74)
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- Margins of safety in tension and compression for the whole element.

5.2.2 RQD Elements

The ROD element is a simplified form that includes extensional and torsional properties only.
Extensional and torsional properties are combined in one element in order to reduce the number
of separate types of data cards; it is unlikely that both properties will often be used simul-

taneously.

The specified cross-sectional properties of the rod are jts area; its torsional stiffness
factor, J; its nonstructural mass per unit length; and a factor for converting torque into shear

stress. Material properties are obtained by reference to a material properties table.

The R@D, like the BAR, can be subjected to thermal expansion and enforced axial deformation
except that thermal gradients are fgnored. The treatment of mass properties is explained in
Section 5.5,

The TUBE element is a specialized form of the ROD that is assumed to have a circular cross-

section. The outer diameter and the wall thickness of the tube are specified rather than its

area and torsional stiffness constant, J. \ = 4

Another kind of rod element is the viscous damper, VISC, that has extensional and torsional

viscous damping properties rather than stiffness properties.

5.2-4d (12/29/78) -
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Figure 2. BAR geometry

5.2-6 (4/1/72) -

sy



STRUCTURAL ELEMENTS FOR THE DISPLACEMENT METHOD comiMAL PMEE W
AF FOOR QUALITY
5.3 SHEAR PANELS AND TWIST PANELS

A shear panel is a two-dimensional structural element that resists the action of tangential
forces applied to its edges (plus the action of other forces when necessary to preserve
equilibrium) but does not resist the action of normal forces. Shear panels are created in the
process of obtaining idealized models for elastic sheets. 1f a sheet has heavy stiffeners, it is
reasonable to Tump the normal stress-resisting properties of the sheet into stiffeners and to
lump the shear-resisting properties of the sheet into shear panels. This idealization can some-
times be justified even if the sheet has 1ight stiffeners or no stiffeners at all. The shape of
a shear panel is determined by the directions of the bounding stiffeners, and, although the rec-
tangle can be considered to be the normal shape for a shear panel, other quadrilateral shapes

must be considered in practice.

The twist panel is the bending analog of the membrane shear panel. It is, in fact, equi-

valent for bending action to a pair of parallel shear panels.

Consider the flat quadrilateral panel shown in Figure 1. (The effects of warping will be
treated later.) The panel is in equilibrium under the action of tangential edge forces, F , FZ’
F3 and F4 In NASTRAN, the forces on elements are applied only at their corners i. e , at grid
points. In Figure 1, the equivalent corner forces, fA' B f and fD, are made col1inear with the
diagonals. Only one of the edge forces is independent, the others taking values to satisfy equi-
Tibrium. The auxiliary quadrilateral BEFC in Figure 1 is a force polygon that may be used to
evaluate the ratios of the edge forces. BF is drawn parallel to AC and EF is drawn parallel to
AD. Since the resultant of Fl and F4 must lie along AC in order to balance the resultant of F2
and F3, the triangle BEF expresses the relationship among F]. F4 and their resultant. [t is as-
sum;H (arbitrarily) that one-half of the adjacent edge forces are reacted at each corner. Thus,

if % is the average shear flow along edge AB,

97 AB-BF
o= fo = 7T ' M
foow f, = LABCE (2)
B 0 * 7 BE .

If the strain energy can be expressed as a quadratic function of 9>
E = % zq12 , (3)
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then the stiffness matrix referred to motions at the corners is derived from Equations 1, 2 and() €§§!
Rn’“i!"; L o
— , Gl s
3 as follows O,é EL{R\QUQE
Let the element stiffness matrix [Kee] be defined by
[Keellug} = (f,} ) (4)
where

- T
{fe} = LfAs fBl fc! fDJ ’ (5)

and the elements of {ue} are components of corner motions collinear with the elements of {fe}.

Equations 1 and 2 may be written in matrix form as
[fe} = {C} 9 - (6)

The strain energy is related to corner motions by

< 1 T
E 7 {u,} [Kee]{ue} . (7)
It 1s convenient to define a generalized displacement, 6, conjugate to 9> such that
‘ 4
§ = zq s (8)
and
1 1 2
E = 2—6q1 = 153 8 . ) (9)
Still other ways to express the strain energy are
1 T
E = 5 {ue} (fe} (10) o
= 3 lugTicle, (11)
where Equation 6 has been used in the second form. Comparing Equations 9 and 11
5 = (il = () (12)
50 that, substituting into the second form of Equation 9
| T T B}
E 37 fue} {c{c} {Ue} (13) -
5.3-2 =
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Finally the stiffness matrix is obtained by comparing Equations 7 and 13.
« 1 T
[Kee] Z {CHc} . (14}

Let {ug} be the degrees of freedom at adjacent grid points in the global coordinate system,

to which the element coordinates {ue} are related by a geometric transformation
{ue} = [T](ug} . (15)
The stiffness matrix of the shear panel referred to grid point coordinates is

;
[Kegl = [MDkITT . (16)

A final task is to evaluate the constant z in the expression (Equation 3) relating strain
energy to the average shear flow on side 1 of the panel. For a rectangular panel the shear flow

is constant over the surface and

. A (17)
Z Gt s

where A is the area, t {s the thickness and G is the shear modulus of the panel. For a parallelo-

gram the shear flow 1s sti11 constant and it can easily be shown that

2
« A 2tan’8
z &t (1 + 'T?G"') s (18)

where 8 is the skew angle of the parallelogram (i.e., the complement of the smaller interior

angles) and v is Pofsson's ratio.

In order to analyze more general shapes (the trapezoid and the trapezium), it is first necessary
to make an assumption regarding the distribution of shear flow. Garvey (Reference 1) has suggested
a distribution of shear flow that satisfies all equilibrium conditions, but does not satisfy the
strain compatibility condition except in the limiting case of a parallelogram. This distribution
is 1llustrated in Figure 2. The tangential force per unit length on an infinitesimal parallelo-
gram the extension of whose sides pass through P and Q is assumed to be inversely proportional to

the square of the distance from the baseline PQ.

5.3-3 (12/29/78)
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For the assumed distribution of shear flow, the strain energy per unit area is

2

where § is the skew angle of the infinitesimal parallelogram. Integration of Equation 19 for the
general quadrilateral is straightforward but tedious. The expression derived by Garvey for the
general case will be found in the Programmer's Manual. For the special case of a trapezoid, see

Figure 3, an expression for the quantity z in Equation 3 is

A 2 2
2 = &t d—z [1 +m (tan 5] + tandltansz + tan 52)] . (20)

The approximations in Garvey's formulation become more serious as the distortion of the
panel from a rectangular shape increases. Most of the difficulty is with the assumption, which is
basic to the concept of a shear panel, that the tangential forces on a quadrilateral element do
not couple elastically with the normal forces. This assumption is simply incorrect for non-
rectangular shapes and it can lead to erroneous results. Garvey's formulation is used in NASTRAN
because it 1s plausible and easy to apply, and because, given the Jack of rigor in the shear

panel concept, more elaborate formulations cannot be justified.

Four points cannot, in general, be restricted to lie in a plane, and so allowance must be
made for the effects of warping in the development of the equations for a shear panel. Trouble
with static equilibrium is avoided by directing the corner forces along the diagonals even though
they are no longer coplanar. The important parameters (z and {A}) are evaluated for an equiva-
lent plane quadrilateral that is parallel to both diagonals. The locations of the cormers of the

equivalent plane figure are obtained by normal projection of the corners of the actual panel,

The physical properties of a shear panel that are specified by the user are its thickness,
its nonstructural mass per unit area and a reference to a material properties table where the
density, shear modulus and Poisson's ratio are stored. Thermal expansion is not applied to
shear panels, even though the generalized displacement, 5, includes some dilatation when the panel
is nonrectangular. The user is, therefore, warned against using severely skewed shear panels in

thermal stress analysas.

The mass of the panel is transferred to adjacent grid points as follows. The panel is

5.3-4
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divided into two triangles by one of the diagonals and one-third of the mass of each triangle is
assigned to each of its corners. The assignment of mass is then repeated using the other diagonal ‘

to form the triangles. Finally the two assignments are averaged.

The quantities computed in stress data recovery include the average of the shear stresses at
the four corners, the maximum shear stress, th? average shear flows on each of the four sides,
and the components of force at each of the four corners. The three components of corner force
are oriented parallel to the adjacent sides and normal to their plane. The normal component, or
"kick" force, occurs only when the panel is nonplanar. Explicit formulas for the calculations

are given in Section 8 of the NASTRAN Programmer’s Manual.

The twist panel performs the same function for bending action that the shear panel performs
for membrane action. Couples are applied by imposing forces at the corners in planes parallel to
the diagonals, see sketch below. The stiffness matrix of a twist panel is equal to that of a shear
panel multiplied by t2/12 where t is the thickness of the panel, which is assumed to be solid.

For built-up panels, t must be adjusted to give the correct moment of inertia of the cross-section.

5.3-5 (12/31/7a)
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Figure 1. Shear panel and its farce polygon,

q -d“ = Constant

Figure 2, Garvey's assumption regarding internal stress distribution of a quadrilateral panel.
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Figure 3, Trapezoidal panel,
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5.4 CONSTRAINTS

A mathematical analysis of the manner in which degrees of freedom are eliminated by equations
of constraint is given in Section 3.5. There are two kinds of constraints: single point constraints
in which a2 degree of freedom is constrained to zero or to a prescribed value; and multipoint con-
straints (and rigid elements) in which a degree of freedom is constrained to be equal to a linear

combination of the values of other degrees of freedom.

A number of different Constraint Definition Cards are provided for the convenience of the usar
in specifying constraints. They can be separated into the following types: single point constraint
cards, multipoint constraint cards and rigid element connection cards; cards to define reaction
points on free bodies; and cards to define the omitted coordinates, Uy in matrix partitioning.

The latter type strictly defines a constraint only in dynamic analysis, see Section 3.5.4.

A single point constraint applies a fixed value to a displacement or rotation component at a
geometric grid point or to a scalar point. One of the most common uses of single point con-
straints is to specify the boundary conditions of a structure by fixing displacements and/or
" rotations at certain points. The structure may have a line of symetry at which only symmetric
or antisymmetric motions are allowed. The single point constraints may be used to fix the proper
degrees of freedom on these boundaries. Alternate sets of constraints can be stored in the pro-
gram to facilitate treatment of different symmetry conditions as subcases (see Figure 1 of Sec-

tion 3.2).

The elements connected to a grid point may not provide resistance to motion in certain direc-
tions, causing the stiffness matrix to be singular. Single point constraints are used to remove
these degrees of freedom from the stiffness matrix. A typical example is a planar structure com-
posed of membrane and extensional elements. The translations normal to the plane and all three
rotational degrees of freedom must be constrained since the corresponding stiffness matrix terms

are all zero.

If a grid point has a direction of zero stiffness, the single point constraint need not be
exactly in that direction. For example, two collinear rod elements that are connected to a point

may be constrained as shown: -

5.4-1 (12/31/77)
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The direction of constraint allows the point to move only vertically, but, since the rods are
collinear, the forca of constraint is zero and the forces in the elements ara still valid, The
NASTRAN system detects singularities of individual grid or scalar points during problem formula-
tion, see Section 3.4. As in the above example, more than one valid way exists for constraining
a geometric grid point. The possible constraints are listed in a warning message in their order

of preference.

Myltipoint constraints are a feature of NASTRAN that is not commonly found in structural

analysis programs. Each multipoint constraint is described by a single equation of the form

YR u = 0. (1)
g 99

The degree of freedom that occurs in the first term of the equation is the one that is eliminated.
By this means the user, rather than the program, selects the degrees of freedom to be removed from
the equations of motion. As an example, consider the rigid bar segment shawn on the next page.

The equation of constraint is

wb-wa-zea=0, (2)

where wy, {s as the dependent coordinate,

5.4-2
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A muitipoint constraint also applies forces, ch, to each of the degrees of freedom included
in the equation of constraint, Equation 1. A double subscript is used to indicate the force on
the gth degree of freedom due to the cth constraint. The forces are proportional to the coeffi-
cients, ch, in Equation 1, as will be shown. Thus

9q = Re

eg qQ > (3)

g

where 9 is a constant, called the force of constraint. Since the equation of constraint is
altered 50 that the coefficient of the lead term is unity, see Section 3.5.1, 9 js in fact

equal to the force of constraint on the degree of freedom that is eliminated.

One of the defining properties of a constraint is that it does no work. Thus

W= g Al * 0. (4)

The only way that Equation 4 can be satisfied for all permissible values of the ug's is if

the ch's satisfy Equation 3, thereby reducing Equation 4 to Equation 1.
Some of the uses of multipoint constraints are

a. To enforce zero motion in directions other than those corresponding with components of
the global coordinate system. The multipoint constraint will, in this case, involve

only the degrees of freedom at a single grid point.

b. To describe rigid elements and mechanisms such as levers, pulleys and gear trains. One
of the criticisms of the displacement method has been that matrix ill-conditioning occurs
in the presence of very stiff members when they are treated as ordinary elastic elements.

Treatment of such members as rigid constraints eliminates the i11-conditioning. Instead -

5.4-3 (12/31/77)
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of providing the required coefficients explicitly, the user will find it convenient to use

the rigid element capability of the program for this purpose. (See Section 3.5.6).

To generate nonstandard structural elements and other special effects. Consider, for
example, a pressurized container such that changes in the enclosed volume produce signi-
ficant changes in internal pressure. The change in volume may be expressed as a linear
combination of displacements normal to the surface. Regarding the change in volume as a
degree of freedom (scalar point), its effect on the container is simulated by a multi-
point constraint that relates it to the normal displacements at the surface, and by a

scalar spring connected between the new (constrained) degree of freedom and ground.

To describe parts of a structure by local vibration modes. This important application
s treated in Section 14.1. The general idea is that the matrix of local eigenvectors

represents a set of constraints relating physical coordinates to modal coordinates.
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5.5 TREATMENT OF INERTIA PROPERTIES

Inertia properties have two different kinds of application in linearized structural apalysis
as generators of applied loads in static amalysis and as generators of matrix coefficients in
dynamic analysis. The former application includes gravity loads, centrifugal loads, and inertia
relief effects; these subjects are treated in Section 3.6. The latter application includes the
matrix of ordinary mass coéfficients, and also, in problems defined in rotation coordinate system
matrices of (Coriolis) damping coefficients and {centrifugal) stiffness coefficients. Automatic

treatment of dynamic inertia effects in rotating coordinate systems is not implemented in NASTRAN.

5.5.1 Grid Point Mass
The mass matrix assocfated with a grid point has the following organization with respect to
the displacement degrees of freedom, and stems from the equilibrium of inertia forces.
Inertia forces at a point = External forces at a point,

[nlp, {Ulp, = {Flp, : (1)

where [m] is the matrix of mass properties, {ii} is the vector of translational and rotational accel-
eration components, and {F} is the vector of external force and moment components. The accelera-
tion vector at a grid point can have a maximum of six component degrees of freedom: three transla-

tional accelerations and three rotational accelerations.

If the displacement coordinate system at the grid point is rectangular, the corresponding

components of acceleration become

litgy = § .2 ¥ : (2)

%
g ezJ GP

The succeeding development will be given in terms of rectangular displacement coordinate systems

where the various displacement and force components are as shown in the following sketch. -
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The mass assocfated with a grid point is assumed to be rigidly attached to, and in the vicinity of,
the grid point, regardless of the elastic deformation. In effect then, the mass associated with
grid point behaves as a local rigid body with the properties computed with respect to that grid

point.

5.5.2 Rigid Body Inertia at a Grid Point

Inertial forces and moments develop at the referenced grid point when the mass of a rigid

body accelerates due to a set of external forces and moments. Consider first those accelerations

which contribute to the forces that develop in the x direction. When all of the mass is accelerated

in the positive x direction, the magnitude of the inertia force in the x direction is
f/f odxdydz)'x'-mii
( 2%y“x (3

As a consequence of the rigid body assumptions and of the orthogonality of the coordinate axes,
there are no contributions of y and z accelerations to the inertial forces that develop in the x
direction, The application of these same arguments to inertia forces in the y and z directions

reveals that the sole translational acceleration contributions are my and mz, respectively.

5.5.2.1 Point Masses

Before developing the general inertial properties of a rigid body mass, the basic properties
of a point mass will be defined. Consider a concentrated point mass, Am, rigidly connected to a
grid point as shown in Figure 1. The offset Tocation is expressed by the vector r. If the
nonlinear centrifugal and Coriolis effects are ignored, the acceleration vector, 3. at the point

mass is

5.5-2 (12/31/74) o
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X ¥ @)

@3¢

-
- *
a = uy+
> >

where u and & are the accelerations at the grid point as defined in Equation 2, and "X" {s the

vector cross product operator.
-
If f = Ama is the force vector required to produce the acceleration at the point mass, the
resultant force F and moment M vectors at the grid point are
- o -
F = f = jma ' (5)

XFf = m(Ex3) . (6)

=4
[]
-

The substitution of Equation 4 into Equations § and 6, yields

-> = S

F = am{u+08Xr) . (7)
> > - > £ -

M = mm(rXu+rXeXr . (8)

Equations 7 and 8 may be expanded to produce the components of force‘and moment in terms of

the components of grid point displacement and rotations, resulting in the following matrix equation:

) i , .
— Fx 1 0 0 i 0 z -y 1 uxw
| P
Fy 0 1 0 E Y4 0 X uy
F o 0 1 -x 0 u
ﬁ 20 = pp |mTmmmmmmmees :"'E):"Z """"""""" 1.2 } d (9)
M 0 -z y | (y*+z%) -xy -xzZ 9
X ! x
] 2 2 .
My z 0 -x E -xy (x+2°) zyzz ey
i v
LMz, L=y x 0 1 -xz -yz (x+y%) | LGZJ

where x, y, and z are the components of the offset vector T in the coordinate system at that grid

point.

5.5.2.2 Rigid Body Mass Matrices

The above equations may be easily expanded to account for a finite mass, e.g., a real physical
mass attached to the grid point (see CANM2 bulk data card). The total concentrated mass miy be
considered to be the sum (or integral) of a set of point masses. The net forces and moments would
be the sum of those defined by Equations 7 and 8. The {ndividual matrix terms in Equation 9 may -

be integrated over the volume of a body to produce the total mass matrix

5.5-3 (3/1/76)
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(M 0 0t 0 M M ] L
]
M 0 -iM 0 M
]
] - -
M I B et [ [P N , (10)
r"ig'ld T : r -T _T
N1.J :113 : XX Tfy ¥4
(SYM) E vy -Tyz
[}
. ! Tz |
where the total mass is defined as
M o= Iam = f pdV . (1)
1 v
The component of the center of gravity of that mass is
= 1
X = g [V pxdv . (12)

The rotational inertias about the grid point are, for example ,

Tx = Jv o y2 + 2%) v = 7
(13)
and Ly = ], ow¥ :

or, using the parallel axis theorem,

T, = L, +ug%+3%) (14)
and T, = I +MXy . (15)

Xy Xy

Here, Ixx' Ixy’ etc. are the inertias about the center of gravity of the mass. The coeffi-
cients M, X, ¥, Z, Ixx’ [xy’ Ixz’ Iyy, {yz' and Izz may be input by the user on the CPNM2 bulk
data card. The program will generate the mass matrix defined by Equation 10 using Equations 11

through 15.

5.5-4 (3/1/76)
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5.5.2.3 Intrepretation of the Terms

It is now useful to Took at the mass matrix in terms of the characteristics of its mass prop-
erties. Notice that in the upper Teft partition of Equation 10 (the first three rows of the first
three columns), the total mass associated with the grid point, M, appears on the diagonal. All
off-diagonal terms in this partition are zero. In the partition of the first three rows for the
last three columns, every nonzero term consists of the total mass multiplied by a distance to the
center of mass. Notice also that in this same upper right partition, all diagonal terms are zero.
On further inspection, it can be seen that the off-diagonal terms of this 3 x 3 partition are anti-
symmetrical, that is, terms in reflected positions about the subdiagonal are the same magnitude but
opposite sign. In the lower right partition (the last three rows of the last three columns) every

term involves moments of inertia. Finally, notice that the total 6 x 6 matrix is symmetric about

the diagonal.

Each of the partitions of Equation 10 has a unique characteristic in terms of moments: 2°m
where ¢ is some distance, e is an exponent, and m is the mass. In the upper left partition, the
exponent is zero and the terms reduce to just the scalar mass 2°m = m. In the upper right and
the lower left partitions the exponent is one and the terms are characterized as first moments of
the mass 21m = m. A symbol N is used to represent the first moment with a double subscript
indicate its matrix position, Nij' In the lower right partition, the exponent is two and the

2

terms are characterized as second moments of the mass 2°m = I. It is convenient to symbolize

these partitions as follows:

- - -
Scal Ist !
calar m.. ! N
Moment 1 | B!
M = = fe=ee === (16)
1st 2nd T i
TR R
Moment Moment !

The mass matrix consists of 13 different terms, but three terms in the first moment partition differ
only in sign from the other three in this set. Therefore, the typical'mass matrix actually has

only 10 distinct terms. The format of the CPNM2 card provides for a maximum of 10 entries for the
rigid body mass matrix and assembles the mass matrix according to the requirements for sign as

shown in Section 8.8 of the Programmer's Manual.

5.5-5 (3/1/76)
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5.5.2.4 Transformation of Coordinates

In NASTRAN, the user may define the connected mass in its own coordinate system, different
from the displacement coordinate system of the grid point. In the previous development the
properties of the rigid body mass and the offset distances were defined in the same coordinate
system as that of the grid point displacement system. If the displacements at the grid point are
given in a different coordinate system (x', y',z'), an orthogonal transformation matrix [ng] will

exist where [Tng] a [ng'1], as defined by the equation

CUE N o 398 U S (17)

where {u} is the vector of displacements or rotations of the rigid body mass and {u'} is the
corresponding vector of displacements or rotations parallel to the x', y' and z' coordinates of the

grid point to which the mass s attached.

The forces, moments and offsets may be similarly transformed between the two coordinate

systems by the following equations:

{(F'} = [ng]T{F} .
My = (1,170 :
(18)
% 3
and yr = [qu] ¥y
z o (z

After applying the above transformations to Equation 9 it is interesting to note that the form of
the mass matrix (Equation 10) is identical with only a change in component notation, i.e., X'
replaces X, ¥' replaces ¥, Z' replaces Z. The lower right partition of Equation 10, transformed to

the grid point displacement coordinate system, becomes

Lo Ty T
1 . . ' - T
(1] Ly T [Tpgd [110Tpq] . (19)
(sYM) I,

5.5-6 (3/1/76)
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The inertias I;x Ixy’ etc. have the same physical definition in the new coordinate system of the
rigid body mass and may be calculated using Equations 12 through 15.

It can be concluded that for a real physical rigid body mass, the matrix is always in the
form of Equation 10 regardless of coordinate system rotations and translations: hence, only the
basic 10 terms need be specified as input. The form of the mass matrix may be destroyed, however,
when special directional masses are used to model mechanisms and other special problems where the

mass is not rigidly connected to the grid point.

5.5.2.5 General Mass Matrix Properties

In the case where the mass is not rigidly connected to a single grid point, the form of the
mass matrix becomes more complex. Other examples aré the use of consistent mass matrices, described
in the following section, whereby the mass of an element is distributed to the connected grid points
of the element. Another example is that of a partially disconnected element mass or a mass con-
nectad to a grid point via a mechanism. It is possible to conceive of instances (not as a result
of coordinate transformations) wherein special mechanically contrived situations can exist to pro-
duce mass terms distinct from the standard 10 rigid body terms. These special mass terms can arise
for example, from such devices as spring restrained pantographs, fly ball governors, and rotating
masses restrained by the helical track as illustrated in Figure 2. If such odd terms are either
present in a structure or exist from matrix transformations, NASTRAN provides an avenue to supply
this Bulk Data through the CONM1 card. An alternate method in NASTRAN is to associate an
additional grid point with the mass element and using multipoint constraints to specify the mech-

anism connecting the mass to the structure (see Section 3.5.1).

In both of these cases, the accelerations at the center of gravity of that mass can be defined
as general 1inear functions of the grid point accelerations. These may be expressed in matrix

form as
iy = [6{u"} s {20)

where {u'} represents the six grid point accelerations. The resulting mass matrix may now become

a full 6 x6 matrix defined by the equation

Mgl = (617TMICG] : (21) -

5.5-7 (3/1/76)
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where [M] is the rigid body mass matrix defined in Equation 10 and [M d] is the transformed mass

gri
matrix after mechanically connecting it to the grid point. [t is this transformed matrix [Mgrid]

which is then input to NASTRAN using the CPNMI Bulk Data card.

5.5.3 Inertia Properties of Structural Elements

ATl of the metric structural elements (rods, bars, shear panels, twist panels, plates, shells,
and solid elements) may have uniformly distributed structural and nonstructural mass. Structural
mass 15 calculated from material and geometric properties. The mass is assumed to be concentrated
in the middle surface or along the neutral axis in the case of rods and bars, so that in-plane or
in-Tine rotary inertia effects such as the torsional inertia of beams, are absent. Such effacts
can, of course, be assigned by tha user to grid points. The masses of metric structural elements
are transferred to the adjacent grid points at the option of the user by either of two methods,

the Lumped Mass or Coupled {"consistent") Mass methods.

In the Lumped Mass method, the mass of an element is simply divided and assigned to surround-

ing grid points. Thus, for uniform rods and bars, one-half of the mass is placed at each end. For

(

uniform triangles, one-third of the mass is placed at each corner. Quadrilaterals are treated as
two pairs of overlapping triangles (see Sections 5.3 and 5.8). It will be noted that second mass
moments are not computed with the Lumped Mass method. The virtues of the method derive from its
simplicity. O0ff-diagonal terms in the mass matrix are restricted to those involving a single
geometric grid point. That is, inertia coupling between grid points is not provided. Programming
efforts and computer running times are less, often by an insignificant amount, than for more
sophisticated methods of mass assignment. Because the mass matrix is independent of the elastic
properties of elements, the user has a better feel for the character of the matrix. The accuracy

of the results, which is the key question, will be examined later.

In the Coupled Mass method, the mass matrix due to a single structural element includes off-
diagonal coefficients that couple adjacent grid points. The best known of the Coupled Mass

methods is the Consistent Mass Matrix method developed by Archer (Reference 1).

5.5-8 (3/1/76) —s -
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The procedure for generating a consistent mass matrix is as follows. Consider, for
simplicity, a one-dimensional structural element whose degrees of freedom are represented by
translations and rotations at the two ends of the element. Corresponding to each degree of free-
dom, uj, there is a displacement function, wi(x), within the element obtained by giving unit value
to u; and zero value to all other degrees of freedom. The functions w., satisfy the differential

J

equations of the element. The element Mij of the mass matrix [M] is obtained from the formula

. i ..
fj » -r‘lij i = - (Lm(x)wi(x)wj(x)dx)ui . (22)

Equation 22 is obtained from the principle of virtual work. In essence uj is regarded as a
generalized coordinate for which wi(x) is the "mode shape.” The inertia force acting at x due to
u; 1s -m(x)wi(x)ﬁi. Multiplication of the inertia force by Wy gives the generalized force acting
on coordinate uj.

The idea of "consistency" enters because the functions Wy are also used to calculate the
stiffness matrix [Kij] from strain energy considerations. It can be shown that the vibration
frequencies so obtained are upper bounds. The reason is that the selection of a finite number of
specific functions, Wi is equivalent to the imposition of rigid constraints on the structurs.

As an elementary example, consider a uniform extensional rod with distributed mass, as shown below.

L ey ol .__..ub

The degreas of freedom are u, and u, and the displacement functions are W, * 1 - x/¢ and W, = X/ L.

The resulting consistent mass matrix is

puy

—y

—
*
—
[]
3
$=9
[]
i
:
---T---
~n
!
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whereas the lumped mass matrix is

1io
] = 5 f-em | (24)
011
]
The stiffness matrix is
112
k] = 8 feeee] (25)

Some information on the question of accuracy can be gained by calculating the error in the
natural frequency due to finite element assumptions for simple structures. Analysis of a uniform
rod with any combination of free and fixed ends (Reference 2) shows that the error in the natural
frequency that results from using Equations 24 and 25 (the Tumped mass method) is

(‘M)l . 1-;—(%)24-0(-;-)4 , (26)

“’exact

where N is the number of f?gifetgiém;ﬁf cells per wavelength. The corresponding result for

Equations 23 and 25'(the consistent mass method) is

Yapprox 1 {n 2 4
(“exact) T E(ﬁ) +0 <%) ) (27)
¢

Note thut the consistent mass and lumped mass methods give errors that, for large N, are the same
in magnitude but opposite in sign. A much smaller error is achieved if the mass matrices for the

two methods, Equations 23 and 24 could be averaged,

5 !
M1 = T3l (28)

This equation has been adopted for use in NASTRAN to compute the coupled mass matrix for the

axtension of rods and bars. The error in this case i1s given by

5.5-10 (3/1/76)
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“approx 1 'r4 ws
(o) - (3 oS @
a

The mode shapes are exact for all three methods.

Archer's paper includes a derivation of the consistent mass matrix for the lateral bending

of a uniform beam without transverse shear flexibility shown below.

v it {Ib)eb

The consistent mass matrix referred to the coordinate set {u} = {wa, 9y0 Wy eb}T is

ol ¥ I [
156 | -222 ! 54 |

_---.’—--2-1—----:--——-
c me | =221 42 =132 ! -3
M1 = g | "ot bomngeo—- (30)

The paper also includes the results of numerical error analysis for free-free and simply support
beams. For simply supported beams the errors in the lumped mass and consistent mass formulations
are approximately equal and opposite, and are surprisingly small. An equation for the natural

frequency error associated with the lumped mass formulation is (frem Reference 2)

() - (5 oS

For free-free beams the error in the consistent mass formulation appears to be of the same order
as that given by Equation 31, but the error in the Tumped mass formulation is one or two orders of

magnitude larger. Similar rasylts may be expected for cantilever beams.

5.5-11 (3/1/78)
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Archer's consistent mass matrix, Equation 30, has been adopted in NASTRAN as the coupled mass
matrix for the lateral deflection of bars. No modification is included for the effect of trans-
verse shear flexibility, which 1s slight. The consistent mass formulation has also been applied in
NASTRAN to the lateral deflection of plates. The procedures used are described in Section 5.8. In
the cases of the doubly-curved shell element, Section 5.10, the solid of revolution element, Section
5.11, and the isoparametric solid element, Section 5.13, only the consistent mass formulation is

available.

Only the Tumped mass method is available in NASTRAN for shear panels, twist panels, the mem-
brane action of plates, the constant strain solid elements, and the conical shell elements, which
completes the current list of metric elements. Coupled mass methods are not applied to shear panels
and twist panels because of thefr peculiar status as Incomplete physical objects. The membrane
action of plates and the constant strain solid elements were excluded because structural models
built from such elements generally tend to be too stiff. For these elements, using lumped masses
tends to reduce the error in the natural frequency. The conical shell element, Section 5.9, was

excluded because its complexity makes the development of a consistent mass matrix unwarranted.

5.5.4 Grid Point Weight Generator

This is a module (GpwG) which determines the rigid body mass properties of an entire structure ) w
with respect to a user-selected grid point and with respect to the center of the mass of the structure
Initially, the mass properties are calculated relative to the basic coordinate system. Subsequently,

the mass properties are referred to the principal mass axes and to the principal inertial axes.

The mass matrix, [Mgg] output from the EMA module, is transformed to a matrix of rigid
body mass properties, [Mo]. with respect to the user-selected reference point, by use of a rigid

body transformation matrix D

.
M1 = [01'( 100 : (32)

$.5-12 (3/1/76)
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where
[Mgg] {s assembled in global coordinates and is of order g x g .

(0] is a rigid body transformation matrix which predicts the motion of points in global
coordinates given the motion of the reference point in terms of basic coordinates, and
is of order g x 6 »

and [Mo] is assembled in basic coordinates and is of order 6 x 6.

Prior to the formation of the [Mo] matrix, the module calculates the [0] matrix. The [D]

matrix relates the motion at all points of the body relative to the reference point by the

equation
g} = (016G} (33)

where the acceleration vector, {Gg}. describes accelerations for all points of the body in global
coordinates and is of length g, and the acceleration vector, (ﬁo}, describes accelerations of the

reference point and is of length 6.

The mass matrix [Mo] is partitioned according to the contributions from translatiomal (t),
rotational (r), and coupled (tr) accelerations, where [M%] is the scalar partition, [A*"] is the first

moment partition, and [A"] is the second moment partition.

M1 = |-meme bemene : (34)

A check is made on the consistency of the composition of the mass by simple calculations on
the [ﬂt] (translational or scalar) partition. The quantities & = Z(ﬂijt)zlitj and € = E(ﬂijt)zlifj
are computed and the ratio, /5, is calculated. A diagnostic message is printed out if e/ > 10'3, and

the internal decision is made to rotate the matrix accordingly.

5.5-13 (3/1/76) i}
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ol

when the ¢/5 test indicates that a matrix rotation is warranted, the principal mass values and
associated coordinate transformation are found by applying the Jacobi method of eigenvalue extrac-
tion to the 3 x 3 [ﬂt] partition. The transformation matrix [S] from the basic coordinates to the

principal directions, labeled principal mass axes, is assembled from the normalized eigenvectors

fe;} of [AL].

Define

[s] = [le)}, (ep}, {egll. (35)

The [MO} matrix is transformed to principal mass axes by the [S] matrix by the separate partitions:

[Mt] = [S]T[Mt][s] (is diagonal) .
('] = [S]TCASTICS]  (generally exists) , (36)
and [M"] = [(s17(ATI(s]  (is generally not diagonal).

By definition, the values of the mass systems that are output are the three diagonal terms of the
[ﬂt] matrix

.ot . omt . out
Moo= M B = Mt M e My (37)

Since the moment arms of the first-moment terms of the mass matrix are the
offset distances to the center of mass from the reference point, the positions of the centers of

mass (C.G.) are calculated for each system as

tr tr tr
X, = M;1 y Y, o= t:%l—-, Z = MLZ (x system),
X b X X
tr tr tr
Ma3 M2 M (y system),
Xy = i R Yy 3 M , Z_Y = .._._.._M ( 38)
y Yy Y
tr tr tr
o i 2| R i3 (z system).
a z ‘ﬁ;" v T, LS ’ﬁ;'_

5.5-14 (3/1/76)
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— Moments of inertia at the center of gravity with respect to the principal mass axes are com-
puted from the [Mr] partition by using the theorem of parallel axes and the appropriate mass system

The submatrix is labelled [I({S)].

r 2 2
11](5) = M1] - MyZy - MZYZ R
r r
Iy (S) = My - M XY Ip(S) = My - MY,
r r
13](5) = -M31 - HyXyZy, 113(5) = -M13 - Mynyy y
(39)
r 2 2
Ip(S) = My - MK - NI, ’
r r
L3(S) = Myg - MY 2, I3p(S) = My =ML
r 2
and 133(S) = My - MY,

The final attribute to be obtained is the set of principal moments of inertia with respect to
the center of mass. The Jacobi eigenvalue method is applied to the 3 x 3 [I(S)] matrix. The trans-
formation matrix [Q] from the principal mass axes to the principal directions of the momental

ellipsoid is assembled from the normalized efgenvectors {E;} of [1¢5)1.

Define

[Q] = [}, (€}, (Ex)] : (40)

The [I1(S)] submatrix is transformed to principal moments of inertia axes by the triple matrix

product

@] = (NS0 = | 0 L7 o (a1)

The one attribute that may be of interest which is not calculated s the set of principal
moments of inertia with respect to the reference point instead of the center of gravity. This

could be obtained from the eigenvalues of the [ﬁr] submatrix.

o 5.5-15 (3/1/76)
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(a) Accelerations.

Point
Mass
-
t
>
M=rXf
Grid
Point
- -
Fef
(b) Forces.

Fiaure 1. Accelerations and forces on a rigidly connected point mass.
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(b} Flyball governor.

(c) Rotating mass in a helical guide.

Examples of mechanisms producing coupled mass and inertias

5.5-18 (3/1/76)
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Fetch {Rg}, location "
of grid point G {Rc} 0

il -
Fetch {Rj} - location vector and
[Ti] - global to basic transform

\ (Loop on arid points
is= 1'2""’”97'1'(15 )

Calculate [D] (g x 6)
where {iig} = [n]{iig}

/

Myltip
[“01 = 017 Mqq10] {[*gq? = Structure mass matrix)

Point Mg

Partition:_

[Mo] = |z=7h==

Extract eigenvectors
of Mt to obtain [S]

Rotate partitions to orthoaonal
mass coordinates [S], Print §

Calculate CG locations, inertia
matrix at C4. Print m, CG, Ig

Rotate [Ig] to principal ( >
axes [Q1, Print 0, Iy ExIT

Figure 3. Flowchart of grid«point weight calculations.
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5.6 SCALAR ELEMENTS

Scalar eldments are connected between pairs of degrees of freedom (at either scalar or geo-
metric grid points) or between one degree of freedom and ground. The stiffness matrix for a

scalar spring is given by

or by
f1 = Ky . (2)

Other available forms of scalar elements are the scalar mass and the viscous damper.

Scalar spring elements are useful for representing springs that cannot conveniently be mo-
deled by the metric structural elements. Scalar masses are useful for the salective representa-
tion of inertia properties, such as occurs when a concentrated mass is effectively isolated for
motion in one direction only. The scalar viscous damper is one of two elements with exclusively

damping properties included in NASTRAN. The other s the viscous rod element, see Section 5.2.

It 1s possible, using only scalar elements and constraints, to construct a model for the
Tinear behavior of any structure. These elements are, in fact, the basis for the Direct Analog
Computer method of structural analysis (Reference 1) where inductors represaent springs, resistors
represent dampers, capacitors represent masses, and transformers represent squations of constraint.

They have also been made the basis of several digital computer programs.

Turning the electrical analogy around, we can say that the scalar elements give NASTRAN the
ability to analyze any passive electrical network, including for example, large electrical dis-
tribution systems. Heat transfer problems can also be solved because of the analogies between

heat capacity and mass, and between a heat conductor and a viscous damper.

Perhaps of greater importance to the structural analyst is the fact that electrical circuits
and heat transfer can be included as part of an overall structural amalysis, as for example, in a
problem that includes alectromechanical devices. This subject is discussed further in Sections

9.3 and 14.2,
PRECEDING PAGE BLANK NOT FILMED
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5.7 THE GENERAL ELEMENT

The general element is a structural stiffness element connected to any number of degrees of
freedom, as specified by the user. In defining the form of the externally generated data on the

stiffness of the element, two major options are provided to the user.

(1) Instead of supplying the stiffness matrix for the element directly, the user provides
the deflection influence coefficients for the structure supported in a non-redundant manner. The
assocfated matrix of the restrained rigid body motians may be input or may be generated internally

by the program,

(i1) The stiffness matrix of the element may be input directly. This stiffness matrix may
be for the unsupported body, containing all the rigid bady modes, or it may be for a subset of
the body's degrees of freedom from which some or al11 of the rigid body motions are deleted. In
the latter case, the option is given for automatic inflation of the stiffness matrix to reintroduce
the restrained rigid body terms, provided that the original support conditions did not constitute
a redundant set of reactions. An important advantage of this option is that, {f the original
support conditions restrain all rigid body motions, the reduced stiffness matrfx{need pot be
speciffed by the user to high precision in order to preserve the rigid body propertiesvof the

element.

The defining equation for the general element when written in the flexibility form is

A I [T o

where:
[2] 1s the matrix of deflection influence coefficients for coordinates {uf} when coordinates

{uy} are rigidly restrained.

[S] {s a rigid body matrix whose terms are the displacements {”i} due to unit motfons of the

coordinates {ud}. when all f1 = Q.
{fi} are the forces applied to the element at the {"i} coordinates.

{fd} are the forces applied to the element at the {ud} coordinates. They are assumed to be -
statically related to the (fi} forces, 1.e., they constitute a nonredundant set of

reactions for the element.

5.7-1 (12/15/72)
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¢

The defining equation for the general element when written in the stiffness form is

L U P S, b . , (1a)

where all symbols have the same meaning as in Equation 1 and [k] = [Z]", when [k] is nonsingular.
Note however that it is permissible for [k] to be singular. Equation la is derivable from

Equation 1 when [k] {s nonsingular,

Input data for the element consists of lists of the uy and Uy coordinates, which may occur
at efther geometric or scalar grid points; the values of the elements of the [Z] matrix, or

the values of the elements of the [k] matrix; and (optionally) the values of the

elements of the [S] matrix.

The user may request that the program internally generate the [S] matrix. If so, the Uy and
ﬁd'coordinates can occur only at geometric grid points, and there must be six or fewer u, coordi-

nates that provide a nonredundant set of reactions for the element as a three-dimensional body.

The [S] matrix 1s internally generated as follows. Let {ub} be a set of six fndependent

motions (three translatfons and three rotationé) a1dng coordinate axes at the origin of the basic

<

coordinate system. Let the re1ationship between {ud} and (ub} be
1 =

The elements of [Dd] are easily calculated from the basic (x,y,z) geometric coordinates of
the grid points at which the elements of {ud} occur, and the transformations between basic and

global (local) coordinate systems. Let the relationship between {u,} and {ub} be

{u1} - [Di]{ub} » (3)
where [Di] is calculated in the same manner as [Dd]. Then, if [Dd] is nonsingular,

[s] = [o,Jto, 17" . (4)

Note that, if the set {ud} is not a sufficient set of reactions, [Dd] is singular and [S] cannot
be computed in the manner shown. When {ud} contains fewer than six elements, the matrix [Dd] is
not directly invertable but a submatrix [a] of rank r, where r is the number of elements of {u,}, —

can be extracted and inverted.

5.7-2 (12/15/72) o
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A method which is available only for the stiffness formulatfon and not for the flexibility
formulation will be described. The flexibility formulation requires that {ud} have six components.
The method 1s as follows. Let {ud} be augmented by 6-r displacement components {ud'} which are

restrained to zero value. We may then write
u D -
‘-.9:) = --9: {up} = (B} . (5)
l Y4 By
The matrix [Dd] is examined and a nonsingular subset [a] with r rows and columns is found.

{ub} is then reordered to identify its first r elements with {ud). The remaining elements of {ub}

are equated to the elements of {ud‘}. The complete matrix [5] then has the form
- a , b
G [ P : (6)
0 I

) I B 2L _ o)
0

with an inverse

Since the members of {uy'} are restrained to zero value,
fuy} = [0 J{uy} , (8)

where [Dy.]is the (6xr)partitioned matrix given by

£0.] =j--=-- . (9)

The [01] matrix is formed as before and the [S] matrix is then

[s1= 00,101 . (10)

Although this procedure will replace all deleted rigid body motions, it is not ngcessary to do
this if a stiffness matrix rather than a flexibility matrix 1s fnput. It is, however, a highly
recommended procedure because it will eliminate errors due to nonsatisfaction of rigid body pro-

perties by imprecise input data.

The stiffness matrix of the element written in partitioned form is

5.7-3 (12/15/72)
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] 111 Xid -
K 2|aenne- O . 11
ee T
Kig + X4q
When the flexibility formulation is used, the program evaluates the partitions of [Kee] from
{2] and [S] as follows:
(k= C7h (12)
(Kl = -(27's] (13)
Trqe-1
[Kygl = [S17C217'0s) (14)
If a stiffness matrix, [k], rather than a flexibility matrix {s input, the partitions of
[Kee] are
EKﬁ] = [k] » (15)
[K‘id] = '[k][S] » (16)
T _
[Kygl = (STLKICS] (17) =
No internal forces or other output data are produced for the general element.
5.7-4 (12/15/72) <
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5.8 PLATES

NASTRAN includes two different shapes of plate elements (triangular and quadrilateral) and two

different stress systems (membrane and bending) which are, at present, uncoupled. There are in all

a total of thirteen different forms of plate elements as follows:

1.

2.

10.

11.

TRMEM - A triangular element with finite inplane stiffness and zero bending stiffness.

TRIM6 - A triangular element with finite inplane stiffness and zero bending stiffness.
It uses gquadratic polynomial representation for membrane displacements. Bilinear varia-
tion in terms of the planar coordinates of the element is permitted for the thickness of

the element.

TRBSC - The basic unit from which the bending properties of the other plate elements,

except TRPLT1, are formed. In stand-aione form, it is used mainly as a research tool.

TRPLT - A triangular element with zero inplane stiffness and finite bending stiffness.
It is composed of three basic bending triangles that are coupled to form a Clough com-

posite triangle; see Section 5.8.3.3.°

TRPLT1 « A higher order triangular element with zero inplane stiffness and finite bend-
ing stiffness. It uses quintic polynomial representation for transverse displacement.
Bilinear variation in terms of the planar coordinates of the element is permitted for

the thickness of the element.

TRIA1 - A triangular element with both inplane and bending stiffness. It is designed
for sandwich plates in which different materials can be referenced for membrane, bending,

and transverse shear properties.

TRIAZ - A triangular element with both inplane and bending stiffness that assumes a solid

homogeneous cross section.

QDMEM - A quadrilateral membrane element consisting of four overlapping TRMEM elements.
QDMEM1 - An isoparametric quadrilateral membrane element.

QDMEMZ - A quadrilateral membrane element consisting of four nonoverlapping TRMEM elements.

QOPLT - A quadrilateral bending element. It {is composed of four basic bending triangles.

5,8-1 (12/31/77)
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12. QUADT - A quadrilateral element with both inplane and bending stiffnass, similar to TRIAL.
13. QUADZ - A quadrilateral element similar to TRIA2.

Anisotropic material properties may be employed in all plate elements. TRMEM and TRBSC are the
basic plate elements from which TRPLT, TRIAI, TRIA2, QOMEM, QDMEMZ, QDPLT, QUAD1, and QUADZ2 elements
are formed. The stiffness matrices of the plate elements are formed from the rigorous appiication
of energy theory to a polynomial representation of displacement functions. An important feature

in the treatment of bending is that transverse shear flexibility is inciuded.

All of the properties of all the plate elements, except those of TRIM6 and TRPLT1, are assumed
uniform over their surfaces. For elements TRIM6 and TRPLTT, the thickness as well as the tempera-

ture can have bilinear variation over their surfaces.

The detailed discussion of plate elements is divided into subsections, according to the fol-
Towing topics: membrane triangles; the basic bending triangle; composite triangles and quadrila-
terals; the treatment of inertia properties; the isoparametric quadrilateral membrane element,
QDMEMT1; linear strain membrane triangle, TRIM6; and the higher order triangular bending element,
TRPLTI. The accuracy of the bending plate elements 1in various appiications is discussed in

Section 15.2 and the accuracy of the membrane elements is discussed in Section 15.3.

5.8-Ta (12/31/77)
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5.8.1 The Membrane Triangle
Consider the triangular element shown in Figure 1 below.
Yy
Xooa Ve
Material Orientation Axis
Xy 0
0,0 X
Figure 1. Triangular Membrane Element
u and v are the components of displacements parallel to the x and y axes of the local (ele-
ment) coordinate system. The inplane displacements at the corners of the element are represented
by the vector -/
Ya
Va
Yp
lub = . . (1)
b
Ye
Ve
Let [Kee] be the stiffness matrix referred to the vector {ue}; i.e.,
[Kee]{ue} = {fe} , (2)
where the elements of {fe} are the inplane forces at the corners of the element. The stiffness
matrix [Kee] is derived by constructing an expression for the strain energy of the element under -
the assumption that the inplane displacements, u and v, vary linearly with position on the surface
of the element, ,
5.8-2 (12/29/78) \ =
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cF =LOR \:;“,L‘f. {
- u = gy +qgyx + RES )
YT %9 TG (4)
The quantities Qys 95 + - - Qg May be regarded as generalized coordinates to which the dis-

placements at the corners of the element are uniquely related,
(ue} = [H){q} . (5)

The elements of [H] are easily evaluated by inspection of Equations 3 and 4. Since the in-
verse of [H] will Tater be required, the choice of six generalized coordinates to match the six
corner displacements is not accidental. Indeed, it is fortunate that the complete linear repre-
sentation of the displacement functions, Equations 3 and 4, contains six coefficients. A similar-

ly symmetrical relationship cannot be achieved for the bending triangle, as will be seen.

The membrane strains are related to the generalized coordinates by

3u
EX = _X = q2 ' (6)
= av -
) v u o
Y U Sty T G5ty (8)
or, using matrix notation,
’Ex
fe} = qe 0= [HIa@r . (9)
WY

The membrane strain energy of the element is

E, %J‘[cxsx o, + A, (10)

where t is the thickness of the element. Since the strains, and therefore the stresses, do not

vary with position, Equation 10 may be written in matrix notation as
E = ~% At{o} (e} . (11) -

S

The stress vector, {g}, is related to the strain vector by the two-dimensional elastic

5.8-3
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modulus matrix [Ge]'
{g} = [Ge]{e} . (12)

In NASTRAN materials may be entirely anisotropic so that the only restriction on [Ge] is that

it be symmetrical. The user can also specify isotropic materials, in which case

B E vE 0—
'l-uz T-v
vE E
R I "
B 0 0 G |

In the case of anisotropic materials, the user specifies their properties with respect to a
particular orientation, which does not necessarily correspond to the principal axes. The input
data for each triangular element includes an angle, 8, that references the material orfentation
axis to the side (:), (:) of the triangle (see Figure 1). The materfal elastic modulus matrix is

transformed into the element elastic modulus matrix by

;
(6] = (V16 Il (14)

where
, i cosze sinze cososine )
" [ul sin’g cosze -cos8sing (15)
-2cos8sing  2cosfsing cosze - sinzéj

is the transformation matrix for the rotation of strain components.

Substitute Equation 12 into Equation 11 to obtain an equation for the elastic strain energy

i{n terms of strains

S

E, = % At(e}T[6, (e}

By virtue of Equations 5 and 9 and the nonsingularity of [H],

(e} = [HI0H) tuy)

5.8-4
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so that, defining [C] = [HeJ[H]" ,

E % at(u 3 Tre1"C6, JICItu,} (18)

S

The strain energy of any element, expressed in terms of its stiffness matrix, s

E, = -;—(ue}T[xee]{ue} , (19)

so that, comparing Equations 18 and 19,

[kee] = At{cI7(s,ICC] . (20)

ee

The only remaining analytical task of any consequence, before turning the job over to the

computer programmer, is to evaluate the elements in the [C] matrix. The result of this axercise

is
— -
1 I Foor I
-L 0 L o 'o0'o
S S I ST I
1 (*e | I X | I
[c] = 0 —(—- 1) 0o . o 'L | . @
S 75 ) DR B 7Y B
1 (" )' b o X by Tty
Ye\*p ! Xy I Ye*p ‘ X l ycl
L | | l [

As a Tast step, the stiffness matrix is transformed from the local element coordinate system

to the global coordinate system of the grid points. Let the transformation for displacements be
(ue} = [T]{ug} . (22)
Then
T
[yl = [T17IKGeIITT . (23)

Thermal expansion of an element produces equivalent loads at the grid points. Thermal expan-

sion is represented by a vector of thermal strains

= fae}f . (24)

where {ae} s [U]']{um} {s a vector of thermal expansion coefficients. [U] is given in Equation 15

5.8-5 (4/1/72)
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and {am} is the vector of thermal expansion coefficients in the material axis system. When grid
point temperatures are specified, T s assumed uniform and equal to the average of the temperatures
specified at the corners of the element. T may also be specified priorly with element temperature

field data. The three elements of {am} are independent for anisotropic materials.

An equivalent elastic state of stress that will produce the same thermal strains is
(ct} 3 [Ge]{et} s (Ge]{ae}T . {25)
An equivalent set of Toads appligd to the corners of the element is
P} = AtC] (o) (262)
L GHRCRN (26b)

The validity of the first form, Equation 26a, follows from the general energy requirement
that

T - T .
{ug} {Pe} el {ct} av . (27)
The equivalent loads are transformed from local element coordinates to grid point co- i?%i
ordinates by
ey = My . (28)
g e
After the grid point displacements have been evaluated, stresses in the element are computed
by combining the relationships
(ue} = [T]{ug} , (29)
{e} = [C](ue} R (30)
{o} = [Ge]{e - gt (31)
to form
{c} = [Ge][c][T]{ug} - [Ge]{“e}T . (32)
The principal stresses and the maximum shear are computed from the elements of (g}. The =
direction of the maximum principal stress is referenced to the side (:), (:) of the triangle.
5.8-6 (4/1/72) % -
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5.8.2 The Basic Bending Triangle

The coordinate system used in the analysis of the basic bending triangle is shown in Figure

0,0 ' X

Figure 2. Coordinate Geometry for the Basic Bending Triangle

The deflection w is normal to the x,y plane, with positive direction outward from the paper.

The rotations of the normal to the plate, a and 8, follow the right-hand rule.
The stiffness matrix is developed in terms of the translaticns and rotations at the three
vertices of the triangle. The displacement vector is defined by
T
{ue} a Lwa' aap Ban wb' ab. Sbo wco aC' SCJ . “)

Before proceeding with the details of the derivation, some general relationships will be des-
cribed. Of the nine degrees of freedom of the triangle, three describe rigid body motions. The
stiffness matrix will be partitioned according to rigid body and flexible body motions in order to
reduce computational effort. In general, the vector of forces applied to the vertices is related

to displacements by
{fe} = [Kee]{ue} . ’ (2)

Partition this equation as follows

!
f5 Kiv ) Ka ] V4 ~
- 3T T , (3)
fa 1a ! K Ya
where -
5.8-7



ORIGINAL PACE 13

STRUCTURAL ELEMENTS FOR THE DISPLACEMENT METHOD
OF PCOR QUALITY

_ ; T
{Ui} L_wbp C‘-b: Bb' wcn aC' SCJ ’ (4)

{ua}

Lwge 90 8,7 (5)

[Kii] is computed from the elastic properties of the triangle. [Kia] and [Kaa] are computed

as follows.

The partition [Kii] is nonsingular so that Equation 3 can be rearranged as follows to place

u; and fa on the left hand side

|
Y Ki | Ky Kia f1
]
- |- -F - ———-=- it . (6)
T, -11 T, -1
fa Kia 39 Kaa = Sia iy Kia .

When no forces are placed on the Uy coordinates, i.e., when fi = 0, the plate moves as a

rigid body such that
o) o= ISy (7)

where the elements of [S] may be calculated from simple kinematics. Comparing Equation 7 with the

top half of Eguation 6, it is seen that
[Kia] = - [KH][S] . (8)

Furthermore, the forces, fa‘ are completely determined by the forces, fi’ so that, from the lower

half of Equation 6
T -1
tKaa] - [Kia] [Kﬁ] [Kia] = 0 » (9)
or, using Equation 8,
[K,,] = (170K 1057 . (10)

The main part of the effort is the calculation of [Kii]' In the calculation, use is made of

the following transformation between relative motions, {ur}. and generalized coordinates, {qr}.

{ur} = [H](qr} . (11)
where

5.8-8
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[ur} 2 fui} - [S]{ua} . (12)

The coordinates {qr} are taken to be the coefficients in a power series expansion of normal

deflection, w, aver the surface of the plate. The stored elastic energy is expressed as

v, = %—J‘ fq Y'Ik%Ma,} A (13)

where the integration takes place over the surface of the plate and [kq] is the stiffness matrix

per unit area. The elements of the stiffness matrix [Kq], referred to {qr} are then computed from
g 4 q
Krs J krs dA . (14)
The stiffness matrix [K11] is then obtained from
-1 -1
COM I ol O [ Call (15)

Note that [H] must be a nonsingular six-by-six matrix. It is this fact that causes all the
controversy in the development of plate elements, since if [H] were a six-by-seven matrix, ft

would permit the inclusion of all of the cubic terms in the power series expansion for w.

Detzils of the analysis follow.
5.8.2.1 Rigid Body Matrix, [S]

We start with an easy task, the calculation of [S]. From Figure 2 and elementary kinematics,

in rigid body motion

W ERER ]
b | | b
ay 0o | 10| (v,
l |
8 0 0
b P 0T
g —I_——- ay . (16)
we 1 | Y. I “Xe
a. 0 ‘ 1 l 0 Ba
! l
8 Q 0 1
< | ! -

The six-by-three matrix in this equation is [S].

5.8-9
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5.8.2.2 Power Series Expansion

Let the displacement normal to the plate, with {”a} = 0, be represented by the following series:
Wom oYk by o+ q,xz *goxy + q3y2 + q4x3 + qsxy2 + 06y3 . (17)

Note that the x2y term is omitted. The omission of one of the terms in the series is necessary
in order that [H] be nonsingular. The coefficients Yy and yy are transverse shear strains which
are assumed constant throughout the plate, The g's are the generalized coordinates discussed

above.

The omission of the xzy term destroys the invariance of the properties of the element with
respect to rotation of the x, y axes. In fact, since the x-axis coincides with the edge (:), (:)
of the triangle, the omission of the xzy term is equivalent to the imposition of a constraint
such that the rotation o varies Tinearly from (:) to (:). An interesting consequence is that, if
another triangle with a similar constraint lies adjacent to the side (:), (:), the deflections and

slopes of the two triangles will be continuous at all points along their common side.

If an arrangement of elements can be contrived such that continuity of displacements is pre-
served along all element boundaries (as in the Clough triangle, Section 5.8.3.3, for example) then
certain theorems can be proved about the resulting structure. For example, if the "consistent”
mass Tumping technique (see Section 5.5) 1is used, then all of the vibration mode frequencies will
be too high, because all of the approximations used in deriving the finite element model can be
interpreted as the progressive application of constraints. It does not follow, however, that ele-

ments with displacement continuity give better results than all other elements (see Section 15.2).

The rotations are obtained from the definitions of transverse shear strain, which are, for

our problem,

= aw
Yx xtE o (18)
= aw -
Yy Iy c oo (19)
Hence, from Equations 17, 18 and 19
@ 3 gy + 2q3y + quxy + 3q6y2 , (20)
2 2
-8 = 2q1x * oyt 3q4x *agyt . (21)

5.8-10 (12/29/78)
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5.8.2.3 General Expression for [H] Matrix

One of the required tasks is to express Yy and Yy in terms of the generalized coordinates,

9, Let the relationship be

{v} = i;;} = [qu]{qr} . (22)
The vector {“r} can be written directly as

{“r} 2 [HuyJ{Y} + [ﬁ]{qr} . (23)
Then, from Equations 17, 22, and 23

[4] = [HyyICH g + (D (20)

We can write down [HuY] and [H] from preceding results. From Equations 17, 20, 21, and 23

" 9
% 9
% x 9 ‘
= [H,y] + [H] , (25)
w q4
¢ Y
Y
ac 95
Be 9
where
e 1 o]
xb | 0
0o o
|
o o
iyl = [ ———— : (26)
XC yC

(=]
o

5.8-1
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and
xbzllo}oixtf;c{o1
ER A e A
‘_Zj‘b__} o :___0___: _ij_z__{ 0 ___i o
S
h.--Zxc I -Ye : ] } -3xc2 ; -yc2 ; 0 B

5.8.2.4 Elastic Relationships

The following relationships are obtained from the theory of deformation for plates.

The curvatures are defined by, {using our notation)

a .38
Xx ax

- 2o
Xy 3y R (28)

da _ 38
X 3y

Xxy

Bending and twisting moments are related to curvatures by

My Xx
My = [0] Xy , (29)
Mey Xy

where [D] is in general a full symmetric matrix of elastic coefficients. For a solid isotropic

plate,

- | -

N I R B

Eh | |
o] = v 1 0 . (30)
2009 | 1 _
| I
0 0 =
| | I =z
5.8-12
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For anisotropic materials, the orientation between the x, y axes and the axes that the user

specifies for computing [D] must be accounted for. The method used is identical to that for the

membrane triangle, see Section 5.8.1.

The positive sense of bending and twisting moments and transverse shears is given by the
following diagram.
*M
Xy

M
[0) Y
v
Y
M
Mxy«— ® VX VX O‘—» Mxy
MX
)
y
M, -
y %
M
Xy
X

The following moment equilibrium equations are obtained from the diagram:

BMX SMX

Wttt O - (31)
M M
Y s XY 5

Vy + 3y * 5 0 . (32)

Transverse shear strain; are related to the shear forces by

YX VX
= [J] (33)
Ty Yy

[J] 1s, in general, a full symmetric 2 x 2 matrix. For a plate with isotropic transverse shear
material

5.8-13 )
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A= 4
1 0
L = I , (34)
Gh
Q 1
where G is the shear modulus and h* is an "effective" thickness for transverse shear.
5.8.2.5 Evaluation of [HYq] Matrix
From Equations 31, 32 and 33 we may write
ENt MM,
Yo Ttk oy - 912 vyt x ’ (35)
and
B M M|
s - -2 s XX . —_t ¢+ XY
Yy 2| 5%t 3y J22 [:ay * 3 : (36)
From Equation 29
M 3X 3x X
X X L .5 A
x © fnax thzax 0 -
L= 4
aM X 3x 3x
= =X X X
v D2 3% * D22 57 * V23 oy
s (37)
M 3y 3x D¢
XY o X X
3 D3 3% * D23 5 * 033 i
aM ¥ X X
.3 A X 4 Xy
3y Dy355 * D35y * D33 7y
where the symmetry of the [D] matrix has been used.
The curvatures may be related to the generalized coordinates by means of Equations 28, 20,
and 21.
Thus
Xe * -3 = 20 +6xq
Xy = %% = 29y + 2xgg + byqg , (38) =
3 3
Xy T BT Ry T 29t W
5.8-14 =y
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and

ax 3x 3x

X . . s N .
X 6q4, X 2q5’ IX 0

. ( 39)

3x 3x 3x (

X + 0. —Y a P 5 -
W— 01 ay 6Q5» ay 4QS x

Substituting into Equation 37 and thence into Equations 35 and 36

3Mx

x T 603394 + 2Dy,05
M

7y .

3y 805595 + 40,395

, (40)

o1k:”

4

X1
L]

6Dy 394 *+ 205505

X!
3y © 0239 * 4D3395
and
Yo T ~Ipy[60y79, + ypa5 + 6Dy3a5 + 405505 - 9,560,505 + 4D,05 + 60,50, + 20550.],
(41)
or
Yx T 7 600Dy + dyaDyglay - (939020, + 4D53) + 63,,0,3]ag - 6(31;0,5 + Jy505))06 -
(42)
Interchanging J12 for J]1 and Jzz for J12, we also get
Yy 778Uy * Ippia)ag - [yp(20y; + 4D35) + 6355053105 - 6031503 + pp0pp)0 -
(43)
The complete [HYq] matrix is, therefore, from Equation 22
tg 1
010 0 1830y + d1505) ; J17(20y5 + 4D33) * 63;,0,5 : 6(Jy1D0p3 + Jq205)
H "-'L—'— ——,————————-——————' ——————
C Yq] I r-' ] I -+
i
0 [0 10 16Qaya00 + JppDy3) 1315(20,5 + 4D35) + 6055055 | 6(3;,0,3 + 355099
~ (a4)

§.8-15
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=
The complete [H] matrix can now be written explicitly using Equations 24, 26, 27 and 44. This
will not be done here. Note that, if the plate is assumed to be rigid in transverse shear, [qu]
is null,
5.8.2.6 Strain Energy and Stiffness Matrix [K9]
The strain energy for a plate may be written
1 T T
Vo = 3 [ DM 2+ (VI {v}]dA (45)
where {M} is the vector of bending and twisting moments, {x} is the vector of curvatures, {V} is
the vector of transverse shears, and {y} is the vector of transverse shear strains. From previous
results, Equations 29 and 33;
1 T T
Vg = [ [Ixt[0Jx} + (v} [G]{y}]aA , (46)
where [G] = [J]']. The {x} and {v} vectors are related to the generalized coordinates by
{x} = [qu]{qr} ) 7 (47)
and A4
{y} = [qu}{qr} . (48)
[HYq] is given by Equation 44, [qu] is, from Equation 38:
[ 1 s I l | e
2 | 0o | o 6x | 0 | 0
—-l-—-l__-;_'_"l—-_l_—'
hl=]o ol 2 0 x|, 6 : 49
Mol [ T R S T (43)
| | | | |
0 ] 2 i 0 I 0 | 4y | 0
bp— —
Substituting Equation 47 and Eguation 48 into Equation 46,
1 T T T
vV, = + A .
e 3/ [{a,} [qu Dqu HYq GHYq]fqr}]d (50)
From Equation 13
kq = T + T R —
[ = TH g Ton v H oK ] (51)
5.8-16 7
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and from Equation 14 the elements of [k“] are

q . T T
Krg [{H JDICH (IR + ACH }'[GIEH () , (52)

where {er} is the rth column of [qu], etc. Note that, since the elements of fHYq] are indepen-
dent of x and y, the integration of the second term in Equation 50 is trivial and has been perfor-

med in Equation S2. A is the surface area of the triangle.

In Equation S1 explicitly

P —
20, i 20,4 { 20, : 60, ; 20, + 4yD, : 650,
T T
[0ltH ] = | 20y, | 2,4 I 20, ! 6x0;, | 24Dy, + 4yD,, | 6yDyp | - (53)
P A L I
13 T3 Tz Py %3 T W3 ) B3
| | 1 e, |
Wy | My | 4Dy, | Ty |, 8D, I 1290y,
N I | |
| l | I 4xD23 I
L T L PP B 21 N 80, | 12yDp4
L l | |
I | | | 40y, |
402 } 40,3 I 4Dy, : 12xDy, ; + 8yD, : 12y0y,
T — — Snm— amam— - —
H =
(Hyq] (010K, 1 | | | ) 12¢%0,, |
121Dy | 12x0yy | 12x0,, | 36x°Dy, |, 20xy0, 5 | 36xy0;,
I | l _
| I | ) l wlo,, |
Dy, | 8xDy, { 4xD, { 12, |, 16830, | 12xy0,,
+ 8yD + 8yD + 8yD + 24xyD 2
13 : 33 | 23 | 13} N T6y2033I + 20y%0,,
l | | | 12xy0,, | )
1201, | T2yDyy | 12D, | 36xyD;, | + 245 | 36y°D,,
B | ! l l 23 | |
(54)
5.8-17
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It is convenient to define the following integrals:

[dA = A [l = o P,

[xdA = %A [y2dA = pyzA , (55)
Yy = 2

[ydA VA [xydA Puy A

X and y locate the center of gravity of the triangle, o, and b, are the radii of gyration about

vertex (:) of the triangle. pxyzA is the cross-product of inertia.

After performing the integration, the complete [Kq] matrix is

K9 = [K¥1+ K], (56)
where
— | ] 1 = -
0 oo I3 [ ) : 12 ; 0
1 13 12 n + P 2
i | l 13
_ | s
| ] - ] - [
xD
R N T T R P
R | *80 |
| L s,
| 0 L 3y, |, o 30y,
| "% |
[KX] = 4a - ——— T T T
* 2
SYMMETRICAL | 2 30,70y, 2
| 900y | 20 | 9,0y
| + Goxy 013 ] Y
L e e L —
2
| °x D22 | 2
2, | oxy D2
| +40,,°0 Y
xy “23 +6 2D
2 |+ 60,0,
I + 4py 033 ' Yy
A
|
2
| %0y D2
(57)
and
Y1 . T
K] = AW 1TT6IH ] (58)

Note that [KY] - 0 if [G] = = because [HYQ] goes to zero in this case.

5.8-18
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5.8.2.7 Summary of Calculations for Stiffness
The following operations are required to obtain the stiffness matrix [Kee] referred to
degrees of freedom at the vertices of the triangle.

1. Compute elastic matrices [D], [G], and [J] = [6'1] in the reference coordinate system

for the basfc triangle (see Figure 2).

2. Compute [KX] from Equation 57 {6x6)

3. Compute [HYq] from Equation 44 (2x6)
4. Compute (K'] from Equation 58 (6x6)
5. Compute [K%] from Equation 56 (6x6)
6. Compute [HUY] from Equation 26 (6x2)
7. Compute [R] from Equation 27 (6x6)
8. Compute [H] from Equation 24 (6x6)
9. Compute [Kii] from Equation 15 (6x6)
10. Compute [S] from Equation 16 " (6x3)
11. Compute [Kia] from Equation 8 (6x3)
12. Compute [Kaa] from Equation 10 (3x3)
13. Assemble [Kee] from Equation 3 (9x9}

For triangles that are rigid in transverse shear, steps 3, 4 and 6 are omitted. After [Kee]
has been formed it is transferred from the local element coordinate system to the global coordi-

nate system of the surrounding grid points, in the same manner as for all other elements.

5.8.2.8 Equivalent Thermal Bending Loads

The stress-free strains developed in a free plate due to a variation of temperature with depth
are:
Ext

{e,} = el * {ue}T , (59) _§

Ye
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where T is the temperature above the reference state and {ae} is the vector of thermal expansion

coefficients in the element coordinate system.

An applied stress vector which would produce the thermal strains is:

{ct} = [Ge]{et} s (60)

where [Ge] 1s the matrix of elastic coefficients at the point on the cross section. The work done

by the applied stress field on a strain field {ec} is:

Wy = [ av (1)
v

where the integration is carried out over the volume.

The work done by equivalent thermal loads (P;} acting on grid points (in the global coordinate

system) is
6T
W, = {p .
¢ { g} {ug} (62)
so that, comparing Equations 61 and 62 ?
t . 3 T
Pg e f{e} {o,} dv . (63)
9 v
The strains {e} are related to the curvatures {x} by
{E} = 'Z{X} ] (64)
where z is measured from the neutral surface of the plate. Also, from Equations 59 and, 60
oy} = [6,JadT , (65)
so that
t . L T
Pl = [ 2076 Ma T av . (66)
9% .
5.8-19a (1/30/81) %
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It will be assumed that the temperature varfes only in the z direction, i.e., that it is

uniform with respect to x and y. It is convenient to define the equivalent thermal moment vector

M} = -f[Ge]{ue}Tz dz . (67)
4

Note that, if the temperature varies linearly over the cross sectfon such that

T = T4 Tz , (68)

then
sz dz = T'fzz 4z = IT" (69)
r4

where I is the moment of inertia of the cross section and T' is the thermal gradient. For plates
in which .the material moduli and the thermal expansion coefficients of the effective bending
material do not vary with depth, the vector of equivalent thermal moments {Mt} is related to an

"affactive" thermal gradient, T', by

(Mt} = -[Ge](ae}l T (70)
where

™ -}frzdz , ()

and the integration is carried out over the effective bending material. In NASTRAN the user has
the option of providing either {Mt} using Equation 67 or T' using Equation 71. For s011d homoge-
neous plates the further option is provided to specify the temperature as a tabular function of
depth, in which case Equations 70 and 71 are evaluated by the program. Equation 67 should be used
if it is desired to include the effect of temperature gradient on the material properties, [Ge]

and {ae}- If Equation 71 {s used, NASTRAN assumes that [Ge] and {ae} are constant for the element;

they are computed for the average temperature, f.

Substituting Equatfon 67 into Equation 66,

Peoe s fpaT e , (72)

9%
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where the integration is carried out over the surface of the element. The vector of curvature,

[x], is Yinearly related to the vector of generalized coordinates {qr} by Equation 47. Thus
t . 3 T
% T JaT thel g e (73)
A

Note, from Equation 49 that the elements of [qu] are at most linear functfons of x and y. Thus,

since (Mt} is constant over the surface,

t . 2 T z

e T (Aa T [ (R3] ) (78)
whera [qu(i,§)] is [qu] evaluated at the centroid (x,y) of the plate and A is the surface area.

The generalized coordinates {qr} are related to the relative corner displacements {”r} by the
matrix [H] in Equation 11. Let the relationship between the relative corner displacements and the

global grid point displacements {ug} be

fu} = [7] (0 S (75)
Then, substituting Equations 11 and 75 into Equation 74, i%%i
t 3 T rp=14T ==
= —— 9’ M s
s 7 T (Atugh 117 047107 M o (R,5)] u3) (76)
50 that, performing the indicated differentiation,
t T rg=14T - =
P} =
(Pgh = ALTIT (W71 [H o (R.5)] (M) (77)
Equation 77 {s evaluated by the program to obtain the equivalent grid point thermal Toads.
5.8.2.9 Recovery of Internal Forces
The internal forces are recovered at a point (xo.yo) which is either the center of gravity
(x,y) or, in the case of a Clough triangle, vertex ¢ (xc,yc).
The first step after transforming ug into Vg is to obtain the relative motions at vertices
b and ¢ from )
{UY‘} = (Ui} - [S]{Ua} . (78)
5.8-19¢ (1/30/81) N
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Then the generalized coordinates, {qr}, are evaluated from
-1
{qr} = [H] {ur} . {79)
The curvatures are evaluated from Equations 47 and 49 with x = Xg and y = Yo'
{x} = [qu]{qr} . (80)
Moments are then gbtained from
{M = [D]{x} - {Mt} s (81)
where [D] is the matrix of elastic bending coefficients (see Equation 29) and (Mt} is the equivalent
thermal moment vector {see Equation 67).
The transverse shaars are evaluated from Equations 31 and 32 and the subsequent numerical
reduction of coefficients.
The details are as follows. Note first that {Mt} is uniform over the surface. Then
g My b
X X ay - -
= - 6Dyqq4 - 205,95 - 60305 - 403395 > (82)
M aMx
Yy = - 3§1 Y
= - 6Dp05 - 4Dp3d5 - 6Dy39y - 205395 : (83)
Equations 82 and 83 may be written in matrix form as
VX
W= gy (= K'lga : (84)
Y
where
o ''o 'o 'en,, '20,, + 4D, 6D
v : | 11T 19932 33 1°%23 ,
Ky = - --,--}__;--—;--——:-— (88) -
| 1
0 ; 0 [ 0 603 603 16Dy
5.8-20 (4/1/72) W
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The bending and twisting moments can be reduced to outer fiber stresses and combined with membrane
stresses in the composite plate elements. If, in addition, the temperature is spacified by the
user at a point where outer fiber stresses are calculated, the thermal expansion due to the differ-
ence between the specified temperature and the temperature that would be produced by a uniform
gradient, T', is assumed to be completely restrained. Stated differently, the second and higher
order moments of the thermal expansion are assumed to be completely restrained by elastic stiff-

ness. The resulting stress increment is
z . 1 - - T
{20} [Ge]{ae_(T TO T'z) . (86)

where [Ge] and {ae} are evaluated for the average temperature of the element, T.
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5.8.3 Composite Plate Elements

5.8.3.1 The Overlapping Composite Quadrilateral Membrane Element, QDMEM

The quadrilateral membrane element, QDMEM, is composed of four overlapping triangular
elements. Since four points, in general, do not lie in a plane, care must be taken to ensure
equilibrium and compatibility. Rather than try to define a warped surface, an averaging process
1s used with noncoplanar triangles. If a highly warped or curved surface is being analyzed, it
is suggested that the user employ four triangular membrane elements and specify the location of
the center point. The only penalty will be three extra degrees of freedom. The matrix formula-

tion time will be somewhat less. .

The quadrilateral is divided into four triangles as shown in the figure below:

4 4
3 3
) . 1 .
I
1 2 1 2

If the corners do not lie in a plane, the composite element forms a tetrahedral shell.

The thickness used for each triangle is one-half that given for the quadrilateral. Since no
special calculation time 1s saved by generating a unique element coordinate system, the locations

-
of the cormer points are used to calculate individual coordinate systems for the triangles.

The stiffness matrix of the composite element is simply equal to the sum of the stiffness
matrices for the component triangles, each transformed into the global coordinate system. Equi-
valent temperature loads are computed for each triangle separately and summed. Ouring stress
data recovery, the state of stress in the composite element is assumed to be the average of the

states of stress fn the component triangles.

The QDMEM! element described in Section 5.8.5 and the ODMEM? element described in Section
.8.3.4 are more accurate elements. The QDMEM element was developed earlier and it 1s included in
the present version of NASTRAN primarily to provide a rerun capability for previous analyses. A

comparison of the accuracy of the three elements is made in Section 15.3.

5.8-21 (12/31/77)
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§5.8.3.2 The Quadrilateral Bending Element

The quadrilateral bending element uses two sets of overlapping basic bending triangles as

shown below:

For each triangle, the x-axis lies along a diagonal so that internal consistency of displacements
and rotations of adjacent triangles is assured. Each triangle has one-half of the bending stiff-

ness assigned to the quadrilateral.

In a preliminary operation, the corners of the quadrilateral are adjusted to lie in a median
plane. The median plane is selected to be parallel to, and midway between, the diagonals. The
adjusted quadrilateral is the normal projection of the given quadrilateral on the median plane.
The short line segments joining the grid points to the corners of the adjusted quadrilateral

element are assumed to be rigid in bending and extension.

The logical arguments supporting the chosen arrangement for the quadrilateral bending

element are as follows:

5.8-22 (12/29/78) —
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1. For the special case of a square element, its properties are invarfant with respect to
90° rotations, thereby compensating an important defect of the basic bending triangle.
Since the purpose of a quadrilateral element is to model (nearly) rectangular fields of
grid points, the property of rotational invariance should provide improved accuracy

over the simple basic triangle for such applications.

2. It is simple to program because the stiffness matrices of the component triangles are

directly additive.

The accuracy of the quadrilateral plate element for the solution of problems is compared
with that for other composite elements in Section 15.2, "Modeling Errors in the Bending of Plate

Structures."”

In stress data recovery, the stresses in the subtriangles are calculated at the point of

intersection of the diagonals and averaged.

Since coupling between membrane stiffness and bending stiffness s not, at present, included
in NASTRAN, quadrilateral elements with both membrane and bending properties are treated by
simple superposition of their membrane and bending stiffness matrices. Specifically, the over-
lapping quadrilateral membrane element, QDMEM, is combined with the bending quadrilateral,
described above (QDPLT), to form QUAD1 and QUADZ.

For QUAD1 and QUAD2 elements (as well as for TRIA1 and TRIAZ elements), strains and curvatures
are also recovered. Specifically, strains are derived from the membrane component (see Equations
6, 7, 8, 9 and 17 of Section 5.8.1) and curvatures are obtained from the bending component (see

Equations 28, 38 and 47 of Section 5.8.2).

5.8-23 (12/29/78)
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5.8.3.3 The Clough Bending Triangle

The Clough bending triangle (Reference 1) is formed by subdividing the given triangle into

three basic bending triangles as shown below.

The x-axis of each subtriangle corresponds with an exterior edge, so that continuity of
slope and deflection with surrounding Clough triangles {s assured. The added grid point in the
center is like the other grid points in that equilibrium of forces and compaiibi1ity of displace-
ments are required at the center point. In addition, the rotations parallel to the internal-
boundaries at their midpoints, poinfs @, @ and @ , are constrained to be continuous across
the boundaries. The equations for slopes in the basic triangles contain quadratic and lower or-
der terms, and since the normal slopes along interior boundaries are constrained to be equal at
three points (both ends and the middle), it follows that slope continuity fs satisfied along the
whole boundary. Displacement continuity on all boundaries is automatically satisfied when the
displacement function contains only cubic and Tower order terms. Thus complete continuity of

slope and displacement on all interior and exterior boundaries is assured for the Clough triangle.

The imposition of the internal slope constraints causes the only additional complications
in the analysis of the Clough triangle. In each of the component triangles, expressions for the
rotations w1 and wz (see figure on following page) are obtained in terms of the displacements at

its vertices.

5.8-24 (12/29/78)
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vy !
R a

CrF ALl 3;,>":;
X
0"t
= [H,lu) t=1, 11, or 111 . M
&wzt,
where
{ut) = LWy O Ba. Wps O Sb' V‘cs ) BCJT . (2)

is the vector of corner displacements, expressed in a local coordinate system for the component
triangle. {"t} is a rotated subset of the displacements at the corners of the composite tri-
angle, {ue}, and the displacements at the center, (uc), expressed in a Cartesian coordinate

‘system for the element as a whole,

+

{ut} = [Tte]{ue} [th]{"c} . (3)
The equations of constraint are

¢1I * i = 0

Wty =0 ' (4)

which, by virtue of Equations 1 and 3, result in a set of three constraints relating displace-

ments at the center point to the displacements at the corners. -

5.8-25
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{u} = (6,11u,} . (5)

The equilibrium equations, including the forces of constraint, q.» are

| f ue
i 1 T
ee | Kec | e fe
Epa RS PR . (6)
KT o ‘
ec | “ec : - 0
1 \ qc

The stiffness matrix, whose partitions are R;e’ Kec

position of the stiffness matrices of the component triangles. Straightforward elimination of

u. and 9% from Equatfons 5 and 6 results in the final stiffness matrix

[Kee]{ue} = {f.} s (7)

where

- 7 T, T, T
[Kee:l - [Kee * Koebe + G Koo * Ge chGc] : (8)

The details of the re]atiohship expressed by Equation 1 are as follows. The rotations ¢1

and wz are related to their component rotations about the x and y axes of the local coordinate

system by
¥ = ex1c°55a + 8 1simSa , (9}
by = exzcosdb - eyzsinsb . (10)
Referring to Equations 20 and 21'of Section 5.8.2,
- 2
ex1 = o, ta ay ¥ Gpxq + 2q3y] + 2q5x.|yl + 3q6y1 , )
8, = 8, *B = B - 20X - 2.y, - 39u%1° - ey (12)
2 a ™ a 1 2N 4% 571 ’

and similarly for ex and ey . Combine Equations 9 to 12 to form the matrix equation
2 2
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Ya
by J c056a s1n6a
(Hyqlta,t + % : (13)
12 0 cosé, -sinéb
Ba

where
2 ' | oy | <32
TEX15a 1 X& T NS5 1 NG, :' X1 Sa

] # o e e e el e e e — e — | (14)

L

in which S, ® sinda, c, = cosda, Sp * simsb and ¢, * coséb.

a

From Equations 11 and 12 of Section 5.8.2
CREEI ) ORI OV O [ PR I (15)

where {ui} js the union of the displacements at vertices b and c. Equations 13 and 15 are com-

bined to form

¥y
= [Hwa]{"a} + [Hwb](“b} + [ch]{“c} ’ (16)
Y2
where
0 cos<5a sinsa
. - -1 17)
[Hq] G CH O B (
0 c056b -sind
and
' -1
[Hwb : ch] = [qu][H] . (18)

In stress data recovery the displacement vector at the center point is computed by means of
Equation 5. Internal forces and stresses are then computed at vertex ¢ for each component tri-
angle by the procedure described in Section 5.8.2.9, and are averaged to provide representative

values for the composite triangle as a whole.
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-

The Clough triangle is superimposed with a membrane triangle to form triangular elements with

both membrane and bending stiffness.
5.8.3.4 The Nonoverlapping Composite Quadrilateral Membrane Element, QDMEM2

The QDMEM2 quadrilateral membrane element is subdivided into four triangles connected to a

center point as shown in the sketch below: 3

Figure 1.
Point ¢ is located at the intersection of straight lines connecting the midpoints of the

sides. Note that these lines intersect even if the four corner points do not 1ie in a plane.
Stiffness matrices, and thermal loads, are generated for each of the four triangles and are added,
treating the center point like a normal grid point. The matrices and load vectors are then

reduced from order 5 'to order 4, {.e., to the four exterior grid points.

Two methods are available for removing the degrees of freedom at the cefiter point. The L — 4
first will be called elastic reduction and the second will be called rigid reduction. The forces
applied to grid points, after combining the triangular sections but prior to eliminating the

center point, may be expressed in partitioned form as follows:

SR O I e . SRR S : (1)

where subscript (p) refers to corner points and subscript (c) refers to the center point. {Pp}

and (Pc} are the thermal load vectors.

In the method of elastic reduction, the vector of resultant forces on the center point, {fc}.

is set equal to zero and {uc} is eliminated by direct solution of Equation 1 with the result
2 - + e
i [xgp]{up} {Pe} . (2)

where
e 1T
(K] = [Kppd = [k K I7TK ] . (3)
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and
e -1
(P} = (P} = DK I IR (4)

In the method of rigid reduction, {uc} is set equal to the average of the corner displace-

ments, 1.e., in terms of Cartesian components,

ue Uy U, Fugtuy

1
Ve mg {u tvp vzt . (5)
wc W1+N2+WB+W4

Since the coordinates of the center point (xc, Yoo zc) are equal to the averages of the
coordinates of the corner points (see Figure 1), Equation 5 does not violate the element's rigid

body property. Expressed in general matrix form Equation 5 1s
{uc} = [Gc]{up} . (6)

Application of Equation 6 to Equation 1 as a rigid constraint then produces the result

- fK" r
{fp} [Kpp]{up} + {Pp} s n
where
r T .7 T
[Kpp] = [Kpp + l(pc G, + G, Kpc + G, Ko Gc] , (8)
r T
{Pp} = {Pp + Gc Pc} . (9)

Similarity with the method for eliminating multipoint constraints, Section 3.5.1, is evident.

The method of elastic reduction can be expected to give more accurate results and it would be
preferred in the present case were {t not for the singularity that occurs in [ch] when the
element is flat. A combination of the two methods is actually used as follows: the lines Joining
the midpoints of opposite sides are used to define a mean plane. The inplane components of dis-
placement at the center point ("c’ vc) are removed by elastic reduction and the out-of-plane
component of displacement, Wes is eliminated by rigid reduction except that, when the gquadrilateral
is severely warped, elastic reduction {s also used for L The criterion used to define severe

warping 1s -

5.8-28a (12/18/72)
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2hi0.2 (10) b
/K

where h is the distance from the mean plane to each grid point and A is the area of the quadri-

lateral projected onto the mean plane.

The mass properties of the QDMEMZ element are treated in exactly the same manner as the QDMEM

element, see Section 5.8.4.

In stress recovery, the stresses are computed in each of the four triangles and averaged.
Internal force output includes the components of the corner forces colinear with the sides, as
shown below, and the "kick loads" at each corner normal to the plane of the colinear corner forces.

The "kick Toads" are required for equilibrium when the element is warped.
/f41
f / f
\‘_

///////(:) G\ ™ fu

f12:=4— 14::> (2:) f
/ 1—21 | 4

f
14 f23
In addition, a "shear flow" is calculated for each side, e.qg.,
fin - f
ap = 58, (12)

42

where 9.]2 is the length of side@ - @ The "shear flow" as calculated by Equation 12 derives
from a conceptual model of the panel consisting of four edge rods and a central shear panel. It

Is not a measure of the shear stress on the edge of the element.
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5.8.4 Inertia Properties of Plate Elements

The mass of a plate element, 1ike 1ts other physical properties, is assumed to be uniformly
distributed over the surface of the element. The mass consists of two parts: the mass due to the
density of the structural material; and nonstructural mass, the surface density of which is speci-
fied separately by the user. The mass is assumed to lie in the middle surface of the plate so
that rotary inertia due to finite thickness {is ignored.

In the Lumped Mass method of mass transfer, one-third of the mass of a triangular element
is placed at each of its vertices, an arrangement that preserves the location of the center of
gravity of the element. A quadrilateral is treated as a set of four overlapping triangles
(see Sections 5.8.3.1 and 5.8.3.2) whose masses are calculated and transferred separately to
the surrounding grid points. This procedure is also used for the jsoparametric quadrilateral

membrane element, QDMEMI,

A Coupled Mass method of mass transfer is available for motions normal to the surface of
a plate element. As discussed in Section 5.5, a satisfactory coupled mass method for inplane
motions has not been devised. -Thus, when the Coupled Mass method is specified by the user,
the terms in the element mass matrices corresponding to inplane motions will be the same as
in the Lumped Mass method. The use of the Coupled Mass method fntroduces a complication, in
that it is no longer possible to assign masses directly to grid points before calculating the
global mass matrix. Instead, the mass matrix for each element is first calculated in its own
coordinate system and is then transferred to the global coordinate system by the same trans-
formations that are used in the assembly of the global stiffness matrix from element stiffness

matrices.

The Archer consistent mass technique (Reference 1) is used in formulating the Coupled Mass
matrix for motion normal to the surface of a plate element. Thus, the bending properties of the
plate element affect 1ts mass matrix. The Coupled Mass method cannot be used for elements
with membrane stiffness only.

The procedure employed with the basic bending triangle is described below in detail,

PRECEDING PAGE BLANK NCT FILMED
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Quadrilaterals are treated as four separate overlapping bending triangles. The Clough bending

triangle requires additional procedures that will be explained.

The consistent mass matrix for any element is obtained from the kinetic energy under the
assumption that the inertia loading does not alter the displacements at interior points. Thus
the kinetic energy may be expressed as a quadratic function of the displacements at the corners
of the element, using the geometric. and elastic properties of the element to compute the func-

tional relationship.

Consider a flat plate that is inertia loaded normal to its plane. The kinetic energy for

sinusoidal transverse motion, w, at radian frequency w, is

Vel rmia o

The translational displacement function, w, s related to corner displacements, Up» by

W o= C, u s (2)
L iy
so that
veldnm [E ! CCouu, Jor - (3)

Clements of the consistent mass matrix are given by

M f mc,C, dA . 4

ke

In the case of the basic bending triangle described in Section 5.8.2, a modified procedure
will be used due to the complexity of the expressions for the coefficients, Ck. Repeated re-
ferences to Section 5.8.2 will be made. Equations in Section 5.8.2 will be referred to as Equa-

tion 2-x.

It is convenient to relate w to a modified set of displacements, ups consisting of the three
displacements of grid point (a) and the six generalized coordinates, 9ps defined in Equation

2-17. Thus
w = Z Cou, + ; C.a, , (s)
or, using matrix notation

W= TCMud = TC, g} + T 1o} (6)
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where the symbol [ 1 indicates a row matrix. The mass matrix referred to the modified coordi-

nates, [Mmm], is partitioned according to u_ and q, as follows

a

Myl = |--———- . (1)

The elements of [M"m] are, by analogy with Equation 4, and employing matrix notation,

T
M1 = [mfc,7rc,1da , (8)
T
M, = [mfc,1rc.] d ) (9)
M. = [ofcirclda . (10)

The mass matrix [Mmm] is transferred to the corner displacements {ue} by means of the

transformation
ugd = [THuy - ()
Thus

Me] = [T1TIM, 071 . (12)

The transformation matrix [T] is obtained by noting that, from Equation 2-11,

tq b = (17w = W)y - [STup (13)
where
fwl = (w,a, B} .
a a* %32 Fa (14)
fu} = { 8 T
Uy Whr Ope Bps Wes g BE '
Consequently
i
u, . I i Q Uy
fud = ¢( = —-—— - ~ =’ = [THul} , (15)
X P e
q, -H 'S 1+ H Uy
P

which defines [T] in terms of quantities that have already been computed.
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The row matrix FCa1, evaluated from a consideration of rigid body motion about grid point
(a), shown below, is
el = n,y, -x (16)
Y
c
B
a
b
a
da X
Equation 2-17 gives the relationship of w to {qr}:
W T oy X vyt q1x2 *apxy + q3y2 + q4x3 + qsxyz + q6y3 . (17)
The shear strains Yy and yy, assumed to be constant over the surface of the plate, are related to
{q.} by the [qu] matrix, defined in Equation 2-22, and evaluated in Equation 2-44. Thus, separa- -r

ting the two rows of [HYq].

Yy * fHqu1{qr} ,
(18)
= I
YY rHY q {qr)
y
The first three terms of THY

1 and I'HY 1 are zero (see Equation 2-44). Substitute Equation

q ]
X
18 into Equation 17 and obtain the elements of the [Cr] matrix

2

rCr1 = fxz; xy; y<: x3 + H 3

2
+H _yixy“+H x+H _y;y +H x+H _yl.
YyQ4 Y95 quS Y96 qu5

(19)

x
Yx94

The remaining steps in the evaluation of the consistent mass matrix are:

1. Substitute for rca1 from Equation 16 and Fcr1 from Equation 19 into Equations 8, 9 and
10 and evaluate the integrals, giving the elements of the mass matrix in modified —

coordinates.
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2. Calculate the-{T] matrix, defined in Equation 15, from the[H]'1 and [S] matrices that

are used in calculation of the stiffness matrix.
3. Compute the mass matrix referred to element coordinates by means of Equation 12.

4., Transform the mass matrix from element coordinates to grid point coordinates in the usual
manner. Note that the portions of the mass matrix corresponding to motions in the plane
of the element are treated in the usual manner, i{.e., 1/3 of the mass of the plate ele-

ment is placed at each corner,

Step 1 above involves the evaluation of integrals of the form

Ly = mfxda (20)

where it is assumed that the mass density is constant over the surface of the triangle.

For example,

I 1

00 on ~ho

Mad = | I Tz -In (21)

-lig <In Iog

The other partitions, [Mar] and [Mrr]' are less simple due to the shear strain coefficients

in Equation 19.

The above results for the basic bending triangle can be used directly with the composite
quadrilateral plate element. The Clough triangle, on the other hand, requires the imposition of
constraints. The most straightforward procedure is first to calculate the mass matrices of the
three component triangles separately, and then to eliminate the displacement at the center point

by means of the constraint relationship, Equation 5 of Section 5.8.3.3,

{ut = [Gc]{ue} . (22)

The resulting mass matrix referred to exterior vertices is, by analogy with Equation 8 of
Section 5.8.3.3,

] = [ Tag ™G] . (23)

g ee

) T,
ee * Mech * Gc Mec
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5.8.5 The Isoparametric Quadrilateral Membrane Element, QDMEMI
5.8.5.1 Introduction

This element, shown in Figure 1, was first formulated by I. C. Taig and {is described in
References 1, 2 and 3. The present development is based on the derivation in Reference 3 and

the important characteristics of the element are that:

1. the stresses and strains vary within the element in an assentially linear manner,
2. the element may have a warped shape, 1.e., the four vertices need not be coplanar,
3. Gaussian Quadrature with a 3x4 grid is used to evaluate the stiffness matrix,

4, the temperature is assumed constant over the element,

5. differential stiffness and piecewise Tinear analysis capability are not implemented at

present.

The element is compared for accuracy with the other NASTRAN quadrilateral membrane elements,
QDMEM and QOMEMZ2, 1n Section 15.3. The calculation of its mass properties is discussed in
Section 5.8.4.

5.8.5.2 Geometry and Displacement Field

As indicated in Figure 1, two coordinate systems are used to define the shape and kinematic
behavior of the element. The first is a set of element parametric coordinates (€,n) which vary
1inearly between zero and one with the extreme values occurring on the sides of the quadrilateral.
Lines of constant £ and lines of constant n are straight as indicated on the figure. Second, a
set of element rectangular coordinates (x,y,z) is defined as follows: the x-axis is along the
line connecting the first two grid points; the y-axis is perpendicular to the x-axis and lies in
the "plane” of the element (if the element is nonplanar, the "plane” of the element is defined by
a mean plane as described later in this section); finally, the z-axis is normal to the plane of

the element and forms a right-handed coordinate system with the x- and y-axes.
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(

The two coordinate systems are related as follows:

x = (1-6)(1-n) xq + £(1-n) x, + &nxy + (1-€)n x,
, (1)
y = (1-6)(0-n) yy +€(1-n) y, + £nyy + (1-E)n v,

where the subscripts refer to grid point numbers. The displacement -omponents along the x- and
y-directions are denoted by u and v, respectively, and are assumed to vary with £ and n in the

following manner:

u(gn) = (1-£)(1-n)uy + £(1-n)uy + £nug + (1-€)n u,
(2)

v(Ean) = (1-6)(T-n)vy + €(T-n)v, + €nvy + (1-€)n v,
Properties of the assumed displacement field are that on lines of constant £, u and v vary linearly
With n, and on lines of constant n, u and v vary linearly with £. In particular d”and v vary
Tinearly on the edges between grid points and as a result, displacements of adjacehtrelements are
matched all along their common edges. Thus, the element is a "conforming” element as defined in
Reference 2. It is noted from a comparison of Equations 1 and 2 that the eduations”which relate
the displacements at any point in the element to its grid point values are 7
identical in form to the corresponding equations for the x and y coordinates. Thus, the term

"isoparametric" is used to characterize the element.

As mentioned previous]y, the four gr1d po1nts which define the quadr1iatera1 need not be
copTanar If they are not, a mean p!ane is deffned as shown in Figure 2. The mean plane is
Tocated such that i1t is alternately H units abave or below each grid point. The grid points are
then projected normally onto this plane resulting in a modified but planar quadrilateral (as
denoted by the primed grid point numbers). The element matrices are derived for the mod{fied
quadr11atera1 These matrices are then transformed so that they are expressed in terms of
disp]acements Ai the or1gina1 (non-cop1anar) grid points As a resu]t of the latter transfonhe-
tion, the matrices have stiffness contributions at each grid point against translations in three

directions instead of two.
5.8.5.3 Strain and Stress Fields, Potential Energy

Membrane strains are related to the displacement components by the familiar relations -
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8 7 Yox &y ¥ Vuy xy * oy

X

- i 3 e e g w4

vy, (3)

where a comma indicates partial differentiation, Use of Equation 2 permits the strains in

Equation 3 to be expressed in terms of £ and n. Thus,

eX = uoz Elx + u’n nox

e =v’£ Eiy+vln “'

Y y

exy’ U’E E‘y + u!n nsy + V|€ E’X + V.n n’x
where
= 1 - 1
E'X IY;H Ely Ix’
E w = .‘ x
n.x 3 .Y.E ﬂ.y 3’ ’E
and
X.g X,n
Jds= ’
Y'E Yo

, (4)

, (5)

(6)

is the Jacobian of the transformation between the two element coordinate systems. For a rectangular

shaped element, the x and § directions are fdentical, as are the y and n directions. For this

case e, is linear with respect to y and constant with respect to x, and ey is linear with respect

to x and constant with respect to y. The shear strain exy varies linearly with respect to both

x and y. For nonrectangular-shaped elements the strain behavior is not linear with position.’

The strain-displacement relations may be written in a convenient

Equations 1 to 5 as follows:

AEIOK

where

matrix form by combining

(7)

{ue}T = {u] Vq Uy ¥y U3 V3 Uy v4}T .
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The non-zero elements of the 3x8 matrix [A] are as follows:
A]] = ('Y4 + y3n - Y345)/J
A]3 = (Y4 - Y4n + Y34£)/J

A]s = Y4H/J

Az = -yl
A2 = (=Xpq * Xp3n + x348)/0
Raa = (g = xygn = x348)/9

A26 = (x14n - X]z&)/d

Rag = (Xyp = Xp3n + X 8070

A, = A

N 22

A3z = A

Ay = A

33 24

Az = A3

=A%

where VT YNz - Y3gN2E - Ugtg - yaxgedn

(8)

and the components of side lengths are- expressed as follows in terms of grid point coordinates:

0 Bl Bt Vi3 T ¥ 0 g

The constitutive stress-strain relationships are written as

5.8-36 (12/15/72)
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Oy &y %y
o0 " (6] e} = (6,] ay T . (10)
Ory e,y dyy

where o, and ay are stresses in the x and y directions, respectively, Iyy is the shear stress;
and [Ge] is a symmetric 3x3 matrix with properties referred to the element

coordinate system (see p. 5.8-4). The quantities Gys Gys and Oy are thermal expansion coeffi-
cients and T is the temperature of the element above the stress-free temperature To' If the
element temperature is not specified directly, it is computed in terms of grid point temperatures

as
T= % (T] +T, 4 Ty + T4) -7, . (1)

The potential energy for an element of thickness h including the temperature effect may be

written as
=\T
11 e, - axT 9,
E h - T
v E/.f ey uyT- Oy Jdgdn . (12)
00 ey “xyT Oy

Substituting Equation 10 into Equation 12 and making use of Equation 7 gives

11

1 1
%) -
Ve iy f f (AITC6,J(A] Jdgon (v} - hiug)! f j (176, Ja, { Tadgan . = (13)
00 0 ey

The first integral represents the usual elastic strain energy of the element, and the second
integral represents the thermal strain energy. An irrelevant additive constant in the above

equation involving the square of known element temperature has been omitted.
5.8.5.4 Stiffness Matrix and Thermal Load Vector for the Element

The form of the potential energy written in terms of the displacement vector, (ue}. the

stiffness matrix, [Kee]' and the thermal load vector, {Pe}. is as follows:

Ve kg Tl ugh = (ugd Pt - (14) =
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Comparing Equations 13 and 14 yields the following formula for the required matrix and vector?
11
. T
[Kee] = h f f[A] (6,](Alodedn . (15)
gy
1.1 a
. T6.7) o { Taded (16)
{P,} ho 0 (A1'061{ o § Todean .

axy
The reader will recall that the elements of matrix [A] as well as the quantity J are functions of
£ and n. As a result, the integration indicated in Equation 15 is best performed numerically, and
it will be carried out by use of Gaussian quadrature using a 4x4 grid (see Reference 3 for a
discussion of the method of Gaussian quadrature). It is noted that the grid size is finer than
the minimum size (2x2) required to guarantee convergence. However, preliminary studies indicated
that the refined grid resulted in improved accuracy over the 2x2 grid for nonrectangular elements.
The integration in Equation 16 can easily be carried out in closed form since, if the temperature,

T, 1s taken to be constant over the element, the integrand is linear in ¢ and n.

The stiffness matrix and thermal load vector given in Equations 15 and ‘16 have been derived
for an element which is assumed to be planar. If the grid points are not coplanar, then the
derived element is the.projection of the actual element onto the mean plane. In the latter case
a transformation of the stiffness matrix and the thermal load vector is required, which relates
displacements and forces at the projected grid points in the mean plane to displacements and
forces at the actual grid points. It is highly desirable that the transformation produce only
forces and not moments at the grid points because it is quite probable that there may be no other
elements present (such as beams and bending plates) which can resist moments. Thus, the trans-

formation can be expressed in the form
{f,} = [B]{fe} ’ a7

where: i
T -
{fa} foT' fyl' le’ fo' fy2' sz’ fx3' fy3’ f23’ fx4’ fy4’ fz4J
s the vector of grid point forces, and

f

T =
{fe} |.fxl’ fy1' fo' f-,yZ' 1Fx3’ fy3’ fxd' y4_|

5.8-38 (12/15/72)

7

g

<



O

PLATES

{s the vector of forces on the projected plane element.

The magnitudes of the inplane forces (fx], fyT’ etc.) are the same in both vectors. A
method for selecting the out-of-plane forces (le’ fzz, fz3' fz4) which satisfies the three
required out-of-plane conditions of equilibrium and which exhibits symmetry with respect to per-
mutation of grid point numbers is as follows: Let the forces on the corners of the plane quadri-
Tateral be resolved into components colinear with the sides as shown in Figure 3a. In the edge-

wise view of side (a) shown in Figure 3b, the vertical force couple, f is applied to grid

za’'
points 1 and 2 so that equilibrium will be preserved when the forces f12 and f21 are transferred

from the mean plane to the grid points. Thus,

H
fza = E; (f12 + f21) . (18)
and in like manner, for the other three sides,

H
fn = -z 23t f13)

H
fze g (faa * fa3) : (e)

H
fa = - 77 a1 * F1a)
The combined vertical force components at the grid points are

foa=f,, - fzd

z1 za

- f

f22*fb - Taa

z2 (20)

f23 " f2e = b

fa ™ Faq = Fic

Generation of the elements in the rows of the [B] matrix corresponding to the vertical forces
is accomplished by expressing the colinear force components, f12. f21. etc., in terms of the
Cartesian components, fx1. fy1. etc., and substituting the result into Equation 20. The nonzero

elements of [B] are as follows:
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Byy = -H/%,

H H cot e]
= o +
32 ld sin e1 [

B
a

B33 * H”‘a
H cot 62

8
34 Ly

B Hsiny

37 L4 8

Hcos Y
38 ld Az

=1

Bg3 = By
.. H cot 92 . H
64 Ea lb sin ez

_Hsiny
65 Ly &

_Hecos ¥

H
B » .
94 % sin 8,

sin g
Byg = ”(JszmAY * 3 Az)
b ™ (g

cos ©
B = n[S9SY . 2)
<;b & A gy

H sin e]
97 L. 8,
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H cos GJ

c

80,7
81,8

g8 B co—
12,2 4y sin 6,

H sin 92

Bia5* ~ "L &,
* c 1

H cos @,

. B12,6 T3,

Byg,7 * H Sl Zinaa]
’ J?‘d AZ c 2

Bi2,8

u
-
S
t
o
"
[ ]
\‘/

where

Az = s‘in(e.l + Y)

The transformation of displacements from the mean plane to the actual grid points uses the same

(8] matrix and is written
w)=Bw) (21)
e a
where
{u }T 2 L Uey Vo, Was Uy Vs Way Uns Vas Wos Ugs Vo W
al' ™ [uys vys e g Vor Wpe Uge Ve M3e Tar Yae 4

and w is the displacement component normal to the mean plane. In additien to the above trans-
formation, two standard NASTRAN transformations are required. These are the element-to-basic
system transformation utilizing matrix [E] and the basic-to-global system transformation utilizing
the matrix [T]. Combining all three transformations results in the required global forms of the

stiffness matrix [Kgg] and thermal vector {Pg}.
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[kgg] = [TITLEIBIK, IO eI, (22)
(P} = [TILEN(BICP) (23)

The 12x12 stiffness matrix [Kgg] is singular with defect equal to seven. The seven defects
correspond to the six rigid body motions and an unrestrained out-of-plane warping. Out-of-plane
warping would also be ynrestrained if the nonplanar quadrilateral were represented by a pair of
triangles but not ff it were represented by two pairs of overlapping triangles, as in the case of

the QDMEM element.
5.8.5.5 Stress Recovery

The stresses at any point (£,n) in the element in terms of the displacements in the element

coordinate system are obtained by combining Equations 7 and 10

[+ a

x 1) -
9,0 [Ge][A](ue} - [Ge] ay 3T s (24)
%y 12

where it will be recalled that [A] is a function of € and n. The stresses are evaluated at the

Intersection of the diagonals of the mean plane, 1in order to be compatible with stress calculation

in the NASTRAN plate bending elements. For a paralielogram, the diagonals intersect at E=n=1/2

but for more general shapes the values of £ and n at the intersection point depend on the element
dimensions. The required form of the stress recovery equation in terms of the global displace-

ments is obtained by utilizing the three transformations described previously a1ong with Equation

24. Thus,
% %) .
% ( * AT TEN TTIug) - 6, a, §F . (25)
cxy uxy
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Figure 2, Mean plane for quadrilateral membrane element.
(Actual grid points are indicated by unprimed numbers and projection
of grid points onto mean plane are indicated by primed numbers. }
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Figure 3. Method of transferring forces from a
plane quadrilateral element to adjacent nonplanar grid points.
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5.8.6 The Linear Strain Triangular Membrane Element, TRIM6

5.8.6.1 Introduction

This element was first formulated by J. H. Argyris and is described in References 1 and 2.
The present development is based on the derivation in Reference 2. The important characteristics

of the element are:
1. The stresses and strains vary 1inearly within the element.
2. Bilinear variation in the planar coordinates for the thickness of the element is permitted.

3. Bilinear variation in the planar coordinates for the temperature in the element is pro-

vided.

Differential stiffness and piecewise 1inear analysis capability are not implemented at pre-

sent.
The element is compared with theoretical results for accuracy in Section 15.4. The calculation
of its mass properties is discussed in section 5.8.4.

5.8.6.2 Geometry and Displacement Field

The geometry of the element is shown in Figure 1. The element has six grid points, three at
the vertices and three at the mid-points of the sides. The displacement components u and v are
parallel to the x and y axes of the local (element) coordinate system. The inplane displacements

at the grid paints of the element are represented by the vector {ue} where
{u }T = U, vy U, V, Uy Vg U, V, U Ve Uz V (1)
e 171 %2 %273 %374 7475 576 SJ
Let [Kee] be the stiffness matrix referred to the vector (ue}, i.e.,

[Keel {ug = {fg} (2)

where the elements of {fe} are the inplane forces at the grid points of the element. The stiffness

matrix [Kee] is derived by standard finite element procedures.

The u and v displacements are assumed to vary quadratically with position on the surface of

the element,

U=y +ax+agys a4"2 +agxy + asyz (3) . -
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E 2 2
v b7+b8x+b9y+b-|0x +b”xy+b12y 7 (4)

The quantities 31, 35, -+ . A, b7, b8’ PR b12 may be regarded as generalized coordinates tg
which the displacements at the grid points of the element are uniquely related, i.e., the vector

of generalized coordinates is expressed as

.
{a}' = [_a1 3, 35 a4 ag ag b, bg by byo by b]zJ (5)

In concise form Equations 3 and 4 are written as

6 mg n,

us z ax 'y (6)
i=1
12 p. v

vs= Z byx Wi (7)
i=7

For convenience in later calculations, the range of summation is kept as 1 to 12 for expressions

for both u and v, i.e.,

12 m, ny
u-= Z ax 'y (8)
i=]
12 P; V.
v = Z bix iy 1 (9)
i=]
so that
a; =m =n, =0, i=7to12 (10)
by *py=v; =0, 1=1¢t6 . (11)
In matrix notation, the vector {ue} is written as
{ue} = [H] {a} ’ (12)
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where the 12 x 12 [H] matrix can be obtained by substituting the coordinates of the six grid points
into Equations 3 and 4. Since complete polynomial expressions are chosen for the u and v displace-

ments, the inverse of H matrix exists. Hence [al} can be expressed as

{a} = (H]") fugb - (13)

BiTlinear variation in the x and y coordinates is assumed for the thickness t of the element,

f.e., the thickness t of the element at any point (x,y) within the element is given by

t(x,y) = ¢y v ex +eyy (18)
In concise form, this is written as
3 Y, S
t=Z € X kyk . (1%)
k=1

The thickness of the element at the three vertices is specified as t], t3. t5. Hence the coeffi-

clents ¢y, ¢y € can be expressed as

t1a + t3b
Sl ey ' (16)
t3 - t1
¢, = Tavo) (17}
ey =L (ts - cq) (18)
3 ¢ '*5 1 ’

where a, b and ¢ are the projected lengths of the triangle on the local x and y axes and are ob-
tained from the basic coordinates of the vertices of the triangle as given in Section 4.87.21.2 of

the Programmer's Manual.
5.8.6.3 Strain and Stress Fields
The membrane strains are

3y (mg-1) ny

E:x = ‘a';" az + Za4x + asy 'Eaim"x y (19)
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L3y . Py tYyT
€ T3y = Do *hyyx t ey = 2obvxy

m, (n;-1) (p;-1)
_ 9y, 9v i i i v,
YT ay Z(ai”i" y * bypyx yi
The stress vector {o} is related to the strain vector by the two-dimensional elastic modulus

(6,]

(o} = [6,] (e}

AT o
Senas

el

QUALITY

(20)

(21)

matrix,

(22)

The specification of [Ge] for isotropic and anisotropic materials is the same as that given by

Equations 13, 14, and 15 on page 5.8.4.

The membrane strain energy of the element is

E, = %-f/'{o}.r {e} tdxdy

By virtue of Equation 22 and the symmetry of matrix [Ge]

1 T
E = é-ff{e} [Ge] {e} tdxdy
Substitution of Equation 15 into Equation 24 results in
3 .
T
Eg * %fj‘{e} [Ge] {e} g c X ky k dxdy

Expressing the elements of the symmetric portion of the matrix [Ge] by Byys Gyps Gyzs Gyps Gp3s
G33. i.e.,

(23)

(24)

(25)

Gy Gy Gy3
(6] = Gy  Gp3 (26)
sym 633

and performing the matrix multiplication of Equation 25, the expression for strain energy becomes
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.1 [Tl 2 2 2
Es szfx Byy * €, By + YBgg * Gyp (g6, + €45))
(27)

kK
+ Gyg ey + ve,) + Gpg (EyY + yey) z(ckx ¥y ) dxdy

To proceed further it is necessary to have a formula for the integral of the type

_[/' xmy" dxdy

taken over the area of the element. The value of the integral is found in Reference 3:

S axay + Fimm) = ™ {a“‘*‘ - (-b)m*‘f oo v (28)

Using Equations 19, 20, 21, and 28 in Equation 27, a typical term of Equation 27 becomes

Y. S
]fff £, 611 (zck" y k) dxdy
+n.+s,) . (29)

F?Zk ala\]ckm1mJGHF(m1 LIRS -2, ng + 0y

N|—-

Similarly, the other terms of Equation 27 can be expressed in terms of the area integral F

5.8.6.4 Stiffness Matrix for the Element

The strain energy, Es' can also be expressed as

Eg = 5 (2 [kgged T} (30)

where [kgen] js the stiffness matrix with respect to generalized coordinates {a}. It can be shown

that the elements of the matrix [kgen] are given by

3 .
kijaz C [G”mmF(m +mj+yk-2, "i"’"j"’sk)

k=1

+ GyovyV F(p1+pj+yk,v1+v I 2)

+ Gqq ;n1 JF(m + my * Yo Ny + nj +s - 2)
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12

* Gy,

* Gy3

*pipyFlpy v oyt vy - 2, vy R vy 4s)

+ n‘.ij(mi Pyt - T,ong + Vi ts - 1)
+ pinJ.F(mJ by - 1, n *Vpts, - 1)}
{ Jv1F(m *hity - b n; PV ts - 1)

+ miij(mi + P Y- T,y 4 Vi + S - 1):
(mj"i + minj)F(m1 + m, i 1, ny ot n; *sy - 1)
+m, piF(m + i * v - 2, nJ vyt sk)

+ miij(mi *pyp vy - 2, n; + vyt sk)}

}(pivj Y RVIF(py t oty s T vy by ts - 1)

+ n1vJ.F(mi + P; *Yeony ot Vit sy - 2)

|
+ njviF(mj *P Yo nj tvgts, - 2)‘ . (31)
Using Equation 13, the generalized stiffness matrix [kgen] can be transformed to the element
el = 011 [k 16T . T g
ee gen "

As a final step, the stiffness matrix is transformed from local element coordinate system to

the basic coordinate system of the grid points and to the global coordinate system. Let the trans-

formation for displacements be

and

Then,

and

Substituting Equation 35 in Equation 36, the global stiffness matrix becomes

{ubasic} * [E]T {uelement} (33)

ugropat? = [T {upagicd (34)

[kpasic] = [ED [kod [ETT (35)
T

[kgg] = [T] [kbasic] [T] . (36)
T T

[kgg] = [T]' (€] tkee] (e}’ [t . (37)
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5.8.6.5 Thermal Load Vector for the Element

Thermal expansion of an element produces equivalent loads at the grid points. Thermal expansion

is represented by a vector of thermal strains:

€ Qa

xt el
e = { et = {oep T-Td =l T-T) (38)
e %e3

where {ae} = [U]'1 {am} is a vector of thermal expansion coefficients, [U] is the strain transfor-
mation matrix given in Equation 15 on page 5.8.4 and {am} is the vector of thermal expansion co-
efficients in the material axis system; T0 is the reference or stress-free temperature of the
material, and ? is the temperature at any point (x,y) in the element and is given by a linear

polynomial

To=dy +dpx # dqy . (39)

In concise form, this is written as

- 3 t, u,
Te 2 dxy . (40)
=1
The temperatures ?}. ?}, and ?g at the three vertices of the element will be modified by the
reference temperature To and used to evaluate the three constants d], d2. and d3 as
1 1
T,a + Tyb
4y = L (a1)
(a +b)
Tl Tl
d, = 31 (42)
(a +b)
=Llrrl -
d3 c [1’5 d1] ’ (43)
where
T] 2 (T1 - To); T3 a (T3 - To); and T5 = (T5 - To) . (44) -
B 5.8-49 {12/3\/77)
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An equivalent elastic state of stress that will produce the same thermal strains is %
loy} = [6,] (e} = (6] {a} (T-T) . (45)
An equivalent set of generalized loads {Pgen} applied to grid points of the element is obtained
from the relation
T T
@} (Pgn} = fy 1) (0, tan
T Lot
=ff{e} (6] {ag} > dyx y (46)
2=]
3 Y, S
Z ckx ky k dxdy
k=1
Performing the matrix multiplications in Equation 46 and using the following notations, viz.,
Gy = 61931 * Gyg%ep * Gy3ag; (47)
G2 = Gy *+ Bpp%gp * Gp39,3 (48) -
]
G33 = G139 * G3%ep * G333 - (49)
Equation 46 reducas to
T ] ) 1
fab’ {Pyent ’ff (e 8y + €/8p + ¥633)
(50)
3 t, u 3 s
%
P dox j"_y z €y X ky k dxdy
2=1 =]
5.8-50 (12/31/77) o
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Performing the integration term by term, the first term in Equation 50 becomes

3 t, u 3
L2 Yk k
€ d,x "y ) (E Xy ) dxdy
leﬁx n (ég% 2 b
(my + vy + ty -1) (ny + s +u)
’ZEZ 6y 1“‘i°kd1ff b dxdy

- ;%%‘ G1]aimickd2,F(m1 tyett s lang st u,) (51a)

Similarly, the second and third terms of Equation 50 reduce to
;Zkfi. Bypb V4G, dgF(Py * Yj * tga Vg ¥ 5y ¥ Uy = 1) (51b)
and
p {:“5633de2{°1"1””1 Pyttt Ny ts tuy - 1)
+ bipiF(pi Pyttt - T, vy + 5 + ul)} (51¢)

respectively. From Equation 50 and the results given by 5la, 51b, and 51c, the 1th element of

the generalized load vector {Pgen} is

(Pgenly = ZE c,d [511“‘i”(‘“1 tyertg o lang s tug)
+ GppViFlpy + v + by vy F sty - 1)
+ 633{n.]F(m1 oy * tL’ nytstu - 1)

+ piF(pi tyert s lvy st uz)}] , (52)

The generalized equivalent Toad vector {Pgen} is transformed to the load vector {Pe} in global

coordinates by the following transformations:

=147 : —
{Pe} = [H'] {Pgen} (53) -

5.8-51 (12/31/77)
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and

T
{Pg} = [T] [E]{Pe} . (54)

5.8.6.6 Stress Recovery

After the grid point displacements have been evaluated, stresses in the element are computed

by combining the relationships

:
(o} = [EXT] ey} (55)
) = (W', (56)

and {e} which is evaluated from Equations 19, 20, and 21. Stress vector {o} is then equal to

{o} = [6,] ({e} - {e,}) . (57)

The stresses are computed at the three vertices and at the centroid. The principal stresses
and the maximum shear force are computed from the elements of {o}. The direction of the maximum

principal stress is referenced to the side joining grid points 1 and 3 of the triangla.

5.8-52 (12/31/77)
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MATERIAL ORIENTATION
A

{(0,c)

Fon Y
("b io) k2}

Figure 1. TRIM6 triangular memt-ane element in element coordinate system.
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5.8.7 Higher Order Trianqular Plate Bending Element, TRPLT1

5.8.7.1 Introduction

This element was developed by Narayanaswami, References 1 and 2. It is a modification of the
high precision bending element of Cowper, et al., Reference 3. The element has grid points at the
vertices and at the mid-points of the sides of the triangle. At each grid point, there are three
degrees of freedom, viz., the transverse displacement, w, normal to the x-y plane, with positive
direction outward from the paper, and the rotations, a and 8, about the x and y axes, respectively,
with positive directions following from the right hand rule shown in Figure 1. The element thus
has 18 degrees of freedom. The transverse displacement, w, at any point within and on the boun-
daries of the element is assumed to vary as a quintic polynomial. Since the varfation of deflection
along any edge is a quintic polynomial in the edgewise coordinate, the six coefficients of this
polynomial are uniquely determined by deflection and edgewise slope at the three grid points of
the edge. Displacements are thus continuous between two elements that have a common edge. The
rotation about each edge is constrained to vary cubically; however, since the rotations are de-
fined only at three points along an edge, there is no rotation continuity between two elements
that have a common edge. The element thus belongs to the class of nonconforming elements. The
requirement that the edge rotation varies cubically along each edge establishes three constraint
equations among the coefficients of the quintic polynomial for w. These equations together with
the 18 relations between the grid point degrees of freedom and the polynomial coefficients sarve
to evaluate uniquely the coefficients a through 35 of the quintic polynomial assumed for the trans-

verse displacement.
5.8.7.2 Element Geometry

Rectangular cartesian coordinates are used in the formulation. An arbitrary triangular
element is shown in Figure 1. X, Y, and Z are the basic coordinates; x, ¥, and z are the local
coordinates. The grid points of the element are numbered in counter-clockwise direction as shown

in the figure.

The following relationships between the X and x axes, and the coordinates of the vertices of

the element, can be easily derived from Figure 1.

5.8-55 (12/31/77)
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Xa = X Y, =Y
cos § = ——01 , sin g = ——1 (M
Y
a = (X3 - Xs) cos @ - (Y5 - Y3) sin 8
L3 - X (X5 - Xp) + (Y5 - ¥)(Y5 - ) (2)
Y
(xs - Xl)(x3 - XI) + (Y5 - Y1)(Y3 - Y1)
b= (3)
Y
(X3 - X))(¥g - ¥;) - (Y3 - ¥})(Xg - X;)
c= (4)
Y
where
¥ = [0y - X2 (v, - )3 172 (5)
5.8.7.3 Displacement Field
The deflection w(x,y) within the triangular element is assumed to vary as a quintic polynomial L
in the local coordinates, that is,
w(x,y) = a; + a,x +ay +a x2 +axy +a 2 4 a x3
, 173 3 4 5 & 7
+ asxzy + agxy2 + amy3 + a”x4 + a]2x3y
3
* a13"23’2 Ml VoA ‘15y4 * aus"s * a17"4y
+ a,8x3y2 + a19x2y3 + azoxy4 + a21y5 . (6)
In concise form, this is written as
21 m; ny
W= Z; ax y (6a)
i=
There are 21 independent coefficients, 2y through - These are evaluated by the following procedure. )
5.8-56 (12/31/77) .
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The element has 18 degrees of freedom; namely, lateral displacement w in the z-direction,
rotation a about the x-axis, and rotation 8 about the y-axis at each of the six grid points.

The rotations a and 8 are obtained from the definitions of transverse shear strains Yyz and Yyz?

that is
Ba— 'a—--
Yez 3: + B and sz a; a . (7

It is shown later on that Yyz and sz. and hence a and 8, at any grid point can be expressed

in terms of the coefficients a through L Thus, 18 equations relating w, a and 8 at the grid points
to the 21 coefficients are obtained. Three additional relations are required so that the 21 co-
efficients can be uniquely determined. These relations are obtained by imposing the condition

that the edge rotation varies cubically along each edge. It is clear that these three constraint
equations involve only the coefficients of the fifth degree terms in Equation 6, since the lower

degree terms satisfy the condition of cubic edge rotation automatically. Moreover, the condition
depends only on the orientation of an edge. Along the edge defined by grid points 1 and 3 (where

y = 0), the condition of the cubic edge rotation requires that

ay; = 0 . (8)

Along the edge defined by grid points 1 and 5 (inclined at angle § to the x-axis), the edge rotation

o is given by
: 4
ro =8 sin§+acosd= '(5316x + 4a17x3y + 3318x2y2

3 4 4 3 2.2

+ Zalgxy + a0y ) sin & + (317x + 2a18x y + 3a19x y

+ da,xy> + 5a,.yY) cos § + (9)
20 21 vt

where the dots indicate terms of third or lower degree. Also, along this edge,
X 5 Cos § and y=5sin3$ ’ (10)

where s is the distance along the edge and

cos & = b/¥b2+c?  and  sing=c/¥bi+ct . =

5.8-57 (12/31/77)
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< =
By substituting x and y from Equation 10 and cos & and sin & from Equations 11 into Equation 9 and
rearranging (so that the leading terms are positive), the condition for cubic variation of rotation
about edge 1-5 is
4 3.2 5 2.3 _ .4
Sb Cage * (4b7c® - b )a.l7 + (3b%c 2b c)a]8
+ (2bc4 - 3b3<:2)a.Ig + (c5 - 4b2c3)a20 - 5bc4a2] =0 . (12)
Similarly, the condition for cubic variation of the rotation about the edge defined by grid points
3 and S (Figure 1) can be written as
5a4c§15 + (-4a3c2 + as)a]7 + (3a2c3 - Za4c)a18
+ (-2act + 3a3c2)a]9 + (- 4a2c3)a20 + 5ac4a21 =0 . - (13)
The 18 relations between grid point displacements and the coefficients of the polynomial in Equation
6 are written as
{6} = [Q] (a} , (14)
where {8} is the vector of grid points displacements, [Q] is the (18 x 21) matrix involving the
coordinates of grid points substituted into the functions w, Equation 6, and the appropriate ex- J—
pressions of a and 8 derived in detail later, and {a} is the column vector of coefficients 3
through LPYR The [Q] matrix fs now augmented by the three constraint Equations 8, 12, and 13 to
form a new (21 x 21) matrix [R] in the following equation:
{da} = [R] (a} , (15)
where
{6} )
‘ 0
{6,} = . (15a)
0
0
For use in the evaluation of the stiffness matrix, {a} needs to be expressed in terms of {da} and,
hence, it has to be established that the inverse of matrix [R] exists. The non-singularity of such
a matrix [R] for the T-15 and T-21 elements of Bell (Reference 4) follows from the completeness of the
polynomials for w. For the high precision element, Cowper et al. (Reference 3) give an explicit =
5.8-58 (12/31/77) S
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expression for the determinant of such a matrix and show that the matrix is non-singular in all
practical situations. For this element, a numerical experiment described in Reference 1 verifies

that R is non-singular for all practical cases. Hence Equation 15 is inverted to give
fa} = R (5} . (16)

This equation can also be written as
{a} = [s] (8} ., (17)

where [S] is a (21 x 18) matrix and consists of the first 18 columns of [R]'I.

From the computational standpoint, it is advantageous to substitute Equation 8 into Equation
6 and replace coefficients a8 through ay by coefficients a7 through ags respectively. The
matrix [Q] then is of size (18 x 20); [R] becomes (20 x 20), and [S] becomes (20 x 18). To add to
the clarity of presentation, however, the complete quintic polynomial for w in Equation 6 is re-
tained throughout this section and matrices [Q], [R], and [S] and vector {a} will have sizes
(18 x 21), (21 x 21), (21 x 18), and (21 x 1), respectively.

5.8.7.4 Elastic Relationships

The elastic relationships are obtained from the theory of deformation for plates (Reference 5).

The curvatures are defined by

. )
X ) - =
3a
3
xxy/ %%" 5%
' /
Bending and twisting moments are related to curvatures by
{
M Xx
Y ¢ - Iy . (19)
\ My \ Xxy | -

where [D] is, in general, a full symmetric matrix of elastic coefficients. For a solid isotropic
plate of uniform thickness t,

5.8-59 (12/31/77)
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—
1 v 0
3
ol-—E— v 1 o |[. (20)
12(1 - v°)
o] 0 1-wv
2
The thickness t of the element is assumed to vary bilinearly with position over the surface,
t=cp +ex +cyy . (21)
In concise form, it s written as
Y, S
t = Z C X ky k . (21a)
k=1
The thickness of the three vertices of the element ty, t3, and t5 will be used to evaluate the con-
stants Cys Cas and C3- It can be shown that
t]a + t3b .
G {a + b) (22)
t, -t <
¢, = o] (23)
2" Ta+0b)
-1
and C3 = ¢ (t:5 - c1) . (24)
For an isotropic plate, [D] becomes
3 3 (vitys+y,) (sisi+s))
1 i ik i i’k
(0] = v= [6.] ﬁ:zlzcccx y . (25)
TZ e IS I IR RS A
where
[ ¢ Ev 0 7] -
1-v% 1.4 ;
Ev E '
[6]= 0 . (26) :
e 1-v" 1 -4F '
0 0 E —
2(T + V) . -
5.8-60 (12/31/77) [
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For anisotropic materials with the material orfentation axis inclined at ¢ to the x-axis, the material

elastic modulus matrix [Dm] is transformed to the element elastic modulus matrix by

(o] = (1" (o, LUl (27)
where
ccs2 ¢ sinz ¢ cos ¢ sin ¢
] = sin2 ) cos2 ) -cos ¢ sin ¢ . (28)
-2c0s ¢ sin ¢ 2cos ¢ sin ¢ cos2 ¢ - s1’n2 ¢

The positive sense of bending and twisting moments and transverse shear resultants is shown in

Figure 2.

The moment equilibrium equations are written as

oM M
XL X,
Ve * 5t 5y 0 (29)
M oM
-t ¢ 2L .
and vy + 5y + = 0 . (30)

Transverse shear strains are related to the shear resultants by

YXZ VX
{y} = = [J] . (31)
Tyz Yy

The matrix [J] is, in general, a full (2 x 2) symmetric matrix of elements J1]. JTZ (Jz1 - J12) and
J22' For a plate with isotropic transverse shear material,
: 1 0
0 1

where G is the shear modulus and t* is an "affective” thickness for transversé shear. For the

simple case of a plate of uniform thickness t, t* has the value t.

5.8-61 (12/31/77)
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From Equations 29, 30, and 31, if follows that
aM oM aM
= - X, Xyl _ =L ¢ XY
Yxz J'll [ax * 3y ] J12 [ay+ ax ]
‘ (33)
3H an
= . X _.Y. - ._l
and sz ‘]12 [ >t ] J22 [ y * ax ]
Partial differentiation with respect to x and y of Equation 19 (with subscripts on D denoting
the elements of [D]) gives
M Ny 3x Xy
X Y XY
* Dy5x * Dy ax * Vi3
oM )¢ X, X
—L a X s A XY
3y = Y1275y * D2 ay * Dasgy
’ (34)
M X 3x
.4 X Y ___l
5 - D1375x * D3 ax * D3z ax
M £)'Y Y X
.S A . § __ Y X
and 3y - D3y * D2y * D3z -
where the symmetry of the [D] matrix has been used. By substituting Equations 34 into Equations
33,
g M,y
= - X XY
Tz T "I [Dn ax " Dix * Dyaax
Xy ax, x
.4 Y Xy
¥ D3y * Va3 oy * Das gy
Ny X X
X Y XY
-9y ["12 ay * D225y * Doy
ax 3y
X Xy
* D135x * Doy * Dag 3 ] (35)
5.8-62 (12/31/77) o
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Xy X Xy

Dy 3x * Dz ox t Disax

ay, ay Y
X Y _551
D13 ay + D23 3y + D33 y ]

ay 3 Y,
X ey
Oy23y * D225y * D233y

Ny ax Ny
XY 4 DXy
D335x * P2375x * D33x ]

Rearranging and writing Equations 29 and 30 in matrix notation yields

:Yu} Ay Az A3 A
=
Ay1 Agp Ayg A

Xx

»X

Xy x

14 s Mg Xxyx .
24 A2s Aog Yxoy

Xy,y

Xxy,y

where a comma in the subscript denotes partial differentiation and where

A

12
13
14
As
As
A
Az
A3
A2
A

and A25

A
A
A

(311047 *+ 3y3043)
= =(J11Dy + Jy20p3)

=(J410y3 * Jy2033)
= (399043 * Jy20¢5)

-(31303 + J50p0)
=(3y3D33 + dy2053)
= =130 + dapD3)
= =(dy2Dq2 * dzg0a3)
=(312013 + J52033)
=(0120y3 + dgoDyp)
= {12023 * Jg2027)
= =(JyD33 * Jpolp3)

5.8-63 (12/31/77)
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-

From Equations 7 and 18, it follows that

x 2 - - ——
X w2 | X
2 Y
=32, 3w _yz
Xy © 3y ayz 3y ’ (39)

=% 38, 2w Mz asz

Xy © 3x " By 33y ~ ay  ax

and

Shear forces (and hence shear strains) are proportional to the third derivatives of the displacements.
Since the displacement within the element is assumed to vary as a quintic polynomial, shear strains

are expressed by a quadratic poiynomial as follows:

Yyz = by ¥ box + by + b4x2 + bgxy + bsy2 (40)
and 2 ey X b Gy F Cxe b Cy +ocoyl (41)
Yyz T €1 7 ¥ TG 5 67 .

The task now is to express the unknown coefficients b] through be and ¢, through Cg in terms of the
generalized coordinates a, through a5 Differentiating Xy * xy, and xxy and substituting w, Yz
and Yyz from Equations 6, 40, and 41 into Eauations 39,

ALY

2
X, x ™ ;;§ - ';;E' = 537 + 24a11x + 6a12y + 60a15x

+ 28a,gxy + 6&]8y2 - 2b, (42)

2
3 Ty,
2 OW_ vz . 2
Xyx " eyl | XY 2ag + Aaygx + 6aj.y + 63X

2
+ 12319xy + 12a20y - ¢ (43)
2 2
3 ] Yz 7y

e 2w _ % Vxz z
Xay,x 2 axay %% Bx% dag + 12a),x + Ba;4y

+

2 2
28a,,x" + 242 g%y + 123,9¥° - bg - 2¢4 (44)

5.8-64 (12/31/77)
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2
33w 3 Yxz =

2
Xx.y T =7 TIxay 2a8 + 6a12x + 4a]3y + 12317x

and xxy'y

ax-ay

2
+ 12a]8xy + 5a19y - b5
2

3 3y
- W z . 2
;;5 -;;%— 6a10 + 6a14x + 24a]5y + 6a]9x

2
+ 24a20xy + SOaZ]y - 2c6

2 2
33w . Yy, . Yy, .
axayz ay2 3xay

439 + 8&13x + 12a14y

2 2
+ 12a]8x + 24a]9xy + 24a20y - 2b6 - Cg

(45)

(46)

(47)

By substituting Equations 40 through 47 into Equations 37, the following are obtained:

b-'+

+

o+

+

+

+

+

+

bzx + b3y + b4x2 + bsxy + bGy2
2
A11(6a7 + 24a1]x + 6a]2y + 60a,x" + 24a17xy

2 2
6a18y - 2b4) + A.lz(Za9 + 4a13x + 6&14y + 6518x

5 ,
12a]9xy + IZazoy - CS) + A13(4°8 + 12a12x + 8a]3y

2 2
28a,,x" + 28a,gxy + 122,9y" - bg - 2cy) + Ay, (22

2 2
Bax + da,qy + 12a94x" + 12a,gxy + 6a19y - bS)
2
A15(6a.'0 + bag,x + 282 cx + 6agx” + 24a,xy
2
602,y - 2c5) + A16(4°9 + 8a;qx + 12a14y

2 2
12a]8x + 24a]9xy + 24a20y - 2b6 - C5) .

5.8-65 (12/31/77)
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2 2 4
C] + sz + Cay + C4x + Csxy + C5x
= Apy(6ay + 24ay1x + 6ay,y + 60ayex” + 263, xy
2 2
* Baggy” - Zby) + Ajy(2ag + 42y x + Bayy + Baggx
2
+ 12a19xy + 'IZazoy - cs) + A23(4a8 + 12a.|2x + 8a]3y
2 2
+ 24a17x + 24a]8xy + 12a19y - b5 - 2c4) + A24(238
2 2
+6ayx + dayqy + 12a,x° + IZaquy + 6a,4y" - bg)
2 ..
+ AyglBagy + 6ay,x + 22,0y + Gagox” + Hageny E
2 . 2
+ 60a,,y" - 2c5) + Azs(lla9 + 8a,x + 1221,y + 12a;5x
2
+ 24a]9?(y + 28a,y° - 2bg - cg) . - (49)
By comparing coefficients of like powers in x, y, xz. xy, and y2 and consfants of Equations 48 and %
49, the coefficients b] through bs and ) through Cg can be expressed in terms of the generalized .
coordinates a, through a5 Thus
by = 281325y * 6(Ayy + 2Aj3)ay, + A(A), + 2Ajclagg + BALca,
by = A2y, + 4(Ayy + 2y3)a)5 + 6(A), + 2Ay)ag, + 20A 3
by = 60411215 + 12(A1 + 2Ay3)ay; + 6(A), + 2Ajg)a g + BAjcagg
bg = 28Aj 317 + 12(Ay, + 2Aj3)arg + T12(A), + 2Ajg)agg + 20A 52,5,
, {50)
bg = 6811318 * 6(Ay + 2Aj3)aqg + 12(A), + 2 g)ay, + 60A, 2y,
by = 6A2; + 2(A, + Agglag + 2(Ay, + glag + BAjaay,
= 2Appby - (A + Apgdbg - 2Ayebg - 28;5c, - (A, + Agg)cg e
- 25 -
5.8-66 (12/31/77) A

HO



and

crainL ToOHE 3
PLATES OF PCCR Quast!

28851317 + 6(Ryy * 2Ap3)ay, + (A, + Ayglayg + BAygay,

Cy = Ay g,y + 4(Ay, + 2Ay3)agg + 6(Ayy + yg)ayy + 2MRy53y5

Cy = 6045214 + 12(Ayy + 2A93)a15 + 6(Ay, + 2yglagg *+ BAygagg

Cg = 28Ay1aq7 + 12(Ayy + 2Ry3)a1q + 12(Ayy + 2Ag)agg + 244553y,

(s1)
Cg = BAyjaqg + 6(Ayy + 2Ay3)agg + 12(Ayy +2A6)ay; + B0AyG35,
cp = BAya; + 2(Ay + 2Ry3)ag + 2Ry, + yglag + BAydy,

= 2Ayby = (Ayy + Aggdbg = 2A,che - 2Ry, ~(Ayy + Ayg)cg

- Wy5cq

If Equations 50 and 51 are substituted into Equations 40 and 41, the explicit relation between the

transverse shear strain and the generalized coordinates (i.e., coefficients of the displacement

polynomial) can be obtained in matrix notation as

{y} = (8] {a} (52)

where [81] is a (2 x 21) matrix whose nonzero elements are as follows:

8,(1,7) = €A, (52a)
B,(1.8) = 2A5 ' (52b)
B,(1.9) = 2A;, (52¢)
By(1,10) = 6Ag (52d)
By(1,11) = 24A;;x o (52e)
By(1,12) = 6(Ayx + Ayyy) (52f)
B,(1,13) = 4(Agx + Aypy) (529)
By (1,14) = 6(A;gx + Agoy) (s2n)
B,(1,15) = 24A;cy (521) -

5.8-67 (12/31/77)
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81(1.16) =

8,(1,17) =

81(],18) =

31(1,19) =

81(1,20) =

81(1,21) =

B,(2.7)

81(2.8) =

B,(2,9)

B,(2,10)
"B,(2,11) =
B,(2,12) =
By(2,13) =
B,(2,14) =
8,(2,15) =
B,(2,16) =

81(2,17) =

81(2,18) =

2 2
-120(A ntA - O'SAIIX )

13*1
-28[Ay 1 (Agy + Agg) + Ajghgs + AjAgg

-0.5A31x2 - A]]xy]

12(A11Agp *+ Ayghag * Agghay + Azghgg + A A

2 2
+ A15A21 - O.5A32x - Aa]xy - 0.5A]1y )

12(A11Ay5 + Ayghag * Agghyy + Agghay + Ajghyy

2
+ A]5A33 - 0.5A15x

-24(A

A32xy - 0.5A31y2)

15838 * Agsh3g * A1ghsp + Ayshyy

- A1sxy - 0.5A32y2)

~120(Ay5hyg + Ajghps - 0.5A5y%)
6A,,
2As3
Ay
Ay

28R, o

6(A33x + A2]y)

4(Agqx + Agay)

S(Azsx + A34y)

248,y

“120(A11 g + Agghyy = 0.5Ayx%)
“24(Ag1Aq) + ApyAgg + Apzhas * Apjhy,
- 0.5A33x2 - Az]xy)

“12(Ag1A3p + Agzhog * Agohay *+ Agqhsg + Agghy,

2 2
+ A25A21 - O.SA34x - A33xy - O.SAz]y )

5.8-68 (12/31/77)
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8,(2,19) = ~12(Ay A5 + Apghps + Agehaz * Parhas * Aastar

+ Apghyy - 0.5Ryx” - Aqgxy - 0.5A55) (52bb)
8,(2,20) = -28(A1ghaq *+ Apshyy + Apghap * Agshag = AosXY

- 0.5A34y2) {52¢c)

. 2 2
and B (2,21) = -120(A;ghpq *+ ATpg = 0-Shpgy™) (52dd)

where A11. A12, A]3, A14, A]S’ A16’ AZ]’ A22’ A23, A24, AZS’ and A26 are as defined in Equations 38

and

A, = A

+

2A

14 13

A, =A, +2A

12

A, = A24 + 2A

16

23

A,, = A, + 2A

22 26

A, = A, + A

3 "

(53)

A,. = A,, + A

34 K}

Agg + Asp
At A g
Ag = A12 + A]6

A, = A

23 + A

24

and Ay = Agp * P

If the plate is assumed to be rigid in transverse shear, the coefficients A11 through A16 and A21 through
A26 of Equations 38 are zero (since G = =) and hence coefficients b1 through b6 and 4 through c¢ of
Equations 40 and 41 are zero. Moreover, the transverse shear strains vary linearly with 6! with {y}

approaching 0 as G -+ =} that is, convergence to the 1imiting case of zero transverse shear {s uniform.
5.8.7.5 Stiffness Matrix
The strain energy for a plate’may be written as

v Lff T oo e T o ey (54)
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where {M} is the vector of bending and twisting moments per unit length, {x} is the vector of
curvatures, {V} is the vector of transverse shear forces per unit length, and {y} is the vector
of transverse shear strains. Substituting Equations 19 and 31 into Equation 54, and using the

symmetry of [D] and [J] matrices, yields

U= % ff ' [0] 0 + Y (6] ty} dxdy (55)

where
[6) = [a1°7. (56)

With [ng"] denoting the generalized stiffness matrix. that is, the stiffness matrix with
respect to generalized coordinates (coefficients of the displacement polynomial) {a}, the strain

energy can also be expressed as

TR XOUN (S F S S (57)

The vector of curvatures {x} is now rewritten as

Ix} = {3} + Ix,} = ([8,] + 8,1) ta , (58)
where
:—} ) | Lamy(m - e
x} = :y% ¢ = <' Za;n;(n; - ety M (58a)
2% / kzzai"‘i"ix(nr”y(ni-” /
and
((TNyy \
ax
{x} = 4’ i?,& ‘> (58b)
g M)

\ " Jy x /
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It follows that {Xl} is the vector of curvature in the absence of transverse shear and {xz} is the

contribution of transverse shear to the vector of curvatures.

Substituting Equations 52 and 58 into Equation 55 and comparing the resultant equation with
Equation 57 and noting that {a} is independent of x and y, the generalized stiffness matrix can be

obtained as

[Kyend = ff 18,17 101 [8,Jaxdy + [ (8,7 [0] [8;lexdy
+ ff 18317 101 (8axey + ff 8,17 (0] [8;]axay
+ff 18,17 61 (B Jexey . (3)

The evaluation of the elements of the generalized stiffness matrix [kgen] in closed form is,
though straightforward, very tedfous. The first temff‘[BZJT o] [Bz]dxdy is evaluated in closed
form; the other four terms are evaluated by using numerical integration. If the transverse shear
is negligible, the matrices [81] and [83] are null and the last four terms vanish. The numerical
integration formulae used are the seven-point integration scheme (Reference 6) and are given below

for easy reference. For a triangle, the integrals of the form

1 1L
I-j; j(; f(L1L2L3)dL]dL2 (60)

can be integrated by using a seven-point numerical integration which can exactly integrate functions

up to and including quintic order. The value of the integral is given by

7
e 3 Wfllluly) (61)
kel

where the points and the weighting factors are as follows:
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Point Triangular Coordinates Weight, 2W
Ly Loy L k
1 =27 -3
1 /3, 1/3, 1/3 0.225
b 2 o B B8
q 3 By o B 0.13239415
By a, B, 0.12593918
with
a; = 0.05971588 By = 0.47014206
ay = 0.79742699 8y = 0.101286505
' ' A4
Note the error in the value of oy as given in Reference 6, page 151.
Denoting by G]l’ 612. 613, 622, 523, and 633 the symmetric portion of the [Ge] matrix of
Equation 26, it can be shown that the jth element of the ith row of the generalized stiffness
matrix [ng"], for the case of a plate with transverse shear being neglected, is given by
1
(Kss)gan ® - — - € € €
ij'gen = T2 k=1 ko=l k3=l Tk Tky kg
[GTINimj(mi - 1)(mj - 1) F(m1 + m; + Yk1 + Ykz
+y, =4,n. +p, +5 +s, +5, )
k3 i 3 k] k2 k3
+ Gzz"i"j("i - 1) (nj - 1) F(mi + my + Yk]
5.8-72 (12/31/77) ) L4

347



[V ma Ty
CHoNAL rRix=

PLATES - oF POOR QUALITY

o
2

+Yk2+Yk3’ ny +nj + sk.| +sk2+sk3- 4)

+

(4G33m1mjn1nj + Glzfmi"j(mi - 1) (nj -1}

+

mjni(mj = 1ny - 1)}) F(m, + L Yk1

Yt 2 ¢ ny + sk1 + skz ts, -2

2 3 3

+

2613{m1mjnj(mi -1) + mi"imj(mj - 1)} F(r?i
+mj*Yk-|+Yk2+Yk3-3’n1+nj+sk1

S * sk3 -1+ ZGZB{mj"inj("i -1

2

+

mi"i"j("j -} F(mi + m * Yk1 + Ykz

+ 7k3 -1, ny + ny + sk1 + skz + sk3 - 3) . (62)

A1l computations involved in evaluating [ngn] for the case of a plate with transverse shear
neglected can be carried out by the close form expression (62). For plates with transverse shear
flexibility, the contribution of the last four integrals of Equation 59 will be evaluated using
the numerical integration formulae 1isted earlier and algebraically added on to the closed form

expression for [K__ ] evaluated by Equation 62.

gen

Once the generalized stiffness matrix [ngn] is evaluated, the element stiffness matrix in the

local element coordinates [Kee] is obtained, by virtue of Equation 17, as
- T
[Keel = (517 [Kyepd (] . (63)

[Kee] can then be transformed to the global coordinate system in the same manner as for all

other elements.

—
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Let the transformation for displacements be

{"}basic = [E]T ("}element (64)
and
{“}gws [T] f"}basic L (65)
Then, the stiffness matrix in global coordinates is
[kogl = (17 [E] (K] [T (T . (66)

5.8.7.6 Equivalent Thermal Loads

The stress-free strains developed in a free plate due to a variation of temperature with depth

are

€ a

xt el _ -
{et} = St =4 %2 (T - TY) = {ae} HE TY) . (67)
£ ®a3

Qgére ? is the temperature at any point (x,y,z) of the element, TY is the reference or stress-free
temperature of the material, and {a,} 1s the vector of thermal expansion coefficients in the element

coordinate system.
An applied stress vector which would produce the thermal strains is
log} = [6,] {ey} = [6,] {ag} (T-T) (68)
where [Ge] is the matrix of elgstic coefficients at‘tbg ppint on the cross-section.

The generalized equivalent thermal load vector {Pt } is obtained as

gen
Plont = 573y _/; Iy {&t}dv. (69)

The strains {c} are related to the curvatures {x} by
{e} = -z{y} , (70)

5.8-74 (12/31/77)
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PLATES

where z is measured from the neutral surface of the plate. Substituting Equations 68 and 70 into

Equation 69,
t 3 T =4
{Pgen} * - 56T _/‘; 2{x}’ [6,] {a} (T - TY)dV (1)

The variation over the surface of the element of the mean temperature, T , and the thermal gradient

at a cross-section, T', are both assumed as bilinear polynomials:

ﬁ: P 9
T0 = dix y (72)
i=]
and
3 P1 V1
T = 12_‘, dix y (73)
=]

so that the temperature at any point (x,y.z) is

Ts T° +T'z2 . (74)

The constants d1 and d; are evaluated from the values at the vertices. Thus,

T!a s Tib
- 0} 03
S (75)
T T
03 ol
A N (76)
1y
d3 = g [Tgs - 4] (77
Tia + Tip
.
4§ T (78)
R el
4 * vt (79)
and dy = 275 - di] (80)

where T&l' T63, and TBS are the differences between the grid point temperatures and the reference

temperature at grid points 1, 3, and 5 respectively.

5.8-75 (12/31/77)
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It is convenient to define the equivalent thermal moment vector
W)= - f 161 togh (T - T ez

+t/2 ; '
= -/-t/Z [Ge] (ae} (To + T'2)zdz

3
- 6] e} Tl -

Substituting for t from Equation 2la and for T' from Equation 73,

3 03 3

]
M} = - (6.1 {a } écccd'.
t T2 2% e 1?;% 1321 122% 1 Thipigd

(vqy Hry +y. +P.) (s, #s. +s, +V.)
11i2133y111213,j

X

At the three vertices, the value of {Mt} will be given by
M} = ;[Ge] {a,} ;17{
M35 = -[6,] {a,} 1,74

and {Mt}S = -[Ge] {ae} IsTé .

ORIGINAL PAGE 1
OF POCR QUALITY

(81)

(82)

(83)

(84)

(85)

where I], I3, and ISW are the moments of 1nertia of thé cross section at the vertices G], 63, and

Gy of the element, respectively. The "effective" thermal gradient, T', at the vertices is given by

C
T1 -ITfT]ZdZ
Da ./'

B o T zdz
3 13 3

L _1.
and T5 I5_/-1'5zdz .
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and the integration is carried out over the effective bending material. The user must specify the
thermal gradient at the three vertices, if the temperature is to have bilinear variation over the
surface of the element. For solid homogeneous plates the option is provided to specify the tempera-
ture at the vertices as a tabular function of depth, in which case the thermal gradients at the

three vertices will be evaluated by the program using Equations 86, 87, and 88.

Substituting Equations 2la, 58, 72, 73, and 74 into Equation 71,

t L. 1.3 T
vt = - ary Jf (g + T 16 (s

3 3 3 3

P PID DRI AR dj
11=1 12=T 13=1 J=1 1273
(Y1]4'Yi2 *Y13 +PJ.) (511*'512*'513"' VJ)
X y dxdy . (89)

As in the case of the derivation of generalized stiffness matrix, the generalfized thermal load

t
gen

vector of curvatures in the absence of transverse shear, and the numerically integrated expression

t
[Pgen

following notations, viz.,

vector will be evaluated in two stages, viz., the closed form expression [P-_ ], due to [x,], the
1 1

]2 due to [XZ]’ the contribution of transverse shear to the vector of curvatures. Using the

Gyy = Gyq&g * Gpa + Gy3e, ' (90)
1 2 3
Gy = GypBe + 658, * Gp33, (91)
1 2 3
and Gy * G3%, * G, * xfe, (92)

the ith element of the generalized load vector {P;en} will be given by

5.8-77 (12/31/77)
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"3 3 3 3 A4
t | Yy ¢ ¢y d;
PPgen’y 171);1 El 1}':'1 g 12 tsd
1 2 3
[Gi1mi(m1 -1) F(m.' vyt Yy, vt Pj -2,
1 2 3
ny + si] + siz + si3 + Vj) + Géz nf(ni - 1)
F(m, +y, +y, +y, +P.,n. +5. +5
i 11 12 13 j* i i 12
"yt Yy 2 e Gggmyny Flmy ey 4 i,
+ty, *Pr-l,n vs. 45, +s. +V, - 1)] . (93)
The load vector {P }2 1s evaluated using numerical integration and [Pt ] is obtafned as
t
the sum of [Pgen]l and [pgen] . For plates with negligible transverse shear. [Pgen]2 is null.
The equivalent thermal bending Toad in the local element coordinate system is obtained, by virtue
of Equation 17, as <7
t =
{P } [S] {Pgen . (94)
The load vector can then be transformed to the global system by
(g} = (17 (€] P} . (95)
5.8.7.7 Recovery of Internal Forces
The internal forces are recovered at the three vertices and at the centroid of the element.
After the displacements of the element are transformed from the global system {u}g to the element
coordinate system {u}e. the generalized coordinates {a} are evaluated from Equation 17. The
curvatures {x} are evaluated from Equation 58 with the nonzero elements of [83] being as listed
below:
83(1.11) = -ZAA]] _
33(1,12) = -6A31 -
5.8-78 (12/31/77) —
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8;(1,13) =
8;(1,14) =
B5(1,16) =
B4(1,17) =
8;(1,18) =
8;(1,19) =
B;(1,20) =
B3(2,12) =
8;(2,13) =
85(2,14) =
85(2,15) =
B3(2,17) =
B3(2,18) =
B3(2,19) =
83(2,20) =
B;(2,21) =
B4(3,11) =
B4(3,12) =
B3(3,13) =
B3(3,14) =
B4(3,15) =
B3(3,16) =
B4(3,17) =
B4(3,18) =

33(3:’9) =

R SRR |

PLATES To FUR guremit
~4A3,
~6Ars
‘120A1 1x
-24(A3]x +ALY)

“12(Agpx + Agyy)
-12(Aex + Asoy)
~28A; 5y

-6Ay

-4A33

“6A5y

~20A,

-24A2,x

~12(A3qx + Ay y)
“12(A34x + Agay)
-24(A25x + Aguy)
-120A25y

-204,,

“6(Ayq + Ag3)
~4Ag + Ayy)
“6(Agp + Agyg)
=205
-120A2,x

“280(RAyy + Agdx + Ayyy]
“12[(Agy + Agydx + (Agg + A )y]

-12[(A25 + Ay, + (Agq + Agp)y]
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83(3,20) = -24[A15x + (A32 + Azs)y]

and B;(3,21) = -120A,y

where A]‘, A12, e ey A34 are as given in Equations 38 and 53. Moments at the vertices are then

obtained from

My = [0]) Ix} - (M) (96)
and M}g = [D]g {x} - M }g . (98)

The moment at the centroid is evaluated from similar expressions as Equatioms 96, 97, and 98,

with the value of [D] and {Mt} evaluated from Equations 25 and 82 respectively.
The transverse shears are evaluated as follows:
{y} is evaluated from Equations 52, 53, and 17.

{V} is then evaluated from Equations 29 and 30.

5.8-80 (12/31/77)
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Figure 1. TRPLT1 triangular bending element gecmetry.
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v
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M ® v
' Y dx — o
r 1
X
Mxy

Figure 2. Sign convention for moments and shears.
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5.9 THE CONICAL SHELL ELEMENT

The properties of the conical shell element are assumed to be symmetrical with respect to
the axis of the shell. The loads and deflections, on the other hand, need not be axisymmetric;
they are expanded in Fourier serfes with respect to the azimuth coordinate. ODue to symmetry, the
resulting load and deformation systems for different harmonic orders are independent, a fact that
results in large time saving when the use of the conical shell element is compared with an equi-

valent model constructed from plate elements.

Equations for the element are developed in terms of Fourier coefficients with respect to
azimuth and in terms of polynomial coefficients with respect to meridional distance. An important
and unusual feature of the NASTRAN conical shell element is that it includes transverse shear
flexibility, At present the conical shell element cannot be combined with other types of struc-

tural elements in the solution of problems.

5.9.1 Coordinate Notation

The coordinate geometry for the conical shell element is shown in Figure 1. The internal
coordinate system for the element is oriented in and normal to the surface of the shell. The
coordinate system for grid points at the ends of the aelement will usually be parallel and per-

pendfcular to the axis of the shell.

Stiffness matrices will be derived in terms of element coordinates evaluated at the ends of
the element. The stiffness matrices must then be transformed into the global coordinate system,

which matter is not treated here.

Although the general case of a conical shell is treated, the results obtained are valid for

the 1imiting cases of a cylinder, ¢ = 0, and of a flat circular plate, ¢ = /2.

5.9.2 Harmonic Dependence on Azimuth Position

Since the conical shell element is assumed to be axisymmetric, the motions of the shell at-
meridional position, s, can be expanded in a trigonometric series with respect to azimuth position,

H
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' L™ 4
m - m o«
u(s,¢) = T wu.(s) sin(ne) + ug(s) - 1 u(s)cos(ne)
n=1 n=
m mo,
v(s,9) = v(s) + [ v (s) cos(ne) + ] vo(s) sin(ne)
n=] n=]
m o,
wis,e) = wy(s) + § wo(s)cos(ne) + [ w(s)sin(ne) (1)
n=i n=]
m m
als,) = a (s) + [ o (s)cos(ne) + | a (s) sin(ne) ,
° n=1 " na] "
m . m .
B(s,0) = 21 Bo(s) sin(ne) + 8 (s) - Z] 8,(s) cos(ne)
n= na
The rotations o and B are independent motions because of the transverse shear flexibility,
Rotation about the normal to the surface is not included, such rotation being adequately repre-
sented by the gradients of u and v.
5.9.3 (Cases to be Treated
The motions corresponding to dffferént harmonic ordé;é (different values of n) are elas- -
tically uncoupled. Furthermore, motions represented by starred parameters are not coupled to mo-
tions represented by unstarred parameters. For n > 0 the stiffness matrices for the starred and
unstarred motions are identical. The reason is that the starred parameters describe motions
that are all shifted gﬁ in azimuth from the motions described by the unstarred parameters.
Thus, -cos(n¢g} = sin(n¢ - %J and sin{ng) = cos(n¢ - g). The unstarred motions will be used to
develop the stiffness matrices for n > Q.
The set of parameters, vo(s). "o(s) and ao(s) describes axisymmetric motion of the shell.
* %3
The set of parameters, uo(s) and so(s). describes rotation and twisting of the shell about its
axis. The stiffness matrix for n = 0 will include both starred and unstarred motions.
The degrees of freedom for the shell aelement are taken to be the values of the Fourier
coefficients appearing in Equation 1, evaluated at the ends of the shell element. Separate
stiffness matrices will be evaluated for the following parameter sats,
T * * * * e
{ugo? Wao* Vao* "a0® %0’ Bao’ Ybo’ Ybo’ “bo’ %bo? Bped v (2
-
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T .
lugpy = Lugys Vape Waps @300 8,03 Upps Vops Woqe pqe 85y (3)

and in general

T .
{uen} * Lyan' Van® Yan® %an* Ban’ Y%n* Ybn* “on* %n® 3bn--l 4 (4)

where subscripts a and b refer to the ends of the segment, see Figure 1, Note that, as previously
shown, the stiffness matrices for the starred components are identical to those for the unstarred

components, for n > 0, and need not be separately calculated. The general starrad parametar set is

tT * * » 3 t'* * * * %
{"en} * Lyan' Van® Yan® %an® Ban' Yn® Vbn® "on* %n anJ * ()

If transverse shear flexibility is negligible, the rotations, Ba and ab' are not independent
degrees of freedom. Special procedures are required for the case of zero transverse shear flexi-
bility. Stiffness matrices will be separately derived for the following casas, in the following

order, Note that the stiffness matrices for n > 0 can be derived with n as a parameter,
a. Finite shear flexibility, n > 0.
b. Finite shear flexibility, n = 0.
€. Zero shear flexibility, n > 0.

d. Zero shear flexibility, n = 0,

5.9.4 General Plan for Oeriving the Stiffness Mafrices

For each harmonic index the displacements of the shell are approximated by power series with
respect to distance along the shell. The power series include a number of independent constants
equal to the number of degrees of freedom. For example, the general case of finite shear flexi-
bility and n > 0 requires ten independent constants, i.a. one for aach element of ("en}‘ The
relationship between degrees of freedom and the independent constants, (qn}. can be explicitly

stated as
(uen} = [Huq]{qn} . (6)

The next step is to express strains in terms of the independent constants. The strains, of

course, have harmonic dependence on azimuth similar to Equation 1, so that the required relation-

ships are between harmonic coefficients of strain and the independent constants for the same

5.9-3
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5 7
harmonic. Three kinds are involved.
{e} = [es, €4 es¢]T, membrane strains , (7
{v} = [ys, Y¢]T, transverse shear strains, and (8)
{x} = [Xs' X xs¢]T, bending curvatures . (9)
The required relationships are:
le,} = [qu]n(qn) ) (10)
ISP [HYq]n{qn} ) (11)
{x,} = [qu]n{qn} . (12)
The matrix coefficients are evaluated by combining the relationship between strains and dis-
placements with the relationship between displacements and the independent constants.
The total strain energy for the conical shell element is 7
1% T T T
Vo = | [ umTe s T s onTood reeds (13)
0 0
where, for a unit width of shell,
(F}T = [Fs, F¢, Fs¢], membrane forces , (14)
{V}T [Vs, V¢}, transverse shear forces, and (15)
M= M, M, Mg, ], bending and twisting moments - (16)
Forces and moments are related to strains by elasticity. It {s assumed that the three types
of strains are uncoupled so that
(F} = t[ENe} , (17)
{v} = ts[G]{Y} ’ (18) .
M} = [D]{x} , (19) .
- 5.9-4 L=
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where t is the thickness of the shell for membrane stiffness, and ts is the thickness of the
shell for transverse shear stiffness, both assumed constant over the surface of the element. Be-
cause of the symmetry of the shell, certain terms in [E], [G) and [D] are zero. The remaining

terms, assumed to be constant over the surface of the element, are

Ep E12 0
(] = |§, Ey 0 , (20)
0 0 a3
G 0
[c] = [” } , (21)
0 Gy
and
0y P 0
(0] = [0, Dy 0 ) (22)
0 0 D33

By substituting from Equations 17, 18 and 19 into Equation 13, we obtain:

RGN T T
ve = 5[ [Tt TEle + e T6l + 6aT10000] raeds (23)
0 0

Because of the assumed symmetry, the strain energy can be written as the sum of a series of inde-

pendent terms

m * m *
Vo ™ Veot Zlven * Vo * nZ.'Ven ! (24)

where each term has the form given by Equation 23, with the addition of a sin2n¢ or a cosznw fac-
tor, and the substitution of harmonic strain coefficients for the strains. Integration with res-

pect to ¢ then gives, for n = 0

2
Veo = 'ﬂ'f [t{EO}T[E]{EO} + tS{YO}T[G]{YO} + {XO}T[D]{XO}] rds , (25) —';:
o]
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W‘IV
1

and, forn >0

2
Vn * 7 [ [ele el ) + v 61} + i) TTOdxH T ves o (26)
0

and similar results for the starred terms.

Substitution of Equations 10, 11 and 12 into Equation 26 then gives

Vo = 7 {0 [K%1Ma,} : (27)

where

+ ¢ [0 1, TI6IH, o1, + [H (1, TIOICH, 11 vds. (28)

2
[Kg] = [ [e[H__1 T[E][H ] Yq-n xa-n xq°n

€q’n eq'n
0

The result for n = 0 is the same except that the factor = {s replaced by 2.

[Kg] is the stiffness matrix referred to the independent constants. The stiffness matrix

referred to the degrees of freedom for the element is

-1
oh (29)

Uy . ~1:Tr 0
(ki) = [y, 1o CkAICH
which is the final result.

The plan of the analysis is to develop explicit formulas for the terms in [Huq]n and [Kg].
The integration indicated in Equation 28 makes it very difficult, if not impossible, to express

[Kﬂ] as a sum of products of elementary matrices.

5.9.5 Stiffness Matrix for Finite Shear Flexibility, n> 0

5.9.5.1 Power Series Expansions

The ten independent constants for each harmonic order, {qn}. are chosen to be the coefficients
in the power series expansions for displacement and shear strain amplitude coefficients as shown

below. Shear strains rather than rotations are employed for convenience.

u (s) = Gy, * Ggps s (30)

Harmonic Components

(31) -
of Deflection

vn(s) = A3, * AnS '
2 3
wn(s) ® 9, + 9%n3 * QgpS + %nS (32) -

5.9-6
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Yon(S) = gy * Gygps o (33)

Harmonic Components
v_. is assumed constant and independent of s. of Transverse
sn Shear Strains
The magnitude of Ysn is determined in terms of

the ten independent constants.

Other choices of expansions are possible. The above has been selected by virtue of the fol-

lowing arguments.

a.

5.9.5.2

"The

b.

Only four constants should be associated with Uy and n because, in the limiting case of

of a flat circular plate, u and v become uncoupled from the other degrees of freedom.

The choice of a cubic expansion for w is analogous to the expansions used for the trans-

verse deflection of beam and plate elements.

The identity of two of the independent constants with the circumferential shear strains
is necessary because, in the limiting case of zero circumferential shear flexibility, Ba
and Bb are no longer independent degrees of freedom. In this limit a9, and 90n 27

omi tted.
Strain-Displacement Relationships

strain-displacement relationships for a conical shell are as follows (refer to Figure 1):

Membrane Strains

g, * o , (34)
€ * % %% +vsing +w cosw) , (35)
€ " 3o- L(u stny - %) : (36)
Transverse Shear Strains
o B , )
Yy ° %g—:-%cosw'rs . (38) —';-
5.9-7
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¢. Bending Curvatures

da
XS 3—5- ’ (39)
% ( = + as1nw) , (40)
Xgo - 3% %-(—% + gsing + ewcosw) , (a1

where aw is the rotation about a normal toc the shell surface,

= o L(3u , usiny 1
® '?(as+ r

w r

Qalq)

) ) (42)

Note that the conventions for Es and € g1ve pcs1t1ve stra1ns for tension and that the con-

ventions selected for curvatures are such that the fiber strafns due to bending and stretch1ng

are algebraically added on the inner surface of the shell.

Thé'ab6Vé”stﬁa1n;dispTacement relationships are, with the exception of the twisting strain,
fairly standard and they can be checked by reference to text books or to simple diagrams. For the

derivation of the twisting strain refer to Figure 2. The twisting strain is defined by

Rev)

- 38 : (43)

Xs 36 ~ 3s

-

@ rather than a 1s used because 3- is not zerg in a rigwd body rctat1on of a surface element

about the normal to the surface. & is defined to be collinear on opposite edges of the element.

From Figure 2b:

a = o cosdp + (SQCOSW + 8siny)sinad . (a4)
so that
3 + (8, cosu + 8sTny) (45)
T a¢ :

Substitution of Equation 45 into Equation 43 gives Equation 41. Equation 42 for the rotation
about the normal can be readily verified by simple diagrams.

For the unstarred parameter sets, the components of strain have the following dependence on

th

azimuth, assuming only one harmonic order, the n™, to be present. The choice of a sine or cosine

dependence is made from a consideration of symmetry.

5.9-8
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€s €sn

s €on 56 €son

vg y o cos(no)(vgn y Yo = sin(ne) (v, (46)
Xg Xgn Xsag Lsen

Xq Xon

The relationships between the Fourier components of strain and the Fourier components of
displacement are derived by inserting Equation (46) into the strain-displacement relations. The
subscript (n), which modifies nearly every dependent variable from now in section 5.9.5, is

dropped for convenience.

a. Membrane Strain Components:

v

= ’ 47
ss 13 (47)
« L ) , 48
N - (nu + vsiny + weosy (48)
3y 1 .
€6 * T ¥ usiny + nv) (49}
b. Transverse Shear Strain Components:
dy 0
YS = ?S_- a Y (5 )
= - l-(nw + ucosw) +8 . (51)
\ r
c. Bending Curvature Components:
- 52
Xg 3s ’ (52)
. l(. 53
X4 F\-ng + asinw) s {(53)
38 , ] ] (_a_u_ using . n ] _ 4
Xsp * -3—5-+F[-M+ Bsiny - ycosv |z * ¢ +rv) (54)

5.9.5.3 Development of [Huq]

Equations 50 and 51 are used to obtain the relationships between a,8 and the independent con-
stants. Substituting from Equations 30 through 33 into Equations 50 and 51, and dropping sub-
scripts (n),

3 2 .
a = T:'Ys = g+ 20,5 + 3ag5° - g , (55)

5.9-9
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g = %(nw + ucosy) + Ye
= l[n( +q.8 + s2 + 53) + cosy(q, + a,s)] + + s (56)
rLMag * Q¢S * 9y % G 79 9 * %o .

In order to express o in terms of the independent constants,‘r’s must first be expressed in
terms of the independent constants. NritingﬁrEquat'lans 30 through 32 and 55,756 in matrix notation
yields

tugh = [ Ma) + (v, . - (57)

where the bar notation is used to indicate a subset of the complete [Huq] matrix. B

Yg will be found in terms of {q} later. From Equations 8 and 11
whera w‘{ q_l is a partition of [HYq] in Equation 11. Thus, comparing with Equation 6
s

{H

gl = (gl + {HUY}LHYSQJ . (59)

The nonzero terms in the ['H'uq] matrix are, recalling the order of displacement components

in Equation 3:

Uy H'” =

vy FI'23 = ]

v, ﬂss = ]

a, ﬁiG = .

Byt Wy = co:a‘ s = E; P Fgg = 1
Uy ﬁg1 = 1; Hyp, = 2

"' Pgs 86 87 "
. = - = . = 2
@)t ngﬁ 1; H97 22; HQB 3

5.9-10
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« £O0sy , « ZXcosy | « . a DL,
By' o, e ¢ Mo,2 o ¢ M0,5 ¢ Mog ol
2 3
H = nl M I = &. M H. = M B t
Mo,7 T T8 Mosg o Mo,g T 1 Mg * o
{Huv} is a column vector with -1 in the 4th and 9th elements and zero elsewhere.
5.9.5.4 Development of [Heq] and [qu]
From Equations 47 and 31:
€ = q . (60)
From Equations 48 and 30 to 32: '
1 2, 3 61
&  wna) + )+ sinb(qy + q,s) + cos(gg + qgs + g5 ags™) - (61)
From Equations 49, 30 and 31:
€ ™ 9 - %[sinw(q] * G35) + n(ag + q45)] . (62)
Hence: o
€s €o €s¢
B n -sing ]
0 v o 1
ns s
0 o 1 - 7 siny 2
sin -n
0 sy = 3
ssiny -ns
! r o 4
T 0 cosy 0 5
(H.1 = r (63)
€q 0 scosy 0 6
r
0 szcosy 0 7
r
3
s cos
0 - 0 8
0 0 0 9
0 0 0 10
L |
5.9-11
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% ;
For the bending strains we consider the dependence on the independent constants and on Yg
separately. Thus
= [H = , 64
{x} [qu]{q} + (HXY}Ys [qu]{q} (64)
so that using Equation 58
= [H 3 . 5
[qu] [qu] + {HXY:LHYSQJ (65)
From Equations 52 and 55 and the assumption that Yq is constant,
Xg = 207 + 6qgs . | (66)
From Equations 53, 55 and 56
2
Xy * g:[-nﬂ + asinw] . ];[- B (g5 + g5 + Gys° + ags’) - B2 (ay + )
- nlag + qyqs) + sinblag + 2q,5 + 3q852)] - élgk Y
\ ™4
2 2 2.2
- _ hcosy _ hscos n sinb _ sn 2ssin n°s
q1( ’jé‘) "qz( —,,T"E)*qs(':z)*qs(r ‘g)”‘h("F—g ":2‘)
v (35‘251@_n253>+ (_ g_)+ (_pi) . sin (67)
9% r r? 99 r 90 r r s :
.From Equations 54, 55 and 56
s sinycosy ssimpcosy _ 3cos _ hcos¥ _ hscosy
Xs¢ "1( FL ) v gy Bk IR ) v oy (- ) v 0 (- T
2r 2r 2r 2r
+ nsind ) nssind _ gg_> + ( nszsin _dns ) L ns3siny - 6ns2 )
%\ "7 /T%\ ", r 9 _T'w'r B\ T2 v
+ QQ(S.‘:‘”> + q~lo('1 + = 51"‘9) + 1 YS ’ (68)
so that, in matrix form,
5.9-12 (3/1/76) V
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X4

siny

AL

r 11

-ncosy
r

Yq
-nscosy _ siny H Y¥Q
2 r 12
r
-siny Yq
= "3

-siny Yq
r H14

AL TR C
r 15

-siny

ORELIEE

=2

has been used to form the terms involving Hiqu'

5.9-13 (3/1/76)
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'-2-2 r

2

AT

Ya 2
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5.9.5.5 Development of [HYq]

The first row of [HYq] is LHY qJ. The second row of [HYq] as obtained from Equation 33, has
s

zeroes for the first eight elements and for the remaining two:

Yq = . Yq =
Hag B Hy 0 s

L_HY qJ is developed by means of an equation of moment equilibrium into which the meridional com-
)

ponent of transverse shear enters.

Consider a surface element as shown below. The symbols refer to physical quantities rather

than to their Fourier components.

¢

M v
S S¢ S
rag QL" Mg, T—- 8 =0 r’A‘r = (r + 8s siny)as

v

s !
a s

—— T
= sinyss
¢

ﬂ's¢

The positive direction of moments shown above is consistent with the positive convention for cur-

vatures,

Equilibrium about the x-axis requires, considering terms of the same order of smallness, that

5.9-14
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V rass + (M;r Ad - MsrAcp) + (qu’ - Ms¢)As - M¢sinWA¢As = 0
To first order in As and Ad,
'w!  » _i
Msr Mg + =5 (rMs)As ’
and
. 2
P‘Tscl) Ms«» * ¢ (M“)A‘b '
Substituting Equation 72 and 73 into Equation 71, and dividing by A¢ds,
PV b2 (M) + =2 (M_,) - Msing = 0
s 3 Vs T3 Vse (3

Since Ms = Ms sin(n¢) for the condition described by Equation 46, we may write,

¢ o

3
V., +=(rM_) + nM -M sinp = 0 .
Sh 3s Sh sé, L

1 : .
Since st = t—sElT Vsn. we can now write, suppressing n as a subscript:

1 3
Ys * TG [‘ 3s (Mg) - Mg, + "¢51“"’]'

ton
and since
Ms -Dn D12 0] Xs
Mol T | Dz D22 0 Xg ’
Mse o 0 0 033_ Xso

we arrive at

3
Ys T TG [' Ts \r(Dyyxg * °1zx¢)) - MDyaxgy * STNW(Dyxg * °sz¢)] .

5.9-15
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_
Define
Xg ‘ Xg Xg 0
v a v = - = - .—Sng
{x} Xg Xq {HXY}YS X = Ys . (78)
- n
Xso Xsg Xso r
The relationship between {Y} and the Tndependent constants has already been found (Eauation 69).
Substitute Equation 78 into 77.
= ] 3 - - - : by -
(O { E("(ans * °1zx¢)) T MD33xgy + STMU(0yo%g + Dypi,)
(n2033 + sin2w022> " v,
- v e * Dypstow 5= (79)
Equation 79 is an exact relationship that indicates Yg to be a variable over the surface,
In order to comply with an earlier as;umpf{dﬁ. Eduétion 33, yg must be assumed constant in energy
calculations. Let ?; be the weighted average value of Ys obtained by integrating Equation 79 over
the surface, %
- 2
- 1 J
Y = ry_ds ’ (80)
s Lray s
0
where
r . {(r. +r )7
av Z'a b
Thus, assuming Y, to be constant on the right hand side of Equation 79
= . ] - - . - - )
Ys T TG [ ACUTAOK Dip0) - ry (g (0) + 012y (b)
s 11 av
L { nD,. + sinZyD
- = = 02 33 22 \-
+J = n0q.x. ., + stnyp(D,,x. + D X))d;] -__.( )Y
! ( 33%s¢ 12%s 22%¢ g T ltsG”rav s
(81)
where
2
m.1-n
Im = 7 [ srTds . (82) -
0
5.9-16 e
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Write 2 2 o
I N0,4 + sin"y
02 33 22
Q = 2tGyyry, [1 + T( TS )] . (83)

Then
v %["a(”nis(a) * °12;¢(°)) - "b(D”;S(b) ' D‘zi"(b))

L
* { (- n0g5xgq + SMU(DyX; * Dzzza)) ds ] : (84)
' .

Evaluation of the right side of Equation 84 by substituting for the X's from Equation 69, now
gives v in the form v, = LHYSqJ(q}; LHqu_I is the first row of [qu]. The nonzero elements of

the second row of [HYq] are:

Ya . 1. Ya .
H29 13 H2,10 S.

On evaluation of the right hand side of Equation 84, we get

I
1 1 1
q [D.‘zncosw (r - _a) -2- cosvsiny -—-—(033 + 2D22> }

1 I
v , 1 nicosy _ 1 13 3 02
2 (] [[’12 —Tb'w‘ 7 nsinycosy — (3°33 * °22) *+ 5 nDyqcosy —= | »

Yq

A

I
13 qz" ™ (85a)
wova . 1012 i3
14 7|z "0V |
Hye 'O =-1-n2 ]—-J—->-ns1mp1—— 20,, + D )
15 Q r a 33 22 !
HY“-‘D nls -Zin«al-lizu +D )+I—°2-znzo + sin%yD )
16 q|52\"F, ns T 33 7 Y22 T 33 2 /|’

22 21
g .1 . 12/, 2 2
H7 q I:ZD”(r r ) 012( ) + <2n Da3 * sin wozz)

-n sinw—z-:1 (2033 + 022>] s

5.9-17
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*%
2,3 31
yqQ ., 17._ n“L 22 2 (2
Hg 6[ Dyq88ry + °12( A ) t |20y * sintuby
2 I
- nsiny — 2033 + 022
(85b)
ya o, 11 _
H.lg U[ nsinw—( 22 * 033 )J
H w .1 n2{D,, + D - nsin ElZ +D
1,10 q 12 * 033 A Dp2 * D33
" We are now able to computeVEHuq] from Equation 59 and to evaluate the constants Hiqu in
Equation 69.
5.9.5.6 Explicit Form for (k9]
[Kq] is, for convenience, separated into parts due to stretching transverse shear, and
bending.
: B (S B ¢ RN TS N 5 (86) -
;here
(k%] = nt fl[H 1TCEICH. ] rds ’ (87)
o €9 €q :
T
x¥] = Tt [ [H,,] [61(H o] rds (88)
[x%™) = nf [H,, J[D][H Jres - (89)

In the case of [KQY]. the calculation is performed as follows. Let

H

Y9
(Hgl = |---~ . (90)
H,
Then, since [6] is a diagonal matrix and (HY q} s indapendent of s, we may write
qy ay
KT = [k *1+[k % . (91)
5.9-18 A
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where, noting that Ioo {s defined in Equation 82,

(92)

[K5] = .6y Igg(H, HTEH )
s711°00 v q Y .0 ’

H

and

qy 2
$1 - T
x " mt Gy, £ {HY q} {HY q} rds . (93)

¢ ¢

ay -
x s] jg a full symmetric ten by ten matrix obtained by crossmultiplying the terms in Equa-
tiqn 79. Explicitly:
qy
s . ¥Yq 4 Y4
K1J (H11 H1j )tsG”I00 . {94)
e
[k ®] is a symmetric matrix that is zero except in the 9th and 10th rows and columns. These

terms are:

K

RL
99~ ts2l

00 ’

e e
Ke.t0 © = %o,9 " EsS22h10 ' (95)
Wy
Kj0,70 = tsB22l20

In the case of [qu], explicit formulas were written for the individual terms. The terms
include integrals over the slant length in the form given by Equation 82. The formulas which
are not difficult to write, will be omitted in the interest of brevity.

In the case of [K9X] explicit formulas were also written for the individual terms. The
formulas occupied eleven typewritten pages and it was virtually impossible to verify their cor-
rectness, not to mention that of the corresponding FORTRAN code. At this point it was decided
that the computer should be taught to perform analysis, i.e. that it should evaluate the integral
in Equation 89 from the formulas for the elements of [qu] that include the variable of integra-
tion (see Equation 63). The analysis procedure involves recognition of the fact that the inte-

gral of the product of terms A and B where

. i
A= B and B = 28
r —
is 2
voj' ABrds = abl .y (44 . (96) )
5.9-19
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A subroutine was written in which the powers of r and s in the individual products of
(qu]T[D](HXq] were logically added and used to call the appropriate integrals. The programmer's
task was greatIy‘reduced, and the reliability was correspondingly increased, because only about
sixty coefficients (see Equation 69) were involved rather than about six hundred. The only use
made of the explicit formulas for the elements of [qu] was to check the results of the compute;

subroutine for enough terms to ensure its correctness,

5.9.5.7 Summary of Procedures

In summary, the computational steps required to form the stiffness matrix of the conical
shell element for the general case, n > 0 with finite shear flexibility, for both the starred and

unstarred quantities are

1. Form [Huq] and (HUY}. See Section 5.9.5.3.

2. Form (Hqu} from Equation 85.

3, Fomm [Huq] from Equation 59.

4. Invert [Huq]. .

5. Form [K9%]. See Section 5.9.5.6.f

6. Form [K3']. See Section 5.9.5.6.

7. Form [k%%]. See Section 5.9.5.6

8. VFA;Q‘Ek;d] from Eﬁﬁatio;héEL |

9. Form [Knu] from Equation 29.
5.9.5.8 Evaluation of Integral, Imn

The integral to be evaluated is

"2

m 1-n : ’
I = 7] sr7ds {(96)
0
where
r. -r
r = a+bs, a = Ta» and b = b T a

Dwight's Table of Integrals, Formula 89, gives an explicit formula for the evaluation of Imn' In

terms of our notation the formula is

5.9-20
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[P Y P ]

r
. b
-n- -n+2
- m! m (-a)jrm n-j+2 -a)™ ™ 410q(r
Ton i bm+i jzo m=3}! 31 (m-n-j+2) * 5m-n+25! (n-2)! ’ (97)
jEm-n+2 Jam-n+2
Ta

The second (log r) term replaces the term in the series for j = m-n+2 and should not be in-

cluded unless j = m-n+2 for some j. This will happen if, and only if, m+2>n> 2.

5.9.6 Stiffness Matrix for Finite Transverse Shear Flexibility, n = Q

The formulas presented in the preceding section are valid for n = 0, provided that the final

stiffness matrix, as computed from the formulas of the preceding section, is multiplied by two.

5.9.7 Stiffness Matrix for Zero Transverse Shear Flexibility, n > 0

The first consequence of zero transverse shear flexibility is that Bna and Bnb disappear as

independent degrees of freedom. The following equations of constraint then occur:

1
Bra * F;'(""na + cosiu,, ) - —- {98)

-
Bnb F; (nwnb + coswunb) . (99)

In the element stiffness matrix, [Knu], the fifth and tenth rows and columns are deleted.
[Knu] is evaluated as before with the following changes:

(a.) In the transformation matrix, [Huq], the fifth and tenth rows and the ninth and tenth

columns are deleted. Also [Huq] = [Huq].

(b.) In the stiffness matrix referred to independent constants, [an]. the ninth and tenth
rows and columns are deleted. Also [K3Y] = 0, and all H'Y terms in [KX] are set equal

to zero.

Note that it is not correct simply to delete the fifth and tenth rows and columns of [Kn"]

from the results of Section 5.9.5.5. -

5.9-21 (3/1/76)
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5.9.8 Stiffness Matrix for Zero Transverse Shear Flexibility, n = 0

The formulas obtained by the procedures outlined in the preceding section are valid provided

that the final stiffness matrix is multipiied by two.

5.9.9 Static Loads

Special procedures are required in generating loads and reducing data for axisymmetric

shells due to the use of harmonic functions of azimuth position in the analysis.

The basic coordinate system for the shell is a cylindrical (¢,z,r) system, as shown in
Figure 3 below. The local coordinate systems used to define loads and displacement components
at grid points may either be cylindrical (¢,z,r) or spherica] (¢ 6,p) A1l such coordinate sys-

tems must have the same azimuth reference as the basic coordinate system.

coordinates for
conical shell

/
4\ reference

/ azimuth

Figure 3. Coordinate systems.

'The'eiémeni coofdinate system is a conical system (¢,s,w) where s is a paraliel to the gene-
rator of the element.

The motions along each grid circle are the components of the vector,

T
{ug} = Lu¢. Uy, U, e¢, 8,, 8.1 . (100)

5.9-22
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The components of {ug) depend on azimuth position. Such dependence is eliminated by Fourier

series expansion as explained in Section 5.9.2.

Under certain conditions either ez or er, or both, will be eliminated as degrees of freedom
by single-point constraints. For example, if all of the elements of the structure are rigid in
transverse shear both ez and er will be eliminated. Also if the elements joined together at a

grid circle have the same cone angle, either ez or er should be eliminated.

The degrees of freedom used in analysis are the Fourier coefficients of the motions at grid
points. The loads, or generalized forces, acting on the degrees of freedom are computed by the

following fundamental theorem.

Let fi be the forces applied to points where the motions are Yy- Let the motions ¥ be

linearly dependent on a set of parameters u Then the generalized force on each u, is

¥ §
3y;
Py = gfi 0y = ;Hijfi . (101)

In the present instance the motions yy are the components of the {ug} vector defined by
Equation 100, and the parameters uj are the harmonic coefficients in the Fourier expansion of

(ug}. The expansion of {ug} is explicitly:

) "1,
u, = u, . sinng + 4, ~ ) u,_ cosne ’
¢ nsl O" %0 pzp on
j I
u, = u_. cosng + u +)uUu sinng ’
z pey 20 20 " y2n
) !
u, = u_cosne +u_ + ) u._ sinng s
r psp ™ r0 sy TP
g ? . (102}
g, = g, cosng +8,_ + 37 6 sinng ,
¢ n=l $n ¢$0 nal on
n « 0 *
o, = n§1 8, ,s1nne + 8, -nz1ezn cosné
) *Te,
g, = g_sinng +86__ - ) 8__ cosnd .
r pap ™M ro sy -
5.9-23
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A= 4
The motions correspending to different harmonic orders are uncoupled. Also the motions cor-
responding to starred and unstarred coefficients are uncoupled. The minus signs have been intro-
duced in order to make the stiffness matrices for starred and unstarred parameters identically the
same for n > 0,
The load vectors (generalized forces) acting on the degrees of freedom are designated by:
(Pl = PP M ]
0 20’ "ro’ ¢o- ?
*T * * *
(P° }o= LP¢° > Mzo s Mro 5.
(103)
T
(%} L%n'%n’%n’%n’%n’mmj'">o
*T * * * * * *
Py = LP¢n * Pon s Pen s Mon > Mzn » Mep Joon>o
{Po} and {Po*} are combined into a single load vector. {Pn} and (Pn*} may be regarded as
separate loading conditions for the same idealized structure, since the stiffness matrices for
the starred and unstarred systems are identical for n > 0.
The specific treatment for various types of loading are discussed below. L~ 4
5.9.9.1 Loaﬂ; Déﬁignated at Grid Points
The following options are available to the user for the specification of static loads applied
directly to the grid points of an axisymmetric ;he11.
(a) Specification of the harmonic coefficients of a Tine load density, {f},
along a grid circle. (The local coordinate system need not be cylindrical.)
(b} Specificafion of concentrated loads {Fic} at azimuth positions g0
(¢} Specification of uniformly distributed line loads {fjd} between azimuth positions,
¢1j < ¢j f ¢2j .
Considering option (a), let the component of the line load density in the ¢ direction be given by
m m
= 4
f¢(¢) 3, +nzla¢ncosn¢ + ng1b¢n51""¢ (104)
Then from Equations 101 and 102, replacing the summation by an integration,
5.9-24 (3/1/76) E;;? )
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2m 3u
PN s [ f.(e) __;2;. rdd¢ = 27ra
$o o ¢

DASAT
ol ey is

%0
au¢°
2n du
p@n = f¢(¢) 532— rde = vrb¢n, n>ag, (108)
0 on
" 2. 5y
P = [ f(6) —2 rdo = -mra,, n>o0.
on o on
on
Let the component of load in the z direction be given by
m m
f (¢) = 2, + Z a,,cosnd + ] b,,s1nno (106)
n=1 n=]
Then from Equations 101 and 102
PZo = anazo »
Pin = Tra,,, n>0 , (107)

P. " a mrp n>0
=
n r n’

The other components of generalized force and moment follow either the

105 or the pattern of Equation 107.

Considering option (b), let the component of the ith concentrated load

be Fm.C Then from Equations 101 and 102
Pro ™ §FM° :
Pon = } FMc sinno,
P¢n* = -; F¢1c cosng,.

For the components of concentrated load in the z direction, inc,

5.9-25 (3/1/76)
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% s
, c
Pro ; Fai '
Pon = ; inccosn¢i . (109)
* © [
Pzn = i in sinndz1
and similarly for the other components of force and moment.
Considering option {c), let the component of the jth distributed load in the ¢ direction be
f¢Jd. Then from Equations 101 and 102
* %4 . d d
oo 1 I fag e T m ey ey gl
1]
$
a 2j ¢ d « -L d .
P¢n § £1j f¢j sinn¢ rdo . § f¢j (cosn¢zj cosn¢1j) . (110)
P s - f¢2jf dcoanb rdpg = - Ly¢ d(sinn¢ - sinne, ;) = J
on J i T w ] fog (s1meg P 4
J

and for the components of load in the z direction.

d
on = r g fZJ (¢2J - ¢1j) v

Pry ™ E-g fzjd(sinn¢2j - sinn¢1j) , (11)

Pt - %}fud(Cdsn¢zj - cosney ) -

5.9.9.2 Pressure Loads

The user has the option to specify pressure loads acting normal to the surface of a conical
shell element. The direction of the load is in the w direction shown in Figure 3. Each pressure
Toad, Pys (there may be several j's for each element) is uniform over the slant length of the -

slement, 2, and between azimuth positions ¢IJ < *j < ¢2j .
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The pressure load is peamed to the adjacent grid points in such manner that the center of
pressure is preserved. The generalized forces at grid point(:) due to pressure load on the coni-

cal shell element between grid points () and C) in Figure 3 are
r r
= a b -
Pw 1(?*’?); pJ(¢zJ 4)]‘]) y
r r
= & a b 3 -
Py = (5— + G') § pj(s1nn¢2j sinn¢1j) , ) (112)

P .« - 2 + b (cosnd,; - €osnd,.)
w n\T ngj 2] ¢4t

The generalized forces in the w direction must, of course, be rotated into the directions of

the degrees of freedom at the grid point.
5.9.9.3 Mass Distribution and Gravity Loads

The user specifies the total mass to be associated with a grid circle. The program then di-
vides the total mass by 2 for n $ 0 and constructs a diagonal 3 x 3 grid point mass matrix in the
usual manner. (The total mass is used for n = 0.) The user can also specify c.g. offsets in the
{r,z) plane and rotary inertias about three orthogonal axes. Rotary inertias are specified as
inertia per unit length for each grid circle and are multipiied by 2=r for n.= 0 and by #r for

n > 0. The latter option (of specifying c.g. offsets and rotary inertias) has not been implemented

in the program.

Structural mass density, Pgs and nonstructural mass density, Ppc» can also be specified for
each conical shell element. The equivalent concentrated mass at grid point (:) due to the element

between (@) and (® in Figure 3 is
rooor
- a,.b
W, = 2ne( g2+ g2) Dogt + o] (113)
which is divided by 2 for n > 0.

The gravity vector is specified by its magnitude, by its azimuth (¢g) and by the angle (eg)
that it makes with the negative z axis (see Figure 3). Gravity loads excite deformations in the

n=0 and n = 1 harmonics only. The distributed gravity forces actingvon a grid circle are -

5.9-27 (3/1/76)
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9 . M
fz ?ﬂ— cose .
9 . _ Mg
f¢ 3o= Sing sin(¢ ¢ ) , (114)
9 . Mg_ -
f. 5or sinegcos(¢ ¢g) ,
s0 that, using Equations 101 and 102
2n 9
on = £ fz rd¢ = - Mg coseg .
2n
- g = _H .
Pl g folsine rdg 23 singgcosey
2n
* - - g . M .
P¢1 g f¢ cosd rde = 23 s1negsin¢g . (115)
2w
g « Mg _.
P'_1 = g f.ocosé rdo 23 s1negcos¢g ,
* 27{ g . M ?
Pr] = g fr sing rdp = 29 sinegsin:bg ,
which are the only nonzero generalized forces. Note that the 1atera1 Toad is d1v1ded equally be-
tween a radial (r) and a tangential (¢) component.
5.9.9.4 Lloads Due to Temperature and Enforced Strains
Temperature is spacified a* each grid point circle in either of two ways:
(a) As the harmonic coefficients in the expansion
) Ir* (116)
T =T + T cosnd + T sinng 116
O n=1 "
This option has not been implemented in the program.
(b) As a set of values, Ti' at azimuth positions, #;. The temperature is assumed to vary
linearly between azimuth positions where it is specified.
The harmonic coefffcients in Equation 116 are in the correct form for use with thas starred -
and unstarred degrees of freedom in Equatfon 102. If the second method of specifying temperature
s used, the harmonic coefficients are computed as follows: i
5.9-28 (3/1/76) : ~
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T, = 3 £ T(¢)do = EF-Z (117)

where ¢k is the last specified position, o041 ° 2m + ¢‘, and Tk+1 = T]'

2m k ¢ - & - b
1 i+1
g T(o)cosnd d¢ = = Z f [Ti + (ﬁ) (T’iﬂ - Ti)] cosng d¢

1
T = -
n T H ‘bi
k Tbipy = Tiad ) ( )
1 1 iti+] i+17%i
= = sinng - sinng
S e [( n i+ i
T = Ty
+ -7—- COSNG, g - COSNGy + Nb, qsinndy,y - no,sinne; 1. (118)
* 1 2n
T, = 7 £ T(¢)sinng do

—

k T.0 .
1 ivi+1 i+171
[( n ) (-cosncb“,] + COSHQi‘)

RN

]

T =T b
i+1 i
+ ——nT— (sinnd;,m - s1nn¢1_- n¢i+‘cosn¢i+] + "°1°°s"°1')J (119)

The temperature is assumed to vary linearly along conical shell elements between grid cir-

Thus for a conical shell element between grid circles (@ and ®.

) . (120)

cles.
Te T

The harmonic coefficients of temperature vary in the same manner. The incremental strains

due to temperature and enforced strain are

+
Ae, = asT Ges .

: (121)

Ae¢ = a¢T + Se¢ .

The harmonic coefficients of strain have the same form, 1.e.,

5.9-29 (3/1/76)
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= +
Aeso O‘sTo 5650 ’

Assn = aSTn + Gesn s (122)

* ¥* *
Assn = “sTn + Gesn ,
and similarly for the ¢ components. Incremental shear strains, Ae 59 are excluded because they
cannot be induced by temperatyre in an ax{symmetric shell and because there is little application

for enforced shear strains. The Incremental strain vector for the nth unstarred parameter set may

be written
a N
Aesn ag T + Gssn ag
a ) S b a
{Acn} = As¢n = °¢Tn + °E¢n * e (}n - Tn ) ay . (123)
0 0 0

The generalized forces acting on strain components thét are generated by the incrementa]
strains are

e

{Fn) 2 nrt[E]{Aen} s N>0

e - - - (124)

{Fo} = Zﬂrt[E](Aeo} s
and the generalized forces on the independent constants (qn} are

T
{Pqn} = g [Hqu (Fn} ds
T
= qt | [HE J'[E]{2e } rds, n>g0 . (125)
0 q n )

The generalized forces acting on the degrees of freedom {uen} at the ends of the element and

represented in the coordinate system for the element are
- -1
{Pen} [Huq ](Pqn) . (126)

The integration indicated in Equation 125 can be neatly exprassed in terms of the integrals

Imn defined in Equation 82. The results for the unstarred parameter sets are, for n > 0,

Pin = nlIgA, + 180

5.9-30 (3/1/76)
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(Pyet = nllygAg + IppBp) .
(Py b = simi(Ipghy + IpgBg)
Pyt = stnullygAy + TpB) + TgiCo + Iy
{PSn} = cosw({lnAy + 111Bn) v
{Psn} = cosy(I A, + IZIBn) ,
{P7n} s cosw(IﬂAn + 1318n) ,

{Psn} = coszp(l:nAn + 141Bn) ,

]
o
-

{Pgp)

{P10’n} = 0 L

where
- a a
An tE]Z(asTn + éesn) + thz(a¢Tn * 5€¢n) v
« L b_-2
Bn 3 (Tn Ty )(Elzas + E22°¢) '
a a (127)

t b a
Oy = £ (Ty = T MEppag * Eqpdy)
The results for starred parameters are the same with the substitution of starred temperature

components. The results for (qu} are obtained by multiplying the above formulas by 2.

5.9.9.5 Enforced Displacements

Enforced displacements at a grid ring are introduced into the program by specifying the har-
monic coefficients in Equation 102. Note that the motions at all points on a grid ring in a given
coordinata direction (e.9., u¢) are thereby restrained. It is not possible to constrain motions at -

selected azimuth locations and to leave all other points free, without dastroying the symmetry of

the structure. -
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5.9.10 Data Reduction

Displacement information can be requested in two forms:
{a) The harmanic coefficients of motion on a grid circle defined in Equation 102.

(b) The motion at specified locations, $;» on a grid circle obtained by evaluating Equation

102 for each @1.

Internal force, moment and stress information can be requested in the same forms, evaluated
at the two ends of a conical shell element (or within other types of elements if such are pro-

vided).
The internal force ahd moment components within a conical shell element are

{F} = {Fs, F¢, Fs¢}T , membrane forces/unit width

{v} = {Vs, V¢}T y transverse shear forces/unit width

{M} = {Ms, M¢, Ms¢}T » bending and twisting moments/unit width

Fs' F¢, Vs' Ms and M¢ have even symmetry, similar to u, in Equation 102. Fs

have odd symmetry, similar to uy in Equation 102.

, V., and Ms

¢ ¢ ¢

The Fourier components of internal forces are evaluated by the following procedure, illus-

trated for unstarred components.

1. Obtain the displacement vector for the element, (uen}, from the {ugn} vectors at its
two ends.

2. Evaluate the independent constants {qn} from
- -1
fapb = [H T ugt . (128)
3. Evaluate the harmonic components of.strain from

{e.} = [H

n

eq]n{qn} ’
try} = DHglifa) (129)

SRR IR RO
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4. Evaluate internal forces from

(Fn} = t[E]{en - Asn} s
vl o= t ey} , (130)
M3} = [D](xn} '

where {Aen} is the incremental strain vector given by Equation 123. [Heq]n’ [qu]n and {Aen}
contain distance along the shell, s, as a parameter. The formulas are to be evaluated for s = 0
and s = . The procedures for starred components and for n = 0 are identical. (No factor of 2

this time).

Membrane stress components are obtained from
m
o, = [Ele, - se b - (131)

In evaluating combined membrane and bending stresses at a distance h from the neutral sur-

face in the w direction, it is assumed that the material property js expressed by [E]. Thus

{an(h)} = [E]{en - B¢, - hxn} . (132)

Components of internal forces and stresses at specified azimuth positions, {¢1}. are ob-
tained by

m m
Flo;) = 21 F,cosné; + {1 Fn*sinn¢1 + Fy . (133)
n= n=

for quantities with even symmetry, and by

m *
1. F, cosné, (134)

b = 3 y
F(s = F sinng; + F -
i n=l " i ° n=1

for quantities with odd symmetry.
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Figure 1, Coordinate geometry for conical shell element.
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5.10 THE DOUBLY CURVED SHELL ELEMENT

5.10.1 Introduction

The formulation of the toroidal ring (and shell cap) elements described herein is derived

from, and is mathematically consistent with, the formulation described in Reference 1.

One of the first discrete element models put forward and one which has since been the subject
of numerous research investigations and reports is the singly curved ring element formed by a
section of revolution of a thin conic shell, (see References 2, 3, 4, 5). The reason for this
widespread attention is twofold. First, there exists a broad and important class of axisymmetric
thin shell structures which are readily idealized with the conic ring. Second, behavior pre-

dictions based on the conic ring have proved, in some cases, to be very paor.

References 6 and 7 have attempted to lay down guidelines in developing shell discrete elements.
These references identify the primary sources of difficulty with the associated discontinuities in
slope which occur along element circumferential interface lines in the conic shell idealization.
Having made this identification, it follows that an advanced ring element is needed which avoids
the troublesome discontinuities. The analytical development of the doubly curved shell element

used in NASTRAN is presented herein.

A mathematical representation is formulated for a doubly curved ring element. This versatile
configuration, defined by an arbitrary section of revolution of a complete right circular toroidal
shell, permits a smoothly continuous idealization of general axisymmetric thin shell problems.
Section 5.10.3 is devoted to the construction of admissible displacement functions. The importance
of selecting appropriate displacement functions cannot be over-emphasized since they serve as a
basis for all response characteristics of a discreta element modal. Osculatory membrane and hyper-
osculatory flexure displacement functions which embody generali;ed degrees of freedom are con-
structed to achieve smoothness in stress predictions and to minimize the number of discrete ele-

ments required in a structural idealization,

A general Lagrangian function is utilized to derive a set of element matrices. Tha appro-

priate function is,

3 3
1,4 2
+g =) =0, (M
3q, = dt 2,
5.10-1
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where
rth generalized displacement coordinate

9% = rth generalized velocity coordinate

b total potential energy

%2 = total kinetic energy

Application of this Lagrange equation yields the following element matrices

1. Stiffness (K]
2. Pressure Load {Fp}
3. Thermal Load {F}
4. Prestrain Load {F.}
5. Gravity Load {FG}
6. Stress (s]
7. Mass [M]

At present other types of structural elements cannot be combined in NASTRAN with the doubly
curved shell element in the solution of problems. The loads that ars applied to the doubly curved
shell element must be axisymmetric. For more general lcading conditions the conical shell element

described in section 5.9 may be used.

5.10-2
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5.10.2 Coordinate System Definition

The basic coordinate system employed is toroidal, which is a righi-handed orthogonal curvi-
1inear system as shown in Figure 1. The m1dp1§ne of the shell is defined by the (a,8) coordinate
surface. Principal curvatures of the shell are aligned with the coordinate axes. Complete
characterization of the coordinate system is achieved by specification of the metric parameters,

A and B, and the principal curvatures of the shell surface, Ra and RB'

The definition of an increment of length, for a toroidal shell, is
@) = (@)% + (am? ()

where d£ 1is the increment of length along the meridian, and dn is the increment of length along the
azimuth. This leads immediately to the definition of the Lame parameters, i.e., the metric

parameters,

)2 = (Ada)?

{2)
() = (ed8)?

where o is defined in Figure 1, and 8 is the rotation about the polar axis.

Restricting consideration to cfrcular cross sections, we first write from observation of

Figure 1 the expressions for the coordinate radii of curvature:

¢}
R, = a4+ —— (3)
8 sina y -

By virtue of the curvilinear coordinate axes chosen, these are the principal radii of curvature of
the shell midsurface. The radius of curvature RG is simply the radius of the circular cross

section. Note that, while Ra i{s constant, RB is a function of the a coordinate.

The Lame” parameters of the coordinate system also follow directly from observation of

Figure 1:

B = b+ asina . (4) - -

5.10-3
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The conventional characterization o.“ the curvilinear coordinate system, just stated, does not
allow convenient transition of the toroidal segment ring element to a conic segment ring element
as a special case since (a), and therefore (A}, would approach infinity. A specification based
on arc length 1s developed in arder to incorporate the conic segment ring element as a special

case. With reference to Figure 1, the system characterization i< modified as follows:

(ds)?

(dg)? + (8ag)

R e g r'1 asina]

s‘ln(a] + -g) s1n(u‘ + g)
A = 1,0 ,

B = rpta s'ln(c:T + §-) - a sing, s

where
0< g< a(az-a])

An alternate specification is now easily derived for the case of the conic segment ring

element. This spec1a1 form is obtamed by rewriting R and B as

_ " N sin(a.‘ + g) - S'lna-l
B & 1 g
s‘ln(cx1 + a) (;)sin(m.I + a)

(6)
s'm(oul + 5-) - S'lnc:T
B = ri+ .

(—)

Invoking L'Hospital's rule we obtain the desired characterization of the conic Hng

" cosa,
RB * s?no;.I ML sma.l 4

(7)
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B = g + g cosay .
where
0 bl g < [(rz - r])z + (zz - 21)2]1/2

Note that further specialization to a cylindrical segment ring is immediate, i.e.,

R = ® ,
[«
RB = r] »
(8)
A = 1.0 s
B = " .

Also note that for the special case of the shellv cap element, o = 0, and r. 0, so that

in this case

9)

B = as1n(§-) .

5.10-5
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5.10.3 Displacement Functions

5.10.3.1 Introduction

The geometric shape and the notation used with the doubly curved ring element are jllustrated
in Figure 1, By virtue of the assumed axisymmetry of the problem the displacements are functions
of a single coordinate. In particular, with reference to Figure 1, the displacements may be

written in terms of the meridional arc length coordinate £, i.e.

u(g,8) = ulg)
(1)
w(g,8) = w(g)

Explicit consideration is given to the construction of displacement functions which satisfy
admissibility requirements., Specifically, admissibility requires that the assumed displacement
functions be complete up to the order of truncation, embody all rigid body displacement modes, and
provide for interelement continuity. Adherence to this definition of admissibility allcws con-
vergence criteria, proven within the framework of continucus mechanics, to be invoked in inter-

preting predicted behavior,
5.10.3.2 Membrane Displacement Function

The construction of complete displacement functions which provide for interelement continuity
is particularily simple in the present problem since the functions are essentially one-dimensional.
The proper incorporation of rigid body displacement modes can be verified using the strain dis-

placement relations presented in Section 5,10.4.

Displacement parallel to the meridian will be called "membrane" displacement because it is
the principal contributor to membrane strain, see Equation 2 of Section 5,10.4. The membrane dis-

placement function is taken to be a complete cubic in the meridional arc length &, i.e.
- 2 3
u(g) = By * Bo8 + 8387 + 8,8 . (2)

The coefficients 8, in the assumed function are referred to as "generalized coordinates”. Although
only two generalized coordinates are needed to establish the required piecewise continuity of
membrane displacement, four are provided by the assumed complete cubic. The two "extra” coeffi--

cients are included to obtain improved stress continuity across element interfaces by imposing

5.10-6
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continuity of the first derivative of displacement.

The use of generalized coordinates as degrees of freedom affords maximum simplification in
the development of algebraic expressions for the energy functions; howaver, in order to apply
physical boundary conditions to an element it is necessary to transform to element boundary or

grid point degrees of freedom {q, }, i.e.
m

G} * Ugle, ) (3)
where
Bt = L8y 8y B30 8] (4)
rm} Ly, g » Ug» ugi_J . (5)
in which the notation implies that
g T gg*s-o, etc. (6)

The transformation matrix is obtained by imposing the fcllowing boundary conditions on the

assumed function:

U(E)|E=O = Uy u(E)lg,s Ty, (n
Uel8lgag = u51; Ue(E)lgag = uEz . (8)
Thus
1 0 0 0
0 1 0 0
iy . : (9)
.3 .2 3 .1
;T s ;Z s -
2 1 _2 ] -
o R4 S L
5.10-7
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It is pertinent to note that, while the above development has been conceptually and algebra- A 4
jcally simple, the development of admissible modes for arbitrary two and three dimensional shapes

would be much more difficult.
5.10.3.3 Flexural Displacement Function

Displacement normal to the meridian will be called “flexural" displacement because it is the
only contributcr to flexural curvature, see Equation 3 of Section 5.10.4. The flexural displace-

ment function is taken to be a complete quintic polynomial in the meridional arc length £, i.e.
W(g) = Bg + 8% + 880 + 8580 ¢ 8gEl + 8y E” . (10)

Only four of the six generalized coordinates are required to establish interelement continuity
of transverse displacement and slope. As in the case of the membrane displacement function, the
additional degrees of freedom are provided to obtain improved stress continuity across element
interfaces by imposing continuity of a higher order displacement derivative. Accordingly, con-
tinuity of the transverse displacement function valua, first derivative, and second derivative

{s maintained.

o
The generalized coordinates are employed in the derivation of the element representation.
Transformation is then made to grid point degrees of freedom (qr } i.e.
. - f
i = [yl la ) ()
where
T
8, = L8g Bgs Bys By 8gs Bygd (12)
T =
(q,.f} Ly, Mg o Weg s Yor Vg e w‘iiz"l . (13)
Tre transformation matrix [Pasf)], is obtained by imposing the following boundary conditions
on the assumed function:
wElgsg = Wy WEM [ pag = Wp s e
5.10-8 (=}
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Olgg = wg o @l T

"] . (14)

A D

Thus

(fq . .l , - 6 , - .
™ - |t F s)

The full transformation from generalized coordinates to displacement degrees of freedom can

now be written

8} = [rgJat (16)
where
{B}T = LB], Bz: 63’ 1reay s]o—l ’ a7
(m) |

T 10

[I‘Br] = —-E‘:-——:-—--- ] (]8)
(f)
0 ’rﬁr
T - s,

{a} Ly, u51, U, ugz. Wi, wgl. “EEI’ Wy, WEZ. WEEZ‘J . (19)

The reader may recognize the membrane displacement function as a well known Lagrange
asculatory interpolation formula and the flexural displacement function as a hyperosculatory

interpolation function. The final form of the displacement forms might well have been written

5.10-9
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L™
immediately without development. The approach taken here was adopted for two reasons, First, it
is applicable without conceptual extension to complex elements where standard interpolation
formulae are not applicable, and second the generalized coordinates afford considerable algebraic
simplification in deriving element representations.
A\~ 4
5.10-10 N7/
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5.10.4 Potential Energy

Consideration of the potential energy function must be precaded by a statement of the strain-
displacement and stress-strain relations appropriate to the axisymmetric thin shell problem, The

general strain-displacement relations are:

m

_where the membrane strains are

[}
1 3B 1 ‘@
eB'HEU+R;w ’
and the flexural curvatures are
~ . .12 1w
Hy * - F B
(3)
H = 1 2B 3w
g8 " 32793
A°8
Introducing the coordinate system characterization derived in Section 5.10.2, the following
relationships are obtained:
e =y + v »
(4)
eB = xzu + x3w s
Hg = =Wgg
(5)
HB L xzw »
where the notation xJ is defined: as follows: ]
Ay % ]
1 r
u -

5.10-11 (4/1/72)
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1 38
A2 = 'B' 'a's' ’ (6 )
1
Ay = — .
3 RB

It must be remembered in giving explicit expression to the *j that the degenarate conic and

cylindrical configurations require a special form,

Linear elastic material behavior is assumed. In accordance with this assumption a generalized
Hooke's law is employed. The elastic material behavior is assumed to take place from an initial

state of prestrain, s and an {nitial state of prestress, Tyr i.e,
{o} - {co) = [E] {{e} - {Ei}} . (7)

The initial stress and strain vectors are assumed to be prescribed. The coefficient matrix

[E] is

[E] = 1 EG Ea \JBG (8)
T Vg Vsa |BaVeg g

ince the matrix must be symmetric, Ea Vg = EB Vag® Note that orthotropic materials are

permitted, Having written equations governing strain-displacement and stress-strain, the desired

energy function can be constructed. Beginning from the strain energy density definition
v o f Laedtr (9)

the governing stress-strain relation is introduced to obtain

U = f [(%) Led [E1{e} - LeJ (Ele;} + Led to hav , (10)
where {e1} 1s the prestrain and {ao} is the prestress.

Carrying forward the previously defined separation of membrane strain {e} and flaxural
curvature {H} yields, after integration over the shell thickness, the following expression for the

potential energy.

5.10-12
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u - f[%(/dz) Led ([El(e} - (fdz)Le_j (e, )

« fdz JLe (oot * /zzdz ) L teden (n

) (f 2) Lidtenon + (deZ) LKty ldA

The prestrain and the prestress are related to their membrane and bending components by

THE DOUBLY CURVED SHELL ELEMENT

[113

{Ei} {e]} + 2 (H,]} s
(12)

{ao}

{cmo} +2 {ofo} .

Up to this point no assumptions have been made regarding the form of the prestrain and pre-
stress distributions along the meridional coordinate. Explicit consideration will be given to the
specification of these quantities subsequently; it is assumed here, however, that the prestrain
distributfon is linear and that the prestress is constant, The membrane prestrain and the curva-

ture can be expressed in terms of their constant and linear components,

e, = (& + Btey

(13)

Q 1
AR I TG S

where s is the arc length of the element.

Invoking these assumptions and introducing a convenient symbolic notation, the energy func-

tion is rewritten as:

v - j[;— Ledrr Jter + Led (1}
- Ledud - & Ledu

(14)
+ 3 Ladro Jou + LuJw)

- [__H_jw°} - ( 3 Ludo, }] BdE

§.10-13
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where, with the thickness of the shell represented by t,

(1,1
{1}
0
{Ie}

h

{1
€
09,]
{J_}

(3.}

{9,

2nt(E] .
= 2mt{gy} ,
= [ el
= (et

3
- e

= [J, J{o; } s
k fo

0

- IR

5.10-14
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5.10.5 Element Stiffness Matrix OF POCR GUALITY
The next step in constructing the element representation is to discretize the element by
introducing the previously derived displacement functions. The generalized coordinates are trans-

formed to displacement degrees of freedom, and the energy functions are substituted into the
Lagrange equation. The element stiffness matrix and the load vectors then arise as stationary

conditions of the total potential energy. The stress recovery matrices are derived from equili-

brium conditions.

The contribution of linear elastic stiffness to the energy function is, from Equation 14 of

Section 5.10.4, omitting terms due to prestress and prestrain

" '/[% Le_] (1]} + %[_H_J [0, J(H}| B . M

[¢]

Substituting for strains in terms of displacements, using Equations 4 and 5 of section 5.10.4,

yields

1 2 2.2
o * f [-2- Ik” l:u\E + Zk]uaw + AW ]

] 2
*z Ik12[2A2qu + 2x3u5w + 2)\1>\2uw + 2)‘1)‘3" ]

] 22 2.2
ty Ikzz[xzu * DAgWu + Agw ]
1 2 (@)
* 7 9y, M
n
1
+ 3 Jk12[2X2WEwE£]
1 2
+ 59, D581 |8de .
22
The development of an algebraic expression for the elastic strain energy is now pursued by con-
sidering each of the energy contributions of Equation 2 individually. That is, each displacement

quantity is expanded in terms of the assumed functions, and the indicated integration is carried

out.

5.10-18
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Addition of all the energy contributions yields
% = yLed@we . (3)

Transformation from generalized coordinates to displacement degrees of freedom by means of

Equation 16 of Section 5.10.3 produces the element stiffnes matrix

-
(K] = [rg J'[KIlrg, I . (4)

Explicit algebraic representation of the elements of [K], which is a 10 x 10 matrix with as
many as thirteen terms in each element, is given in Section 8 of the Programmer's Manual. The terms

are functions of the following integrals, with the index (j) ranging from zero to ten.

o - f glade

]
S
J . J
8 f £h,BdE
o
S
J . i
83 f §rBde
0
(5)
S
J . 3,2
8 / £a58dE
[}

J
EAAgBdE

O
L1, 1 %
[ ]
o\\n

S
J . 3,2
5 f ghigde .
g . .

The A's are defined in Equation 6 of Section 5.10.4., The most general form of B is given by
Equation 5 of Section 5.10.2. ' S R S T e

5.10-16( 3/1/76)
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5.10.6 Load Vectors
5.10.6.1 Prestrain Load Vector

The prestrain membrane contribution to the potential energy is, from Equation 14 of Section

5.10.4

5
One * f [ Letul +§-Le_§(1€1}]8d€
Q
(n
S
- f [ e [Ik]{e?} +§- Le_}[l]k{ei1}] Bdg .

0

Substitution of the stress-strain relationships, Equation 4 of Section 5.10.4, and integration

ylelds
..0 ~
one = L0 ITIL 2edy « Ladif, "1 2oy (2)
where
0 oo 22 1 0 1 2 2 .3 .4 .5
-0 0, 6]. 251, 36], XIGI, X]51, X]51, X151, X]Gl, X]6]
[F‘“e]'012301234s'(3)
52, 62, 62. 62, 63, 63, 63, 63, 53. 53

1 2 3 1 2 3 4 5 6
o, 6], 26]. 361, *151' Alél. k]dl, X16], 287, X]S]

= 1 1
(Fred = 3 . (4)

1 2 3 4 1 2 3 4
62 s S5 62, 62, 63. 63. 63, §qs 63. 8

The 6{ integrals are defined in Equation 5 of Section 5,10.5.

The prestrain flexure contribution to the potential energy is

0p, = / [ Lud @2+ & L {Je]}JBdE

(s)

. f L gy + & L [Jk]{Hi1}] BE .

5.10-17
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Substitution of Equation 5 of Section 5.10.4 into Equation 5 yields
~ T -~
o, = Lot FATIW + Le ] (7, 1030, (6)
where
0,0,0,0,0, o,-2, -6, -1262, -2083
(Fred - 0 o6l a2 . asd L esd 0
0,0,0,0,0, -8, -25,, -363, - 483, - 55,
0,0,0,0,0, o0, -zs}. -6s%, -1263, -2067
(7, a1 . (8)
: *lo,0.0,0,0, -6, 282, =363, - 46t - 545
1] » 9, » ] 2' 'I' 2' zl 2

Transforming from generalized coordinates to grid point displacement coordinates and sub-
stituting into the Lagrange's equation, Equation 1 of Section 5.10.1, the prestrain load vector

is obtained,

(F} = [ T O1TEn 2edd + (g 3707, 1070, Jeey
(9)
S o L G L N [Cr R L GRS L 7 [ L S

where

.
{F} L_FE]. Ty Fepr feyr Fapr Mayr o oy Moy fzz_J . (10)

Note that the f terms correspond to the extra displacement degrees of freedom and have no physical

meaning.
5.10.6.2 Pressure Load Vector

The external work done by the normal pressure on the displacements is,

W fp(a) w (€) & (1)

5.10-18
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Assume a linear pressure distribution with £

Thus

S

e [ ow@ee

Q

Substituting for pressure and displacement yields

where {Fb} contains only integrals of the type

Explicitly,

{Fb} = 2%

S
5{ - / elade
0

o o o o

5.10-19
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Introduction of the transformation from generalized coordinates to grid point displacement A

degrees of freedom, and substitution into the Lagrange's equation yields the prassure load vector

1
{Fp} = [rar] {FP} . (18)

5.10.6.3 Thermal Load Vector

The thermal load vector is a special case of the prestrain load vector. The necessary change

is effected by substitution of the thermal strains into the prestrain vectors.

Four temperatures are given:

Tli inner temperature at grid point 1 ’

T outer temperature at grid point 1 ’

lo
(19)
T21 inner temperature at grid point 2 »

T outer temperature at grid point 2 .

20

The thermal membrane strains and the flexural curvatures are

T, + T
1 s O
@ . Hplo | 3] .
T,  +T, T, .+T - v
- ~le 1}T - < 2i 20 _ _1i 10) L?E' GQJ -7,
T 2 2
(20)
T,, =T
0.7 11 lo |a.»a
{HT} 2 LE S__I ’
Ty = T T =T
IT’(Z‘I 20 i 'Io)cz,a
Ry . > % * %]
Substitution of these expressions into the prestrain load vector, Equation 9, yields the
thermal load matrix.
5.10.6.4 Gravity Load Vector
The gravity load vector is obtained by calculating the work done by displacing the element
mass. Thus
W = /Fp Gw dv . (21) i
J -
The mass density is given by o, and the acceleration of gravity by G. w is the deformation along
5.10-20 L
A4

17



THE DOUBLY CURVED SHELL ELEMENT cRarAL STy
the z axis. This deformation is
w = wcos(ay + ) - usin(a +9) . (22)
where u and w are given by Equations 2 and 10 of Section 5.10.3.
Substitution into Equation 1 with dV = tBdgds yields

wos Lad g, (23)

where

sin (a1+¢)Bd£

~. N S S NS S S S

sin (a]+¢)£8d5

sin (a1+¢)EZBdE

sin (a1+¢)538dz

{Fh} = 2maGt ¢ cos (aq*0)Bdg (24)
cos (a1+¢)£]8d5
cos (a,+¢)szads

cos (a]+¢)£38d5

cos (a1+¢)E4BdE

cos (a1+¢)E58dE .

\

Introduction of the transformation from generalized coordinates to grid point coordinates and -

substitution into Lagrange's equation yields the gravity load vector

5.10-21
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{F

gt

T
[Fae] (Fgl
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5.10.7 Stress Recovery . _:___
The element stresses are given by Equation 7 of Saction 5.10.4 as
{o} = [E] {{e} - {ey}} + {0y} (1)
where
o}] = LGE' ca_.l . (2)

For shell problems it is more convenient to work with stress rasultants acting in the middle sur-

face of the element. These are given by Novozhilov, Reference (8):

t/
T, - o (1+ Hdz
-£2 8
t/2
T, = fo 1 o w L
-t/2 @
t/2 (3)
MB - /GE {1+ %—)zdz ’
X2 8
t/2
ME - f°6 1+ ﬁ-—)zdz .
-t/2 e

In determining the displacements, the contribution of the shear stress ng to the strain energy

was neglected.
The transverse shear force, QE’ can, however, be evaluated from moment equilibrium, see

Figure 2 and Reference (8).

3"8
G = NMg M)ty - 9

By substitution of the stress relationships, Equation 1, into Equation 3, and by subsequent sub-
stitution into Equation 4, all stress resultants are cbtained. Figure 2 shows the positive dir-
ection of the stress resultants. The stress resultants arising from elastic stress, prestrain

and prestress will be developed separately.

5.10-23 (4/1/72)
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By proper substitution the elastic stress resultants are obtained in terms of the

displacements:

where

STRUCTURAL ELEMENTS FOR THE DISPLACEMENT METHOD

L] t[E]1(ug + A]w) + E1z(k2u + law)] .

= t[E,z(uE + Alw) * Ezz(*z“ + Aaw)] .

3
= TE [E11(-w€€ * AU ) + EIZ( xzw + klxzw)] .

¢3
2 TZ [E]Z( “EE * N s) + Ezz( Azw AIRETA w)]

and the simplifying assumption

has been made.

t 2
T2 (Eqq Wegg = MaEyy wee + (AgEp,

L . 12%

4 B‘;’;Z '
+ 3z +z='| ,
Ry Rs

Introducing the assumed displacement functions

where

into Equation 5, yields,

T} = [5le
M) = 58
Qe = L§3J{ﬁ} L

O!‘( L-I} da” — V7 "’
OF PCOR QUALT

- X4E12)w5}

.
T = L1, 7,

§.10-24
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(8)

The elements of ['5']], ['§2] and ['5'3] are listed in Table 1 on pages 5.10-31 and 5.10-32.

Introduction of the transformation from generalized coordinates to grid point displacements

yields the stress resultants

L STIET £ [0 S
Mgt = (spltar

Q = LS3J{Q} ’

where

[S]] = [§1][r3r] ’
5, * (50051

Lsyd = LSdlrgd

(9)

(10)

For the special case of the shell cap element, the following specializations are made

ds
cos{ a ¢ ﬁ-)
o

Ay ® -
2 py - R [sinag - sin(ay + %:)]

1
Ay = ,
3R
Ay ® '——l'z' . -
4 (R)

Equations 4, 5, and 6 are then modified to r;eﬂect thesa changes.

ships in Table 1 are replaced by

5.10-25
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A4

[7.1]
[}

2 ° B2tEy

(747
L]

Ex*Ep

2,2
3,7 * -2E +Ep) ’ (14)
Sa,7 = by + Epp) '

§5,8 = 3(E22 - 4E]1) .

From Equations 11 and 12 of Section 5.10.4 the prestrain is

0 1 1
leg} = ey + 3 e + 2 (i} +Ely (15)
where
el = Leguegd o (16)
" 4
The stress induced by prestrain is - - -
{o;} = EE]{ei}ﬂ . (17)
Substitution of Equation 17 into the stress resultants, Equations 3 and 4, produces the prestrain
stress resultants
(T} = (el « S [elelny
M3 = & el + § ICHY
i T2 i7 7% i .
¢3 0, . E ;] he
C 0 T (heleyy - B £y - ] () s Wi
+1LE.,E J(Mﬂ
s o1 P12 i :
The thermal stress resultants follow immediately by substitution of the thermal strains, =
Equation 20 of Section 5.10.6, into Equation 18,
5.10-26 G
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The prestress velationship, Equation 12 of Section 5.10.4, is

{a} = {ag} + 2{og,} . (19)

The prestress stress resultants are given by

T} = t{cmo} ,

t3
{MO} = ﬁ{afo} ] (20)

Qo = 0 .
Finally the complete stress resultants are:
{T} = {Te} - {T1} + {To} ’
{M} = {Me} - {Mi} + (Mo} ’ (21)

Q = 0 -Q*Q -

Note that the stress resultants at any point within the element may be obtained by substitution of

the proper value of the £ coordinate.

5.10-27
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5.10.8 Kinetic Energy and Mass Matrix

The approach taken in expressing tha element kinetic energy 1s the consistent mass approach
first put forward by Archer in Reference (9), Tha same displacement functions employed in repre-
senting the element elastic properties are used to find the element kinetic energy. It is further
assumed that the rotational energies are small compared to the translational. By virtue of these

assumptions, the kinetic energy functional takes the form

g * znf%La_H“o_l qedg )
where
[o] = ’_"E' P,

are the mass density coefficients .in the meridional and normal directions, which need not be equal,

The element mass matrix 1s obtained by substituting the kinetic energy into Lagrange's
equation. Introducing the assumed displacement functions into the kinetic energy fuﬁctional.
Equation 1, ylelds

we = pLB MG (2)
whare
(Ml = ant [F,, o . (3)

22

and
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0 J 2 .3 .4
63, o], &, &}, 670 6
2 3 4 5

8§72 870 810 S0 &y

4 5 6 7
[ﬁzzl = Pz 611 6". 61. 51 (5)

£

a?, 551’

L _

(See Equation 5 of Section 5.10.5 for definition of 6%.) The transformation from generalized
coordinates to displacement degrees of freedom in Lagrange's equation yields the grid point mass

matrix.

.
M = [rg, J(MIrg] . (6)

5.10-29
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Table 1.

Agkq2
ME1g8 * Epy
AJE o8 + 2E14E
2E12 1
3 2
AgB1a6” *+ B8
MEqy * AgEqp
(MEqq + A4E0)E
(AEqq + AqEq,)ER
111 * A3Eq2
(A Eqq + AgEqn)E>
1E11 * A3y
3
(MEqy * 246508
(MEqy * AgE1)€°
L

0

MEqy

DqEp

oW

SPRL]

Ejari2af - Byl

2
Eiat” -

ZEqp)0% = 2By

[

Stress Resultant Matrices.

AaE22
B2t * By
AsEqoEl + 2B+ .8
222 12
3 2
AgEggf” * 3Eyp8
MEj2 * A
(MEqp * A4E0)E
(AiEqs + AaE,,)ER
1B12 * AgE22
(MEap + AgEnn) €S
1E12 ¥ A3
(XE +>‘E)é:4
1612 * A3Ep2
OBy + AaE,,)E°
1812 * 23822
0

MEyp

20Ey 8
3 Eg 80
L)
EaMAot - Exohz

2
Epprihof” = 2Epphn8 - 2By,

3
E1h2g8

3
E12MAa8

5
Ey2hyAg8
=

2

3E1p005" - 6Eyq8
3 2

4E 8> 1260 1€

3

4
55.‘ ZXZE -ZOE] 15

3 2

Eghhgs” = 3Epphpf" - BEyp8
4 3 2

EpphihgE = 8Epph,E° ~126156
5 4 3
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0

2
k2

Table 1 (Continued)

* MEqp

2
26(-A3kap *+ N4Eq5) + Epp (2

5.10-32

2)

2, .2
3 (-AzEzz + A4E]2) + E,1(65A2 + 6)

3,2 2
4g (-)‘ZE22 + X4E]2) + 511(125 Ay + 245)

4, 2 3 2
__55 ('*2522 + x4512) + 511(205 A, + 60¢g )_J

[

o

L

[N

Ime
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et
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Section A-A

Figure 1. Toroidal thin shell ring representation.
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Figure 2, Definition of stress resultants,
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5.11 SOLID OF REVOLUTION ELEMENTS

For the purpose of analyzing axisymmetric structures, NASTRAN includes two different shapes
of axisymmetric solid of revolution elements (triangular and trapezoidal) for two different
conditions of loading (axisymmetric and nonaxisymmetric}. The elements described in this chapter

are as follows:

TRIARG - An axisymmetric triangular ring element with axisynnétric loading capability.

TRAPRG - An axisymmetric trapezoidal ring element with axisymmetric loading capability.

TRIRAX - An axisymmetric triangular ring element with nonaxisymmetric loading capability.
TRAPAX - An axisymmetric trapezoidal ring element with nonaxisymmetric loading capability.

The TRIARG and TRAPRG set of elements may be used separately or together and the TRIAAX and
TRAPAX set of elements may be used separately or together. These two sets, however, may not be
intermixed nor, at present, can either set be combined automatically in NASTRAN with other types
of structural elements. In the discussions that follow, the purely axisymmetric elements (TRIARG
and TRAPRG) are considered to be degenerate cases of the more general elements capable of non-

axisymmetric loading.

The formulation of these ring elements is derived from, and is mathematically consistent with
the formulation described in References 1 and 2. The ring slements provide a powerful tool for
the analysis of thick-walled and solid axisymmetric structures of finite length. They may be used

to fdealize any axisymmetric structure taking into account:

1. arbitrary axial variations in geometry,
axial variation in orientation of material axes of orthotropy,
radial and axial variations in material properties,

any loading system including pressyre and temperature, and

N s W™

degradation of material properties due to axisymmetric temperature fields.

The discrete element technique was first applied to the analysis of axisymmetric solids by
Clough and Rashid (Reference 3). The formulation of the triangular cross-section ring was extended
by Wilson (Reference 4) to include nonaxisymmetric as well as axisymmetric loads. Wilson's formu-
lation 1is extended here to include orthotropic material properties with variable orientation axes.
In addition, the integration of the strain energy over the volume of the ring is effected more -

precisely. Thermal and pressure load vectors and mass matrices are calculated.

5.11-1 (12/29/78)
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STRUCTURAL ELEMENTS FOR THE DISPLACEMENT METHOO

A= 4
Thus, the discrete element representation presented consists of algebraic expressions for the
following matrices;
1. Stiffness » K]
2. Pressure Load . {FP}
3. Thermal Load s {FT}
4. Gravity Load , {FG}
5. Stress , (s]
6. Mass . M]
The matrices arise as coefficient matrices in the Lagrange equations for the element. The
appropriate generalized form of the Lagrange equation is
ad 3¢
s -e .
q. 9,
where
9, * rth genera]izeﬂ displacement coordinate
451 = total potential energy ?
¢2 = kinetic energy
. P;h . : .
q, = generalized velocity coordinate
The contents of this chapter are organized in the following manner. The description of the
basic element geometries and grid point displacement functions are followed by the general devel-
opment used in formulating the stiffness and mass matrices. Next, the definitions for the
material matrix is given and the general equations for the matrices are specialized for the
individual elements. The differences that occur are noted in the text. The chapter concludes
with the definitions of the load vectors for each element and the stress recovery equations.
5.11.1 General Development for the Axisymmetric Solid Elements
The axisymmetric solid elements provide the NASTRAN user with the means of modeling axi-
symmetric structures in which three-dimensional, thick-section stress patterns occur. This
section describes the general basis for the development of the component matrices. The TRIAAX -
and TRAPAX elements provide the more general capability by utilizing a Fourier expansion of the
5.11-2 (3/1/76) -
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SOLID OF REVOLUTION ELEMENTS

load and displacement terms. Their formulation and usage is similar to the conical shell element
{CONEAX) described in Chapter 10. The formulation of the more elementary TRIARG and TRAPRG

elements represent the case when only the axisymmetric terms (n = Q) are considered. Their form-
ulation differs only in the number of terms to be included in the resulting vectors and matrices.

The differences are noted in the text.
5.11.1.1 Coordinate Notation

The coordinate geometry of the axisymmetric ring elements are presented in Figures T - 5. The
dual coordinate systems illustrated provide for the fact that the element material properties

axes may not coincide with the local element axes.

Any point within the element can be located by ascertaining a radfal coordinate, r, an axial
coordinate, z, and an aximuth coordinate, ¢. In the TRIAAX and TRAPAX elements the displacement
degrees of freedom Uri’ U

i and Uzi’ as well as the forces Fri’ F.., and in at each point, i,

$ 51
are assumed to be sinusoidal functions of the circumferential location, ¢. In the TRIARG and

TRAPRG the displacements Uri and Uzi are constants with respect to ¢.

5.11.1.2 Displacement Functions

These ring elements are assumed to be axisymmetric, therefore, the displacements at a
position (r,z) can be expanded in a Fourier series with respect to aximuth position, 4. The
radial, tangential and axial displacements of a point (r,z,¢) located within the element can be
expressed as

m m
u{r,z,0) = uo(r,z) + 2% un(r,z) cos n¢ + 2% un*(r,z) sin no,
n= n=

m m
v(r,z,9) = vo’(!‘.z)+ Z%Vn(r,z) sin no - 2% vn'(r.z) cos no, (2)
n= ns

m *
p wy (r,2) sin no.

m
wir,z,6) = w (r,z) + 3 w_(r,z) cos no +
0 n=l " ns=l

The coefficients in the above Fourfer series can be interpreted as generalized displacement ampli-
*
tudes. uo(r,z) and wo(r,z) describe axisymmetric motions of the ring, while v, (r,z) describes
the displacement in the tangential direction. The displacement field for the TRIARG and TRAPRG e

*
elements use only the u, and w, dispTacements and do not use the v, displacements, which describe

0
torsional motion.

5.11-3 (3/1/7s)
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Oue to the axisymmetry of the ring elements and the resulting orthogonality conditions which
arise, the motions corresponding to different harmonic orders (different values of n) are elasti-
cally uncoupled. Furthermore, motions represented by starred parameters are not coupled to motions
represented by unstarred parameters. For n > 0 the stiffness matrices for the starred and
unstarred motions are found to be identical. The reason for this is that the starred parameters

describe motions that are all shifted é% in aximuth from the motions described by the unstarred

parameters. Thus, cos{n¢) = -~ sin{(n¢ - %) and sin(ne) = cos{no - %). The unstarred motions
will be used to develop the stiffness matrices for n > 0. It should be observed that the stiffness
matrix for n = 0 may Include both starred and unstarred motions in the TRIAAX and TRAPAX elements

and unstarred motions in the TRIARG and TRAPRG elements.

The degrees of freedom for the ring element are taken to be the values of the Fourier
coefficients in Equations 2 evaluated at the nodes of the element. Separate stiffness

matrices will be evaluated for the following degrees of freedom:

o= *

*
{ugg Lujgs V90 » W10 Uzge Voo » Wao - Etc. - ]
(3)

T
{u, } = Lu]n: V1n, W1na Uzn» Vzn. Wzn - etc. -

where the subscripts 1, 2, and 3 indicate the three nodes of the triangular element (see Figures 1
and 4) or subscripts 1, 2, 3, and 4 indicate the four nodes of the trapezoidal element (see
Figures 2 and 5). It should be repeated that for n > 0 the stiffness matrices for the starred
components will be identical to those of the unstarred components and need not be calculated

separately.

5.11.2 Deriving the Stiffness Matrices

The Fourier coefficients in the series presented in Equations 3 can be interpreted as being
amplitudes which define the generalized displacements u(r,z,4), v(r,z,4) and w(r,z,6) on the
element. These generalized displacement amplitudes can be related to a set of independent con-
stants (Bn} on the harmonic level, n, via the imposition of an algebraic relationship between the

two in the r and z coordinates. Therefore, if fﬁen}T is defined as

Tt T = Lug(ri2)s vy(r2), wi(ra2)l (4)

5.11-4 (3/1/76)
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SOLID OF REVOLUTION ELEMENTS
then the following relationship may be obtained

T, = [Hﬁ,e(r,z)](sn} (5)

The element strains may be obtained from the displacements by the following standard equations

for strain in a cylindrical coordinate system:

rr
2z

L1
(6)

rz zZ or

1 3u
S T Y W

€0 C 32T 3

By substituting Equation 4 into the above functions, and separating the starred quantities, the

strain vector for each uncoupled harmonic, in general, fis:

r ~
n 1 u, W
€rr 3r
ow
n n
€2z 32
E n ﬂ.v +i‘_n_
¢ ron r
le,} = ¢ }-4 . )
3z ar
n AL T
ro ri T3 T T
v
e, non,
¢ 3z ron
. J . J

5.11-5 (3/1/76)

4%



ORIGINAL PAGE 18
STRUCTURAL ELEMENTS FOR THE DISPLACEMENT METHOD OF POOR GUALITY

For the TRIARG and TRAPRG elements the strain vector does not contain the last two terms and

the v_ terms are omitted.

*
n The corresponding starred quantities (Errn ) have the same form. The

strains vary circumferentially according to the following equations:

ok = teh v B 06Tt + 216,10, (8)
ns=

n=1

*
where the diagonal matrices [cn] and [Cn ], obtained from equations 2 and 6, are

[Cn] = [cos nd, cos né, cos ne, cos né, sin né, sin neol ,

{(9)
and [Cn*] = [sin ne, sin ne, sin ne, sin ng, - €o0S ne, - cos'no] .

In the finite element stiffness method, the diépiaceﬁents are assumed to be a function of the

generalized coordinates, a. The strains obtained from Equation 7 in terms of the 3 coordinates may

be expressed by the following matrix equations:

(eg} = [HO(ra2)8}

~~

(Y]

—r
1]

R LR M IC R A (10)

o
e
L]

I N [T

The strain energy, Ug» of the element is expressed as an integral aver the volume of the
element:

2m
Ug = % [ f j {e}T[Eglie}rd¢dzdr , (1)
r'zlo

where the matrix, [Eg}, is a basic praperty of the material defined by Hooke's Law for small dis-

placements, i.e., the basic relationship between the above strain vector and the corresponding

stress vector is
{o} = {Eg]{e} . (12)

Substitution of {c} from Equations 8 and 9 into Equation 11 and integrating with respect to o

produces the uncoupling of the strain energy:

5.11-6 (3/1/7s)

& ¥5)

IO WIRMN e o —_"—

1 Ty

[] 1k



ORIZINAL PACT (3
SOLID OF REVOLUTION ELEMENTS OF PCOR QUALITY
m m - .
Ue * er * n?, Uen * nz=:1 Uen ’ (13)
where
Ugg = T { J {go}T[Eg](so} rdzdr ,
r'z
Ugp ™ % [ I {an}T[Eg]{en} rdzdr , (14)
riz
* *
and Up *© g- [ ! {e, }T[Eg]{sn'} rdzdr .
r'z

To be consistent with the definition of an axisymmetric material, the last two terms in the strain
vector must not be coupled to the other four terms fn the vector. When the harmonics can be
uncoupled, an inherently three-dimensional problem can be reduced to the consideration of a series
of two-dimensional solutions, a phenomenon which occurs due to the axisymmetric character of

these elements.

Using Equation 10, Equation 14 can be rewritten as

1 Try
Uy = ¥ (B} IR JED (15)

where the unstarred harmonic stiffness matrix for the nth harmonic is

K1 = J J [ "1TLE 104, ] rzdr (16)
rz

As was stated in Section 5.11.1, the stiffness matrix for the nth harmonic of the starred

series is identical to the nth harmonic, unstarred series and, therefore,

k"1 = (K], n>0 . (17)

The stiffness matrix for the n = 0 harmonic 1s multiplied by a factor of two. It consists of
uncoupled starred and unstarred partitions. In a symmetric (unstarred analysis) the NASTRAN
program 1imits itself to consideration of only unstarred motions (displacements) and starred

motions are eliminated through the use of the single point constraint option. Conversely, in an

5.11-7 (3/1/76)
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antisymmetric (starred analysis), all starred motions are eliminated. In the sections which -
follow, the development of the harmonic stiffness and mass matrices for the solid ring elements is

undertaken. Because the stiffness and mass matrices for the n*" harmonic starred series are

identical to those derived for the nt" harmonic unstarred series, distinction between starred and

unstarred harmonic quantities are omitted.

5.11.3 Material Definitions

As was previously defined in Equation 12 the [Eg] matrix relates the stresses to the strains

and s the means by which the constitutive behavior of the ring element is introduced. Solid

materials which exhibit orthogonal anisotropy (orthotropy) in the (r,z) plane can be represented.

Principal directions of elasticity which represent this orthotropy for a given point, are
assumed to be in the 4, Ta® and z, directions (see Figure 4). The subscript m indicates a local

material axis which fs provided to facilitate the descriptionrof the properties which characterize

a given ring element.

The matrix of elastic constants for an orthotropic body with respect to the (rm, zm)

coordinate axes for the general TRIAAX and TRAPAX elements is

—Er‘“ T Vez¥ze)  EplVpn * vyev,,) Eplvgp + vzpy,) 0 0 0 ] ;
Ez(l - vr¢v¢r) E¢(vz¢ + VreVzr) 0 0 0
E¢(1 = VppVpp) 0 0 0
() = & 6., o o |8
(Symmetric) AGM 0 .
AGztb ;

I
L_
WLl

where

" IR Y

A = 1. Ur¢v¢r - u¢zvz¢ * Vg - VraVozVzr ° Vrzu¢rvz¢ . (19)

and from symmetry
Er“¢r - E@“r¢ H Ervzr Ezvrz H Ez“¢z E¢vz¢ . (20)

5.11-8 (3/1/76) ‘ €5
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Poisson's ration, Vij is defined as the ratio of the strain in the j directoin to the strain in

SOLID OF REVOLUTION ELEMENTS

the 1 direction due to a stress in the i direction. For the TRIARG and TRAPRG elements, a 4 by 4

matrix, without the last two rows and columns, is used.

If the material axes (rm, zm) are oriented at an angle y from the element geometric axes,
see Figure 1 - 5, the following transformation between the harmonic stresses and strains of the

two systems must be introduced.
(m), . T
e, '} [HY](sn} , (21)
and o = 1o, ™ . (22)

The transformation matrix [H ] is expressed as follows:

2

cos Y sin® vy 0] -2 sin y cos v 0 0
2 2 ;

sin® v cos” v 0 2 siny cos v 0 0
0 0 1 0 0 0

I - _ . (23)

sin y cos v -siny cos v 0 cos2 Yy - 51n2 Y 0 0
0 0 0 0 cos v -sin v
0 0 0 a0 sin v cos Y

=1 o

The transformed material matrix in the cylindrical coordinate system is obtained by the equation
- T
[Eg] = [4JEIMHT . (24)

5.11.4 Triangular Ring Elements

Given the general development above, the specific detail of the matrices used for the

triangular ring elements can now be presented.
5.11.4.1 Development of the [HB u] Matrix

The generalized displacements u(r,z,¢), v(r,z,4), and w(r,z,6) in the radial, tangential, and
axial directions of the triangular ring were expressed by Equations 2. The nine displacements for
each harmonic as expressed in these equations can be Tinearly related to a set of nine independent

constants. This relationship can be expressed, in general, as

5.11-9 (3/1/76)
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¢

u(r) = (8 + 8yr +852) ,
vir) = (By + Bgr + Bc2) , (25)

w(r) = (8, + Bar + 842) .

For the TRIARG elements the v motion is zero and only six 8 terms are used.

Assembling the constants of (Bn} in vector form, Equations 25 can be rewritten as

= -1
(ugh = [Hg 18} , (26)

where the coefficients of [Hsu]'1 are obtained by substituting u(r,z) = Uy r=r;, and z = 2,

into Equation 2 for each of the points i = 1, 2, 3.

This matrix is then:

1 oo 0 0 0 0 0 0
0 0 0 1 "o 0 0 0
0 0 0 0 0 0 1 " z
1 ra I 0 0 Q 0 0 0 v
-1,
[Hsu] 0 0 0 1 r, I 0 0 0 (27)
0 o} 0 0 0 Q 1 ra I
1 ry  Z4 0 0 0 0 0 0
0 0 0 1 ry 24 0 0 0
i 0 0 0 o] o} v} 1 Ty I ]
Columns 2, 5, and 8 and rows 4, 5, and 6 are omitted in the TRIARG formulation. The inversion
of Equation 27 provides matrix [Hsu]'
The transformation from the harmonic nodal displacements to the harmonic independent con-
stants to be undertaken can be expressed now as follows:
8,1 = [HgJlug}, (28)

5.11-10 (12/31/77)
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5.11.4.2 Development of the tH:B] Matrix

The strains at any point are functions of the generalized displacements as axpressed by

Equation 3, The [HeB] matrix is a function of location and harmonic number and may be abtained

from the derivatives of Equation 2 and the definitions of strain for each harmonic, Equation 3.

In terms of the generalized coordinate £;, the strains for each harmonic, n, are

n , 3u
€rr ar By s

noL oM

ez * 5z " B9

AR F (8 +n8g) + (8 + n8g) + T (83 + mdg)

Erzn ® 2% * é% * B3+ Bg >

Col T FEYHCT " - L (ng + ) -8y - F (n8y + Bg)
and €Z¢n = ?%+1F% = -nB—:-+(36-n88)-nésg.

Note that the coefficients 84. 85, 85, Epp? and Ez¢ are uncoupled (torsion) terms, and are the

starred coordinate in the zeroth (n = 0) matrix. Thev are not used in the TRIARG element

formulation.

In matrix termonology Equations 29 may be expressed as:
n
{en} = [HeB ]{Bn} ’

where

1 4 n nz
(Hg"
0 0 1 0 0 0 0 1 0
n zn 1 4
-F -n -—‘_- .F 0 -F 0 Q 0
i n nz
L 0 0 0 0 0 1 -7 -n -7

The middle three columns and the last two rows are not used in the TRAPRG element.

5.11-11 (12/31/74)
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5.11.4.3 Development of the Stiffness Matrix 4

Equation 16 introduced the expression for the harmoni¢ stiffness matrix (Kn]. This result

is repeated below:

(k3] = = j J [Hesn]T[Eg][Hesn] razd}:: 7 (32)
r'z

LUK

The matrices [HeB"] and [Eg] developed in Section 5.11.3 can now be utilized in the evaluation of
[En]. The triple matrix produce [Hgsn]T[Eg][Hgsn] which appears in Equation 32 is evaluated in -

explicit form and integrated by substitution of the integrals which arise in the form

55 J r12d dzar . (33) -

The harmonic stiffness matrix [En] is given in Sectfon 8.25.5 of the MASTRAN Programmer's Manual.

The integrals defined in Equatfon 33 can be written in explicit form and thus numerical integration

is not required. Utilizing matrix [HBu]’ the element stiffness matrix in terms of harmonic nodal

degrees of freedom [Kn] can now be obtained from the equation

T.- - -
KT = DG, JIR 0Hg, T ) w

LA

5.11.4.4 Development of the Mass Matrix

In addition to the stiffness of the triangular ring element, reprasented by the element

stiffness matrix, an essential property in dynamic behavior of the ring is the inertia or mass,

represented by the mass matrix. Two basic types of mass matrices will be considered here, these

are the Tumped mass matrix and the consistent mass matrix.

(&

The Tumped mass matrix can be generated in one of two ways:

1. The total mass associated with a nodal circle can be specified directly by an analyst.

‘”U‘ N 1 ‘

The program then divides the total mass by 2 for harmonics n > 0 and constructs a

diagonal (3 x 3) nodal point mass matrix in the usual manner. The total mass is used for

L

the zeroth (n = 0) harmonic case, and the TRIARG element.

2. The total mass, specified for a ring, can be equally distributed over the three nodes of

the triangular ring element by the program. Each of the diagonal elements on the

5.11-12 (12/31774) ]
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representative (3 x 3) grid point mass matrix have the following value for the zeroth
harmonic (n = 0):
‘- prroA , (35)
3
where
A = Cross-sectional area of the ring element
re * Centroidal radius of the ring element
o = Density associated with the element as a whole
The diagonal lumped mass matrix described above is multiplied by (%) for harmonics n > 0.
The consistent mass matrix, derived from energy considerations, is developed as follows.
The kinetic energy for the triangular ring element can be expressed in the following integral:
1T [ ¢+ 2 .. 2 . 2
v = 5 | elu(r,z,0)" + v(r,z,0)° + w(r,z,)°] dv (36)
r
- where the superscript dot indicates differentiation with respect to time. The harmonic kinetic
energy component Vn can be determined following integration of Equation 36 with respect to V.
Vo= F | ] @i, rdzer (37)
j en’ ‘“en’ .
r'z
Utilizing Equations 5 and 26, Equation 37 can be expressed as follows:
v, = o Y [H 1T T0H, TG 3 (38)
] en Bu ni-"8u? " “en’ °’
where
- - DTT T
CREEEE- [ J [Hgq1TCH,] rozdr (39)
r'z
and
1 z 9 0 0 0 O N -
[HﬁB] 2 o 0 0 1 r z 0 O 0 (40)
0 0 0 O -

5.11-13 (12/31/74)
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The second row and middle three columns correspond to circumferential motion and are omitted in

the TRIARG formulation.

The matrix [ﬂn] can be expressed as given below if the definitions of the integrals defined

in Equation 33 are utilized.

{a]
M = 5 [a] : (a1)
{a]
where
S0 %20 1y
a] = 839 So1 | - ' (42)
S12

The harmonic consistent mass matrix in terms of nodal circle degrees of freedom for harmonics

n > 0 can be expressed as
- Tri
CREERN GRS L O (43)

For the zeroth harmonic (n = 0) matrix [Mn] in Equation 43 should be multiplied by 2. It should

be noted that other than this condition, the harmonic consistent mass matrix is not dependent on n.

5.11.5 Trapezoidal Ring Elements

The development procedure utilized in formulating the trapezoidal ring element was previously
established in Section 5.11.4 in the formulation of the triangular ring element. This procedure
will not be repeated here, but the principal matrices which arise in this second development will

be presented.

The generalized harmonic displacements for the trapezoidal ring (analagous to Equation 25 for

the triangular ring) are

5.11-14 (12/31/74)

ey



oRIGRIAL TRLT
J

SOLID OF REVOLUTION ELEMENTS OF FOUR (amal. i

un(r,z) = B]n + BZn r+ B3n 248,72,
vn(r,z) = 85n + BSn r+ 37n z+ San rz , (a4)
and wn(r,z) = Bg, * 8yn 7 * Bygn 2 * Byan "2 -

In the TRAPRG elements the v mation is zero and only eight 2 terms are used. Vector (uen} for the

trapezoidal ring (see Figure 5) appears as

T
{uen} = [u1n’ Yin® "1n® Yon Von' Vonr Y3n o "'dfn:| : (45)

The harmonic stiffness matrix for the trapezoidal ring [Kn] can be expressed as
T~
(K1 = [Hg1'[K I0HgD (46)

where matrix [Rn] is defined by Equation 16.

The harmonic mass matrix for the trapezaidal ring element can be either lumped or consistent
in form. Lumped mass considerations are identical to those of the triangular ring element. The

consistent mass matrix for the trapezoidal ring can be expressed as

IR OO L I T I (47)
where
) (e
Ml = & (] ' (48)
(2]
and where - A

[a] = . {49)

L e

Note that for the TRAPRG elements, the [ﬁn] matrix contains only eight rows and columns.

5.11-15 (12/31/74)
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5.11.6 Development of Non-Axisymmetric Load Vectors

In the following sections, load vectors resulting from input of temperatures and thermal
expansion coefficients are presented for the TRIAAX and TRAPAX ring elements. These loads are
presented in a generally ‘consistent’' framework which implies that the energy or work used to
derive the equivalent nodal Toads is correlated to the energy (or work) done by the actual applied
loads. This concept of "work equivalence" provides a simple framework within which to present

the equivalent nodal loads.

Non-axisymmetric direct applied loads, pressure loads, and gravity loads are applied to the
TRIAAX and TRAPAX elements with the same method as in the conical shell element (see Section 5.9.9),
*
The equations transforming temperature field definitions to temperature coefficients Tn and Tn

for each harmonic n, are also given in the same section.
5.11.6.1 The TRIAAX Element Thermal Loads

The thermal load vector for the triangular ring element is constructed assuming uniform
distribution of prestrain through the element cross-section. The prestrain contribution to the

total potential energy for each harmonic is

Wep = 7 { f {on}T(etn} rdzdr , (50)
rlz

where

m
fegy™ = T la} . (51)

and where {a} is the vector of coefficients of thermal expansion and Tne represents the tempera-

ture distribytion.

T =
{a} [arr’ @ .0 Bggs 0, 0, 0] . (52)
Utilizing Equations 5, 10, and 11, Equation 50 can be rewritten as

R CHS L L [ I [H, g1y rdzdr € Jic,} - (53)
r‘'z

The integral terms in Equation 53 may be expressed as matrix

5.11-16 (12/31/74)
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tHeBn] = n f j [HQB"]T rdzdr . (54)
r'z

Since the temperature and material are assumed constant over the cross-section, Equation 52 can be

rewritten as

T T
VIR T U G LI N 38 [C (55)

The harmonic level equivalent nodal loads representing the thermal load vector follow from

Equatfon 55 and can be expressed as
CIAISE ' LI 8 I (I [T (56)
n an g8 nt"g’ "tn’ T

Utilizing Equations 51, 52, and 56, the harmonic level equivalent nodal loads representing

temperature load can be expressed as
? b o= 1o 1T0A L 1CE M. T (@) (57)
n ne- Bn eBIntTg by ?

where the order expressed in {Pnt} js established in Equation 3.

The harmonic coefficient, Tne’ represents the asymmetrix temperature distribution acting on

the element.
5.11.6.2 The TRAPAX Element Thermal Loads

Loading systems applicable to the trapezoidal ring element are generally identical to those
developed far the triangular ring element. Differences occur in the expression for the thermal

load vector.

The harmonic thermal load vector for the trapezoidal ring can be expressed as
.t = [H 17w, IIT) (58)
n n8 tn n°

where the matrix [H, ], given in Table 1, s defined as

(H,,] 'Jf [H€B][Eg](u}L],r,z,erT
ol

and
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r raZa(ry = ry) - rzylry - ry) raZylr, - ry) - raz {ry - ry) -
: - z4(r'3 - r4) 24(r3 - r4) - z](r2 - r1) 21(r2 - r])
- rlry - ry) ry(ry - ry) - ralry - ry) r3lrp - ) '
(ry - ry) “(ry -y (rp = ry) g my) ]
A = (r,- r])(r3 - r'4)(z4 - z]) . (60)
The vector Tn represents the harmonic temperatures at each of the four nodes and can be ex- h

pressed as follows:

T~ To
T, =-T
[Ty = ‘ol (61)

" T, =T

3n 0

Tan = To

and the coefficients are
Ay = Epqa t B9, * E13°‘ee , \ = 4
Ao = Eyer * Eppay, + Epyagg s

{62)
3 % B3 * Eppuy * Eyprgg s
and Ay = Eygpp * Ejqay, + Eygagg

5.11.7 Load Vectors for the TRIARG and TRAPRG Elements

5.11.7.1 Pressure Vectors for the TRIARG Elements
The following indicates the procedure for deriving forces corresponding to a pressure loading,

However, this procedure has not been implemented in the program.

Assume a Tfnearly varying normal pressure distribution on the boundary between cormers in
Figure 1. Note that the direction of the Toad is determined by the order of the grid points so

that the grid points should be numbered consistently. Counterclockwise order is assumad by the

program. For side (:> 3 (:) ’

p(r,z) = py+ayr+a,z, (63)
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T T """""""""" pooesSTSTEIETII I
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3 80,1 | Ay 8y 4 i JA3 §p.2 3 JAy 8y 2
.................... S RO i
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38,1 : N Ay 8 '
i 3 82,1 E A3 A3 82,2
____________________ - : i
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! : |
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R i i
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51,0 i a%2,0 5 A1 | Agsa
. i , i
—— -y - [
: ! 1 - o
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1 1
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1 L} :
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where

. (PZ = P])Z]

(64)
"% - M4

31 =

(py - pylr
2 171

a T — (65)
2 rz; - roZy

The external work done by the pressure is
W= [(pu+pwd ,

where

p. = -psina

P, = P cosa

{66)
dA = 2urds

ds = Jdr? + g% - Ar

cosa

Substituting back into the work equation

r
2
W = I [-(p1+a]r+azz)(B]+82r+e3z)sina+(p]+a]r+a22)(84+85+36z)cosa]2 rcg:a : (67)

™

This expression results in three definite integrals

r
2 r, -r 2 r,"-r r, -r
5 = I rar = 215, - j ar = 2ol . [ Par = 2L (e
r

Substituting into Equation 67 we may write the work equation as

W o= [e]{Fp} , (69)

where (Fp}, the forces on the generalized coordinates, are
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.
~kyal(py+agm ;)6 +(a1+35k;5)6,]
-kq 2Ly +agm )8,# (2 _25k15)85]

-k LBy #agmy Iy 58 +{D Ky 0y 5 (2022K: ) 185 +(ay #agky 50Ky 83] L
CARERER (70)
(py+agm o )8y +(ag+a5k;5)8,

(py+agm )8, (ay+agky5)85

L (p+agiy 2y 8 +p 1k g¥my g (a1 7285k ) 6+ 2y Fagk )k g0y - |

A special case is obtained when r,*n and the formulation must be changed. Equation 65

becomes
W= fpud, (M
where
P = -(p1+a1r]+azz)sina s (72)
~ thus,
%
W o= ] -(p]+a1r1+azz)(B]+82r]+e3z)2vr1dz . (73)
z

1

Note that a may take two values, 90° and 270°, and sin a changes sign accordingly. There will be

three definite integrals:

22 23 2,
54 = J dz; 65 = [ zdz; 66 = ‘ z%dz . (74)
z, :

The generalized force vector is

s 5.11-21 (12/31/74)
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“Lipyrayry)egtazs]

~[lpy*ayrydrisra,r sgl

-[lpy*ayry)8gta sl
{F } = 2, J {(75)
p
0

0.

0
J

-
Transforming from generalized coordinates to grid point displacement coordinates and substituting

into the Lagrange equation, we obtain the pressure load vector

= T
{Fp} = [HBu] (Fp} , (76)
where
Fy o Fo o+ Fo vy Py Wy L (77
" z, rs zy r3 24
L4
5.11.7.2 Prestrain and Thermal Load Vectors
The prestrain load vector is constructed assuming uniform distribution of prestrain across
the element. The prestrain contribution to the total potential energy is
o, = J el T[ENe, Iav (78)
Substitute Equations 26 and 29 of Section 5.11.4 into Equation 78,
T T
¢ = {8}w| [D] rdzdr[E]{ei} (79)
Let
(6] = wf[D]rdzdr . {80)
‘which may be written in terms of the 61j integrals, as
5.11222 (3/1/76) -
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) 800° S10* Sy 0 - 0 . O
(0} = = . (81)
0,0 ,0 ,0,0, &
0, 0, 890 0 , 840 0
L )

For harmonic zero the result is multiplied by two.

Transformation of Equation 79 to grid point displacement coordinates and substitution into the

Lagrange equation yields the prestrain load vector

(F) = D ITDOT'ENE) (82)

where the load components are
gy = |F LF LF L F LF |, (83)
€ € € € € €
L T3

and the prestrain components are

T
{e;} = [e; » €5 065 »0]- (84)
i l_ir iy ©1, J

The thermal load vector is a special case of the prestrain load vector. Let the initial or
thermal strain be
=T
@y = ATL“r’ Ggs @y OJ , (85)

where AT is the average temperature rise of the element above ambient, obtained by averaging the

adjacent grid point temperatures.

Substitution into Equation 82 yields the thermal load vector.
tFet = [H, 17(01LE)EY (86)
T 8q

5.11.7.3 Load Vectors for the TRAPRG Element

The load vectors for the TRAPRG elements are evaluated in the same general manner as for the

triangular ring element.

5.11-23 (3/1/76)
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The pressure load is assumed to vary linearly along each edge, as shown in Figure 2. The

equivalent Toads at grid points are derived from the formula for the work done by pressure

W o= J (pousp w)dh . (87)
u and w are replaced by their expansions in terms of the generalized coordinates, Equations 44 of
Section 5.11.5. The coefficients of the 8's in the resulting equation are the forces due to pres-

sure on the generalized coordinates, {Fp}. The Joads on grid points are obtained by the

transformation
(F} = [H J(FE} . (88)
p Bu p
The prestrain load vector is computed in the same manner as for the triangular ring element,

Equation 82. The thermal strain vector is treated differently than in the case of the triangular

ring element in that temperature is permitted to be a function of position. Specifically,
T(r,z) = Ky#Kor+Kazekyrz (89)

where the K's are evaluated so that Equation 89 gives the known temperatures at the grid points.

The contribution of thermal prestrain to the total potential energy is

5, = [ e e v, (90)

where
fejd = T [ar. 3gs O, oJT = T{a , (91)

in which the a's are thermal expansion coefficients. Upon substitution for (ei} from Equation 91

and replacement of {c} by its relationship to grid point displacements, Equation 90 becomes

T T T =
o, = 10" [ ORANIGION
(92)
= @iF

where {FT} is the equivalent thermal load vector at grid points. The integral in Equation 92 is

aasily evaluated in terms of the Gij coefficients.

5.11-24 (12/31/74)
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5.11.8 Stress and Displacement Recovery

Displacement informatfon for the triangular and trapezoidal ring elements can be requested

in two forms:

1. Harmonic coefficients of motion (displacement amplitudes) as expressed in Equation 2,
the TRIARG and TRAPRG elements produce only the zero harmonic {n =0).
2. Displacements at specified locations, ¢, on a nodal circle obtained by evaluating

Equation 2 for each n for the TRIAAX and TRAPAX elements only.
Stresses for the ring elements are calculated from the expressions

n

4
rr sin ne)

0 n
3 + +
Grr cr‘r n§l (a" cos np + g

-*
g ] GZZO + 2 (a.." cos no +a.." sin ne)

22 na] | 22 2z
0 n n* .
o = g + ] CoS np + o sin no) ,
9 el < o 99
n=1 (93)
a 0 n n*
Tpg Ty * P (rrz cos no + 1, sin n¢)
= o* n - n*
- Tro Trg + P (Tr¢ sin n¢ Tpy COS ne) ,
. o* n - n*
T2 T * Z, (rz¢ sin n¢ Tpp  COS ne)
where for the ntH harmonic, unstarred series
m
O} = T Tl [y, Juy) - ey, ] (9)

The matrices and vectors utilized in Equation 94 above are provided by Equations 5, 10, 12,
and 51. Equation 94 is evaluated at the centroid of the triangular ring element and stresses can

be provided as

1. Harmonic coefficients (stress amplitudes) as expressed in Equation 94.
2. Stresses at specified circumferential locations ¢, on a circle generated by the element

centroid, are obtained by evaluating Equation 93 for each $.

Stresses for the trapezoidal ring element can be recovered by a similar procedure with the
exception that for the trapezoidal ring element, stresses are evaluated at the four nodal regions
as well as at a fifth region which corresponds to a point that is obtained by averaging the -

coordinates of the four nodal points.

A 5.11-25 (3/1/76)
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5.12 CONSTANT STRAIN SOLID ELEMENTS
5.12.1 Introduction

So1id polyhedron elements have been implemented to model three-dimensional elastic regions,
which do not have axial symmetry (see Section 5.11 for solid of revolution elements). The geo-
metry of the polyhedron elements is defined by grid points at the vertices. Three geometries have

been implemented (see Figure 1):

1. Tetrahedron. The tetrahedron is a triangular pyramid which can be constructed between
any four non-coplanar vertices, It {s the basic building block which is used to build up

the other elements.

2. Wedge. The wedge is a truncated triangular pyramid that is defined by six vertices. It

has two triangular and three quadrilateral faces.
3. Hexahedron. The hexahedron is a generalized cube. It has six quadrilateral faces.
These elements are subject to the following conditions and Timitations:

1. Constant strain in each tetrahedral subelement,
Uniform, isotropic material properties,
Uniform temperature in each tetrahedral subelement,

2
3 .
4. Differential stiffness, buckling and piecewise linear analysis have not been implemented,
5 Dﬁly translational degrees of freedom are used at the grid points,

6

Stress output is in the basic coordinate system.

A necessary task in formulating a finite element is to relate the coefficients of functions
approximating the displacement field to those displacements at the grid points on boundaries of
the element. One method to do this is to solve a set of simul taneous equations that equates the
functional representation to the actual displacements at the vertices of the element. The tetra-
hedron element with constant strain {s defined as being compatible since it has twelve grid point
degrees of freedom (three translations at each of four vertices) and twelve generalized displace-
ments (coefficients of the constant and linear terms for u, v anﬂry). Thus, the matrix of coeffi-
cients relating the two types of displacements 1is nonsingular. The wedge and hexahedron are not
modeled directly but are built up by tetrahedron elements. The coefficient matrices for the wedge
and the'hexahedron are expressed as sums of the coefficient matrices of the tetrahedra into which

they are decomposed, see Figure 1.
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5.12.2 Displacement Functions for the Tetrahedron

The displacement field 1s assumed to be linear in the Cartesian coordinates, x, yand z, i.e

.y

U(X,y,2) = qp + X + qpy + gz , (1)
vx.y.2) = 45 + qgx + quy + qgz , (2)
Wx.y,2) = ag + qyax + apy + 94,52 - (3)

The NASTRAN basic coordinate system will be used. The assumed displacement field produces uniform
strain and stress within the element. In addition the displacements on common faces of adjoining
elements are compatible. The generalized coordinates, (q's), can be determined from the displace-

ments at the four vertices of the tetrahedron by solving:

vy Voo g (g
u 1 x y z q
2 . 2 2 2 2 . (4)
u3 T X3 v3 z3() 9
Uy Toxg vy 74|\
for the u components of displacement, and similar equations for the v and w components. In Equa-
tion 4, uy = u(x1, Y 21), etc. A similar relation is written for ¥, to v, and w to Wy in terms
of 95 to g and aq to %32-
The determinant of the matrix in Equation 4 s six times the volume of the tetrahedron
defined by points 1, 2, 3 and 4.
T n g
1 x y 2z
2 2 2| t 6 « Volume , (5)
1 X3 Y3 23
1 X3 Yg 2
Hence, the matrix in Equation 4 will be nonsingular 1f the volume of the tetrahedron is nonzero.
5.12.3 Strain, Stress and Potential Energy
The generalized displacements are related to the grid point displacements by =
5.12-2 (4/1/72) L
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hay Mgy Pgz g

In Equation 6, the [hij] matrix is the inverse of the matrix of Equation 4. The equations for v

and w have been adjoined as additional columns.

Eliminating the q's from Equation

_!.xy

This will be abbreviated as

€ = du/ax = 9y
€y = 3v/dy = a5
€Z = w/3z = 95

Y., 3 3v/3z + 3w/3dy = g * 9y

yz
Yo T OW/3x + u/3z 2 Qyg * Qy
Yxy * u/3y + Iv/Ix = 43 + g

7 using Equation 6,

hyy O 0 hyy O
0 hy O 0 hy
Uz
o o0 h o 0
+ 42 v2+
0 hy My 0 g3
W
2
hgg 0y hy3 O
hoy h 0 h.e h
2 33 P23
"2 M2z I

4
{e} -g%[ci]{u}i

The six strafn components are given by

43

33

23

(7a)

(7b)
(7¢)
(7d)
(7e)
(7f)

(9)

The subscript 1 in {u}.i refers to the vertex of the tetrahedron and not to the component of the

vector. The elements of [Ci] are either h21. h3i h4i’ or zero. The first row of h's is not

5.12-3 (4/1/72)
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needed. If T is the average temperature rise, the strasses are given by -
(o} = [G]({e}-{a}T) (10)

where the stress and thermal strain vectors are:

(o3

X ax
a

Yy n

Yy
g
{g} = Tz and {a} = (% (11)

yz 0
Tax 0 )
Txy 0 E

[Ge] is a (6x6) stress-strain matrix in basic coordinates. When material properties are

given in terms of E and v, then

Gy, = GZZ = G33 = E(1-v)/(1-2u)(1+v)

N

G]2 = 521 = 613 = G3] = G23 = 632 = Ev/(1~2v}(1+v) (12)

C

|

G4 = Ggg = Ggg = E/2(14) . o -

A1l other terms are zero. The strain energy density fs a constant over the volume; hence, the

strain energy is

Bl L RE

V = (Volume) x % et (o} . (13)

The volume can be found from Equation 5.

[eimmm Y
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5.12.4 Matrices in Basic Coordinates

The stiffness matrix for the tetrahedron {s of order twelve. It is convenient to represent
the matrix in terms of sixteen 3 x 3 matrices each representing nteraction between a pair of
grid points. The 3 x 3 partition of the stiffness matrix associated with grid points i and j 1s

given by
[kyy] = (Volume) [¢{106,1IC;] - (1)
The thermal loads on point i are

()}, = (volume) (]G, 10T (15)

One-fourth of the mass of the tetrahedron is Jumped at each vertex. This choice preserves

the center of gravity. The density is assumed uniform; hence, the mass at the point i s

m, = %(Vo]ume)p . (16)

5.12.5 Wedge and Hexahedron Elements

The wedge and hexahedron elements are decomposed into subtetrahedra. As seen in Figure 1,
the wedge can be cut into three subtetrahedra. Of the six possible ways to subdivide a wedge,
only one has been implemented, Other subd{visions and overlapping methods have not been coded
since it is not expected that the wedge will be used often enough to justify the additional
effort. It is expected to be used primarily as a fillet. The hexahedron can be cut into five
subtetrahedra in only two different ways. The code implemented for the hexahedron allows the
user to choose a single subdivision into five subtetrahedra or to use the average of the results
of the two types of subdivisions. The latter choice, but not the former, results in symmetrical

deformations when symmetrical loads are appiied to a symmetrical hexahedron.

The geometries of the wedge and hexahedron are determined by the coordinates of the vertices.
The quadrilateral faces may not be coplanar for general grid point location. There is no guarantee
of the results if these are not coplanar, and the user should be careful to keep the vertices of
the quadrilateral faces nearly in one plane. The resulting stiffness and thermal load matrices
are the sums of those due to the subtetrahedra. All matrices must be put into global form, which

requires multiplication by unitary rotation matrices.

5.12-5 (4/1/72)
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§.12.6 Stress Recovery

The stresses, in the basic coordinate system, can be recavered for the tetrahedron using

Equations 10 and 9. In addition to the stress components, output also includes the pressure

Po= -3 (o, +a,+5,) , (a7

and the octahedral stress

172
1 2 2 2, .2 2 2 . (18)
% * 3 ((cx - cy) + (cy - az) + (cz - ax) + GTyz + STZX + srxy)

The stresses in the wedge and the hexahedron are obtained as the weighted average of the stresses

in the subtetrahedra, The weighting factor for each tetrahedron is proportional to its volume.

5.12-6 (4/1/72)
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5.13 ISOPARAMETRIC HEXAHEDRON SOLID ELEMENTS

Isoparametric hexahedron solid elements may be used to analyze any three-dimensional continuum
composed of isotropic materials. Examples include thick inserts in rocket engine nozzles, thermal
protection system insulations, soil structure interaction problems, and geometrically complex thick-
walled mechanical components such as pumps, valves, etc. The isoparametric solid elements take into
account:

1. Isotropic temperature-dependent material properties.

2. Pressure and temperature loads.

3. Coupled mass matrix.

Although solid elements employ only three degrees of freedom at each grid point (the three dis-
placement components), they may be combined with all other NASTRAN elements except special stand-
alone elements.

The isoparametric solid elements were first presented by Irons, Ergatoudis and Zienkiewicz
(References 1, 2, 3 and 4). They are also called conformal higher order elements, since the dis-
placement of the element can be represented to any degree one desires, and still maintain inter-
element compatibility, by using more grid points per edge to define element geometry and defor-
mation. In practice, however, isoparametric solid elements employing either eight, twenty, or
thirty-two grid pofnts have been found to be adequate to solve most problems (Figure 1).

These elements correspond to assuming a linear, parabolic, and cubic variation of displacement,
respectively. Clough (Reference 5) conducted an evaluation of three-dimensional solid elements
and showed that the isoparametric elements were superior to other solid elements. He further
pointed out that the choice of which iscparametric element is best to use depends on the type of
problem being solved. For problems involving plate bending type deformations, the higher order
elements appear to be best, while the Tinear element is recommended for problems in which shear
stresses are Tikely to be large. It is for this reason that all three isoparametric elements
have been incorporated into NASTRAN.

The isoparametric elements governing equations are based on minimum energy principles. The
derivation of these equations consists of assuming a displacement function for the element which
depends on its grid point displacements, substitute these displacements into the potential energy
expression, and minimize the energy functional to obtain the governing equations. The detailed

derivation 1s presented next. . -
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5.13.1 Displacement Functions for the Isoparametric Element

The name isoparametric comes from the fact that the same interpolating functions are used to
represent both the geometry and the deformation of the element. This choice insures that the
element displacement functions satisfy the criteria necessary for convergence of the finite
element analysis (Reference 4). Consider the elements shown in Figure 1. The curvilinear
coordinates in these elements are related to the "basic" rectangular ones by the following defini-

tion:

X M X

yo = 1 NE 2 yp (1)
is]

Z Z'I

where M equals the total number of element grid points,

1 refers to the grid point 1,
and Ni(g. n, §) are interpolating functions which depend on the number of grid points used to
define the element geometry. The N1 functions are efther 1inear, parabolic, or cubic, and corres-
pond to employing two, three, or four qrid points, respectively, alona each edge of the element.
This choice insures that there are no geometr1c gaps between gr1d points. Expressions for the

interpolating functions and their derivatives are presented in Table 1. Lorio Liow

The deformations of the elements are represented with the identical interpolating functions

used to define the geometry, 1.e.,

] M u
{G} = v = z N.l (E) N, C) v = [N]{ue} » (2)
w 1=1 w 1

where u, v and w are displacements along the x, y and z basic coordinate axes,

and {ue} represents the vector of grid point displacements.

The displacement functions, "1‘5' n, §) satisfy the required convergence criteria of adequately
representing a constant strain state, and insure interelement compatibility along the complete

element boundary (Reference 4),

5.13-2 (12/31/74)
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5.13.2 Strain-Displacement Relationship

The strains at any point within the element are given by the well known relations

3u
€x x
v
Fy ¥
e}=( % \s= z ) : (3)
3u v
Yxy 3y T ax
W | aVv
Ty 7 7
3u , 3w
Yax TR T

The substitution of Equation 2 into Equation 3 yields the relationship for the strain vector in

terms of the grid point dispiacements

(e} =[C; € .- CNGP] Wy = [CHu} (4)

and

5.13-3 (12/31/73)
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i 3N ]
§
e 0 0
aN
i
0 Ty 0
N
i
0 0 e
[ci] = 3N1 3"1 N (5)
v = 0
a2 ay
!
|z '37'_

In order to evaluate the strain matrix [C], we must calculate the derfvatives of the shape func-
tions, Ni' with respect to x, y and z. Since N1 1s defined in terms of £, n and T, it is necessary

to use the relation that

Ix of
N, )N,
A (] o : (6)
aNi 3N1
3z K3

where [J] {s the Jacobian matrix and is easily evaluated by noting that

- - r -1~ -
ax 3y oz 3N, Mer [| X1 Ny
% 3% FIT S A T3
X y z
1.l o az|.|M™M W, Mep [ 2 T2 72 7
n n 3n 15?’- 1Fr 3 esssy _157- E 5 : .
3N, aN aN : : :
ax 3y 3z 1 2 NGP ’ '
o LT T T || e Ve P |
_ L S0

The derivatives of the shape functions with respect to £, n and ¢ are given 1n Table 1,
X{» ¥y and z; are the coordinates of the element grid points, and NGP is the number of element
grid points.
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5.13.3 Stress-Strain Relations

The stress-strain relations for a general elastic anisotropic material are

GX
%
%
{o} = . [Ge]{z - :t} , (8)
Ixy
cyz
92x
where for an isotropic material
Tav v v 0 0 0
v 1=y v 0 0 0
£ v v Vv 0 0 0
(6] = w10y 129 ’
0 0 0 - 0 9]
1-2v
0 0 0 0 -5 0
0 0 0 0 o LR

and {o} is the stress vector in the basic rectangular Cartesian coordinate system, [Ge] {s, in
general, a full symmetric material elastic modulus matrix, e fs the total strain vector given by

Equation 3, and €¢ is the thermal strain.

legd = laghT = ( 2\T (9)

where {ae} is a vector of thermal expansion coefficients and ? is the temperature distribution

within the element, determined from user-specified grid point temperatures, {Te}, by

§.13-5 (12/31/74)
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applying the interpolating relation

- n
T= 121 Np(&s na g)Ty = INCT) (10)

At present in the NASTRAN program, the user may only specify isotropic material properties.
When a general anisotropic material is defined and is available to the isoparametric solid elements,
then the user may specify the anisotropic material properties with respect to a particular orjenta-
tion that does not necessarily coincide with the basic rectangular coordinate system. NASTRAN will
then transform the material properties to the basic coordinate system by constructing a transformation

matrix, U, such that the material properties in the basic coordinate system are given by

[6e] = [u17(6,0u] , -
: ()
lagh = [UIMa }

where [Gm] and {am} are the material modulus matrix and thermal expansion coefficient vector

specified by the user.

5.13.4 Stiffness, Mass and Load Matrices

The stiffness, mass and Toad matrices for the isoparametric element may now be derived by

application of the principle of virtual work
SU-8W=0 |, (12)

where U {s the internal strain energy in the element due to a virtual displacement, §u, and

dW is the work performed by the external loads during the virtual displacement, i.a,,

U = vf {0} {8e}dV
N (13)
s = sf (6} (p}ds + \if {sa T (F)av

where {p} and {F} are 3 x 1 vectors representing surface pressure and body forces, respectively,

in the x, y and z directions, and the integrations are performed aver the element volume, V, and

surface area, S, on which the pressure load, p, acts.

5.13-6 (12/31/77)
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Substituting Equations 2, 4 and 8 into Equation 13 and applying the principle of virtual work,
Equation 12, yields

T
(Gue} ([Kgg]{ue} - (Fe}) =0 , (14)

or, for any virtual displacement
[Kgg](ue} = {Fe} s (15)

where [Kgg] {s the element stiffness matrix and {Fe} is the element load vector to surface

pressures and temperature.

Stiffness Matrix

[kyel = SLcIT6 10Ty (16)

where the infinitesimal volume is in terms of the curvilinear coordinates, £, n and g,

dV = dx dy dZ = det.[J]dE dn dg . an
Surface Pressure Load
GAR §f QRO (18)
Thermal Load
(Fr} = J'[C]T[Ge]{ae}[n]{Te}dV : (19)

For dynamics problems, the mass matrix is also required and is easily derived by adding the

kinetic energy to Equation 12. The result 1is:

Mass Matrix

[M] = G[[NJTENJodv . (20)

where p is the mass density.

5.13-7 (12/31/74)
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£.13.5 Numerical Integration

The integrals in the fsoparametric element stiffness, mass and load matrices are evaluated by
the use of numerical integration. The Gaussian Quadrature Formula (Reference 6) is used in

NASTRAN. Thus, for example, the stiffness matrix is calculated by the triple summation

1 1 .l
01+ [ (el o] d an e 131 j'§1 k'z'1 Hy By HLTTT6GIED) 191 5 (21)

where the weight coefficients H, and abscissa S2 are given in Table 2. Note that the triple

2
product matrix operation in Equation 16 as well as the determinant of the Jacobian, |J|, must be
evaluated at each integration point. This process could be very time consuming, and requires that
efficient programming practices and mathematical techniques be used to minimize this time, In
NASTRAN, for isotropic materials, the triple product in Equation 21 is explicitly evaluated to

avoid calculating zeroes and thereby minimizes the number of mathematical operations performed.

The rumber of integration points needed to evaluate the stiffness, mass and load matrices
depends on the element geometry, displacement function and material property.variations. Elements ~7
which are extremely distorted from a rectangular shape require more integration points. Best
results, however, are obtained using rectangular elements as far as possible, and, therefore,
extremely distorted elements should be avoided (References 8 and 9). It has been found that for
most problems satisfactory results may be obtained using a 2 x 2 x 2 integration mesh for the
Tinear element and a 3 x 3 x 3 integration mesh for the quadratic and cubic elements, These
meshes are used as default values in NASTRAN. However, since good results have also been reported
using smaller meshes than suggested above (References 7 aﬁd 8), the user has the option of speci-

fying the integration mesh size.

5.13.6 Transformation from Basic to Global Coordinates

As previously stated, all computations for the isoparametric elements are carried out in the
basic coordinate system. If the global coordinate system at any grid point is different from the
basfc system, NASTRAN transforms the final matrices and vectors into the global coordinate system
using the appropriate transformation matrix, [Tf]. corresponding to grid point 1. This calculation ol
is identical to that nerformed for the other elements in NASTRAN.

5.13-8 (12/31/74) \ ™ 4
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5.13.7 Stress Recovery

Element stresses may be obtained by combining Equations 4, 8 and 9 to yield
{c] = [Ge]([c]{ue} - {ae)[N]{Te}) , (22)

where the matrices [C] and [N] are functions of the element coordinates &, n, and 7. In NASTRAN
these stresses are calculated in the basic coordinate system and they are printed at the following

locations, depending on element type,
a. Linear Element - Eight corner points and at center of element,

b. Quadratic and Cubic Element - Eight corner points, center of each edge, and at center of
element.
The principal strasses, principal angles, mean stress and octahedral shear stress are also
computed and output at every point at which the basic stresses are computed. The mean stress, or

hydrostatic pressure, is given by

g, = - %-(ox +o,+ o) - (23)

The octahedral shear stress is given by

172
gy L v o2 e (s, 4ot v 5+ 021 (28)

where Sx' S, and Sz are the three principal stresses.

y

~

5.13-9 (12/31/7¢)

o5

T
e had



ISOPARAMETRIC HEXAHEDRON SOLID ELEMENTS

(a) Linear

| I

i

(b) Quadratic

=

mo o

Il

I

(¢) Cubic

"

Figure 1. Three isoparametric elements
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Table la. Isoparametric shape functions and

their derivatives for linear element - 8 grid points

CORNER GRID POINTS

# -11.n1-:1.c1-=1
1
Ny -5(1«*&0) (1+n°) (1+co)

aNi 1
75"551 (1 +"\°) (1 +C°)

BN,' 1
el Y (1 *Eo) 1+ Co)

BN" 1
Tc-'gc.l (1+ Eo) (1 +n°)

where EO - EEil
"o ® Nys

" CC1 .

5.13-11 (12/31/74)
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Table 1b. Isoparametric shape functions and their

derivatives for parabolic element - 20 girfd points

CORNER GRID POINTS

MID-SIDE GRID POINTS

& 'H.ni-:l.ci-tl

M
T 1+ HO)U + Co)(ZEO tn,

I CE N (1 + Eo)“ + Co)(zno tE, ¢t

STrEe (0 g, (1 + Eo)(Zco tE ¢+

Ny =g (1450 + ) (14 g )iEy + 1y + g, - 2)

&% = 1)
&y = 1)
ng - 1)

S 7 0iny =21, gy o= 2
Ny =g (0= €00 +n )1+ ¢)

3N1 1
1okl SV nl (1 + %y)

a“-‘n (1 + ¢ )
T S L So/My

3"1 1
T (1 -82)(1 + no)C1

MID-SIDE GRID POINTS

MID-SIDE GRID POINTS

51 =31, ny = 0, C, = %]

Ny = %— (-0 +g)(1 +2)

3"1 1 2

=7 (0 -0%)0 *CO)E1
3“1 1

-zl + Co)(] + Eo)
aN

w3 (-0 g )

51'11.ﬂ1'$1,cf'0
Ny =3 (=801 +£)(1 +n)

T (1-22)(1 + n°)€1

3"1 ] 2
Tcr (0 -23)0 * & )ny

Ny
T ol + (1 + no)

where Eo = 551.
ﬂo = nﬂ{!

Co * ;:1'
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Table 1¢. Isoparametric shape functions and

their derivatives for cubic element - 32 grid points

CORNER GRID PQINTS

Ny = (1 +E)( +n )1 +5)ED +n? 422 - 19)
N

w2 = g (1 + ng) (1 + g )lg; (362 + n? # g% - 19) + 2¢]
oN

a—ni' 32; (1 +8)00 + cc)[r\f(3n2 + €2+ 32 -19) + 2n]

aN
e g (1 6)(1 + n ), (32 + €% + 0?2 19) + ]

MID-SIDE GRID POINTS MID-SIDE GRID POINTS
E”'T n,=21,¢% = ¢t g, =t} Y'lct1 T, = %]
i T3 R | - i L kI |
=3 2 =3 2
Ny=2Z (1 - (1 + 960)(1 + no)(l + co) Ny =27 (-n90 + 9n°)(1 + Eo)(’l + co)
My My g 2
T 1+ no)(1 + Co)(-ZE + 951 - 18550) 1ol 7 8 (1 - %Y1 + 91'\0)51
MNy g 2 Ny g
= ar (1 - 800 + 9800 + gy =77 (1 + §)(0 + g)(-2n + 9ny - 18mn,)
Ny 2 Ny g
Tl (v - &% + 95)(1 + ny)zy N Tl 13 (1= n3)(1 + 9n )z
MID-SIDE GRID POINTS
1
51 = t] 3 T‘l1 = t] ’ C,' = :3‘
9 2 My g 2
Ny 2T (1 -z + 950)(1 + Eo)(T + no) rra gz'(1 -g3)(1 + 9C°)n1
3N1 9 BNf 9
Tt ax (V- 800 + 925 e mam (1 5) (0 +ng)l-2z + 92y - 182z4)

where £, = EE4, ng = NNy, L, ¥ TZ4.
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Table 2. Gaussian quadrature formula
1 1 1
f f f f(x, y, z)dx dy dz = E E 'Z‘ I-IJ f(sj,sk,si)
3 1=1 k=1 j=1
-1 -1
n Abscissa (s) Weight Coefficient (H)
2 +0.57735026919 1.0
+0.77459666924 0.55555555555
3
0.0 0.88888288888
+0.86113631159 0.34785484514
4
+0.33998104358 0.65214515486 v
5.13-14 (12/31/74) o
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5.14 THE TRIANGULAR THIN SHALLOW SHELL ELEMENT

5.14.1 Introduction

This higher order element (TRSHL) was developed by Narayanaswami {Reference 1}. The element
has grid points at the vertices and at the midpoints of the sides of the triangle. At each grid
point, there are five degrees of freedom in the element coordinate system, viz., the membrane dis-
placements u and v parallel to the x and y axes, the transverse displacement, w, in the z-direction
normal to the x-y plane, with positive direction outward from the paper, and the rotations of the
normal to the shell, a and B, about the y-z and x-z planes, with positive directions following from

the right-hand rule. The element, thus, has 30 degrees of freedom in the element coordinate system.

The membrane displacements u and v for the shell are expres;ed as quadratic polynomials and
are the same as for the linear strain triangular membrane element, TﬁIMG. The displacement function
for the normal deflection, w, s taken as a quintic polynomial as for the higher order triangular
plate bending element, TRPLT1. The geometry of the shell surface 1s approximated by a quadratic
polynomial in the coordinates of the base. The shallow shell theory of Novozhilov {Reference 2)
is used for including the membrane-bending coupling effects. Thus, the element can strictly be
used only in cases where the shell is shallow. However, reasonably good accuracy is seen even
when the elements are used to analyze shells that are only marginally shallow. The user is cau-
tioned, however, to be careful while interpreting results obtained when the shell analyzed is deep.
Due to the excessive computation time associated with such calculations, the transverse shear
flexibility is not taken into account in the element formulation. The element can be used in the

statics, normal modes and differential stiffness rigid formats.

5.14.2 Element Geometry

Rectangular Cartesian coordinates are used in the formulation. An arbitrary triangular element
i{s shown in Figure 1. X, Y, and 7 are the basic coordinates; X, ¥, and z are the local coordinates.

The grid points of the element are numbered in counterclockwise direction as shown in the figure.

5.14.3 Displacement Field

The displacements u(x,y) and v(x,y) at any point (x,y) in the element are assumed to vary

quadratically with position on the plane of the element, while the displacement w(x,y) within the -

mﬁ%ﬁmmmm R 5.14-1 (12/31/77)
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triangular element is assumed to vary as a quintic polynomial in the local coordinates. Thus,
2 2
u(x,y) = 3 +ayx + a3y + ayx° + agxy + agy s
2 2
vix,y) = 3; +agx + gy + appx° + AXY + ag,y . .

2 2
and wix,y} = a3 *agx+ Ag¥ + agex” + ay,xy + agY

(1)
3 2 2 3 4
FagxT * Xy +anxy© +ayyt 4 3p3%

22 3 a
* "‘24"35’ T g YT ¥ aexyT 4 ayyt + a28"5
: 4
+ a29"4~" * a'30"3>'2 * "31"23’3 tagxy 4 a33>‘5

In concise form, U, Vv, and w can be written as

33 mi n1
u = P ax 'y, 3 =m = ng=0,1=7¢t033 |, (2}
33 P, q
= i 1 = E ] = =
v iz% byx Ty, By =Py *9; =0, 121t 6 and (3)
i=13t033 ,
33 r} S5
and wa 3 c.ox'yl, CiEryTs; 20, 1=1¢t012 (4)

5.14.4 Derivation of the Stiffness Matrix

The detailed derivation of the stiffness matrix for the triangular shell element follows closely
that for the TRIM6 and TRPLT] elements. Hence, only the salient features of the derivation are given

in this section.
The geometry of the shell surface is approximated by a quadratic polynomial in the coordinates

of the base:

2(x,y) = hy * hyx + hay + h4x2 + hgxy + hsyz . (5)

5.14-2 (12/31/77)
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Hence the curvatures of the shell surface are

Zoyy * 2h4 ' (6)
Zigy * hg , {7
and z’yy = Zh6 (8)

The membrane thickness of the shell element is assumed to vary linearly over the surface of the

element, i.e.,

tm=§:dix y . (9)

Following the shallow shell theory of Novoshilov (Reference 2), the membrane strafns in the

shell are given by

€ T he " Tk ¥
33 m1-1 n, Ty Sy
= 1,21 (mi a, x y 'l -2hgeixy ) . (11)
-1 A
Sy Ty T Py ¥
33 p: q,-1 r. s
-121 (qibix‘yi -Zhscixiyi) R (12)
23U, 3V
and €y * 3y * zz’xy w
33 m, n.-} p:-1 ¢
. 1M i i
1‘-[1 ("iai" y +py by x y
Ty S
-2hg ey x y . (13)

5.14-3 (12/31/77)
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In the absence of transverse shear effects, the bending strains are given by
2, 3 F2 s
e AP A (14)
ax j=]
2 33 r. §.-2
X, * 3w, 3 S5 (51 - 1) ¢y X i y i , (15)
Yooyt e
2 33 r-1 s,-1
= 3_w = i i
and Xyy 3%3y iz% 2rys;eyx y ] (16)

Following the procedure outlined in Sections 5.8.6 and 5.8.7, the jth column of the ith row of

the generalized stiffness matrix is obtained as

- T 3 - B )
437 3 nlmy my d By g+ - 20 eny vy

- hy my dy F(mi + ry + tk -1, ng + 5 + uk)

- h4 mj dk F(m\j try+ tk =1l,n, +5s

jrsitu

K

d

2
+ h4 dk F(r1 + T +t, 5y * S5 + uk))
+ 622 (q1 Qj dk F(Pi + Pj + tkv q; + Qj + Uy = 2)
- hs a; dk F(p1 + rs *he gt $; - 1) -
- h6 9y dk F(ri + Py * tes 5y + G5 *up - 1)

+ hg dy F(r1 + r s syt sj * uk))

+ 633 (n1 n; dk F(m1 + mJ *ta'ng ¢ nJ tu - 2)

it SRR )

*+ny Py dk F(mi + Py * t -1, n; + 9 * Uy - 1)
- h5 n, dk F(m1 + ry *taong+ S tuo- 1)

+ P; "j dk F(P1 + mj + tk -1, q1 + nj + up - 1)

T L Y e

+p;p;d Flp, +p, +t -2,q, +q; +u, ) (17
Tk L J k 1 J k (continuedg
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hg Py d Flpy + 75+t = T ag + 5y + u,) F P ool

h5 nj dk F(r'1 + mJ + tk' s; + nj +uy - 1)

hg P dk F(r1 + P tt - Tyosy + F + uk)

2
hg d, i-'(lr-1 tryt ter S ¥ 55t uk))

+

Gy (m1 9 dy F(m1 * P +t - 1, ny ; 9 tu - 1)
- hg my dy F(mg + ry+ te - 1oy syt uy)
-h4qjdkF(r1+pj+tk.si+qj+uk-1)

+ 2hy hg dy Fry + ryt tes S3 F Sy * )

aPUELE dk F(p1 + mj tE - T, q; + ng +u - 1)

- hy g4 dk F(p1 + rj +t,at S5 tuy - 1)

- hg my dy F(r1 +m tto-Tisgt n; + uk))

613 (m1 ng dk F(m1 + my - 1, ny *+ ny - 1)
+myopy d F(m1 * Py *t - 2, n; + 9 + "k)

- hgm, dk F(m1 + rs e o- Tong + 55 + uk)

- hy n; dk F(r1 + m‘1 e, syt ny +u - 1)

4 Pj dy F(ri *py - Ty sy # 4 + uk)

+

2hy hg dk F(ri + " ot syt S; + "k)

+

ny mJ dk F(m1 + mj tt - 1, ng + n; *u - 1)

hy ™y dk F(m1 + ry *t, gt S + oy 1)

+

Py My dk F(p1 + mj *t - 2, q4 + n; + "k)

h, p, d Flp, +r,+t =-1,4q, +5s;+u ) (17) -
47 "k i J k 1 \ k (continued) -
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h5 m dk F(r1 + mj + tk -1, s+ ny + uk))

3 tu - 2)

+ 623 (qi "j dk F(pi + mj tte g+,
* a5 Py d Flpy + s+t -1, q; + a +u - 1)
h5 a4 d F(p + r + tk’ 9; + j + U - 1)
- h6 ns dk F(ri + my MDD T n; tu - 1)
h6 pj dk F(r1 + P; -1, 5; + 9 + uk)
+ 2hs 6 dk F(r + rJ + tk‘ s; * sj + uk)
*+n, q; dk F(m1 + P; ttaon + 9 tu - 2)

ny dk F(m1 +r.+ tk’ n; + S; tu - 1)

h6 §

+p‘iqjdkF(pi+p'+tk-]’q‘i+qj+uk-])
“hg Py d Flpy +rs+t -1, q + TN
S e— - - hs qJ- dk F(ri + pJ + tk’ 51 + q‘j + uk - ])) ]
5 A ( (ry = 1(r, = 1)
+ - d/ d' d/ Geyrer. {r, = 1){r., =1
71 kTt kT2 gkt T Ty i

oF(r + ry+ tél + téz + tL3 s 4y syt u&l + uéz tu )

G22 s sj (si - 1)(sj - 1) F(ri + rj + tk] + t ky + tk3

$; + sj + "k] + u +uy -4)

ky kg
+ (4633 ry ry S sj + G]Z{ri 55 (r1 - 1)(sj -1)

+ vy sy (ry = (s, - 1)}) Flrg + 1y bt Y, - 2

- 2)

Sy ts;tu +u o+
77 Tk kp kg C -~

1

+ 26,40r, ry sy (rg=1)+ ry Ty S (rJ = DY F(ry + ry (continélzg )
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+t! +t! +t' -3,s, +s.+ul +u +u =-1)
k1 k2 k3 i 3 k] kZ k3

+ 2G23{rj s; 85 (sy - 1) +ry s, 5 (sj - 1)} Flry + rs

N

+t o+t o+t -1,s, +s;+ul +u +u -3)] . (17
ky ko ks 17757 Ty ks ks

(concluded

The generalized stiffness matrix can be transformed to the element and global coordinates by

transformations similar to those for the TRIM6 and TRPLT1 elements.

5.14.5 Equivalent Thermal Load Vector

The equivalent thermal load vector for the triangular thin shallow shell element consists of
Joads due to thermal expansion as well as due to thermal bending caused by variation of temperature
with depth. The detailed derivation of the thermal load vector is similar to that developed for the

TRIM6 and TRPLT1 elements; hence, only the essential steps are given here.

The vector of thermal strains is

€

xt e
{eyd = e (" aez (T - Tref) = {a} (T - Tref) , (18)
€ @
xyt 12

where {ue} 2 [U]'] (um} is a vector of thermal expansion coefficients, [U] is the strain transforma-
tion matrix given by Equation 15 in Section 5.8.1, (am} is the vector of thermal coefficients in the
material axis system, Tref is the reference or stress-free temperature of the material and T 1s the

temperature at any point (x,y) in the element.

An applied stress vector which would produce the equivalent thermal strains is
feg} = (6] {ey} = [6,] {ag} (T = Tpggy (19)

The generalized equivaient thermal load vector {P;en} is obtained as

t 3 t
{Pgen} * 3T _{ﬂ{e} (dt} dv . (20)

5.14-7 (12/31/77)
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The strain vector {c} is given by

where 2z, XX vy Xy

surface of the element.

The temperature T at any point (x,y,z

u
ax " Prax W T X
v
= (&g, -z
By " Ty oy
U, v
ay T ax T Py W Ty

) is given by

T= T° +T' 2

where To is the mean temperature and T' is the thermal gradient.

CRIGIMAL PAIE

(RSP 2

OF POOR QUALITY

(21)

s Z, . and z, . are the curvatures of the shell surface and z 1s measured from the neutral

(22)

The following derivation to obtain the equivalent thermal Toad vector is given for the case of

linear variation of thermal gradient over the planar coordinates of the element; the values of the

thermal gradient at the three vertices being defined as T}, T}, and T.. This capability s not
1° '3 5

operational in NASTRAN currently. The derivation, however, is valid for cases with the same thermal

gradient at the three vertices by setting Té and Té equal to Ti. Thus, T, and T' of Equation 22

vary over the element as fo]1owsf

i.e.,

T

= e+ eyX + egy

= ei + eéx + eéy

(23)

(24)

(25)

(26)

The constants 8, ey, ey and el', eé. and ei can be evaluated from the user supplied values of the

mean temperature and temperature gradfent at the vertices of the element; however, as stated earlier,

only the capability of specifying a temperature gradient for the element is currently availabla and

hence ei will be equal to the element temperature gradient and eé and eé will be equal to zero.

5.14-8 (12/31/77)
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Substituting Equations 11 through 16 into Equation 21 and substituting for {e} and {ct} in

Equation 20, the generalized equivalent thermal Toad vector {P;en} is obtained as

33 m1—1 ny ryoSy t
ig% (m; a; x y o=2hgcyxy
ri-2 ¥
-z (ri -1) ey x y )
33 ) -1 r. s
»r 3 a2 f ig(q‘b‘xpw% St k'Y
gen’ = 3{a} . ro5y-2

- zsy (Si =Ny x 'y )

33 m, n;-1 p:=1 q
i1 i i
;g; (nga; x ' ¥ +p; by x y
ry Sy r.-1 51-1
-ehg ey x "y - 2z ry 55 ¢4 X y )
3 Vi oW v3 W
e[G.] {a )} Y (e x Jydselxyy 32 dxdydz . (27)
€ e j= J h]
Integrating over the thickness and noting that
t/2
f flxy) zdx dy dz =0 (28)
-t/2

Equation 27 reduces to

t
( m-1 n re oSy \

33 i i
33 my a; X y ' -2hgcix 'y

33 p: q;-1 r, S
t - 3 i, i1
{pgen} EYEY) f./.< E, G by x Y -Chgcyx Y >
-1 g r, S
33 m, n.-1 Py=t 9 i 54
3 ny a X i y T +py by x y - 2h5 Cyx Yy
\ 1] /
t]{}(% s wj)(‘z:3 oy') (
o [G a e; Xxvy d x "y ) xdy 29
e e j=1 \ k=1 k (continuedg
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s
rs (ri - 1) c; X 1 y Tt

B £ 2 2, ..
. el x Yy d d d, x
o ) kT kel kgTE K1 okp kg

uk]+uk2+uk3
[ ]

y dxdy : (29

(concluded)

The generalized equivalent thermal load vector w111 be obtained by performing the differentiation
and 1ntegrat10n operations of EQUation 29 and the final expression for {Pt } will be similar to
those obtained for the TRIM6 and TRPLTI elements, except that an additiona] expression involving
the curvatures of the shell surface h4. hs, and hg wi11 be added now. The generalized thermal
load vector {Pt } can then be transformed to the element and global coordinate systems by the

gen ) o
usual procedures. L 4
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Figure 1. Triangular thin shallow shell element geometry.
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7. DIFFERENTIAL STIFFNESS AND BUCKLING
7.1 INTRODUCTION

The term "differential stiffness” applies to linear terms in the equations of motion of an
elastic body that arise from a simultaneous consideration of large, nonlinear motions and the ap-
plied Toads. The theory of differential stiffness is not an exact theory and it involves inherent
assumptions that are arbitrary and that may be changed depending on their practical effect. The
approach presented here to the theory of differential stiffness is based on Lagrange's eguations
for the motion of a system with a finite number of degrees of freedom. This approach is useful

because 1t points out some of the assumptions and limitations of the general theory.

Consider a system with a finite number of degrees of freedom, 9.3 with a set of springs whose
potential energy is V; and with a set of loads, Pa’ applied to displacements Ug- The equations of

motion for the system may be written

av_ . -
o Q. r 1, 2, 3, no, (1)
where the generalized force
Ju
oW a
Q I = -_— P . (2)
r aqr g 9. 2

W is the work done by the external forces. It is assumed in the theory of differential stiffness

that the potential energy is a quadratic function of the degrees of freedom, i.e.,

1
vV = N (3)
Z L

3u
but that the partial derivatives, 331' are not necessarily constants.
r

As a simple example to illustrate concepts, consider a pendulum with spring restraint shown

on the following page.

7.1-1 (12/31/77)
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The potential energy of the spring is

v o= % Keez ) (4)

The displacement at the point of application and in the direction of the applied load is

u, *° 2(cose-1) . (5)

(

so that as a result of Equations 1 and 2,

Kee = - Pa tsing . (6)

At this point the term on the right is linearized with the result

(Ke +PL)e = 0 . (7)

Paz is the "differential stiffness”.

In a practical problem with many degrees of freedom it is difficult to calculate the partial
derivatives appearing in Equation 2, primarily because the points of application of the loads may
be remote from the degrees of freedom. The problem is simplified by replacing the applied loads
by a statically equivalent set of loads acting directly on structural elements, such as are used
in free body diagrams. The generalized forces Qr are then computed from the work done by the load

subsets for individual elements and Equation 2. As an example consider the following pendulum. -

0/
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The single load Pa is replaced by the following pair of equivalent loading systems

The work done by loading system (1) during general motion is:
w1 = Pallcose] s (8)
while the work done by loading system (2) is:

W, = P 2,c088, . (9)

It may be concluded, by referring to Equation 2 and linearizing, that Pa 4 is the differ-
ential stiffness for 84 and that Palz is the differentfal stiffness for 92.

It is important to observe that the equivalent loading systems remain fixed in magnitude and

direction, and move with their points of application during motion of the system, so that the

7.1-3
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equivalent loading systems are in equilibrium with each other during the motions. This implies
that the actual applied Toads also remain fixed in magnitude and direction and move with their

points of application,

The Lagrangian discrete element approach can be applied to a general elastic body, if it be
imagined that the body is made up of infinitesimal cubes, each of which is joined to its six
neighbors by a universal joint at the midpoint of each face. Far a given static loading on the
body the stress distribution is computed throughout the body, ignoring differential stiffness ef-
fects in the process. This internal stress distribution is taken as the equivalent loading, and

is applied to each cube in turn to determine the differential stiffness for the cube.

The degrees of freedom for each cube are taken to be its three translations, three rotations
and six elastic strains. It is clear that not all of the degrees of freedom can be independent,
in view of the attachments to other cubes. It is, however, permissible to consider them to be in-

dependent in computing the work done on each cube.

The work done by the static loads is computed for general motions of the degrees of fraedom

using Equation 2. The terms in the differential stiffness matrix for the cube are then computed

from
3Q 2
K i . I . (10)
rs aqs aqsaqr

for the condition q_ = q_ = 0, which is the linearizing assumption.
r s

Consider a view of a unit cube from the positive z axis shown on the following page. During
general motion the loads applied to the cube remain fixed in magnitude and direction and remain
attached to the midpoints of the faces. It {s clear that no work is done on the cube during trans-
lation because the forces acting on the cube are in equilibrium, The strains are eliminated from
consideration on the assumption that they are small compared to the rotations. This assumption is
not essential, and it may be removed in cases, such as occur in built-up structures, where the

elastic resistance to some strain components is small. The remaining degrees of freedom, the ro-

tations, are the only significant ones.

During a rotation about the z axis, point (1) in the following figure moves to the left by
the amount % (1- c05mz) and moves upward by an amount of % sinmz. The work done by the forces
acting at point (1) during rotation about the z axis is

7.1-4
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W = - 1(1 - cosw,)o, + ] sinw_ T (1)
1,2 Zz 2% 7 2 z 'xy
1
g
Y
————— Txy
T
Xy
o4 @ my ag T
X X
¥o) ,L_@. ,
w
T w, X .
Xy
y ® l
X
Txy i e——
Y
%
The total work done by all forces is
W, = - - cos<uz)(cx + cy) , (12)
50 that the differential stiffness, for rotation about the w, axis is, from Equation 10
K = g +4q . (13)

2z x  y

For the case of general motions Wy wy, and w, considered simultaneously, first compute the
work done by the force components in the z plane shown in the above figure. The work for other
force components can then be evaluated by permutation of indices. The work done in rotations Wy s
Wy and w, by the normal stresses, o, and Iy is, (for small w)

20 +w 20 ] . (14)

1p 2
Wy = = plu, (o, + oy) *wgoy tay oy

The cross-product mxmy also produces work via the shear Tx}' Consider that the rotation w, occurs
first, causing outward motion at point (2) and inward motion at point (4) both approximately equal

to %-wx. A subsequent rotation Wy about the original y axis, produces motion at points {2) and

7.1-5
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™ 4
(4) approximately equal to % Wy in the direction of the applied shear loads. The work done is
therefore
W, = Wy Ty (15)

The same result is obtained if the order of rotations is reversed, the work being done, how-
ever, by the shear forces on the vertical faces. Thus we conclude that Equation 15 is correct for
any general small motion.

The total work done by all components of force on a cube of volume AV fs, by extension of the
above results,

av 2 2 2
AW = - = [“x (oy + °z) + wy (cz + cx) *u, (cx + oy)
- 2mxwyrxy - Zmymz'ryz - Zmzthzx} . (16)
The matrix of differential stiffness coefficients for a cube of volume aV is, from Equatipn
10
w
Wy y w, .
y + 9, i -Txy } “Tox Wy
. d pts  ——— — — TR s— — o vy
alk 1 = av Ty | a, + 0, | Tz w, . (17)
l I
| - | T, ¥o | w
-T -7 X z
- & o —

The above general result is applied, in subsequent sections, to the evaluation of differen-
tial stiffness matrices for specific structural elements. The steps for including differential
stiffness in a problem are

1. Solve the Tinear static response problem for the structure in the absence of differen-
tial stiffness, and compute the internal forces in elements.

2. Using the results of Step 1, calculate the differential stiffness matrices for individual
elements, and apply the standard reduction procedures (constraints and partitioning) to =
form the differential stiffness matrix [Kaad] in final form.

7.1-6 7
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3. In buckling problems, find eigenvalues and eigenvectors for
k.. +ak 9w = 0o . (18)
aa aa

The eigenvalues are the factors by which the applied static loading is multiplied to pro-

duce buckling.

4. In response problems in which the stiffening effect of a static preload is desired, add

d
{:Kaail to [Kaa] and proceed in the normal manner.

At present, rigid formats which include differential stiffness are provided only for the buck-
ling problem and for static problems in which the appiied load is a multiple of that used to calcu-
Tate [Kd]. (see Section 3.2). Other applications of differential stiffness, such as its inclusion
in dynamic problems, can be treated by using the ALTER feature, Section 1.3, to modify one of the

rigid formats.

An important limitation of the automatic procedures provided with NASTRAN is in the assumption
that the applied loads from which the differential stiffness is derived remain fixed in magnitude
and direction during motion of the structure, and that their points of application move with the
structure. An example in which the direction of the load changes is the buckling of a container
loaded by external fluid pressure. An example of a stability problem in which both the magnitude
and direction of the loads change is the development of a bulge on a balloon. In such examples,
the burden is placed on the user of NASTRAN to prescribe the additional stiffness terms (via di-
rect stiffness matrix input) that result from changes in the magnitudes or directions of applied
Joads. Such terms are usually unsymmetrical. Dynamic¢ routines (complex eigenvalue extraction,
and frequency response) are then used to solve the problems. The frequency response module pro-
vides the means for solving static response problems with unsymmetrical stiffness matrices. The

user selects the frequency to be zero.

The algorithm has been changed in Rigid Format 4 (Static Analysis with Differential Stiffness)
to iterate the differential stiffness calculation. The idea is that, in general, since [Kd] is a
function of {u}, a better solution will be obtained by using the most recently updated value of

{u} in computing [Kd]. In its simplest form the iperation algorithm is

[k + KI(u)Hug, 3 = P, (19)
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where the subscripts {1 and i+1 refer to the ith and i+1st iterations. It 1s by no means self-
evident that the algorithm will converge to a better solution than simply basing (Kd] on the
elastic solution {u]}, or, indeed, that it will converge at all. Mathematical analysis shows
that iteration is equivalent to retaining some, but not all, second order terms in the cal-

culation of the differential stiffness.

Figure 1 shows the results of applying various methods to a simple problem. The structure
consists of a hinged rigid rod with an over-center spring attached to one end. The spring is
assumed to be Tong enough that movement of the attachment point does not significantly change
its direction. It is clear, from the results, that the iterated differential stiffness solution
is a significant improvement over the one-step differential stiffness solution, but that it still

differs considerably from the correct solution.

The mathematical development of the iterated solution for this simple case s as follows.
Let the force in the spring be F, and let the lateral deflection at the end of the rod be u.
Then the compressive load in the rod is F//Z (for sm311 mot1ons) and the 1inearfzed differential

stiffness presented to u is according to Equation 7,

i

d o Frvz (20)
The force in the spring is related to u by
Fakuy/Z |, (21)

50 that

d

KW = -Ku/2g . (22)

In addition, the Tinear elastic stiffness présenté& to u by the spring 1is

Yaxsz (23)
The explicit form of the iteration algorithm corresponding to Equation 19 is

KKy
I /P (24)

7.1-8 (3/1/76) -
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Both the lower (stable)branch and the upper (unstable) branch obtained by replacing u, and
Ui by u are plotted in Figure 1. Convergence to within one percent of the Tower branch is
obtained in three iterations for P/2K = .10, The algorithm is divergent for P/2K > .125, the
stability limit.

As a matter of practical computation, Equation 19 is inconvenient because it requires
decomposition of [K + Kd(ui)] at each fteration. Improved efficiency could be achieved by
moving [Kd(ui)] to the right hand side. Convergence would, however, be adversely affected.

As a compromise [Kd(ui)] is replaced on the left by an approximation {Kd(ue)] where (ue} is
initially the Tinear elastic solution. The quantity, {u,}, may be updated at a later iteration
if it is advantageous to do so. The iteration algorithm used by NASTRAN is

Ik + k) Tuy, b = 03 + [4Guy) - K uy) Tty
, (26)
= (P} + [K(u, - upllugd = Py}

where the second form follows from the linear dependence of [Kd] on its argument.

Criteria are needed to determine when the solution is sufficiently converged, and when (if
at all) {ue} should be updated to be the current estimated solution, {”i}' These criteria are

computed automatically from parameters supplied by the user.

Convergence 1s deemed to have been achieved when the difference between successive right
hand sides of Equation 26 is sufficiently small. A weighted criterion for this event is that

:u1+]= T ip

-p)
. Fie1 " Py
&4 T3+ T <€y s (27)
Py

where € is a user-supplied parameter and {Pf} {s the right hand side of Equation 26 at the ith

{teration.

If an exponential decay in the error is assumed, and 1f A = e, /¢, {s the ratio of the
error on two successive iterations, then the number of additional iterations required to achieve

the desired accuracy is approximately

7.1-9 (3/1/76)
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Nf = -Ta-g—r . (28)

Exponential decay will be approached after a few iterations for algorithms having the general
form of Equation 26, as may be inferred from the analysis of the NASTRAN algorithm for nonlinear

steady-state heat transfer in Section 8.

The number of additional iterations, Nf. may be used in conJunction with the known computer

times for matrix d’composition and for one cyc1e of iteration to decide whether it is more 7

efficient to continue iterating or to “shift," f.e., to replace {u } by the current approximate
solution. A fip; diearam for the logicai steps invoived in dec1d1ng when to stop, and whether

to "shift," is shown in Figures 23 and 2b. In the diagram, 8 1s a user-suppiied parameter equal
to his estimate of the number of iterations that will be required for convergence after a shift

has occured.
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Figure 1. Solutions to simple nonlinear problem.
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Figure 2a. Flow diagram for module DSCHK (first part). =

7.1-12 (3/1/76) W

O
N
i



INTRODUCTION

* %

Set Exit Flag
(Diverging iterations) l/’/////i\\\\\\\\
NN, <N, ? No

( GotoC ) f

NP To*8Ty?

1

Set Shift Flag

Set Exit Flag
(insufficient time)

Yes T <T +aT,? Yes |

Set Exit Flag
! {user limit)

( GotoB ) No
Nirr =N ‘
0 —=c; R
First = Yes € —==Fio]
First = No

! Y

Write test flags and set
parameters. Return,

Figure 2b. Flow diagram for module DSCHK {concluded}.
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7.2 RODS, BEAMS, AND SHEAR PANELS QUALIT

7.2.1 Extensional Rods

The calculation of differential stiffness for an extensional rod s particularly simple. If
the x axis is selected to coincide with the axis of the rod, Oy is the only nonzero stress and the

work done by static preload is

LF
- X (. 2 2y o %X .2
W i sl CYRR L 7 (u *

, Mm

where & is the length of the rod, A is its cross-sectional area, and my and w, are rotations about

transverse axes. Fx is the axial force in the rod. Consider the following diagram.

The rotation§ are computed from deflections at the ends

w, = (ugp = Ual/t (2)
w, * (uya - uyb)/l . (3)
Thus the work done by Oy is
Fx 2 2
W, = - H[(”zb - u,)"  (ug, - uyp) ] . (4)
7.2-1
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DIFFERENTIAL STIFFNESS AND BUCKLING ORIGINAL PAZE 3 o
The differential stiffness matrix is given by
fla 1 -1 0 0 Uy
fub F -1 0 0 uyp
X

* 1 ()
fla 0 o 1 A Uy
fab o 0 -1 1 § Uy

Note that Fx is positive for tension.

7.2.2 Quadrilateral Shear Panels

Treatment of differential stiffness for the quadrilateral shear panel is simple because the

forces exerted on the shear panel are directed along the principal diagonals as shown below,

C

U nop |

il

il

Iorrm

Forcé;:F1 and F2 are evaluated from cofner displacements during stress data recovery (see Section
5.3). The diagonals are treated as independent extensional rods, for the purpose of calculating

differential stiffness. The resulting matrices are then transformed from element coordinates,

o

which are oriented parallel and perpendicular to the diagonals, to grid point coordinates. Details

i

of the procedure are described in Section 8 of the Programmer's Manual.
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7.2.3 Prismatic Beams

————————————

The differential stiffness matrix for a prismatic beam (BAR), is relatively complicated if
the effects of moments and shears as well as of axial force are considered. This is done in
NASTRAN in order to achieve generality of application. Consider a small length of prismatic beam

shown below.

y
Yy
Vz'Mz'uz’az
YoM osu
sty tly -8y
FX,T.ux.Bx

A1l forces, moments, displacements and rotations follow right-hand rules. The rotations of

an infinitesimal element located within the beam are also indicated in the figure.

For a prismatic beam the stress components °y =0, *® Tyz s 0. Thus the energy due to static

preload can, from the general theory developed in Section 7.1, be expressed as

L) 2, 2
W -3 [[dx(wy *w, ) - wawyrxy - Zuxmzrzx]dv , (6)

where the integration is carried out over the entire volume.

The rotations appearing in Equation 6 are related to the motions that define the position and

orientation of the beam axis by the following formulas.

7.2-3
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w, = S‘X , (7)
Ju 36 ' '
= e —2 .y X = _ -
my 3X ax uz yex ’ (8)
3u 39 ' [ 7
XX z -
W, T %t I v, 28, . (9)

The rotations u& and w, appearing in Equations B8 and 9 are the rotatians of filaments origin-
ally parallel to the x axis. They differ from the average rigid body rotations by one half of the
corresponding shear angles. It is clear that they are the correct rotations to use for the axial

stress terms in Equation 6, and it can be shown that they are also correct for the shear terms.

Equation 6, written in terms of the 10&&1 élopes of the beam axis, is
] " 4 ] 2 [] |2
W s - 3 j[;x 3(uz *y8, )T+ (uy - 28, } f
+ ZSX’T (u, + ye, ) -sz(uy - 28, )S]av . (10)

The terms in the differential stiffness matrix are obtained from

d 3w— (]1)

- ] i L}
where U} is an element of {uf} = Luy s U, 5 8, exJT . Thus, for a differential element of

length dx . : R e
Kpad = fodv = Fodx (12)
11 X X '7 :
d _

Kl =0, (13)
K9 = - fzc v = - Mdx (14)
13 X y ’

K, 4 = - fr v = - V.dx ' (15)‘L
14 X z ’
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Kod = [0.dv = Fodx (16)
22 X X ’
K,od e [oydv = - M.dx (17)
23 xJ z ’
K, 3 = [t dv = V.dx (18)
24 Xy y *
d
Kyg® = [ax(y2+z2)dv . (i.) Fax (19)
k., ¢ = [(yr. +ze,)dv = 0 (20)
34 Y Xy 2X ’
d
K = 0 . (21

In Equation 19, [ is the polar area moment of inertia about the centroid and A is the cross-
sectional area. [t is assumed, in Equations 19 and 20, that the cross section is symmetrical
about the y and z axes. The assembled differential stiffness matrix for an incremental beam of

unit Tength is

Uy Uz ex ex
- | | = '
in 0 l 'My l-Vz uy
B T
0 F -M v u
d L R B
[K”]s e = = - — — . (22)
M | M I o, Io o
S
'Vzl v, Il o Jo 0,
L | —

The energy due to static preload for the entire beam can now be written as

b
1 - T dq,—
W= ifa{ui} (WA | (23)

In order to obtain the differential stiffness matrix in terms of displacements at the ends of

the bar, {ue}, let the relationship between local displacements {Ui} and {ue} be

7.2-5
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{u;} = [DIfu} . (24)
The differential stiffness matrix referred to {ue} is related to the energy by
R N L (S [ B (25)
so that, substituting Equation 24 into Equation 23 and comparing with Equation 25
d b .T. d
ke’ = [ 0017 (e "a0dex (26)

The result clearly depends on the form assumed for the terms of the [0] matrix. Let us con-
sider, for example, only the first row of [D], which gives the bending slope uy . If it is assum-

ed that the variation in displacement is linear, i.e., if __

t

1
uy E (uya - uyb) » (27)
: d s
then the terms in [Kee ] corresponding to Uya and Uy are
- - F 1 - )
dy ., x
(Kee ] T [-1 1] : (28)

which is identical to the result for an e?fén??bﬁé]'rbéiéxpressed in Equation 5.
More accurate results are obtained if the elements of [D] are chosen to correspond to the de-

flection functions for beam bending (Reference 1).

Since the deflection function for a uniform beam is a cubic function of distance from one end

the slope will be a quadratic function. The exact relationship between uy' and end motions is,

neglecting transverse shear strain,

7.2-6 (12/29/78)
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(x - 72)(“ya - uyb)- eza(zf - 3x?) + ezbn - 4%+ I, (29)

where X = x/% .

Similarly
"z' = % (R = ¥){uyq = Ugp) + 8, (X - )= 0, (1 - 45+ 3x2) . (30)
and
o, = Yexa +(1-%) 6,4 (31)
e; * %(%a' O (32)

The coefficients appearing in Equations 29 through 32 are the nonzerg terms in the [D] matrix.
Substitution of the coefficients and Equation 22 into Equation 26 results, upon integration, in the
differantial stiffness matrix shown on the following page. For example, the leading diagonal term

is

1 6F
d = l o2 2 > = X
- ! Joss FoE-of & - gt (33)

In performing the integration the variations of the bending moments with distance,

M, o= X Mya - 1 -X%) Myb s (34)

M, = XM, - (1 - %) My . (35)

are used. Note that the convention for positive direction of end moment gives My = - Myb and
Hz = - Mzb at x =0,

The final operations on the differential stiffness matrix are to remove the effects of pin
flags (which constrain one or more of the end forces and moments to zero value) and to transfer
the resulting matrix from element coordinates to grid point coordinates. See Section 4.87 of the

Programmer's Manual for details of the procadura.
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I} 2V IM M IF | av 1YY
- I 4 a za _ X b4
zall R Sl SR - R A R e
v F L LF
29 X X
5 F| O 0 “J0 W 0 ®a
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% |0 TR0 0 |5 ° I'wm < ®2a
M F 6F M F
a X _X b X
-+ 0 T 52 o | £ 0 |1 Ush
F 6F " F
't X zh X
- w0 0 | - ] 0 f]uy
IF A 2V M M IF LY Ly
2 |. zb X oyl ._2
I ; 3 < |7 g% || %
LF Fx jA') ZEFX
-] 0 0 - |- - 0 Bp
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7.3 PLATES CF

(& <
PCCR QUALITY

7.3.1 The Energy of Differential Stiffness

The coordinate system for the basic triangular NASTRAN plate element is shown below.

i~

Figure 1. Plate element.

The stress distribution in the plate is:

Xy xy

bz 4

mﬁ 7.3-1 (4/1/72)
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=4
where
EX. Ey, axy are average in-plane (membrane) stresses ,
Mx' My, Mxy are bending moments,
vx, Vy are transverse shear forces,
h3
[ is the bending coefficient ( 17 for a homogeneous plate) .
Applying Equation 1 to Equation 16 of Section 7.1 and integrating over the depth of the plate
(- %-< Z< % ) results in the energy per unit areaAof the plate.
O R A L L CIRE R B
Uy 7 [ 9y + w, 9, wauy Ty *w, (cx + cy) ww V. wyszy . (2)
The Tast three terms involve rotations about an axis normal to the plane of the plate and
they are frequently omitted in buckling analyses. The uf term, however, is important for the
overall buckling behavior of a built-up beam-Tike structure and will be retained. The terms
proportional to Vx and Vy will be omitted.
The rotations are expressed in terms of displacements as follows: ‘éﬁi
- 3[2-y
Wg Zley "3zl
w, = 1{3—"-3_“] (3)
y 713z x]°
. 1 {él - au]
Y2 7 I5x " 3y
Equations 2 and 3 are the basis for calculating differential stiffness of a plate on the
assumption that the strains are small compared to rotations. This assumption will not be
made. In removing it, the inplane rotations, w, and Wy will be treated differently than the
normal rotation w,. The transverse shear strains are
IR TR )
Tx x 3z x T8
(4)
= 8—w ?l a_w- e
Ty w T3z T k¢
7.3-2 (4/1/72) ('J
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The transverse shear strains, Yy and yy, are usually small and unimportant. They are, how-
ever, important for sandwich plates with stiff face plates and a soft core. For such plates, the
rotations w and oy should be replaced by %5
Consider the term % “isy in Equation 2 for a sandwich element that is subjected to simple shear

and - %% in Equation 2 as can easily be shown.

as shown below.

Figure 2. Shear deformation of a sandwich plate.

The core material is subjected to a shear strain, yy. and also experiences a volume change,
AV/V = - % 75. which produces tractions tending to increase the length of the face plates. Since
the face plates are stiff compared to the core material, they will not change in length and the
energy due to differential stiffness is simply

Mo ‘ZAC L3, (%\)2 . (6)

where Ac is the cross-sectional area of the face plate material. It 1s seen that Eéuation 5
would give a different result. For sandwich plates Wy should, therefore, be replaced by %% in
Equation 2 and my should be replaced by - %z-. Since the shear strains are small for other types
of plates, these substitutions will be used in all cases.

7.3-3 (4/1/72)
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The situation with respect to the normal rotation, w_, is much more delicate, and a correct

2z
treatment of the effect of strains depends on assumptions regarding the behavior of materials with

finite strains. Biot (Reference 1) has developed the following formula for the energy of differ-

ential stiffness of compressible materials in plane strain problems.

! 1 2 1 2
u = o [ Tugt wzexy] *ogy [7 Wy = wzsxy} * Txy(ey s ede, (7}

where

3u
& T x (8)
s 9V
vy Ty

An independent proof of Equation 7 i§;§ 7 . _Consider a unit cube under a constant

axial tension which undergoes shear strain as shown in Figure 3.

Figure 3. Shear deformation of a unit cube.

7.3-4 {12/29/78)
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The moment about the z axis due to the displaced force is CF FCOR ,. ‘
3 NS E

= sy
M, % 3y . (9)

The shear strain, y = Zex » and the average rotation w,, are aiven by the following

Yy
eguations:
s Z \3x 3y ’
I A1)
Y Ix + ay . (”)
Solving Equations 10 and 11:
B v, (12)
3v 1
X = zY*uz . (]3)
The work done due to the moment is
w
b4
Wy = l v, du, (14)

2
1
NU = ayi (E‘{-mz) dwz . (15)
Integrating Equation 15 produces
1 2 1 2
Hc = -Ecy(wz-*{wz) = 'oy(fmz'“zexy) ’ (16)

which 1s the same as the second term in Equation 7. The terms proportional to Oy and Ty in
Equation 7 may be similarly derived. In particular the term proportional to Txy is obtained by

considering the equivalent normal stress components in a coordinate system rotated through 45°.

In summary, the expression that is used for the energy of differential stiffness per unit -

area of a plate element consists of a part, U', due to out-of-plane (bending) motions and a part,
b

7.3-5 (4/1/72)
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Uy» due to in-plane (membrane) motions
U e Ut U (17)
where
5 = 315 (g—"i)z s ay(%)z . z%xyg—:%} : (18)
is the energy for bending motions obtained by substituting %% and %g-for Wy and W, respectively

in £quation 2, and where

1 - -
u = % {cx(wg + Zmzexy) + 0 (ui - sza

n y ) o+ 2?xy(zy - ex)wz} ,

Xy
(19)

is the energy for membrane motions obtained from Equation 7.

The differential stiffness matrices are developed below separately for bending and membrane

motions.

7.3.2 Differential Stiffness for the Basic Bending Triangle

—
The notation and development in Section 5.8.2 will be used without further reference.
The out-of-plane deflections of the basic triangle are described by the polynomial
N 2 2 3 2 3
w wa + yaa - xea + XYX + Wy + Q]X + qzxy + Q3.V + Q4x + QSXY + qs.y ’
(20)
where w., o, and Ba are the out-of-plane displacement and rotation at point (a) in Figure 1.
The linear terms are combined in the equations
We T Yy " Ba
(21)
wy ¥ YY * % -
7.3-6 (4/1/72) Fﬁ;
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The slopes of the surface at any point x, y, may be described by the matrix [ng] where:

()
wx
se1 e "y
Ié;- * Vi [Hoq(xs¥) 1L mmmq > (22)
3y 9
9
5, /
and
1 l
Tiotlaxty o Pad y2io0
W] = |~—F——t-—=t——f=mmto——t—Zod = (23)
8q ! ; 1 | | | 1 4.2
01 1 ¢ 0 x |2y, a i 2xy | 3y

The differential stiffness in terms of the slopes at any point x,y, is given by the equation

2

3%U,
ds8 b
Kij 38758 dA (24)
Substituting Equation 18 into Equation 24 results in the matrix:
g T
x Xy
(k%7 = n dA (25)
Txy Ty

The differential stiffness for the entire plate in terms of generalized displacements,

lix' iy, §1, PR qu is the integral:

CURIENRTMUCS WL (26)
A

Explicit formulas for the terms of [qu] are given in Table 1 in terms of integrals Ikn defined

I,, = h f x€ y* dA (27)

A

ke

7.3-7 (4/1/72)
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The integrals are easily evaluated by using the natural coordinate functions fi defined by
the equation:
r(x,y) = flr] + for, + f3r3 , (28)
where r is a linear function oJeFthé area, and r{. fz, }3 are the values of the function at
gridpoints a, b, and ¢, réspectively, in Figure 1;‘
Since x and y are obviously Tinear functions we may use the equations:
X 3 fzx2 + f3x3 ,
(29)
y = f3y3 ’
note: x.'=y.|=y2=0-
A property of these transformations is that:
R Y - algly!
If?fzf:; dA ”(2+a+s+ﬂT . {30)
A 4
Substituting Equation 29 into Equation 27 results in the function:
. 2 k (2
Ly = mh [ (fpg e fppX b an (31)
A
This expression, with the aid of Equation 30, is used directly to evaluate the integrals.
For example,
2 2 2 3 4 2
I, = hy [[fz 2 + 26y F3 % %g *+ f3 K51 A . (32)
Using Equation 30 for each of the three terms, produces the result
2Ahy
212121 2 113! 114! 24 3 2 2
lp = 2Rhyg [‘s"‘ X2 2T %% Y "3] 8T [4"2 * o T2xgxg + 24"3J 7
{33)
7.3-8 (4/1/72) f‘l?f‘
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The remaining task is to define the variables Gx, ﬁy, and fq} in terms of the disolacements of the

connected points. In this connection, the following matrix equations are taken from Section 5.8.2.

g1 = 07w - [SMubi (34)
YX
{Y SCUS IR (35)
Y
where
¥y
Q.b
uy, Bb
U S Gy , (36)
uC wC
e
SC
wa
{u} = Q2 . ‘ (37)
Ba

In the actual application, three 6 x 3 matrices are generated by muitiplication and partitioning

as follows:

] = -7 01, (38)

My | B = (I (39)

7.3-9 (4/1/72)
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The generalized coordinates are then related to gridpoint displacements by
x
W
SR SN TR 8 R SR X (TR (40)
1
9%
where, using Equations 21, 34, 35, 38, and 39:
Fall] [0 0 -
01 o
[Ca] =l —— Hlem———— s (41)
Hy 0 J
o R "
b L . | 7
b
va] i
[C] = [==-=-- : (43)
HC _
The differential stiffness matrices in terms of the displacements at the corners of the
triangle are given by the matrix [K ], where
[ 1
_fi_
(k' - cb (x99 lc, i S R
“f“
redt 1odt | dt
K | Kab P K
_—_T__..l_.__
- dt dt -
a | K Kbc . (44)
'a?*'d‘ Lt
I pdt | t
-Kca ! ch ! ch )
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7.3.3 The Membrane Triangle (TRMEM) and Quadrilateral (QOMEM)

For out-of-plane motion, the membrane triangle is assumed to rotate as a rigid body. The

energy is expressed in terms of rotations w , Wy w,, and strains s ey’ and €y’ assumed

X 34

z
constant over the surface of the triangle. From Equations 17, 18, and 19:

hAj= 2, = 2,2 - 2 -2 - B i
U = 5,09, uly + 9,y ZTxymxwy +a, (mz + szsxy) + cy(uz szexy) + ZTxy(ey sx)“zg’
(48)
where hA is the volume of the element.
The differential stiffness matrix in terms of the rotations and strains is
[Kd] = _.?ﬂ_ (46)
w dwsdwy
iy
where wi = ’JJX, wy, Ldz’ Exs ey, Exy.
The rotations and strains are related to corner displacements by
v Uy U3 ;"1]
d d d dt.d 10dq )" d
fwp o= [C§1 Qv + (v ¢+ ICT vy ¢ = (e .czlca]luzs = [y}
W, Wy Wy uq
(47)
The differential stiffness in terms of the corner displacements is
d d+T p dqrad
SOV L e [ (o (48)

The elements of matrices [Kg], [C?], [Cg]. and [Cg} are shown in Table 2.

Quadrilateral elements (QDMEM) are treated as overlapping pairs of triangular elements for

the calculation of elastic stiffness, and their differential stiffnesses are similarly treated.
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7.3.4 The Trianqular Composite Elements (TRIAl and TRIA2)

For inplane motion, the elements are assumed to have constant rotation and strain. For this

purpose, the equations for the triangular membrane, Equations 45 - 48, are used with no contribu-

tions from Wy and Qy'

For out-of-plane motion, the element is assumed to have the same deflected shape as that
assumed in generating the elastic stiffness matrix. The inplane stresses are calculated using the
membrane properties. The centroid of the triangle is used to divide the triangle into three sub-

triangles as shown in Figure 4 below.

Figure 4. Clough triangle.

The displacement of the center point is constrained to produce compatible slopes, Vs

between adjacent triangles, see Section 5.8.3.3.

The calculation procedure is as follows. First, the partitions of Equation 44, are generated
for each subtriangle. These matrices are then transformed to the alement coordinate system and

added to produce [K??] where f,j =1, 2, 3or4.

The equations of slope constraint are

Aw1 Q
vy = 0 = [G]]{u1} + [GZ]{uz} + [63]{u3} + [64]{u4} , (49)
Aw3 0

where Aw1, sz, Aw3 are the differences in slope between adjacent triangles when point 4 is free,

and

7.3-12 (12/31/77)
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(u1} = /3 , etc., are the displacements of the corner points in the element coordin-

x1

ate system. See Section 5.8.3.3 for details.

Applying the equations of constraint to eliminate the elements of {u4} results in the
differential stiffness matrix of the element, [K?j], referred to the vertices of the composite

trianale. Each partition of the matrix corresponding to points 1 and j is:

(K51 = OK{ST - [GSTT06,17 06,1 - (L6, ™' 106, DTEKEST + (L6,1706, 1 TTK3106,17 6,

(50)

7.3.5 The Quadrilateral Composite Elements (QUAD! and QUAD2)

The_se elements are composed of four overlapping triangles. The inplane differential stiff-
ness of each triangle is calculated with the same equations as the membrane triangle, Section
7.3.3, except that the W, and wy terms are ignored. For out-of-plane motions, the element is
assumed to Tie in a plane, parallel to, and midway between the diagonals. The corners of the

element are connected to the four grid points by rigid bars. The inplane stresses o,

x c,andrx

y y
are calculated independently for each triangle and the differential stiffness is calculated using
the equations given in Section 7.3.2. The differential stiffness matrix terms for each triangle

are then transformed to the element coordinate system and added.

7.3-13 (4/1/72)

VE 7

a0



1.

DIFFERENTIAL STIFFNESS AND BUCKLING

REFERENCE

Biot, M. A., Mechanics of Incremental Deformation, Wiley and Sens, 1965, p. 136

7.3-14 (12/29/78)

33N



PLATES c= ""“‘L PLLT S
CF 7Coa QUALITY
_ Table 1 Elements of [x%9]
The elements of the (8 x 8) differential stiffness matrix [qu] are evaluated below from '

Equation 26, The matrix is symmetric so only the upper triangle terms are given. The superscript

(dq) is omitted for convenience.

1 = %% oo

36
Kiz = T lgo K37
K3 = 29, T K38
Kig = 9 Tg1 * Tly Kea

K
Kig = 2t Igy as
K. = 30,1 Ks6

16 x 20

X
Ky = g lgp * 27 Iy 47

K
K]B = 371 I02 48
K,y = ol Kss

— 22 y Too

K
Koy = 27 Iy 56
K, = tlg + ol K57
24 ol y 10

K
ks = 29, Igy 58

K
Kpg = 3T Ipg 66

K
Kpy = Tl * 20,1y 67

K
K28 = 3°y I02 68

K
Kyg = 49y Iy 77

K
kyg = 2o Iy + 7 Igp) 78

K,
Keg * 4T Ipy 88
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Box 130

2(cx Lo + 2t 121)

61 112

o, lgg * 2ty * 9y g
2(+ 102 * o, I]])

Moy Iy *+ T lg)

9y 103 + 3t 112 + 20y 121
3(+ 103 + cy I12)

4cy I02

6T 121

2(+ !03 + Zdy I]Z)

ch 103

%0, lag

3(0x 122 + 27 I31)

9t 122

oy Iog * 4ty * oy Ipp

3t Igy * ZGy I3)

9cy 104
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Table 2 Matrices for the TRMEM Element.

ay Ty 0 0 0 0
xy 9y 0 0 0 0
) 0 0 (cx+oy) “Tyy Ty (cx-cy)
[k = A4
0 4] 'Txy o] 0 0
0 0 Txy 0 0 )
0 0 (cx-cy) 0 0 ] )
The corresponding degrees of freedom are: Wes my, Wor £,5 ey’ and Exy')
g 0 v,
0 0 g
Y3 oM. 0
d 2 7z
[C]] *
N 0 0
s 0
2 7
- J
r 0 0 Y3
4] Q Y
'3 N
4 7 z 0
(1 -
0 Y3 0
Y3 N 0
-7 z
L _J

(

R

| I

(I3 T

bolam

[y

'l yeman
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0 Yz
0 0
0 0
0 0
Yz 0
0 0
1
Y] = ;E
1
YZ = ;;
. 3
3 Xo¥q
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7.4 THE CONICAL SHELL ELEMENT

The elastic stiffness matrix for the conical shell element is derived in Section 5.9. The
differential stiffness matrix due to static axisymmetric preload is derived here using the nota-
tion and the results of Section 5.9 and the general theory of differential stiffness developed in

Section 7.1.
7.4.1 General Method

The static preload used to generate differential stiffness must be axisymmetric because an
unsymmetrical distribution of preload provides an unsymmetrical distribution of differential stiff-
ness, thus violating the symmetry assumption of the conical shell element. Furthermore, the ef-
fects of static bending moments and transverse shears on differential stiffness will be neglected,
which is the usual practice in the analysis of the buckling of shells, Teaving only the direct

membrane stresses, o o and Tso® of zero harmonic order as contributors to differential stiffness.

s

The stiffening effect of membrane shear stress of zero harmonic order, o o’ is not axisymmetric,

S¢
since shells that have been subjected to a clockwise twist can be distinguished from those that

have been subjected to a counter-clockwise twist.

The potential energy of differentfal stiffness for a conical shell element can be written as

follows, using the result given in Equation 14 of Section 7.1.

PO Y Ll L P A 2. (r. +F w2 | rdeds ()
d Z? olo LSO® ¢o%s 50 40’ % .

FSO and F¢0

dional and azimuthal directions. Wyr Wg and w, are rotations about the orthogonal axes defined in

are the direct membrane forces per unit width of zero harmonic order in the meri-

Figure 1 of Section 5.9. The rotations Wy and wg should be computed from translational motions
normal to the neutral surface rather than from the tangential motions of points on the inner and
outer surfaces. They are, therefore, equal to the quantities a and 8 in Equations 37 and 38 of
Section 5.9, with the transverse shear strains, Ys and Yqr set equal to zero. w, is identical to
9w given by Equation 42 of Section 5.9. Thus the rotations are related to translational displace-

ments by

Zﬁﬂﬂ_}ﬂﬁﬁmﬂw BLA & 7.4-1
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y = M
$ as ’
. o 13w cosy
Ys Y6 r Y (2)
« _Y{3u, using 1 3v
“w ?’[as YT a¢]
The rotations have the following harmonic dependence
) Lo,
w, = w,. cosng + w, *+ w, . sinng N
¢ n=1 9" %0 pzyoon
) R
w, = w.,, sinng + w__ - w_ cosnéd (3)
s nsy SN SO pSysn o
m * m
w, *= [ u,siome+a - 1w, cosne
n=1 nal

As with all other displacements and strains, the harmonic coefficients of different harmonic
orders are uncoupled, and the starred and unstarred coefficients of the same harmonic order are un-

coupled. By virtue of these facts, Equations 2 can be written for each harmonic coefficient as

follows
.
m@n 3s ’
. n cosy
Wen ' T rF Un d (4)
= -l .a.u_n_q.mu +nv
Wwn 2 |3 r ‘" T ¥ 'n :

and similarly for the starred coefficients.

The potential energy of differential stiffness can be Separated into independent terms

m m

* *
vV, = vV, + T v _+V, + v , (5)
d do nsl dn do nZI dn
7.4-2
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where, performing the integration with respect to ¢

o2
hig J Fsow ¢ol"dS ’ (6)
0
e e Foa 2
g L s0%s0 + (Fso + @o)mwo rds , (7)
L3l P S I S W I (8)
z ], s0“sn ¢0%sn so ~ "d0’%n :

The form for V;n is identical to that for Vdn with the substitution of starred coefficients.

[t is convenient to define the following diagonal matrix

and also

>

Fso 0 0
[Fo] = 0 F¢0 0 , (9}
0 0 FSO + F@o
ks —
Won
{wn} * (wen . (10)
“wn
w¢°
*
{Un} = wSO [ (]1)
*
“wo

so that Equations 6, 7, and 8 can be written as

* £ T
Vg * Vo % T [o ()" [F Ju t rds (12)

7.4-3
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and
T L T
Vi * 3 fo{un> [Fltodrds  n>0 . (13)
The Fourier components of rotation are related to the independent constants {qn} by
{w,} = [qu]n{qn} n>0 (14)
so that
* 1 Tr, qd
Voo * Vdo ?'{qo} [Ko ]{qo} ' (15)
1 T
Vo * 3l K@, (16)
and
* * T d *
Vip = 3@ @y (17)
where
. A= 4
“re 9477 Fro Tty - :
(k3917 2n L[qu]o[Fo][qu]n rds (18)
and
K9 = x [ Tu TTTF TN rds (19)
n o WaTnT07wgn ’
are the differential stiffness matrices referred to the independent constants. (Note that the
differential stiffness matrices for starred and unstarred coefficients are identical.) The dif-
ferential stiffness matrices referred to the degrees of freedom for the element, [ue}, are
udy “14Tpe Qdqpy, -1
L B L N U s e L (20)
Formulas for evaluation of the elements of [Huq] are given in Section 5.9.
The remaining task is to derive formulas for the elements of [and]. The formulas for N
[Koqd] differ only by a factor of two, (compare Equations 18 and 19).
7.4-4 %:;7 :
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7.4.2 Evaluation of [ 9]

The relationship between the harmonic coefficients of displacement and the independent con-
stants is stated in Equations 30, 31, and 32 of Section 5.9. Substituting into Equation 4 and sup-

pressing the subscript {n)}, we find

wy * Qg + 2q7s + 3q852 .

g = Blag+ags ¥ a5t v ags?) ¢ S (g 4 qs) (21)
Gy T -%(qw%‘“% * aps) *%(‘43*“45))

The coefficients in these equations are the elements of the [qu] matrix, written below in trans-

posed form
0 cosy/r - siny/2r 1
0 scasy/r - % - sesiny/2r 2
0 0 - n/2r 3
4] 0] - ns/2r 4
[qu]T =] 0 n/r 0 5 . (22)

i ns/r 0 _ 6
2s nszfr 0 7
352 ns3/r 0 8
0 o} 0 9
0 0 0 10
w¢ ws Ll)w

Turning now to the evaluation of the elements of [FOJ, Equation 9, it 1s required to find the
explicit dependence of the elements of [Fo] on distance, s, along the conical segment. From Equa-

tion 17 of Section 5.9:
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" 4
Fso = tlEqlegg - degp) + EIZ(E¢0 : ae¢o)] ’
F@O = tEE]Z(ESO - AESO) + Ezz(ed)o = AE¢_°)] ] (23)
where the Ac's are enforced strains including those produced by temperature.
From Equations 60 and 61 of Section 5.9, with n = G,
€50 * Y0
€ . L siny( + s) + cosy(qen + s + 2+ 53) (24)
40 2 930 * %0 s0 ¥ 960% T 970° T 980 :
Formulas for the 4Ac's are given in Equation 123 of Section 5.9. Thus, Fso and F¢° may be written
2 3
Fso * A, + a15 + 3,8 + a3s ,
F_ = b +bs+bys+bas (25)
40 0 1 2 3 '
where -
a, = t[E”q40 + } Elz(simbq30 + cosquo)] + (part due to Ac's) s
a = -% tE12(sian40 + cosquo) + {part due to 4c's) ' (26)
a, = 1 tE,,C05¢q
2 r --12 70
a, = 1 tE.,cosyq
3 r "C12 80 ’
1 '
by, * t[qu40 *y Ezz(sian30 + caswoso)] + (part due to 4c's) ,
1 '
by = ¥ tEZZ(sinzpq40 + cosquo) + (part due to Ac's) s
) —
b, = 3 tEy,cosyas4 s (27} o
1
b3 * ¥ thzcosquo ’

7.4-6 ~
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- and G39==dgg 2res of course, obtained as part of the stress data reduction procedure for the pre-

ceding static solution, see Section 5.9.10.

The elements of [and] will now be evaluated from Equation 19, carrying out the indicated

integration. For the purpose it is convenient to define the integrals

')
- m_1-n
Amn m f s'r F..ds s

o SO
2

B, = nf MM Foods (28)
0

Cmn = Amn * an

Amn and an can be evaluated in terms of the integrals Imn defined in Equation 82 of Section

5.9, and the coefficients defined in Equations 26 and 27.

A = al n + a,I + aZI )

+
mn om m+1,n m+2,n 33 m+3,n *

an * boImn * b1Im+1,n * bZIm+2,n * b31m+3,n (29)
The evaluation of the (i,j) element of [Kﬂqd] consists of multiplying the ith row of Equation

22 by the jth row, with the weighting factors Amn’ B n’ and Cmn applied to the terms from the

m
first, second, and third columns respectively. m is equal to the power of s appearing in the num-
erator of the product, and n is equal to the power of r occurring in the denominator of the pro-
duct. The resulting matrix is symmetric. Explicit formulas for the elements will be found in

Section 4.87 of the Programmer's Manual.
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o 7.5 ISOPARAMETRIC HEXAHEDRON THREE-DIMENSIQNAL SOLID ELEMENTS
The differential stiffness matrix for the isoparametric solid elements s obtained by
adding the energy due to initial stresses to the potential energy function. This additional energy

{s derived in Section 7.1, and is given by

] 2 2 2
wp * 3 {[wx(dy + cz) + “y(cx + Gz) + wz(cx + cy) - wa wy Txy - 2wy w, Tyz - 2wz Wy tzx]dV , (1)

where the rotations are given by the relations

€
"
~N—

(2)

far QX Q>

Nl KX
1
Al
el

(5
<
L]
M—a
[}
wla
x|z
~—
v
-

NE

[}
M —
——
153

1
e
e

and may be expressed in terms of the grid point displacements by using Equation 1 of Section £.13.1,

i.e.,
RN u]
1
"
i
““x
cE ! B Bpld 2 Y e By 3)
“y 11 Sy L Baerd Uet
W, ==
Ungp
YNGP
¥NGP
and ~ -
aN, 3N,
0 - _—
2z 3y
. an, an,
Gl wm 0 "=
ay ax

v _ o 7.5-1(12/31/78)
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The substitution of Equation 3 into Equation 1 and the addition of this function to the potential

energy expression yields the differential stiffness matrix:

d T d qpn
el = Sttt o (4)
where oy + 9, - Txy < Tax )
d
[ﬁ“»] | -7y o *+a, " Ty . (5)
- Ty - Ty a, +0

As in the structural stiffness matrix, the evaluation of the integral in Equation 4 is gb-

tained by application of the Gaussian Quadrature Formula (see Table 2).

7.5-2(12/31/73)
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7.6 THE TRIANGULAR THIN SHALLOW SHELL ELEMENT

The expression that is used for the energy of differential stiffness per unit area of the tri-
angular thin shallow shell element consists of a part Ug due to out-of-plane motions and a part Ué
due to in-plane motions. The expressions for UE and U& are the same as those for plate elements
and are given by Equations 18 and 19 of Section 7.3.1; the expressions for the membrane strains,

however, involve the effects of coupling due to bending. Thus,

U= Ué + Ua , (n
where
2 2
cetls () CLs [ = ol
Up =7 1% (ax) * oy (ay) * 2Ty 3% By | (2)
and
ISL ‘— 2 = 2_ - )
Up = 3 lcx (wz + 2w, exy) *+ 9, (wz 2w, exy) + ZTxy (ey - ex) wz‘ . (3)

The stresses Oy cy, and Txy

values at the three corner grid points being used to evaluate the coefficients in the Tinear varfa-

at any point within the element are assumed to vary linearly, the

tion. Thus,

9, (x,y) = ) * X + egy s (4)
Ey (Xs)’) = f] + fzx + f3.y » (5)
and Opy (Xo¥) = 9y + X + g3y . (6)
In condensed form,
3 R, S,
g, = p ey x 'y , (n
i=]
e E T (8)
g, = f. x 'y ’
y S
- % Ry 54
and Oy * & 9y x ¥ . (9)

7.6-1 (12/31/77)
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= W

e S T

]

y X ?
1 favau

Y2773 (ax ay) !
s 24 _

Ex Tax T Tax ¥ !
= ¥

vy Tw T Pyt o
22, W

Xy 93X * ay Zz'xy w

The thickness t of the element at any point (x,y) is given by

The jth column of the 1t

h

t(x,y)

3 t, u
=Y d, x kK
ia]

row of the generalized differential stiffness matrix is

3 3
kig = ég% ég% ld e, 1y s Fry + Pyttt Ry -2, 54 554U+ S)

+ dk fz 55 sj F(r1 + r ot Rz' $; * 5 *u ot Sz - 2)

+

+

+

+

+

+

dk 9q 54 "5 F(r1
dk 9 sj i F(ri
0.25 d, & Pi Pj
0.25 dy & Ny N
0.25 dk e P; nJ
0.25 dk e, ny pj
dk ei P; n, F(pi
dy & Py Py Flpy

dy &y Py g Flpy

+r., +
J

+r, +
J

Flp; +
F(mi +
Flpy +
F(m, +
+ mj +
+ pj +

tryt

te*R -1, 5; + sj *u o+ Sz -1
t + Rz -1, sy + sj tu ot Sz -1)
P tt o Rz -2, 9; + 9 tu o+ Sz)
m‘j + tk + Rz, n; + nj tut S2 - 2}

m AL R£ -1, G + g vy + 51 - 1)

J
P *t +R -1, n; + 9 tu o+ Sz -1)
t, + Rz -1, g9 + ny tu o+ Sz - 1)

te+ Ri -2, q; + 9; tu o+ Sz)
tk + Rz -1, q; + sj *u + Sl)
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dk ey Ny Ny F(m1
dk e, N, pj F(mi
dk & h5 F(m1
0.25 dk fl P; pj
0.25 dk fl Ps "j
0.25 dk fg ng Ny
0.25 dk fl ny pj
4 fl Pi Ny F(pi
dy fo Py P Fpy
d f, Py Mg Flpg
dk fz ng F(m1
dk fl ng Py F(m1

d, f

x o Ny hg Fm,

0.5d, g, 9; Py Flpy +py + 8 +

0.5 dk g9, a

. F(m

+m
J
+

P4

+ N
i

F(pi
F(p
F(m

F(mi

+pj

+ .
"]

Flp,
Flp;
Flp,
Flv,
F(vj

Flr,

F(rj

i

F(mj

+t + Ry, n; + ny tu ot 8, - 2)

+

t * Rl -1, ny + qj tut S2 - 1)

tk + RQ, n; + sj tut Sz -1)

pJ + tk + Rl -2, q, + qj + Uy + 51)

my et Ry = 1, Qg * Ny tu SQ - 1)
mJ et Rl' n; + nj +u

P et RQ -1, + 9 tuor S - 1)
t * Rz -1, q + n; ut 51 - 1)

t Rl -2, a9y + 9y *u + Sl)

t * R2 -1, a; * 55 tut Si)

ty *Rpany + ny Ut Sp - 2)

L, + Rl -1, ng + qJ fut Sz -1}

et Rz' n; + sj

p. +t, + Ri -1, q; + qj tut 51 - 1)

m, + t, + Rz, q:l

Pyt * Rz -1, S5 oty ¢t Sl)
my tE R, st n; tu ts, - 1)
m, + tk + Rl’ sj +n; + Uy + Sl - 1)
P; tt o+ hz -2, n;+ 9; +u t Sz)

Pyt *Ry-2Zingd gty +S))
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+0.5dkgzm1.njF(m1.+mj+tk+Rl~'l,n1+nj+uk+Sl-1)

+0.54, g, mong F(mi + LR *E R -1, ny o+ n; *u SQ -1

+

0.5 4 9, P hy F(r-i + P; ot Rm -1, 5y + qj tu ot Sz)

+

0.5 dk g, Py hy F(rj MUTIR G Rz -1, sj * gyt t 52)

0.5 dk 9, nj h4 F(ri + mj + tk + Rz' s; + nj tu o+ S2 - 1)

- 0.5d, g, n, h, F(lr“j mptt R, S;tnpturs, - 1)] (ccnclucg;;;

The generalized differential stiffness matrix is transformed to the element coordinate system,

the basfc coordinate system and the global coordinate system in the normal manner.

¢

7.6-4 (12/31/77) T



8. HEAT TRANSFER ANALYSIS

8.1 GENERAL FEATURES

An analogy between thermodynamics and the mechani;srof solid bodies has been exploited to ex-
tend the capability of NASTRAN to heat transfer analysis. As in the case of structural amalysis,
the analysis of heat transfer in a solid continuum can be reduced by finite element techniques
(see, for fnstance, Reference 1) to the solution of a set of equilibrium equations in which the
unknowns are defined at a discrete set of points. Thus, the general equation that is solved when

finite element methods are applied to heat transfer analysis may be written in the form
[xJ{u} + [BI{d} = {P} + (N}, (1)
where

{u} 1s a vector of temperatures at gridpoints

(P} is a vector of applied heat flows that are known as functions of time
{N} is a vector of nonlinear heat flows that depend on temperature

[K] is a symmetric matrix of constant heat conduction coefficients

[8] is a symmetric matrix of constant heat capacity coefficients.

The symbols used in Equation 1 have been deliberately chosen to coincide with some of
the structural analysis symbols defined in Table 1 on Page 3.3-4, thereby defining the
thermo-mechanical analogy. Heat transfer analysis with NASTRAN uses all of the normal analytical
tools provided for structural analysis, the difference being that the arrays [K], [B], {P} and

{N} are computed from thermodynamic properties, rather than from structural properties.

Gridpoints are used to locate temperatures just as they are used to locate displacements in
structural analysis. However, one of the major differences between thermodynamics and mechanics
is that temperature is a scalar function of position, whereas displacement is a vector which
NASTRAN assumes may have as many as six components. Thus, in heat transfer analysis, NASTRAN

provides only one degree of freedom at each gridpoint.

8.1-1 (12/29/78)
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The heat conduction matrix, [K], and the heat capacity matrix, [8], are formed from
"element" properties, just as in structural analysis. Volume heat conduction "elements”
are analogous in many ways to structural elements and they even use the same connection and
Property cards. In addition, a part of the heat conduction matrix may be associated with
surface heat convection or radiation. The theory for NASTRAN's volume heat conduction elements

s derived in Section 8.2, and the provisions for surface heat transfer are described in

Section 8.3.

The components of the applied heat flow vector, (P} are associated either with surface heat
transfer or with heat generated inside the volume heat conduction elements. The vector of
nonlinear heat flow {N} results from surface radfation, from temperature-dependent surface

convection, and from temperature-dependent heat conductivity,

In the case of 1inear static analysis, [B] and (N} are null, and Equation 1 is solved in the
Same manner as in Tinear static structural analysis. The flow diagram on Page 3.2-4 applies to
this case. The user has the option to employ both single and multipoint constraints and many other
specialized features normally associated with structural analysis. New solution techniques are
used in nonlinear static analysis and in transient analysis. Flow diagrams for these cases are

shown in Figures 1 and 2. Details of the computational procedures are explained in Section 8.4.

The output of a NASTRAN heat transfer analysis includes the temperature at gridpoints, the
temperature gradients and heat fluxes within volume heat conduction elements, and the heat flow
into surface elements. The heat flow into surface elements is further separated into components

due to user-prescribed flux, radfaticn, and convective heat flux.

8.1-2 (12/15/72)
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GENERAL FEATURES

REFERENCE

Zienkiewicz, 0. C., and Cheung, Y. K., The Finite Element Method in Structural and Continuum
Mechanics, McGraw-Hi1l Publishing Company Limited, London, 1967, Chapter 10.
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Figure 1. Simplified flow diagram for

thermal nonlinear statics analysis,
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with conduction matrix

Y

fﬁbply constraints, partition matriégg]
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[Direct matrix input |

[assemble dynamic matrices |

[?}ansient load generathJ ¥
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Y
[output solution points |
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R 2 ]
Existing modules to which heat transfer capability has been added

Figure 2. Simplified flow diagram for
thermal transient analysis.
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HEAT TRANSFER ANALYSIS

8.2 VOLUME HEAT CONDUCTION ELEMENTS

The volume heat conduction elements are the same as NASTRAN structural alements. The elements

for which heat conduction is available are listed in the following table:

Heat Conduction Elements

Type Elements

Linear BAR, RPD, CPNRED, TUBE
Planar TRMEM, TRIA1, TRIAZ,

QDMEM, QUADT, QUAD2
Solid of Revolution | TRIARG, TRAPRG

Solid TETRA, WEDGE, HEXAT, HEXAZ,
IHEXT, IHEX2, THEX3

Scalar elements, single point constraints, and multipoint constraints are also available for heat
transfer analysis. The same connection and property cards are used for heat transfer and struc-
tural analysis. Linear elements have a constant cross-sectional area. For the planar elements,
the heat conduction thickness is the membrane thickness. Eleménts with bending properties, such
as BAR and TRIAT, have been included so that the user may use the same elements for the thermal
and structural analyses of a given structure. The bending characteristics of the elements do not
enter into heat conduction problems. The trapezoidal solid of revolution alement, TRPRG, has been
generalized to accept génera] quadrilateral rings (i.e., the top and bottom need not be perpendi-

cular to the z-axis) for heat conduction only.

The heat conduction elements are composed of constant gradient lines, triangles and tetra-
hedra. The quadrilaterals are composed of overlapping triangles, and the wedges and hexahedra are
formed from sub-tetrahedra in exactly the same way as for the structural case. The IHEXi elements
are isoparametric hexahedron elements and are similar to the isoparametric solid elements described

for structural analyses.

Thermal conductivity and capacity are specified on MAT4 (isotropic) and MATS (anisotropic)

bulk data cards.

The heat conduction matrix for a volume heat conduction element may be derived from a thermal
potential function in the same way that the stiffness matrix of a structural element is derived

from the strafn energy function. The thermal potential function is

A
Bl — Ty
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vs-3 f3

« Yudv, (1)
v

where § fs the heat flux density, Yu s the temperature gradient, and the integration is performed
over the volume, V. The components of the heat flux are related to the components of temperature

gradient by

T Z ki3 axj ’ (2)

where k1.J is an element of the material conductivity matrix and the index j is summed over the
dimensions of the space (one, two, or three dimensions). Using Equation 2, Equation 1 may be

expressed in matrix form as

fl J[k”{ v (3)

v

The temperature, u, at an interior point is a Tinear combination of the temperatures, {ue},

at the vertices of the element, i.e.,

U‘eJ(u } ’ ’ (4)
where, in genera1 the e]ements of the row vector lLej are functions of position. The thermal
gradient vector is, therefore,

e I (O LT R ()
xg) o Ted

where the derivative matrix [Le J] is, for the case of a two-dimensional triangular element,

— -
]
£33 3y
aL aL
« | =2 2
(Le,s] T v . (6)
3L3 3-'-—3 -
_ax ay _ -
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In general the number of rows and columns of [Le ;]-] are the number of vertices of the element,
and the dimension of the space, respectively. The substitution of Equation 5 into Equation 3 pro-

duces an expression with the form
U= g fug) 0K 1ug} (7

where the element heat conduction matrix is

0] = g g dikggllke 00 (8)

Equation 8 fs a general form that is valid for all cases.

Elements of the heat capacity matrix [B] are calculated by the Lumped Mass method, see

Section 5.5.

8.2.1 (Constant Gradient Heat Conduction Elements

For the special case of a constant gradfent element with homogeneous properties, [Le 1] and
L]

[kij] in Equation 8 are constant within the element, so that
[ = v lL, 4Jlky 0L, 317 (9)

where Ve is the volume of the element, There is only one general type of constant gradient

alement for each type of space, i.e., a line segment for a one-dimensional space, a triangle for

a two-dimensional space, and a tetrahedron for a three-dimensional space. In the constant gradient
case, the elements of the vector {Le} are called the "natural coordinates” of the element. It is
apparent from Equation 4 that each natural coordinate has unit value at one vertex and zero value

at all other vertices of the element. The natural coordinates are obtained by the solution of
(HI{L} = (f} (10)

where the specific forms for one, two and three dimensions are

1 1 L1 1
one dimension = , (11)
{1ine segment) ) L2 X
8.2-3 (12/15/72)
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1 1 1 L1 1
two dimensions X X X L = (X (12)
(triangle) 1 2 3 2 ’
b4 ¥ Y3 L3 y
{-1 ] 1 1 LI 1
X X X X L X
three dimensions 1 2 73 e, (13)
{tetrahedron) Y1 ¥y Y3 vl y
2 z z b4 L z
1 2 3 fj 4
The determinant of the [H] matrix has a useful property, namely that:
for one dimension, det[H] = 2, the length of the segment,
for two dimensions, % det[H] = A, the area of the triangle,
for three dimensions, % det[H] = V, the volume of the tetrahedron.
_ .. In order to obtain the derivatives of {Le} required in Equation 9, we observe that, for the
two-dimensional case,
1
Wot = (1710, (14)
Y
where [H]'] is a matrix of constant coefficients. The derivative matrix may, by comparing
Equations 6 and 14, be expressed formally a§
0 0
=001 o, (15)
0
which means that [Le j] s equal to the last two columns of [H]'1. In general, for a space of (n)
dimensions, [Le j] s equal to the last (n) columns of [H]'].
For the case of the tetrahedron, the [H] matrix is inverted numerically, [Le J] is taken to L
L]
be the Tast three columns of [H]'], and [K®] 1s evaluated numerically from Equation 9. All
8.2-4 (12/15/72) b .
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calculations are performed in the basic coordinate system. For one and two-dimensional elements
it {s more practical to write explicit formulas for the natural coordinates. In fact, for one-

dimensional elements the heat conduction matrix is simply

1 4
(k%] = & [ } : (16)
-1 ]

where A is the cross-sectional area, k is the thermal conductivity, and 1 is the length of the

element.

In the case of a triangular element, the x-axis is taken along the side i - 2 as shown

below:

X (material x-axis)

o) - > = x
The natural coordinates are, by inspection,
X

L]:]-x—-+<_3- )L

2 \*2 3
LasX. 31 . (17)
2 Xy X3 Y3 ;
L = L
3 Y3

8.2-5 (12/15/72)
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and the derivative matrix is
1/, 1 (xg =y |
[Le, 1= | Vx, ; ~X3/X5¥3 . (18)
T

The material conductivity matrix [K"] is specified in the material coordinate system which
makes an angle 8 with respect to the element coordinate system as shown above. The conductivity

matrix referred to the element coordinate system is
cos & -sin @ m cos 8 sin g
[k”] = [k ] (19)
sina cos 8 -sin @ cos §

Equations 18 and 19 are used in Equation 9 to obtain the heat conduction matrix for a tri-

angle. The volume, Ve. is equal to the product of the surface area and the thickness.

For the triangular solid of revolution element (TRIARG) the differential volume to be used
in Equation 8 is 2qr dr dz, where r and z are cross-sectional coordinates. The temperature is
assumed to be constant in the circumferential direction and to vary linearly over the cross-

section. Thus, Equation 8 becomes
(K] = [y, g dlkyylt, 17 2n fr aa

o LTI ST | % (S L (20)

where Ae 1s the cross-sectional area. Equation 20 is identical to Equation 9 since the volume of

a trianqular ring s exactly

Vo = %} (ry+rp+ ryh, - (21)

Quadrilateral plane and revolution elements are formed by overlapping triangular elements

in exactly the manner described in Section 5.8.3.1. Hexahedra and wedges are formed from sub- -

tetrahedra in exactly the manner described in Section 5.12.6.

8.2-6 (12/15/72)
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Elements of the heat capacity matrix [8] are calculated by the Lumped Mass method, see
Section 5.5. The total thermal capacity of an element is distributed equally among the connected
grid points for lines, triangles and tetrahedra. In the case of triangular solid of revolution
elements, the heat capacities lumped at the three grid circles are selected so that the total heat
capacity and its center of gravity in the transverse plane are preserved. The equation for the

heat capacity lumped at grid circle (i) is

e A
by = —E= (rytrytryer), 121,23, (22)

where, in addition to previously defined terms, ¢_ is the heat capacity per unit volume.

P

The heat capacity matrices of elements formed by overlapping triangles or tetrahedra are

computed by assigning one-half of the capacity to each overlapping set of sub-elements.

Thermal gradients are produced as part of the output, using Equation 5 and the various
expressions derived above for the derivative matrix, [Le J-]. The components of the heat flux are
1]

also output, using Equation 2, and the thermal gradient vector.

The temperature gradient and the heat flux are, of course, assumed constant over each sub-
element. In the case of overlapping elements, a weighted average is computed. The areas of the
subtriangles are used as weighting functions in the case of planar elements, and the volumes of

the subelements are used as weighting functions in the case of solids.

8.2-7 (12/15/72)
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8.2.2 Three-Dimensional Isoparametric Solid Element Heat Transfer Matrices
The heat transfer conduction matrix for the three-dimensional isoparametric elements
(References 1, 2 & 3) are derived by using Equation 8. For these three elements, the temperature,
{u} at an exterior point is given by
(= [LJuy (23)
where[lejis a function of the curvilinear coordinates £, n andg and is identical to the [N] matrix
described in Section 5.13. The derivatives of(le]with respect to the basic Cartesian coordinates
X, Yo Z are calculated in exactly the same manner as presented in Section 5.13 for these elements,
i.e.,
i} i}
X 3
aL -1/3L;
Tyt B ) (24)
¥ fia]
F] 14
where [J] is the Jacobian Matrix, and the derivatives of !..l with respect to £, n and ¢ are listed A
in Tables 5.13-1 and 5.13-2. Since, in general, the matrix [Le 1] 1s a function of £, n and ¢,
the integration of Equation 8 is carried out by Gaussian Quadrature numerical integration, and the
heat conduction matrix is céTculated from the equation
T
(k%] = Hy He W (DL, D0k I0L, 10))9) (25)
121 j§1 kzl 177 ke, 1M e g ’
where
(o
FE3 3y kX3
[Le ;1= | ° Y ? . (26)
ngp ngp  Aygp
X 3y BEL: J
and NGP 1s the number of grid points in the element. NGP equals eight, twenty and thirty-two for
the linear, quadratic and cubic {soparametric elements, respectively. The weight coefficients Hy
8.2-8 {12/31/78) -
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VOLUME HEAT CONDUCTION ELEMENTS

and abscissa Sz are given in Table 1.

Elements of the heat capacity matrix [B] are calculated by the coupled mass method (see

Section 5.13.4). The equation for this matrix is

S
6] = St e, o0 (27)

where cp is the heat capacity per unit volume. Examination of this equation shows that [8] is
identical to the structural mass matrix with the single exception that the heat capacity, Cps is
used instead of the material density. The heat capacity matrix is also evaluated using the

Gaussian Quadrature formula

T
O AR ICRY GRS (28)

8.2-9 (12/31/74)

IO



Iienkiewicz, 0. €.

HEAT TRANSFER ANALYSIS

REFERENCES

» and Cheung, Y. K., The Finite Element Method in Structural and Continuum
Mechanics, McGraw-Hill Publishing Company Limited, London, 1967.

Zienkiewicz, 0. C.
Dimensional Analys
Methods in Enginee

» and Parekh, C. J., "Transient Field Problems: Two-Dimensional and Three-
is by Isoparametric Finite Elements," International Journal of Numerical

Zienkiewicz, 0. c.

ring, January-March, 1970.

» and Cheung, Y. K., "Finite Elements in the Solution of Field Problems,"

The Engineer, September 24, 1965, pp. 507-510.

8.2-10 (12/29/78)

T

[N ANA L (]

I AN

| e

[

C L e



HEAT TRANSFER ANALYSIS
8.3 SURFACE HEAT TRANSFER

Four types of surface heat transfer are provided for both steady state and transient analysis.
The types are a prescribed heat flux, a convective heat flux due to the difference between the
surface temperature and the local ambient temperature, radiation heat exchange, and a prescribed
directed vector heat flux from a distant radiating source. In all cases the heat flux is applied

to a surface element defined by gridpoints. There are six distinct types of surface elements:
1. POINT, a flat disc defined by a single gridpoint.
2. LINE, a rectangle defined by two gridpoints.
3. REV, a conical frustrum defined by two grid circles.
4. AREA3, a triangle.
5. AREA4, a quadrilateral.

6. ELCYL, an elliptic cylinder defined by two gridpoints. Its use {is restricted to pre-

scribed vector heat flux.

The user supplies the area, A, for POINT, and supplies a width, w, for LINE to be used with
the distance, g, between its griipoints in calculating the surface area. For ELCYL the user specifies
the principal radii of the cross-section. The surface area is calculated automatically in the

other cases.

8.3.1 Prescribed Heat Flux

The user defines a distributed heat flux, Q, and the program calculates the vector of heat
flows {P®} to be applied to the grid points connected to an element. The general form of the

calculation for the jth component of {P®} is
Py=ATq§ m

where Ag 1s a subarea of the element associated with its jth vertex and Qg is the heat flux at the

Jth vertex. There are two options for assigning heat fluxes to elements. In the first option
(QBDYT card) the user specifies a heat flux that is constant over the surface of the element, In
option 2 (QBDY2 card) the user specifies separate heat fluxes at the vertices of the element,

which are then used directly in Equation 1. In transient analysis, the time dependence of the s

8.3-1 (12/15/72)

S



ORIGINAL PACE 19

OF PCOR QUALITY
HEAT TRANSFER ANALYSIS

¢

flux is specified on a TLOAD card. The subareas A§ are calculated in the same manner as heat
capacities. Thus, for LINE, A? is one-half of the width multiplied by the distance between the
end points, and for AREA3, A? is equal to one-third of the total area. For AREA4, A? is com-
puted from the areas of the overlapping subtriangles connected to the jth grid point. For REV
the total area is distributed to the two end points so as to preserve its center of gravity.

ELCYL is not available for prescribed heat flux.

8.3.2 Convective Heat Flux

Convective heat flow into an element's grid points is described by the general relatfonship
e s
{P7} = [K ]{Ta - ue} , (2)

where {Ta - ue} is the difference between ambient and surface temperatures at the vertices of the
element. The surface conduction matrix [K®] is calculated as follows for each surface element
type. In the equations, K is the thermal conduction coefficient, which may be a function of

temperature.

POINT: K= . (3) -

2 1
LINE: [K‘]-ﬂg&[ ] : (4)

REV: KL - = — =] . (5)

AREA3: [Ks]-% 12 1], (6)

where A is the area of the triangle.

AREA4 : Kﬁj a fﬁ-[(1 *8yg)lay +ay +agtay) - (g + aj)] , (7)

INARTER
where 51J { 0 if 14
ft

a; ® area o

h]
J
i e

he subtriangle which does not touch vertex {({). -

8.3-2 (12/15/72) A4
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The surface conduction matrices are, in each case, derived under the assumption that the
temperature difference varies linearly over the surface of the element, except that, in the case
of the quadrilateral (AREA4), the temperature difference is assumed to vary linearly over the

surface of each overlapping subtriangle. Each ambient temperature, T., is assigned a degree of

ai
freedom in the analysis. The value of T, may be specified on an SPC card in linear static
analysis. The method used in nonlinear static analysis is described in Section 8.4.1. In transi-
ent thermal analysis, the various techniques for prescribing a displacement in transient structural

analysis are used.
8.3.3 Radiation from a pistant Source

Radiation from a distant source, such as the sun, can be treated as a prescribed heat flux.
The flux into a surface element depends upon the orientation of the radiation vector relative to

the element. The total heat to a single element from a single distant source is given by
- - R
P = -aA(e-n) Q@ (8)

where P = power into the surface element from the source

Q0 s power per unit area in the beam

3=
"

surface area of the element

unit vector of radiation beam (the source is so distant that rays are parallel)

¢ ]
"

outward normal to surface

3
"

absorptivity (if a < 1, it is assumed that the reflected radiation is lost from the
system)

W
[ ]

(E-i)' is replaced by zero in the equation when é-n is positive, i.e., when the radiation
comes from behind the surface.

No provision is made for shading by other surface elements.

In addition to the POINT, LINE and AREA elements, the elliptic cylinder element, ELCYL, can
receive prescribed vector radiation, as shown below. An integration of the normal component of

flux over the surface is needed to compute the power.

8.3-3 (12/15/72)
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Figure 1. FBlliptic Cylinder, ELCYL.

The result of the integration is ?
F{.Y4 221/2
P = 2001 (eyny) R2 + (eznz) R]] , B 7 (9)
where ey, e, are components of &; ny, n, are components of nj and £ is the Tength of the cylinder,

In dynamic analysis the flux in the incident beam, QO’ and the components of e may be pre-

scribed functions of time. The latter provision is useful in the analysis of rotating spacecraft.

8.3.4 Radiation ExchapggrBetygen Surfaces

The relationship between the vector of radiative heat flows, {Qg}, into grid points, and the

grid point temperatures, (ug}. is of the form (see, for instance, Reference 1)

Qg} = ~[RJug + T3* . (o)t

t If {T} is a vector, {T}* is defined as the vector whose components are the fourth power of the

elements of {T}.

8.3-4 (12/29/78)
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The addition of Ta converts u_ to an absolute temperature scale. The grid point radiation matrix

g
[Rg] will be derived. As an intermediate step, an element radiation matrix, [ReJ. will be found
which relates the radiative heat flow (power) into a finite element to the temperature of the

element by
{Qe} = -[Re](Ue}“ ’ (1)

where Ue is the temperaturé of the element measured on an absolute scale and assumed to be con-

stant over the element.

The radiation power into a surface area may be considered as the result of two effects:
q2Ut (radfosity), the power per unit area leaving the surface, due either to direct radiation or
to reflection of incoming radiation; and q;" (irradiation), the power per unit area arriving, due

to the radiosity of the other elements. The radiation exchange formula is
(A3} = [Pl (12)

where [A] is a diagona) matrix of areas, and [F] is a matrix of exchange coefficients whose

elements are given by

cos8, cos8é
Fyg ™ J [ ——la (13)

, i
A1 Aj “T$J

where r,. 1s the length of a line connecting two points on the surfaces, and 61 and ej are the

1]
angles between the connecting line and the normals to the surfaces. The range of integration must
be limited to regfons of the surfaces which "see" each other. The [F] matrix has units of area
and is symmetric. Its elements are related to the more commonly used form factors (or shape

factors) f1j by
Fij » AJ fij . (14)

where fij is the fraction of the power leaving element j which reaches element i. The elements of
[F] are supplied by the user; it {s expected that, in many cases, they will be computed by a

separate computer program. The surface condition is

out in
(@138 = ofE Jtu,)* + [1 - EJMal" (15) -

8.3-5 (12/15/72)
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where EE and Eu are diagonal matrices of emissivities and absorptivities and 7 is the Stefan-
Boltzmann constant. For gray bodies with no transmission, Ee is equal to Ea, according to

Kirchoff's Law.

The simultaneous solution of Equations 12 and 15 yields

Q" = of(a - F(1 - e 7T FE DM (16)
(q}g”t = U[EE + (I - EG)(A - F(I - Eg))-' F Ee](ue}b . (17)

The net power exchange is
Q) = [Al(ta}}" - (@2t ) | (18)

The element radiation matrix, found by substituting Equations 16 and 17 into Equatfon 18 and

comparing the result with Equation 17, is
. -1
(Rg] = olAE_ - AE (A - F(I - EJ))T FEJD . (19)

This matrix is symmetric if Ea = Ee and F is symmetric. The transformation from element heat

flow to grid point heat flow is given by
{Q.} = [é]T{QV} s 7 ‘ (20)
] e

where [G]T is a matrix of constant coefficients. The nonzero elements of [G]T are easily found

for each element type. They are, in fact, the fractions of the area of the element attributed

to”the ‘Connected grid points, See Section 8.3.1. The same matrix transposed 1s used to inter-

polate therfourth powers ofrtemperatureg, i.e.,
{Ue}“ = [G]{ug + Ta}“ . (21)
Combining Equations 20 and 21 with Equation 11, and éemparing with Equation 10, it is seen that
[Rg] = [6]IR,IIGT (22)

which is also a symmetric matrix {f (R] is symmetric. The net heat flow into the element due to

radiation, which is available as output frcm NASTRAN, s

(Qg} = -[RI[61uy + T 2" . (23)

8.3-6 (12/15/72)
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SURFACE HEAT TRANSFER
The sources of the information required to simulate radiation heat exchange are:

a. Parameters o, Ta

b. Properties Ee’ E(1 User Supplied

c. Exchange Matrix [F]

d. Areas A Computed from grid geometry and

e. Transformation [G] element properties

8.3-7 (12/15/72)
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HEAT TRANSFER ANALYSIS
8.4 METHODS OF SOLUTION

The types of heat transfer problems that are solved with NASTRAN are described in Section 8.1.
There are three types: linear steady-state analysis, nonlinear steady-state analysis, and

transtent analysis. Nonlinear relationships are optional in transient analysis.

Linear steady-state analysis uses the NASTRAN statics rigid format (format No. 1). The
principal additions are subroutines for conduction and heat capacity matrix generation, described

in Section 8.2, and for surface heat transfer, described in Section 8.3.

Flow diagrams for nonlinear steady-state analysis and for transient analysis are shown in
Figures 1 and 2 of Section 8.1. Special features of the solutions are described in the subsections

that follow.

8.4.1 Nonlinear Steady-State Analysis

The nonlinear properties permitted in steady-state heat transfer analysis with NASTRAN are
radiation, temperature dependent film conduction, and temperature dependent volume heat conduction.

The general form of the equation to be solved is

»
[Kgg](ug} + [Rgg]{ug *T s {qg} + {Pg} . (M

The temperature set {ug} includes degraes of freedom that are restrained by single point and
multi-point constraints, see Section 3.3. The vector {qg} represents the forces of constraint.
Sections 8.2 and 8.3 describe the manner in which the heat conduction matrix, [Kgg], the radiation
matrix, [Rgg], and the applied heat flow vector, {Pg}, are formed from the properties of volume

elements and surface elements. The elements of [Kgg] may be functions of temperature.

The first step in the solution is to rewrite Equation 1 in terms of the set of temperatures,
(un}. from which multi-point constraints have been removed. The procedures used are identical to
those described in Section 3.5 for structural analysis. In order to avoid difficulties in inter-
polating temperatures to form the nonlinear terms, 3 restriction is placed on the form of the
multi-point constraint relatfonships, namely that, if a grid point is adjacent to a volume or

surface element with nonlinear properties, the constraint relationship is restricted to be an

*1¢ (T} 1s a vector, {T}* is defined as the vector whose components are the fourth power of the -
elements of {T}.

8.4-1 (12/15/72)
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"equivalence.” The tem "equivalence"” means that the constrained temperature is equal to one of
the independent temperatures.
The form of the thermal equilibrium equation after the multi-point dependent temperatures

(um} have been eliminated is

CkondCupt + TR\ Hu, + T3« (q ) + (P} (2)

If {un} is partitioned into {Uf} (free points) and {us} (single point constraints), Equation

2 may be written in partitioned form

! t *

Kee 1 Kes [\ Reey Res [\ur * Ta 01 \Ps

—_——f - +__+_______ = (N +/. ] . (3)
i !

Ksf 1 Kgs {[ s Rse, Rss |(us * T, 9 Ps

The components of {us} have values prescribed by the user, and the lower half of Equation 3
1s used to evaluate the single point "forces” of constraint (qs} during data recovery. Rearrang-

ing the top half of Equation 3 we obtain

[Kff](uf} + [Rff]{uf + Tﬂ}“ = (Pf} - [Kfs]{us} - [Rfs]{us + Ta]’h . (4)

Equation 4 is solved by an fterative method. The technique used is to expand {uf} into
constant, linear, and higher order terms with respect to an initial estimate, {u;}. supplied by the
user. The linear terms are kept on the left hand side of Equation 4 and all other terms are placed
on the right hand side, where they are evaluated precisely for the current estimate of {uf). If we

define {L} to be the Teft hand side of Equation 4, then the new left hand side 1s
W = [ Neud « (KL Jtud + 4RI Gl + T, 3000, (5)
auf f fftof ff f a f 4

where the partial derivatives are evaluated for {uf} = {u}}. Using this expression, Equation 4

may be written as

EK;f]fuf} = [Kep - Keelugh + (Reed(4L ug + T, J3Mue} - {ue + T.3%)

+{Pe} - [Kelugd - [ReJug + T3, (6)

8.4-2 (3/1/76)
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where
[Kiel = [KheD + [ReeIB uf + T, 00 (7)
It is convenient, for computational purposes, to combine terms proportional to {uf} and {us}
on the right hand side of Equation 6 to produce terms proportional to {un}. Thus, if we define
o}

{u:,} PO,

Us

[Kgg] = KD + 4R IDug + T, 3
[Kfn] b [Kff : KfS] . ‘ (8)
[Khd = Tkhg 0 Kb
[Repd = [Ree: Regd
then Equation 6 may be written as
[Keellugh = (NG}, (9)
where
Wed = (g = Kpug)d = [Key = KhJCud = [RepT(luy + bt = 4l « Ty Puph) . (10)

The first term in Equation 10 is a constant, and the other terms are functions of temperature.
Equation 9 is an exact relationship. The iteration algorithm consists of evaluating (Nf} for

(un) = {u;}. the current estimate of the temperature distribution, and of solving Equation 9 to
obtain a new estimate, {u}+1}. of the uhinown temperatures. The starting vector is (u;}, suppiied

by the user.

The algorithm is simple enough, but the number of iterations to obtain satisfactory con-
vergence (if indeed convergence can be achieved) remains an open question. The question of con-
vergence can be treated without difficulty in a small neighborhood of the correct solution within
which the nonlinear load may be approximated as a Tinear function of the error in the temperature

distribution. The iteration algorithm is

8.4-3 (12/15/72)
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KeeltulTy = vy, (1)

As an approximation, let

IND} = (NG + [C]ud - ugd = (] + [elteu’s (12)

where [C] is the matrix of the partial derivatives of {Nf} with respect to changes in (uf}.
Substituting Equation 12 into Equation 11 and using Equation 9, the iteration algorithm is,

approximately, ER
[Keedteu™) « [cauy . (13)

Equation 13 resembles the power method of eiéenva]he extraction, see Section 10.4, and its

convergence is related to the distribytion of the eigenvalues of the associated eigenvalue probliem,

[K;f - AC]{6u} = 0 . (18)

In order to establish the condition for convergence, expand the iterates {éuf} and {6u1+]}

I}
il

in terms of the eigenvectors {¢j}. i.e.,

L= 4
i i ' :
{6u'} = § aj(éj} s (15)
o'y = T ol Ty (16)
Jd T v =
It can be proved quite generally (see, for example, Section 10.4.4.3) that a property of the
Tinearized iteration algorithm is that
-1 _ f ' i
o Xj a (17)
where Aj is the eigenvalue corresponding to {¢j}. Thus, it is seen that, if IAJI <7, u} will
increase in magnitude at each fteration and the algorithm will be divergent. The necessary and
sufficient condition for convergence in a small nefghborhood of the correct solution is that all
eigenvalues of Equation 14 have magnitudes greater than one.
NASTRAN provides both an estimate of the lowest elgenvalue and an estimate of the error in -
the solution after each iteration. If the iteration has proceeded to the point where one
8.4-4 (3/1/76) I

YR

m



pa—

e Ime —_ . =

METHODS OF SOLUTION 7 L :-.;.~J.'(

eigenvector, (¢1}, dominates the solution, it is seen from Equations 15, 16, and 17 that

el -t e Lot o aH (18)
1
<0 that the ratios of successive increments in the elements of the solution vector provide an
estimate of the lowest eigenvalue. By analogy with a procedure used in the inverse power method
with shifts, see Section 10.4, a single weighted estimate is obtained by multiplying both sides
of Equation 18 by the transpose of the nonlinear locad vector. Thus, the estimate {is

T
i i-1 {-2
i . {Nf} {uf - Uf }

A (19)

v
i i i-1
[Nf} {uf - ug }

Equation 19 is evaluated after every iteration starting with the third, { = 4,

The vector {du‘} is the error in the solution at the beginning of the fth iteration. In
order to obtain a measure of the error, we observe, from Equations 15, 16 and 17, that if only

one eigenvectar is present
ol - auTr e 0’y (20)

The measure of the error in temperature used in NASTRAN is the ratioc of the work done by the
nonlinear loads acting on the error vector to the work done by the nonlinear loads acting on the
total solution, i.e.,
T
T i i i-1
ot s ), I 1 Ngd fug -y

(21)
T 1 T

i (A - 1) i i
{N"} {uf} l 1 {Nf} {uf}

Another error measure is also provided, which measures the error in the applied heat flux,

including nonlinear terms. That measure is

* 5 1 i i-
o TN - r bl TN - N

€ (22)
P [INg1 | NG

where |[X|| is the Euclidean norm of the vector {X}.

8.4-5 {12/15/72)

ad



HEAT TRANSFER ANALYSIS CRIGINAL PA2Z 33
OF PCCR CuallTY

The iteration algorithm will terminate for any of the following reasons:

a) E; is less than a user-specified value and also flil > 1: Normal convergence.
b) [A{[ <1 for i 4: The algorithm s assumed to be divergent.
c) The number of iterations reaches the maximum number specified by the user.

d) The available time is used up.

i
p
vector for the last iteration will be output.

In all cases, the values of s}, e_ and A; may be output for every iteration, and the salution

Radiated heat flux s proportional to the fourth power of the temperature, thereby providing
a very strong nonlinear effect if the radiation terms are large compared to other terms. In
order to guage the effect of radiation on convergence of the iteration algorithm, consider an
isolated pe}fectly-conducting body in thermal equilibrium with radiation from distant sources.

The thermal equilibrium equation is

Ru* = p , (23)

where u is measured on an absolute scale, and P is constant. The user supplies an estimate of

the temperature, upe The iteration algorithm used by NASTRAN is, in accordance with preceding

discussion,
(4Ru§)ui+1 =P . R[(ui)“ - 4uiu1 . (23)
The derivative of the right hand side at the correct solution (u1 = y) is
C = -4R(u} - ') , (25)
sa that the eigenvalue problem corresponding to Equation 14 is
[4Ru; - X4R(ui -u)Jsu=0 (26)

The eigenvalue is

(27)

8.4-6 (12/15/72)
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The critical value for convergence, A = -1, is achieved if

or

up T .79y 5

Thus, the solution converges if U is greater than about 80% of the correct temperature,
measured on an absolute scale. The user can assure convergence, at the expense of extra iterations,

by overestimating the temperature.

8.4.2 Transient Analysis

The nonlinear terms permitted in transient heat transfer analysis include radfation and the
general purpose nonlinear elements described in Section 11.2. Nonlinear heat conduction and heat
capacity are not permitted. The reason is that the computational effort required to recalculate
the heat conduction and heat capacity matrices at each time Step by the finite element method used
" in NASTRAN is judged to be excessive. The general purpose nonlinear elements can, however, be
used to represent nonlinear surface film conduction and other relatively simple nonlinear relation-

ships.

The general equation solved in transient analysis has the form
[k1{u} + [BI{u} = {P} + (N} . (M

L 4
The conduction matrix includes linearized radiation terms. It is, in fact, identical to [Kff]
given by Equation 7 of Section 8.4.1, except possibly for terms due to "extra points,” see

Section 9.3.2. The nonlinear term in Equation 1 is
(N} = (N°} + [RI(40 W + T, JPu} - (w + T 1), (2)

where {N%} {s due to general purpose nonlinear elements and the second term is due to radiation.
An option is available to substitute {u'} for {u} in the second term, which reduces it to a

constant vector and which, thereby, linearizes the effect of radiation.

The load vector {P} may be formed in the same manner as for static heat transfer analysis

with certain parameters permitted to be functions of time. These include the prescribed volumetric

8.4-7 (12/15/72)
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and surface heat fluxes, and the prescribed vector heat flux. In the latter case, both the
direction and the magnitude of the heat flux are permitted to be functions of time. The user
also has available the methods used to prescribe transient loads in structural dynamic analysis,
see Section 11.1. Prescribed temperatures at grid points, and the ambient temperatures used for
film heat transfer are treated in the same manner as prescribed displacements in dynamic analysis.
The user connects a large scalar conduction element, KO’ to the grid point in question and also
applies a thermal load P = TKo to the grid point, where T is the desired temperature function of

time.

The algorithm used to integrate Equation 1 has been selected with the following criteria in

mind:
1. Unconditional stability for linear problems, regardless of the size of the time step,
2. Abilfty to handle a singular heat capacity matrix,
3. Good stability for nonlinear problems,
4, Good efficiency,
§. High accuracy.

A useful general observation is that stability, efficiency and accuracy are conflicting require-
ments that must be compromised. The algorithm that has been selected can satisfy the first two
criteria and scores reasonably well on the last three. Basically, it is a difference equation
approximation to Equation 1 with a free parameter that is adjusted to produce a compromise of
the stability, efficiency and accuracy requirements. In this respect it is analogous to the
Newmark 8 method used in structural dynamics, see Section 11.3. The form of the difference

equation is
1
[k]{8 un” + (1 - S)un} + it [B]{Un+-‘ - Un} =

(8P + (1 -8)P} + (1 + BN} - 8N ;1 (3)

The subscript n refers to the nth time step. The parameter, 8, may be selected by the user
in the range 0 < 8 < 1. Putting terms proportional to {"n+1} on the left side ylelds the itera-
tion algorithm

8.4-8 (12/15/72)
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The matrix [ ﬁ%-B + BK] is first decomposed into its triangular factors from which the
equations are solved at each time step using a forward and backward substitution procedure, see
Section 2.3. The time step, At, may be changed at discrete times by the user. Certain values of

the parameter g result in well-known algorithms, viz.,
g =0 : Euler integration
g8 a 1/2: Central differences

B =1 : Backward differences

Euler integration (8=0) is usually the most efficient choice because only the [8] matrix,
which is frequently diagonal, is decomposed. However, Euler integration cannot be used if [8]

is singular and it suffers with respect to both stability and accuracy as will be seen.

The effect of 8 on stability will be examined for the 1inear case, for which the matrix

equation of motion is

[K]{u} + [BJu} =P . . (s)

A more convenient set of equations is obtained by 2 transformation of {u} into modal

coordinates, {51}:
{u} = [¢]{Ei} ] (5)

where each column of [¢] is an eigenvector of Equation 5. The equation for each modal coordinate

{s uncoupled from the others and has the form
é1 + x1 51 = P1 ’ (7)

where x‘ is the aigenvector and P1 is the generalized force on 51. The system of equations is

stable 1f all Ay 2 0. >

8.4-9 (12/15/72)
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Applying the integration algorithm to Equation 7 we abtain

T Gt =€) * 2g(8 £y + (1 - 8)E ) = & Prar * (1 =8P, (8)

where the subscript (1) has been omitted for clarity. The solution for the homogeneous case

(Pn = Pn+1 = 0) has the property that

Eap *EE (9)

where E 1s a constant, called the shift operator. If [Ef ¢ 1, the homogeneous solution is stable
because it approaches zero for large n. By substituting Equation 9 into Equation 8 for the homo-

geneous case, we obtain

[EE-veneeer-ag -0 . (10)

Setting the coefficient of En to zero, which must occur if En 1s not to be zero, produces a

functional relationship between E, 8, and AiAt, which may be expressed in the form

1-E "
XiAt 'E_B‘*_]-—B . (1)

The range of £ for stability is -1 < E < 1. Substitution of the upper 1imit into Equation 11
s seen to produce no restriction on the time step. Substitution of the lower 1imit, however,

gives as a stability limit

= 2
liAt T-2 - (12)

Thus, if 8 = 0 (Euler integration) the stability limit is Ajat = 2. Since A is the recipro-
cal of the time constant of the ith mode of the system, the practical restriction on Euler inte-
gration is that the time step can be no greater than twice the smallest decay time constant of the
system. If 8 = 1/2, there is seen to be no 1imit on the time step, nor is there for 8 > 1/2,

which can most readily be seen by solving Equation 11 for E:

1-(1- )4t
S 3 5w (13)

From the viewpoint of stability then, 8 should be chosen greater than or equal to 1/2. For

linear problems g = 1/2 is adequate, but for nonlinear problems in which the nonlinear terms must

8.4-10 (12/15/72)
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necessarily be evaluated at the nth and earlier time steps, a larger value of 8 may be advisable.

Insight into the question of accuracy can be gained by examining the eigenvalues produced by
the {ntegration algorithm and comparing them with the eigenvalues of the real system. The eigen-
value, Ai’ produced by numerical integration is defined implicitly by

-A At

= i
€n+] e En » (14)
or, by comparison with Equation 9,

A, ® =k an E (15)

i at d
so that, using Equation 13,

-1 1-(1-8Nhat
Mrm\ T e ) (16)

If A1At is assumed to be less than one, Equation 16 can be evaluated by power series expansion

with the result
A = ‘i{‘ + (8 - V2 0gat) - (g + (8 - 1/2)) 0 gat)7 + ] : (17)

It is seen that, if the time step, At, 1s small compared to the decay time constant of the
mode, l/x1. the error will be a minimum near 8 = 1/2. Since efficiency or stability considera-
tions will be overriding in many cases, the choice of 8 is Teft to the user. The default value,

in the event that the user declines to make a choice, is 8 = 0.55.

The provisions for fnitial conditions are as follows. The initial thermal load (for

Equation 4 at n = 0) is taken as
{Po} = [K](uo} - (No} s (18)

which sets {uU} to zero initially (see Equation 1). Since {un} {s not defined for negative n, the

nonlinear load at t = -At is taken to be

IR U I (19)

Equations 18 and 19 have the property that they yield smooth results when step loads are

appifed to degrees of freedom without thermal capacity. Special conditions are also needed if it
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1s desired to change the time step. The situation is similar to the starting equations except
that the new initial velocity vector, {u}, is set equal to the old final vector. Let N be the
Index of the last step with the previous time step At]. Let Atz be the new time step and let the
time step counter be reset to zero. The new initial conditions are
{ugl = {uy} (20)
. - 1
{Uo} E {uN - uN-'|} . (21)
The new initial thermal load is
{Po) = [K]{uo} - {NO} - [B]{uo} . (28)
Interpolation is used to produce an estimate of the nonlinear load at t = -4ty:
At2 at,
Nt - E(NN_]} +(1 - 5, U (23)
These provisions are designed to minimize discontinuities associated with time step changes.
The coefficient matrices in Equation 4 are recomputed, and the matrix coefficient of {“n+1} is iﬁi?
‘decomposed before continuimg the integration with the new initial values.
8.4-12 (12/15/72) o
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9. ORGANIZATION OF DYNAMIC ANALYSIS
9.1 GENERAL PROBLEM FLOW IN DYNAMIC ANALYSIS

Figure 1 is a flow diagram showing the major functional modules employed in the solution of
dynamic problems by the displacement method, except for aercelastic problems which are described
in Figure 1 and 2 of Section 17.6. Three basic types of analysis are performed (Sfgenvalue Extrac-
tion, Frequency Response Analysis, and Transient Response Analysis) according to either of two
methods of problem formulation (Direct or Modal). In all there are nine different paths through
the flow diagram of Figure 1, corresponding to the following seven rigid formats for dynamic
analysis, which supplement the six rigid formats for static analysis described in Section 3.2.

(The numbers are the Rigid Format numbers assigned in the Program. )

3. Normal Modes Analysis

7. Direct Complex Eigenvalue Analysis

8. Direct Frequency and Random Response Analysis

9. Direct Transient Response Analysis
10. Modal Complex Eigenvalue Analysis

’11. Modal Frequency and Random Response Analysis

12. Modal Transient Response Analysis
13. Normal Modes Analysis with Differential Stiffness

15. Normal Modes Analysis using Cyclic Symmetry

In the modal method of dynamic problem formulation, the vibration modes of the structure in
a selected frequency range are used as degrees of freedom, thereby reducing the number of degrees
of freedom while maintaining accuracy in the selected frequency range. In the direct method, the

degrees of freedom are simply the displacements at grid points.

It is important to have both direct and modal methods of dynamic problem formulation in order
to maximize efficiency in different situations. The modaf method will usually be more efficient
in problems where a small fraction of all of the modes are sufficient to produce the desired ac-
curacy and where the bandwidth of the direct stiffness matrix is large. The direct method will
usually be more efficient for problems in which the bandwidth of the direct stiffness matrix is
small, and for problems with dynamic coupling in which a large fraction of the vibration modes
are required to produce the desired accuracy. For problems without dynamic coupling, j.a., for
prablems in which the matrices of the modal formulation are dfagonal, the modal method will fre-

quently be more efficient, even though a Targe fraction of the modes are needed. The choice of
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method is of course, left to the user.

The flow diagram in Figure 1 is simplified to the extent that it shows only the major oper-
ations that are performed. Complete descriptions of the sequences of module calls for all rigid
formats are contained in the NASTRAN User's Manual. The functions indicated in Figure 1 are de-

scribed in succeeding subsections of the Theoretical Manual as follows.

Section 9.2 - Real Eigenvalue Analysis, READ
Complex Eigenvalue Analysis, CEAD

Section 9.3 - Dynamic Pool Distributor, DPD
Direct Dynamic Matrix Assembler, GKAD
Modal Dynamic Matrix Assembler, GKAM
Section 9.4 - Dynamic Data Recovery, DOR
Section 11. - Transient Response Analysis, TRD

Section 12. - Frequency Response Analysis, FRRD
Random Analysis Module, RANDOM

The use of the real eigenvalue analysis module, READ, for buckling problems has been describ-
ed in Section 3.2. Section 9.2 contains information concerning the selection of methods, the
checks that are performed, and other organizational details for both real and compiex eigenvalue
analysis. The mathematics of the eigenvalue extraction methods employed with NASTRAN are develop-

ed in Section 10.

A basic feature of NASTRAN is its generality and flexibility with regard to the specification
of input data for dynamic analysis. The general means provided for specifying damping, control
system characteristics, aerodynamic influence coefficients, etc., are described in Section 9.3.
Further information on special problem formulation techniques for dynamic analysis is given in
Section 14. Hydrodynamic theories are discussed in Section 16. Aerodynamic methods, using special

rigid formats, are discussed in Section 17.

9.1-2 (12/31/77)
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Figure 1, Simplified flow diagram for dynamic analysis by the displacement method.
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9.2 EIGENVALUE ANALYSIS

Real and complex eigenvalue analyses are performed in NASTRAN by separate modules, as indi-
cated in Figure 1 of the preceding section. The real eigenvalue analysis module, READ, is used
to obtain structural vibration modes from the symmetric mass and stiffness matrices, [Maa] and
[Kaa]' generated in the statics part of the program, and to obtain buckling modes from the elas-
tic stiffness and differential stiffness matrices, [Kaa] and [Kaad]‘ A1l other eigenvalue prob-
lems, i.e., those with matrix terms from additional sources, are solved in the complex eigenvalue
analysis module, CEAD. Examples include the vibration modes of damped systems, the stability
analysis (flutter) of structures with aerodynamic coupling and/or control system feedback, and

the buckling of structures with nonsymmetric terms in the differential stiffness matrix.

The eigenvectors and eigenvalues produced by READ may be used to generate modal coordinates
for further dynamic analysis by the modal method. The results of CEAD, on the other hand, are an
end product. The organization of the real and complex eigenvalue modules is discussed beTow in

separate subsections.

9.2.1 Real Eigenvalue Analysis

A flow diagram for the real eigenvalue analysis module, READ, is shown in Figure 1. The
user has a choice of three methods for solving buckling problems and of four methods for solving
vibration mode problems. More than one method is provided in order to optimize efficiency for
different types of problems and also to provide back up fn case one method gives unsatisfactory
resuits in a particular case. The tridiagonal methoed is not provided as an option for buckling
problems because it would require that the differential stiffness matrix be negative definite,
which is seldom the case. The methods of eigenvalue extraction used in NASTRAN are described in
detail in Section 10. The introduction, Section 10.1, includes a comparison of the methods for

different types of problems.

The general form of the eigenvalue problem for vibration modes is

[y = A Mpllug} = 0 (m

The eigenvalues x1 = m12 are the squares of the natural vibration frequencies. The results of
the calculation performed by the module are the eigenvalues, 1,, and corresponding eigenvectors -

{¢ai}. normalized in one of three optional ways. At the user's request the modal mass matrix
9.2-1 (12/31/77)
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(n] = [5,07 O, 00,0 (2)

1s calculated and checked for orthogonality of the modes (see page 9.2-5). The columns of [¢ai]

are the eigenvectors, {¢,,}.

The general form of the eigenvalue problem for buckling is

[K.. + 3 Kaad]{ua} =0 . (3)

aa

The eigenvalues A1 are the factors by which the static Toading condition must be multiplied to
produce buckling, The results of the calculation performed by the module are the'eiéenva1Ues, Aj
and the corresponding eigenvectors {6,4}. Additional data processing is performed by other modu-

les, as indicated in Figure 1 of Section 9.1.

The user has a choice, for either type of problem, of the number of eigenvalues to be ex-
tracted and/or of the range of A within which they are to be extracted. The available options,

which vary slightly for the different methods, are explained in Section»TO.

Rigid body vibration modes are calculated by a separate procedure provided that a set of re-

action {support) points, Ups have been §pecified by the user (see Section 3.5.5). VThis 1s_gone to iﬁi{w
1mbr6ve éf?f;?éﬁcyiand, in somewcaseé, reif&bfiffy: fﬁe suﬁﬁértﬁrére ggi app&ié& iov£he structure

during calculation of the remaining eigenvalues. If the user does not specify the reaction points

(or if he specifies an insufficient number of them) the (remaining) rigid body modes will be cal-

culated by the method selected for the finite frequency modes.

It will be recalled, Section 3.5.5, that the rigid body mass matrix referred to the reaction
points, D"r]' and the rigid body transformation matrix, [D], in the equation relating the remain-

ing degrees of freedom, Ups to Ups
(up} = [olu} . (4)
Al

are computed in the static portion of the program. The rigid body modes are a set of vectors

¢ D¢
(6.} = ;-&9{ = {.-IQ} . (5)
a0 bro ®ro
such that the modal mass matrix,
9.2-2 -
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T
n] = [o,5] [mJ0s. 0 . (6)

is diagonal and normalized. The Schmidt orthogonalization procedure (Reference 1) is used to
obtain the vectors (¢ro} that are the columns of the modal matrix [¢r°]. The specific procedure

used in NASTRAN is as follows:

1. Define a set of vector delta functions

o
o - O

{I]} = M ) {Iz} = » etc., (7)

a set of unnormalized eigenvectors {Vio}' {i=1,2,...r,and a set of normalized

eigenvectors {¢1°}, i=1,2,...r
2. The relationship between {oio} and (Vio} is
(V.o}

{4;,) = : : (8)
10 ({vio}T [mr]{vio))T/z

i.e., {¢1°} is normalized to unit generalized mass.

3. Set the first unnormalized eigenvector equal to the first delta function.

g = {14 . (9)

4. The second unnormalized eigenvector is obtained from

where ap * (¢10}T [mr]{Iz} . (1)

9.2-3 (12/31/77)
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5. Generalize, to obtain the remaining eigenvectors
i-1 )
{vio} = {Ii} - jzlaji(¢j°} , 12,3, ...01r (12}
where
a; = oo} [m J01) (13)
i Jjo r<°i '
Turning to another peripheral matter, the form of the tridiagonal method used in NASTRAN re-
quires that the eigenvalue problem be stated in the form
[0-AI]w = 0 , (14)
where [I] is the identity matrix and [J] is symmetrical. The operations indicated in blocks 4 and 5
of Figure 1 put the problem in this form. The first operation is to perform a Cholesky decompo-
sition of the matrix
= T
M, = [eael’ (15)
- L~ 4
where [C] is a Tower triangular matrix. This decomposition is performed by subroutine SDCOMP
(see Section 3.5.14 of the Programmer's Manual).
The symmetrical [J] matrix {s then obtained by the following transformation of the eigenvalue
problem. Premultiply Equation 1 by EC]'] and substitute for [Maa] in Equation 15.
e’ ok e}y - aredreael’ wy = 0 . (16)
aa’""a a
Let
wl o= e, (17)
where {w} is called the transformed vector. Equation 16 then reduces to Equation 14 with
L1 = eIt aertT (18)
After the transformed eigenvectors of Equation 14, {°w}’ have been calculated by the tri- -
diagonal method they are converted to physical form by
©9.2-4 (3/1/76) A4
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(8} = 1T (8} (19)

In order that the Cholesky decomposition, Equation 15, be possible, it is required that [Maa]
be a positive definite matrix. For many probiems [Maa] would naturally be singular, as for ex-
ample, when rotary inertias at rotational coordinates are zero. In these cases the user should
request that the Guyan reduction, Section 3.5.4, be used to eliminate the massless degree of

freedom, if the tridiagonal method is used.

The inversion of the [C] matrix is not difficult to perform since [C] {s triangular. In addi-
tion [C]'1 will be banded if there is no mass coupling between grid points and if the Guyan reduc-

tion has not been used extensively.

Once the finite frequency eigenvectors, {¢af}. have been calculated by the selected method,
they are merged with the zero frequency efgenvectors, {%0}, to form the complete modal matrix of

eigenvectors
o 3] = [8301 0561 - (20)

The last operations performed by the real eigenvalue analysis module are to normalize the
efgenvectors and to perform the mass orthogonality test, if it has been requested by the user.

The test requires that
T .
m‘ij = {¢a1} [Maa]{d’aj}(s y T3 (21)
where ¢ is supplied by the user, and {¢ai} has been normalized to unit generalized mass, i.e.,
o, M Te,} = 1 (22)
ai aa“"Tai .

If the test fails, the program provides the number of mode pairs failing the test and the

value of the largest off-diagonal term.

It is recognized that the eigenvectors of extremely close or identical eigenvalues may be
substantially correct even though they do not pass the orthogonality test. Eigenvectors obtained
with the inverse power method are orthogonalized with respect to all previously extracted eigen-
values. If the determinant method has been salected a preliminary test on the closeness of

efgenvalues
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Ai - A

Y <

.01 s (23)

Is made. If a group of adjacent eigenvalues satisfy the closeness condition, the orthogonality
test, Equation 21, is applied to the group. The eigenvectors of the group that fail the orthegon-
ality test are then orthogonalized by the Schmidt procedure

i-1 _
} o= {o,41 - jglmijfaaj} , (24)

{¢ai

where {5;7} is a "purified" eigenvector, and the sum extends over preceding members of the group.
Once the purification of close eigenvectors is completed, the complete mass orthogonality test is

performed.

The user may request any one of the following forms of normalization for the eigenvectors

1. Normalize to unit generalized mass .
2. Normalize so that the largest element of the vector is unity.

3. Normalize so that a particular element of the vector is unity.

The generalized mass, {¢31}T [Maa]{¢ai}’ s included in the output for each eigenvalye. \—4

It may be noted here that, in the case of non-multiple eigenvalues, each of the four extrac-
tion methods will, for a given type of normalization, give essentially the same eigenvectors. How-
ever, in the case of multiple eigenvalues, the four methods will, in general, give different eigen-
vectors even though they may employ the same type of normalization. This discrepancy may seem dis-
turbing, but it is only apparent and not real. This is due to the fact that the arbitrary
constants that are inherently assumed in the computation of eigenvectors are, in general, different
for the different methods. It can be easily shown that the apparently different eigenvectors of
multiple eigenvalues obtained by different extraction methods have certain definite relationships

among them. This is fully explained in Reference 2.

9.2.2 The APPEND Feature for Real Eigenvalue Analysis

In real eigenvalue analysis, it is frequently necessary to add new eigenvalues and eigenvec-
tors to those already computed in a previous run. A capability called the APPEND feature makes it N

.possible to do this without re-executing the entire problem. It is available only when using the
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Inverse Power, Determinant and Tridiagonal Reduction (FEER) methods of eigenvalue extraction in
Rigid Formats 3, 10, 11, 12, 13, and 15 (Displacement Approach) and in Rigid Formats 10 and 11

(Aeroelastic Approach).

In order to use the APPEND feature, the user first requests a checkpoint of an eigenvalue
problem. This run can terminate for any reason so long as the READ module finds at least one
efgenvalue and eigenvector and the LAMA (eigenvalue) and PHIA (eigenvector) files are successfully
checkpointed. The READ module also sets the parameter NEIGV to be equal to the number of eigen-

values and eigenvectors found in this checkpoint run.

The usar then restarts and activates the APPEND feature by changing either the METHAD card in
the Case Control Deck and/or the EIGR card in the Bulk Data Deck so as to force the re-execution
of the READ module.* The method of eigenvalue extraction used in the restart need not be the
same as that used in the checkpoint run, but the structural model and the constraint data must
be the same. Also, the user must ensure that the range of eigenvalues specified on the EIGR
Bulk Data card for the restart does not include the eigenvalues that have previously been found
and checkpointed. It is Tleft to the user to satisfy this requirement. The program does not

check for this condition.

The APPEND feature causes the READ module to retrieve the specified number {the first NEIGV)
of eigenvalues and eigenvectors from the previously checkpointed LAMA and PHIA files (this retriev-
al is done in subroutine READ7 within the READ module; the number of eigenvalues and efgenvectors
retrieved is indicated by a user information message) and to subsequently combine them with the
newly computed results. (See the flow diagram in Figure 1.) The eigenvalues and eigenvectors
output by the restart include those retrieved from the previously checkpointed run. Also, the
resulting eigenvectors are normalized according to the method of normalization specified in the

restart.

9.2.3 Complex Eigenvalue Analysis

The form of the complex eigenvalue problem using a direct formulation is

[Myq P° + By P + Kygllugh = 0. (25)

*Additionally, {f the user wishes to retrieve only the first n (n < NEIGV) (rather than all the
NEIGV) eigenvalues and efgenvectors found on a checkpoint run, the parameter NEIGV should be reset
to n in the restart by means of a PARAM statement just before the READ module in the OMAP sequence.
This is done by means of a OMAP alter in the Executive Control Deck of the restart.
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ORGANIZATION OF DYNAMIC ANALYSIS

The vector {ud} includes the set, Uye of degrees'of'free&om at structural qrid points and the
set of extra points, Ug» that are described in Section 9.3. The elements of the mass matrix, [Mdd1,
the damping matrix, [de], and the stiffness matrix, [Kdd1. may be real or complex and the matrices

may be symmetric or nonsymmetric, singular, or nonsingular. The eigenvalue, pj. corresponds to a

homogeneous solution of Equation 25,

p.t
lugh = (o451 ed (26)

or

a.t
lugh = (o451 e sinust) (27)

where “j is the real part of pj and w; is the imaginary part.

The form of the complex eigenvalue problem using a modal formulation is
2
My P° + Bpp P+ Khh]{uh} = 0 . {28)

The components of {uh} are the set of modal coordinates, 51, and the set of extra points, Ugs
{see Section 9.3). As in the case of the direct formulation, there are no restrictions on the

matrices in Equation 28.

Two optional methods of eigenvalue extraction, the inverse power method with shifts, and the

determinant method, are provided. They are described in Section 10.

The eigenvectors are normalized to a maximum element value of unity, or to a value of unity
for a specified element, according to user's option. Generalized modal masses are not calculated

and orthogonality tests, if such could be defined, are not performed.
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Figure 1. Flow diagram for the real efgenvalue analysis module, READ.
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9.3 ASSEMBLY OF DYNAMIC MATRICES

The matrix properties of the dynamic system are assembled in three different modules, as

shown in Figure 1 of Section 9.1. The modules are

1. DPD, The Dynamic Pool Distributor
2. GKAD, The Direct Dynamic Matrix Assembler

3. GKAM, The Modal Dynamic Matrix Assembler

The Dynamic Pool Distributor performs a number of preliminary bookkeeping chores. It gener-
ates flags defining members of various displacement sets; it generates tables relating internal
and external grid point numbers, including Extra Points introduced explicitly for dynamic analysis;
it organizes Transfer Functfon data and Eigenvalue Extraction data; it prepares tables for Dynamic

Loads and Nonlinear Functions; and it compiles Tists of response quantities for Transient Analysis.

The function of the Direct Dynamic Matrix Assembler is to assemble the mass, damping, and
stiffness matrices from various sources in terms of displacements at grid ooints. The function of
the Modal Dynamic Matrix Assembler 1is to apply a medal transformation to the mass, damping, and

stiffnass matrices.

Other modules performing functions in connection with dynamic system assembly are the Frequen-
cy Response Analysis Module, which assembles loads, and the Transient Response Analysis Module,
which assembles loads and nonlinear terms in the equations of motion. Discussion of these func-
tions is included with the discussion of the other functions of the modules (see Sections 11 and

12).

9.3.1 Notation System

Before proceeding to a detailed description of the process of matrix assembly, it is well to
review the notation system used in dynamic analysis, which was briefly described in Section 3.3.
The main differences from static analysis are the addition of modal coordinates, €4 and the addi-
tion of extra points, Ug The nesting of the displacements sets used in dynamic analysis is de-

picted by the following diagram.
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The definitions of the mutually exclusive sets are
U, points to which determinate reactions are applied in static analysis,
u, the remaining structural points (points left over) which are evaluated in static E
analysis by direct solution of the stiffness matrix," F
Ug  extra degrees of freedom introduced in dynamic analysis to describe control sys- = 4
tems, etc., R : : - -
50 rigid body (zero frequency) modal coordinates,
. ’Ef ~ finite frequency modal coordinates. -
The combined displacement sets are
E
up T ULt the set used in real eigenvalue analysis, =
Ei = 50 + Ef » the set of all modal coordinates,
Ug ® u, *u, , the set used in dynamic analysis by the direct methad,
u, = Ei +ug, the set used in dynamic analysis by the modal method. N
Load vectors and two-dimensional arrays employ the subscripts of the displacement sets with =
which they are associated. Occasionally additional subscripts are used to distinguish between two
members of the same set. Superscripts are used to distinguish different kinds of entities. See %:
Section 3.3 for further details. - -
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ASSEMBLY OF DYNAMIC MATRICES

9.3.2 Extra Points and Transfer Functions

In NASTRAN dynamic analysis is performed via a basic quadratic format,
(M + Bp + KI{u} = (P} . (1)

Situations occur, rather frequently, where some of the properties of a dynamic system cannot
be expressed directly as constant coefficients in a mass, damping, or stiffness matrix. If the
problem is formulated in the frequency domain, as are many problems in aerpelasticity and hydro-
elasticity, terms may occur that have other than constant, linear or quadratic dependence on p.
These terms may, however, be expressed as frequency-dependent coefficients in the mass, damping,
or stiffness matrices. This creates a certain awkwardness in eigenvalue extraction,