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INTRODUCTION

The documentation for the NASTRAN computer program consists of four manuals: the Theoretical

Manual, the User's Manual, the Programmer's Manual and the Demonstration Problem Manual. Since an

effort has been made to avoid duplication of material, a brief statement of the content of the

other three manuals will serve as a useful point of departure in introducing the Theoretical Manual.

The intent of the User's Manual is that it provide all of the information needed to solve

problems with NASTRAN, Users should find it to be both instructional and encyclopedic. It

includes instruction in structural modeling techniques, instruction in input preparation and infor-

mation to assist the interpretation of output. It contains descriptions of all input data cards,

restart procedures and diagnostic messages. It is hoped that it can serve as a self-help instruc-

tion book.

The intent of the Programmer's Manual is that it provide a complete description Of the program

code, including the mathematical equations that are implemented in the Functional r_odules. It des-

cribes the Executive System and the coding practices that have been employed. _' It contains the in-

formation that is required for maintenance and modification of the program.

The intent of the Demonstration Problem Manual is to illustrate the formulation of the types

of problems that can be solved with NASTRAN and to show that the results obtained are valid.

Generally, this manual discusses the nature of the problem, the underlying theory, the specific

geometric and physical input quantities, and the comparison of theoretical and _ASTRAN results.

At least one problem for each of the riqid formats and nearly all of the eTements is provided.

One of the roles that has been assigned to the Theoretical Manual is that of a con_nentary on

the program, It is, first of all, intended to be an introduction to NASTRAN for all interested

persons, including those who will go on to use the program and those Whose interests are less

direct. For this purpose, the structure and the problem solving capabilities of the program are

described in a narrative style. The manual's most important function, however, is to present

developments of the analytical and numerical procedures that underlie the program.

The selection of material for the Theoretical Manual has not been an easy task because not

everyone has the same concept of what the word "theory" means when it is applied to a computer

program. For some, theory is restricted to include only the formulation of the equations that

will be solved; for others, theory also includes the development of the procedures, or algorithms,

that will be used in the solution; still others regard the organization of the program and the

flow of data through the computer as important theoretical topics.
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A broad vlew concernlng the selectlon of material has been adopted, and the reader will find

that all of the above aspects of the program are treated. Some structural analysts may be sur-

prlsed at the emphasis on program organization and data processing, particularly in the early

sections of the manual. These subjects are emphasized because they are vitally In_)ortantto the

success of a large computer program and should not be taken for granted.

In regard to the more mathematical subjects, such as the derivation of the equations for

structural elements and the development of elgenvalue extraction procedures, the reader wlll flnd

that the level of sophistication Is geared to the difficulty of the subject matter. Thus, it is

assumed that a reader with an interest in an advanced topic {such as shell elements) will have the

necessary theoretical background. In most cases the derivations are intended to be con_lete and

rigorous. For a few of the structural elements, the reader Is referred to the Programmer'sManual

for the detailed expression of matrix coefficients that are regarded as too combersome to have

general interest.

The Theoretlcal Manual is divided into seventeen major sections and numerous subsections.

Section l deals wlth some of the organlzatlonal aspects of NASTPJkNand Section 2 with utility

matrix routines. Sections 3, 4, S and 7 deal with static structural analysls. It will be noted

that no material has been included in Section 6, which is reserved for topics to be defined In

the future. Section 8 treats heat transfer. Sections g through 12 deal with dynamic structural

analysis. Sections 13 through IS deal with miscellaneous topics, including computer graphics,

special structural modeling techniques and error analysis. Section 16 deals with the interaction

between structures and fluids. Section 17 deals with aeroelastlcanalysis.

The style of the Theoretical Manual, llke that of the other three manuals, has been designed

to accommodate future additions and modifications. Each _or subsection stands alone with its

own page nuaiDers,equation nLenbersand figure n_,nbers,so that changes can be made without signif-

icant dlsruptlon.
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I. PROGRAM ORGANIZATION

I.I OVERVIEW OF THE PROGRAM

NASTRAN is a finite element computer program for structural analysis that is intended for

general use. As such it must answer to a wide spectrum of requirements. The program must be

efficient, versatile and convenient to use. It must be standardized to permit interchange of

input and output between different users. It must be structured to permit future modification and

extension to new problem areas and to new computer configurations without major redevelopment.

The intended range of applications of the program extends to almost every kind of structure

and to almost every type of construction. Structural elements are provided for the specific

representation of the more common types of construction Including rods, beams, shear panels,

plates, and shells of revolution. More general types of construction are treated by combinations

of these elements and by the use of "general" elements. Control systems, aerodynamic transfer

functions, and other nonstructural features can be incorporated into the structural problem.

The range of analysis types in the program includes: static response to concentrated and

distributed loads, to thermal expansion and to enforced deformation; dynamic response to transient

loads, to steady-state sinusoidal loads and to random excitation; determination of real and com-

plex eigenvalues for use in vibration analysis, dynamic stability analysis, and elastic stability

analysis. The program includes a limited capability for the solution of nonlinear problems,

including piecewise linear analysis of nonlinear static response and transient analysis of non-

linear dynamic response.

NASTRAN has been specifically designed to treat large problems with many degrees of freedom.

The only limitations on problem size are those imposed by practical considerations of running

time and by the ultimate capacity of auxiliary storage devices. The program iS decidedly not a

core program. Computational procedures have been selected to provide the maximum obtainable

efficiency for large problems.

Research was conducted during the design of the program in order to ensure that the best

available methods were used. The areas of computer program design that are most sensitive to

state-of-the-art considerations are program organization and numerical analysis. The organiza-

tional demands on the program design are severe in view of the multiplicity of problem types and

user conveniences, the multiplicity of operating computer configurations, the requirement for

large problem capability, the requirement for future modification, and the requirement for

PAGE/___IN_NIIOt_ALLy 5L_.i_X
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PROGRAMORGANIZATION

responsiveness to improvements in programming systems and computer hardware. The organizational

problems have been solved by applying techniques that are standard in the design of computer

operating systems but have not, as yet, been extensively used in the design of scientific applica-

tions programs. The matn instrument of program organization in the program ts an executive system

that schedules the operating sequence of functional modules and that plans and allocates the

storage of flies. An important aspect of the executive routine concept used in NASTRANis that

it greatly reduces the cost of program coding and checkout by eliminating most module interface

problems and by reducing the remainder to a form that permits systematic treatment.

Most difficulties In numerical analysls arise in connection with three basic implicit opera-

tions: matrix decomposition (or inversion), etgenvalue extraction, and integration of differential

equations. The major difficulties that occur in the application of these operations to large

problems are excessive computing time, error accumulation and instability. Many methods that work

well with small or moderate sized problems are not acceptable for large problems.

The method employed for matrix decomposition is especially important due to its extensive

use as a base for the other two implicit operations. The method that is employed in the program

takes maximum advantage of matrix sparstty and bandedness. The latter aspect is particularly

important due to the enormous gain in efficiency that accrues when banding techniques are properly

employed by the user tn setting up problems for the displacement method.

In general the solution time for a large structural analysls of any type can be greatly

reduced by taking full advantage of the sparstty and bandwidth of the matrices that describe the

structural problem. Other means, In addition to the matrix decomposition routine mentioned

above, have been used to improve efficiency for large problems. These include storing sparse

matrices tn packed form, the avoidance of operations that reduce sparstty or destroy bandwidth,

well designed Input/Output strategies, the use of advanced techniques for etgenvalue extraction,

and specially tailored numerical integration algort_.

The needs of the structural analyst have been considered lnaITaspect_ of the design of the

program. The first thing to be remembered is that, in view of the wide range of posslble app11-

cations of the program, we do not know exactly what these Heeds may be. For thls reason a hlgh

degree of flexibility and generallty has been incorporated Into certaln areas of the program.

For example, in addition to (he usual llst of structural eloments that refer to specific types

of construction, the user is provlded with more general elements that may be used to construct

1.1-2
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any type of special element, to represent part of a structure by deflection influence coefficients,

or to represent part of a structure by its vibration modes. For the more conventional types of

structural analysis, the user is presented with a large number of convenience features, including

plotting routines, which are definite necessities for large problems.

A major difflculty that the user faces in the solution of large problems is the avoidance of

errors in the preparation of input data. Card formats and card ordering are made as simple and

flexible as possible in NASTRAN in order to avoid errors caused by trivial violations of format

rules. A number of aids for the detection of legal but incorrect data are also provided.

The problems that can be solved by NASTRAN include the following general classes:

I. Static Structural Problems

2. Elastic Stability Problems

3. Dynamic'Structural Problems

4. General Matrix Problems

5. Heat Transfer Problems

6. Aeroelasticity Problems

Each general problem class is further subdivided into case types which differ with regard to

the type of information desired, the environmental factors considered, or the method of analysis.

The mathematical computations required to solve problems are performed by subprogram units called

functional modules. Each case type requires a distinct sequence of functional module calls that

are scheduled by the Executive System.

For structural problem types the sequence of module calls and hence the general method of

solution is established internally for each case type according to a rigid format stored In the

Executive System. Execution of a structural problem proceeds in one run to final solutlon, or,

at the option of the user, to a desired intermediate point.

A more flexible procedure is provided for the solution of general matrix problems. All of

the matrix operations (such as addition, multiplication, triangular decomposition, and eigenvalue

extraction) used in the program can be directly addressed by the user according to a system of

macro instructions called DMAP(for Direct Matrix Abstraction Program). The user constructs a

chain of DMAP InsJ_ructlons in order to effect the solution of general matrix problems.
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PRnGRAM ORGANIZATION

1.2 THE NASTRAN EXECUTIVE SYSTEM

1.2.1 Introduction

The overall effectiveness of a general purpose program depends in large measure on how well

the available programming techniques have been employed in the design of its organizational and

control feature_. It may, therefore, be useful to precede the usual treatment of the engineering

and mathematical aspects of the program with a discussion of a relatively unfamiliar feature of

general purpose programs, namely the Executive System.

NASTRAN has been designed according to two classes of criteria. The first class relates to

functional requirements for the solution of an extremely wide range of large and complex problems

in structural analysis with high accuracy and computational efficiency, which are met by develop-

ing advanced mathematical models of the physical phenomena and incorporating their computation

algorithms into the program. The second class of criteria relates to the operational and organiza-

tional aspects of the program. These aspects are somewhat divorced from structural analysis itsel?;

yet they are of equal importance in determining the usefulness and quality of the pr:gram.

among these criteria are:

I. Simplicity of problem Input deck preparation.

2. Minimization of chances for human error in problem preparation.

Chief

3. Minimization of need for manual intervention during program execution.

4. Capability for step by step problem solution, without penalty of repeated problem set up.

5. Capability for problem restart ?ollowing unplanned interruptions or problem preparation

error.

6. Minimization of system overhead, in the three vital areas:

a. Diversion of core storage from functional use in problem solution.

b. Diversion of auxiliary storage units from functional _ system usage.

c. System housekeeping time for performing executive functions that do not directly

further problem solution.

7. Ease of program modification and extension to new functional capability.

??CCZDI?CG FA_S BLAATC _CT ._-_F_
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8. Ease of program extension to new computer configurations and operating systems, and

general|ty in abtl]ty to operate efficiently under a wide set of configuration

capabtl Itles.

The second class of eight objectives is achieved in NASTRANthrough modular separation of

functional capabilities, organized' under an efficient, problem-Independent executive system. This

approach_]Sabsoiutely eSSentlal for any COrtex mui_ioperatlon,_tifiie appllcatlon program

such as NASTRAN. To see this, one must examine the implicationsof modularity in program

organlzation.

Any application computer program provides a Selection_of¢_u_tational sequences that are

controlled by the user through externally provided optlons and parameter values. Since no user

will wlsh to observe the result of each calculation, these options also provide for the selection

of the data to be output, inaddltion to externally set optlons, Internal declslon switches whose

setttngs depend upon tests performed during the calculations will control the computation

sequences. There is, therefore, a naturai separation:of computations fnto functional blocks.

The principal blocks are called functional moduies; modules themselves, of course, may and usually

must be further organized on a submodular basis.

Desp]te-t-h-t-s sepa_a-tTon-_h6_-e_, Tt--fS cl_aF thal moduTes Cannot be _-OmpleteTy independent;

since they are all directed toward solution of the same general problem. In particular, they must

intercommunicate data between themselves. The principal problem in organizing any application

program, large or small, is designing the data interfaces between modules.

For small programs, the standard techniques are to communicate data via subroutine calling

sequences and commondata regions in core storage. For programs that handle larger amounts of

data, auxiliaw storage is used; however, strict specifications of the devices used and of the

data record formats are usually imposed. The penalty paid Is that of "side effects". A change

in a minor subroutine initiates a modification of the data interfaces that propagates through the

entire program. When the program is small, these effects may not be serious. FoP a complex pro-

gram like NASTRAN,however, they may be disastrous. -

This problm has been solved in NASTRANby a separation of system functions, performed by an

executive routine, from problem solution functions, accomplished by modules separated strictly

along functional lines. Each module is independent from all other modules in the sense that

modification of a module, or addition of a new module, will not, tn general, require modlftcatlon

1.2-2
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of other modules.

restrictions are:

THE NASTRAN EXECUTIVE SYSTEM

Even so, programming constraints on module development are minor. The essential

I. Modules may interface with other modules only through auxiliary storage files that con-

tain data blocks.

2. Since the availability of the auxiliary files required for the execution of a module

depends on the execution of other modules, no module can specify or allocate files for

its input or output data. All auxiliary storage allocation is reserved as an executive

function.

3. Modules operate as independent subprograms, and may not call, or be called by, other

modules. They may be entered only from the executive routine.

4. Modules may interface with the executive routine through a parameter table that is main-

tained by the executive routine. User specified options and parameters are communicated

to modules in this way. The major llne of communication is one-way, from user to execu-

tive routine to module. However, in addition, an appreciable two-way communication from

module back to executive routine (and, therefore, to other modules) is permitted via the

parameter table.

No other constraints, except those imposed by the resident compilers and operating systems,

are required for functional modules.

The essential functions of the executive system are:

I. To establish and control the sequence of module executions according to options specified

by the user.

2. To establish and communicate values of parameters for each module.

3. To allocate files for all data blocks generated during program execution and perform

input/output to auxiliary files for each module.

4. To maintain a full restart capability for restoring a program execution after either a

scheduled or unscheduled interruption.

Each of these functions is essentially independent of any particular feature of structural

analysts and applies to the operational control of any complex multtmodule, multtfile application

program. The executive system is open-ended in the sense that it can accommodate an essentially

v
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un|tmited number of functional modules, ffles, and parameters. Modification of the executive

system necessaw for modification or extension of functional modules fs restricted to changes tn

entries _n control tables stored within the executive routine.

A description of the way _n which these objectives and functfonal capabflftles are accom-

plfshed by the NASTRANExecutive System ts tncluded In the following sections.

1.2.2 Executive Operations Durfng the Preface

Program execution Is divided into a preface and the program body proper. During the preface

the NASTRANExecutive System analyzes and processes the data whtch define user opttons regarding

the structura] problem to be solved and o_anlzes the overa]] prob|em so]utton sequence. The

sequence of operations during the preface ts presented tn Ftgupe ] and ts described in detafl fn

succeeding subsections. During the program body proper, the NASTRANExecutive System contr_]s the

step-by-step problem solutton sequence.

1.2.2.1 Generation of the _ntttal F|le Allocation Tables

Two file allocation tables are maintained by the NASTRANExecutive System. One table defines

the ftles to whtch data blocks generated durtng solutton of the problem ,tl1 be allocated. The

second table tncludes ftles to whtch permanent executive data blocks, such as the New Problem

Tape, the Old Prob]em Tape, the Plot Tape, and _the User's Master File are assigned.

The New Problem Tape w_11 contain those data blocks generated during the solutfon that are

necessary for _estart_ng tJle problem at any potnt. The Old Problem Tape contains the data blocks

saved from somep.Pevfous execution that may serve to bypass steps _n the solutton of the new

problem. The Plot Tape ]ncludes output data and plotttng fnstructfons tn a for: that wtll be

accepted by an automatic plotter selected by the user. The User's Haster Ffle Is a pemanent

collection of useful _nformatton, such as matertal properties, that may be used to generate fnput

data.

The generation of the ft]e al]ocatfon tables fs an operation that depends on the particular

computer :ode] betng used since dtPect Interface wtth the operatfng system of the computer Bust be

made. The routtne whtch accomp]tshes thfs functton Interrogates ft]e tab]as that are located tn

the nucleus of the computer's own resident operating system. Ffles _htch are avat]ab]e for use

by the NASTRAHprogram are reserved and the untt numbers ape stored tn the NASTRANftle allocation

1.2-4
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tables. An indication of which units are phystcal tapes is noted. If the number of ftles avail-

able is Insufficient, _n error message is generated and the run is aborted.

1.2.2.2 Analysis of the Executive Control Deck

The first purpose of executive control is to provide a level of regulation for the many

options within _iASTRAN. At this level the executive distinguishes between the broad approaches to

problem solution, e.g., between a matrix abstraction approach by the analyst or a rigid format

approach according to problem class. Also at this level, the executive distinguishes between

several operational modes, e.g., a first attempt, a continuation, or a modification. Certain

other functions of a general nature are convenient to include with the executive control such as

problem identification,selection of a level of diagnostics, and the estimation of solution time.

The executive control deck includes cards which describe the nature and type of the solution

to be performed. These include an identification of the problem, an estimated time for solution

of the problem, a selection of an approach to the solution of the problem, a restart deck from a

previous run if the solution is to be restarted, an indication of any special diagnostic printout

to be made, and a specification of whether execution of the problem is to be completed in a single

run, or whether execution will be stopped (check-pointed)at some intermediate step.

Each of the cards comprising the executive control deck is read and analyzed. Depending on

the card, information is either stored in various executive tables maintained in core storage or

written in a Control Table on the New Problem Tape for further processing during a later phase of

the preface.

1.2.2.3 Processing of the Case Control Deck

When the rigid format solutton route is selected, further details of control are provided by

the 'Case Control' portion of the executive, In effect, the analyst can manipulate his problem

by means of entries he inserts in the Case Control. He can make choices amongst the sets of data

representing different physical situationswhich are allowed to be assembled in the Bulk Oata

portion of the problem input. Here also the analyst can regulate his output. Fundamental to the

method of control in this section is the notion of sets. Boundary conditions, loading cases, and

output selections are controlled by set selection.

The case control deck includes cards that indicate the following options: selection of

1.2-5 (12-1-69)
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specific sets of data from the bulk data deck (i.e., from the data deck that describes the details

of a problem), selection of printed or punched output, definition of subcases, and the definition

of plots to be made.

The case control deck is read and processed. Information defining data set selection, output

format selection and subcase deflnttton Is written in the Case Control data block. Information

defining plot requests is written tn the Plot Control data block.

If the problem Is a restart, a comparison with the Case Control data block from the previous

run (stored on the Old Problem Tape) is made. Differences are noted in an executive restart

table.

1.2.2.4 Sorting of the Bulk Data

In NASTRANthe input to the mathematical operations performed in functional modules is pro-

vided in the fom of previously organized data blocks. The data blocks derive from two sources:

those that derive from the bulk input data and those that are generated as output from previous

functional modules. Those that derive fmm the bulk data are organized into data blocks by the

IFP routine, but prior to the execution of IFP, XS_RT sorts the bulk data. Operation of the XSgRT

routine is influenced by the type of run. If the run is a cold start (that is, an initial sub-

mtttal for a given job) the bulk data is read from the system input unit or the User's Master File,

ts sorted, and is written on magnetic ftles tn preparation for problem execution. If the analyst

wants to provide for a future restart, the SORT routine prepares a file on the New Preblem Tape

which contains the sorted bulk data. If the run is a restart, t.he bulk data is copted from the

Old Problem Tape with the addition of any changes from _ system input unit.

An echo of the unsorted bulk data Is given If requested. Similarly, the sorted bulk data Is

echoed on request.

Slnce the collating sequence of alphanumeric characters varies from computer to computer, the

sort routine converts all characters to an internal code prior to sorting. Following the sort,

the characters are reconvertH. In this way, the collating sequence is made computer independent.

The algorithm usedby the sort routine Is biased toward the case where the data is tn sort or

nearly in sort. Consequently, bulk data decks which are nearly in sort wtll be processed effi-

ciently by the routine.
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The sorted bulk data is read from the New Problem Tape by the Input File Processor. Each of

the cards is checked for correctness of format. If any data errors are detected, a message is

written and a switch is set to terminate the run at the conclusion of the preface.

Processing of the bulk data cards depends on the type of information on the card. Each set

of data cards of the same type is written as one logical record in the data block to which the

card has been assigned.

1.2.2.5 General Problem Initialization

The general problem initialization is the heart of the preface. Its principal function Is to

generate the Operation Sequence Control Array (IBSEAR)which defines the sequence of operations for

an entire problem solution. The _SCAR consists of a sequence of entries, with each entry contain-

ing all of the information required to execute one step of the problem solutlon. The _SCAR is

generated from information supplied by the user in the executive control deck.

If the problem is a restart, the restart dictionary (contained in the Control Table) and the

executive restart table are analyzed to determine which data blocks are needed to restart the

solutlon and which operations need to be executed to complete the solution,

To aid in efflcient assignment of data blocks to files, two ordinals are computed and includ-

ed with each data block in each entry of the _SC_R. These ordinals are the _SCAR sequence number

indicating when the data block is next used and the _SCAR sequence number indicating when the data

block will be used for the last time.

When generation of the _SCAR is complete, it is written on the P_L (an executive data

block). If the problem is a restart, data blocks needed for the current solution are copied from

the Old Problem Tape to the P_L, augmented by entries to provide for new current requirements.

].2.3 Executive Operations Durinq Problem Solution

1.2.3.] Sequence Monitor

When the preface has been completed, solution of the problem is initiated. The solution is

controlled by the sequence monitor.

The sequence monttor reads an entry from the _SCARwhich defines one step in the problem

solution in terms of the operation to be performed, data blocks required for input, data blocks to

1.2-7
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be output, scratch (i.e., temporary) files required, and parameters. A status table ts generated

which relates the names of data blocks required for operation to the position in the ftle alloca-

tlon table where information about the data block is contained. When the status table is complete

and the parameters required fop the operation have been retrieved from the parameter storage

table, the appropriate functional module is called to execute the operation.

1.2.3.2 Segment Ftle Allocation

V

The segment file allocator is the administrative manager of data blocks for NASTRAN. All

large modern computers have sufficient auxiliary storage to accommodate the needs of NASTRAN. The

number of separate files into which the storage can be divided is, however, severely limited on

most computers. In general, the nu_eP of data blocks required for solution of a problem far ex-

ceeds the number of files available, so that the assignment of data blocks to files is a crlttcal

operation for efficient execution of NASTPJ_H.
/

The segment ftle allocator is called whenever a data block is required for execution of an

operation but is not currently assigned to a file. When the segment flle allocator is called, it

attempts to allocate files for as much of the problem solution as possible. This depends on the

type of probl em, the number )f ft)ps avat 1able, and the range of use of t)e data blocks, .....

The segment file allocator reads entries from the ¢$CAR from the point of current operation

to the end of the problem solution. A table fs asse_led in which information about data blocks,

including their next use and their last use, is stored. Data blocks which are currently assigned

to files but are no longer required fop problem solution are deleted. In certain cases, when the

range of use of a data block is large, it may not be possible to allocate a file to the data block

throughout its entire range of use. In this case, pooling of the data block tnto a single file

with other data blocks is required so that the file to which the data block was assigned may be

freed for another allocation. In general, those data blocks whose next use is furthest from the

current point are pooled.

When the segment file allocator has completed its task, a new file allocation table has been

generated. This table is used until the solution again reaches a point where a data block is

required to execute an operation but is not assigned to a file.

7 -¸_
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1.2.3.3 Input/Output Operations

All Input/output operations in NASTRAN (except reading data from the system fnput file or

writing data on the system output file) are controlled by a collection of executive routines

called GIN_ (General Input Output) which act as a buffer between the NASTRAN functional modules

and the operating system of the computer. This design feature eliminates computer dependent code

from the functional module programs which are, consequently, written exclusively in FORTRAN. The

use of computer dependent code for the selection of the operating system routines to accomplish

the actual input/output functions is isolated to a single routine within GIN_.

1.2.3.4 Other Executive Operations

Additional operations in support of a problem solution which are performed by the MASTRAN

Executive System include checkpoint, purge, equivalence and save.

The checkpoint routine copies data blocks required for problem restart onto the New Problem

Tape and makes appropriate entries in the restart dictionary.

The purge and equivalence routines change the status of data block entries in the file aIlo-

cation table. They are called whenever the nature of a given problem requires less than the full

generality provided within NASTRAN, thereby permitting some computational steps to be bypassed.

The save routine stores the values of parameters in the parameter storage table where they

are retrieved for subsequent use by the sequence monitor.
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Generate Inltial File Tables

Read and Analyze
Executive Control Deck

Process Case Control Deck

Sort Bulk Data

Process Bulk Data

Perfom General Problem
Intttaitzatton

_i

Figure 1. Flow of operations during the preface.
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1.3 USER CONTROL OF PROBLEM EXECUTION

All general purpose programs have formal procedures by which the user controls the calcula-
L

tions that are performed. In NASTRAN several modes of operation and a large number of options

within each mode are provided to the user. A short discussion of these matters is presented here

for completeness. More extensive treatment wlll be found in the User's Manual.

During the solution of a problem, the NASTRAN executive system calls a sequence of func-

tional modules that perform the actual calculations, as explained in the preceding section. Two

general types of solution are provided: solution by Rigid Format according to a sequence of module

calls built into the program; and solution according to a sequence of module calls generated by

the user. The latter capability is provided in order to make the program's matrix routines

available for general use and also to provide the sophisticated user with the means for solvlng

structural problems with features not accounted for In any of the built-ln module sequences. It

is intended, however, that the great majority of structural problems will be solved via the rigid

formats.

There are, at present, a total of twelve rigid formats in NASTRAN with provision for adding

an unlimited number in the future. Each corresponds to a particular type of solution or to a

particular method of analysis, such as: Static Analysis, Buckling Analysis, Direct Transient

Response, Modal Transient Response, etc, The five Rigid Formats associated with static analysis

are described in Section 3.2. The seven Rigid Formats associated with dynamic analysis are des-

cribed in Section 9.I.

Each rigid format consists of two parts. The first is a sequence of instructions (including

instructions for Executive operations as well as for Functional Module operations) that ts stored

in tables maintained by the Executive System. The second part is a set of restart tables that

automatically modify the sequence of instructions to account for any changes In the input data

when a restart is made after partial or complete execution of a problem. The restart tables can

accommodate a change of rigid format such as occurs, for example, when vibration modes are re-

quested for a structure that was previously analyzed statically. The restart tables are, as can

be imagined, quite extensive and thelr generation constitutes a slgnificant part of the effort

expended in developing a rigid format. They are, however, one of the more Imoortant cost-savlng

features of NASTRAN.
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Many options are available wlth each rigid format. One such option removes the posslbllity

of branching back to previously executed functional modules, and it should, of course, be exer-

clsed only when it Is known In advance that looplng will not occur. This option pencils the

Executive System to dlscard flles that would otherwise be saved. Other options define the sub-

cases to be executed and the desired output formats, see Section 1.2.2.3.

It is also possible for-the user to modify a rigid format vla the ALTER feature described in

Section 2 of the User's Manual. Typical uses of the ALTER feature are to schedule an exit at an

intermediate point in a soIutlon for the purpose of checking intermediate output, to schedule the

printing of a table or a matrix for diagnostic purposes, and to add or delete a functional module

from the sequence of operating instructions.

For _re extensive mod{flcati0ns _the user can wr_te '_{sown sequence of executive instruc-

tions. The system by which this Is done is called DMAP (for Direct Matrix Abstraction Program).

DMAP is a user-orlented programming language of macrolnstructi0ns which, like-FORTRAN, has many

ruins which must be followed to be interpretable by NASTRAN. -DMAP is also used in the cohstruc-

tion of rigid formats, which differ from user-generated sequences mainly in that restart tables

are provided.

The rules for generating a DMAP sequence are explained in Section 5 of the User's Manual.

The DMAPsequence itself consists of a series of statements consisting of Executive Operation

instructions and Functional Module calls. Each statement contains .the name of the instruction

(or Functional Module), the names of the Input data blocks, the names of the output data blocks,

and the names and values of parameters. Typical examples of parameter usage are to indicate

whether an operation Is to be performed with single or double precision arithmetic, which mathe-

matical method will be used (when there are options), or the desired format of the output.

The names of some of the executive operations are BEGIN; CHKPNT (used when it is desired to

copy data blocks onto the Problem Tape In case an unscheduled restart is necessary); FILE (used

to save an intermediate data block); REPT (used to provide looping capability); PURGE (used to

prevent storage of data blocks); and END.

The functional modules belong to one of the following categories: structural modules; matrix

operations; utility modules; and user modules. The Structural Modules are the main subprograms

of NASTRAN. Some examples of structural modules, taken from dynamic analysis, are: READ (Real

1.3-2
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eigenvalue analysis); GKAM (Modal dynamic matrix assenfoler);TDR (Transient Dynamic Response); and

DDR (Dynamic Data Recovery). The Matrix Operations (add, multiply, transpose, etc.) that are

available to the user of NASTRAN are described in Section 2. The Utility Modules are mainly

concerned with the formats of output data. The User Modules are du_ modules that provide the

user with the ability to write new functional capability that will automatically be recognized by

the executive system.

The usual methods of output for NASTRAN are the operating system print or punch files and the

NASTRAN plot tapes. Procedures for normal output selection are described in Section 2.3 of the

User's Manual. The printing of tables or matrices generated by NASTRAN is controlled by a group

of Utility Hodules described in Section 5.3.2 of the User's Manual. In many cases, it is desir-

able to save matrices and tables for use in restart operations. When using rigid formats, it is

possible to save preselected tables and matrices by using the Checkpoint option described in

Section 2.2 of the User's Manual. Checkpointed files are written on the New Problem Tape. It is

also possible for the user to save selected matrices on tape by inserting one of the User Modules

described in Section 5.3.3 of the User's Manual into the DMAP sequence by means of the ALTER

option.

The usual method of input for NASTRAN is the operating system card reader. When performing

restarts, the New Problem Tape from a previous run is redesignated as the Old Problem Tape and

used as an additional source of input. Tapes that have been prepared with User Modules on pre-

vious runs can also be used as additional input sources by inserting one of the input User

Modules Into the DMAP sequence by means of the ALTER option,

-j 1.3-3 (4/I/72}
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2.1 ELEMENTARY OPERATIONS

2. MATRIX OPERATIONS

2.1.l Introduction

_v

v

The operations to be considered (matrix add, multiply, transpose, partition and merge) are

sufficiently elementary that the formal mathematical procedures which accon@lish them may safely

be assumed to be well-known to all readers of the Theoretical Manual. What is not likely to be

known is the corresponding sequence of physical data manipulations that are performed by the com-

puter. Such matters are not usually considered to be required reading for users or for others

with an interest in "the theory"; they are, accordingly, buried in the programmers'manual as ref-

erence material for maintenance and modification of the program. This practice Is not followed

here because the success or failure of NASTRAN depends, to a far greater extent than for smeller

programs, on the efficiency of the subroutines that perform the basic matrix operations. All

matrix operations in NASTRAN are performed by specially designed subroutines.

Questions regarding accuracy, which is an equally important aspect of numerical calculation,

fall into two categories: those that relate to analytical approximations, such as occur in

Iteratlve solutions, and those that relate to simple round-off error accumulation. Elementary

matrix operations do not involve analytical approximations. Nor do the triangular decomposition

of matrices and the solution of simultaneous linear equations, described In Sections 2.2 and 2.3.

The errors that occur in elgenvalue extraction and in numerical integration due to analytical

approxlmatlon are discussed in the sections dealing wlth those topics.

Trigonometric and other elementary Irratlonal functions are evaluated by library subroutines

provided by the manufacturer of the computer, who guarantees them to be accurate.

The effects of round-off error accumulation in structural analysis are treated in Section

15.1, where reasons are presented for adoptlng double preclslon arithmetic (54 or more bits) in

critical calculations. No other measures are employed In NASTRAN for combating round-off error

accumulation. The usual measures of thls sort {e.g., rounding rather than truncatingarithmetic

results, or accumulating sums by starting with the smallest numbers) are only mildly effective and

have the disadvantages that they require machine language coding, or that they substantially

increase running time, or both.

From the viewpoint of data processing, the computer has two main parts: a Central processor

that contains an arithmetic unit and a randomly accessible memory device {core storage) with very
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short access time; and a collection of pertpherel storage devices (tapes, disks and/or drums) with

high capacity but relatively long access times. In general the data contained on the peripheral

storage devices can be accessed effectively by the central processor on]y in relatively large

blocks, due to the time required to locate the first word in any record. Thus, from the viewpoint

of matrix algebra, data should be sequentially read from and written on peripheral storage devices

as one or t_o-dimensional arrays. An important convention employed in NASTRANis that al] matrices

are stored on peripheral devices by columns. This fact is important to the discussion of the mat-

rix multiply and transposition subroutines described below.

It is assumed, in the design of NASTRAN, that a typical matrix is so large that it cannot all

be held in (hlgh-speed)core storage at any one time, even if it is a sparse matrix that is ex-

pressed in packed form (i.e., by means of its nonzero e]ements and their row-column indices). In

such situations, the computing time tends to be dominated by the re]ativeIy s|ow rate of data

transfer from peripheral storage to core storage, and optimum computing strategies are designed to

minimize the number of data transfers.

The tlme to transfer a sparse matrix from peripheral storage to the central processor w111 be

decreased if only the nonzero terms are stored. The matrices in NASTRANare packed in nonzero

strings in the following manner. The record for each coiumn begins with a three-word header.

This is followed by an integer (fixed-point number) describing the position (row index) of the

first nonzero term and by a second integer describing the number of consecutive nonzero terms in

the string. The integers are followed in consecutive locations by the floattng point numbers

describing the values of the nonzero tems in the string. The remaining nonzero strings follow

in order until the end of the column is reached, The data record describing a typical column

will appear as follows:

I, I, I, 2, 2, (X,X), 8, 3, (X,X,X), 17, l, (X), 27, 1, (X), E.

The three I's are the header for the column. The X's are the numerical values of terms, and E

indicates the end of the record. The nonzero tems tn the column are the 2nd, 3rd, 8th, gth, lOth,

17th, and 27th. Once _e record is transferred to core storage, it may, if required, be fully

expanded by addition of the zero terms.

In the case of triangular factors, the integers describing the row position and the number of

consecutive nonzero terms, are placed at the end, as well as the beginning of each nonzero string.

2.1-2 (12/31/74)
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This manner of storing sparse matrtces allows the matrix to be read backward in the same manner as

it Is read forward, and thereby allows for improved efficiency in the backward substitution part

of equation solution operations.

v
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2.1.2 Matrix Multiplication

The multiplication of large matrices can be a time consuming operation. If the matrices are

full, then the time to multiply two matrices of order nxm and mxr is proportional to nmr. If the

matrices are sparse, but no attempt is made to take advantage of the sparsity, the running time

will be the same as if the matrices were full.

Most of the matrices used in structural analysis are initially very sparse. They may, how-

ever, become relatively dense as the result of transformations. Consequently, the NASTRAN pro-

gram requires a matrix multiplication routine that works well for sparse matrices as well as for

fulI matrices.

The matrix multiplication routine in NASTRAN provides two alternative methods of matrix mul-

tiplication. Both of the methods take advantage of sparsity in different ways. The second method

might be described as a truly sparse matrix method in that only the nonzero terms in either the

left-hand or the right-hand matrices are processed. The method which results in the minimum exe-

cution time is automatically selected by the routine.

For the discussion which follows, the general multiply-add form, [D] = [A]CB]+[C], is assumed.

In Method One, con storage is allocated to hold as many columns of [B] and [D] in unpacked

form as possible (columns of COl being read initially into the storage space for [D]), The CA]

matrix is read interpretively one nonzero element at a time. For each nonzero element in [A], all

combinatorial terms for columns of [B] currently in core are computed and accumulated in the stor-

age for [D]. Let ai_ be a nonzero element of [A] and b_j be an element of [B]. The formula for

an element of [D] is

dlj • [ ai_b_J + cij
(1)

where j runs across the columns of [BJand [_currently in core. At the completion of one complete

pass of the[Almatrix through the central processor, the product is completed to the extent of the

columns of[B]currently in core. The process is repeated until the _Jmatrix is exhausted. It 'may

be seen that the number of passes of the_lmatrix equals the total number of columns of [_divided

by the number of columns of _J that can be held in core at one time. Method One is effective If

the number of columns of [B] is not large, e.g., when [B] is a small number of load vectors.

Method One is also more effective than Method Two when [B] is a dense matrix.
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In MethodTwo, only a single term of the [B] matrix is required in main memory at any one time.

One full column in unpacked form of the partially for_d [D] matrix is also stored in core at the

same time. The remaining storage is allocated to as many columns of [A] in packed form as can be

stored, i.e., only nonzero terms and corresponding row positions are stored. For the columns of

[A] in storage at one time, the [B] matrix is passed through the central processor, column by

column, forming partial answers on each pass.

Each column of [B] forms partial answers which are added to the corresponding column of [D].

As may be seen from Equation 1, only the elements in the rows of bzj corresponding to the columns

of ale currently held in core are used. After all columns of [B] have been processed once, new

columns of [A] are placed in core and the [B] matrix is passed through again. The process is

repeated until all the columns of [A] have been used.

In Method Two the [A] matrix is passed through core once and the number of passes of the [B]

matrix equals the total number of columns of [A] divided by the number of columns of [A] that can

be held in core in packed fom at one time. The number of passes of the [B] matrix is the con-

trolling factor in determining computing time. If the [A] matrix is large and sparse, the nu_J_erof

passes of the CB] matrix in Method Two will typically be less than five. In Method One, on the

other hand, the number of passes of the [A] matrix will be much larger if the nu_er of columns

of [B] is large. The reason is that, in Method One, the columns of the [B] matrix are not stored

in packed form, whereas, in Method Two, the columns of the [A] matrix are_tored in packed form.

Both methods one and two include vaHatlons for premultipltcatton of a matrix by the trans-

pose of another matrix, [O] - [A]T[B]+[C], where [A] is stored by columns. This ts done in order

to avoid transposing the [A] matrix, which is by no means trtvtal (see Section 2.1.4). In fact,

the second matrix multtply method provides an efficient means for matrtx transposition of sparse

matrices, by setting [el - Ill and [C] - O.

A third option is provided for the transpose case in order to efficiently handle the case of

[B] sparse and [A] dense. The operations for method three are similar to those described for the

nontranspose case of method two, except the columns of A (rows of [A] T) are held in unpacked

rather than packed form. in the transpose case for method 1_o the computing time is proportional

to the density of the [A] matrix, whereas tn method three the computing time is proportional to

the density of the [B] matrix. A nontranspose option is not needed for method three as the com-

puting time for the nontranspose option in method two is proportional to the product of the
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densities of the [A] and [B] matrices.

2.1.3 Matrix Addition

The addition routine computes the general matrix sum,

[C] - a[A] + biB] , (2)

where a and b are scalars and [A] and [B] matrices. Special provision is made for the case b - O,

to allow scalar multiplication. No compatibility of types (such as single or double )recision,

v
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real or complex numbers) between a, b, CA], and [B] is required. The nonzero terms of [A] and CB]

are read Interpretlvely one nonzero element at a time. The appropriate sum is formed into [C] and

immediately transferred to peripheral storage. The required amount of core storage is very small.

2.1.4 Matrix Transposition

The transposition of large matrices Is a distressingly awkward operation. The optimum strat-

egy depends on the location of the nonzero terms, the density of the matrix, and its size. The

NASTRAN algorithm which is used in the transposition of dense matrices is described below. Sparse

matrices are transposed by the matrix multiply subroutine (see above).

If the matrix order is i x J and If only a fraction of the matrix may be held in core at one

time, the usual technique is to read the whole matrix from a peripheral storage device, saving, in

core, the elements from the first R rows of the matrix; these elements are then written row by row

on a peripheral storage device. The operation is then repeated until all i rows have been rewrit-

ten. The matrix may then be said to be "transposed" because the segments of a sequentially stored

two-dimensional array are treated by NASTRAN as the columns of a matrix. The number of times that

the matrix must be transferred from peripheral storage to high-speed core is T - I/R. The time

for data transfer (I/_ time) will be equivalent to that taken to input the full matrix T times and

to output it once.

If the matrices are very large, matrix partitioning may be used effectively to reduce the

The matrix is first partitioned by rows and the partitions are then transposed ascomputer time.

shown below.

[A] -

AI

A2

A3

i

AIT A2T A3 T - [A] T (3)

Il

The technique is as follows. The matrix_}is read into core one column at a time, and the ele-

ments In the first P rows of each column are extracted and placed in a peripheral storage file.

The operation is repeated, reading the elements in the next P rows by columns into a second peri-

pheral storage file, etc. Thus, since the _Imatrix has I rows, the I/fftime for partitioning is

equivalent to that for i/P reads and one write of the complete matrix. Next the[AOmatrix is

_J
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transposed by the flrst-descrlbed method which, slnceFAllhas P rows, requires P/R reads and one

write. Because the columns of[A_T are also columns of(Af, the transposition is complete when all

of the partitions have been transposed. The I/) time for transposing the partitions is equival-

ent to P/R reads and one write of the complete [A] matrix. Assuming that reads and writes take

the same time, the total time is proportional to the parameter

v

The minimum value of the time

(s)

The number of rows In each partition, P, may be freely selected.

parameter obtained when _/BP - O, Is

Tmln - 2(1 +v_") ,

and occurs when P - R /_ . (6)

The time for the second method is less than that for the first when

2(I +_) <T+ l , (7)

which is satisfied when T ) 6. The Second method is automatically selected by the program when

this condition is satlsfied.

2.1.5 Matrix Partitioning and Mer_Inq

In structural analysis, vectors describing the system variables are frequently separated into

subsets which are then treateddifferently. For example, in the displacementmethod matrix parti-

tioning may be applied to the displacement vector {uf}, resulting in two subsets: {Uo}, degrees of

of freedom removed by partitioning, and {Ua}, degrees of freedom not removed (see Section 3.5.3).

All of the arrays associated with {uf}, such as the load vector, {Pf}, and the stiffness matrix,

[Kff], must also be partitioned. The partitioning operations are formally indicated as follows:

LKaoT1%oj

, (a)

(g)

V_
y

_.J"
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Later in the analysis it will be necessary to recombine the elements of {uo} and {Ua}. This

operation, called the "merge" operation, is formally indicated by

Uol

The essential feature of the operation is that the original order of the members of {uf} must be

restored. Order must also be maintained during the partition operation.

The partition and merge operations are accomplished in the program with the aid of USET, an

array that describes the membership of each degree of freedom in each of the defined vector sets.

There are approximately fifteen such sets (see Section 3.3). One word of USET is assigned to each

degree of freedom. One binary bit in each word of USET corresponds to a different vector set. A

bit is set equal to unity if the degree of freedom is a member of the corresponding vector set.

USET may, consequently, be regarded as a table with marks in appropriate row-column intersections

as shown below.

v-

Ug --

/

J

J

J

J

J

J

J

J

J

J

/

uf uo

V J

/ /

J J

/

V /

J

J /

¢

ua

In partitioning [Kff] (Equation 9) for examgle, USET is called into core storage along with

the first column of [Kff]. USET is scanned and the ordinals of the nonzero bits in the positions

corresponding to uf, uo, and ua are noted and copied onto separate lists. The lists are then used

to separate the elements in the first (and succeeding) column(s) of [Kff] into [Keel and [KaoIT,
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which are then read out of core onto separate files. In the merge operation (Equation I0), the

lists are scanned to determine whether a number from {ua} o_ a number from (uo} will be the next

number to be copied into {uf}.

V
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2.2 TRIANGULAR DECOMPOSITION

The factoring of a matrix into upper and lower trlangular forms ts a central feature of

structural analysis as performed with the NASII_ANprogram. For large problems a substantial

fraction of the total computing time Is associated with triangular decompositions. The NASTRAN

program requires a decomposition routine that works well for both full and sparse matrices.

Matrices encountered In structural analysls, including structural dynamics, may be either real

or complex.

Most of the matrices used in structural analysis are initially very sparse; however, they

tend to fill in various degrees as the problem solution proceeds. Under some conditions, matrix

multiplications will fill a matrix prior to the beglnnlng of the triangular decomposition. Under

other conditions an initially sparse matrix may completely fill during the triangular decomposi-

tion. However, for many matrices used in structural analysis, much of the original sparslty is

maintained in the triangular factors. In order to handle all of these situations effectively,

the decomposition routines treat all matrices as sparse. The procedures efflclently treat the

general sparse case as well as the llmltlng cases of a full matrix or of a simple band matrix.

2.2.1 T_langular Decomposltlon of S_mmetrlcal Matrices

It is well known (see, for instance, Reference l) that any square matrix [A], having nonzero

leading minors, can be expressed in the form [AI - [LI[DI[Ul,where [L] and [U] are unlt-lower and

unit-upper triangularmatrices respectively, and [D] is a diagonal matrix. The matrix COl can be

incorporatedentirely within either [L] or [U] or part with each. The different ways of incorpora-

ting [D], combined with different orders of operations in determining the terms of ILl and [U],

have given rlse to many named procedures for performing triangular decompositions.

The following discussion will be based on the equation

[A] - ELl[U] , (I)

The elements of the upper triangle may be computed by thewhere eLl Is a unit lower triangle.

following recurslon formula:

l-I

uiJ " aij " k!l {Jk Ukl ' (2) .-._o
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For symmetric matrices without pivoting, the upper and lower triangular elements are related as

follows:

V

zjk (3)
Ukk "

The substitution of the relation in Equation 3 into Equation 2 gives

i-I
- (4)

ulj " alj k._lukk Uki

Now, k < t' < J, so that only previously computed results occur on the right-hand stde of Equation

4 if the elements utj are computed in order starting wtth the first row. The untt lower triangle

and the associated diagonal elements are saved on secondary storage for later use in equation

Figure l shows the triangular factor for a sparse matrix. Initial nonzero terns are indi-

cated by X's wtth O's indicating nonzero t'erms created as the decomposition proceeds. The terns

in triangles indicate the relative locations for nonzero contributions to the upper triangular

factor when the first row of the matrix is the plvotal row. If there is sufficient main storage V
....................................... _ .... . .......... ___ __.. _ _!_ .............. ;._

to hold all of the nonzero terms associated wfth each pivotai row, the decomposition may proceed ....

without the need for writing intermediate results on secondary storage. In general, no nonzero

terms will appear in any column of [U] until a nonzero tern appears tn [A]. The apperance of

the first nonzero term In [A] defines the beginning of an "active column." Columns l, 2 and g

a_actYve W_en the f_rs_ row _s the piv0tai _ row. __he_terms _tn _squares tnd_cate the reiat_ve

locations for nonzero contributions to the upper triangular factor when the third row of the

matrix is the pivotal row. At this point in the decomposition, rows 3, 7, g and 13 are active.

If at some point tn the decomposition, the dtagonal tern of the pivotal row initiates a new

active column, all existing active columns will tem_nate in the previous row (change status

from active to passive), in row 4 of Figure l, co.Iumns 7, g and 13 become passive. Also in row

7, columns ll and 14 become passive. Prior to using row 4 as a pivotal row, the passive terms tn

rows 7, g and 13 (tn squares on Figure l) are transferred to secondary storage. These terms

rematn on secondary storage until each of the rows 7, 9 and 13 become pivotal rows, at whtch time
--__

they are transferred to matn storage and combined with the ortgtnal nonzero terms to fom each of

the pivotal rows. Columns remain passive until a nonzero term appears in that column for a later

2.2-2 C12/31/74) _-
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pivotal row. Nonzero terms which change the status of columns from passive to active may be either

in the original matrix, such as column II of row lO, or they may be created prior to the column

becoming passive, such as columns 9 and 13 of row 7. Figure l indicates that these later nonzero

terms were created when row 3 was the pivotal row.

If there is sufficient main storage for all of the terms generated by the second term of

Equation 4 for each pivotal row, the triangular decomposition can be completed with a single pass

through the matrix. When the number of active columns exceeds the capacity of the working storage

space, an automatic spill logic is provided. The decomposition proceeds by holding the nonzero

terms for as many rows as possible in main storage. Following the completion of all possible

pivotal row operations, the intermediateresults are transferred to temporary storage. A11

posslble pivotal row operations are then performed on the next group of rows in the matrix, and

the intermediateresults are transferred to temporary storage. Next, the temporary file is re-

wound and pivotal operations are continued on the first and second spill groups. This sequence

of operations continues, adding the next group of rows on each pass through the matrix, until

each pivotal row is complete and transferred to permanent secondary storage.

A prellmlnary pass is made over the orlginal matrix in order to estimate the execution time

and create tables which assist In the efffclencyof the decomposltlon operation. The c_putlng

time to perform any calculation may be estimated by counting the number of elementary operations

that it involves and assigning experimentallydetermined values of time to the various types of

elementary operations. In the case of triangular decomposition by the method described above,

the estimated time is

N

N N 2÷½ +Pg>2 • pp , (s)

where M

I

Pp

Pg

N

Ci

Ri

• time for multlply-add loop,

• time to read and write one tem on spill file,

• time to put one term in write buffer,

• time to get one term from read buffer,

- order of matrix,

• number of active columns in the ith row,

• number of I/_ transfers for the Ith row. RI may be approximatedby the integral part
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of Cl/S, where S • number of core-held rows in the current spill group,

Cs - number of active columns at beginning of spill operations that are out of range of

first splll group (column numbers greater than last row in spill group) for each time

that spill operations begin,

Ct - sum of number of passive columns on secondary storage and number of active columns

in working space for each time that active column terminationoccurs, and

n - number of words per tenn.

The computlng time is dominated by the first term in Equation 5, which is associated with the

arithmetic operations in the step-by-step elimination procedure. Since the number of active

columns is a function of the ordering of the matrix, the user can shorten the computing time by

ordering the matrix in the most favorable manner. A discussion of the sequencing of grid points

to minimize the time requlred for triangular decomposition Is given In Section l of the User's

Manual.

The second and third terms of Equation 5 are zero, unless spill operations require the

transfer of intermediateresults to secondary storage. The fourth term is the modest overhead

associated with passive columns, and the last term is the time required to transfer the final

result of the trlangulardecomposition to secondary storage.

In order to assist the user in locating singularities, or near singularities In the matrix,

information relative to the magnitude of the diagonal elements of the triangular factor is fur-

nlshed to the user. The absolute value (() of the ratio of the diagonal element in the original

matrix to the diagonal element in the triangular factor is determined for each row of the matrix.

The maximum value of c along with the distribution of the values of ( is furnished as diagnostic

information. The row numbers for the five largest values of c are also furnished along with the

number of negative values for the diagonal element in the triangular factor.
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2.2.2 Triangular Decomposition of Unsymmetrical Matrices

The procedures for the triangular decomposition of unsymmetrical partially banded matrices

are similar to those used for symmetrical matrices. The lack of symmetry means that the upper

and lower triangular factors are not related, and that the widths of the upper and lower bands

(which replace the symmetrical semi-bands of the symmetrical matrix) may be different. However,

the band structure of the orlglnal matrix will be maintained in the triangular factors.

Although the lack of symmetry means that the pattern of scattered terms outside the upper

band may be different than the pattern outside the lower band, it still remains true that no non-

zero terms will appear in any column of the upper triangular factor until a nonzero term appears

in the same column of the original matrix. Likewise, no nonzero terms wlll appear in any row

of the lower triangular factor until a nonzero term appears in the same row of the original

matrix. Hence the partially banded nature of the matrix is maintained after the completion of

the triangular decompositon.

The lack of any assurance that all leadingminors are nonsingular requires that pivoting

(i.e., interchange of rows) be used to maintain the numerical stability of the triangular decompo-

sition. Pivoting is restricted to take place within the lower band. This will increase the band-

width of the upper triangular factor by the width of the lower band, but will not otherwise affect

the partially banded character of the triangular factors.

The general procedure for an unsymmetrical decompositionwill be discussed with reference to

Figure 2, which shows an unsymmetrical partially banded matrix of order N, upper bandwidth B,

and lower bandwidth _, with several nonzero terms outside the bands. Initial nonzero terms

are indicated by x's, with O's indicating nonzero terms created outside the original bands as

the decomposition proceeds. The O's within the expanded upper band "_"Indlc_te the maximum number

of nonzero terms that can be created by the pivoting. The existence of initial zero terms inside

the lower band B and the expanded upper band S + B is ignored as, in general, these terms will

become nonzero as the decomposition proceeds.

If there is sufficient core storage to hold B + § columns of the lower triangular factor, as

indicated inside the solid parallelogram of Figure 2, along with the associated active column

and active row terms, the triangular decomposition can be completed with a single pass through

the matrix. Otherwise secondary storagemust be used for intermediate results and provision Is

2.2-6 (411/72)
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made in main storage to hold R columns of the lower triangular factor, a single column of the

upper triangular factor, and the current active columns and active rows.

The decomposition begins by reading the original matrix one column at a time, pivoting the

largest term in absolute value within the lower band to the diagonal position, and determining

the inner products for the current column, including the active row terms. The portion of the

column in the lower triangular factor, including active row terms, is retained in working storage.

The portion of the column in the upper triangular factor within the expanded upper band is com-

plete and no longer needed; hence it can be written on a secondary storage device. This contin-

ues until R columns have been processed. At this point the procedure is changed only to the

extent that the portion of the current column within the lower b('.ndis temporarily stored on a

secondary device.

The decomposition continues until B + _" columns have been processed. At this point, the

first column of the lower triangular factor, including the active row terms, is no longer needed

and can be written on a secondary storage device. This releases _ spaces in working storage.

This procedure continues until the decomposition is completed.

The active column terms are transposed prior to beginning the decomposition, so they are

available by rows and can be read i_to main storage as needed. If an active column term exists in

the Ith row, it is stored along with the i + B column of the upper triangular factor.

A preliminary pass is made over the original matrix in order to locate the extreme non-

zero terms for each row in the lower triangle and each column in the upper triangle. The maximum

number of active columns is determined by counting the maximum number of intersections for any

row with columns defined by drawing lines from the most extreme nonzero term in the upper tri-

angle to the outside edge of the upper band. The maximum number of active rows is determined by

counting the maximum number of intersections for any column with rows defined by drawing lines

from the most extreme nonzero term In the lower triangle to the outside edge of the upper band.

An examination of the matrix shown in Figure 2 reveals that the maximum number of active columns

is 2 even though the total number of nonzero columns outside the upper band is 3. The lower

triangle contains 3 active rows and 4 nonzero rows outside the lower band.

As with the symmetrical decomposition, the routine selects the bandwidths that give the

minimum computing time based on the ordering of the matrix presented. Proper sequencing is

similar to that used for symmetrical matrices.
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The computing time will again be a function of the working storage available fcr the

execution of the routine. Working storage consists of space for R columns of terms inside the

band for the lower triangular factor, B ÷ B spaces for the current column of-the upper triangular

factor, BC spaces for active column terms, (_+ B)T spaces for active row terms, C_ spaces for

interaction of active row and active column terms, and B + § spaces for the permutation matrix.

This results in working storage as follows:

W - _R + 2B + 2B + CB + C(B+B) + C_ , (14)

where R > I, R _ B + B, R _<N, C is the maximum number of active columns, and C is the maximum

nu_)er of active rows.

The computing time to perform an unsymmetrical triangular decomposition is:

T - T1 + T2 + T3 + T4 , (15)

where l"1 is the time required to process the first N - B - 2§ columns of terms inside the upper

and lower bands, T3 is the time required to process the last _ columns of terms inside the bands,

and T2 is the time required to process the remaining intermediate B + _ columns of terms inside

the bands. T4 is the time required to process the active row and active column terms.

T l - Kl[MB_R + I_(B + (_ - R) + P(B + 2_)] , (16)

V

where MB is the arithmetic time required to process one term inside the bands, I is the time

required to store and retrieve one term inside the lower band, and P is the time required to

store one term of the final result cn a secondary storage device. If N > B ÷ 2_, then

Kl - N - B - 2_. If N _ B + 2_, then Kl • O.

K2
T2 - _-- [_K2MB + (K3 - R)(I - MB)_ + 2P_ + PK2] (17)

If N >B ÷ 2§, then K2 - K3 - B + _ . If N < B + 2§, then K2 - N - § and K3 :

unless N < B + _, then K3 - N.

T3 - _M B + I + PJ_K5 (18)

2.2-8(4/I/72)
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If N >_B + 2_, then K4 = B + _ - R and KS = B ÷ _ 8, unless B • R, then K4 = If

N < B + 2_, then K4 - N - R and KS - N, unless N - R > B, then K4 - B.

T4 = (N - _)[Nc(BC + B{ + {_{ + C{) + P(C + _)], (19)

where MC is the arithmetic time required to process one active row or active column term.

If N is assumed large compared to both B and _" and the final storage terms are neglected,

Equation 15 can be simplified as follows:

T • N[MB_'R + Mc(BC + _{ + BE+ CE) + I_'(B ÷ _'- R)]. (;_0)

This simplified equation is used for making timing calculations in selecting the optimum band

widths and active elements.

The sequence of events in selecting the bandwidths and active elements outside the ban=s

._ay be summarized as follows:

I. Locate extreme nonzero terms in each column for the upper triangle and in each row of

the lower triangle.

2. Prepare a table of unique pairs of upper bands and active columns.

3. For the working storage available, compute R using Equation 14.

4. Assuming B = _" and C - E, and using Equation 20 determine the upper bandwidth and the
associated number of active columns that result in minimum computer time to perform the

triangular decomposition.

5. Using the previously determined upper band and active columns, determine the lower
bandwidth and the associated number of active rows that result in minimum computer time
to perform the triangular decomposition according to Equations 14 and 20.

6. Select the values of the bandwidths and active elements that result in minimum tlme to
perform the trangular decomposition and recalculate the time using Equation 15. This
more accurate time estimate is needed because decisions are made by modules using the

decomposition routines that are based on the estimated running time.

The complex decomposition routine is the same as the real unsymmetric routine, except that

twice as much storage is needed for complex numbers and the real arithmetic is replaced with

complex arithmetic.
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2.3 SOLUTION OF [A]{x} - {b}

The solution of the equation

MATRIX OPERATIONS

[A]{x} - {b} , (1)

is accomplished using the results of the decomposition procedure described in Section 2.2.

Replacing [A] by its triangular factors, Equation l becomes

[L][U]{x}• (b} (2)

where ILl is a lower unit triangle and [U] is an upper triangle.

Define

{y} - [u]6x} (_)

Then, substituting into Equation 2,

ILl{y} - {b} (4)

The solution of Equation 4 for {y} is called the forward pass, and the subsequent solution of

Equation 3 for {x} is called the backward pass.

In the solution algorithm, Yl is evaluated from the leading element of ILl, and the nonzero

elements in the first column of ILl are multiplied by Yl and transferred to the right hand slde

of Equation 4. The procedure is repeated for the second and succeeding columns of ILl until

all elements of {y} have been evaluated. The algorithm for obtaining {x} is similar except that

the columns of [U] are required in reverse order. Multiple {b} vectors can be handled simul-

taneously up to the limit of the working space available in main memory. The same general pro-

cedures are used for both symmetric and unsymmetrlc matrices.

The forward pass requires the reading of both the right hand vectors and the lower triangular

factor from secondary storage devices. In the case of symmetric matrices, the processor time

associated with the location of the terms in the lower triangular factor is minimized by working

directly in the I/¢ buffers. Also, in the case of symmetric matrices, successive values of {y}

are tested for zero prior to the multiplication. In this manner full advantage is taken of the

sparsity of the right hand side on the forward pass.
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For symmetric matrices, a term in the upper triangular factor is easily obtained from the cor-

responding term in the transposed location of the lower triangular factor (see Equation 3 of

Section 2.2.1). Thus, the backward pass utilizes a special packing format which allows for the

backward reading of the lower triangular factor. For unsymmetric operations, the backward pass

is accomplished in two steps. First, the upper triangular factor is read backward and written

forward on a separate file so that the last column of [U] appears first. This Is part of the

triangular decomposition routine and takes place immediatelyafter the completion of the decom-

position. The second step consists of solving Equation 3 for {x}. It is made part of the

equation solution routine.

Following the determination of the solution vectors, a residual vector is determined for

each solution vector as follows:

(_b}- {b}- [A](x} (4)

The residual vector is used to calculate the following error ratio which Is printed with the

output.

{x}T(6b}

c - _ . ...... (s)

The magnitude of this error ratio gives an indication of the numerical accuracy of the solution

vectors. The computer time required to calculate this error ratio is only a small fraction of

the time required to determine _he solution vector.

V
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3. STATIC ANALYSIS BY THE DISPLACEMENT METHOD

3.1 INTRODUCTION

From a theoretical viewpoint, the formulation of a static structural problem for solution by

the displacement method is completely described by the matrix equation

[K]{u} = {P}. (I)

As a matter of practical calculation, there is rather more to the problem than this simple

formula would imply, since it is necessary to generate the stiffness matrix [K] and the load vec-

tor (P} from the available information about the structure, and tO calculate stresses and other

quantities of interest from the independent displacement vector, {u}. In the early days of com-

puter-aided analysis these tasks were left to the analyst and the computer busied itself with

obtaining the solution to Equation I. It was soon discovered that, for most practical problems,

the computer had only partly unburdened the user and that larger savings of time and cost could

be achieved if the computer took over the major share of input data preoaration and output data

processing. Automatic performance of these additional tasks requires that a particular apbroach

to structural analysis be selected and incorporated into the program,

NASTRAN embodies a lumped element approach, i.e., the distributed physical properties of a

structure are represented by a model consisting of a finite number of idealized substructures or

elements that are interconnected at a finite number of points. All input and output data per-

tain Co the idealized structural model.

The Idealized structural model in NASTRAN consists of "grid points " (G) to which "loads"

(P) are applied, and at which degrees of freedom are defined, and "elements" (E) that are connec-

ted between the points, as shown in Figure I. Two general types of grid points are employed in

static analysis. They are:

I. Geometric grid point - a point in three-dimensional space at which three components of

displacement and three components of rotation are defined. The coordinates of each grid

point are specified by the user. Components of displacement and rotation c_n be elimi-

nated as degrees of freedom by means of "slngle-point constraints".

, 2. Scalar point - a point in vector space at which one degree of freedom is defined. A

geometric grid point contains from one to six scalar points. Scalar points may exist

that are not associated with grid points. Such points can be coupled to geometric grid

points by means of scalar structural elements and by constraint relationships.
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The structural element is a convenient localizing concept for specifying many of the proper-

ties of the structure, including material prooerties, mass distribution and some types of applied

loads. In static analysis by the displacement method, stiffness properties are input exclusively

by means of structural elements. Mass properties (used in the generation of gravity and inertia

loads) are input either as properties of structural elements or as properties of grid points. In

dynamic analysis mass, damping, and stiffness properties may be input either as the properties of

structural elements or as the properties of grid points.

The structural elements are described in detail in Section 5 of the Theoretical Manual.

There are four general classes of structural elements as follows:

I. Metric elements which are connected between geometric grid points. Examples include rod,

plate and shell elements.

2. Scalar (or zero-dimensional) elements which are connected between pairs of scalar points,

or between one scalar point and "ground". Note that, since each geometric grid point

contains a number of scalar points corresponding to specific components of motion, sca-
T

far elements can be connected between selected components of motion at geometric grid

points.

3. General elements, whose properties are defined in terms of deflection influence coeffi-

clents (i.e., compllance matrices), and which may be interconnected between any number of

geometric and scalar grid points. An important appllcatlon of general elements is the

representation of large pieces of structure by means of test data.

4. Constraint Elements (or Constraints). The existence of a constraint element Implles a

linear relationfship among the degrees of freedom to which it is attached of the form

RcgUg = Yc ' (2)
g

where Ug are degrees of freedom and Yc is an enforced displacement. A linear relation-

shlp among the forces of constraint is also Im_lled, since it Is required that the forces

of constraint do no work.

Constraint elements are employed for the following purposes:

a. To introduce enforceddisplacements.

b. To enforce zero motion in specified directions at points of reaction.

3.1-2
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c. To simulate very stiff (rigid) structural members.

d. To describe part of a structure by experimentally determined vibration modes. (The

matrix of eigenvectors expresses a relationship of constraint between physical and

modal coordinates.)

e. To generate nonstandard structural elements by combining scalar structural elements

and constraints.

The constraint concept is important for the displacement method in order to eliminate

ill-conditionlng generated by very stiff members. Two types of constraint elements _re

provided: slngle-ooint constraints, wherein Equation 2 includes only a single term on

the left hand side; and multlpoint constraints and rigid elements wherein Equation 2

includes more than one term. The main reason for the distinction is that due to the

simplicity of single-polnt constraints, they are processed separately in the proaram.

Solution of a linear static structural problem by the displacement method requires a set of

preliminary operations which reduce the input data t_ the matrix Form given in Equation I. Arlong

these operations are the elimination of displacement components that are declared to be dependent

by virtue of constraints and the transfer of all applied loads to the independent displacement

components.

As input data in static analysis, the loads are specified in a variety of ways including:

I. Concentrated loads at geometric and scalar grid points.

2. Pressure loads on two-dimensional structural elements.

3. Indirectly, by means of the mass and thermal expansion properties of structural elements.

Enforced deformations are also reduced to a set of equivalent loads on the independent dis-

placement components. See Section 3.6.1.

Once Equation 1 has been formed it is solved for each specific loading condition. Stresses

in the structura_ elements and other desired results are then obtained from (u} by a set of data

recovery operations.
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STATIC ANALYSIS BY THE DISPLACEMENT METHOD

3.2 GENERAL PROBLEM FLOW

AS has been explained in Section l (Program Organization), NASTRAN consists of a number of

subprograms, or modules, that are executed according to a sequence of macro-instructions that is

controlled by the Executive System. A number of such sequences, called Rigid Formats, are per-

manently stored in the program and can be selected by means of control cards. Each rigid format

corresponds to a particular type of structural analysis. The user may, in addition, devise his

own sequence of module calls (referred to as a DMAP sequence) for problems that do not conform to

one of the available rigid formats.

The following rigid formats are currently available for the solution of static problems by

the displacement method:

I. (Basic) Static Analysis

2. Static Analysis with Inertia Relief

4. Static Analysis with Differential Stiffness

5. Buckling

6. Piecewise Linear Analysis

14. Static Analysis using Cyclic Synwnetry

Figure l shows a simplified flow diagram for Basic Static Analysis. Each block in the flow

diagram represents a number of program modules. The actual number of modules called is approxi-

mately equal to thirty. The functions indicated in Figure l are described in succeeding subsec-

tions of the Theoretical Manual. It suffices at present to indicate the general nature of the

tasks performed.

The Input File Processor, as the name implies, reorganizes the Information on input data

cards into Data Blocks consisting of lists of similar Quantities.

The Geometry Processor generates coordinate system transformation matrices, tables of grid

point locations, a table defining the structural elements connected to each grid point, aria other

miscellaneous tables such as those defining static loads and temperatures at grid points.

The Structure Plotter generates tape output for an automatic plotter that will plot the

structure (i.e., the location of grid points and the boundaries of elements) in one of several

available three-dlmenslonal projections. The structure plotter is particularly useful for the

detection of errors in grid point coordinates and in the connection of elements to grid points.
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Note that the structures plotter may also be used at the end of the program to superimpose images

of the deformed and undeformed structure.

The Structural Matrix Assembler generates stiffness and mass matrices referred to the grid

points from tabular information generated by the Input File Processor and the Geometry Processor.

The mass matrix is used in static analysis for the generation of gravity loads and inertia loads

on unsupported structures.

In block 5 of Figure l, the stiffness matrix is reduced to the form in which it is finally

solved through the imposition of single and multi-point constraints, and the use of matrix par-

titioning (optional).

Load vectors are then generated from a variety of sources (concentrated loads at grid points,

pressure loads on surfaces, gravity, temperature, and enforced deformations) and are reduced to

final Form by the application of constraints and matrix partitioning.

The solution for independent displacements is accomp|ished in two steps: Decomposition of

the stiffness matrix [K] into upper and lower triangular factors; and solution ?or {u} for speci-

fic load vectors, {P}, by means of successive substitution into the equations represented by the

triangular factors of [K] (the so-called forward and backward passes). All load vectors are pro-

cessed before proceeding to the next functional block.

In block 8 of Figure l, dependent displacements are determined from the independent displace-

ments by means of the equations of constraint. The internal forces and stresses in each element

are then computed from knowledge of the displacement components at the corners of the elements

and the intrinsic structural equations of the element. Finally the Output File Processor pre-

pares the results of the analysis for printing.

The Loop for Additional Constraint Sets shown in Figure l, is introduced to facilitate solu-

tions for different boundary conditions, which are applied by means of single point constraints.

In particular, the symmetric and antisymmetric responses of a symmetric structure are treated in

this manner.

The flow diagram for Rigid Format l_o. 2, Static Analysis With inertia Relief, is, to the

level of detail COnsidered here, identlcal to Figure i, The inertia relief effect consists of a

modification to the load vector to include inertia loads due to the acceleration of an unre-

strained structure. The manner in which the incremental load is calculated is explained in

3.2-2
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Section 3.6.3

A simplified flow diagram for Rigid Format No. 4, Static Analysis with Differential Stiffness,

is shown in Figure 2. A comparison between Figures l and 2 shows that the first eight blocks are

identical.

Contributions to the differential stiffness matrix are not defined for all elements currently

in NASTRAN, and they may not be defined for a new element. The differential stiffness matrix,

which is a first order approximation to large deformation effects, is a function of the most

recently iterated displacement. Functional Module, DSCHK, (block 23 of Figure 2) performs differ-

ential stiffness calculations based on user-supplied iteration parameters. The solution strategy

basically involves a load adjustment (the "inner" loop) in order to satisfy iterated displacements

within a specified converaence criterion.

A simplified flow diagram for Rigid Format No. 5, Buckling, is shown in Figure 3. In it the

differential stiffness matrix [Kd] corresponding to a particular applied loadino condition is

used in conjunction with the structural stiffness matrix [K] to formulate an eigenvalue problem

[K + _Kd]{u} = O. (I)

The eigenvalues, Xi' are the load level factors for various buckling modes. They and the corres-

ponding e!genvectors,{¢i}, are extracted by the Real Eigenvalue Analysis module. Additional data

(constrained displacement components and stress patterns for each buckling mode) are recovered in

Block 15, which is virtually a duplicate of Block 8, and the buckling mode shapes are plotted, if

desired.

A simplified flow diagram for Rigid Format No. 6, Piecewise Linear Analysis, is shown in

Figure 4. In piecewise linear analysis solutions are obtained for structures with nonlinear,

stress-dependent, material properties. The load level is increased to its full value by small

increments, such that stiffness properties can be assumed to be constant over each increment.

After each increment, the combined strains in nonlinear elements due to all load increments are

used, in conjunction with stress-strain diagrams, to determine the appropriate stiffnesses for

the next load increment. The procedures, summarized in Figure 4, are described in Section 3.8.

J
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Figure I. Simplified flow diagram for Basic Static Analysis.

3.2-4 (3/1/76)

If! ill

V

.-.__



GENERAL PROBLEM FLOW

v

,,_No

Olfferentlal Stiffness

23 Adjustment

_W

22 Load Correction

JSa

7a

(Same as 8) )

T
(sam as 7) ]

] J

-!

r T

I I Input FileProcessor

2 GeometryProcessor

I 3 StructuresPlotter

I 4 Structural Matrix lAssembler

S Application of Constraints and
Partitioning to the Stiffness Matrix

6 Generation and Transformation
of Load Vectors

I 7 Solution for Independent IDisplacements

8 Recovery of Dependent Displacements
and Stresses

9 Output File IProcessor

I lO Deformed Structures JPlotter

Figure 2. Simplified flow diagram rot Static Analysis with DifferentialStiffness.
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Figure 3. Simplified flow diagram for buckling.
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STATIC ANALYSIS BY THE DISPLACEHENT METHOD

3.3 NOTATION SYSTEM

Many of the operations performed in computerized structural analysis are conveniently

expressed In the notation of matrix algebra. In NASTRAN matrix arrays are represented by a root

symbol that indicates the type of physical quantity and by one or more subscripts and superscripts

that act as modifiers. The root symbols used in static analysis by the displacement method are

listed in Table I. Square brackets, [ ], indicate two-dimensional arrays and twisted brackets,

{ }, indicate column vectors. Row vectors, which are less common, are usually indicated by ap-

pending the transpose symbol, T, to the twisted brackets.

Subscripts are used exclusively to designate the subsets of displacement components to which

the root symbol applies as for example in the equation,

{qs} , -{Ps } + [Kfs]T{u f} + [Kss]{Us} , (1)

which is used to recover single point forces of constraint, {as}, from displacements at constrai-

ned points, {Us}, and at unconstrained (free) points, {uf}. Nearly all of the matrix operations

in static analysis are concerned with partitioning, merging and transforming matrix arrays from

one subset of displacement components to another. All the components of displacement of a given

type (such as all points constrained by single-point constraints) form a vector set that is dis-

tinguished by a subscript from other sets. A given component of displacement can belong to se-

veral vector sets. The mutually exclusive vector sets, the sum of whose members are the set of

all physical components of displacement, {up}, are listed in Table 2a.

In addition, a number of vector sets are defined as the union of two or more independent

sets. See Table 2b.

In dynamic analysis, addltiona] vector sets are obtained by a modal transformation derived

from real eigenvalue analysis of the set {Ua}. See Table 2c.

In aeroelastic analysis, additional vector sets are defined by the aerodynamic degrees of

freedom. See Table 2d.

The nesting of the vector sets in Table 2 is depicted by the following diagram:

;:RECEDING PAGE BLANK blOT FII,_IE!_

I'.I,_.,,.'!"To_,TM, .r_
..... ,,, ._,,,k_._ _k_(_
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In static analysis we are concerned only with the grid point set, {Ug}, and its subsets.

The applicationof constraints and partitioning to the stiffness matrix involves, essentially,

the elimination of {Um}, {Us}, {uo} and {ur} from {Ug} to form a stiffness matrix referred to

{u_}.

The physical and computational slqnifioances of these operations are explained in Section

3.5. For the present it wilt only be emphasized that the concept of nested vector sets Is ex-

tremely important In the theoretical development of NASTRAN. The reader may, in fact, flnd it

useful at some point to memorize the relations, defined In Table 2, among the displacement sets.

Load vectors are distinguished by the same notation. Rectangular matrices are, whenever

necessary to clarify the meaning of the symbol, distinguished by double subscripts referring to

the vector sets associatedwith the rows and columns of the array. Superscripts have no ten-

sorial character and are used to identify arrays of different type or origin that refer to the

same sets such as in the equation,

C dd]" CM U+M d] , (z)

[M_d] is the structural mass matrix and [M_d] is the direct input mass matrix.where

3.3-Z (12/31/77)
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Two types of operations occur repeatedly.

for example,

lu.l

and the recombining (or merge) operation

These are the partitioning (or sort) operation,

(3)

(4)

v

In the sort operation indicated, the elements of {Ug} are sorted into two lists. In the

merge operation {un} and {um} are combined into a single list. In all sort and merge operations

the resulting arrays are ordered according to the grid point sequence numbers of the displacement

components.

In addition to the formal symbols used in matrix ooerations, many other symbols are

required in the reduction of physical proDertles to matrix form. No special system is used for

the latter class of symbols. An attempt has been made, however, to adhere to established engineer-

ing conventions.

3.3-3 (12/31f77)
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STATIC ANALYSIS BY THE DISPLACEMENT METHOD

Table I. Root Symbols Used in Static Analysis in NASTRAN.

{u} vector of displacement components

{P} vector of applied load _omponents

{q} vector of forces of reaction

{Y} vector of enforced displacements

[K] stiffness matrix

[M] mass matrix

[B] damping matrix

[R] matrix of constraint coefficients, as in [R](u}

[G] transformation matrix, as in {um} = [Gm]{u n}

[D] rigid body transformation matrix

[m] rigid body mass matrix

[X] rigid body stiffness matrix

[L] lower triangular factor of [K]

[U] upper triangular factor of [K]

= 0

V
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Table 2a. Mutually Inde0endent Vector Sets.

um coordinates eliminated as independent degrees of freedom by multi-point constraints
and rigid elements

us coordinates eliminated by single point constraints

uo coordinates omitted by structural matrix partitioning

ur coordinates to which determinate reactions are applied in static analysis

u_ tileremaining structural coordinates used in static analysis (points left over)

ue extra degrees of freedom introduced in dynamic analysis to describe control sys-
tems, etc.

Table 2b. Combined Vector Sets.

ua = ur + uz, the set used in real eigenvalue ana1__s

ud = ua + ue, the set used in dynamic analysis by the direct method

uf - ua + uo, unconstrained (fre____ee)structural coordinates

un • uf + us, all structural coordinates not constrained by multl-point constraints
or rigid elements

ug = un + um, all structural (grid) points including scalar points

Up = Ug + ue, all hs_coordind_es

Note: (+) sign indicates the union of sets.

_o

{f

uh

Table Zc. Modal Coordinate Sets.

rigid body (zer.._._ofrequency) modal coordinates

flnlt_ frequency modal coordinates

{o + {f' the set of all modal coordinates.

{I + Ue' the set used in dynamic analysis by the modal method.

Note: (+) sign indicates the union of sets.
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Table 2d. Aerodynamic Coordinate Sets.

uk aerodynamic box and body coordinates

UsA permanently constrained aerodynamic coordinates

uA = uk ÷ UsA, all aerodynamic coordinates

Ups = Up + UsA

UpA = Up + uA, all physical and aerodynamic coordinates

Note: (+) sign indicates the union of sets.

V

V
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3.4 PROBLEM FORMULATION

The explanation of any complex activity must be subdivided into phases or steps in order to

be intelligible. In the case of a computer program for structural analysis it is convenient to

divide the total effort into a Problem Formulation Phase and a Problem Solution Phase. The ter-

mination of the Problem Formulation Phase is arbitrarily chosen to occur at the point where the

properties of the structure have been reduced to matrix form. (In the case of basic static an=

alysis this occurs between blocks 4 and 5 in the flow diagram of Figure l, Section 3.2.)

3.4.1 Structural Modeling

The beginning of the Problem Formulation Phase occurs in the mind of the analyst. He con-

templates the problem, decides what he needs to know, and constructs a mathematical model whose

solution, he hopes, will provide relevant answers to his questions. He will, naturally, require

computational tools to solve his mathematical problem and, fortunately or unfortunately, the

available tools have a strong influence on the analyst's choice of a mathematical problem. It

would, after all, do no good to formulate a problem that could not be solved.

The range of choice in mathematical problem formulatlon provided by NASTRAN is, however rich

in detail, limited to one basic approach, namely the use of ffnite element structural models.

This means that the substitute mathematical problem refers to an idealized model with a finite

number of degrees of freedom, a particular selection of topoloqical objects (grid points and ele-

ments), and a limited range of structural behavior. The relevance of the behavior of the ideal-

ized structural model to the analyst's questions clearly depends on the particular choice of

components for the model. This procedure, referred to as "structural modeling," is the most im-

portant step in the problem formulation phase, since the results of an analysis can be no better

than the initial assumptions.

The User's Manual contains a chapter on structural modeling. Section 14 of the Theoretical

Manual describes some advanced modeling techniques that utilize special features of NAST_N. For

the present, a small example will serve to indicate the general nature of the modeling process

and some of the features of NASTRAN that relate to it.

Figure la Shows a typical aircraft structure, a ring frame with a partial bulkhead acting as

a floor support. Although poor results are obtained when such structures are analyzed without
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considering the shell to which the frame is attached, the analyst may have a special reason for

doing so. The resulting idealized model of the frame can, in any case, serve as part of the model

for the complete shell.

The idealized model selected by the analyst, Figure Ib, contains

13 grid points

4 Bar elements (B)

2 Rod elements (R)

2 Triangular Plate Elements iT)

3 Quadrilateral Plate Elements (9)

Each grld point has six degrees of freedom (three translations and three rotations). The

analyst has, however, elected to analyze the response of the frame to a pair of vertical loads so

that it is unnecessary to consider out-of-planemotions of the frame. The out-of-planemotions

are eliminated by applying single point constraints to three of the degrees of freedom (two rota-

tions and one translation)at each gridpoint (This can be implementedwith a single data card).

One of the necessary tasks in preparing input data is to specify the location of grid points.

In NASTRAN grid point locations can be specified by rectangular,cylindrical or spherical coordi-

nate systems (see Figure 2) and there may be an unlimited number of coordinate systems of each

type in a given problem. All that is required is that they be related, directly or indirectly,

to each other and to a "basic" coordinate system, which is rectangular. In the example of Figure

l, the analyst found it convenient to locate grid points on the ring frame (points l to 4) with a

cylindrical coordinate system and to locate points on the floor bulkhead (points 5 to 13) wlth a

rectangular coordinate system.

A separate task Is the selection of coordinate systems to express the components of motion

at grid points. In the example of Figure l, the coordinate systems for motion have been selected

to be identical to the coordinate systems for grid point location, although this is not required.

It will be noted In Figure Ib that the grid points for the ring frame are located on the outer

edge of the frame rather than along Its centerllne. Thls wiii not result in poor accuracy If the

provlsion for offsetting the neutral axis of Bar elements is exercised. Relnforclng Rod elements

(R1 and R2), which have axial stlffness only, are placed between grid points II, 12, and 13 to

3.4-2

V

V



v

PROBLEM FORMULATION

simulate the stiffener along the centerline.

The Plate elements (T's and Q's) are selected to contain membrane (plane stress) properties

only, since out of plane bending is precluded by the nature of the loading. No restraint on in-

plane rotation (9z) is provided by the plate elements so that the Bz component of motion must be

eliminated by more single point constraints at gridpoints 6 to 13. A special problem occurs at

grid point 5 because of the requirement to maintain compatibility of inplane rotation between the

adjacent bar element (B4) and the adjacent triangular plate (Tl). The problem is solved by means

of a multipoint constraint between inplane rotation (Bz) at grid point 5 and the vertical motions

(Uy) at grid points 5 and 6. The equation of constraint is

Bz5 - Uy5 " Uy6 (1)

x5 - x 6

Additional single point constraints are required along the centerline of symmetry to con-

strain motions in the x direction (including the e direction at gridpoint l). A special type of

single point Constraint, known as a reaction, is used to constrain vertical motion at grid point

13. Constraints of this type are automatically removed when a static analysis is followed by a

dynamic analysis. In addition, a special check calculation is provided (see Section 3.5.5) to

determine whether the input impedance at reaction points is correct.

It will be noted that the grid points in Figure l have been numbered consecutively starting at

the top. More than a sense of orderliness is involved since the sequencing of grid point numbers

a??ects the bandwidth o? the stiffness matrix and the resulting computer solution time (see

Section 2.2). Grid point sequencing strategy is discussed in the User's Hanual. The main idea is

that the arithmetic differences between the sequence numbers of grid points that are physically

adjacent should be minimized.

In order to facilitate grid point sequencing for the preservation of bandwidth, the user is

permitted to specify grid point numbers in two different ways. The external identification numbers

can be assigned to grid points in any manner the user desires. Element connection and load infor-

mation prepared by the user refers to the external identification numbers. The intern@.) sequence

numbers are generated by the user in a paired list that relates external and internal numbers.

Slnce the internal sequence numbers appear nowhere else in the input data, they may easily be

changed, if desired, to reflect an improved banding strategy. Preparation of the paired llet is
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optional and the'sequence of the external identification numbers will be used if the 9aired list

is not provided.

Another sequencing feature of NASTRAN is the ability to insert new grid point sequence numbers

anywhere in an established list. This is done by the use of Dewey decimal notation, similar to

that found in public libraries.

3.4.2 Input Data Analysis

We have now arrived at the point in problem formulation where the digital computer appears on

the scene. The user assembles the information discussed above (plus a great many details that

were not mentioned) and enters it on punched cards that are input to the computer. In problems

that have many grid points arranged in regular patterns he may elect to write a small auxiliary

program that will prepare and punch most of the input data cards (or their card images on magnetic

tape). Such "supermarket" programs (so called because they can produce a shopping cartload of

data cards) are a regular internal feature of some structural analysis programs but not of

NASTRAN. They were not included because they become quite intricate, and hence, difficult to use,

as they are given the generality that is needed for diverse applications. It is easier, on the

average, to write a new supermarket program for each type of application. The user can, by means

of the ALTER feature (see Section 1.2), incorporate such subroutines into NASTRAN.

When assembled the NASTRAN data deck consists of the following four parts:

I. Executive Control Deck

2. Substructure Control Deck (optional)

3. Case Control Deck

4. Bulk Data Deck

The Executive Control Deck identifies the Job and the type of solution to be performed. It

also declares the general conditions under which the job is to be executed, such as, maximum time

allowed, type of system diagnostics desired, restart conditions and whether or not the job is to be

checkpointed. If the job is to be executed with a rigid format, the number of the rigid format is

declared along with any alterrations to the rigid format that may be desired. If Direct Matrix

Abstruction is used, the complete DMAP sequence must appear in the Executive Control Deck.

The Substructure Control Deck is included only when Automated Multi-stage Substructuring is

used. It defines the general attributes of the Automated Multi-stage Substructuring capability

and establishes the control of the Substructure Operating File (S_F)
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The Case Control Deck defines the subcase structure For the problem, makes selections from

the Bulk Data Deck, and makes output requests for printing, punching, and plotting. The subcase

structure for each of the rigid Formats is described in the User's Manual. Loading conditions,

boundary conditions, and other items are selected from the 3ulk Data Deck in order to define the

structural model for each subcase.

The Bulk Data Deck contains all of the details of the structural model. Much of this deck is

associated with the definition of the grid points (grid cards) and the manner of connecting the

grid points with elements (connection cards),

A number of important preliminary operations are performed on the data deck by the Input File

Processor. It sorts the Bulk Data Deck, and stores it on the New Problem Tape. It checks the

data cards For fatal errors. It creates the data blocks used by functional modules. If Fatal

errors are detected, suitable error messages are written and the execution is terminated.

3.4.3 Geometry Processor and Structure Plotter

The various parts of the Geometry Processor (see Figure I of Section 3.2) perform the follow-

ing general tasks:

I. Generate all required coordinate system transformation matrices and determine the

locations of all grid points in the basic coordinate system,

2. Replace external grid point numbers with their internal (sequential) indices.

3. Generate multipoint constraint equations and lists of single-point constraints.

4. Generate flags indicating the displacement components which _re members of each displace-

ment vector set (see Section 2.1.5).

Grid points may be defined in terms of the basic coordinate system or in terms of "local"

coordinate systems (see Section 3.4.1). The Geometry Processor calculates the location and orien-

tation of each local coordinate system relative to the basic system. This information is saved

for later use by the various modules In making coordinate system transformations. The basic

system is used for plotting (see Section 13).

As explained in Section 3.4.1, coordinate systems for expressing components of motion can be

freely selected so that, for example, each grid point n_y have a unique dlsplacement coordinate

syst_ associated with it. The collection of all displacement component directions in their own
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coordinate systems is known as the "global" coordinate system. All matrices are formed and all

displacements are calculated in the global coordinate system.

The Structure Plotter is run after the second phase of the Geometry Processor. At this stage

of the execution there is sufficient geometrical information in suitable form to prepare a plot of

the undeformed structure.

3.4.4 Assembl X of Structrual Matrices

The Element Matrix Generator (EMG) and the Element Matrix Assembler (EMA) generate the

stiffness, mass, and damping matrices for the structural model. For efficiency in restart,

particularly when changing from statics to dynamics problems, the structural matrices, [Kgg],

[K4gg], [r_g] and [Bgg], are assembled by four separate executions of EMA. EMG generates the var-

ious types of structural matrices on a selective basis. A third part of the matrix assembly matrix

operation (SMA3) adds the contributions of the general elements (see Section 5.7) to the stiffness

ma tri x.

The Element Matrix Generator refers to the appropriate "element" routines for calculation

of the stiffness, mass and damping matrices for each element. The elements available for use are

described in Section 5. The matrices for each element are initially generated in an element

coordinate system that is characteristic for each element type. The element matrices are trans-

formed to the global coordinate system prior to transfer to direct access secondary storage.

The Element Matrix Assembler assembles several columns of the structural matrices at one

time. The number of columns assembled in one operation is limited by the space available in

main storage. The required element matrices are transferred from secondary storage using the

direct access read operation. The completed columns of the structural matrices are written on

secondary storage by using the regular NASTRAN pack routines.

Prior to writing the completed matrices for each grid point on secondary storage devices, they

are checked for singularities at the grid point level. Singularities remaining at this level,

following a check of a llst of the single-point constraints and the dependent coordinates of the

multlpoint constraint equations and/or rigid elements, are treated as warnings to the user or, on

option, are automatically constrained. They are treated only as warnings because it cannot be

determined at the grid point level whether or not the singularities are removed by other means,

such as by general elements or by multipoint constraints and/or rigid elements in which these

singularities are associated with independent coordinates.
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The user has the option* of requesting the program to automatically remove the strongest com-

bination (weakest structure) singularities. However, this is not failsafe since the orientation

of the actual grid point singularities may not be parallel to the displacement coordinate systems

at the corresponding grid points and, in dynamic problems, the inertial forces due to the masses

may be constrained incorrectly. Also, if the user has specified omitted points, rigid body support

points, and/or multipoint constraint equations and rigid elements, these affected degrees of freedom

may be overridden by requesting automatic removal of the strongest combination singularities.

Singularities are detected by examining the diagonal term for scalar grid points and the 3 x 3

matrices located along the diagonal of the stiffness matrix and associated with the rotational and

translational degrees of freedom for geometric grid points. If the diaqonal term for a scalar

point is null, this fact is noted in the Grid Point Sinqularity Table (GPST). If either of the

3 x 3 matrices, associated with a geometric point, is singular, the diagonal terms and the 2 x 2

minors are examined to determine the order of singularity and the column or columns associated

with the singularity. The order and locations of any singularities at geometric grid points are

added to the GPST.

Although the matrices generated by the Structural Matrix Assembler are symmetric, complete

columns are generated and retained for efficiency in succeeding matrix operations. This is nec-

essary because all matrix operations are performed one column at a time (see Section 2) and in

dynamics apolications the matrices are not necessarily symmetric. Moreover, the availability of

symmetric matrices by rows or by columns is advantageous in some of the matrix operations.

v

"At present, this option can be exercised only by means of a DMAP alter in the Executive Control
Deck. See Section 5.10 of the User's Manual for details.
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b. Idealized structural model.

Figure I. Example of structural modeling.
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Figure 2. Olsplac_ent coordinate syste_ns.
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3.5 CONSTRAINTS AND PARTITIONING

Structura] matrices are initially assembled in terms of the set, Ug, of all structural grid

points, which excludes only the set, ue, of extra points used in dynamic analysis. This section

will describe the subsequent reduction of the structural matrices to the set, u_, which is the

set of coordinates that remain after all constraint and partitioning operations have been perfor-

med, and which is, therefore, the first set to be evaluated in static analysis.

The structural matrices whose assembly is discussed in the preceding section are:

[Kgg] the structural stiffness matrix due to elastic structural elements

[K_g] the structural damping matrix of imaginary stiffness coefficients

[Bgg] the viscous damping matrix due to damper elements

[Magi the structural mass matrix

The reduction procedures will be explained in full for the [Kgg] matrix. Procedures for the

other matrices will be shown only when they differ from those for [Kgg].

Repeated use will be made of the notation system described in Section 3.3, to which the

reader's attention is directed.

3.5.1 Mujtipoint Constraints and Rigid Elements

Multlpoint constraints and rigid elements are used to constrain one or more degrees of

freedom to be equal to linear combinations of the values of other degrees of freedom. In

the former case, the user must provide explicitly the coefficients of the constraint equa-

tions while, in the latter case, he needs to provide only the connection data; the program

internally generates the required coefficients. The mathematical details of the generation

of these coefficients are discussed in Section 3.5.6.

The constraint equations resulting from the use of multlpoint constraints and rigid ele-

ments together can be expressed in the form

[Rg](Ug} - O, (I)

3.5-1 (12/31/77)
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where the coefficients are either supplied explicitly by the user (in the form of multipoint

constraint equations) or are internally generated by the program (in the case of rigid elements;

see Section 3.5.6). The user also specifies the degrees of freedom that are made dependent by

the equations of multipoint constraint and by the rigid elements, so that the {Ug} matrix may

immediately be partitioned into two subsets,

lunl

{Ug} = lUm_ (2)

where the set, um, is the set of dependent degrees of freedom.

cients is similarly partitioned

so that Equation l becomes

The matrix of constraint coeffi-

[Rg] - [Rnl Rm] , (3)

[Rn]{U n} + [Rm]{U m} = 0 (4)

The constraint matrix can, therefore, be formed as

[Gm] = -[Rm]'l[Rn], (S)

[Rm] is a nonslngular matrix.

so that Equation 4 may be stated as

{um} = [Gm]{Un} • (6)

Prior to the imposition of constraints, the structural problem may be written as

[Kgg]{Ug} : {Pg} , (7)

or, partitioning in terms of the coordinate sets, un and um

L J: J uoS

3.S-la (12/29/78)
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Bars over symbols are used to designate arrays that are replaced in the reduction process.

The addition of constraints to the structure requires that the forces of constraint be added

to the equilibrium equations. It is Shown in Section 5.¢ that the forces of constraint are pro-

portional to the corresponding coefficients in the constraint equations. Thus, writing the equi-

librium and constraint equations together in partitioned form,

L-Gm l-I I q

where (qmm} is the vector of constraint Forces on {Um}.

gives

kO "

m

Straightforwardelimination of um and qm

['Knn+ KnmGm + GmTKnmT + GmTKmmGm]{Un}

(9)

- CFn} + [Gm]T{Pm} , (lO)

V

or

where

and

[Knn]{Un} - {Pn} , (II)

[Knn] " [Knn + KnmGm + GmTKnmT + GmTKmmGm] ' (12)

{Pn} - [_n} + [Gm]T(Pm} (]3)

The initial partition of Kgg and the operations indicated by Equations 5, ]2 and ]3 are per-

formed by appropriate modules of the program. The constraint matrix, Gm, is used in structural

matrix reduction (Equation 12), load vector reduction {Equation 13) and data recovery

(Equation 6). It is saved for these purposes in an auxiliary storage file.

K4
The other structural matrices, [ gg], [Bgg] and [Mgg], are transformed by formulas that are

identical in form to Equation 12.

PRECEDING PAGE BLANK NOT FIL_fED
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The forces of constraint due to multipoint constraints and rigid elements are not available as

part of the standard calculations in the program, but may be obtained in statics and real eigen-

value problems by ALTERing in the module EQMCK and requesting these forces in the Case Control

Deck.

as

The vector of constraint forces {q_} on {Unl} is obtained from the middle row of Equation g

{q_} = . {pm} + [Knm]T {Un} + [Kmm ] {Um} (13a)

be the vector of constraint forces on {Un}. Then, from the first row of Equation
m

Let qn

9, it is clear that

{q_} . [Gm ]T {q_} (13b)

The resultant forces of constraint due to multipoint constraints and rigid elements are

therefore given by

)°
3,5.2 Single Point Constraints

Single point constraints are applied to the set, us , in the form

{Us) • {ys) , (14)

where {Ys } is a vector of enforced deformations, any or all of whose elements may be zero. The

set, un, is partitioned into us and uf(the free or unconstrained set)

(Un} - . (15)

s

The stiffness matrix, Knn, is similarly partitioned

[Knn] . IK_T. T (161
L_fs I Ks_

The complete structural equations including the single point forces of constraint, qs' may be

written in partitioned matrix form as

3.,_-3 (12/31/77)
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Straightfor"ward elimination gives

[Kff] {uf }

(17)

- {_-f} - [Kfs]{Y# • ;p. f}. (18)
#

The forces of constraint are recovered by means of the middle row of Equation 17, i.e.,

{qs } " -{Ps} + [KfsT]{uf} + [Kss]{U s} (19)

Thus all three of the distinct partitions of Knn (i.e., Kff, Kfs and Kss) are needed in subse-

quent calculations, and are placed in auxiliary storage. For the other structural matrices

4
(Knn, 8nn, and Mnn) only the (if) partitions are saved. The assumption is made, implicitly, that

the effects of the other structural matrices on the single point forces of constraint may be ig-

nored.

V

3.5.3 Partitionlnq

At user option the set of free coordinates, uf, may be partitioned into two sets, uo and Ua,

such that the uo set is eliminated first. Thus

. I'ua_
_uf_ _o_ (20)

The equilibrium equations after the elimination of constraints (Equation 18) may be written

in partitioned form as

* I;o!L_aoT,_ooJ(°o._ (2l)

Rearrange the bottom half of Equation 21:

[Koo]{U o} " (Po } - [Kao]T{u a} , (22)

and solve for (Uq}:

(Uo} " [Koo]'l{Po } " [Koo]-l[Kao]T{ua } (23)
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(r_ote that in practice stiffness matrices are never inverted due to excessive computer running

time. The practical alternative will be explained presently.)

Substitute for uo into the top half of Equation 21:

['_aa " KaoKoo'IKaoT]{ua } = {_a } - [Kao][Koo]'I{Po } . (24)

It is convenient to define the matrix

[Go] - -[Koo]'l[Kao ]T , (25)

so that Equation 24 becomes

[K-aa+ KaoGo]{U a} = {_a } + [Go]T{Po } ,

where advantage is taken of the symmetry of [Koo].

Following the practice of condensation established in preceding subsections,

[Kaa]{U a} = {Pa } ,

where

(26)

(27)

[Keel = [_aa] + [Kao]CG o] , - (23)

{Pa} = {_'a} + [Go]T{Po} (29)

The [Go] matrix defined in Equation 25 is obtained practically from the solution of

[Koo][Go] = -[Kao ]T , (30)

where [Kao]T is treated as a set of load vectors. Each such vector produces a column of [Go].

The [Koo ] matrix is first decomposed into lower and upper triangular factors, using a subroutine

based on the techniques described in Section 2.2. The additional steps required in solving the

matrix equation [A]{x} = {b} are described in Section 2.3.

Once (ua} is obtained the set of omitted coordinates, {Uo}, is obtained as follows. Define

the set {u_} as the solution of

[Koo](U _} " {Po } (31)

_ote that the triangular factors of [Koo] obtained in connection with Equation 30 are saved

3.5-5
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for use in connectionwith EQuation 31 which cannot be solved until the load vector {Po} is for-

ned. Then, using Equations 25 and 31 in Equation 22,

{uo} - {u_} + [Go]{Ua} . (32)

Partitioning,which is an optional feature of the program, has a number of important uses.

The first is as an aid to improved efficiency in the solution of ordinary static problems where it

functions as an alternative to the Active Column technique (see Section 2.2) in reducing matrix

bandwidth. In this application the user puts into the set ua those degrees of freedom that are

excessively coupled to the remainder.

In a related application,members of the set ua are placed along lines or in planes of the
=,

structure such that the remaining uo grid points in different regions are uncoupled from each other

as shown In the wing structure of Figure I. The grid points are sequenced so that all grid points

in region (I) precede those in region (2), etc. As a result the decomposition of [Koo] is faster

oecause the bandwidth is smaller (reduced to approximately I/3 in the example). The ua set is

small compared to uo so that its solution is not particularlytime consuming. Even here proper

grid point sequencing can introduce banding into the [Kaa] matrix.

Matrix partitioningalso improves efficiency when solving a number of similar cases with

stiffness changes in local regions of the structure. The ua and uo sets are selected so that the

structural elements that will be changed are connected only to grid points in the ua set. The

[Koo] matrix is then unaffected by the structural changes and only the smaller [Kaa] matrix need be

decomposed for each case. An application of partitioningthat Is important for dynamics is th{

Guyan Reduction, described in the next subsection.

3.5.4 The Guyan Reduction

The Guyan Reduction (Reference I) is a means for reducing the number of degrees of freedom

used in dynamic analysis with minimum loss of accuracy. Its basis is that many fewer grid points

are needed to describe the inertia of a structure than are needed to describe its elasticity with

comparable accuracy. If inertia properties are rationally redistributed to a smaller set of grid

points, the remaining grid points can be assigned to the uo set described in the preceding sub-

section and eliminated, leaving only the smaller ua set for dynamic analysis.

V
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In the Guyan Reduction, the means by which inertia (and damDing) are redistributed is to

consider the [GO] matrix of the preceding subsection as a set of rigid constraints, such that

{%} = [Go]{Ua} (33)

The [GO] matrix now has the same implications for the uo coordinates that the multipoint con-

straint matrix, [Gm], has for the um coordinates (see Equation 6). The reduced structural mass

matrix is, by analogy with Equation 12,

[Maa] " [Maa + HaoGo + GoTMao T + GoTHoo Go] (34)

The reduced damping matrices, [Kaa4] and [Baa], are formed in the same manner. The structural

stiffness matrix, [Kaa], is given by Equation 28. The reduced dynamic load vector is, by analogy

with Equation 13,

{Pa} " {Wa + GoTPo} ' (35)

The approximation made in the Guyan Reduction is that the term {u_} in Equation 32 is neglec-

ted; i.e. that the deformations of the uo set relative to the ua set due to inertia and other

loads applied to the uo set are neglected. The error in the approximation is small provided that

the ua set is judiciously chosen. The selection should be based, in part, on an estimate of the

relative deformations, {u_}. Thus the members of ua should be uniformly dispersed throughout the

structure and should include all large mass items. The basic assumption made in the Guyan

Reduction Is identical to that made in forming consistent mass matrices for individual elements,

see Section 5.5.

3.5.5 Special Provisions for Free Bodies

A free body is defined as a structure that is capable of motion without internal stress.

The stiffness matrix for a free body is singular with the defect equal to the number of stress-

free (or free body) modes. A solid three-dlmensional body has six or fewer free body modes.

Linkages and mechanisms can have a greater number. No restriction is placed in the program on

the number of stress-free modes in order to permit the analysis of mechanisms.

The presence of free body modes alters the details of many of the calculations in structural

analysis. In static analysis by the displacement method, for example, the free body modes must be

restrained in order to remove the singularity of the stiffness matrix. We are concerned, in this

3.5-7
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section, with some of the special provisions of the program for the treatment of free bodies In-

cluding the specification of determinate reactions for use In static analysis, the evaluation of

the inertia properties of free body modes for use in dynamic analysls, and a special diagnostic

procedure for the detection of inconsistent constraints. Other special provisions are the calcu-

lation of inertia relief loads, treated in Section 3.6.3, and the procedures employed in the mode

acceleration method of dynamic data recovery, treated in Section 9.4.

If a problem concerning a free body includes both static and dynamic solution cases, a sub-

set, ur, of the displacement vector, ua, must be constrained during static analysis. The subset,

ur, is specified by the user such that the members of the set are Just sufficient to eliminate the

stress-free motions without introducing redundant constraints. The complete static equilibrium

equations are

or, partitioning ua

[Kaa]{u a} " {Pa } , (36)

into ur and u_,

I+:!" (37)

KTr I KrrJ

In static analysis the ur set is rigidly constrained to zero motion so that the final prob-

lem solved in static analysis Is

[K_]{u_} - {p_} (38)

The forces of reaction, {qr }, which are of interest in their own right and which are also

needed in the solution of inertia relief problems, are evaluated from the equation

{qr } = -{Pr} + [K_r]T{u ¢} , (39)

or, substituting for {u_} from the solution to Equation 38,

{qr } = -{Pr } + [K_r]T[K_]'I{P _} (40)

It is convenient to define the matrix

[D] = -[K_]-l[K_r ] , (41)

V
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so that, taking advantage of the symmetry of [K_],

{qr} - -{Pr } - [D]T{P_} .

ORIGINAL PAGe" _
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(42)

The [0] matrix is also used in the evaluation of the free body inertia properties of the structure.

It is obtained practically by solution of the matrix equation

[K_][D] = [K_r] • (43)

[K_] is decoml}osed into triangular factors, [Lt_ ] and [Uz_], which are saved and used in the

solution of Equation 38 after the load vector {P_} has been evaluated.

It may be seen from Equation 37 that, in the absence of forces on the u_ coordinates,

{u_} = -[K_£]'l[K_r]{Ur } = [O]{ur} (44)

Thus the [D] matrix expresses the rigid body motions of the structure in response to displace-

ments imposed at the reaction points.

The mass matrix, partitioned according to the u_ and ur sets, is

If Equation 44 is taken as an equation of constraint for free body motion, the reduced mass

matrix referred to the ur coordinates is, by analogy with Equation 34,

[mr] . [Mrr + M_rTO + DTMzr + oTH_D] . (46)

The free body mass matrix, [mr], and the rigid body transformation matrix, [D], complete the spe-

cification of the free body inertia properties that are used in dynamic analysis.

It is desirable to have a check on the compatibility of the single point and multipoint con-

straints previously placed on the structure (including the constraints imposed by the rigid

elements) with the constraints placed on the reaction points, ur, Such a check is obtained

by noting that, if the u_ set is eliminated from Equation 37, the reduced stiffness matrix

referred to the ur set should be completely null. The reduced stiffness matrix is

3.5-9 (12/31177)
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[X] - [Krr - K_rTKz¢-IK_r]

" [Krr + K_rTO] (47)

The IX] matrix is computed by the program and its largest term is given to the user so that

he may take appropriate action. No automatic test is built into the program.

be nonzero for any of the following reasons:

I. Round-off error accumulation

The [X] matrix may

2. {ur} is overdetermined (redundant supports)

3. {ur} is underdetermined (K_ is singular)

4. The multipoint constraints and/or rigid element connectlvities are incompatible.

5. There are too many single point constraints.

3.5.6 Rigid Elements

3.5.6.l Introduction

Rigid elements provide a convenient means of specifying very stiff connections. The user

does not provide the required coefficients of the constraint equations directly. The program

internally generates them from the connection data.

Four rigid elements are presently available. One of them is a rigid pin-ended rod element

(RIGDR) and the other three are rigid body elements (RIGDI, RIGD2, and RIGD3). The use of these

elements is discussed in Section 1.4.2.2 of the User's Manual.

3.5.6.2 The RIADR Element

The RIGDR element (specified by the CRIGDR bulk data card) represents a pin-ended connection

between two grid points that is rigid in extension-compresslon.

Let A and B be two grid points connected by a RIGDR element and let , and ,
• UAl UA2' UA3 UBI

uB2, UB3 represent the translational components of motion (in the basic coordinate system) at

these points respectively. Let ¢I' ¢2' and ¢3 be the direction cosines (with respect to the

basic coordinate system) of the llne joining A to 8. Then, since the distance between the points

A and B remains unchanged, the following condition is satisfied for small displacements:

V
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or, in matrix form,
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(UAl " UBl)_l + (UA2 " UB2)¢2 + (UA3 " UB3)E3 " 0 , (48)

L

V

(49)

Let U'Al,u_2, U'A3and U'Bl,u_2, U'B3be the translational components of motion at A and B in

in their respective local displacementcoordinate systems. These are related to the motion In the

basic coordinate system by the equations

and

luA11lu,11UA2 - [TA] UA2

UA3 UA3

lu lIUB2 = [TB] _UB 2

• (so)

• (s])

where [TA] and [TB] are (3 x 3) transformationmatrices from the respective local displacement

coordinate systems to the basic coordinate system.

Substitution of Equations 50 and 51 in Equation 49 gives

U_l1[_Ll L2 IL3][TA] _UA z "

Lug3
(UBl1ILl _'2 13][TB] ;UB 2 • (52)

t%

The above equation can be rewritten as

(UA1/[LAl (A2 _A3] _UA 2 "

u_k3 - (,%3 }

3.S-ll (12/31/77)
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, 6B2, 6B3 represent the modified direction cosines and are given by

and

[6Al ZA2 6A3] = [61 62 63][T A] , (54)

[_Bl _B2 _B3] " [61 62 _3][T B] (55)

Equation 53 is the single equation of constraint that represents a rigid pln-ended rod element

connection between the grid points A and B. Note that only the three translational components of

motion at each of the two points are involved in this equation. The rotations at the points are

not involved. Any one of the six translational components may be specified as the dependent degree

of freedom in a RIGDR element. The other five translational components are considered as reference

degrees of freedom. This is summarized in Table I.

If Equation 53 Is to be valid, it is necessary that the grid points A and B be non-coincident.

Otherwise, the direction cosines _l' _2' and 63 will be undefined. The program checks for this

condition.

Equation 53 will also not be meaningful if the direction of motion defined by the dependent

translational degree of freedom Is perpendicular (or nearly perpendicular) to the rod element

because, in that case, the corresponding modified direction cosine will be zero (or nearly zero).

The program checks for this condition also.

3.5.6.3 The RIGDi and RIGD2 Elements

The RIGDI and RIGD2 elements (specified by the CRIGDI and CRIGD2 bulk data cards) are similar

in that they both involve a single reference grid point and one or more dependent grid points. The

RIGDI element is the simpler and defines a rigid element connection in which all six degrees of

freedom of each of the dependent grid points are coupled to all six deqrees of freedom of the ref-

erence grid point. The RIGD2 element is more general and defines a rigid element connection in

which selected degrees of freedom of the dependent grid points are coupled to all six deqrees of

freedom of the reference grid point.

Consider a dependent grid point A that is rigidly coupled by means of a RIGDI or RIGD2 element

to a reference grid point B. For small displacements, the motion {uA} at the point A is related to

the motion {uB} at the point B by the equation

3.5-12 (12/2g/78) V
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UA4
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UA6
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0 0 0 (ZB-ZA) -(yB-YA)

0 I 0 -(ZB-ZA) 0 (XB-XA)

0 0 l (yB-YA) -(XB-XA) 0

0 0 0 1 0 0

0 0 0 0 l 0

0 0 0 0 0 1

OF PCOR QU_LIT/

UBl

UB2

UB3

UB4

UBs

UB6

• (s6)

where the motions are in the basic coordinate system and xA, YA' ZA and xB, YB' ZB are the basic

coordinates of the points A and B respectively.

Using relations similar to Equations 50 and 51, Equation 56 can be expressed in terms of the

motion in the local displacement coordinate systems of A and B by

!I
UA2

u,A4
"AS
UA6

TAT 0

S

0 TAT

F o
i -_ o ;

0

!

L. _

TB

0

I (%
o

...... )uB3

T8

• is7)

where TA and TB are (3 x 3) transformationmatrices from the local displacement coordinate systems

to the basic coordinate system and x = XB-XA, y - yB-YA and z = ZB-ZA. I is a (3 x 3) unit matrix.

Equation 57 can be written in compact form as

{uk} " [G]AB{U_} , (58)

where [G]AB is a (6 x 6) matrix. Each row of this [G]AB matrix corresponds to a dependent degree

of freedom of grid point A, and each column corresponds to a reference degree of freedom of grid

point B. Each element of this matrix represents a coefficient that corresponds to the coupling

of a particular dependent degree of freedom of grid point A with a particular reference degree

of freedom of grid point 8.
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Equation 5B defines a set of six linear equations of constraint that mathematically repre-

sent the rigid coupling of dependent grid point A to reference grid point B. In the case of a

RIGDI element, six equations of constraint are generated for eac.._..hhofthe specified dependent grid

points. In the case of a RIGD2 element, the equations generated correspond to those rows of

[G]AB that represent the specified dependent degrees of freedom of grid point A.

Let m be the total number of dependent degrees of freedom specified on a RIGDI or RIGD2

element. Then, the combination of Equations 58 for all of the dependent qrid points yields m linear

equations of constraint represented in matrix form by

{u'} = [G]B(U_} , (59)

where {u'} is an (m x l) vector of dependent degrees of freedom (in global coordinate system) and

[G] B is an (m x 6) matrix that represents the rigid coupling of the m dependent degrees of free-

dom to the six degrees of freedom of reference grid point B. Note that, in the case of a RIGDI

element, m is equal to six times the number of dependent grid points specified for the element.

The above results are summarized in Table I.

V

3.5.6.4 The RIGD3 Element

The RIGD3 element (specified by the CRIGD3 bulk data card) is the most general rigid element

and defines a rigid connection in which selected degrees of freedom of the dependent grid points

are coupled to six selected reference degrees of freedom. The six reference degrees of freedom can

be selected at one or more (up to six) reference grid points, but they should together be capable

of fully describing rigid body motion. In other words, the six reference degrees of freedom should

be so selected that they together represent six independent components of motion. The program checks

for this condition since otherwise it leads to the inversion of a singular matrix.

Let B be one of the (up to six) reference grid points in a RIGD3 element and let m be the

total number of dependent degrees of freedom specified on the element. Then, for small displace-

ments, just as In the case of a RIGDI or RIGD2 element, the m equations of constraint can be

expressed in terms of the motion of grid point B by the matrix equation

{u'} - [G]B{U _} , (60)

which is a re-stateenent of Equatlon 59. Note, however, in this case that the six degrees of

freedom of grid point B will not, in general, all be the required six reference degrees of freedom.

3.5-14 (12/29/78)
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Hence, Equation 60 does not give the required constraint equations.

Let U_l, u_2, u_3, UR¢,' UR5,' and U'R6 be the six specified reference degrees of Freedom (at least

some of which will be the degrees of freedom of grid point B) in the global coordinate system. Then,

these six degrees of Freedom are related to the motion of grid point B by the matrix equation

{u_) - [G]RB{U _} , (61)

which is similar to Equation 60 and where [G]RB is a (6 x 6) matrix.

Equation 61 can be re-written as

Note that CG]R_ will not exist if the six specified reference degrees of freedom do not together

define six independent components of motion. The program checks for this condition.

Substitution of Equation 62 in Equation 60 yields

{u'}.[G]BZG]  {u, (63)

The above matrix equation gives the required equations of constraint for a RIGD3 element.

-This is summarized in Table I.

3.5.6.5 Resultant Constraint Equations

The constraint equations for the rigid elements are generated in subroutine CRIGGP in module

GP4. This routine computes the required constraint equations for all rigid elements in a model by

means of Equation 53 (for all RIGDR elements), Equation 59 (for all RIGDI and RIGO2 elements),

and Equation 63 (for all RIG03 elements). Module GP4 then combines these constraint equations

for all rigid elements with the multipoint constraint equations supplied by the user to obtain the

resultant constraint equations (Equation I in Section 3.5.1) for the model as a whole. Once the

rigid elements and the multlpolnt constraint data are processed and the resultant constraint

equations are obtained by module GP4, no distinction is subsequently made between those constraint

equations that are due to rigid elements and those that are due to multipoint constraint data.

-v
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Grid points in the / l _
interiors of regions I fl I_
are placed in the / J _ lk

uo set / [ _ \

/ I"---'- / -- Grid points along
/ t _ _ these intertor 1tries
/ ; _ _ are placed in the

: /: :,:_l_ _.\ u,set

Figure 1. Use of partitioning to decouple regions of the structure.
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3.6 STATIC LOADS

3.6.1 Generation of Loads

In NASTRAN, static loads are applied to geometric and scalar grid points in a variety of

ways, including

I. Loads applied directly to grid points.

2. Pressure on surfaces.

3. Gravity loads, (internally generated).

4. Centrifugal forces due to steady rotation.

5. Equivalent loads resulting from thermal expansion.

6. Equivalent loads resulting from enforced deformations of structural elements.

7. Equivalent loads resulting from enforced displacements of grid points.

A force or a moment applied directly to a geometric grid point may be specified in terms of

components along the axes of any coordinate system that has been defined. Alternatively, the di-

rection of a force or a moment may be specified by a vector connecting a pair of specified grid

points or as the cross-product of two such vectors. A load on a scalar point is specified by a

single number since only one component of motion exists at a scalar point.

Pressure loads may be apolfed to triangular and auadrilateral pTates and to axlsymmetric

shell elements. The positive direction of loadlnq on a triangle Is determined by the order of the

corner grid points, using the right hand rule. The magnitude and direction of the load Is auto-

matically computed from the value of the pressure and the coordinates of the grid points. The

load is divided _ually to the three grld points.

The direction of pressure load on a quadr|lateral plate is determined by the order of fts

corner grld points which need not lle in a plane. The grid point loads are calculated by dividing

the quadrilateral into triangles in each of the two possible ways and applying one-half of the

pressure to each of the four resulting triangles. Severely warped quadrilaterals should be sub-

divided into triangles by the user in order to provide better definition of the surface.

The user specifies a gravity load by providing the components of the gravity vector in any

defined coordinate system. The gravitational acceleration of a translational component of motion,

3.6-I
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ai, at a geometric grid point is

ai = g'_i ' (I)

where _ is the gravity vector and _i is a unit vector in the direction of uI. For rotations, aI

is zero. The gravity load is then computed from

{pgr} = [Mgg]{a} , (2)

where [Mgg] is the mass matrix referred to the Ug displacement set. It should be noted that the

gravitational acceleration is not calculated at scalar points. The direction of motion at scalar

points is established indirectly by constraints and by other forms of coupling with geometric grid

points. The user is required to introduce gravity loads at scalar points directly.

A centrifugal force load is specified by the designation of a grid point that lies on the

axis of rotation and by the components of rotational velocity in a defined coordinate system. The

components of force acting on a rigid body in a centrifugal force field are most simply expressed

in a Cartesian coordinate system that is centered at the center of gravity of the body with axes

directed as shown below.
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The components of load are

{pCf}

STATIC LOADS

Px

Py

Pz
m z

M
X

.y

Mz

_ro

O

O

'yz

'xz

0

(3)

where m is the mass of the body, Ixz = fpxzdV, and lyz = fpyzdV. For use in the program, the com-

ponents of force and moment are transferred from the center of gravity to the grid point and its

local coordinate system; the elements of the mass matrix, Mgg, are used in the calculation of the

loads. Note, however, that the mass matrix is regarded as pertaining to a set of distinct rigid

bodies connected to grid points. Deviations from thls viewpoint, such as the use of scalar masses

or the use of mass coupling between grid points, can result in errors.

The equivalent loads due to thermal expansion are calculated by separate subroutines for each

type of structural element, and are then transferred from the internal coordinates of the element

to the coordinates of the surrounding grid points. The equations that define the equivalent forces

and moments are derived for each element in Section 5.

The user may define temperatures by more than one method. For BARS, RgDS, and PLATES the

temperature may be specified for each individual element. The temperature specification for BARS

and RgDS includes the average temperature and, in the case of the BAR element, the effective trans-

verse thermal gradient at each end. The temperature of a PLATE element can vary arbitrarily in

the directlon of the thickness, but It is assumed to be independent of position on the surface.

For all other elements that permit thermal expansion, and for BARS, RgDS, and PLATES if their tem-

peratures are not individually specified, the temperature is obtained by averaging the temperatures

specified at the grid points to which the element Is attached. Temperature-dependent thermal

expansion coefficients and elastic modult are stored in material properties tables which the user

applies to each structural element by specifying the code number of its material. The average

temperature of an element is used to determine its temperature-dependent material properties.

3.6-3 (4/1/72)
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Enforced axia] deformations can be applied to the one-dimenslonalelements (BARS and RODS).

They are useful in the simulation of misfit and misalignment in engineering structures. As in the

case of thermal expansion, the equivalent loads are calculated by separate subroutines for each

type of structural element. In the case of a bar, for example, the eauivalent loads placed at the

ends are equal to EA_u/_ where E is the modulus, A is the cross-sectional area, _u is the enforced

expansion, and _ is the length of the bar.

Enforced displacements at grid points are discussed in connectionwith single point con-

straints, Section 3.5.2.

V

3.6.2 Reduction of Load Vectors to Final Form and Solution for Displacements

The operations by which structural matrices and load vectors are reduced from the Ug set to

the u_ set have been described in Section 3.5. In the program, the reduction of load vectors to

final form is performed in a single module, (SSG2). The operations are summarized below.

I.
Partition the load vector, {Pg}, whose generation is described in the preceding subsection,

according to the set of coordinates, Um, that are restrainedby multipolnt constraints,

and the set, Un, that are not.

{Pg} = (4)

, Eliminate multipoint constraints.

{Pn} - {_'n}+ [Gm]T{Pm} (5)

3, Partition {Pn} according to the set of coordinates, Us, that are restrained by single

point constraints and the set, uf, of free coordinates.

{Pn} = (6) _

4, Eliminate single point constraints.

{Pf} = {_f} - [Kfs]{Ys} (7)

3.6-4 (7/1770)
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S, Partition {Pf} according to the optional partition scheme described in Section 3.5.3.

o

6. Eliminate the set of omitted coordinates, uo.

{Pa} = {_a } + [Go]T{P o} (9)

7. Partition {Pa } according to the set of coordinates, ur, that are restrained by free body

reactions, and the set, u_, that are not.

{P_} Is the load vector in final form.

In the program the displacement vector set, u_, is obtained from solution of the equation

[K_](u_} = (P_} , (ll)

in a separate module, (SSG3). It will be recalled, Section 3.5.5, that the triangular factors of

[K_] were previously computed In order to form the rigid body matrix, [D]. The operations per-

formed in SSG3 are the forward and backward passes through the triangular factors of [K_] (see

Section 2.3) for each loading condition.

o that describes displacements of the omitted set relative to the re-
The vector set, uo,

maining set (see Section 3.5.3) is also obtained in SSG3 from solution of the equation

[Koo]{U_ } = {po} (12)

The triangular factors of [Koo] were previously computed in order to form [Go].

Double precision arithmetic is used in the formation and triangular decomposition of struc-

tural matrices, so that significant error due to the accumulation of round-off is regarded as un-

likely. Such errors can occur, however, in exceptionally ill-conditioned problems (see Section

3.6-5 (7/I/70)
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IS.l). A test is provided in NASTI_AN on the solution of Equations (ll) and (12) that will indi-

cate the presence of trouble to the user.

In the test a residual load vector is first obtained from

_P_} = {P_} - [K_]{u_} (13)

The work done by the residual load vector is then compared wlth the work done by the applied load

vector in the residual energy criterion,

Ce " (14)

{ug}T{P_}

Iterative improvement, such as might be obtained by computing second and higher order resi-

dual load vectors,

{6(n)P} = {6(n'l)P} - [l]{6(n'l)u} , (IS)

is not attempted. The gain in accuracy from iterative improvement is largely illusory because

errors made in the formation of [K], which are of the same order as those made in the triangular

decomposition of [K], are uncorrected. This matter is discussed more fully in Section IS.l.

3.6.3 Inertia Relief

When a free body is subjected to loads that are not in equilibrium, the body is accelerated

in its rigid body (or more generally, free body) modes. If the time rate of change of the applied

loads is small co_ared to the frequency of the lowest elastic mode of the system, an approximate

state of equilibrium exists between the applied loads and the inertia forces due to acceleration.

Stresses in the body may be computed, in this case, from an applied load distribution that in-

cludes the inertia forces. The term "inertia relief" is applied to the effect that the inertia

forces have on the stresses. In order for an "effect" to be defined, a condition in which the

effect does not exist must be imagined. In the case of inertia relief, the "effect-free" condi-

tion is one in which the free body is restrained by determinate supports. The choice of support

points is arbitral, but usually corresponds to a natural or customary location (e.g. the inter-

section between wing and fuselage of an aircraft). Although the condition including inertia ef-

fects is the correct solution, the analyst may also be interested in the results for the supported

condition.

3.6-6 (711170)
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The general procedure for including inertia relief in static analysis is as follows:

I. Select, from the displacement vector {Ua}, a subset {ur} of determinate support points as

has been discussed in Section 3.5.5.

2. Find the accelerations {_r } due to the applied loads {Pa }. This requires evaluation of

the rigid body mass matrix [mr] referred to points (Ur}.

3. Calculate accelerations at all other points {u_} and the corresponding inertia forces.

4. Add the inertia force vector to the applied load vector and solve for the displacements

{u_} while the structure is rigidly restrained at points, {Ur}. The forces of reaction

will be zero.

The equations of motion for the body, expressed in terms of the displacements, u r, can be

[mr]{U r} = ilrr} •

written

[mr] is the mass matrix reduced to the ur coordinates.

[Maa ] matrix by means of Equation 46 of Section 3.5.5.

to the ur coordinates. It is numerically equal to

luated in Equation 42 of Section 3.5.5.

-(qr} (16)

It iS evaluated from partitions of the

{)r } is )he applied load vector reduced

-{qr }, the set of determinate reactions, eva-

Solution of Equation 16 gives

{Ur} . .[mr]'l{qr} (17)

The accelerations of the remaining points {u_}, assuming uniform acceleration as a rigid

body, are obtained from Equation 44 of Section 3.5.5,

{u_} = COl{%} (18)

The inertia forces acting on the u_ coordinates are, utilizing the partitions of the [Maa]

matrix shown in Equation 45 of Section 3.5.5.

{P_} • -[M_]{U_} - [M_r]{_ r}

• [M_D + Mzr][mr]'l{qr } . (19)

3.6-7 (7/1/70)
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The vector {P_} is added to the applied load vector {P_} in problems where the inertia relief ef-

fect is included. Since [mr] is usually of small order, its inversion is not troublesome.

o
The inertia relief effect is also included in the calculation of the displacement set, %,

that expresses the motions of the omitted coordinates, uo, relative to the ua coordinates. The

inertia force vector for the omitted coordinates is

{P_} : {-MooUo - MaoTua } (20)

V

and

Now, if acceleration as a rigid body is assumed,

fuji,--. [_]{_'r} - .[_][mr]-l{qr}
{b'a} = Ur

{Go} = [Go]{Ga} .

Thus, the inertia force vector for the omitted coordinates is

{Pio} = [MooGo +MaoT][_][mr]'l{qr } ,

which should be added to {Po } in Equation 12.

, (21)

(22)

(23) V
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3.7 DATA RECOVERY

Data recovery in static analysis by the displacement method is performed in two steps:

I. Recovery of displacement sets that were eliminated during the reduction of the stiffness

matrix to final form, resulting in the formation of the complete grid point displacement

vector, Ug.

2. Recovery of internal f_rces and stresses in structural elements, using the grid point

displacement vector, Ug, to define the displacements at the corners of each element.

Margins of safety are also calculated. Separate subroutines are used for each type of

element.

The above steps are discussed in separate subsections.

3.7.1 Recovery of Displacements

o are discussed in Section 3.6.2. The remaining
Solutions for the vector sets, u_ and uo,

operations required to recover the complete grid point displacement vector, Ug, are as follows:

I. Merge ur, whose elements are all zero in static analysis, with u_ to form ua.

_--)lU_rl-- {Ua} (l)

2. Recover the omitted coordinates, uo .

{%} • [Go]{Ua} + {Uo°} . (2)

3. Merge uo and ua to form the vectors of free coordinates, uf.

4. Evaluate the single point constraint set, us.

{Us} . {ys} (4)

{Ys } is the vector of enforced displacements.

S. Merge uf and us to form un.

3.7-1
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8. Recover the multipolnt constraint (and rigid element) set, um.

(um} " [Gm]{un} (6)

The forces of constraint due to multipoint constraints and rigid elements are not available

as part of the standard calculations in the program, but may be obtained in statics and real

eigenvalue problems by ALTERing in the module EQMCK and requesting these forces in the Case Control

Deck. The constraint forces are given by

( ) , (6a)

where

and

37 73_R _UALiTI

{q_} " - {Pm } + [Knm]T {un} + EKmm] {um} • (6b)

7. Merge un and um to form Ug.

{q_} " - [Gm]T {q_} (6c)

(_ * {Ug} (7)

The matrices [Go] and [Gm], used in the data recovery process, were generated during the

reduction of the structural matrices to final form and were placed in auxiliary storage.

A miscellaneous task that is performed in the same module that recovers Ug is the recovery

of the single point forces of constraint,

{qs } " -{Ps} + [Kfs]T{uf} + EKss]{U s} (B)

3.7.2 Recovery of Stress Data

Internal forces and stresses in structural elements (as well as strains and curvatures in

certain elements) are calculated from knowledge of the displacements at the grid points bounding

the element and the physical parameters of the element, including geometric properties, elastic

3.7-2 (12/2g/78)
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p_perties, and t_perature. The equations by which internal forces and stresses a_ calculated are

contained in a separate subroutine for each type of el_ent. They are discussed in Section 5.

In the calculation p_cedure, the stress r_ove_ para_ters for as many el_ents as _ssible

are placed in the high speed memo_. The stresses are c_puted fr_ the Ug vector for the first

loading condition, and a_ placed in peripheral storage. The Ug vectors for other loading condi-

tions are then p_cess_ s_uentially. The p_cedure is repeat_ for addltlonal st_ctural elements

(if any) that could not be stored initially. The procedu_ that has been describ_ _kes minimum

use of INPUT/OUTPUT data transfers. For most el_ents, I/O transfers a_ the limiting factor on

¢_putational spe_ in stress data recover.

A number of different kinds of stress data are available for each _pe of el_ent. With the

BAR el_ent, for example, the user can request any or aTl of the fo11_ing:

- Bending moments at both ends in _o planes.

- Transverse shear forces in two planes.

- Axial force.

- Torque.

- _e average axial stress.

- The extensional st_ss due to bending at four points on the cross-section at both ends.
The points are specified by the user.

- The maxi_m and mini_m extensional st_sses at both ends.

- Margins of safety in tension and c_p_ssion for the whole ele_nt.

- N_ber of digits of accuracy for the element forces.

The capability _ists for certain elements to indicate the nunW0erof significant digi_ of

accuracy for stresses and forces. N_erlcal p_bl_s _y exist in using the differences in dis-

plac_ents to calculate st_sses and fo_es. For instance, displacements _y be la_e relative

the overall st_ctu_, yet the differences _y be s_ll _lative _ an individual el_ent.

The pr_islon is calculat_ by

hi " "l°glO  TIsTTT.,:TGjp" "l°glo-5-. '

3.7-3 (12/29/78)
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where _i is the specific stress component; Di is calculated using absolute values for the stress

equations, Sij are the stress matrix components and uj are the displacementcomponents. The number

of slgnificantdigits, Ndi, is calculated by

Ndi - IOglo(ZP) - hi , (8b)

where p is approximately the number Of bits in the mantissa for the machine being used.

: _: T_e-resuitS are printed directly in a format unique tO the element type instead of by the

output file processor. Only the results for those elements with an entry less than the user-

defined precision are printed.

3.7.3 Grid Point Force Balance and Element Strain EnercLV Distribution

The new method of element matrix generation introduced in NASTRAN Level 16 includes the

feature that the elastic stiffness matrix for each element is individuallysaved In peripheral

storage. This feature makes practical a nu_nberof capabilitieswhich would otherwise be pro-

hibitiveiy expensive, including the determination of force balances at grid points and the cal-

culation of the strain energy distribution by elements throughout the structure.

The vector of elastic forces exerted by a structural element on its connecting grid points

Is related to the displacements at these points by

{Fe} - -[Kee]{Ue} , (9)

where {ue} is the subset of the qlobaldegrees of freedom, {Ug}, to which the element is con-

nected. The matrix [Kee] is computed by module EMG and stored.

The grid point force balances computed by NASTRAN Include the force and moment contributions

in the global coordinate system of element elastic forces computed by Equation 9, applied loads

and single point forces of constraint. They do not include, at present, forces due to differen-

tial stiffness, muitipoint constraints, general elements, or any dynamic effects. NASTRANprints

the individual contributions of the former effects and their sum at each grid point. If none of

the latter effects are present, the sum is due to round-off error. The sum is not the same as

the residual used in the ¢ test (see Section 2.3) because it is calculated at a different time in

a different manner.

V

°_
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The strain energy within an individual element is

We = ½ {FeIT{ue } (lO)

The user can request a llst of the percentages of the total strain energy stored in each element.

3.7.4 Overall .Equilibrium Check

The quality or closure In the solution of a statics problem or the net momentum in a real

eigenvalue problem is indicated by the equilibrium of the forces about the basic coordinate system

origin or any selected grid point. The forces on the structure are obtained in module EQMCK From

the following sources:

I. Directly applied loads: {Pg)

2. Forces of single-polnt constraint: (qs }

3. Forces due to multipoint constraints and rigid elements: {q;}

4. Forces of reaction: (qr }

The rigid body transformation matrix [D]T about the reference point is the saJne as for the

grid point weight generator module (see description in Section 4.29.7 of the Programmer's Manual).

Thus, the net force and moment vector may be obtained by:

{Sp} - [D]T{pg} 1

{Sg} - [o]T{qg}

 Sg}- zD TCq }

, (11)

resulting in the summation,

{St} - {Sp + Sg ÷ S;} - [D]T{pg + qg + q;} , (12)

where qg is the union of the forces qs and qr" Note that the effects of scalar points are ignored

in the [D] matrix, and the forces resulting from "grounded" scalar springs and general elements are

not calculated. Each of the {S} vectors in Equation 11, consisting of three forces and three mo-

ments, is output separately along with the net equiltbri_ forces and moments from Equation 12.

m
The forces due to multipoint constraints and rigid elements, qg, as calculated by Equations

6a, 6b, and 6c, may be requested as an output file for printing by the output flle processor.

3.7-5 (12/31/77)
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3.8 PIECEWISE LINEAR ANALYSIS

The Piecewise Linear Analysis option of NASTRAN is used to solve problems in material plas-

ticity. The load is applied in increments such that the stiffness properties can be assumed to

be constant over each increment. The stiffness matrix for each increment is dependent on the cur-

rent states of stress in the structural elements. The increments in displacements and stresses are

accumulated to produce the final, nonlinear results. Since the algorithm assumes linearity between

sequential loads, the results will depend on the user's choice of load increments. When the user

selects large load increments and the material properties are changing rapidly, the results may be

unacceptably inaccurate. If small load increments are used when the structure is nearly linear the

solution will be very accurate but relatively costly.

3.8.I Limitations and Available Options

The nonlinearity of a structural element is defined by the material used by the element. Any

isotropic material may be made nonlinear by including a stress-straln table defining its extension

test characteristics.

The stress-strain table must define a nondecreasing sequence of both stresses and strains.

Because the stiffness matrix for the first load increment uses the elastic material coefficients,

the initial slope should correspond to the defined Young's Modulus, E.

The nonlinear effects depend on the element type. The elements which utilize the plastic

material properties are described in Section 3.8.4.

Linear elements and materials may be used in any combination with the nonlinear elements.

Elements with low stress states may be included in this category by providing them wlth "linear"

material properties even though their actual properties are decidedly nonlinear at high stress

levels. Linear elements are used in a more efficient manner than the nonlinear elements.

All static load options except temperature and enforced element deformation are allowed with

piecewise linear analysis. The reason for the exceptions is that the equivalent grld point loads

depend on the stiffness of the structure and hence on the sequence of their application. For ex-

ample, changing temperature after a load is applied gives differQnt resul_s than changing tempera-

ture before the load is applied.

All statics constraint options are available including enforced displacement at grid points.

The use of enforced deformation in coe/oination with applied loads has the ambiguity discussed

3.8-I
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above. In the program enforced displacements are increased simultaneously with the other loads.

No protective steps are taken to prevent the attempted decomposition of a singular stiffness

matrix. If the st_cture fails by buckling or yielding, a solution is still attempted and the re-

sults will be obviously erroneous.

3.8.2 Overall Solution Logic

Although the Piecewlse Linear Analysis rigid format uses many of the statics analysis modules,

the path through the various operations is substantially different. A summary flow diagram is

given in Figure I. The various steps are given numbers corresponding to the explanations belOw:

I. The normal statics analysis "front end" is used to generate the grid point, element, and

loading tables. The stiffness matrix (and the mass matrix for gravity loads) is generated

in the normal manner using the moduli of elasticity given with the materials.

2. The element tables are separated into linear and nonlinear elements. The program recog-

nizes a nonlinear element as one that has a stress-straln table referred to by its mater-

ial. The linear elements are used to generate a linear stiffness matrix, [K_g]. This

matrix will not change with loading changes.

-- - i. The load vector for-the whole structure, {Pg}, is generated by the normal methods except

that loads due to temperatures and enforced element deformations are ignored. The con-

strained points are also identified in this stage.

4. The "current" stiffness matrix is initially the linear elastic matrix; for subsequent

load increments the matrix is changed as shown in step 8. The constraints are applied to

the matrix in the normal sequence to produce the [K_], [Kfs], [Kss], and [Go] matrices.

The [K_] matrix is decomposed to produce the triangular matrices [U_] and ILeal.

in a similar manner the applied loads, including enforced displacements at grid points,

are modified by the constraints to produce a load vector for the independent coordinates,

{Pc}. The current load increment is:

{APJ} - (=I " _i-l){P_ ) " A=i{P_} I = 1,2,...n , (I)

where eI , cLZ .... n are a set of load level factors provided by the user.

3.8-2 vr
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5. The incremental displacemehts are generated using the current stiffness matrix and the

current load vector increment. The dependent displacements are recovered in the normal

• {AUgimanner and merged to produce the increments for all degrees of freedom, }. The in-

cremental forces of single-point constraint, {Aqsi}, are also recovered. The increments

are added to the previous vectors to produce

(Ugi} • {Ugi-l} +

{qsi} = {qsi'I} +

the current vectors

{AUgi} ,

{Aqsi}

(2)

(3)

6. The total nonlinear element stresses are calculated for output within the loop so that

the user may have some useful information in case of an unscheduled exit before the

end of the calculaticn. The method of calculating stresses is given in Section 3.B.4.

matrix for the nonlinear elements, [Kggn], is generated six columns at a7. The stiffness

time for all nonlinear elements connected to a grid point. The table of element connect-

ions and properties is appended to include the current stress and strain values. The

modulus of elasticity is calculated from the slope of the stress-strain curve as

explained below.

8. The nonlinear element stiffness matrix, generated in step 7, is added to the linear

element stiffness matrix, generated in step 2, to produce a new stiffness matrix.

The next pass through the loop will reflect the new stress state of the structure.

9. When the results for all load increments have been produced, the data are output.

Stresses for the linear elements are calculated directly from the total displacement

vector.

3.8.3 Piecewise Linear Stress-Strain Functions

In order to simplify input to the program, a single type of plastic material table is used. A

stress-strain tabular function is input for each nonlinear material. Only certain types of

elements may use the nonlinear tables.

In calculating the current elastic constants of a plastic element, an approximation to the

slope of the stress-strain function is used. Because the elastic constants are to be used for

the interval between the present load and the next load, an extrapolation of current information is

3.8-3 (12-i-.69)
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required. A linear extrapolation is used to estimate the strain due to the next load increment as

shown in Figure 3. The current strain increment, A¢i, is computed from the current displacement

increment AUgi by separate subroutines for each type of element. The next strain increment, _i+I'

is estimated by linear extrapolation,

_i+l = _i+l " ¢i - A(A_i+I) , (4)

where A is obtained by the curve fit through two previously Computed points, ¢i' and ¢i-l'

The linear elastic modulus, Eo, is used for the first increment. For all succeeding

increments

_i+l " oi

Ei+l = ¢i+I " ¢i ' (5)

where oi and oi+l are obtained from points on the stress-strain curve, Figure 2, corresponding to

¢I and ¢i+l"

The actual strain components used above depend on the element type. A brief description of

the elements used in ptecewise _tnear analysis is given below.

3.8.4 Element Algorithms fer Piecewise Linear Analysis

3.8.4.l RigID,TUBE, and BAR Elements

The plasticity of these elements is assumed to depend on ihe sta_ of extensional stress only.

Bending and twisting stresses are ignored in the determination of the effective elastic constants.

If bending stresses are |mportant, the bar may be represented tn NASTRANas a built-up structure

composed of rods, shear panels and/or plates. The estimated next extensional strain is:

¢i÷l " ¢i + Yi_i ' (6)

where the coefficient_Yi ts the ratio of load tncr_nts

=I+I " _i A_i+1

YI • _i " _I-I _i (7)

V

V

3.8-4 (12-1-69)
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The elastic constants for the new stiffness matrices and the next stress calculations are:

°i+l " oi Go

Ei+l " ¢i+I " {i ' Gi+l " _o Ei+l ' (8)

where GO and Eo are the elastic shear and extensional moduli given with the material. These con-

stants are used in the calculation of extensional,bending, twisting, and transverse shear stiff-

nesses in the next increment.

3.8.4.2 Plate Elements

The In-plane stresses of plate elements are used to calculate the elastic properties for In-

plane deformations. They are also used to calculate the elastic properties for bending and trans-

verse shear, except in the case of those plate elements where the bending and transverse shea-

material are different from the membrane material.

Plastic, rather than nonlinear elastic, behavior is assumed. The theoretical basis of two

dimensional plastic deformation as used in NASTRAN is that developed by Swedlow (Reference I).

Only a summary of the theory will be presented here. In the development, a unique relationship

between the octahedral stress, ¢o' and the plastic octahedral strain, ¢op, is assumed to exist.

The total strain components (¢x' Cy' _z' and Yxy) are composed of the elastic, recoverable defor-

mations and the plastic portions (¢xp, cyP, elp, and YxyP). The rates of plastic flow, (_xp, etc.),

are independentof a time scale and are simply used for convenience instead of incremental values.

The definitions of the octahedral stress and the octrahedral plastic strain rate are:

" ½ /2(s 12+2Sl22+s222+s332), (9)

_op ._/ [(_IIP) Z + 2(_12P) 2 + (_22P) 2 + (_33P)2]/3 , (lO)

.=._.
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P P
SII = _2_x " ay) ¢II = Cx

P P
SI2 = Txy ¢12 = ½Yxy

p PSZ2 = 2_y- ax) ¢2Z = Cy

p PS33 = - ox + Oy) ¢33 = Cz

(ll)

The Sij array is called the "deviator" of the stress tensor, ax, ay, and axy are the Car-

tasian stresses. The basic Prandtl-Reuss flow rule is:

_ijP - _sij , (12)

where R is a flow rate parameter.

may be derived by multiplying Equation 12 by itself according to the rules of tensor analy-

sis to produce a scalar equation. The result is:

.p

= _ (13)
T O

Another basic assumption is that the material yields according to its octahedral stress and

strain. In other words, there exists a function, MT(Zo), such that

_0

.---it= 2MT(ro)
¢0

(14)

Combining Equations 12, 13, and 14 we obtain

_ijP =

Taking the derivatives of Equation g we obtain:

(15)

l

"_o = -_o (Sll_ll + 2S12_12 + $22_22

3.8-6

+ $33_33) (16)
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Substituting the relations between the Sij and the cij terms we obtain:

To " 3_o [SII_x + $22_y + 2Sl2_xy]
(17)

The matrix relationship for the plastic flow is formed from Equations ll, 15, and 17:

D 2
SII

SIIS22

SIIS22 2SiiS12

$222 2S22S12

2S22S12 4S1222SllSl2

_X

;y (18)

For piecewise linear analysis this matrix, [DP], is assumed constant for a given load incre-

ment. The time derivatives are replaced wi_ incremental values. The total strain increments,

obtained by adding the plastic and linear elastic parts, are:

{ac} - ([op] + [G]'l){A_}- [Gp]'l{a:} , (19)

where [G] is the normal elastic material matrix and [Gp] is the equivalent plastic material matrix.

A further relationship to be derived is that of the plastic modulus, MT(To), versus the slope

of a normal stress-strain curve. If a specimen is under an axia] load, its stress and strain val-

ues are:

OX = (_a

ay = a z = Txy

exP "_o£X = +

P _a

Cy = Cy -

P _a

EZ • _:Z ° E

Yxy = Yyz • Yxz = 0

= _xz = TYZ
• 0

(20)

where Eo and v are the elastic modulus and Poisson's ratio for the elastic part of the stress-

strain curve.

P P 1 P
Because of noncompresstbiltty the plastlc strains a_ ty = tz • " _ tx

3.8-7
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- .., .

t" i w _'_ _" : _ " _ "-_

The stress-strain relationshipgiven in the table is:

_x " F(cx)

(21)

The octahedral stresses and strains may be determined from Equations 9, I0, and II.

V

"CO _ _ O' a

• p
• P tx

o ,,g

(22)

The tabular relation for octahedral stress is, therefore:

TO " --_j'F(c x) (23)

The slope relation is from Equations 22 and 23:

A_o " --_F'(Ex) _ex , (24)

where from Equations 20 and 22:

3AT o
p+_

o ,/'ZEo (25)

The octahedral plastic straln-to-octrahedralstress function obtained by solving Equations 24

and 25, and substituting into Equation 24, is:

Z_eoP (_)E° - Ei(cx )

where E1 - F' ts the approximate slope of the stress-strain curve at each increment.

(26)

3.8-8
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In applying the theory the following steps are taken:

I. The strain increments, {A_i}, are determined from the incremental displacement vector and

the geometry of the element. Using the material plastic matrix from the preceeding step

[Gpi'l], the new stresses are:

{oi} = {_I-I} + [Gpi-1]{_¢i} . (27)

2. Using Equations 9, II, and 22 the new octahedral stress, Toi, and its unidirectional

equivalent, Oai, are calculated, oal is used with the stress-strain table to determine

cal cai-l, i+la strain . Using the previous strain a new strain, Ca , is estimated by

linear extrapolation as in the case of extensional elements.

I_ case Oai exceeds the maximum tabulated value, the Incren_ntal modulus, Ei, is set

equal to zero on the assumption that the element has ruptured.

3. Using the stress-strain table, the next estimated stress, Oai+l, is found. The stress-

strain slope is:

i+l i
_a " (laEi .
i+I i
a " {a

(28)

The new stiffness matrix, [Gpi], is calculated from Equations g, II, 26, 18, and lg

oyi, T i and Ei [Gpi]using Oxi, xy ' as input data. is then used in the normal stiffness

matrix calculation routine.

4g

The quadrilateral elements use extra logic since they are composed of four overlapping triangles.

The primary difference is that the stress increments are averaged over the four triangles and the

resulting material matrices must be treated as anlsotropic and rotated into each subelement's

coordinate system.

3.8-9 (4/1/72)
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l Normal Statics Formulation

Separate Linear and Non-linear

Stiffness
Elements. Form Kgg
Matrix from Linear Elements

Select Constraints and Generate
i

Pg Load Vector J

_.._..,./,.-_...'.

4 Partition, Reduce, and Decompose

Kgg + U_ L_£

Pg ÷ AP&i

S Solve for DisplacementIncrement Aui

Solve for Dependent Displacements

and Increment ui = ui.I + Aui

6 Calculate Non-linear Element
Stresses and Update Stress Tables

Output Non-IInear Stresses

Loop

7 Calculate Non-linear Element
Stresses and Form Non-linear

n

Matrix Kgg

Add Linear and Non-linear Matrices

• £ + Kn
Kgg Kgg gg

End of Loop

,

I

g Calculate Stresses in Linear Ele_entsJ
for All Si_ps and Output Oisplace_nen_,|
Forces, and Total Stresses in All Elmnen_

l

Figure I. Plecewlse linear flow diagram.
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4.1

4. MISCELLANEOUS GENERAL PROVISIONS FOR STRUCTURAL ANALYSIS

AXISYMMETRIC STRUCTURES

.... c--...._L__ .

The description of finite element structural analysis presented in Chapter 3 assumes a

structural model in which the degrees of freedom are defined at points in a three-dimenslonal

space. An entirely different formulation is available in NASTRAN for analyzing axisymmetric

structures. In this formulation, the degrees of freedom are the harmonic coefficients of displace-

ment components defined on the perimeter of circles, called 9rid circles, which lie in planes

normal to the axis of symmetry. The special features of NASTRAN's axlsymmetrlc structural analysis

capabilities are discussed below.

4.1.1 Axisymmetrlc Element Library

NASTRAN Includes four different axisymmetric structural elements. They are the conical shell

element (Section 5.g), the toroidal shell element (Section 5.10), and the triangular and trape-

zoidal solid ring elements (Section 5.11). The reader is referred to the sections cited for

details. No attempt has been made to make these elements compatible with each other, or with

"ordinary" structural elements. The only axisymmetric elements that can be used together in the

same problem are the triangular and trapezoidal solid-ring elements. The conical shell element is

the only element that accepts nonaxisymmetric loads. The others require that the loading be axi-

symmetric.

4.1.2 Coordinate Systems

The "global" coordinate system for the conical shell element, and for the solid of revolution

elements, is a cylindrical coordinate system as shown below:

4.1-I (1Z/31/77)

J/



MISCELLANEOUS GENERAL PROVISIONS FOR sTRUCTURAL ANALYSIS
OF FOOR _UALri'Y

Force components are input parallel to the global coordinates, and displacements are output

parallel to the global coordinates.

For the toroidal shell element, the "global" system is a spherical coordinate system locally

tangent to the she11.

4.1.3 Harmonic Coefficients and Deqrees of Freedom

The following equations are used to define harmonic coefficients:

a. Any vector component representing motions or forces in a plane that includes the z-axls:

m m

Vn(r,z)cos(n¢) + _ Vn(r,z)sin(n¢). (l)
v(r,¢,z) = Vo(r,z) + n=l n=1

b. Any vector component representing motions or forces normal to a plane that includes the

z-axis :

m m .

u(r,¢,Z) = Uo(r,z)+ _ Un (r,z)sln(nq_)- =_ Un(r,z)cos(n¢). (2)
nl nl

V

The motions corresponding to different harmonic orders are uncoupled. Also, the starred and

unstarred parameters are uncoupled. The degrees of freedom are the coefficients (Urn, Ucn, Uzn,.

ern, Ben, 8zn and their "starred" counterparts) at discrete "grid circles." Note the (-) sign pre-

ceding the starred series for u(r,@,z). Because of the (-) sign, the starred parameters describe

motions that are shifted _-_ in azimuth from the motions described by the unstarred parameters, since

and

-cos(n¢) " sin(he - _), (3)

sin(n¢) " cOS(he - _). (4) m

The practical effect of the (-) sign in Equation 2 is that the stiffness matrices for the

starred parameters are identical to the stiffness matrices for the unstarred parameters for n>o.

Note that the unstarred coefficients represent motions that are s_mmetrical with respect to

@ - O, and that the starred coefficients represent antisymmetrical motions.

The harmonic order, n, represents an additional dimension of the vector space that is not

present in "ordinary" structural analysis. The number of degrees of freedom per grld circle Is

4.1-2 (4/1/72) v-
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equal to 6(2m+ l).

The solutions for different unstarred harmonic orders are calculated in the same run. For

statics and inertia relief problems only (Rigid Formats l and 2, see Section 3.2), the results

for unstarred harmonic orders may be combined with the results for starred harmonic orders,

thereby providing solutions for general unsymmetric loading.

For vibration mode analysis (Rigid Format 3, see Section 9.I), the user selects the highest

order, m, and all modes of order m and lower are calculated in the same run. There is no pro-

vision for selecting individual harmonic orders.

The presence of harmonic coefficients complicates the selection of the order in which

degrees of freedom are processed. In NASTRAN, the degrees of freedom are sequenced first by

l.ocation and then by harmonic order and last by symmetry (starred or unstarred). Thus, all v0

coefficients precede all vI coefficients, etc. Since no coupling between different orders is

permitted, this is a sensible arrangement that minimizes bandwidth.

4.1.4 Application of Loads

The following types of static loads are available for usewith the conical shell element:

a. Concentrated forces and moments applied at points on grid circles.

b. Uniform line load on a sector of a grid circle.

c. Uniform pressure load on a region bounded by two gird circles and two meridians.

d. Harmonic components of force and moment along grid circles.

e. Gravity loads. The gravity vector may be arbitrarily oriented. It operates on the

global mass matrix and generates zero and first harmonic loads.

f. Thermal loads. The temperature is defined at specified points on grid circles and is

llnearly Interpolated. The provision for harmonic components of temperature described

on Page 5.9-28 has not been implemented. The temperature on grid circles is used by

element routines to compute thermal loads.

g. Enforced displacements at grid circles. Harmonic components are constrained to user-

specified values.

The only static loads that can be applied when the solld-rlng elements are used are uniform

4.i-3 (4/1/72)
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symmetrical line forces on grid circles and thermal loads. The toroidal shell element accepts

uniform line forces and line moments on the grid circles. It also accepts thermal loading.

At present, very special procedures are required to generate dynamic loads. The computer

generates internal gridpoint numbers for each harmonic at each grid circle. If the user knows

the algorithm by which gridpoint num.bers are assigned, he can reference the internally assigned

numbers and apply a load to them. The procedure is described in Section 4.6 of the Programmer's

Manual.

4.1.5 Differential Stiffness

Differential stiffness (see Chapter 7) Is available for the conical shell element only. It

provides a linear buckling capability for symmetrically loaded shells of revolution. If a non-

symmetric loading is applied, NASTRAN extracts the zero harmonic component of the load and then

computes the resulting differential stiffness for all harmonics. It wlll also compute the buckling

modes for all harmonics.

4.1.6 Hydroelastic Capability

The NASTRAN hydroelastic capability is described in Section 16.1. The properties of the

fluid are assumed to be axisymmetric, and a Fourier series expansion is used. At present, the

properties of the structure must be expressed with ordinary nonaxlsymmetric structural elements

in hydroelastic problems.

4.1-4 (4/1/72)
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STRUCTURAL MATERIAL PROPERTIES

In NASTRAN structural material properties are normally specified with a Material Property

Card. The only exceptions are the scalar damper and the scalar spring whose material properties

are imbedded in their spring and damping constants. The material properties defined on Material

Property cards include density, elastic moduli, thermal expansion coefficients, allowable stresses

used in calculating margins of safety, and structural damping coefficients. All of the material

properties can be made functions of ten_oeratureand elastic modull can be made functions of

stress for piecewise linear analysis (see Section 3.8).

At present three different types of material property cards are available. Table l sum-

marizes the availability of the material property types for each of the NASTRAN structural ele-

ments. The manner in which elastic moduli are treated by each of the Material Property Cards is

as follows:

k

MATI - specifies values of E, _, and/or G for isotropic materials. When t_ of the three

parameters are specified, the third is computed from G = E/2(I_u). If all three parameters are

specified, the value specified for G is replaced by this formula for surface and surface of revo-

For solid and solid of revolution elements all three parameters are used in thelution elements.

form:

_x

Cy

E z

Yxy

Yyz

YXZ

0 0

0 0

0

0

I'o
ol

0

0 0

0 0

i
(i)

Note that the mater(al is not Isotroplc when G # E/_(I+_). For sol_d elements the material

axes to which Equation I refers are the axes of the basic coordinate system. The material

axes for solid of revolutlon elements are defined on Page 5.11-22.

4.2-1
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MAT2 - specifies a general anisotropic stress-strain relationshipin the form

, G23

(2)

This format is available for flat surface elements only, as shown in Table I.

MAT3 - specifies a general orthotropic stress-strain relationship with respect to three per-

pendicular axes of symmetry in the form

Vx 1

Uxz i v z

0 0

0 0

1

0

0

1
g--

!

_x

0 0 _y

0 0 _z

I

0 ) 0
I Tx

0 ry

f

o i,zx/

(3)

The matrix is symmetric so that

Vxy . Ex V.vz E Vzx Ez
Vyx Fy'y; " _z ;--"Vzy VXZ

(4)

The inverse of the matrix in Equation 3 is of a similar foe as that given in Equation 3

on Page 5.11-4. The MAT3 card is available for surface of revolution and solid of revolution

elements only. These elements employ appropriate subsets of the (6x6) matrix.

The coordinate axes for the NASTRAN structural elements are defined as follows:

Linear elements (RgD, CBNRgD, and TUBE) have an element x-axls which points from end A to end B

of the element. Positive extensional forces are tension; and positive torques are defined by

the rlght-hand rule. The material properties are E (for tension) and S (for torsion).

4.2-2 (4/1/72) w
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The linear bending element (BAR), has an element x-axis which points from end A to end B of

the bar. The ends may be offset from the grid points by rigid connections. The element y-axis

is determined by a user specified vector V. The y-axis is in the plane of the vector _ and the

x-axis, and it is perpendicular to the x-axis. The z-axls forms a right-hand system. The

material properties are E (for extension and bending) and G (for torsion and transverse shear).

For composite beams, a reference value of E can be chosen, and the user can then evaluate the

effective area and moments of inertia. Similarly for G, the user can evaluate the effective

torsional rigidity (J) and transverse shear factors (K, Kz) (see Section 5.2.1). Thus, E and

G are sufficient to describe sandwich type beams.

The surface elements have an element coordinate system internal to each element. The

element lies in its x-y plane, with the origin at the first listed grid point, and the second

listed grid point on the x-axis. Element forces and stresses are given in this coordinate

system. References can be made to different material properties for membrane, bending and trans-

verse shear deformations to account for sandwich plates. Either MATI or MAT2 type materials may

be used. The material matrix (if it is type 2) may be specified in a material coordinate system

whose x-axis makes an angle e with the x-axis of the element coordinate system, as shown in

Figure I.

The theoretical development in Section 5.8.2.4 allows for a 2 x 2 transverse shear matrix

IxlFxxx ixI- , (S)

yy L xy

relating transverse shear deflections to shear forces. At present Jxx " Jyy " I/Gh and Jxy • O;

where G is the value specified on a MATI card (0.0 implies G is infinite). The entire matrix is

set equal to zero if a MAT2 card is used.

The solid elements use the basic coordinate system and allow only Isotroplc material pro-

perties, except as noted above in connection with Equation l.

The surface of revolution elements have s (meridonal), ¢ (azimuthal), z (normal) coordinate

systems in place of x, y and z. The conical shell can specify separate tsotroplc (MAT1) pro-

perties for membrane, bending and transverse shear. The torotdal shell (zero harmonic only, no

transverse shear) has a slngle Z x 2 matrix

4.2-3 (4/I172)
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o, E,
(6)

where s and ¢ replace x and y and where the E'S and v's may come from a MATI or a MAT3 format.

The solid of revolution elements use a cylindrical r, ¢, z coordinate system.

or MAT3 formats can be used.

Elther MATI

Thermal expansion coefficients are also specified on the Material Property cards. On a

MATI card the thermal expansion is assumed isotropic. On a MAT2 card

lgxt) IA12}_yt(" A2 T , (7)
Yt) Al

rOn a HAT3 card

cyt " Ay
CZt) Az

T , (8)

Note that the material is assumed to be sy_nmetrlcalwith respect to its axes on a MAT3 card.

4.2-4 (4/1/7Z)
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Table I. Existing NASTRAN material capability.

Element Element Kind of MAT type
Type Name Strain

Linear

Surface

RgO, C@NR9D, TUBE

BAR

TRMEM, QDMEM

TRPLT, QDPLT, TRBSC

TRIAl, QUADI

SHEAR, TWIST

tension, torsion

Itension, torsion,
Ibending, shear

membrane

bending
_transverseshear

I membrane
bending

transverse shear

shear

1,2

1

hi

Solid TET_, WEDGE, HEXAI-2 3-dimensional ]

C_NEAX

T_RDRG

i membranebending
shear

Surface of
Revolution

CS' ce 1, 3

Solid of TRIARG, TRAPRG Or' Cz' E_, Yrz l, 3
Revolutlon

If MAT2 Is used, the shear flexibility is 0.0
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V

Figure I. Material axes for surface elements.
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4.3 MANUAL SINGLE-STAGE SUBSTRUCTURE ANALYSIS

Substructure partitioning, as here defined, is a procedure in which the structural model is

divided into separate parts which are then processed, in separate computer executions, to the

point where the data blocks required to join each part to the whole are generated. The subse-

quent operations of merging the data for the substructures, and of obtaining solutions for the

combined problem, are performed in one or more subsequent executions, after which detailed

information for each substructure is obtained by additional separate executions.

Substructure partitioning may be required for logistic reasons in problem preparation, for

reasons of computational efficiency, or simply because the high-speed or peripheral storage

capacity of the computer is exceeded by the data generated in the solution of the problem as a

single structure. The logistic reasons refer to the possibility that the task of preparing the

mathematical model of the structure may be assigned to separate groups which work at different

places and times or at different rates and which require frequent access to the computer in

order to check their work. It may, in such situations, be cost effective to combine the results

of the separate computer runs, rather than their separate input data decks.

Sections 3.5.3 and 3.5.4 describe a matrix partitioning procedure which is available as an

internal part of the rigid formats and which does not, therefore, qualify as substructure parti-

tioning. It divides the degrees of freedom into two sets: the "a" set, Ua, which is retained,

and the "o" set, Uo, which is omitted in subsequent processing. The manner in which this pro-

cedure may be used to generate true substructure partitioning is illustrated in Figure I. If

the ua set is selected as shown, the structural matrices for the u° grid points in different

regions will be uncoupled from each other. For example, the nonzero terms in [Koo] will only

occur in diagonal partitions as shown in Equation 1 below.

[Koo]-

m

K(l) 0 0 0
oo

o K(2) 0 0
oo

0 0 K(3) 0
oo

0 0 0 Etc.
w

(i)
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The generation of the reduced stiffness matrix [Kaa] and the reduced load vector {Pa } by

Equations 28 and 29 of Section 3.5.3 can then proceed independently for each region (i.e., sub-

structure). Specifically,

[Kaa] = FK(P)I +_[K!! )] , (Z)
- aa - i ==

{Pa} = CP_p)] +z: cP_i)}, (3)
]

where the reduced stiffness matrix for each substructure

(4)
,(i) FKCI)T1 FKCi)IT + [K_)]='[_ao] "oo -ao"

and the reduced load vector for each substructure

FK(P}I
_P)] in Equations 2 and 3 represent terms added by the user in aThe terms- aa = and [P

later stage.

Substructural analysis by the NASTRAN substructurlng technique is logically performed in

at least three phases, as follows:

Phase I: Analysis of each individual substructure by NASTRAN to produce a

description, in matrix terms, of its behavior as seen at the boundary

degrees of freedom, ua.

Phase If: Combination of appropriate matrices from Phase I and the

inclusion, if desired, of additional terms to form a "pseudo-structure"

which is then analyzed by NASTRAN.

Phase Ill: Completion of the analysis of individual substructures using

the {ua} vector produced in Phase If.

The NASTRAN substructuring technique is available for all rigid formats, except piecewise

linear static analysis. In the case of static rigid format I, no additional approximations

are introduced into the calculation by the substructurlng operation. In the case of dynamic

rigid formats, the Guyan reduction is employed in Phase I, which restricts the dynamic degrees
i
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of freedom to the {ua} set (see Section 3.5.4). Thus, it is advisable, when solving a dynamic

problem, to include some degrees of freedom at interior points in {Ua}. Also, {ua} must, of course,

include al__.Idegrees of freedom that are connected to more than one substructure.

Under certain circumstances, the substructure analysis may use more than three phases. For

example, if differential stiffness is included, five phases are required as follows: (I) initial

static preload analysis of each substructure; (2) combination static preload analysis; (3) recovery

of static preload stress data, and calculation of the differential stiffness matrix for each sub-

structure; (4) combination analysis, including differential stiffness; and (5) completion of the

analysis of individual substructures. Note that rigid format 4, Static Analysis with Differential

Stiffness, is not used in the analysis sequence. A similar procedure is followed in the case of a

buckling analysis, except that it is advisable to include some degrees of freedom at intericr ooints

in {Ua}; otherwise the influence of differential stiffness on the buckling mode shape at interior

points will be ignored. Another example where more phases are used is an analysis where the sub-

structures are first combined into groups, and the groups are then combined into a complete "pseudo-

structure."

As can be seen, a flexible substructuring capability is necessary to accommodate all practical

uses. This is provided by using the ALTER feature (see Section 1.3) to modify existing rigid formats

according to the user's requirements.

Figure 2 shows a typical flow diagram for the operation of substructuring in NASTRAN. It in-

volves the application of three separate phases of NASTRAN execution to two substructures. In the

NASTRAN Phase I execution, the stiffness matrix [Kaa] and (if needed) the static load vector {Pa }

are computed independently for each substructure. In dynamic analysis, the matrices [Meal, [K:a],

and [Baa] are also computed. All of these data are copied onto a user tape via the user module

_UTPUTI, which is altered into the rigid format. The computation of the dynamic load vector is

delayed until Phase II.

The first step in the NASTRAN Phase II execution is to merge the reduced matrices formed in

Phase I. This is done by the existing MERGE and ADD modules which are altered into the NASTRAN

rigid format selected for Phase II. The MERGE operation requires knowledge of the Interconnections

between the degrees of freedom in the substructures. This information is contained in a partition-

ing matrix, each of whose columns corresponds to a particular substructure. The rules for qeneratlng

the partitioning matrix are e_plained in Section l.lO of the User's Manual. In Phase II, the degrees
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of freedom in {ua} constitute a set of scalar points, which is redesignated as the {Ug} set of the

"_seudo-structure" and on which all normal NASTRAN operations may be performed. In particular,

direct matrix input (DMI), single and multi-point constraints (SPC's and MPC's), and both static

and dynamic loads may be applied. The partitioning matrix is employed by the user to identify the

degrees of freedom in {Ug} .

In Phase Ill, each NASTRAN substructure execution is restarted with the partition of the

Phase II {Ug} vector corresponding to the {ua} vector for each substructure. All normal data

reduction procedures may then be applied. In dynamic analysis, Phase Ill can be omitted if output

requests are restricted to the response quantities in the ua set.

In a dynamic analysis the user may, if he wishes, employ the Guyan reduction in Phase II. The

complete substructure analysis then involves a "double reduction" in which some degrees of freedom

are eliminated in Phase I and some are eliminated in Phase II. This is useful because, as noted

earlier, the {ua} vector generated in Phase I contains all of the degrees of freedom on the

boundaries between substructures, as well as a selected set of freedom at interior points. The

density of the boundary freedoms may well be greater than necessary, and these freedoms can be

removed for the sake of economy by the second Guyan reduction. The final set of freedoms retained

for dynamic analysis will be those actively selected by the user and no more. The double reduction

technique is recommended for structures with very many static degrees of freedom, where it will be

competitive with component mode synthesis (see Section 14.1) in many cases.

Detailed instructions for the _STRAN substructuring procedures are given in Section l.lO of

the User's Manual.

V
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Grid Points in the

Interiorsof Regions
are Placed in the

uo Set (1) (2) (3)
Grid Points Along

These Interior Lines
are Placed in the

ua Set

(4) (s) (6)

Figure I. Use of partitioning to decouple regions of the structure.
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I NASTRAN 1
BULK DATA
DECK
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DYNAMIC LOADS, *l

STATIC LOADS, etc. (

I NASTRAN IPHASE I - l

NASTRAN 1PHASE II

NASTRAN IPHASE III- l

1
Any ttems that are user-$peclfledfor the pseudostructure
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BULK DATA
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PHASE ! - 2

f

I NASTRAN IPHASE Ill - 2
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V

Figure 2. Flow diagram for NASTRAN substructuring.
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4.4 FULLY STRESSED DESIGN OPTIMIZATION

NASTRAN includes a method of design optimization for linear static analysis (Rigid

Format l) based on automation of a relatively simple strategy known as "fully stressed

design." According to this concept, the cross-sectional properties of each structural element

are changed at each design iteration to produce a limit stress (zero margin of safety) somewhere

within the element, on the assumption that the loads carried by the element are unaffected by

changes in its cross-sectional properties. The assumption is strictly true only for statically

determinate structures. In indeterminate structures of low redundancy, the assumption is not

badly in error, so that a few repetitionsof the algorithm will produce a stress distribution

throughout the structure which has very nearly a zero margin of safety in every element, i.e.,

a "fully stressed" design. In structuresof high redundancy, the procedure will converge mare

slowly (if at all), and modifications of the basic strategy may be required to achieve convergence.

There is, furthermore,no assurance that the fully stressed design of a highly redundant structure

will be an optimum design in any meaningful sense. It is relatively easy to construct examples

in which the procedure converges to a "pesslmum" design. Consider, for example, the simple case

of two parallel rods which are rigidly connected together at their ends and which differ only

in their allowable stresses. Since in this case the stresses in the two rods are equal regard-

less of their areas, the algorithm will increase the area of the weaker rod at the expense of the

stronger, and in the limit only the weaker rod will remain.

From this example it is seen, at the least, that a fully stressed design algorithm cannot be

used uncritically. It is, nevertheless, very attractive because of its basic simplicity, and it

will produce excellent designs in many practical cases. On the other hand, due to its inherent

limitations, it is not deemed to be worthy of a great deal of refinement. Consequently, in the

NASTRAN version, the criteria used to reslze elements have been kept simple. User experiences

with the method may lead to improvements in later versions.

The physical quantities involved in the design algorithm are: properties, A; stresses, o;

and stress limits, o_. The properties may include thicknesses, cross-sectional areas or moments

of inertia. Most NASTRANelements have several independent properties. They also have several

types of stresses and several places where stresses can be evaluated. The stress limits include

those for tension, compression and shear. For the stmple case of an element with one property_

the design iteration algorithm ts as follows. Let
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where the search for a maximum value is extended over all user-ldentifiedstress components and

locations, and also over all designated loading cases. The new property for the element is

evaluated from the old property by the formula

(°)Anew • Aold _ + _I-_1_ ' (2)

where y is a parameter selected by the user. For y • 1 (the default value), Equation Z becomes

Anew - = Aold (3)

If the product oA were invariant, Equation 3 would give

Aold _
=new • n_=old " = old

, (4)

so that the value of Onew would Just be equal to the limit stress in this special case.

For y = O, It is seen that Anew - Aold, and for values intermediatebetween zero and one the

property is changed by less than a factor of =. Thus y is a parameter which moderates the pro-

perty changes at each iteration and it may be employed by the NASTRAN user to improve the con-

vergence of the algorithm.

The algorithm Is modified by several other practical considerations. For example, the

user may limit the range through which any property may be varied. In addition, a given property

may be applied to several elements si_Itaneously via standard NASTRAN property cards. In this

case the search indicated by Equation l will be extended to all elements which reference the

same property card and the property will be changed uniformly for all such elements. Thus, the

user can control the fineness of the property distribution by using a larger or smaller number

of property cards. Finally, the optimization procedures will be applied only to those property

cards which are called out by the user.

The number of Iterations is controlled by a user-supplied convergence parameter, ¢, and a

user-supplledupper limit on the number of iterations. The algorithm is continued until either

the limitlng number of iterations is reached, or until the values of the ='s for all properties

which are not at their upper or lower limits are within ¢ of unity.
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For elements wtth more than one cross-sectional property (such as the BAR element), the

simple expedient has been chosen to change all of the properties according to a fixed rule. Thus,

tn the case of the BAR, the moments of inertia, are changed in direct proportion to the change in

area. This is equivalent to the assumption that each BAR has a thin-walled cross-section whose

thickness ts being changed uniformly. The details of the rule are given in Table 1 for each of

the elements whose properties can be changed. In the table, the basi.____cproperty is the one whose

new value Is calculated by Equation 2. It is seen that all related properties are changed in

direct proportion to the basic properties except in the case of the homogeneous plate elements,

TRIA2 and QUAD2.

The procedures for elements with more than one cross-sectlonal property are admltted)y crude

and they cannot be used for the detailed design of individual elements. The incorporation of

more elaborate procedures has, however, been Judged to be unwise for the present, due to the

inherent limitations of the fully stressed design algorithm, indeed, It is not clear that any

fully automated general purpose design procedure can successfully cope with the simultaneous

requirements of overall and detailed design.

The calculations are performed in two modules, gPTPRI and _PTPR2 (Property Optimization

Processor, Phases 1 and 2). The first module creates a table of the relevant quantities for

each identified element property card, and the second module calculates the changes in the

values of the properties.

The output of the analysis includes a revised set of element property cards in addition to

all normal classes of output data.
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Table I. Rules for changing the properties of elements.

_,Stress a, Scale Factor for Basic
Value Inspected Use In Equation 2 Property

Torsional a-max G -o ¢ A*' ' O.D.

i

Maximum axial ten-
sion and axial

compression stresses . /%1 "%21 A**at user-selected a max_-_T-_ , Gbl "%2
polnts in the cross ,_ _' ac ' _/)
sectl_s at ends A )and B.

Op2 = MAX PRINCIPAL a=ma , , t

_m " MAX SHEAR \at

sos, ove '4)except at outer _=max

fiber zl, z2. ' °c t
(for both zI and z2)

Same as above Same as above t

Zm = MAX SHEAR _" \ Os / t

Related ***
Properties

J,ll,12,11Z

t (for transverse
shRarl

iI

i I - t3112

* If A Is zero, J will be used in its place.

** If A is zero, II will be used In its place.

*** The related properties are changed in direct proportion to the basic property
unless otherwise indicated.

V
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4.5 CYCLIC SYMMETRY

Many structures, including pressure vessels, rotating machines, and antennas for space com-

munications, are made up of virtually identical segments that are symmetrically arranged with

respect to an axis. There are two types of cyclic symmetry as shown in Figures l and 2: simple

rotational symmetry, in which the segments do not have planes of reflective symmetry and the

boundaries between segments may be general doubly-curved surfaces; and dihedral symmetry, in which

each segment has a plane of reflective symmetry and the boundaries between segments are planar.

In both cases, it is most important for reasons of economy to be able to calculate the thermal and

structural response by analyzing a subregion containing as few segments as possible.

Principles of reflective symmetry (which are not, in general, satisfied by cyclicly symmetric

bodies) can reduce the analysis region to one-fourth of the whole. Principles of cyclic sdmmetry,

on the other hand, can reduce the analysis region to the smallest repeated section of the structure.

Neither accuracy nor generality need be lost In the process, except that the treatment is limited

to linear relationships between degrees of freedom. Special procedures for the treatment of cyclic

symmetry have been added to NASTRAN. The use of cyclic syn_Betryallows the analyst to model only

one of the identical segments. There will also be a large saving of computer time for most prob-

lems. Details of the procedures for applying cyclic symmetry are described in Section 1.12 of the

User's Manual.

The term dlhedral symmetry is borrowed from Herman Weyl who used it in his mathematical

treai_,entof symmetry, Reference I. Note that dihedral symmetry is a special case of rotational

symmetry. In both cases, the body is composed of identical segments, each of which obeys the

same physical laws. The distortions (deflectionsor temperature changes) of the seg_nts are not

independent, but must satisfy compatibility at the boundaries between segments. Cyclic transforms

can be defined which are linear combinations of the distortions of the segments. The transformed

equations of compatibility are such that the "transformed segments" are coupled singly or in pairs

which can be solved independently. This feature results in a significant reduction of computa-

tional effort beyond the normal possibilitiesof substructureanalysis.

4.S-1 (311176)



MISCELLANEOUSGENERALPROVISIONS FOR STRUCTURALANALYSIS

4.5.1 Theor_ for Rotational S_mmetr},

The total body consists of N Identical segments, which are numbered consecutively from l to

N. The user supplies a NASTRAN model for one segment. All other segments and their coordinate

systems are rotated to equally-spacedpositions about the polar axis. The boundaries must be

conformable; i.e., when the segments are put together, the grid points and the displacement

coordinate systems of adjacent segments must colncide; thus no point may be on the axis. This is

easiest to insure if a cylindrical or spherical coordinate system is used, but such is not required.

The user will also supply a paired list of grid points on the two boundaries of the segment where

connections will be made. For static analysis the user may also supply a set of loads and/or en-

forced displacements for each of the N segments.

The two boundaries will be called sides l and Z. Side 2 of segment n is connected to side l

of segment n+l, see Figure I. Thus, the components of displacement satisfy

+I nu = u2 n - I...N , (1)

where the superscript refers to the segment index and the subscript refers to the side index.

This applies to all degrees of freedom which are Joined together. Also let u_+I - u_, so

that Equation l will refer to all boundaries. Equation l is the equation of constraint between

the physical segments.

The rotational transformationis given by

kL

un • oo + _ [_kc cos(n-l)ka + 0ks sin(n-l)ka]+ (-l)(N/Z)'lu'N/2 , (2)
k-1

a = 2_/N, n = l, 2..... N,

where un can be any component of a displacement, force, stress, te_erature, etc., in the nth

seg_nt. The last term exists only when N is even. The summation limit kL = (M-l)/2 if N is odd

and (N-2)/2 if N is even. The transformed quantities, u-°,okc, _ks, and _N/2 will be

referred to as s_mmetrical components. They are given this designation by virtue of their

similarity to the symmetricalcomponents used by electrical engineers in their analysis of poly-

phase networks, Reference 2. Note also the similarity of Equation 2 to a Fourier series decompo-

sition, except that the number of terms is finite. On this account, Equation 2 could be called a
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finite Fourier transformation, Reference 3.

Equation 2. tn matrix form, Is

CF POCR "'" -",% :.J ; +[ _,

luJ " IOJ[T] ,

where LuJ= lu1, u2, u3 ..... uNJ ,

and IGJ = lO°, OIc, GTM,O2c, O2s..... oN/2J

Each element tn the first row vector can represent all of the unknowns in one segment.

The expanded fore of the transformation matrix is

(3)

[T]=

1 1 1 , 1

] cos a cos 2a

0 sin a sin 2a

1 cos 2a cos 4a

cos(N-])a

sin(N-l)a

cos(N-1)Za

0 stn kLa sin 2kLa sfn(N-1)kLa

1 -1 1 -1

The last row exlsts only for even N. The transfo_tlon n_trlx, [T], has the property

N/2

w

N/2

N/2

m

N

IT]IT] T • ED] "

(4)

(s)

t.e., the rows of T ape orthogona].
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Stnce O is nonsingular,

[T][T]T[D]"l = Ill .

Thus, IT] "1 = [T]T[D] "1 and

LGJ= LuJET]"1 = LuJZTTo-1]

In summation form, Equation 7 becomes

ORI,= _.,. ;-

(6)

(7)

N
G°- (I/N) _ un ,

n,,l

N

_kc = (2/N) n_l un cos(n-l)ka ,

N

_ks • (2/N) _ un sin(n-1)ka ,
nl

_N/2. (I/N) N )n-1 un
n_l (-1 (N even only)

(8)

It should be noted that Equations 8 apply to applied loads, and to tnternal forces, as well as to

d|splacement components. The valtdity of the symmetrical components L_Jto represent the motions

of the system follows from the existence of [T]"I. It remalns only to show that they are useful.

The equations of motion at points interior to the segments are 11near in displacements,

forces, and temperatures; they are identical for all segments; and they are not coupled between

segments. Thus, the equations of motion (for example, [K]{u}n = {P}" in static analysis) can be

addltively combined using one of the sets of coefficients in Equations 8, thereby obtaining the

equations of motion for one of the transformedvarlables which will have Identlcally the same

form (e.g. [K]{_}kc = {p}kc) as the equations of motion for one of the physlcal segments.

The equations of motion at points on the boundaries between segments are treated by employing

the notion of a rigid constraint connecting adjacent points, To transform the compatibility equa-

tion of constraint (1), notice that

kL _s )n _12
u?+1= u_ +k_1 [_C cos nka+ sin nka]+ (-I (g)
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By use of the identities cos nka - cos(n-1)ka.cos ka - sin(n-1)ka stn.ka and

sin nka • sin(n-l)ka-cos ka + cos(n-l)ka.sln ka, Equation g may be ,rltten

kL I (u_C cos ka + _)s sin ka)cos(n-1)ka 1 _/2 (l 0)

If Equation I0 is compared to Equation 2, evaluated at side 2 as required by Equation I, and the

coefficients of terms wlth the same dependence on n are equated, the following equations are obtained:

k • 1 ..... kL , (ll)

Equations ll are the equations of constraint for the symmetrical components. The only symmetrical

components coupled by the compatibility constraints are lc and ls, 2c and 2s, etc. Thus, there

are several uncoupled models: the K=O model contains the _o degrees of freedom; the K=I model

contains the _lc and _ls degrees of freedom, etc.

There is a somewhat arbitrary choice regarding where to transform the variables in the

NASTRANanalysis. NASTRANstructural analysts can start wtth a structure defined wtth single

and multtpotnt constraints, applied loads, thermal fields, etc., and reduce the problem to the

"analysis set," {Ua}, where

[Kaa]{U a} = {Pa } , (12)

The vector {Ua} contains only independent degrees of freedom. The decision was made tn develop-

Ing the cyclic symmetry capability to first reduce each segment individually to the "analysis"

degrees of freedom, and then to transfom the remaining freedom to symmetrical components.

Thls approach has several advantages, including ellmlnatlon of the requlre_ent to transform

temperature vectors and slngle-polnt enforced dlsplacmenta, because these quantities are first

converted into equlvalent loads. More importantly,if the "fir,fiT" feature is used to _emove

Internal degrees of freedom, it need only be applied to one segment. The @MIT feature greatly
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reduces the number of degrees of freedom which must be transformed. The user specifies all con-

straints internal to the segments with standard NASTRAN data cards. If constraints (MPC, SPC,

and/or _41T) are applied to degrees of freedom on the boundaries, they will take precedence over

the intersegmentcompatibility constraints; i.e., an intersegmentcompatibility constraintwill

not be applied to any degree of freedom which is constrained in some other way. SUPgRT data

cards are forbidden because they are intended to apply to overall rigid body motions and will

not, therefore, be applied to each segment. In the case of static analysis, the analysis equa-

tions for the segments are

[K]{u}n = {p}n n = l, 2..... N (13)

The analysis equations for the symmetrical components, prior to applying the intersegment

constraints,are

[K]{_}x = {p}x x = O, Ic, Is, 2c..... N/2 , (14)

where {_}x is calculated using Equations 8. The matrix [K] is the same for Equations 13 and 14,

and is the KAA stiffness matrix of NASTRAN for one segment.

Now consider the matter of applying the intersegmentcompatibility constraints. It is

recognized that not all of the degrees of freedom in any transformed model can be independent,

but it is easy to choose an independent set. In the independent set, {_)K, include all

points in the interior and on boundary 1 (for both _kc and _ks, if they exist). The values of

displacement components at points on boundary 2 can then be determined from Equations ll. The

transformation to the new set of independent degrees of freedom is indicated by

{_}kc , [Gck]{_}K ,
(15)

(_}ks• [Gsk]{_}K ,

where each row of [Gck] or [lsk] contains only a single nonzero term if it is an interior or side

I degree of freedom and either one or two nonzero terms if it is a degree of freedom on side 2.

In arranging the order of terms in {_}K, the user can specify either that they be sequenced with

all {_}kc terms preceding all {_}ks terms, or that they be sequenced with {_}kc and {_}ks grid

points alternating. It should be emphasized that the kind of vectors used in transformationof

Equations 3 and 15 are quite different. In Equation 3, there is one component (or column) for
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each segment; in Equations 15, there is one component (or row) for each deoree of freedom in a

segment.

Equations 15 are used to transform Equation 14 to the following set of equations which satisfy

the intersegment compatlbility conditions:

[R]K{G}K . {_}K , (16)

• T K Gsk] , (17)where [R]k [G:k K Gck + Gsk

and + ZG k]{p}ks, (18)

Because NASTRAN has efficient sparse matrix routines, the time for the calculations indicated

in Equations 17 and 18 will not be appreciable. After solving Equation 16 by decomposition and

substitution, the symmetrical component variables,{_}kc and {_}ks are found from Equations IS.

The physical segment variables, {u}n, are found from Equation 2. The {u}n are NASTRAN vectors of

the analysis set. They may be expanded to {Ug} slze by recovering dependent quantities. Stresses

in the physical segments are then obtained vla the normal stress reductlon procedures.

The user may take an alternate route if he knows the transformed values, {_kc} and {)KS},

for the forcing functions {loads, enforced displacements, and temperatures). Thls will, for

exam)le, be the case in a stress analysis which follows a temperature analysis of the santa

structural model. These data may be input directly to NA_RAN, which will convert them to the

transformed load vectors, {)}K. Data reduction may also be performed on the transformed quanti-

ties to obtain the symmetrical components of stresses, etc.

A shortened approximate method for static analysis is available merely by setting

C_}K - o , (19)

for all K > KMAX, where KMAX is a parameter which may be set by the user, This is similar to trun-

cating a Fourier series. The stiffness associated with larger K's (short azimuthal wave lengths)

tends to be large, so that these components of displacement tend to be small.

The cyclic symmetry method can also be used in vibration analysis. The equation of

motion tn terms of independent degrees of freedom ts

V
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[_K . _z_K]{_}K . 0 ,

is derived by replacing [M] for [K] in Equation 17.
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(20)

The symmetrical components are

recovered with Equation 15. No provision has been made to recover physical segment data in vibra-

tion analysis, because the physical interpretationof Equation 4 is straightforward. (Each row of

[T] is a vector of the factors of the segments for one Ks or Kc index). The available output data does,

however, include the symmetrical components of dependent displace_:(ts, internal forces and stresses.

4.5.2 Theory for Dihedral Sjnnmetry

Dihedral symmetry refers to the case when each individual segment has a plane of reflective

symmetry, see Figure 2. The segments are divided about their midplanes to obtain 2N half-segments,

The midplane of a segment is designated as side 2. The other boundary, which must also be planar,

is called side I. The two halves of the segment are called the right "R" and left "L" halves. The

user prepares model information for one R half segment. He must also supply a llst of points on

side l and another llst of points on smae 2.

For the case of dihedral symmetry, the cyclic transformationdescribed earlier is used in

conjunction with reflective symmetry of the segments. The two transformations are commutable,

so they may be done in either order. The reflective transform for a segment is

un'R • un'S + un'A ' I

)un,L ,, un, S . un, A
(21)

Here, the superscript n refers to the nth segment, and R, L the right and left halves. The

superscripts S and A refer to the symmetric and antlsymmetrlc reflective components.

In the R half segment, displacement components are referred to a right hand coordinate

in the L half segment, displace_nentcomponents are referred to a left hand coordinatesystem;

systm. The inverse reflective transform is

un,$ , ½ (un'R + un,L)

un,A . ½ (un'R . un,L)

(22)

Reflective symmetry is seen to be very simple. The equations of motion at interior points

of the S and A half segmentmodels are identical in fom provided that unsymmetrical effects,

4.S-8 (3/1/76)
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such as Cortolls forces, are excluded.

The un'S and un°A components may be transfomed as follows using rotational principles.

kL
un,X . _o,x + _ [_kc,x cos(n-1)ka + _ks,x sin(n-1)ka] + (°1) n'l _N/2,x , (23)

k_1

where x may be either S (symmetric) or A (antis_nmetrlc). The inverse transformation can be

found by Equations 8 for both the symmetric and antisymmetric parts.

The constraints between the half-segments are summarized in Table 1. The constraints

shown apply between points Joined together at the boundary planes. "Even components" |nclude

displacements parallel to the radlal planes between segment halves, rotations about the axes

normal to the planes, and temperatures tn a themal analysis. "Scalar points" in a structural

analysis have arbitrarily been categorized as even components. "Odd components" include dis-

placements normal to the radtal planes and rotations about axes parallel to the planes. In

Table 1 the constraint equations for the S and A half-segment model are obtafned by substitut-

ing Equations 21 into the equations for the L and R half-segment model. The constraint equations

for the dihedral transfor_model are obtained by substituting for un°x and un+l'x from Equation

23 and c_nparing tems with the same dependence on n. It can be seen in the table that the k - 0

and k - N/2 models are completely uncoupled. There is coupltng between the kc,S and ks,A models

and also between kc,A and ks,S models. These two sets of constraint equations are related and

one can be found from the other by substituting _kc,S for _ks,S and _ks,A for ._kc°A in the con-

straint equations. If these substitutions are made and it ts noted that the equations of motion

are identical at interior points, then only one coupled pair of symmetric and antis_metric half

segments need to be analyzed wtth different load sets for the (_kc,S _ks,A) case and the

(_ks,S, .Qkc,A) case.

As tn the case of general rotational symmetry, a combined set of independent degrees of

freedom is formed from the half models. The Independent set {_}k includes all tntertor points,

the points on side Z of each half segment which are not constrained to zero, and new degrees of

freedom, {_1 }K, on side 1 such that for eve.___ncomponentsin the (_kc,S, _ks,A) case:

(24)
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while for odd components:

OF FOOR QUALITY'

(25)

V

Equations 24 and 25 are equivalent to the constralnts in the third column of Table I.

transformation to the new set of independentfreedoms may be expressed as

The

(_}kc,S . [GSK]{_}K ,

(G}ks,A • [GAK]{G}K ,

(26)

where each row of [GsK] or [GAK] contains at most a single nonzero term. The transformation

matrices for the (Gks,S, .Gkc,A) case are identical.

The final equation which is solved in static analysis is

[_]K{_}K . {_}K , (27)

where the stiffness matrix

[K]K - [G_K K GSK ÷ G_K K GAK] , (28)

and the load vector is obtained by successlve applicationof the (nverse reflectlve symmetry

transform,Equations 22, the Inverse cyclic s)nnmetrytransform, Equations 8, and the final reduc-

tion to independent freedoms.

The form of the latter is, for the (_kc,5 _ks,A) case
J

{_}K. [GsK]T(_}kc,S + [GAK]T{_}ks,A , (29)

and for the (_ks,S,__kcoA) case,

{_}K • [GsK]T{_}ks,A . [GAK]T{_}kc,A (30)

The data reduction which follows the solution of Equation 27 in static analysis includes the

application of the symmetry transformation to obtain un'R and un'L, followed by the expansion to

{Ug} size for each half-s_ent and the calculationof internal loads and stresses. Similar to

4.5-I0 (311/76) V
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the case of rotational symmetry, the data reduction for vibration analysis Is limited to the

recovery of elgenvectors, internal forces, and stresses for symmetrical component sets _kc,$

and _ks,A.

4.5.3 Advantages

The NASTRAN cyclic symmetry capability will result in a large saving of user effort and

computer tlme for most applications. The savings result from tliefollowing effects:

I. Grid point geometry and element data are prepared for only one segment in the case of

rotational symmetry or one half-segment in the case of dihedral symmetry.

2. The transformed equations are uncoupled, except within a given harmonic index, K,

which reduces the order of the equations which must be solved simultaneously to I/N or

2/N (where N is the number of segments or symmetrical half-segments) times the order of

the original system.

3. Solutions may be restricted to a smaller range of the harmonic index, K, (e.g., limited

to the lower harmonic orders) which results In a proportionate reduction in solution time.

Some accuracy is thereby lost in the case of static analysis but not in vibration

analysis.

4. In the case of static analysis, the @MIT feature may be used to remove all degrees of

freedom at internal grld points without any loss of accuracy. Since thls reduction is

applied to a single segment prior to the symmetry transformations, it can greatly reduce

the amount of subsequent calculation.

It is instructive to compare the advantages of the NASTRAN cyclic symmetry capability with

those offered by reflective symmetry and by conventional substructurlng techniques. The savings

offered by cyclic symmetry will always equal or exceed those provided by reflective symmetry

except for possible differencesdue to time spent in transforming variables. For example, when

an object has two planes of symmetry and bwo symmetrical segments (the minimum possible number

in this case), the minimum model sizes are both equal to one half-segment for the two methods.

They are also equal when the object has four symmetrical segments. The advantages of cyclic

symmetry for these cases are restricted to those offered by the OMIT feature in static analysis

and by a higher degree of input and output data organization. Any larger number of symmetrical

segments increases the advantage of cyclic symmetry because the slze of the fundamental region Is

4.S-ll (3/I176)
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smaller.

A method of conventional substructuringwhich recognizes Identical substructures can also

restrict the amount of grid point geometry and element data preparation to a single substructure

and can use the _MIT feature in the same way as cyclic symmetry. The advantage which cyclic

symmetry retains over conventional substructuringlles in its decomposition of degrees of freedom

into uncoupled harmonic sets. This is an important advantage for elgenvalue extraction,but the

advantage for static analysis is relatively small and depends In a complexmanner on the number

of segments and on the method of matrix decomposition.

In addition to the analysls of structures made up of a finite number of identical sub-

structures,cycllc symmetry can also be used for purely axisymmetric structures. In this case

the circumferentialsize of the analysis region is arbitrarily selected to be some small angle,

for example, one degree. Grid points are then placed on the boundary surfaces but not in the

interior of the region, and the region Is filled with ordinary three-dimenslonalelements. The

princlpal advantage of this procedure Is that ordinary three-dlmenslonalelements are used In

place of speciallzed axlsymmetric elements. In NASTRAN the number of avallable types and features

for ordinary three-dimenslonalelements far exceeds those available for axisymmetrlc elements,

so that cyclic symmetry immediatelyenlarges the analysls possibilities for axisymmetric struc-

tures. In particular, the rotational symmetry option can accommodate axlsymmetricstructures

with nonorthotropicmaterial properties, which the available axlsymmetrlc procedures cannot.

V
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Segment 2

Segment l

_ent N

V

Conformable Interface

1. The user models one segment.

2. Each segment has its own coordinate system which rotates with the segment.

3. Segment boundaries may be curved surfaces. The local displacement

coordinate systems must conform at the joining points. The user gives

a paired list of points on Side 1 and Side 2 which are to be joined.

Figure I. Rotational symmetry
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Segment 2L Segment 2R

_J_----1{_ Segment lL

I. The user models one-half segment (an R segment). The L half segments

are mirror images of the R half segments.

2. Each half segment has its own coordinate system which rotates with the

segment. The L half segments use left hand coordinate systems.

3. Segment boundaries must be planar. Local dlsplacement SyStemS axes,

associated with inter-segment boundaries, must be In the plane or

normal to the plane. The user lists the points on Slde l and Side 2

which are to be Joined.

Figure Z. Dihedral symmetry
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4.6 AUTOMATED MULTI-STAGE SUBSTRUCTURE ANALYSIS

The automated multi-stage substructure analysis capability allows the user to repeatedly com-

bine and reduce structures, which in themselves may be composed of several component substructures.

The resulting composite structure, or pseudostructure, may be used for performing linear static or

dynamic analyses. Both static (Guyan) reduction and modal reductlon (modal synthesis) may be used

in creating new pseudostructures. Although some of these operations could be performed with the

manual s_ngle-stage approach, described in Section 4.3, the task of controlling the sequence of

operations has been automated using simple Substructure Case Control commands, and the necessary

bulk data has been simplified for the user CSee the User's Manual, Section 2.7). Additional capa-

bilities, not available with the manual single-stage approach, are included. These allow geometric

and symmetric transformations of entire substructures, modal synthesis of substructures, automatic

identification of connected grid points based on geometry, manual identification of connectivities

by grid point and component, release of selected components and multipoint constraints for special

modeling conditions, independent grid point numbering of each basic substructure, and automatic

internal renumbering of retained and boundary grid point degrees of freedom for the connected

substructure configurations. The automated substructuring system also features an expandable

substructuring data base file on which all substructuring data are automatically stored or from

which data are accessed. This file is described in Section I.I0.2 of the User's Manual.

Automated multi-stage substructurlng analysis is organized into three basic steps or phases.

The organization of these steps is similar to the manual single-stage substructuring methods des-

cribed in Section 4.3. The Phase I operation consists of a standard NASTRAN formulation of a basic

substructure from the finite element model and its applied loads. Phase 2 performs most of the

specialized operations to combine and reduce substructures, apply constraints and loads, obtain

solutions, and recover data related to the basic substructures. In Phase 3, the solution vectors

are used to calculate the final output for each basic substructure.

The following discussion is involved primarily with the mathematical operations performed by

the automated multl-stage substructuring capabilities in NASTRAN. The specific user options and

program operations are described in the User's and Programmer's Manuals, respectively.

4.6. I Statlc Matrix Reduction

A powerful tool in the analysis of structures with the finite element displacement method is

the matrix reduction procedure. The desired effect of this operation is to reduce the total

4.6-I (12/2g/78)
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number of degrees of freedom required to define a structure and thereby decrease the dimensions

of the associated matrices and vectors. Both a Guyan static reduction and a modal synthesis

reduction are available. The static reduction is described in this section, and the modal

reduction is described in Section 4.6.2.

In substructure analysis, the only necessary degrees of freedom which must be retained for

static analyses are those associated with the grid points which will be connected to adjacent

substructures, those which will be constrained and/or those which will have loads applied to them

in a subsequent analysis phase. In order to adequately represent the inertia effects of each

substructure in a dynamic analysis, it will be necessary to also retain selected degrees of free-

dom on interior points and/or use modal reduction.

In this development, let substructure A be the structure to be reduced, and substructure B be

the resultant reduced structure. The displacement vector partition {u_} defines the boundary de-

grees of freedom of substructure A to be retained. The vector partition {u_} contains the "interior"

degrees of freedom of substructure A to be reduced.

The stiffness matrix for substructure A is partitioned so that

F IKbb iKbi

[KA] = Kibl Kii

where the full displacement vector {uA} is I UlA" "

Using the equations _or the Guyan reduction presented _in Section 3, the transformation

expression is defined as

or

where

Ill
t "i )

{uA} - [GAB]{uB}, (3)

[Glb] = - [Kii]'l[Klb ] . (4)

V

i
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4.6.2 Modal Matrix Reduction

The modal synthesis capabilities of automated multi-stage substructure analysis are

facilitated through use of modal reduce operations. Using modal reduction, a substructure is

reduced from one set of coordinates to a new, smaller number of degrees of freedom consisting of

user-selected boundary displacement coordinates and modal coordinates. Modal reduction may be

performed on real, symmetric mass and stiffness matr_ices (real modal reduction), and on complex

or-unsymmetric matrices, or on systems with damping (complex modal reduction). A "user mode"

option is provided so that the user may also define a substructure in terms of modal data

obtained external to NASTRAN by test or analysis.

The complete theoretical development of the modal transformation matrices is presented in

Section 4.7. A summary of the modal reduction transformation matrices is presented in the

sections which follow. The "user mode" option is described in Section 4.7.4.

4.6.2.1 Real Modal Reduction Transformations

As before for static reduction, assume substructure A is to be reduced and substructure B is

new, reduced structure. {UbA} are the retained boundary degrees of freedom and {uA} are thethe

interior degrees of freedom to be reduced.

The transformation from {uA} to {uB} is written as

where

{uA} = [GAB]{u B} , (13)

/o;J

r'2 ]I i 0 0

I....*"".........I'[GAB] = Glb) Hlo i ¢i'Glb%

L | , J
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In the above equations, {u_}, are the physical coordinates for substructure B, {6_} are six inertia

relief shape, free-body acceleration coordinates, and {6B} are the flexible-mode coordinates. The

matrix [mi ] contains the flexible mode shapes for the interior degrees of freedom (including null

rows if interior coordinates were constrained for mode extraction), and [_b ] are the flexible

mode shapes for those boundary coordinates not constrained for mode extraction. In addition, as

in static reduction using the matrix partitions of Equation l,

[Gib ] = - [Kii]'IZKib ] . (17)

The transformation partition for inertia relief shapes is

[Hio] = [Kli]'l([Mib ] + [Mii][Gib])[¢bo] , (18)

where [¢bo] are free-body displacement shapes computed using boundary point coordinate geometry.

The transformation matrix [GAB ] is used as shown in Equations 7, 8, g, and lO to define

substructure B. As before, [GAB ] is the HORG matrix for substructure A.

After solution vectors {uB}, (GB),and {uB} are obtained, {uA} is computed using

= [GAB]{u B} , (Ig)

= [GAB]{G B} , (20)

and = [GAB]{u B} . (21)

The standard procedure to define substructure A interior coordinate displacements is defined as

However, a mode acceleration technique for improved accuracy may be requested by the user such

that

4.6-5 (12/29/78)
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Note that the mode acceleration technique may be costly for transient analyses.

The improved total deflections are computed using

(23)

{uA} = [Gib]{uA}*{_uA} (24)

4.6.2.2 Complex Modal Reduction Transformations

Structural models defined by unsymmetric matrices, matrices with complex terms, or damping

matrices may be reduced using complex modal reduction.

Using the same notation developed in the previous section for real modal reduction, a dis-

placement transformation matrix is written as

{uA} = [GAB]{uB} , (25)

where {uA} , I.u;.l (26)

/o,,.j'

CGAB] I II i o
, (27)

and -x_- . (28)

In general, the mode shapes C_I] and [_b ] are complex• [Glb] is the static reduction transfor-

mation and {XB} are the complex, flexible mode, generalized coordinates for substructure B.

Inertia relief coordinates are not used for complex modal reduction.

A second transformation matrix is required for transformation of forces in the unsymmetric

case. It is defined as

_ I

W

4.6-6 (12/29/78)
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FII o 1
. ! . . '

[dAB] Gib:_i' -GibPb'

[Gib] F IT -l[KbiIT. . .Kii- l

(29)

(30)

and [_] are the left-hand eigenvectors obtained by solving the eigenvalue problem using the

transpose of the mass, damping, and stiffness matrices of substructure A.

The matrices for substructure B are obtained using

[M B] . [GAB]T[MA][G AB] , (31)

and similarly for the damping and stiffness matrices, and the forces are transformed using

{pB} : [_AB]T{pA} (32)

Matrix [GAB]T is used for [_AB]T when the matrices of substructure A are symmetric.

Matrix [GAB] is the HBRG matrix for substructure A and [GAB]_iS the HLFT matrix item for

substructure A stored on the substructure data base file.
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4.6.3 Substructure Combinations

The mathematical operations involved with combining substructures are very similar to the

methods of combining element stiffness matrices in the finite element displacement method. For

each element or substructure, the matrices are generated in a local coordinate system, they are

then transformed to a common global coordinate SYstem, expanded to the size of the combination

matrix, and added together. If adjacent elements or substructures are connected at the same

grid point, the combination is effected by simply adding the corresponding contributions from

each matrix.

In substructure analysis, the transformations between the dlsplacements in each substructure

{uA}, {uB}, etc., and those in the combination, {uC}, are given by a set of matrices [HAC], [HBC],

etc., where:

{uA} , [HAC]{uC }

{uB} , [HBC]{u C}

(33)

etc.

The contents of these matrices may be illustrated by the example in Figure I. Two substructures,

A and B, must be combined using the degrees of freedom along the boundary which are sequenced

differently for each substructure. Note that grid points 2 and 6 of the original structures are

to be connected only in their x-component of displacement. The final desired sequence is shown

in parentheses. For simplicity, only two degrees of freedom are given for each grid point. In

general, however, six-by-six matrix partitions would be used in place of these unit values.

If [KA] and [KB] are the stiffness matrices for substructures A and B, the stiffness matrix

for the combination C is:

[Kc] " [HAC]T[KA]zHAC] + [HBC]T[KB]zHBC] (34)

V

4-
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4 A

{uc} .

-----COt_ INE----

,l 7,
Uy8

A 8

Ux2

3 5

Ux 8

(2)

/ /

"(_ - x

(6) Combined Structure

Basic Coordinate System

{uA}

FUxl

Uyl

Ux2

. Uy2

Ux3

Uy31

Ux4

Uy4

OF FL_CR _' ....

Ux5

luyB
lug6

and {u B} - I Uy6

Ux7

Uy7

u×8

,. UY8

Displacement component in Y direction at

grids 2 and 6 are not to be connected.

Grid points 4 and 5 independently

represent Y displacements (Uy 2 and Uy6)

and grid point 3 represents the combined

X displacement (Ux2 and Ux6) in final
structure.

Uxl

Uyl

Ux2

Uy2

Ux3

Uy4

Uy6

Ux6

Uy6

Ux7

Uy7_

{uA} : [HAC]{u c} where [HAC]

{uB} • [HBC]{u c} where [HBC]

DOF

I -0

2 0
3 0

0
6
7
8

1 "0

2 0
3 0

0
6 0
7 0
8 0

234567891011

O100000000-

0010000000
0001000000
O000100000
0000001000
O000000100
0000000000
lO00000000

0000001000

O000000100
0001000000
0000010000
OlO0000000
0010000000
0000000010
0000000001

J
v

Flqure 1. illustration of substructure combination matrices.
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The mass and damping matrices would be combined with identical transformations.

vectors on the combination structure are:

{pC} , [HAC]T {pA} + [HBC]T {pB}

The load

(35)

The contributions to {pC} from each basic substructure are not added at this time. They are stored

separately with the data for each combined substructure. At solution time, the user has the

option to specify arbitrary linear combinations of these loadings in order to define the total

loading to be applied to the model. The solution vectors {uA} and {uB} for the contributing sub-

structures are recovered using Equation 33 once the displacements or mode shapes {uC} have been

computed.

This method of performing the substructure combinations offers the following advantages:

I. The [HAC] matrices are extremely sparse, they require a minimum of storage space and the

NASTRAN matrix multiply operations used are efficient.

2. For each substructure, the same transformation is applied to all its matrices, loads and

solution vectors.

3. If rotations and/or symmetry transformations are specified for the component substructures,

the directions of displacement may be transformed by simply substituting direction cosines

instead of unit values, as discussed below.

In many situations when structures are to be combined, it is necessary to translate and/or

rotate a component substructure in order to bring its boundary points into alignment with the other

substructures. The user may define the physical orientation of each component substructure by

specifying the orientation of the substructure basic coordinate system relative to the basic

coordinate system of the combined structure, herein defined as the overall basic coordinate system.

A symmetric mirror image of the substructure may also be obtained by specifying the axis normal

to the plane of reflection desired. This allows the user to prepare only one half of a symmetric

model and automatically obtain the matrices for the other half vla this symmetrlc transformation.

Consider the horizontal stabilizer illustrated below as a component substructure defined in

its own basic x, y, z coordinate system:

4.6-10 (12/Zg/7B)
V



AUTOMATED MULTI-STAGE SUBSTRUCTURE ANALYSIS

Y

X

OF POOR GUALIT!

This stabilizer must now be rotated, translated, and attached to another substructure repre-

senting the fuselage. The user defines the location and orientation of the stabilizer coordinate

system in terms of the overall basic coordinate system. This is illustrated in the following

sketch of the overall basic coordinate system Xg, yg, Zg.

Substructure /

Basic Coordinate _/

',,_\\
/ /\,r \ \

Xg_ Overall Basic
Coordinate System

Yg

V

The locations of the substructure points in the overall basic coordinate system are described

by the equation:

{Rg} - [Ttr] {r} + {Ro} (36)

4.6-II (12/29/7B)
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where [Ttr] is a rotation matrix of unit vectors defined by the user such that:

V

i Jq kl 1
[Ttr] " i2 J2 k2 {37)

13 J3 k3

and Ro is the offset vector from the overall basic origin to the origin of the stabilizer coordi-

nate system.

The displacement vector {Ug} for a grid point in the overall basic coordinate system is

similarly defined in terms of a vector {us} for the component substructure in its basic coordinate

system by the equation:

{Ug} = [Ttr] {us} (38)

The symmetric reflection of a substructure is treated similarly. Note that the mirror image

model has identical stiffness and mass matrices, however, the components of displacement and

rotation are now defined in a left-handed coordinate system. Therefore, a corresponding transfor-

mation is required to provide for comparability among combined substructures. The following

sketches illustrate the problem of a structure reflected in the overall basic z-y plane:

Original Substructure _

z

V

4.6-12 (12/2g178)
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Both the displacement and rotation components, prior to transformation, are now in a left-

handed system. Therefore, in order to connect the reflected structure to the original model with

its right-handedcoordinate system, the Following transformation must be applied to eve_._.e__grid

point:

m

u r
x

_" Ux-r

Uy
Uy

r

LIz UZ

{Ug} = _ _r ' = [Tsym] ' (39)
x Ox

er By
Y

r ez

e z .- .

where, for the example shown:

[Tsym] Illo= 1
1

-I
-I

(40)

Similar transformations exist for reflections in the x-z and x-y planes.

Assuming the primary substructureand its reflected model are to be combined along the plane

of symmetry, the resulting combined model would show:

Reflected Model _ey_

(Trans F°rmed )_uz_Yux__z _ uz_UX_
Original Model
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cRIGINAL '¢_ _

GF pOOR _:...... MISCELLANEOUS GENERAL PROVISIONS FOR STRUCTURAL ANALYSIS

All subsequent combinations using this new substructure would proceed as for any other substructure.

On data recovery, however, the user must be careful. The detailed results obtained for the basic

reflected model (Phase 3) will be output in the reflected coordinate system and, therefore, must be

interpreted with the left-hand rule. These results, of course, include not only displacements and

rotations at grid points, but they also include stresses and element forces and moments.

If a subsequent symmetry transformation is imposed on a model already comprising components

which themselves resulted from symmetry transformations, a left-handed coordinate system of the

earliest component substructure would again be transformed, but now to a right-handed system. For

example, a model with four identical components could be constructed as follows:

y Y y

X

IV

Ill

I x

II

Y

X

where the original basic substructure (I) was reflected In the x-z plane to create substructure (II).

Substructures (1) and (II) were combined and subsequently reflected in the y-z plane to create

substructures (Ill) and (IV) to complete the four part model. The final model would comprise four

basic substructures, of which substructures II and IV would produce Phase 3 results in the left-

handed coordinate systems as shown.

The transformations and symmetric reflections of the structural matrices are easily included

in the process of combining several substructures. The combined transformation equations necessary

to define displacements and rotations of each grid point {Us}, in basic, right-handed, coordinates

are:

{Ug} = [Hg] {us } (41)

V
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[Hg] " [Tsym] L :TtrJ (42)

and {us} are the displacements in the respective component substructure coordinate systems.

The [Hg] matrix for each grid point is assembled into the overall substructure transformation

matrix [HAC] defined previously. The stiffness matrix, mass matrix, and load vectors can now be

transformed to correspond to displacements and rotations in the overall basic coordinate system of

the combination structure. The [HAC] matrix is the HQRG matrix item for substructure A stored on

the substructure data base file.

Several restrictions and rules must be imposed on these transformations in order to prevent

complications and errors. The transformations given above will be applied only to grld points

having their displacements defined in the original substructure basic coordinate system. Displace-

ments defined in a loca_____1system of the component substructure will not be transformed, i.e., their

directions will be fixed on the substructure and will travel with the substructure during its

rotation and/or translation. Provisions are made to allow the user to define new local systems,

or to change local systems to basic during Phase 2 processing.

If constraints have been applied during Phase I or if selected degrees of freedom at a grid

point have been reduced out of the matrices, additional problems may occur. These grid points

might not have all of the original three displacements and three rotatlona I.degrees of freedom.

The transformation matrix (Hg) at these grid points could then reintroduce previously eliminated

degrees of freedom which could cause singularities. Consider the example shown in the following

sketch where two co-linear rods are connected.

Cont_lned Substructure

Basic System _ROD

u l

_i Y2 x2

.M //_ uxl X /_Substructure 2

_//y _ V Baslc System

• t Substructure l

" I BaslcSy;tem
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Assume the component Uy2 on the right structure was constrained out to remove a singularity.

After rotation there would again be two components, uxanduy,and the grid point will again be

singular. The user has two options to avoid this problem. Multipoint constraints may be imposed

during the solve step in Phase 2 if the components are left unconnected until the solution model

has been completed. Alternately, the user may define compatible local coordinate systems at both

grid points and the desired connections can be made since local grid point coordinate systems are

not transformed when the structure is rotated.

4.6.4 Solution and Recovery

After all of the necessary substructures have been assembled and reduced with the operations

described above, the assembled pseudostructure may be analyzed with many of the standard NASTRAN

options. Static, dynamic, and normal modes analysis are processed automatically requiring only a

few special data cards to define the constraints and load combinations with reference to the

original basic substructure names. The mathematical steps involved with the solution are

described in Section 3.

The results of the NASTRAN solution are in the form of vectors related to the pseudostructure

degrees of freedom. They are:

I. Displacement vectors, {Ug}, with one vector per solution load case in static analysis,

time point in transient analysis, and frequency in frequency response analysis. In

normal modes analysis, one displacement vector is produced for each eigenvector obtained

during solution.

2. Forces of constraint, {q}, with one vector per solution load case, time, frequency, or

elgenvector. These vectors are computed differently than NASTRAN single-point forces of

constraint as described later in this section.

3. For static or dynamic analysis, a set of load vectors, {Pg}, are produced.

4. In normal modes analysis, an eigenvalue, ki, the natural frequency, fi' a modal mass, M i,

and a modal stiffness, Ki, are produced for each mode shape.

The recovery of displacement vectors for the original basic substructures are obtained by

tracing backwards the same path that created the structural matrices and loads. For instance, if

substructure A were reduced to produce substructure B with the transformaDion matrix [GAB] as

defined in Section 4.8.1, the displacements of structure A are obtained by

¢.6-16 (12/29/7B) V-
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{u A} , [GAB]{u B} + {u°} . (43)

{u_}, as defined by Equation 12, is not produced for normal modes analysis.Note that

Continuing the example, assume that substructure F was created by combining substructures A

and B. The displacements of these substructures may be obtained by application of Equation 33:

{uA} = [HAF](uF} (44)

{uB} = [HBF]{u F} (45)

where --[HAF] and --[HBF] were created originally in order to combine these two substructures.

The forces of constraint, {q}, play a different role in substructure analysis than in ron-

substructuring NASTRAN formulations. The total set of Forces on an individual substructure are

computed in Phase 2 execution as shown below and are identified by rigid format application. In

these equations, {q} are the Forces of constraint, {P} are the applied loads, {u} is the displace-

ment vector, [K] is the stiffness, [B] is the damping, [M] is the mass, u 2 are eigenvalues from a

real modes analysis, and p are complex eigenvalues from a complex modal reduction.

Rigid Format Equation

- {P}l and 2

3 (real)

3 (complex)

8 and g

{q} =,

{q} =

Cq} =

(q} -

[K]{u}

[K]{u} + [B]['p-]{u} * [M]['p2_{u}

[K](u} + [B]{_} + [M](U} - (p}

v

The force vectors {q} contain all the terms due to:

I. Applied forces

Z. Inertia and damping Forces

3. Single-polnt constraints

4. Multlpoint constraints

5. Forces transferred from Other connected substructures

5. Residual forces due to computer round-off

4.6-17 (12/29/78)
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The additional solution quantities such as element forces and stresses are calculated in

Phase 3 using the equations in NASTRAN for each rigid format application.

L

..-__
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COMPONENT MODE SYNTHESIS

Component mode synthesis shares with substructure analysis the concept of dividing a struc-

ture into separate Components, reducing the order of the component matrices, and combining the

resultant matrices through the displacement equalities at the common boundary points. Modal

synthesis has the primary advantage that the dynamic response of a substructure may be represented

by a small number of modal displacements which may be more accurate than an arbitrary set of

reduced grid displacements. A secondary advantage is that modal synthesis may be used as a design

tool in that the participation of critical component modes in the overall system response are

easily obtained.

In the following development, both real normal modes and complex eigenvectors will be used to

formulate the reduced system. The undamped mode shapes, or real normal _odes, are used to repre-

sent the unconnected parts of a component structure. In the complex eigenvalue problem, the

general case of unsymmetric matrices with damping and complex matrix terms is considered. The

primary theoretical development concentrates on the real modes problem with the complex eigenvec-

tot formulation treated as a more general extension.

The NASTRAN system provides a large variety of structural and nonstructural applications.

Similar;y, the modal synthesis method is a general capability. Because of potentially large-size

structural models, it is also designed to be efficient and versatile.

The modal synthesis capability has the following basic characteristics:

I. The system is compatible with the automated multi-stage Substructure (AMSS) system.

2. No internal restrictions on the type of modes (free-free, fixed, etc.) are imposed.

3. Connection between modal synthesis substructures and normal substructures is allowed.

4. User-specified modal data is allowed.

5. Complex eigenvalue modal synthesis capability is available.

The equations for the modal synthesis formulation and data recovery are developed in this

section. The associated substructure operations such as combining substructure components and

providing overall solutions are described in Section 4.6.2.

The following development is divided into Four parts. The transformations for the case of

real normal modes is developed in detail. Then, a brief development extends this method to the

case of complex eigenvalues for damped systems. Next, the data recovery equations are provided,

4.7-I (1212g178)
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including the energy factor calculationsfor the component modes, which help the user measure solu-

tion accuracy. The final section describes the methodology for processing user-suppliedmodal data.

This modal data may be derived from structure testing or from analyses by other methods.

4.7-2 (12/29/78)
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4.7.1 R_al Modal Reduction

This section presents the deve]opment of the equations for the real, normal mode, modal

reduction of a substructure. This modal reduction is applicable to undamped or lightly damped

structures represented by symmetric mass and stiffness matrices. The Substructure Control Deck

command MREDUCE controls execution of the real mode modal reduction.

4.7. I.1 Real Mode Transformation

Each component substructure is defined by a stiffness matrix, [K], a mass matrix, [M], and

optional damping matrices, [B_ and [K4]. For the undamped case, the equations of motion are

CM]{_}÷ [K]{u} = {P} , (1)

where {u} are the displacement coordinates and {P} are the loads due to external forces or

boundary reaction loads from other substructures.

For the idealized case when a1.jllmode shape vectors, {¢j}, of the unconstrained substructure

have been extracted, the equations of motion are uncoupled, one equation for each mode, such that

N 2_

_j({j + _j_j) = Pj , (2)

where

and

_j = {,_j}T[M]{_j} , (3)

2 = (I/_j){¢j}T[K]{_j} (4)

pj = {@j}T{p} . (5)

N

Also, ui = _¢ij$j or (u} = [_3{5} . (6)
j-I

In this development, j denotes the mode, i denotes a displacement coordinate, and N is the total

number of modes. The matrix [_] represents the collection of al__.Imodeshape vectors, and [)j]

represents the set of mode shape vectors to be retained in the analysis.

..-_-

"w
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Using the Laplace operator s where @/@t = s, Equations 2, 5, and 6 are combined to obtain

the matrix equation for coordinate displacements so that

{u} = [¢] [_]T{p} . (7)

Equation 7 is exact when all modes of the system are used. Normally, however, only a truncated

set, _1.... {m' is used to reduce the number of variables.

4.7.1.2 Effects of Truncated Modes

The response of the higher modes, {@k}, where _ >> s2 is primarily static, and Equation 7

becomes

where Zj(s) - 1 for j < m , (9)
_j(s2 +w_)

l 1
and Zk = -_ = -- for k > m ,

kk_ Kk

(IO)

V

and the number of retained modes is m.

The form of the last term of Equation 8 is that of a flexibilitymatrix, Jail, tlmes a load,

which produces a corrective displacement vector. This residual flexibility is obtained from the

basic equations of motion, Equation l, as shown next.

Equation 8 may be written in terms of free-body modes [@o], retained flexibilitymodes [@j],

and residual flexibilityin the form

-1

{' 1
where the subscript, o, denotes a free-body mode.

For constant applied loads, only free-body acceleration exists, and

- sz{u}- [%] (s- o) (12)

4.7-4 (1/30/81)
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Substituting Equations II and 12 into Equation l with s - O, and noting that [K]{_ o} - O, we

obtain

[K][AZ]{P} = {P}- [M][@o][_o]'l[¢o IT{P}

[K][*il[Z(O)][*_]{P} (13)

Multiplying Equation II by [K] and substituting Equation 13 into that result gives an approximation,

below, which includes the static effect of all modes and the dynamic effect of selected modes

[K]{u} : [K][¢j][Z(s) - Z(O)][_]{P}

[M][@o][_o]'I[¢o]T{p} + {P} . (14)

The above approximation would provide excellent results for an uncoupled structure. However,

at the boundary points, the loads P gain contributions from the connected structures due to

the displacements at the boundary. For this reason, the boundary degrees of freedom must be

separated from the interior degrees of freedom in order to proceed. But flrst, Equation 14 will

be simplified by introducing modal coordinates, {6}, as defined below. Let

[K]{u): [K][_j]{a}- [M][%]{ao} + {P} , (IS)

where {6} = [Z(s)-Z(O)][$j]T{P} , (16)

and {60} = [_o]'l[¢o]T{ P} • (17)

Note that {6} represents the difference between the modal displacement and the static response.

Substituting Equation g into Equation 16, each modal coordinate is obtained as

s2[_j]T(P}

_j " " 4 + 2 2
#j_j(l s /_j)

(18)

The quantity 6j has units of displacement and decreases as the fourth power of _j. The response

magnitude of the high frequency modes therefore converges rapidly. Also note that 6o has units

of acceleration and represents free-body motion.
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4.7.1.3 Interior/Boundary Transformations

For connection to other structures, Equation 15 must be separated into boundary points, ub,
!

and interior points, ui. For exan_)le, the matrices are partitioned such that:

FK]* .b.b_%_!,

LKibiKiiJ
(19).

and u ÷ "ui" , etc. (20)

Although the full matrix [K] may be singular, the partition [Kii] _ust be non-singular. The

interior displacements may be defined by the lower half of Equation 15 which becomes

[Kib]{U b} + [Kii]{u i} = [Kib$b + Kii¢i]{6}

- [MibCbo + Mii¢io]{_o}.+ {Pi } . (21)

Solution of Equation 21 for the interior displacements, {ui}, yields the result

{ui} = [Gib]{Ub} + [¢i - Glb_b]{_}

- [Kii]'l[MibCbo + Mii¢io]{_ o} + [Kii]'l{Pi } , (22)

where [Glb] = [Kli]'l[Kib ] " (23)

Also, note that {¢io} - [Glb]{¢bo} for the rigid body modes and the matrix [Glb] is identical

to the transformation matrix used for the Guyan reduction technique. Without modal coordinates,

the formulation degenerates to a static matrix condensation.

A higher order approximation, {Oi}, to the interior point displacements is obtained as

follows. An expression for {_i } Is obtained by differentiating Equation 22. Equation l is

rewritten in partitioned form and {Oi}is used instead of {ui} so that

LMbEMIJ0iLKibKi J Oi
4.7-6 (12/29/78)
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The second derivative of Equation 22 is substituted into the lower expression of Equation 24, and

the expression is solved for {_i}, yielding

{_i } • [Gib]{U b} - [Kii]'1[Mib + MiiGib]{_b}

[Kii]'1[Mii][[¢i - GibCb]{_} ]

+ [Kii]'1[Mii][Kii]-l[Mib + MiiGib][%o]{_ o}

+ [Kii]'l[Pi - MiiKii'IPi ] . (25)

Equation 25 is substituted into the upper expression of Equation 24 to obtain the dynamic

equations of motion for the boundary coordinates. In a similar fashion, the equations of mction

for the modal coordinates may also be developed resulting in a complete definition of the reduced

system. However, the equations of motion resulting from the operations described above are

identical to those obtained by application of the Galerkin principle as shown below.

The coordinate transformation matrix, [Hgh], is defined using Equation 22 such that

{u} - u = [Hgh]{Uh} = [Hgh]

r II I

I i 0 _ 0
[Hgh] = I----,.....,_......... ) ,

[Gib] = . [Kii]-l[Kib ] ,

(26).

where (27)

(28)

and [Hio] = - [Kii]'l([Mib ] + [Mii][Gib])[@bo] • (29)

When the nun_er of modes is zero and the inertia rellef effects are ignored, the transforma-

tion matrix given in Equation 27 is the same as Guyan reduction or matrix condensation transforma-

tion. When modes exist, they provide dynamic motion relative to static deformations. Free-body

motion and redundant constraint information are contained in the [Gib] transformation. Inertia

relief deformation shapes are contained in the [Hio] matrix. The generalized coordinates, {Uh},

define the reduced coordinate set for modal-reduced NASTRJkN structures.

4.7-7 (12/29/78)
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After applying the transformations defined by Equation 22, the reduced mass and damping

matrices, [Mhh] and [Bhh ], are typically coupled between the boundary and modal coordinates, where

[Mhh] = [Hgh]T[M][Hg h] , (30)

and [8hh] = [Hgh]T[B][Hg h] • (31)

However, the stiffness matrix takes the form

EKhh;" , <32>
L 0 iKRpJ

where [Kbb] is the stiffness partition obtained from a Guyan reduction and the subscript p refers

to the modal coordinates. Note that the boundary and modal coordinates are statically uncoupled.

The externally applied loads are also transformed, resulting in system loads defined as

{Ph } = [Hgh]T{P} • (33)

Examination of Equation Z7 and the preceding development indicate the following major features

of the method:

l, The interior degrees of freedom of the substructure may be replaced by a much

smaller set of modal degrees of freedom. Equation 18 indicates that the effects

of the high frequency truncated modes decrease with the fourth power of their

natural frequencies.

Z. Since the modal coordinates are uncoupled from the boundary grid points, as shown

in Equation 32, no approximation is used for static solutions.

3. The type of fixed boundary conditions on the normal modes is completely arbitrary;

Either interior modal deflections {@i} or boundary deflections {¢b } may contain

zero components.

4. The method gives results equ|valent to those of other methods when the corresponding

restrictions are applied. Elimination of the inertia relief effects simulates the

results of Hurry (Reference I). In addition, fixing all boundary points results in

4.7-8 (12/zg/78)
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exactly the same matrices as those employed by Craig/Bampton (Reference 2). The use

of free-free modes with inertia relief effects duplicates Rubin's results (Reference 3).

In summary, this method provides all of the conveniences of the automated multi-stage sub-

structuring (AMSS) system with the additional power and accuracy derived from advanced state-of-

the art modal synthesis techniques. Additional features are described in the following sections,

which develop the methods used in the complex eigenvalue option, the recovery of data from the

final solutions, and the processing of user-supplied normal mode data.

4.7-9 (12/29/78)
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4.7.2 Complex Modal Reduction
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An extension of the real mode modal reduction is provided here for the general case of

structures described by unsymmetric or complex matrix tems of damping matrices that prohibit

a normal mode approximation of structural motion.

The basic approach used in real component-mode synthesis will be applied to the complex

eigenvector synthesis. The eigenvectors and eigenvalues are obtained by NASTRAN from the general

damped system resulting in a set of complex eigenvalues, p• and eigenvectors, {_}, defined by the

equation

[ZM]p2÷Z ]p+ - (34)

As defined in Section I0.4, the orthogonality condition between the eigenvectors is

{_i}T[(pl + pj)[M] + [B]I{_j} " O, with i # j . (35)

where {_i } is the so-called left eigenvector, obtained by transposing the matrices in Equation 34.

The left eigenvector may be considered the characteristic vector of forces for the root• whereby

the right elgenvector is the characteristic vector of displacements.

As is done with real mode reduction, boundary (Ub), interior (ui), and modal coordinates (X)

are defined, and a displacement coordinate transformation is defined as

(u} = [Hgz]{Uz} • (36)

where {u} - u ' (37)

ol

{%}and {uz} - -. (39)
X

Note that, for complex mode reduction, the l_rtla relief coordinates, {6o}, are not used.

4.7-10 (12/29/78)
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In addition, a second transformation, required for forces in the unsymmetric case, is

defined as

i) o
..---,-.----:---- , (40)

[Hgz] = LGibi_i-Gib_b]

[ ib]" "[KTI]'I[ i]T (41>where

The resulting system matrices are transformed to reflect the reduced set of displacements with

the equations

= [Hgz]TFM][Hgz], etc. , (42)[Mzz]

and the forces, F, are transformed by the equation

= [Hgz]T{F} . (43)(ez}

The resulting solution equation is

[Mzz]{U z} + [Bzz]{U z} + [Kzz]{U z) = {Fz} • (44)

With this formulation, the reduced structure may be connected to other substructures at the

boundary points with the C_MBINE operation.

4.7-II (12/29/78)
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After the matrices and loads are determined for the reduced substructure, they may be used

in further substructuring operations. The final combination structure may be analyzed for static,

eigenvalue, transient, or frequence response. The resulting solution vectors are obtained in terms

of the boundary and modal coordinates. This section describes the procedures necessary to recover

the detailed data on the interior displacements and the modal energies by component substructure.

4.7.3.1 Solution Recovery for Reduced Structures

After solution vectors, {_h }, {Oh}, and {Uh}, are obtained for a modal reduced substructure,

displacements in the original coordinates are recovered In three steps using the equations

previously developed, namely

and similarly for the velocities and accelerations,

and ) - [Hgh]{_ h} . (47)
lui)

If exterior loads are applled, a correction to interior coordinate displacements is added,

resulting In the total displacements, uI,

However, Rubin [Reference

accuracy. If this technique is selected, then Equation 25 may be used in the Following Form for

the alternative, "improved," displacements

defined in Equation 22 which are:

{ui} - [Kli]'l{Pi } + {_i} • (48)

3] has shown that a mode acceleration technique will result in improved

(Au I} - [KII]'I{PI + AP I} (49)

V
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I_Pb I -

where - - (49a)

The total deflections are

{ui} - [Gib]{U b} + {_ui} . {50)

4.7.3.2 r,_dal Energy

Because interior degrees of freedom of the structure are replaced by a smaller set of modal

coordinates, use of modal synthesis techniques can be expected to result in some degradation of

modal accuracy. The magnitude of the error will be dependent on the characteristics of the

component substructure loads which are dependent on both the applied loads and the dynamic forces

due to other connected substructures. Therefore, the errors are not easily predicted, but they

may be measured only for a particular solution of the entire structure.

A measure of solution accuracy may be obtained by computing modal energy factors for the

modal coordinates' responses to a solution. The magnitude of the energy factors for modes

retained as part of the substructure description (the included modes) determines their participa-

tion and indicates whether they may be removed for subsequent analyses. Also, the energy factors

for those calculated modes, which were excluded due to limitations of frequency range or number

of modes used, may be estimated to determine if they should have been Included to improve the

accuracy.

The energy factors described here are obtained via the ENERGY subcommand under the RECOVER

command. Energy factors from a normal modes or frequency response solutton may be computed for

any modal reduced substructure.

The total energy factors are determined by the Raylelgh coefficients which are the ratio of

energy contained in the mode versus total energy in the system. However, the actual mode shapes

used in the formulation are modified such that motions due to boundary point dtsplacenents are

removed. Separatlon of the dlspIacement vector into that component due to the modes, {¢}, and the

remainder, {Ur}, results in

{u} - {ur} + {_}_ , (51)

v
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{,} . -.-

The total potential energy is

(52)

V = ½{u}T[K]{u} . (53)

Therefore, the potential energy contribution of each modal coordinate, _j, for each solution

vector, {u}, is

6Vj - ½(u}T[K]{_}6j . (54)

Similarly, the kinetic energy contribution is

_Tj - ½{_}T[M]{&}_j , (55)

The definition of the velocity vector depends on the type of solution. For instance, in

normal mode analysis, _j - _j.

The energy factors of the excluded modes are estimated from the excitation provided by the

resultant solution vector. The equations used are presented below.

The response of modal coordinate _k as expressed in terms of static (s) and dynamic (d)

effects is

_k " _ ÷s_. (56)

From Equation 18,

- s2{¢k}T{_j }

'_ " _k(_( 1 2 4 '+ s /_k )

..- (57)

(¢k}T{Pj}

and 6_ - "k"'_ ' (s.)

where {Pj} Is the total load on the substructure at the jth frequency due to boundary and applied

loads. This total load is calculated from the equation

V
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{Pj} - [Ms_ + Bsj + K]{uj} .

OF POOR _,UAL_

(59)

For transient analysis, evaluation of Equation 57 would require costly, explicit integration of

each coordinate versus time. Therefore, this output is restricted to elgenvalue and frequency

response problems where s - i_ (or s - p for complex eigenvalues).

The expressions for kinetic and potential energy for the excluded modes would normally be

written as

6Tk - ½PkS2(6k )2 , (60)

and _Vk , ½ 2 2_k_k(_k) (61)

Substituting Equation 56 into Equations 60 and 61 and noting that the static contribution of all

(6_)2, has been included in the solution because of the NASTRAN modal synthesis formulation,modes,

the expressions for kinetic and potential energy of the excluded modes become

1 2 s (62)_T k - _-_k s (25k +

and - - _Vk . ½ 2 s d d_k_k(2_k + _k)_k . (63)
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4.7.4 User Input _des

A _thod for using structural test data to represent a component substructure in NAST_N

_dal synthesis is described in this section. The data which are required for the method and

additional data that may be available and used are listed below, followed by the _trix operations

used in development of the _dal synthesis matrix terns _r input to NAST_N.

The following data item are used _ the user _de option to modal synthesis:

I. Natural frequency, _j, and _dal mass,wj, for each _de (required).

2. _dal deflections of the bounda_ points, {¢ij}, which were free in the _dal test

(requi_d).

3. _dal reaction _rces, {qbj}, acting on bounda_ points which were fixed for the _dal

test (required). Note that all displace_nt coordinates _st be classified as bounda_

coordinates and either deflections or forces are required _r every boundary point.

4. The reduced stif_ess matrix _r the bounda_ points (optional). These data may be

available from analysis or from an influence coefficient test.

5. Additional mass, not included in the modal data, on fixed _unda_ mints (optional).

4.7.4.1 Fixed Boun_ Points

Equation 27 from Section 4.7.1.3 p_vides _e basis for this fomulation. The inertia

relief _des am not included and {ub} represents the bounda_ coordinates fixed in the _dal

test. Thus,

---,---L ibl,ij

Using Equation 64, the stif_ess and mass matrices of the free (unconstrained) substructure would

take the fore

- i,s)

2 jth " is the r_uced boundary stiffness= W juj for the _de, Kbbwhere ['K,] Is diagonal and Kj

matrix, and

V
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[M]
CTMiiGib "_.

, (66)

where [aib] - - [Kii]'l[Klb ] , (67)

or [Kbi] - - [Gib]T[Kii ] , (68)

and [Mbb] is the flxed-boundary mass matrix.

The problem arises that [Kill, [Kib], and [_i ] are not available from the modal test and

another expression, required for [Gi], must be developed as follows.

modes,

{Mii][_lj] = [Kii][¢ij]['l/_.] . (69)

Premultiply both sides of Equation 69 by [Glb], so that

[Gib]T[Mli][¢ij] - [Glb]T[Kii][¢lj]['I/_.] •

The left side of Equation 70 provides the off-diagonal partitions of Equation 66.

known generalized Forces on the fixed points are defined by the equation

From the definition of normal

(70)

However, the

[qbj] - [Kbi][¢ij] , (71)

or, substituting Equation 68 into 71,

[qbj] - [Gib]T[lil][¢lj] . (72)

Equation 72 is substituted into Equation 70 to obtain

[Gib]T[Mii][@ij] = [qj]['I/w_.] .

For simplification, a matrix, [Gs]T, Is defined such that

[Gs] • ['I/_j_.][qbi ]T .

Substituting Equation 74 into Equation 73 and solving for [Gib ] yields

4.7-17 (12/29/78)
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[Gib]T = [Gs]T[¢ij]T .

and

It can be shown using Equations 74 and 75 that

[Gib]T[Mii][Gib] =

[Glb]T[Mii][¢ij] -

(75)

[Gs]T[p][Gs] , (76)

[Gs]T[p] • (77)

Substituting Equations 76 and 77 into Equation 66, an expression for the substructuremass matrix

is obtained so that the matrix terms are computed from available test data. The result is

(78)
= ÷ T IT ,']

c.l L "_, i';"J

Thus, Equations 6B and 78 define the stiffness and mass matrix for the structure defined by fixed

boundary user modes.

4.7.4.2 Free Boundary Points

The equation of free vibration for the structure, representedby modal and fixed boundary

- 0 , (79)

coordinates,developed above, is written as

,-R,+
L ,'o, i','-J

where the subscript s references boundary points fixed when defining the normal modes.

Coordinates {uc} are defined as boundary coordinates which were free when defining the

normal modes. Using Equation 64 and the appropriate subscripts

{uc} " [Gcs]{Us} + [@c]{6} . (BO)

The transpose of Equation 74 defines [Gcs] and is substituted into Equation 80 to obtain

{uc} • [@c][Gs]{Us} + [¢c]66} . (8l)
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Equation 81 is partitioned so that OF PCOR QUAL|TY

{uc} = [_c][Gs](Us} + [_bcl]{6l} + [¢c2]{62} ,

where [d_cl]is square and positive definite.

Equation 82 is solved for {6l} to obtain

66I} = [ibc1]-l(uc} . [_cl]'l[¢c][Gs]{Us}. [¢cI]'I[_c2]{62} .

Equation 79 is partitioned so that the displacement vector is

= • {Uk},

and the transformation equation is written as

;T "':_....."'r":T'-'l,--= -¢ '¢ G l_b" :-_b ¢c cs,c, cIc211Uc
o , j,;

or {uk} = [Hgh]{Uh} •

Equation 79 is transformed using Equation 86 so that

[Mhh] = [Hgh]T[M]ZHgh] ,

[Khh] = [Hgh]T[l]ZHgh] .

(82)

(83)

(85)

(86)

(87)

(88)

The displacement coordinates, us, uc, and 62, are the fixed boundary, free boundary, and modal

coordinates which completely define the user input structure.

= •
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S. STRUCTURAL ELB4ENTS FOR THE DISPLACEMENT METHOD

S.l INTRODUCTION

Much of the individua]Ity of a structures program is exhibited in the structural elements

which it employs. Here, more than elsewhere, the designers of the program express their conceo-

tion of intended applications; whether, for example, the program will be used mainly for air-

Frames, for steel frameworks, for massive concrete structures, or for pipe networks. The intended

range of NASTRAN includes all of these types of construction and many more, so that the number of

different structural elements is larger and their properties are less specialized than in most

other structural programs.

In 14ASTRAN a structural element defines the properties of a physical object that is con-

nected to a (relatively small) number of grid points. In static analysis, stiffness properties

are input exclusively by means of structural elements, and mass properties (used in the generation

of loads) are input either as properties of structural elements or as properties of grid points.

In dynamic analysis, mass, damping, and stiffness properties may be input either as properties

of structural elements or as properties of grid points (direct input matrices). There are four

general classes of structural elements.

I. Metric elements which are connected between geometric grid points. Examples include rod,

plate, and shell elements.

2. Scalar elements which are connected between pairs of scalar points (i.e. between any two

degrees of freedom) or between one scalar point and ground.

3. General elements whose properties are defined in terms of deflection influence coeffl;

cients and which can be connected between any number of grid points.

4. Constraints

The first class (metric elements) incorporates specific assumptions about the mechanical be-

havior of structural components. It is the most commonly used class of structural elements. The

latter three classes are introduced to expand the generality of the program; they can, for

example, be used to synthesize structural components not included in the list of metric elements.

The description of a structural element COntains several different kinds of information that

are used by the program In different ways. The description of a metric element includes

I. Connection and orientation information (e.g. identification of the grid points to which

5.1-I (12/3i/77)
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it is connected).

2. Geometric properties, such as thickness or cross-sectional area.

3. Material properties, such as density, elastic moduli, and thermal expansion coefficients.

4. Enforced deformations.

5. Data recovery information, such as the location of points where stresses will be com-
puted.

Four different kinds of data cards are regularly used to describe structural elements in

NASTRAN. They are:

I. Material Property Definition Cards that define the material properties for each of the

materials used in the structure. The material properties include density, elastic mo-

dull, thermal expansion coefficients, allowable stresses used in calculating margins of

safety, and structural damping coefficients. Separate card forms are available for iso-

tropic and anisotropic materials. Elastic modull can be made functions of temoerature

or of stress (for plecewise linear analysis).

2. Element Property Definition Cards that define geometric properties such as thickness

(of plates) and cross-sectional areas and moments of inertia (of beams). Other included

items are the nonstructural mass per unit area (or per unit length in the case of beams)

and the locations of points where stresses will be calculated. Except for the simplest

elements, each Element Property Definition Card will reference a Material Property De-

finition Card.

3. Element Connection Cards that identify the grid points to which each element is connect-

ed. The order of grid point identification defines the positive direction of the axis of

a one-dimensional element and the positive direction of the surface of a plate element.

The Element Connection Cards also include orientation information, such as the direc-

tions of the principal axes of a beam referred to the coordinate system of one of its

grid points, or a vector defining the offset of the end points of a beam relative to its

grid points. Except for the simplest elements, each Element Connection Card references

an Element Property Definition Card. If many elements have the same properties, this

system of referencing eliminates a large number of duplicate entries.

4. Constraint Cards that define the degrees of freedom involved in each equation of

5.1-2
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constraint and their coefficients.

Masses assigned directly to grid points by the user are also described by means of Connection

and Element Property Definition Cards. Masses are also assigned to elements by means of the

structural and nonstructural density parameters, and are transferred to grid points by the pro-

gram. The nonstructural mass density parameters are used to describe coatings, stored fluids,

secondary structure, and other distributed items that have negligible stiffness. Two different

methods of mass transfer, known as the Lumped Mass and the Coupled Mass methods are available to

the user. They are discussed in Section 5.5.

Each of the structural elements in NASTIb4Nis discussed in the subsections that follow. In

the program the equations for each structural element are implemented by four or more subrou-

tines corresponding to different structural modules. One subroutine is used for computing the

stiffness matrices, another is used for mass matrices, another Is used for the generation of loads,

and a fourth is used for recovering stress data. The discussion of structural elements will, In

most cases, fall short of presenting the complete set of equations that are implemented by the

program. The reader is referred to the NASTR_d4Programmer's Manual for the complete equations.

Two other topics which directly involve structural elements, namely differential stiffness

and piecewlse linear analysis, are respectlvely treated in Sections 7 and 3.8 of the Theoretical

Manual. In addition, the relatlonships involved In transferring the stiffness and mass of

structural elements to grid points are discussed in Section 3.4.

NASTRAN includes a provision for "dummy" structural elements, which allows users to investigate

new structural elements with a minimum of programming effort. The user Is only required to write

FORTRAN code for the element routines and to perform a llnk edit for selected links in order to

include dummy elements In NASTPJkN. The element routines are those which compute the stiffness,

mass, and damping matrices for each particular element, generate thermal loads, generate the

differential stiffness matrix, and recover stresses. No provision is made for including dummy

elements in plecewlse linear analysis. Dummy elements can be plotted and changes In dummy elements

can be included in modified restarts. Input for the dummy elements is provided on connection and

property cards. The code required to interpret the informationon these cards is put into the

element routines.

5.1-3 (411172)
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5.2 RODS AND BEAMS

Although It is one of the simplest of structural elements and one that is well known to

everybody, the beam has been a troublesome element in the development of NASTRAN, due to diffi-

culty In selecting the properties that it should have. In retrospect it seems clear that the ver-

satility of the beam concept is the cause of the difficulty. It is used by engineers to describe

the structural behavior of everything from a simple round rod to a highly tapered airplane wing.

The large number of parameters required to describe the beam element adequately in the latter ap-

plication would impose an unreasonable burden of data card preparation on the user in the former

application. Thus, if the number of different forms of the beam element is to be kept reasonably

small, compromises must be made.

There are two basic forms of the beam element in NASTRAN at the present time. The BAR which

includes extension, torsion and bending properties; and the ROD which includes only extension and

torsion. A number of important restrictive assumptions have been accepted for both forms. They

are that the elements are straight, unloaded except at their ends, and that their properties are

uniform from end to end. The first two assumptions are complementary in the analysis of continu-

ously loaded curved beams because, if such a beam is replaced by a set of straight chords, the

loads should be lumped at the intersections in order to obtain accurate results. These two as-

sumptions were adopted in the interest of reducing the number of beam forms in the initial version

of NASTRAN. Straight elements must be included even if curved el_ents are not.

The third assumption (uniformity)was adopted because of the large number of parameters re-

quired to specify the several different kinds of taper that are potentially useful (linear depth

variation, linear El variation, etc). It was, furthermore, reasoned that the Guyan reduction,

Section 3.5.4, provides a means for specifying a nonuniform beam by subdividing it Into several

uniform segments without increasing the number of degrees of freedom to be used in dynamic ana-

lysis.

The complete mathematical equations that describe the beam elements may be found in Section

8 of the NASTRAN Programmer's Manual. The properties that the elements have are described below

in separate subsections.

PRECEDING PACE BLANK NOT FILMED:
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V

The BAR element includes extension, torsion, bending in two perpendicular planes and the

associated shears. The orientation of the principal axes is freely selected by the user. The

shear center is assumed to coincide with the elastic axis, i.e., with the centroid of the struc-

tural material. This assumption is restrictive only when both properties are important in the

same problem. It is permitted to offset the elastic axis From a line joining the grld points

to which the bar is attached, it is also permitted to eliminate the connection between any of

the six motions at either end of the bar and the adjacent grid point, provided that at least one

connection remains. This feature has several uses including, for example, the representation of

beams that are fixed at one end and pinned at the other.

The specified cross-sectional properties of the bar are its area; its moments and product

of inertia; its torslonal stiffness factor, J; the factor K (in KAG) for computing transverse

shear stiffness (see, for example, Reference I); and the n6_si_u_u_I mass per unit length. The

material properties, obtained by reference tO a material properties table, include the elastic

moduli, E and G, density, p, and the thermal expansion coefficient, _, determined at the average

temperature of the element. The temperature data for the bar may be sDeclfled by either of two

methods. In the first method, the average temperature and the effective transverse gradient of the

temperature is specified at each end; the temperature is assumed to vary linearly along the bar.

In the second method, the temperature is assumed to be unifot_m throughout the bar and equal to the

average of the temperature assigned to the grid points which it connects. An extensional deforma-

tion (misfit) may also be enforced.

The stiffness matrix of the bar element is a 12X12 matrix of coefficients expressing the

forces and moments acting on the degrees of freedom at its ends. The stiffness matrix is first

calculated with respect to translatlons and rotations parallel to an internal coordinate system

with one axis coincident wlth the axis of the bar (see Figure I) and is then transformed into the

directions of the degrees of freedom assigned to the adjacent grid points.

5.2-2 (12/29/78)
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Ffgure I. Bar coordinate system, showing degrees of freedom for bendfng in the xz plane.

For example, the portion of the stiffness matrix that describes bending in the xz plane of

the element, assuned to be a principal plane, is given by

I I

I- I _2 EI " --"T ....

I"-I ..... '

' R ' _ (uzb/

(i)

where

IKz_._" _T_y 1 -I
R = _ + (2)

The complete stiffness equation, including extension, torsion, and bending in two planes,

written In the element coordinate system, may be represented in symbolic form as

{re} = [Kee]{U e} (3)

The degrees of freedom, ue, at th_ ends of the element tn its internal coordinate system are

related to the degrees of freedom, Ug, of the adjacent grid points by

$.2-3 (12/15/72)
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{Uel = [T]{Uq} , (4)

where IT] is a matrix whose elements are calculated from direction cosines and offsets.

The stiffness matrix for the element written in the global (grid point) coordinate system is

= [T]T[Kee][T] (5)[Kgg]

The structural and nonstructural mass of the bar are similarly transferred to the adjacent

grid points by either of two methods as explained in Section 5.5. The center of gravity is assumed

to lie along the elastic axis; cross-sectional rotary inertia effects, including torsional iner-

tia, are neglected.

Equivalent thermal loads on the adjacent grid points are developed as follows. Beam theory

predicts the average strain and curvatures of an unloaded beam, for cases where _ does not vary

with depth, to be:

"  fTdA , (,)

dA , (7)a2Uz = . c¢ fTz

rj

.._ = Bz = . _ /
_x T_z Ty dA

, (s)

where A = cross sectional area

a = thermal expansion coefficient

T = temperature above ambient

y,z = coordinates of a point in the cross section (see Figure 2)

ly,lz = moments of inertia of the cross section about the y and z axes respectively.

The integration is carried out over the cross section, with y = 0 an@ z = 0 at the centroid.

Define the temperature resultants:

IP

#JTdA , (g)

' _fTz dA {IO)Tz =

5.2-4 (4/1/72)
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, if
Ty - _ Ty dA . (ll)

m T _

Note that if the tem_eratu_ distribution has a linear gradient, _e resultants Tz and Y are the

gradients.

Let the temperature (and therefore the temperature _sultants) vary linearly between the ends

of the beam. If end b (x = ¢) were fixed, the deflections at end a (x = 0) would be:

. ..Uxa = %v " = a _ T(Ta + Tb)

o

(12)

The slopes would be

Bza = ix

O

-E x dx = (Tya + Tyb)
(13)

9ya " _x " (Tza + Tzb)
(14)

The displacements obtained by integrating the rotations are

Uya /ez(X) dx - Bza + Bzb Bza _ d dx = (2Tyb ÷= "_ ya
), (is)

and, similarly,

_2 , , (16)
Uza = " i (2Tzb + Tza)

The loads which must be applied to the bar to produce equivalent displacements wlll be a

function of the material elastic modull, E and G; the bending Inertias, ly, Iz, and lyz; the shear

factors Ky and Kz; the cross sectional area, A; and the results of applying pin Joints which dls-

connect various degrees of freedom of the ends of the bar from the grid points. If no pin Joints

are applied and the material properties do not vary through the depth, the equivalent loads are

neatly expressed in terms of the stiffness matrix. In element coordinates the loads are:
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-- [K]{u t} (17)

V

where {Pa} and {Pb } are the six components of load on each end of the beam; [Kaa], [Kab], etc. are

the six by six partitions of the stiffness matrix; {u_} and {u_} are the sets of displacements at

each end resulting from temperatures. The nonzero components of {u:} are given by Equations 12-16.

{u_} is null. The loads are transformed to grid point coordinates by premultiplying Equation 17 by

IT]T where IT] is defined in Equation 4.

If pin joints are used, the stiffness matrix is partitioned and reduced as follows:

a) The matrix is partitioned:

F l_._ _ K_o

[K] IKT I v l (18)
L _,o ' "oo..I

where the subscript "o" refers to degrees of freedom that are disconnected.

b) A transformation matrix [Go] is defined as:

[GO] " -[Koo]'l[K_o ]T (19)

c) The reduced matrix with pin joints is:

o--io-]
where

(20)

d) The loads on the reduced set are:

{P_} - {P_} + [Go]T{P o} , (2l)

5.2-4b (4/1/72)
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.. , . J

C? : ......... ,

v

where {P_} and {Po } are loads on the unreduced set; see Equation 29, Section 3.5.3.

The temperature field produces loads on the unpinned bar by the equations:

CPZ} " [K_z]{u_} + [K_o]{U _} , (22)

T t [Koo]{U_ } (23){Po} = [K_o] {u_} +

where {u_} and {u_} are the displacements due to thermal effects. Their components are

equal to the components of {u_} and {u_}, rearranged. The loads on the reduced coordin-

ates are, from Equations 21, 22, and 23:

Using Equation Ig, the second and fourth terms cancel and the resulting load is:

(25)

The matrix in the parentheses is exactly equal to the reduced stiffness matrix for the

unpinned coordinates (Equation 20).

The equations used in stress data recovery for the element thermal loads are modifications
Q

of Equations 12 through 17, and 25. Th_ applied thermal forces and moments, {P_}, are subtracted

from the computed forces and moments. Stresses are calculated from the resulting internal loads.

The following types of stress data output can be requested

- Bending moments at both ends tn two planes

- Transverse shear force in two planes

- Axial force

- Torque

- The average axial stress

- The stresses due to bending at four poin_ on the cross-section at both ends.

The points are specified by the user.

- The maximum and minimum extensional stresses at both ends

5.2-4c (12131/74)
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- Margins of safety in tension and compression for the whole element.

5.2.2 ROD Elements

The ROD element is a simplified form that includes extensional and torsional properties only.

Extensional and torsional properties are combined in one element in order to reduce the number

of separate types of data cards; it is unlikely that both properties wlll often be used simul-

taneous ly.

The specified cross-sectlonal properties of the rod are its area; its torsional stiffness

factor, J; its nonstructural mass per unit length; and a factor for converting torque into shear

stress. Material properties are obtained by reference to a material properties table.

The RgD, like the BAR, can be subjected to thermal expansion and enforced axial deformation

except that thermal gradients are ignored. The treatment of mass properties is explained in

Section 5.5.

The TUBE element is a specialized form of the ROD that is assumed to have a circular cross-

section. The outer diameter and the wall thickness of the tube are specified rather than its

area and torsional stiffness constant, J.

Another kind of rod element is the viscous damper, VI$C, that has extensional and torsional

viscous damping properties rather than stiffness properties.

V
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5.3 SHEAR PANELS AND TWIST PANELS

A shear panel is a two-dimensional structural element that resists the action of tangential

forces applied to its edges (plus the action of other forces when necessary to preserve

equilibrium) but does not resist the action of normal forces. Shear panels are created in the

process of obtaining idealized models for elastic sheets. If a sheet has heavy stiffeners, it is

reasonable to lump the normal stress-resisting properties of the sheet into stiffeners and to

lump the shear-resisting properties of the sheet into shear panels. This idealization can some-

times be justified even if the sheet has light stiffeners or no stiffeners at all. The shape of

a shear panel is determined by the directions of the bounding stiffeners, and, although the rec-

tangle can be considered to be the normal shape for a shear panel, other quadrilateral shaoes

must be considered in practice.

The twist panel is the bending analog of the membrane shear panel. It is, in fact, equi-

valent for bending action to a pair of parallel shear panels.

Consider the flat quadrilateral panel shown in Figure I. (The effects of warping will be

treated later.) The panel is in equilibrium under the action of tangential edge forces, Fl, F2,

F3 and F4. In NASTRAN, the forces on elements are applied only at their corners, i.e., at grid

points. In Figure l, the equivalent corner forces, fA' fB' fc and fo' are made colllnear with the

diagonals. Only one of the edge forces is independent, the others taking values to satisfy equi-

librium. The auxiliary quadrilateral BEFC in Figure l Is a force polygon that may be used to

evaluate the ratios of the edge forces. BF is drawn parallel to AC and EF is drawn parallel to

AD. Since the resultant of Fl and F4 must lie along AC in order to balance the resultant of F2

and F3, the triangle BEF expresses the relationship among Fl, F4 and their resultant. It is as-

sumed (arbitrarily) that one-half of the adjacentedge forces are reacted at each corner. Thus,

if ql is the average shear flow along edge AB,

ql AB. BF (I)
fA " fc " _r- BE

ql AB.CE (2)
fB " fD " _--_--

If the strain energy can be expressed as a quadratic function of ql'

E = _ Zql 2 , (3)

5.3-I
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then the stiffness matrix referred to motions at the corners is derived from Equations l, 2 and

3 as follows.

Let the element stiffness matrix [Kee] be defined by

[Kee]{U e} = {fe} , (4)

where

{fe} = LfA' fB' fc' fo-JT ' (5)

and the elements of {ue} are components of corner motions collinear with the elements of {re }.

Equations l and 2 may be written in matrix form as

{re } = {C} ql (6)

The strain energy is related to corner motions by

E = ½ {ue}T[Kee]{U e} . (7)

It is convenient to define a generalized displacement, 5, conjugate to al, such that

= zql , (8)

and

1 _2E - _q] = _-_ (9)

Still other ways to express the strain energy are

E = ½ {ue}T{f e} (I0) •

I {ue}T{C}ql= _ , (Ii)

where Equation 6 has been used in the second form. Comparing Equations 9 and ll

= {ue}T{c} = {c}T{ue } , (12)

so that, substituting into the second form of Equation g

E = _z {ue}T{c}{c}T{ue } (13)

V
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SHEAR PANELS AND TWIST PANELS

Finally the stiffness matrix is obtained by comparing Equations 7 and 13.

l
[Kee] _ {C}{C}T (14)

Let {Ug} be the degrees of freedom at adjacent grid points in the global coordinate system,

to which the element coordinates {ue} are related by a geometric transformation

{ue} - [T]{Ug} (15)

The stiffness matrix of the shear panel referred to grid point coordinates is

[Kgg] - [T]T[Kee][T] (16)

A final task is to evaluate the constant z in the expression (Equation 3) relating strain

energy to the average shear flow on side l of the panel. For a rectangular panel the shear flow

is constant over the surface and

A (17)
Z=_"

where A is the area, t is the thickness and G Is the shear modulus of the panel. For a parallelo-

gram the shear flow is still constant and it can easily be shown that

z - I + +-I-_G'-- ' (18)

where e is the skew angle of the parallelogram (i.e., the complement of the smaller interior

angles) and u is Poisson's ratio.

In o_er to analyze more general shapes (the trapezoid and the trapezium), it is first necessary

to make an assumption regarding the distribution of shear flow. Garvey (Reference l) has suggested

a distribution of shear flow that satisfies all equilibri_ conditions, but does not satisfy the

strain compatibility condition except in the 11mitlng case of a parallelogram. This distribution

is illustrated in Figure 2. The _ngential force per unit length on an infinitesimal parallelo-

gram the extension of whose sides pass through P and Q is assumed to be inversely proportional to

the square of the distance from the base!the PQ.
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For the assumed distribution of shear flow, the strain energy per unit area is

_'t't( 2tan2e ) q2E' = l + _ , (19)

where e is the skew angle of the infinitesimal parallelogram. Integration of Equation Ig for the

general quadrilateral is straightforward but tedious. The expression derived by Garvey for the

general case will be found in the Programmer's Manual. For the special case of a trapezoid, see

Figure 3, an expression for the quantity z in Equation 3 is

z = _- _ l +_-_ tan2_1 + tan_itan62 + tan2_2 (20)
d32

The approximations in Garvey's formulation become more serious as the distortion of the

panel from a rectangular shape increases. Most of the difficulty is with the assumption, which is

basic to the concept of a shear panel, that the tangential forces on a quadrilateral element do

not couple elastically with the normal forces. This assumption is simply incorrect for non-

rectangular shapes and it can lead to erroneous results. Garvey's formulation is used in NASTRAN

because it is plausible and easy to apply, and because, given the lack of rigor in the shear

panel concept, more elaborate formulations cannot be Justified.

Four points cannot, in general, be restricted to lie in a plane, and so allowance must be

made for the effects of warping in the development of the equations for a shear panel. Trouble

with static equilibrium is avoided by directing the corner forces along the diagonals even though

they are no longer coplanar. The important parameters (z and {A}) are evaluated for an equiva-

lent plane quadrilateral that is parallel to both diagonals. The locations of the corners of the

equivalent plane figure are obtained by normal projection of the corners of the actual panel.

The physical properties of a shear panel that are specified by the user are its thickness,

its nonstructural mass per unit area and a reference to a material properties table where the

density, shear modulus and Polsson's ratio are stored. Thermal expansion is not applied to

shear panels, even though the generalized displacement, _, includes some dilatation when the panel

is nonrectangular. The user is, therefore, warned against using severely skewed shear panels in

thermal stress analyses.

The mass of the panel is transferred to adjacent grid points as follows. The panel is

5.3-4
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divided into two triangles by one of the diagonals and one-third of the mass of each triangle ls

assigned to each of its corners. The assignment of mass Is then repeated using the other diagonal

to fom the triangles. Finally the two assignments are averaged.

The quantities computed in stress data recovery include the average of the shear stresses at

the four corners, the maximum shear stress, the average shear flows on each of the Four sides,
!

and the components of Force at each of the four corners. The three components of corner force

are oriented parallel to the adjacent sides and normal to their plane. The normal component, or

"kick" force, occurs only when the panel is nonp]anar. Explicit Formulas for the calcu]atlons

are given In Section 8 of the NASTRAN Programmer's Manual.

The twist panel performs the same function for bending action that the shear panel performs

for membrane action. Couples are applted by imposing forces at the corners in planes parallel to

the diagonals, see sketch below. The stiffness matrix of a twist panel Is equal to that of a shear

panel multiplied by t2/12 where t is the thickness of the panel, which is assumed to be solid.

For built-up panels, t must be adjusted to give the correct moment of inertia of the cross-section.

v
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Figure I. Shear panel and its force polygon.

Figure 2.

D/

A
B

F1 q .d 2 = Constant.

Garvey's assumption regarding internal stress distribution of a quadrilateral panel.

v

5.3-7 (12/29/70)



STRUCTURAL ELEIIENTSFOR TIIEDISPLACEtIE)IT!IETHOD

ORIGtNAL PAGE I_
OF POOR QUALITY

V

d3

F3

F1 _-_

d1

V

Figure 3. Trapezoidal panel.
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A mathematical analysis of the manner in which degrees of freedom are eliminated by equations

of constraint Is given in Section 3.5. There are two kinds of constraints: single point constraints

in which a degree of freedom is constrained to zero or to a prescribed value; and multipolnt con-

straints (and rigid elements) in which a degree of freedom is constrained to be equal to a linear

combination of the values of other degrees of freedom.

A number of different Constraint Definition Cards are provided for the convenience of the user

in specifying constraints. They can be separated into the following types: single point constraint

cards, multipoint constraint cards and rigid element connection cards; cards to define reaction

points on free bodies; and cards to define the omitted coordinates, uo, in matrix partitioning.

The latter type strictly defines a constraint only in dynamic analysls, see Section 3.5.4.

A single point constraint applies a fixed value to a displacement or rotation component at a

geometric grid point or to a scalar point. One of the most common uses of single point con-

straints is to specify the boundary conditions of a structure by fixing displacements and/or

rotations at certain points. The structure may have a line of symmetry at which only symmetric

or antisymmetrlc motions are a11owed. The single point constraints may be used to fix the proper

degrees of freedom on these boundaries. Alternate sets of constraints can be stored in the pro-

gram to facilitate treatment of different symmetry conditions as subcases (see Figure l of Sec-

tion 3.2).

The elements connected to a grid point may not provide resistance to motion in certain direc-

tions, causing the stiffness matrix to be singular. Single point constraints are used to remove

these degrees of freedom from the stiffness matrix. A typical example Is a planar structure com-

posed of membrane and extensional elements. The translations normal to the plane and all three

rotational degrees of freedom must be constrained since the corresponding stiffness matrix terms

are all zero.

If a grid point has a direction of zero stiffness, the single point constraint need not be

exactly in that direction. For example, two colllnear rod elements that are connected to a point

may be constrained as shown:
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The direction of constraint allows the point to move only vertically, but, since the rods are

collinear, the force of constraint is zero and the forces in the elements are still valid. The

NASTRAN system detects singularities of individual grid or scalar points during problem formula-

tion, see Section 3.4. As in the above example, more than one valid way exists for constraining

a geometric grid point. The possible constraints are listed in a warning message in their order

of preference.

Multi point constraints are a feature of NASTRAN that is not commonly found in structural

analysis programs. Each multipoint constraint is described by a single equation of the form

Z RcgUg = 0 . (1)
g

The degree of freedom that occurs in the first term of the equation is the one that is eliminated.

By this means the user, rather than the program, selects the degrees of freedom to be removed from

the equations of motion. As an example, consider the rigid bar segment shown on the next page.

The equation of constraint is

wb - wa - £Ba = 0 , (2)

where wb is as the dependent coordinate.
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wb

A multipoint constraint also applies forces, qcg' to each of the degrees of freedom included

in the equation of constraint, Equation I. A double subscript is used to indicate the force on

the gth degree of freedom due to the cth constraint. The forces are proportional to the coeffi-

cients, Rcg, in Equation l, as will be shown. Thus

qcg " Rcgqc

where qc is a constant, called the force of constraint.

altered so that the coefficient of the lead term is unity, see Section 3.5.1, qc is in fact

, (3)

Since the equation of constraint is

equal to the force of constraint on the degree of freedom that is eliminated.

One of the defining properties of a constraint is that it does no work. Thus

Wc - _ qcgUg - 0 . (4)

I

The only way that Equation 4 can be satisfied for all permissible values of the Ugs is if

the qcg'S satisfy Equation 3, thereby reducing Equation 4 to Equation I.

Some of the uses of multipoint constraints are

a. To enforce zero motion in directions other than those corresponding with components of

the global coordinate system. The multlpoint constraint will, in this case, involve

only the degrees of freedom at a single grid point.

To describe rigid elements and mechanisms such as levers, pulleys and gear trains. One

of the criticisms of the displacement method has been that matrix ill-conditionlng occurs

in the presence of very stiff members when they are treated as ordinary elastic elements.

Treatment of such members as rigid constraints eliminates the lll-condltioning. Instead

b°
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of providing the required coefficients explicitly, the user will find it convenient to use

the rigid element capability of the program for this purpose. (See Section 3.5.6).

c. To generate nonstandard structural elements and other special effects. Consider, for

example, a pressurized container such that changes in the enclosed volume produce signi-

ficant changes in interna] pressure. The change in volume may be expressed as a linear

combination of displacements normal to the surface. Regarding the change in volume as a

degree of freedom (scalar point), its effect on the container is simulated by a multi-

point constraint that relates it to the normal displacements at the surface, and by a

scalar spring connected between the new (constrained) degree of freedom and ground.

d. To describe parts of a structure by local vibration modes. This important application

is treated in Section 14.]. The general idea is that the matrix of local eigenvectors

represents a set of constraints relating physical coordinates to modal coordinates.

5.4-4 (12/31/77)
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5.5 TREATMENT OF INERTIA PROPERTIES

Inertia properties have two different kinds of application in linearlzed structural analysis

as generators of applied loads In static analysis and as generators of matrix coefficients in

dynamic analysis. The former application includes gravity loads, centrifugal loads, and inertia

relief effects; these subjects are treated in Section 3.6. The latter application includes the

matrix of ordinary mass coefficients, and also, in problems defined in rotation coordinate system

matrices of (Coriolis) damping coefficients and (centrifugal) stiffness coefficients. Automatic

treatment of dynamic inertia effects in rotating coordinate systems is not implemented in NASTRAN.

5.5.1 Grid Point Mass

The mass matrix associated with a grid point has the following organization with respect to

the displacement degrees of freedom, and stems from the equilibrium of inertia forces.

Inertia forces at a point - External forces at a point,

[m]pt {U}pt . {F}pt , (I)

where [m] is the matrix of mass properties, {_} is the vector of translational and rotational accel-

eration components, and {F} is the vector of external force and moment components. The accelera-

tion vector at a grid point can have a maximum of six component degrees of freedom: three transla-

tional accelerations and three rotational accelerations.

If the displacement coordinate system at the grid point is rectangular, the corresponding

components of acceleration become

o,

uX

Uy
°.

CG}Gp . , ..Uz , . (2)
8x
,o

By

0z. GP

The succeeding development will be given in terms of rectangular displacement coordinate systems

where the various displacement and force components are as shown in the following sketch.
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The mass associated with a grld point is assumed to be rigidly attached to, and in the vicinity of,

the grid point, regardless of the elastic deformation. In effect then, the mass associated with

grid point behaves as a local rigid body with the properties computed with respect to that grid

point.

V

5.5.2 Rigid Bod_/ Inertia at a Grid Point

Inertial forces and moments develop at the referenced grid point when the mass of a rigid

body accelerates due to a set of external forces and moments. Consider first those accelerations

which contribute to the forces that develop in the x direction. When all of the mass is accelerated

in the positive x direction, the magnitude of the inertia force in the x direction is

(/,I/x° o,oz)
As a consequence of the rigid body assumptions and of the orthogonality of the coordinate axes,

there are no contributions of y and z accelerations to the inertial forces that develop in the x

direction, The application of these same arguments to inertia forces in the y and z directions

reveals that the sole translational acceleration contributions are my and m_, respectively.

5.5.2.1 Point Masses

Before developing the general inertial properties of a rigid body mass, the basic properties

of a point mass will be defined. Consider a concentrated point mass, _m, rigidly connected to a

grid point as shown In Figure I. The offset location Is expressed by the vector ;. If the

nonlinear centrifugal and Corloll_ effects are ignored, the acceleration vector, ;, at the point

mass is

5.5-2 (12/31/74)

T!_','I'



ORIGINAL PAGE |9

OF POOR QUALITY

TREATMENT OF INERTIA PROPERTIES

"4" ,¢-
•° ,_

; -u,ex;
,* ,,

where u and e are the accelerations at the grid point as defined in Equation 2, and "X" is the

vector cross product operator.

If _ - _ is the force vector required to produce the acceleration at the point mass, the

resultant force _ and moment M vectors at the grid point are

= f = _n_ , (5)

- ;xf = (6)

The substitution of Equation 4 into Equations 5 and 6, yields

F - = * Xl) , (7)

(4)

Equations 7 and 8 may be expanded to produce the components of force and moment in terms of

the components of grid point displacement and rotations, resulting in the following matrix equation:

Fx

Fz

Mx

My

L Mz-

= _m

1 0 0

0 l 0

0 0 1

0 Z "y

-Z 0 X

y -x 0

0 -z y (y2+z2} -xy -xz

z 0 -x -xy (x2+z2) -yz

-y x 0 I -xz -yz (x2÷y2)
I

Ux I

Uvl
°o :

uZ
°o

0x
°.

ey
oo

Ozp

• (g)

where x, y, and z are the components of the offset vector _ in the coordinate system at that grid

point.

5.5.2.2 Rigid Body Mass Matrices

The above equations may be easily expanded to account for a finite mass, e.g., a real physical

mass attached to the grld point (see C)NM2 bulk data card). The total concentrated mass may be

considered to be the sum (or Integral) of a set of point masses. The net forces and moments would

be the sum of those defined by Equations 7 and 8. The individual matrix terms in Equation 9 may

be integrated over the volume of a body to }roduce the total mass matrix
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, (10)

where the total mass is defined as

H - ElAmi = Iv pdV
(ll)

The component of the center of gravity of that mss Is

' " _IV pXdV

The rotational inertias about the grid point are, for example ,

and

rxx " IV o (y2 + z2) dV

ixy - IV pxydV

(IZ)

(13)

or, using the parallel axis theorem,

ixx , ixx + M()2 ÷_2)

and

(14)

Txy - Ixy + M_

Here, Ixx, Ixy, etc. are the inertlas about the center of gravity of the mass

(15)

The coeffi-

clents M, _, Y, 3, Ixx, Ixy, Ixz, lyy, _z' and Izz may be input by the user on the C_NM2 bulk

data card. The program will generate the mass matrix defined by Equation 10 using Equations II

through 15.

5.5-4 (3/I/76)
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5.5.2.3 Intrepretation of the Terms

It is now useful to look at the mass matrix in terms of the characteristics of its mass prop-

erties. Notice that in the upper left partition of Equation lO (the first three rows of the first

three columns), the total mass associated with the grid point, M, appears on the diagonal. All

off-diagonal terms in this partition are zero. In the partition of the first three rows for the

last three columns, every nonzero term consists of the total mass multiplied by a distance to the

center of mass. Notice also that In this same upper right partition, all diagonal terms are zero.

On further inspection, it can be seen that the off-diagonal terms of this 3 x 3 partition are anti-

symmetrical, that is, terms in reflected positions about the subdiagonal are the same magnitude but

opposite sign. In the lower right partition (the last three rows of the last three columns) every

term involves moments of inertia. Finally, notice that the total 6 x 6 matrix is symmetric about

the dlagonal.

Each of the partitions of Equation lO has a unique characteristic in terms of moments: zem

where Z is some distance, • is an exponent, and m is the mass. In the upper left partition, the

exponent is zero and the terms reduce to Just the scalar mass _°m = m. In the upper right and

the lower left partitions the exponent is one and the terms are characterized as first moments of

the mass _Im - m. A symbol N is used to represent the first moment with a double subscript

indicate its matrix position, NIj. In the lower right partition, the exponent is two and the

terms are characterized as second moments of the mass _2m - I. It is convenient to symbolize

these partitions as follows:

[M]

Ist
Scalar

Moment

1st 2nd

Moment Moment

mlj Nij

N T
ij Ilj

(16)

The mass matrix consists of 13 different terms, but three terms in the first moment partition differ

only in sign from the other three in this set. Therefore, the typical mass matrix actually has

only lO distinct terms. The format of the C_NM2 card provides for a maximum of lO entries for the

rigid body mass matrix and assembles the mass matrix according to the requirements for sign as

shown in Section B.8 of the Programmer's Manual.
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5.5.2.4 Transformation of Coordinates
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In NASTRAN, the user may define the connected mass in its own coordinate system, different

from the displacement coordinate system of the grid point. In the previous development the

properties of the rigid body mass and the offset distances were defined in the same coordinate

system as that of the grid point displacement system. If the displacements at the grid point are

given in a different coordinate system (x', y',z'), an orthogonal transformation matrix [Tmg] will

exist where [T_mg]_ = [Tmg-l], as defined by the equation

T ' m{u} = [ mg]{U } (17)

where {u} is the vector of displacements or rotations of the rigid body mass and {u'} is the

corresponding vector of displacements or rotations parallel to the x', y' and z' coordinates of the

grid point to which the mass is attached.

The forces, moments and offsets may be similarly transformed between the two coordinate

systems by the following equations:

{F'}- CTmg]T{F} l

{M'} - [Tmg]T{M} |

(18)

I)l I land " [Tmg] _'

After applying the above transformations to Equation g it is interesting to note that the form of

the mass matrix (Equation I0) is identical with only a change in component notation, i.e., R'

replaces R, y' replaces _, _' replaces _. The lower right partition of Equation lO, transformed to

the grid point displacement coordinate system, becomes

V

[I']

Ii'

xx I'xyIx:

• r}y
(SYM) -'Izz

- ETmg]TEI][Tmg] (lg)
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-27The Inertlas I x xy' etc. have the same physical definition in the new coordinate system of the

rigid body mass and may be calculated using Equations 32 through 15.

It can be concluded that for a real physical rigid body mass, the matrix is always in the

form of Equation I0 regardless of coordinate system rotations and translations; hence, only the

basic lO terms need be specified as input. The form of the mass matrix may be destroyed, however,

when special directional masses are used to model mechanisms and other special problems where the

mass is not rigidly connected to the grid point.

5.5.2.5 General Mass Matrix Properties

In the case where the mass is not rigidly connected to a slngle grid point, the form of the

mass matrix becomes more complex. Other examples are the use of consistent mass matrices, described

in the following section, whereby the mass of an element is distributed to the connected grid points

of the element. Another example is that of a partially disconnected element mass or a mass con-

nected to a grid point via a mechanism. It is possible to conceive of instances (not as a result

of coordinate transformations) wherein special mechanically contrived situations can exist to pro-

duce mass terms distinct from the standard 10 rigid body terms. These special mass terms can arise

for example, from such devices as spring restrained pantographs, fly ball governors, and rotating

masses restrained by the hellcal track as illustrated in Figure 2. If such odd terms are either

present in a structure or exist from matrix transformations, NASTRAN provides an avenue to supply

this Bulk Data through the C_NMI card. An alternate method in NASTRAN is to associate an

additional grid point with the mass element and using multipolnt constraints to specify the mech-

anism connecting the mass to the structure (see Section 3.5.1).

In both of these cases, the accelerations at the center of gravity of that mass can be defined

as general linear functions of the grid point accelerations. These may be expressed in matrix

form as

{Q} - [s]{;'}

where {u'} represents the six grid point accelerations.

a full 6 x 6 matrix defined by the equation

[Mgrid] - [G]TCM]EG]

, (20)

The resulting mass matrix may now become

, (21)
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where [M] is the rigid body mass matrix defined in Equation I0 and [Mgrid] is the transformed mass

matrix after mechanically connecting it to the grid point. It is this transformed matrix [Mgrid]

which is then input to NASTRAN using the C)NMI Bulk Data card.

5.5.3 Inertia Properties of Structural Elements

All of the metric structural elements (rods, bars, shear panels, twist panels, plates, shells,

and solid elements) may have uniformly distributed structural and nonstructural mass. Structural

mass is calculated from material and geometric properties. The mass is assumed to be concentrated

in the middle surface or along the neutral axis in the case of rods and bars, so that in-plane or

in-line rotary inertia effects such as the torsional inertia of beams, are absent. Such effects

can, of course, be assigned by the user to grid points. The masses of metric structural elements

are transferred to the adjacent grid points at the option of the user by either of two methods,

the Lumped Mass or Coupled ("consistent") Mass methods.

In the Lumped Mass method, the mass of an element is simply divided and assigned to surround-

ing grid points. Thus, for uniform rods and bars, one-half of the mass is placed at each end. For

uniform triangles, one-third of the mass is placed at each corner. Quadrilaterals are treated as

two pairs of overlapping triangles (see Sections 5.3 and 5.8). It will be noted that second mass

moments are not computed with the Lumped Mass method. The virtues of the method derive from its

simplicity. 0ff-diagonal terms in the mass matrix are restricted to those involving a single

geometric grid point. That is, inertia coupling between grid points is not provided. Programming

efforts and computer running times are less, often by an insignificant amount, than For more

sophisticated methods of mass assignment. Because the mass matrix is independent of the elastic

properties of elements, the user has a better feel for the character of the matrix. The accuracy

of the results, which is the key question, will be examined later.

In the Coupled Mass method, the mass matrix due to a stngle structural element includes off-

diagonal coefficients that couple adjacent grid points. The best known of the Coupled Mass

methods Is the Consistent Mass Matrix method developed by Archer (Reference l).

V
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The procedure for _enerating a consistent mass matrix is as follows. Consider, for

simplicity, a one-dimensional structural element whose degrees of freedom are represented by

translations and rotations at the two ends of the element. Corresponding to each degree of free-

dom, ui, there is a displacement function, wi(x), within the element obtained by giving unit value

to ui and zero value to all other degrees of freedom. The functions wj, satisfy the differential

equations of the element. The element Mij of the mass matrix [M] iS obtained from the formula

(C )fj " "llij ui " " m(x)wi(x)wj(x)dx ui (22)

Equation 22 is obtained from the principle of virtual work. In essence ui is regarded as a

generalized coordinate for which wi(x ) is the Amode shape." The inertia force acting at x due to

ui is -m(x)wi(x)_ i. Multiplication of the inertia force by wj gives the generalized force acting

on coordinate uj.

The idea of "consistency" enters because the functions w i are also used to calculate the

stiffness matrix [Kij ] from strain energy considerations. It can be shown that the vibration

frequencies so obtained are upper bounds. The reason is that the selection of a finite number of

specific functions, wi, is equivalent to the imposition of rigid constraints on the structure.

As an elementary example, consider a uniform extensional rod with distributed mass, as shown below.

ua _ ub

The degrees of freedom are ua and ub and the displacement functions are wa

The resulting consistent mass matrix is

- 1 - x/_ and wb = x/_.

o F2111
[MC] " Tl .... ,'---/ , (23)

s.5-9 (3/1/76)
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whereas the lumped mass matrix is

FIio.][M_] . m_ [,..:..2 011
(24)

The stiffness matrix is

EA __

c_ = T L._!_ j
(25)

Some information on the question of accuracy can be gained by calculating the error in the

natural frequency due to finite element assumptions for simple structures. Analysis of a uniform

rod with any combination of free and fixed ends (Reference2) shows that the error in the natural

frequency that results from using Equations 24 and 25 (the lumped mass method) is

_exact/_ , (26)

where N is the+number oi finite eiement cells pep wavelength. The corresponding result for

Equations 23 and 25 {the consistent mass method) is

.+++C+)++o<-+)+
mexact/c

(27)

V

V

Note th.t the consistent mass and lumped mass methods give errors that. for large N, are the same

in magnitude but opposite in sign. A much smaller error is achieved if the mass matrices for the

two methods, Equations 23 and 24 could be averaged,

I
m_FSl I ]

c"a_"_--)-;--] <'+_

This equation has been adopted for use in _STRAN to compute the coupled mass matrix for the

extension of Pods and bars. The error in this case is given by

_v
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(29)

The mode shapes are exact for all three methods.

Archer's paper includes a derivation of the consistent mass matrix for the lateral bendlnq

of a uniform beam without transverse shear flexibilityshown below.

wa= _L L wb

The consistent mass matrix referred to the coordinate set {u} = {wa, ea, wb, eb}T is

[Mc] •

'
156 1-22£ 54 , 13C

-22_I_4_2 -13_i-3_ 2

54 |-13_I IS6 ] 2z_

I ' I

13_ 1-3_21 22z I 4az

(30)

The paper also includes the results of numerical error analysis for free-free and simply support

beams. For simply supported beams the errors in the lumped mass and consistent mass formulations

are approximately equal and opposite, and are surprisingly small. An equation for the natural

frequency error associated with the lumped mass formulation is (fro=.,Reference 2)

_exact/_

(31)

For free-free beams the error in the consistent mass formulationappears to be of the same order

as that given by Equation 31, but the error in the lumped mass formulation is one or two orders of

magnitude larger. Similar results may be expected for cantilever beams.

s.s-1] (3/]/76)
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Archer's consistent mass matrix, Equation 30, has been adopted in NASTRAN as the coupled mass

matrix for the lateral deflection of bars. No modification is included for the effect of trans-

verse shear flexibility, which is slight. The consistent mass formulation has also been applied in

NASTRAN to the lateral deflection of plates. The procedures used are described in Section 5.8. In

the cases of the doubly-curved shell element, Section S.lO, the solid of revolution element, Section

5.11, and the isoparametric solid element, Section 5.13, only the consistent mass formulation is

available.

Only the lumped mass method is available in NASTRAN for shear panels, twist panels, the mem-

brane action of plates, the constant strain solid elements, and the conical shell elements, which

completes the current list of metric elements. Coupled mass methods are not applied to shear panels

and twist panels because of their peculiar status as incomplete physical objects. The membrane

action of plates and the constant strain solid elements were excluded because structural models

built from such elements generally tend to be too stiff. For these elements, using lumped masses

tends to reduce the error in the natural frequency. The conical shell element, Section 5.9, was

excluded because its complexity makes the development of a consistent mass matrix unwarranted.

5.5.4 Grid Point Weight Generator

This is a module (ePiC) which determines the rigid body mass properties of an entire structure

with respect to a user-selected grid point and with respect to the center of the mass of the structure

Initially, the mass properties are calculated relative to the basic coordinate system. Subsequently,

the mass properties are referred to the principal mass axes and to the principal inertial axes.

The mass matrix, [Mgg] output from the EMA module, is transformed to a matrix of rigid

body mass properties, [Mo], with respect to the user-selected reference point, by use of a rigid

body transformation matrix D

V

[Mo] - [D]T[Mgg][D] , (32)

S.5-12 (3/1/76)
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[Mgg] is assembled in global coordinates and is of order g x g ,

[D] is a rigid body transformation matrix which predicts the motion of points in global

coordinates given the motion of the reference point in terms of basic coordinates, and

is of order g x 6

and [Ho] is assembled in basic coordinates and is of order 6 x 6.

Prior to the formation of the [Mo] matrix, the module calculates the [D] matrix. The [D]

matrix relates the motion at all points of the body relative to the reference point by the

equation

{_g} - [o]{Go} , (33)

J

where the acceleration vector, {Ug}, describes accelerations for all points of the body in global

coordinates and is of length g, and the acceleration vector, {00}, describes accelerations of the

reference point and is of length G.

The mass matrix [Mo] is partitioned according to the contributions from translational (t),

rotational (r), and coupled (tr) accelerations, where [_t] is the scalar partition, [_tr] is the first

moment partition, and [_r] is the second moment partition.

[Mo]

" @tr_t ,,

_rt I _r
I

(34)

A check is made on the consistency of the composition of the mass by slmple calculations on

the [_t] (translational or scalar) partition. The quantities _ - _v/_'_ljt)211-J and ¢ -_V/_ljt)2li_j

are computed and the ratio, ¢/6, is calculated. A diagnostic message is printed out if c/8 > 10 -3 , and

the internal decision Is _de to rotate the matrix accordingly.
--2-
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Whenthe¢/6 test indicatesthat a matrixrotationis warranted,theprincipalmassvaluesand

associatedcoordinatetransformationareKoundbyapplyingtheJacobimethodof eigenvalueextrac-

tion to the3 x 3 [Rt] partition. Thetransformationmatrix[S] fromthebasiccoordinatesto the

principaldirections,labeledprincipalmassaxes,is assembledfromthenormalizedeigenvectors

{ei} of [Rt].

Define

IS] : [{el}, {e2}, {e3}]. (35)

V

The [Mo] matrix is transformed to principal mass axes by the IS] matrix by the separate partitions:

and

[Mt] - [s]T[_t][s] (is diagonal) ,

[Mtr] - [s]T[Rtr][s] (generally exists) ,

[Mr] - [s]T[Br][s] (is generally not diagonal).

(36)

By definition, the values of the mass systems that are output are the three diagonal terms of the

[_t] matrix

Mx = Mll t, My - M22 t, Mz = M33 t. (37)

Since the moment arms of the first-moment terms of the mass matrix are the

offset distances to the center of mass from the reference point, the positions of the centers of

mass (C.G.) are calculated for each system as

tr tr tr
Mll "Ml3 Ml2

.... ix system),
Xx M--_ ' Yx Mx ' Zx Mx

t122tr -M21M23tr tr

Xy ."-3-''y" "-F-'Zy."-3-
(y system), (38)

and

tr tr tr
-M32 M31 M33

xz - - z 3-,zz-
(z system).

5.5-14 (3/I/76)
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Moments of inertia at the center of gravity with respect to the principal mass axes are com-

puted from the [Mr] partition by using the theorem of parallel axes and the appropriate mass system

The submatrix is labelled [I(S)].

Ill(S) - Mll r - MyZy 2 - MzYz 2 ,

r MzXzyz ' ii2(S)121(S) - -M21 -

131(S) = -M31r - MyXyZy, ll3(S)

122(S) - M22 r - MzXz 2 - MxZx 2 ,

123(S) - -M23 r - MxYxZx, 132(S)

and 133(S) • M33 r - MxYx2

= -MI2r - MzXzY z ,

- -MI3r - MyXyYy ,

- -M32r - MxYxZ x

(39)

The final attribute to be obtained is the set of principal moments of inertia with respect to

the center of mass. The Jacobi eigenvalue method is applied to the 3 x 3 [I(S)] matrix. The trans-

formation matrix [Q] from the principal mass axes to the principal directions of the momental

ellipsoid is assembled from the normalized eigenvectors {Ei} of [I&S)].

Define

[Q] . [{El}, {E2}, {E3}] (4O)

The [I(S)] submatrix is transformed to principal moments of inertia axes by the triple matrix

product

[I(Q)] - [Q]T[I(S)][Q]

Ill p 0 0

0 122p 0

0 0 133p

(41)

The one attribute that may be of interest which is not calculated is the set of principal

moments of inertia with respect to the reference point instead of the center of gravity. This

could be obtained from the elgenvalues of the [_r] submatrlx.

s.S-15 (3/1/7_)
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5.6

metric grid points) or between one degree of freedom and ground.

SCALAR ELEMENTS

Scalar elements are connected between pairs of degrees of freedom (at either scalar or geo-

The stiffness matrix for a

scalar spring is given by

(1)

v

or by

fl = KUl (2)

Other available forms of scalar elements are the scalar mass and the viscous damoer.

Scalar spring elements are useful for representing springs that cannot conveniently be mo-

deled by the metric structural elements. Scalar masses are useful for the selective representa-

tion of inertia properties, such as occurs when a concentrated mass is effectively isolated Mr

motion in one direction only. The scalar viscous damper is one of two elements with exclusively

damping properties included in NASTRAN. The other is the viscous rod element, see Section 5.2.

It is possible, using only scalar elements and constraints, to construct a model for the

linear behavior of any structure. These elements are, in fact, the basis for the Direct Analog

Computer method of structural analysis (Reference I) where inductors represent springs, resistors

represent dampers, capacitors represent masses, and transformers represent equations of constraint.

They have also been made the basis of several digital computer programs.

Turning the electrical analogy around, we can say that the scalar elements give NASTRAN the

ability to analyze any passive electrical network, including for example, large electrical dis-

tribution systems. Heat transfer problems can also be solved because of the analogies between

heat capacity and mass, and between a heat conductor and a viscous damper.

Perhaps of greater importance to the st_ctural analyst is the fact that electrical circuits

andheat transfer can be included as part of an overall structural analysis, as for example, in a

p_blem that includes electromechanlcal devices. This subject is discussed _rther in Sections

9.3 and 14.2.

PRECEDING PAGE BLANK NOT FIL_
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5.7 THE GENERAL ELEMENT

The general element is a structural stiffness element connected to any number of degrees of

freedom, as specified by the user. In defining the form of the externally generated data on the

stiffness of the element, two major options are provided to the user.

(i) Instead of supplying the stiffness matrix for the element directly, the user provides

the deflection influence coefficients for the structure supported In a non-redundant manner. The

associated matrix of the restrained rigid body motions may be input or may be generated internally

by the program.

(il) The stiffness matrix of the element may be input directly. This stiffness matrix may

be for the unsupported body, containing all the rigid body modes, or it may be for a subset of

the body's degrees of freedom from which some or all of the rigid body motions are deleted. In

the latter case, the option is given for automatic inflation of the stiffness matrix to reintroduce

the restrained rigid body terms, provided that the original support conditions did not constitute

a redundant set of reactions. An important advantage of this option is that, if the original

support conditions restrain all rigid body motions, the reduced stiffness matrix need not be

specified by the user to high precision in order to preserve the rigid body properties of the

element.

The defining equation for the general element when written in the flexibility form is

I::JF
• ......f ...... , (I)

where:

Cz]

IS]

is the matrix of deflection influence coefficients for coordinates {ui} when coordinates

{ud} are rigidly restrained.

Is a rigid body matrix whose terms are the displacements {uI} due to unlt motions of the

coordinates {Ud}, when all fl = O.

{fi } are the forces applled to the element at the {uI} coordinates.

{fd } are the forces applied to the element at the {ud} coordinates. They are assumed to be

statically related to the (fi } forces, i.e., they constitute a nonredundant set of

reactions for the element.
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The defining equation for the general element when written in the stiffness form is

where all symbols have the same meaning as )n Equation l and [k] = [Z] "l, when

Note however that it is permissible for [k] to be singular. Equation la is derivable from

Equation I when [k] is nonsingular.

Input data for the element consists of lists of the ui and ud coordinates, which may occur

at either geometric or scalar grld points; the values of the elements of the [Z] matrix, or

the values of the elements of the [k] matrix; and (optionally) the values of the

elements of the IS] matrix.

The user may request that the program internally generate the IS] matrix. If so, the ui and

ud coordinates can occur only at geometric grid points, and there must be six or fewer ud coordi-

nates that provide a nonredundant set of reactions for the element as a three-dimensional body.

The IS] matrix Is internally generated as follows. Let {ub} be a set of six independent

motions (three transiatlons and three rotations) along Coordinate axes at the origin of the basic

coordinate system. Let the relationship between {ud} and {ub} be

{Ud} - [Dd](U b} (2)

The elements of [Dd] are easily calculated from the basic (x,y,z) geometric coordinates of

the grid points at which the elements of {ud} occur, and the transformations between basic and

global (local) coordinate systems. Let the relationship between {ui} and {ub} be

{ui} - [Di]{Ub} , (3)

where [D i] is calculated in the same manner as [Dd]. Then, if [Od] is nonsingular,

[S] - CDi][Dd ]'I (4)

Note that, If the set {ud} is not a sufficient set of reactions, [Od] Is singular and IS] cannot

be computed In the manner shown. When {ud} contains fewer than six elements, the matrix [Dd] is

not directly Invertable but a submatrlx [a] of rank r, where r is the number of elements of {Ud},

can be extracted and inverted.

[k] is nonsingular.
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A method which is available only for the stiffness formulation and not for the flexibility

formulation will be described. The flexibility formulation requires that {Ud} have six components.

The method is as follows. Let {ud} be augmented by 6-r displacement components {Ud'} which are

restrained to zero value. We may then write

The matrix [Od] is examined and a nonslngular subset [a] with r rows and columns is found.

{ub} is then reordered to identify its first r elements with {Ud}. The remaining elements of {ub}

are equated to the elements of {u_ }. The complete matrix [D] then has the form

wlth an inverse

[5] ...... , (6)

a-I ] .a'Ib

E;........;] ('>

Since the members of {Ud'} are restrained to zero value,

{ub} = [Or]{Ud} , (8)

where [Dr]is the (6xr)partitionedmatrix given by

[Dr] =f_i:_ (9)

The [Di] matrix is formed as before and the IS] matrix is then

IS] - [Di][Dr] (lO)

Although this procedure wlll replace all deleted rigid body motions, it is not n¢ee88_y to do

this if a stiffness matrix rather than a flexibilitymatrix is input. It is, however, a highly

recommended procedure because it will eliminate errors due to nonsatisfactlonof rigid body pro-

perties by imprecise input data.

The stiffness matrix of the element written in partitioned form is

y S.7-3 {12/15/72)
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F-KIi ] Kid-]

[Kee] = L_..F..;_ (ll)

When the flexibility formulation is used, the program evaluates the partitions of [Keel from

[Z] and IS] as follows:

[Kil] = [Z] "] , (12)

[Kid] = .[Z]'I[s] , (13)

[Kdd] = [s]T[z]'I[s] (14)

If a stiffness matrix, [k], rather than a flexibility matrix is input, the partitions of

[Kee] are

[Kii] = [k] , (15)

[Kid] - -[k][S] , (16)

[Kdd] = [s]T[k][S] (17)

No internal forces or other output data are produced for the general element.

V
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5.8 _LATES

NASTRAN includes two different shapes of plate elements (triangular and quadrilateral) and two

different stress systems (membrane and bending) which are, at present, uncoupled. There are in all

a total of thirteen different forms of plate elements as follows:

I. TRMEM - A triangular element with finite Inp!ane stiffness and zero bending stiffness.

2. TRIM6 - A triangular element with finite inplane stiffness and zero bending stiffness.

It uses quadratic polynomial representation for membrane displacements. Bilinear varia-

tion in terms of the planar coordinates of the element is permitted for the thickness of

the element.

3. TRBSC - The basic unit from which the bending properties of the other plate elements,

except TRPLTI, are formed. In stand-alone form, it is used mainly as a research tool.

4. TRPLT - A triangular element with zero inplane stiffness and finite bending stiffness.

It is composed of three basic bending triangles that are coupled to form a Clough com-

posite triangle; see Section 5.8.3.3.

5. TRPLTI - A higher order triangular element with zero Inplane stiffness and finite bend-

ing stiffness. It uses quintic polynomial representation for transverse displacement.

Bilinear variation in terms of the planar coordinates of the element is permitted for

the thickness of the element.

6. TRIAl - A triangular element with both inplane and bending stiffness. It is designed

for sandwich plates in which different materials can be referenced for membrane, bending,

and transverse shear properties.

7. TRIA2 - A triangular element with both Inplane and bending stiffness that assumes a solid

homogeneous cross section.

8. QDMEM - A quadrilateral membrane element consisting of four overlapping TRMEM elements.

9. QDMEMI - An Isoparametric quadrilateral membrane element.

lO. QDMEM2 - A quadrilateral membrane element consisting of four nonoverlapping TRMEM elements.

If. QDPLT - A quadrilateral bending element. It is composed of four basic bending triangles.

_v _
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]2. QUADI - A quadrilateral element with both inplane and bending stiffness, similar to TRIAl.

13. QUAD2 - A quadrilateral element similar to TRIA2.

Anisotropic material properties may be employed in all plate elements. TRMEM and TRBSC are the

basic plate elements from which TRPLT, TRIAl, TRIA2, QDMEM, QDMEM2, QDPLT, QUADI, and QUAD2 elements

are formed. The stiffness matrices of the plate elements are formed from the rigorous application

of energy theory to a polynomial representation of displacement functions. An important feature

in the treatment of bending is that transverse shear flexibility is inc]uded.

All of the properties of all the plate elements, except those of TRIM6 and TRPLTI, are assumed

uniform over their surfaces. For elements TRIM6 and TRPLTI, the thickness as well as the tempera-

ture can have bilinear variation over their surfaces.

The detailed discussion of plate elements is divided into subsections, according to the fol-

lowing topics: membrane triangles; the basic bending triangle; composite triangles and quadrila-

terals; the treatment of inertia properties; the isoparametric quadrilateral membrane element,

QDMEMI; linear strain membrane triangle, TRIM6; and the higher order triangular bending element,

TRPLT1. The accuracy of the bending plate elements in various applications is discussed in

Section 15.2 and the accuracy of the membrane elements is discussed in Section 15.3.
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5.8.] The Membrane Triangle

Consider the triangular element shown in Figure l below.

0,0

 c>"Yc  i.ntatio. Axis

/ ' LV 0
X

Figure I. Triangular Membrane Element

u and v are the components of displacements parallel to the x and y axes of the local (ele-

ment) coordinate system. The inplane displacements at the corners of the element are represented

by the vector V

{ue}

i
Let [Kee] be the stiffness matrix referred to the vector {Ue}; i.e.,

[Kee]{Ue} = {re} ,

(1)

(2)

The stiffnesswhere the elements of {re} are the inplane forces at the corners of the element.

matrix [Kee] is derived by constructingan expression for the strain energy of the element under

the assumption that the inplane displacements, u and v, vary linearly with position on the surface

of the element,

5.8-2 (12/29/78)
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u • ql + q2x + q3y ' (3)

v = q4 + q5x + q6y {4)

The quantities ql' q2.... q6 may be regarded as generalized coordinates to which the dis-

placements at the corners of the element are uniquely related,

{ue} - [H]{q} {S)

The elements of [HI are easily evaluated by inspection of Equations 3 and 4. Since the in-

verse of [HI will later be required, the choice of six generalized coordinates to match the six

corner displacements is not accidental. Indeed, it is fortunate that the complete linear repre-

sentation of the displacement functions, Equations 3 and 4, contains six coefficients. A similar-

ly symmetrical relationship cannot be achieved for the bending triangle, as will be seen.

The membrane strains are related to the generalized coordinates by

_U

l N ,¢x _x" q2 (6)

av

Cy " _ " q6 ' (7)

)v )u
• _'x+ _ " q5 + q3 ' (8)

or, using matrix notation,

• \

{¢} - = [He]{q} (9)

\ .

The membrane strain energy of the element is

- _ /[qxCx + ayCy + Ty]dA , (10)Es

where t is the thickness of the element. Since the strains, and therefore the stresses, do not

vary with position, Equation 10 may be written in matrix notation as

Es . ½ At{a}T{c} . (ll)

The stress vector, {_}, is related to the strain vector by the two-dimenslonalelastic

5.8-3



modulus matrix [Gel.
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(_} = [Gel{c} . (12)

In NASTRAN materials may be entirely anisotropic so that the only restriction on [Gel is that

it be symmetrical. The user can also specify isotroplc materials, in which case

B

E

_E

CGe] -

0

w

'_E

o
E

o

0 G

(13)

In the case of anisotropic materials, the user specifies their properties with respect to a

particular orientation, which does not necessarily correspond to the principal axes. The input

data for each triangular element includes an angle• B• that references the material orientation

axis to the side (_), (_) of the triangle (see Figure l).

transformed into the element elastic modulus matrix by

The material elastic modulus matrix is

1

[u] - sin28

-2cosestne

[Gel = [u]T[Gm][U] , (14)

sin2e

cos2e

2cosesine

i

cosesine

-cosesine

cos2e - sln28

where

• (is)

is the transformation matrix for the rotation of strain components.

Substitute Equation 12 into Equation II to obtain an equation for the elastic strain energy

in terms of strains

Es = ½ At{¢}T[Ge]{¢}. (16)

By virtue of Equations 5 and 9 and the nonslng_larity of [H],

{¢} - [He][H]'l{ue } , (17)

5.8-4
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SO that, defining [C] = [He][H]'l

PLATES ORIGINAL P/4_'_ ',_
OF POOR QUALITY

l At{ue}T[c]T[Ge][C](Ue}Es = (18)

The strain energy of any element• expressed in terms of its stiffness matrix, is

Es - ½ {ue}T[Kee]{U e} , (19)

so that, comparing Equations 18 and Ig•

[Keel - Atcc]T[Ge][C] . (20)

The only remaining analytical task of any consequence• before turning the job over to the

computer programmer, is to evaluate the elements in the [C] matrix. The result of this exercise

is

[c]

.L I o I I_I o o Io
xb I J Xb I I

I xcI f,
o mTc  "VI o --- oI ycXbl I_

_1, l I Xcl ]._Ill
Yc\Xb I I I

(21)

As a last step• the stiffness matrix is transformed from the local element coordinate system

to the global coordinate system of the grid points. Let the transformation for displacements be

(ue } = [T]{Ug} . (22)

Then

[Kgg] - [T]T[Kee]CT] (23)

Thermal exoansion of an element produces equivalent loads at the grid points. Thermal expan-

sion is represented by a vector of thermal strains

{_t} xt1• Cyt "

Yt

6%}_ (24)

where {%} • [u]-l{_m } is a vector of thermal expanslon coefficients. [U] Is given in Equation 15

5.s-5 (4/1/7z)
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and {C_n} is the vector of thermal expansion coefficients in the material axis system. When grid

point temperatures are specified, T is assumed uniform and equal to the average of the temperatures

specified at the corners of the element. _ may also be specified prlorly with element temperature

field data. The three elements of {_m } are independent for anlsotroplc materials.

An equivalent elastic state of stress that will produce the same thermal strains Is

that

{_t} = [Ge]{E t} = [Ge]{_e}_ (25)

An equivalent set of loads applied to the corners of the element is

(Pe} = At[c]T(_t } (26a)

= AtT[c]T[Ge]{_e } . (26b)

The validity of the first form, Equation 26a, follows from the general energy requirement

{ue}T{Pe } - /{_}T{_ t} dV

The equivalent loads are transformed from local element coordinates to grid point co-

(27)

ordi nares by

{Pg} = [T]T{P e} (28)

After the grid point displacements have been evaluated, stresses in the element are computed

by combining the relationships

to form

{ue} - [T]{Ug}, (29)

{¢} - [C]{ue} , (3O)

{o} - [Ge]{_- ct} , (31)

{_} - [Ge]CC][T]{Ug} - [Ge]{_e}T , (32)

The principal stresses and the maximum shear are computed from the elements of {o}. The

direction of the maximum principal stress is referenced to the side (_), O of the triangle.

5.8-6 (4/I/72)
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5.8.2 The Basic Bendin9 Trlangle

The coordinate system used in the analysis of the basic bending triangle is shown in Figure

2.

O!

Figure 2.

Xc' Yc

xh , 0
Z) X

Coordinate Geometry for the Basic Bending Triangle

The deflection w is normal to the x,y plane, with positive direction outward from the paper.

The rotations of the normal to the plate, _ and B, follow the rlght-hand rule.

The stiffness matrix is developed in terms of the translations and rotations at the three

vertices of the triangle. The displacement vector is defined by

T
{%} " LWa '%' Ba' Wb' %' _b'Wc' %' _cJ (I)

Before proceeding with the details of the derivation, some general relationships will be des-

cribed. Of the nine degrees of freedom of the triangle, three describe rigid body motions....

stiffness matrix will be partitioned according to rigid body and flexible body motions in order to

reduce computational effort.

to displacements by

In general, the vector of forces applied to the vertices is related

Partition this equation as follows

where

{re} = [Kee]{Ue} (2)

, (3)

5.8-7
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{ui} = LWb ' %' _b' Wc' ac' _c-JT ' (4)

{ua} = Lwa, aa, B__IT (5)

[Kii ] is computed from the elastic properties of the triang]e. [Kia] and [Kaa] are computed

as follows.

The partition [Kii] is nonsingular so that Equation 3 can be rearranged as follows to place

ui and fa on the left hand side

I "Kii'IKia fi

= I

LKiaTKii'l I Kaa " KiaTKii'IKia

(6)

When no forces are placed on the ui coordinates, i.e., when fi = O, the plate moves as a

rigid body such that

{ui} " [S](ua} , (7)

where the elements of IS] may be calculated from simole kinematics. Comparing Equation 7 with the

top half of Equation 6, it is seen that

[Kia] " [Kii][S] (8)

Furthermore, the forces, fa'. are completely determined by the forces, fi' so that, from the lower

half of Equation 6

[Kaa] - [Kia]T[Kii]'l[Kia ] - 0 , (9)

or, using Equation 8,

[Kaa] = [s]T[Kii][S] (lO)

The main part of the effort is the calculation of [Kii]. In the calculation, use is made of

the following transformation between relative motions, {Ur}, and generalized coordinates, {qr}.

{ur} - [H]{q r} (ll)

where

5.8-8
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{ur} - {ui} -[S]{Ua} . (12)

The coordinates {qr } are taken to be the coefficients in a power series exoansfon of normal

deflection, w, over the surface of the plate. The stored elastic energy is exi_ressed as

Ve = _ ; {qr}T[k0]{qr } dA , (13)

where the integration takes place over the surface of the plate and [kq] is the stiffness matrix

per unit area. The elements of the stiffness matrix [Kq], referred to {qr } are then computed from

K_s " ; kqrs dA (14)

The stiffness matrix [Kii] is then obtained from

[Kii ] = [H'I]TEKQ]EH "l] (15)

Note that [H] must be a nonslngular six-by-six matrix. It is this fact that causes all the

controversy in the development of plate elements, since if [HI were a six-by-seven matrix, it

would permit the inclusion of all of the cubic terms in the power serles expansion for w.

Details of the analysis follow.

5.8.2.1 Rigid Body Matrix, [S]

We start with an easy task, the calculation of IS].

in rigid body motion

w b

_b

Bb
om

wc

_c

Bc

m

i I o

I

o{I

o ) o

1 Jl Yc

o j l

o 0 o
m

u

I -xb
I
I o

I,
-x c

l

!

From Figure 2 and elementary kinematics,

wa

c_a

Ba

(16)

The six-by-three matrix in this equation is IS].
°_
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5.8.2.2 Power Series Expansion

Let the displacement normal to the plate, with {u a} - O, be represented by the following series:

w = Yxx + Yy.Y + qlx2 + q2xY + q3y2 + O4x 3 + qsxY 2 + q6y3 (17)

Note that the x2y term is omitted. The omission of one of the terms in the series is necessary

in order that [H] be nonsingular. The coefficients Yx and yy are transverse shear strains which

are assumed constant throughout the plate. The q's are the generalized coordinates discussed

above.

The omission of the x2y term destroys the invariance of the properties of the element with

respect to rotation of the x, y axes. In fact, since the x-axis coincides with the edge Q, Q

of the triangle, the omission of the x2y term is equivalent to the imposition of a constraint

such that the rotation _ varies linearly from (_ to (_. An interesting consequence is that, if

another triangle with a similar constraint lies adjacent to the side Q, 0, the deflections and

slopes of the two triangles will be continuous at all points along their common side.

If an arrangement of elements can be contrived such that continuity of displacements is pre-

served along all element boundarles (as in the Clough triangle, Section S.8.3.3, for example) then

certain theorems can be proved about the resulting structure. For example, if the "consistent"

mass lumping technique (see Section 5.5) is used, then all of the vibration mode frequencies wlll

be too high, because all of the approximations used in deriving the finite element model can be

interpreted as the progressive application of constraints. It does not follow, however, that ele-

ments with displacement continuity give better results than all other elements (see Section 15.2).

The rotations are obtained from the definitions of transverse shear strain, which are, for

our problem,

Hence, from Equations 17, 18 and 19

_W

Yx - _-+ B , (18)

Bw
yy - _- _ (Ig)

_ q2x + 2q3y + 2q5xY + 3q6y2

-B - 2qlx + q2y + 3q4x2 + qSy 2

, (2o)

(Zl)

5.8-10 (12/2g/78)
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5.8.2.3 General Expression for [H] Matrix

qr"

One of the required tasks is to express Yx and Yy

Let the relationship be

in terms of the generalized coordinates,

{Y} = (yy) = [Hyq]{qr}
(22)

The vector {ur} can be written directly as

{ur} - [Huy]{Y} + [H-']{qr} (23)

Then, from Equations II, 22, and 23

[HI • [Huy][Hyq] + [H-] (24)

We can write down [Huy] and [H-]from preceding results. From Equations 17, 20, 21, and 23

ql

q2

q3

Q4

q5

q6

• (25)

where

[Huy]

xbl o

olo
o I o

Xc II Yc

o ) o
I

o I o
m

(26)
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[_] =

m

I o i o
Xb2 [ I

I I
0 I Xb I 0

1 I
I o 1 o

I 0
Xb3 I

't
0 I 0

.3Xb2 '("2Xb I 0

2 I I 2
Xc I XcYc I Yc Xc3 XcYc2

I ( I
0 I Xc , 2_C o i2xac
"2Xc "Yc I 0 I .3Xc2 .yc2

l I

Elastic Relationships

O,RIGH_JAL _A'/-_ ;:_
OF POOR QUALITY

I o
I

,f m

I o

I yc3 (27)

] 3Yc2

(

I o

V

The following relationships are obtained from the theory of deformation for plates.

The curvatures are defined by, (using our notation)

v X = . _)x

3o,

Xy = _--_"

_ gB
Xxy " T_ "

Bending and twisting moments are related to curvatures by

IMxlMy

Mxy

= [D] Xy

Xxy

where [0] is in general a full symmetric matrix of elastic coefflcfents.

plate,

! u

' Il ) _ 0

,Io
I I

o I o I

(28)

(29)

For a solid isotroolc

(30)

V
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For anisotroplc materials, the orientation between the x, y axes and the axes that the user

specifies for computing [D] must be accounted for. The method used is identical to that for the

membrane triangle, see Section 5.8.1.

The positive sense of bending and twisting moments and transverse shears is given by the

following diagram.

Y

I
_X

I Mxy
M

(Z) -- y

V
Y

Vy

. _.L

xy

1
V

C)_ _ Mxy

Mx

The following moment equilibrium equations are obtained from the diagram:

_Mx _Mxy 0
Vx +T_ -+ _y "

• o
Vy _y _x "

Transverse shear strains are related to the shear forces by

(31)

(32)

I • [J] (33)

yy Vy

[J] is, in general, a full symmetric 2 x 2 matrix For a plate with isotroplc transverse shear

ma teria]
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t

where G is the shear modulus and h

[J] Lll

Gh

is an "effective" thickness for transverse shear.

(34)

5.8.2.5 Evaluation of [Hyq] Matrix

From Equations 3l, 32 and 33 we may write

and

From Equation 2g

Yx
(35)

(36)

_Mx
?x Oll _ + DI2 Dl3 _x

Dl2 _ + D22 + D23 ay

'Xx _Xx__+D33 _xXDl3 BT + D23

Dl3 _ + D23 D33 _y

(37)

where the symmetry of the [O] matrix has been used.

The curvatures may be related to the generalizedcoordinates by means of Equations 2B, 20,

and 21.

Thus

Xx " " Tx" = 2ql + 6x04

Xy ' ByBc{. 2q3 + 2xq5 + 6yq6 ,

Xxy = _- = 2q2 + 4yq5

(38)
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and

C.--'C,:V'.L ?':. _ .?i
.... L_ , i ° • i,"_B_

o I
= O; _y • 6q6; y = 405

Substituting into Equation 37 and thence into Equations 35 and 36

_Mx
BT " 6Dllq4 + 2D1205

(39)

= 6022q6 + 4023qS

_x " 6D13q4 + 202305

(4O)

. 6D23q6 + 4033q5

and

"Yx • -Jll[6Ollq4 + 2D12q5 + 6D23q6 + 4033qS] - JI216D2206 + 4Dz3q5 + 6D13q4 + 2D33qS],

(41)

or

Yx = - 6(JllDll + Jl2Ol3)q4 " [Jll(2D12 + 4033) + 6JIzDz3]q5 " 6(JIID23 + J12D22)06 "

(42)

InterchangingJIz for Jll and J22 for Jl2' we also get

Yy - . 6(Jl2Dll + J22Dl3)q4 - [J12(2D12 + 4D33) + 6J22Dz3]q5 - 6(J12D23 + J22D22)06 .

(43)

The complete [Hyq] matrix is, therefore, from Equation 22

[Hyq] = "
fO II

I
.I.._
I I

IOlO

116(JllOll + J12D13) i 011(2012 + 4D33) + 6012D23 tl 6(011023 ÷ 012D22)1

.... - ;....
I 6(J12011 * 022D13) I J 2D1Z + 33) + 6022D23 I 6(012023 + 022D22)]

(44)
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The complete [HI matrix can now be written explicitly using Equations 24, 26, 27 and 44. This

will not be done here. Note that, if the plate is assumed to be rigid in transverse shear, [Ha ]

is null.

V

5.8.2.6 Strain Energy and Stiffness Matrix [Kq]

The strain energy for a plate may be written

Ve = ½ [ [{M}T{x} + {v}T{y}]dA , (45)

where {M} is the vector of bending and twisting moments, {X} is the vector of curvatures, {V} is

the vector of transverse shears, and {y} is the vector of transverse shear strains.

results, Equations 29 and 33;

Ve = ½ [ [{x}T[D]{X} + {y}T[G]{y}]dA ,

where [G] = [j]-l.

and

From previous

(46)

The {X} and {Y} vectors are related to the generalized coordinates by

{X} = [Hxq]{q r} , (47)

V

{Y} = [Hyq]{q r} (48)

[Hyq] is given by Equation 44.

[H×q] -

[Hxq] is, from Equation 38:

m
I

2 I 0 i 0
-- --I-----I

0 I 0 ! 2
r I

I0 I 2
i

6xlo Io-
-I---I--"

0 I 2x i 6y

o i 4yl o

Substituting Equation 47 and Equation 48 into Equation 46,

Ve - ½ [ [{qr}T[HxqTDHxq + HyqTGHyq]{qr}]dA

From Equation 13

[kq] = [H×qTDH×q+ HyqTGHyq] ,

(49)

(5O)

(51)
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and from Equation 14 the elements of [Kq] are
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Krsq = S{Hxr}T[D]{Hxs}dA+ A{H,(r}T[G]{Hys} , (52)

where {H×r} is the rth column of [H×Q], etc. Note that, since the elements of [Hyq] are indepen-

dent of x and y, the integrationof the second term in Equation 50 is trivial and has been Derfor-

med in Equation 52. A is the surface area of the triangle.

In Equation 51 explicitly

[O][H×q]

i

iml I _ IN I I I _

2012 2023 II2D22 Jl 6x012 Ii2xD22

i

+ 4yDI3 6yDI

+ 4yD23 6y022

+ 4y033 6yD23
1

(53)

[HxqjTCD]ZHxq]

i

I l I 4xo I

1 I

I I 1 4x023 T
4013 I 4033 4D23 I 12XOl3I +8yO I

____1______ __ __ I___
t I I I

4xD224012 I %3 4022 I 12xo,o I +8,,0 I
____I________ "_LI I

I 1 I 12x2D12 I

12XDllI 12XOl3 12XOl2 J 36x201l l+ 24xyO13

I I I
I

4XDl2 I 4xD23

+ 8yDI3 I + 8yD33

I

l
12yO12 I

I
l

12y023

I I 4x2D22

4x022 I 12x2012 I + 16xyD23

+ 8y023 I + 24xy013 J + 16y2033
I I

12yD22
I I 12xy022I
I 36xy012I t
I I * 24y20231

i

12yOI2

12yD23

12yD22

J 36xyD12

I
I
I12xy022

I+ 24y2023
I

36y2022

l

(54)
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It is convenient to define the following integrals:

S dA _ A Sx2dA = px2A ,

SxdA = RA Sy2dA = py2A ,

_ydA = _A /xydA - Oxy2A •

(55)

and _Iocate the center of gravity of the triangle. Px and py are the radii of gyration about

vertex (_) of the triangle. Pxy2A is the cross-product of inertia.

After performing the integration, the complete [Kq] matrix is

[Kq] = [KX] + [KY] ., (56)

where

[KX] = 4A"

and

m

I

OlI l
j D13

i 033

L_ _ _

SYMMETRICAL

t I _012
1 3_-ol1

Ol2 J II + LrY'l)13

_I_ _ F-------
D23 I 37DI3 1 ;D23

____L l +_3 L
1 I _'022

l 3_D12 i + 2y--023

022 b j

I 3%2012

L__._ J + 6°xy2DI3

I
J px2D22

J + 4Oxy2D23

J + 4py2D33
L___

3y-'B22

g°xy2Dl2

3%y2D22

+ 6py2D23

9py2D22

(57)

[KY] - A'[Hyq]T[G][Hyq] (58)

Note that CKY] - o if [G] _ = because [Hyq] goes to zero in this case.
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5.8.2.7 Summary of Calculations for Stiffness

The following operations are required to obtain the stiffness matrix [Keel referred to

degrees of freedom at the vertices of the triangle.

I. Compute elastic matrices [D], [G], and [J] - [G"l] in the reference coordinate system

for the basic triangle (see Figure 2).

2. Compute

3. Compute

4. Compute

Compute

Compute

Compute

Compute

Compute

[Kx] from Equation 57 (6x6)

[Hyq] from Equation 44 (2x6)

[KY] from Equation 58 (6x6)

5. [Kq] from Equation 56 (6x6)

6. [Huy ] from Equation 26 (6x2)

7. [H-]from Equation 27 (6x6)

8. [H] from Equation 24 (6x6)

g. [Kii] from Equation 15 (5x6)

lO. Compute [S] from Equation 16 (6x3)

II. Compute [Kia] from Equation 8 (6x3)

12. Compute [Kaa] from Equation lO (3x3)

13. Assemble [Keel from Equation 3 (9x9)

For triangles that are rigid in transverse shear, steps 3, 4 and 6 are omitted. After [Keel

has been formed it is transferred from the local element coordinate system to the global coordi-

nate system of the surrounding grid points, in the same manner as for all other elements.

5.8.2.8

are:

Equivalent Thermal Bending Loads

The stress-free strains developed in a free plate due to a variation of temperature with depth

ext I
{¢t } " _{yt . {_e}T , (5g)

@
\7t
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where T is the teml)erature above the reference state and {be} is the vector of thermal expansion

coefficients in the element coordinate system.

An applied stress vector which would produce the thermal strains is:

{qt} = [Ge]{C t} , (60)

where [Gel is the matrix of elastic coefficients at the point on the cross section.

by the applied stress field on a strain Field {¢} is:

Wt - / {¢}T(a t} dv

g

The work done

(61)

where the integration is carried out over the volume.

The work done by equivalent thermal loads {P_} acting on grld points (in the global coordinate

system) is

Wt = (P_}T{ug} , (62)

so that, comparing Equations 61 and 62

pt = _ /6¢}T{at} dv
g _Ug v

The strains {E} are related to the curvatures {X} by

{¢} - -z(x},

where z is measured from the neutral surface of the plate.

{at} - [Ge]{_e}T

(63)

Also, from Equations 59 and. 60

(64)

(65)

(66)

so that

pt , a
g " _U--g/ z{x}TZGe]{_e }T dv

v

5.8-1ga (I/30/81)
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It will be assumed that the temperature varies only in the z direction, i.e., that it is

uniform with respect to x and y. It is convenient tO deflne the equivalent thermal moment vector

{M t} = -/[Ge](_e}TZ dz • (67)

z

Note that, if the temperature varies linearly over the cross section such that

then

T = TO + T'z , (68)

Tz dz = T'/z 2 dz - IT' , (6g)

z

where I is the moment of inertia of the cross section and T' is the thermal gradient. For plates

in which the material moduli and the thermal expansion coefficients of the effective bending

material do not vary with depth, the vector of equivalent thermal moments {Mt} is related to an

"effective" thermal gradient, T', by

where

{Mt} - -[Ge]{_e}I T' , (70)

T' - _/T z dz , (71)

and the integration is carried out over the effective bending material. In NASTRAN the user has

the option of providing either (M t} using Equation 67 or T' using Equation 71. For solid homoge-

neous plates the further option is provided to speclfy the temperature as a tabular function of

depth, in which case Equations 70 and 71 are evaluated by the program. Equation 67 should be used

if it Is desired to include the effect of temperature gradient on the material properties, [Gel

and {_e }. If Equation 71 is used, NASTRAN assumes that [G el and {_e } are constant for the element;

they are computed for the average temperature, i.

Substituting Equation 67 into Equation 66,

t

Pg " _ f [X]T [Mt] dA ,
(72)

5.8-19b (4/1/72)
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where the integration is carried out over the surface of the element. The vector of curvature,

[×], is linearly related to the vector of generalized coordinates {qr} by Equation 47. Thus

pt
= 3u--'g J {qr }T [Hxq] (Mt} dA . (73)

r
g

A

Note, from Equation 49 that the elements of [Hxq] are at most linear functions of x and y. Thus,

since {Mt} iS constant over the surface,

ptg = __.L(A{qr}TBug[H×q(x,y)] {Mt}) , (74)

where [Hxq(X,y) ] is [Hxq] evaluated at the centroid (x,y) of the plate and A is the surface area.

The generalized coordinates {qr } are related to the relative corner disolacements {ur} by the

matrix [H] in Equation II. Let the relationship between the relative corner displacements and the

global grid point displacements {Ug} be

{ur} = IT] {Ug} (75)

Then, substituting Equations II and 75 into Equation 74,

pgt = _-_--(A{Ug}_Ug[T]T [H'I]T [Hxq(X'Y)] {Mt}) ' (76)

so that, performing the indicated differentiation,

{P_} - A[T] T [H'l] T [Hxq(X,_)] {Mt} (77)

Equation 77 is evaluated by the program to obtain the equivalent grid point thermal loads.

5.8.2.9 Recovery of Internal Forces

The internal forces are recovered at a point (Xo,Yo) which is either the center of gravity

(_,y-_or, in the case of a Clough triangle, vertex c (Xc,Yc).

The first step after transforming Ug into ue is to obtain the relative motions at vertices

b and c from

{ur} " (ui} " [S]{ua} (7B)

s.s-19c (I13O181)
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Then the generalized coordinates, {qr }, are evaluated from

[qr} = [H]'l{ur }

The curvatures are evaluated from Equations 47 and 49 with x - xo and y = Yo:

{X} = [Hxq]{q r}

Moments are then obtained from

OF POOR qUAL;TY

(7g)

(80)

{M} = [D]{×} - {Mt} , (81)

where [D] is the matrix of elastic bending coefficients (see Equation 29) and {Mt} is the equivalent

thermal moment vector (see Equation 67).

The transverse shears are evaluated from Equations 31 and 32 and the subsequent numerical

reduction of coefficients.

The details are as follows. Note first that {Mt} is uniform over the surface.

_Mx _Mx_
V -

x _x ay

Vy -

- 6Dllq 4 - 2D12q S - 6D23q6 - 4D33q 5

_M

- 6D22q 6 - 4023q 5 - 6013q4 - 2D23q 5

Equations 82 and 83 may be written in matrix form as

[Kv] - .

where

tVxf(V}- Vy = [KV](qr } '

Then

(82)

(83)

(84)

I ,,DI) i"°231

0 ) 0 I 0 t 1 2012 + 4033

I --L...-L-- I I --

---t-- i I "- I, io ) o , o 6o13) 602316o22j
!

(85)
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The bending and twisting moments can be reduced to outer fiber stresses and combined with membrane

stresses in the composite plate elements. If, in addition, the temperature is specified by the

user at a point where outer fiber stresses are calculated, the thermal expansion due to the differ-

ence between the specified temperature and the temperature that would be produced by a uniform

gradient, T', is assumed to be completely restrained. Stated differently, the second and higher

order moments of the thermal expansion are assumed to be completely restrained by elastic stiff-

ness. The resulting stress increment is

V

{_a} = -[Ge]{ae}(T - TO - T'z)

where [Gel and {%} are evaluated for the average temperature of the element, _.

(86)

v
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5.8.3 Composite Plate Elements

5.8.3.1 The Overlapping Composite Quadrilateral Membrane Element, QDMEM

The quadrilateral membrane element, QDMEM, is composed of four overlapplng triangular

elements. Since four points, in general, do not lie in a plane, care must be taken to ensure

equilibrium and compatibility. Rather than try to define a warped surface, an averaging process

is used with noncoplanar triangles. If a highly warped or curved surface is being analyzed, it

is suggested that the user employ four triangular membrane elements and specify the location of

the center point. The only penalty will be three extra degrees of freedom. The matrix fo_mula-

tlon time will be somewhat less.

The quadrilateral is divided into four triangles as shown in the figure below:

4 4

B ÷

1 Z 1 Z

If the corners do not lie in a plane, the composite element forms a tetrahedral shell.

The thickness used for each trlangle is one-half that given for the quadrilateral. Since no

special calculation time is saved by generating a unique eleme6t coordinate system, the locations

of the corner points are used to calculate individual coordinate systems for the triangles."

The stiffness matrix of the composite element Is simply equal to the sum of the stiffness

matrices for the component triangles, each transformed into the global coordinate system. Equi-

valent temperature loads are computed for each triangle separately and summed. During stress

data recovery, the state of stress in the composite element is assumed to be the average of the

states of stress in the component trlangles.

The QDMEMI element described in Section 5.8.5 and the ODM[Y_ element described in Section

_.8.3.4 are more accurate elements. The QOMEM element was developed earlier and it is included in

the present version of NASTRAN primarily to provide a rerun capability for previous analyses. A

comparison of the accuracy of the three elements Is made in Section 15.3.

5.8-2i (12/31/77)
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The Quadrilateral Bending Element

ORIGINAL PAGE E_
OF POOR QUALI_

The quadrilateral bending element uses two sets of overlapping basic bending triangles as

shown below:

4 4

l 2 l 2

Fo_ each triangle, the x-axis lies along a diagonal so that internal consistency of displacements

and rotations of adjacent triangles is assured. Each triangle has one-half of the bending stiff-

ness assigned to the quadrilateral.

In a preliminary operation, the corners of the quadrilateral are adjusted to lie in a median

plane. The median plane is selected to be parallel to, and midway between, the diagonals. The

adjusted quadrilateral is the normal projection of the given quadrilateral on the median plane.

The short line segments Joining the grid points to the corners of the adjusted quadrilateral

element are assumed to be rigid in bending and extension.

The logical arguments supporting the chosen arrangement for the quadrilateral bending

element are as follows:

5.8-Z2 (12/29/78) V
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1. For the special case of a square element, its properties are tnvartant wtth respect to

90° rotations, thereby compensating an important defect of the basic bending triangle.

Since the purpose of a quadrilateral element Is to model (nearly) rectangular fields of

grid points, the property of rotational Invarlance should provide improved accuracy

over the simple basic triangle for such applications.

2. It is simple to program because the stiffness matrices of the component triangles are

directly additive.

The accuracy of the quadrilateral plate element for the solution of problems Is compared

with that for other composite elements In Section IS.2, "Hodellng Errors In the Bending of Plate

Structures."

In stress data recovery, the stresses In the subtrlangles are calculated at the point of

intersection of the diagonals and averaged.

Since coupling between membrane stiffness and bending stiffness is not, at present, included

in NASTI_AN,quadrilateral elements with both membrane and bending properties are treated by

simple superposltlon of their membrane and bending stiffness matrices. Specifically, the over-

lapplng quadrllateral membrane element, QDMD(, is combln_ wlth the bending quadrilateral,

described above (QDPLT), to form QUADI and _AD2.

For QUADI and QUAD2 elements (as well as for TRIAl and TRIA2 elements), strains and curvatures

are also recovered. Speclflcally, strains are derived from the membrane component (see Equations

6, 7, 8, 9 and 17 of Sectlon 5.8.1) and curvatures are obtained from the bending component (see

Equations 28, 38 and 47 of Section 5.8.2).

5.8'23 (12/29/78)
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The Clough Bending Triangle

OF FOOR QUALITY

The Clough bending triangle (Reference l) is formed by subdividing the given triangle into

three basic bending triangles as shown below.

®

0 a

V

The x-axis of each subtriangle corresponds with an exterior edge, so that continuity of

slope and deflection with surrounding Clough triangles is assured. The added grid point in the

center is like the other grid points in that equilibrium of forces and compatibility of displace-

ments are required at the center point. In add_tio h, the _tations parallel to the internal_

boundaries at their midpoints, points (_, (_ and (_ , are constrained to be continuous across

the boundaries. The equations for slopes in the basic triangles contain quadratic and lower or-

der terms, and since the normal slopes along interior boundaries are constrained to be equal at

three points (both ends and the middle), it follows that slope continuity is satisfied along the

whole boundary. Displacement continuity on all boundaries is automatically satisfied when the

displacement function contains only cubic and lower order terms. Thus complete continuity of

slope and displacement on all interior and exterior boundaries is assured for the Clough triangle.

The imposition of the internal slope constraints causes the only additional complications

in the analysis of the Clough triangle. In each of the component triangles, expressions for the

rotations _l and _2 (see figure on following page) are obtained in terms of the displacements at

its vertices.

V

5.8-24 (12/29/78)
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where

C

b

- [H_t]{ut) t - I, II, or Ill , (1)

{ut} = t-wa' Oa' Ba' Wb' °b' @b' Wc' _c' @cIT (2)

is the vector of corner displacements, expressed in a local coordinate system for the component

triangle. {ut} is a rotated subset of the displacements at the corners of the comDosite tri-

angle, {Ue}, and the displacements at the center, {Uc}, expressed in a Cartesian coordinate

•system for the element as a whole,

{ut} - [Tte]{Ue} + [Ttc]{Uc} . (3)

The equations of constraint are

I _211I_I + - 0

_III + $21 - 0 , (4)

_lIII+ _2II - 0

which, by virtue of Equations l and 3, result in a set of three constraints relating displace-

ments at the center point to the displacements at the corners.
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{uc} = [Gc]{U e}

The equilibrium equations, including the forces of constraint, qc' are

(5)

r

V

! " C

(6)

The stiffness matrix• whose partitions are _ee' Kec• KecT and Kcc, is obtained by simple super-

position of the stiffness matrices of the component triangles. Straightforward elimination of

uc and qc from Equations 5 and 6 results in the final stiffness matrix

[Kee]{U e} = {fe} , (7)

where

[Keel = [K-ee + KecGc + GcTKec T + GcTKccG c] (8)

The details of the relationship expressed by Equation l are as follows. The rotations Ql

and 42 are related to their component rotations about the x and y axes of the local coordinate

system by

_I " exlC°S_a + By lsin_a

_Z = exzC°S_b " ey2Sin6b

Referring to Equations 20 and 21 of Section 5.8.2,

• (9)

exI " % + _l " % + q2xl + 2q3Yl + 2q5xlYl + 3q6Yl2

ByI • Ba + B1 - Ba - 2qlxI - 2q2y I - 3a4xl2 - q5Yl2

and similarly for ex2 and By2. Combine Equations g to 12 to form the matrix equation

(lO)

• (ll)

, (iz)

5.8-L_
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_I 3 cos6a sin6a

• [H_q]{q r} +

_2 0 cos_b -sln6b. J

OF PCOR QUALITY

wa

cia

6a

(13)

where

I I _ ) I I 1
-2 Sa I xlca " ylsa 1 2YlCa tl'3Xl2Sa I Yl(2XlCa " YlSa ) 1 3Yl2Ca

[H@q] - -. xl - I i I1 3x22sb i -_-- ---- (14)

in which sa = sin6a, ca = cos_a, sb " sln6 b and cb - cos6 b.

From Equations II and 12 of Section 5.8.2

{qr} , [H]-l{ui } . [H]'l[s]{ua } , (15)

where {ui} is the union of the displacements at vertices b and c. Equations 13 and 15 are com-

bined to form

I_l I [H_ya]{Ua} [H_b]{U b} [H_c]{U c}

÷ ÷

_2

(16)

where

and

O c°S_a sin6al
[H_a] = . [H_q][H]'I[s]

cos_ b -stn(b. J

, (17)

' HCC] [H_bq][H]"l[H@b : = (18)

In stress data recovery the dlsplacement vector at the center point is computed by means of

Equation 5. Internal forces and stresses are then computed at vertex c for each component tri-

angle by the procedure described in Section 5.8.2.9, and are averaged to provide representative

values for the composite triangle as a whole.
-.;__
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The Clough triangle is superimposed with a membrane triangle to form triangular elements with

both membrane and bending stiffness.

5.8.3.4 The Nonoverlapping Composite Quadrilateral Membrane Element, QDMEM2

The QDMEM2 quadrilateral membrane element is subdivided into four triangles connected to a

center point as shown in the sketch below: 3

Figure I.

Point c is located at the intersection of straight lines connecting the midpoints of the

sides. Note that these lines intersect even if the four corner points do not lie in a plane.

Stiffness matrices, and thermal loads, are generated for each of the four triangles and are added,

treating the center point llke a normal grid point. The matrices and load vectors are then

reduced from order 5 'to order 4, l.e., to the four exterior grid points.

Two methods are available for removing the degrees of freedom at the cehter point. The

first will be called tZ=st_ reduction and the second will be called _g_ reduction. The forces

applied to grid points, after combining the triangular sections but prior to eliminating the

center point, may be expressed in partitioned form as follows:

K , K Up "P

fP -Pc-..
KT ! l l " + " ' (1)-;: Loo, : :

where subscript (p) refers to corner points and subscript (c) refers to the center point. {Pp}

and {Pc } are the thermal load vectors.

In the method of elastic reduction, the vector of resultant forces on the center point, {fc},

is set equal to zero and {uc} is elimlnated by direct solution of Equation 1 with the result

{fp}- -[_p]{Up} + {P:} , (2)

where _-

[_pp] • [Kpp] - [Kpc][Kcc]'l[Kpc ]T , (3)

5.B-28 (12/15/72)
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and

{P_} - {Pp} o [Kpc][Kcc]'I{Pc} (4)

In the method of rlgld reduction. {uc} is set equal to the_ of the corner displace-

men,. l.e.. in tems of Cartesian components.

l u c

v c

w c

u + u2 + u3 + u4
• _ Vl ÷ v2 + v3 + v4

w1 + w2 + w3 + w4

(5)

Since the coordinates of the center point (Xc, Yc' Zc) are equal to the averages of the

coordinates of the corner points (see Figure l), Equation 5 does not violate the element's rigid

body property. Expressed in general matrix form Equation 5 is

{uc} - [Gc]{Up} . (6)

Application of Equatlon 6 to Equatlon ] as a rigid constraint then produces the result

{fp} - -[K_p]{Up} + {Pp} , (7)

where

[K_p] T T + T Gc] (8)• [Kpp + Kpc Gc + Gc Kpc Gc Kcc

T pc) (9){P_} - {Pp + Gc

Similarity with the method for eliminating multlpolnt constraints, Section 3.S.l, is evident.

The method of elastic reduction can be expected to glve more accurate results and it would be

preferred In the present case were it not for the singularity that occurs In [Kcc] when the

element is flat. A combination of the two methods is actually used as follows: the lines Jolnlng

the midpoints of opposite sides are used to define a mean plane. The Inplane components of dis-

placement at the center point (uc, vc) are removed by elastic reduction and the out-of-plane

component of displacement, wc, Is eliminated by rigid reduction except that, when the quadrilateral

is severely warped, elastic reduction Is also used for wc. The criterion used to define severe

warping Is

5.8-28a (12/16/72)
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2_Eh> 0.2 , (IO)
YK

where h is the distance from the mean plane to each grid point and A is the area of the quadri-

lateral projected onto the mean plane.

The mass properties of the QDMEM2 element are treated in exactly the same manner as the QDMEM

element, see Section 5.8.4.

In stress recovery, the stresses are computed In each of the four triangles and averaged.

Internal force output includes the components of the corner forces colinear wlth the sides, as

shown below, and the "kick loads" at each corner normal to the plane of the colinear corner forces.

The "kick loads" are required for equilibrium when the element is warped.

f41

4 f'2
f43

/

23
In addition, a "shear flow" is calculated for each side, e.g,,

f12 " f21 (12)
q12 • £12

where _12 is the length of side 0 -@. The "shear flow" as calculated by Equation 12 derives

from a conceptual model of the panel consisting of four edge rods and a central shear panel. It

is not a measure of the shear stress on the edge of the elemen},:

L_.

5.8-2Bb (12/15/72)

V

iT_ 1



PLATES

REFERENCE

l° Clough, R. W., and Tocher, J. L., "Finite Element Stiffness Matrices for Analysis of Plate
Bending," Proceedings of Conf@rence on Ma)rix Methods in Structural Mechanics, Wright-Patterson
Air Force Base, Ohio, October 26-28, 1965, Air Force Flight Dynamics Laboratory Report No.
AFFDL TR 66-80, 1966.

5.8-28c (12/29/78)



STRUCTURAL ELEMENTS FOR THE DISPLACEMENT METHOD

THIS PAGE HAS BEEN LEFT BLANK INTENTIONALLY.

V

S.B-2Bd(]2/29/78)

==

Ii__I_



PLATES

5.8.4 Inertia Properties of Plate Elements

The mass of a plate element, like its other physical properties, is assumed to be uniformly

distributed over the surface of the element. The mass conststs of two parts: the mass due to the

density of the structural material; and nonstructural mass, the surface density of which is specl-

fled separately by the user. The mass is assumed to lie in the middle surface of the plate so

that rotary inertia due to finite thickness is ignored.

In the Lumped Mass method of mass transfer, one-third of the mass of a triangular element

is placed at each of Its vertices, an arrangement that preserves the location of the center of

gravity of the element. A quadrilateral is treated as a set of four overlapping trlangles

(see Sections 5.8.3.1 and 5.8.3.2) whose masses are calculated and transferred separately to

the surrounding grid points. This procedure is also used for the Isoparametrlc quadrilateral

membrane element, QOMBMI.

A Coupled Mass method of mass transfer is available for motions normal to the surface of

a plate element. As discussed in Section 5.5, a satisfactory coupled mass method for inplane

motions has not been devised. Thus, when the Coupled Mass method is specified by the user,

the terms in the element mass matrices corresponding to tnplane motions wtll be the same as

in the LumpedMass method. The use of the Coupled Mass method introduces a complication, in

that it is no longer possible to assign masses directly to grid points before calculating the

global mass matrix. Instead, the mass matrix for each element is first calculated in tts own

coordinate system and is then transferred to the global coordinate system by the same trans-

formations that are used in the assembly of the global stiffness matrix from element stiffness

matrices.

The Archer consistent mass technique (Reference 1) is used in fomulating the Coupled Mass

matrix for motion'nomal to the surface of a plate element. Thus, the bending properties of the

plate element affect tts mass matrix. The Coupled Mass method cannot be used for elements

with membrane stiffness only.

The procedure employed wtth the basic bending triangle ts described below in detail.

PRECEDING PAGE BLANK NOT FIEMEII
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Quadrilaterals are treated as four separate overlapping bending triangles. The Clough bending

triangle requires additional procedures that will be explained.

The consistent mass matrix for any element is obtained from the kinetic energy under the

assumption that the inertia loading does not alter the displacements at interior points. Thus

the kinetic energy may be expressed as a quadratic function of the displacements at the corners

of the element, using the geometric and elastic properties of the element to compute the func-

tional relationship.

Consider a flat plate that is inertia loaded normal to its plane. The kinetic energy for

sinusoidal transverse motion, w, at radian frequency _, is

v = ½ 2 / mw2 dA [I)

The translational displacement function, w, is related to corner displacements, Uk, by

w = _ ck uk , (2)
k

so that

C.lements of the consistent mass matrix are given by

(3)

Mk_ - / mCkC_ dA (4)

In the case of the basic bending triangle described in Section 5.8.2, a modified procedure

will be used due to the complexity of the expressions for the coefficients, Ck. Repeated re-

ferences to Section 5.8.2 will be made. Equations in Section 5.8.2 will be referred to as Equa-

tion 2-x.

It is convenient to relate w to a modified set of displacements, Um, consisting of the three

displacements of grid point (a) and the six generalized coordinates, qr' defined in Equation

2-17. Thus

or, using matrix notation

w - I caua + _ crqr ' (5)

w = rCml{um} - FCal{ua} * rCrl{qr} , (6)

5.8-30 (12/29/78)

V

w

If| 1



v

where the symbol r l indicates a row matrix.

nates, [Mmm], is partitioned according to
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ua

The mass matrix referred to the modified coordi-

and qr as follows

_Ma_a II Marl

Mar T I1 Mrr.J

(7)

The elements of [Mmm] are, by analogy with Equation 4, and employing matrix notation,

[Maa] - f mrcaITrcaldA

[Mar] " S mfCaITFCrIdA

[Mrr] - S mrCrlTFCrIdA

(8)

(9)

(io)

The mass matrix [Mmm] is transferred to the corner displacements {ue} by means of the

transformation

Thus

{um} - [T]{ue} (ll)

ZMee] - ZT]T[Mmm][T]

The transformation matrix IT] is obtained by noting that, from Equation 2-11,

where

Consequently

{um}

{12)

{qr} - [H]-l{ur I - [H]'l{ui - [S]{u_} , (13)

{Ua} " {Wa' _a' Ba}T '

T
{Ul} " {Wb' _b' Bb' Wc' _c' B_

• [T]{ue}

H ) u

which defines IT] in terms of quantities that have already been computed.
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The row matrix FCal,evaluated from a consideration of rigid body motion about grid point

(a), shown below, is

FCal - Fl,y, -xl (16)

V

B
a

c

_a

Equation 2-17 gives the relationship of w to {qr}:

wr " yx X + y_ry + qlx2 + q2xY + q3y 2 + q4x3 ÷ qsxY 2 + q6y3 (17)

The shear strains Yx and yy, assumed to be constant over the surface of the plate, are related to

{qr} by the [Hyq] matrix, defined in Equation 2-22, and evaluated in Equation 2-44.

ting the two rows of [Hyq],

Yx " rHyxql{qr} '

yy - rHyyql{q r}

The first three terms of rHyxql and rHyyql are zero (see Equation 2-44).

18 into Equation 17 and obtain the elements of the [Cr] matrix

rCrl = Fx2;xy;

Thus, separa-

(18)

Substitute Equation

y2; x3 xy2 y3
+ Hyxq4X + Hyyq4Y; + Hyxq5X + Hyyq5Y; + Hyxq6X + Hyyq6Yl.

(19)

The remaining steps in the evaluation of the consistent mass matrix are:

I. Substitute for FCalfrom Equation 16 and FCrl from Equation 19 into Equations B, 9 and

lO and evaluate the integrals, giving the elements of the mass matrix in modified

coordinates.

5.8-32 (12/29/)_) V
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Calculate the-IT] matrix, defined in Equation 15, from the[H] "l and IS] matrices that

are used in calculatlon of the stiffness matrix.

Compute the mass matrix referred to element coordinates by means of Equation 12.

Transform the mass matrix from element coordinates to grid point coordinates In the usual

manner. Note that the portions of the mass matrix corresponding to motions in the plane

of the element are treated in the usual manner, i.e., I/3 of the mass of the plate ele-

ment is placed at each corner.

Step l above involves the evaluation of integrals of the form

lij - m f xlyJdA , (20)

where it is assumed that the mass density is constant over the surface of the triangle.

illo oI.I02 "Ill I (21)

L-llo -Ill 120J

For example,

The other partitions, [Mar] and [Mrr], are less simple due to the shear strain coefficients

in Equation 19.

The above results for the basic bending triangle can be used directly with the composite

quadrilateral plate element. The Clough triangle, on the other hand, requires the imposition of

constraints. The most straightforward procedure is first to calculate the mass matrices of the

three component triangles separately, and then to eliminate the displacement at the center point

by means of the constraint relationship, Equation 5 of Section 5.8.3.3,

{uc} - [Gc]{U e} (22)

The resulting mass matrix referred to exterior vertices is, by analogy with Equation 8 of

Section 5.8.3.3,

[Mee] - [M-ee+ MecG c + GcTMec T ÷ GcTMccG c] (23)

5.8-32a (12/2g/78)
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5.8.5 The Isoparametrlc Quadrilateral Membrane Element, qDMEMI

5.8.5.1 Introduction

This element, shown in Figure 1, was first formulated by I. C. Taig and is described in

References I, 2 and 3. The present development is based on the derivation in Reference 3 and

the important characteristics of the element are that:

I. the stresses and strains vary within the element in an essentially linear manner,

2. the element may have a warped shape, i.e., the four vertices need not be coplanar,

3. Gaussian Quadrature with a 4x4 grld is used to evaluate the stiffness matrix,

4. the temperature is assumed constant over the element,

5. differential stiffness and plecewlse Tinear analysis capability are not implemented at

present.

The element is compared for accuracy with the other NASTRAN quadrilateral membrane elements,

QDMEM and QDMEM2, in Section 15.3. The calculatlon of its mass properties is discussed in

Section 5.8.4.

5.8.5.2 Geometry and Dlsplacement Field

As indicated in Figure I, two coordinate systems are used to define the shape and kinematic

behavior of the element. The first is a set of element parametric coordinates (_,n) which vary

linearly between zero and one with the extreme values occurring on the sides of the quadrilateral.

Lines of constant _ and lines of constant n are straight as indicated on the figure. Second, a

set of element rectangular coordinates (x,y,z) is defined as follows: the x-axis is along the

line connecting the first two grid points ; the y-axis is perpendicular to the x-axis and lies in

the "plane" of the element (tf the element is nonplanar, the "plane" of the element is defined by

a mean plane as described later in this section); ftnally, the z-axis is norma] to the plane of

the element and forms a right-handed coordinate system with the x- and y-axes.

-:-z

5.8-33 (12/29/78)
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The two coordinate systems are related as follows:

x - (l-{)(l-n)x1

y = (l-{)(1-n)Yl

+ {(l-n} x2 + {nx 3 + (l-()n x4

+ {(l-n) Y2 + {nY3 + (l-{}n Y4

, (I}

where the subscripts refer to grid point numbers. The displacement components along the x- and

y-directions are denoted by u and v, respectively, and are assumed to vary with _ and n in the

following manner:

u((,n) - (l-{)(l-n)u I + _(l-n)u 2 + {nu 3 + (l-{}n u4

(2)

v({,n} - (l-{)(l-n)v I + _{l-n)v 2 + {nv 3 + (l-{)n v 4
.... -:.. -

Properties of the assumed displacement field are that on lines of constant {, u and v vary linearly

with n, and on lines of constant n, u and v vary linearly with {. In particular u and v vary

linearly on the edges between grid points and as a result, displacements of adjacent elements are

matched all along the(r common edgeS. Thus, the element fs a "conforming" element as deflned in

- F

Reference 2_ _it i_Snoted from a comparison of Equations i and 2 that the equations which relate

the displacements at any point in the element to its grid point values are

identical in form to the corresponding equations for the x and y coordinates. Thus, the term

"isoparametric" is used to characterize the element.

As mentloned previously, the four grid points which define the quadrilateral need not be

copianar. If they are not, a mean plane is defined as shown in Figure 2. The mean plane is

located such that It is alternately H units above or below each grid point. The grid points are

then projected normally onto this plane resulting In a modified but planar quadrilateral (as

denoted by the primed grid point numbers). The element matrices are derived for the modified

quadrilateral. These matrices are then transformed so that they are expressed in terms of

displacements at the original (non-coplanar} grid points. As a result of the latter transforma-

tion, the matrices have stiffness contributions at each grid point against translations in three

directions instead of two.

5.8.5.3 Strain and Stress Flelds, Potential Energy

M_brane strains are related to the displacement components by the familiar relations

s.8-34 (lZ/lS/72) J
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eX = U,X ey • V,y exy • Umy + V,X
(3)

where a comma indicates partial differentiation. Use of Equation 2 permits the strains in

Equation 3 to be expressed in terms of { and n. Thus,

e x = U,_ _JX + U'rl rlmX

ey = v,{ {,y ÷ V,n n,y

exy = u,_ {,y ÷ u,n n,y + V,{ {'X + V'rl _'x

• (4)

where

(;'x " _1"Y°n

l

n, x • . j Y'(

1

{,y - - T x,n

n,y • _-x,(

, (5)

and

j s

X,{ x,n

Y,_ Y,n

, (5)

is the Jacoblan of the trans$ormation between the two element coordinate systems. For a rectangular

shaped element, the x and _ directions are identical, as are the y and n directions. For this

case eX is linear with respect to y and constant with respect to x, and ey is linear with respect

to x and constant with respect to y. The shear strain exy varies linearly with respect to both

x and y. For nonrectangular-shaped elements the strain behavior is not linear wlth position."

The strain-displacement relations may be written In a convenient matrix form by combining

Equations 1 to 5 as follows:

l e X
ey

exy

• [,] {°,}

where

{ue}T = {Ul Vl u2 v2 u3 v3 u4 v4} T

5.8-35 (12/IS/7Z)
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The non-zero elements of the 3x8 matrix [A] are as follows:

All " ('Y4 + Y3 n " Y34_)/J

A13 " (Y4 " Y4n + Y34 _)/J

AI5 - Y4n/J

AI7 " "Y3n/J

A22 - (-x24 + x23n ÷ x34_)/J

A24 - (x14 - Xl4n - x34()/J

A26 - (xl4n - Xl2()/J

A28 - (-x12 - x23n + Xl2()/J

A31 - A22

A32 - All

A33 - A24

A34 " Al3

A35 - A26

A36 " AI5

A37 - A28

A38 - AI7

where J - -Y4Xi2 - Y34X12 { - (Y4X23 - Y3Xl4)n , (8)

and the components of side lengths are"expressed as follows in terms of grid point coordinates:

xij = xi - xj _ YiJ " Yi " YJ • (9)

The constitutive stress-straln relationships are written as

V

"4
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#y = [Gel ey - [Gel _y

axy (exy) _°txy_

, (IO)

where ox and oy are stresses in the x and y directions, respectively, axy is the shear stressr

and [Gel is a symmetric 3x3 matrix with properties referred to the element

coordinate system {see p. 5.8-4). The quantities =x' ay, and O_xyare thermal expansion coeffi-

cients and T is the temperature of the element above the stress-free temperature To. If the

element temperature is not specified directly, it is computed in terms of grid point temperatures

as

• _ (T1 + T2 + T3 + T4) - TO (II)

The potential energy for an element of thickness h including the temperature effect may be

written as

, ,G (Ox)
o o

Substituting Equation I0 Into Equation 12 and making use of Equation 7 gives

(12)

l l l l

i <o,,,f/<,,,<o.,<,,<..>.,<o.,,/J
0 0 0

t'f[A]T[Gel ay "_Jd(dn•

_y

(13)

The first integral represents the usual elastic strain energy of the element, and the second

integral represents the thermal strain energy. An Irrelevant additive constant in the above

equation involving the square of known element temperature has been omitted.

5.8.5.4 Stiffness Matrix and Thermal Load Vector for the Element

The form of the potential energy written in terms of the displacement vector, (Ue} , the

stiffness matrix, [Keel, and the thermal load vector, {re}, is as follows:

V • _ (ue}T[Kee]{Ue } - {ue}T{Pe } . (14)

S.8-37 (12/15/7Z)
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Comparing Equations 13 and 14 yields the following formula for the required matrix and vector_

11

hOfo_IA]T[G ][A]Jd_dn (15)
[Keel" e

{Pe} - h A]T[Ge ] =y TJd_an (16)

_xy

The reader will recall that the elements of matrix [A] as well as the quantity J are functions of

{ and n. As a result, the integration indicated in Equation 15 is best performed numerically, and

it will be carried out by use of Gaussian quadrature using a 4x4 grid (see Reference 3 for a

discussion of the method of Gaussian quadrature). It is noted that the grid size is flner than

the minimum size (2x2) required to guarantee convergence. However, preliminary studies indicated

that the refined grid resulted in improved accuracy over the 2x2 grid for nonrectangular elements.

The integration in Equation 16 can easily be carried out in closed form since, if the temperature,

T, is taken to be constant over the element, the fntegrand is linear in ¢ and n.

The stiffness matrix and thermal load vector given in Equations 15 and l6 have been derived

for an element which is assumed to be planar. If the grid polnts are not coplanar, then the

derived element is the 'projection of the actual element onto the mean plane. In the latter case

a transformation of the stiffness matrix and the thermal load vector is required, which relates

displacements and forces at the projected grid points in the mean plane to displacements and

forces at the actual grid points. It is highly desirable that the transformation produce only

forces and not moments at the grid points because it Is quite probable that there may be no other

elements present (such as beams and bending plates) which can resist moments. Thus, the trans-

formation can be expressed in the form

where:

{fa}T

{fa}- [B]{fe} , (17)

" Lfxl ' fyl' fzl' ix2' fy2' fz2' ix3' fy3' fz3' ix4' fy4' fZ4J

is the vector of grid point forces, and

(re Vxl' fyl" ix2' ix3.fy3,ix4.fy,]

5.8-38 (12/15/72)
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is the vector of forces on the projected plane element.

The magnitudes of the lnplane forces (ix1' fl' etc.) are the same in both vectors. A

method for selecting the out-of-plane forces (fzl' fz2' fz3" fz4 ) which satisfies the three

required out-of-plane conditions of equilibrium and which exhibits symmetry with respect to per-

mutation of grid point numbers is as follows: Let the forces on the corners of the plane quadri-

lateral be resolved into components colinear with the sides as shown in Figure 3a. In the edge-

wise view of side (a) shown in Figure 3b, the vertical force couple, fza' is applied to grid

points I and 2 so that equilibrium will be preserved when the forces Fl2 and f21 are transferred

from the mean plane to the grid points. Thus,

H__
fza = _a (f12 + f21 ) ' (18)

and in like manner, for the other three sides,

H

fzb • "_b (f23 + f32)

H (f34 + f43 )fZC _ _C

H

fzd " " _d (f4l+ fl4)

(Ig)

The combined vertical force components at the grid points are

fzl = fza " fzd

fz2 " fzb " fza (20)

fz3 " fzc " fzb

fz4 " fzd " fzc

Generation of the elements in the rows of the [B] matrix corresponding to the vertical forces

is accomplished by expressing the colinear force components, fl2' f2l' etc., in terms of the

Cartesian components, fxl' fyl' etc., and substituting the result into Equation 20. The nonzero

elements of [B] are as follows:

Bll - 1

B22 - l

_7 5.8-39 (12/15/72)
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B31 - -H/_a

H col;B1
H ÷

B33 " HI_-a

H cot 02

B34 "

B37 " _d &2

H cos Y

B38 •

B4.3 - I

-I
B54

B61 " oB31

H cot, O1

B62 " -

B63 = B31

H cote?. + H

B65 = " _'bA1

B66 " " _b _I

H

B94 • .

B95 \_'b _1 9"CAI_)

• .(_o___Y+¢o,e2\

H stn Bl

B97 " .
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810,7 - 1

B] 1,8 • I

H

812'2 • ¢d sin B1

H sin 02

812'5 • " _c Al

H cos e2

812'6 " - £c A1

=H(_ slneI \

• H[_ cos el)812,8 _Zd A2 Zc 42

C,.:.;._:7.::: ......: --

where

AI - sln(e 2 - y)

A2 = sln(e I + y)

The transformation of displacements from the mean plane to the actual grid points uses the same

[B] matrix and is written

{ue} = [B]T{ua} , (21)

{Ua}T

where

•L"I'Vl'Wl'"2'"2'w2'"3''3'w3'u4'v4,-4J

and w is the displacement component normal to the mean plane. In addition to the above trans-

formation, two standard NASTRAN transformationsare required. These are the element-to-basic

system transformation utilizing matrix [E] and the basic-to-global system transformation utilizing

the matrix IT]. Combining a11 three transformations results in the required g]obal forms of the

stiffness matrix __rKgg]and thermal vector {Pg},

5.8-41 (12/15/72)

j,=/



STRUCTURAL ELEMENTS FOR THE DISPLACEMENTMETHOD

[Kgg] = [T]T[E][B][Kee][B]T[E]T[T] ,

{Pg} - [T]T[E][B]{Pe}

(22)

(23}

The 12x12 stiffness matrix [Kgg] is singular with defect equal to seven. The seven defects

correspond to the slx rigid body motions and an unrestrainedout-of-planewarping. Out-of-plane

warping would also be unrestrained if the nonplanar quadrilateralwere represented by a pair of

triangles but not if it were represented by two pairs of overlapping triangles, as in the case of

the QDMEM element.

5.8.5.5 Stress Recovery

The stresses at any point ({,n) in the element in terms of the displacements in the elemen_

coordinate system are obtained by combining Equations 7 and lO

ay " [Ge][A]{Ue} " [Gel _2 _ ' (24)

xy t=12)

where it wlll be recalled that [A] is a function of ( and n. The stresses are evaluated at the

intersectionof the diagonals of the mean plane, in order to be compatible with stress calculation

in the NASTRAN plate bending elements. For a parallelogram, the diagonals intersect at _ - n - I/2

but for more general shapes the values of { and n at the intersectionpoint depend on the element

dimensions. The required form of the stress recove_ equation in terms of the global displace-

ments Is obtained by utilizing the three transformatlonsdescribed previously along with Equation

24. Thus_

- [Ge][A][B]T[E]T[T]{Ug}- [Gel ay

t_xy)

(25)

xy

v
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Figure I. Coordinate systems for quadrilateral membrane element.
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Figure 2. Mean plane for quadrilateralmembrane element.
(Actualgrid po(nts are indicated by unprlmed numbers and projection
of grid points onto mean plane are indicated by primed numbers.)
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5.8.6 The Linear strain Triangular Membrane Elemen% TRIM6

5.8.6.1 Introduction

This element was first formulated by J. H. Argyris and is described in References l and Z.

The present development is based on the derivation in Reference Z. The important characteristics

of the element are:

I. The stresses and strains vary linearly within the element.

2. Bilinear variation in the planar coordinates for the thickness of the element is permitted.

3. Bilinear variation in the planar coordinates for the temperature in the element is pro-

vided.

Differential stiffness and piecewise linear analysis capability are not implemented at pre-

sent.

The element is compared with theoretical results for accuracy in Section 15.4. The calculation

of its mass properties is discussed in section 5.8.4.

5.8.6.2 Geometry and Displacement Field

The geometry of the element is shown in Figure I.

the vertices and three at the mid-points of the sides.

The element has six grid points, three at

The displacement components u and v are

parallel to the x and y axes of the local (element) coordinate system. The inplane displacements

at the grid points of the element are represented by the vector {ue} where

{Ue}T - tUl v] u2 v2 u3 v3 u4 v4 u5 v5 u6 v6j (1)

Let [Keel be the stiffness matrix referred to the vector (Ue}, i.e.,

[Kee] {Ue} = {re} , (2)

where the elements of {re } are the inplane forces at the grid points of the element. The stiffness

matrix [Keel is derived by standard finite element procedures.

The u and v displacements are assumed to vary quadratically with position on the surface of

the element,

u - aI + a2x ÷ a3Y + a4x2 + a5xY + a6y2 (3)

5.8-43 (12/31/77)
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v - b7 + bsX + bgy + bloX2 + bllXY + bl2y2 (4)

• . a6, b7, b8 .... bl2 may be regarded as generalized coordinates to

which the displacements at the grid points of the element are uniquely related, i.e., the vector

of generalized coordinates is expressed as

In concise form Equations 3 and 4 are written as

6 m.n

u - _ aix ly i (6)

i=l

12 bixPiyViv- _E_ (7)

I-7

For convenience in later calculations, the range of summation is kept as l to 12 for expressions

for both u and v, i.e.,

so that

12 m i nI
u=_alx Y

i-l

12 bixPlyVi

i-1

(8)

(9)

al , mI s ni , O, I - 7 to 12 (lO)

bi " Pl " Vl " O, I - l to 6 (ll)

In matrix notation, the vector {ue} is written as

{ue} - [H] {a} , {12)

5.8-44 (12/31/77)
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where the 12 x 12 [H] matrix can be obtained by subs:1_uting the coordinates of the six grid points

into Equations 3 and 4. Since complete polynomial expressions are chosen for the u and v displace-

ments, the inverse of H matrix exists. Hence {a} can be expressed as

{a} - [H]-I (ue} (13)

Bilinear variation in the x and y coordinates is assumed for the thickness t of the element,

i.e., the thickness t of the element at any point (x,y) within the element is given by

In concise form, this is written as

t(x,y) - c I + c2x + c3Y (14)

3 ckxYkySkt - _ (15)

k=l

The thickness of the element at the three vertices is specified as tl, t3, t5. Hence the coeffi-

cients cl, c2, c3 can be expressed as

tla + t3b

Cl " (a + b) (16)

t3 - tl

c2 " T_ (17)

I (ts cl ) (18)C3 " E " '

where a, b and c are the projected lengths of the triangle on the local x and y axes and are ob-

tained from the basic coordinates of the vertices of the triangle as given in Section 4.87.21.2 of

the Programmer's Manual.

5.8.6.3 Strain and Stress Fields

The membrane strains are

_u (mt'l)yni
cx =_'_" a2 + 2a4x + aSY =_E_aimlx (Ig)

5.8-45 (12/31/77)
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(20)

Bv I mi (ni"I) (Pi'l)yvi)Y= _+ _" _E_ ainiX Y + biPiX
(21)

The stress vector {_} is related to the strain vector by the two-dimensional elastic modulus matrix,

[Ge]

{_} = [Ge] {c} (22)

The specification of [Ge] for isotropic and anisotropic materials is the same as that given by

Equations 13, 14, and 15 on page 5.8.4.

The membrane strain energy of the element is

Es = ½//{o}T {c} tdxdy

By virtue of Equation 22 and the symmetry of matrix [Ge]

Es . [%] tdxdy

(23)

(24)

Substitution of Equation 15 into Equation 24 results in

dxdy (25)

Expressing the elements of the symmetric portion of the matrix [Ge] by GII, GI2, GI3, G22, G23,

G33, i.e.,

GII GI2 GI31
[Ge] = G22 G231

Lsym %3]

(26)

and performing the matrix multiplication of Equation 25, the expression for strain energy becomes

5.8-46 (12/31/77)
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Es " _JJ (ex ll Cy2G22 + y2G33 + 612 (Cxey CyCx)
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+ Gl3 (ExY+ YCx)+ G23 ((YY+ YCY)I _(ckxYkysk) dxdy

To proceed further it is necessary to have a formula for the integral of the type

fxmy n dxdy

taken over the area of the element. The value of the integral is found in Reference 3:

" ('b)m+l (m + n + 21!

Using Equations Ig, 20, 21, and 28 in Equation 27, a typical term of Equation 27 becomes

½ff, x ,ll (x:ckx%',).xd,
l

• _ _E_)-_ aiajckmimjGliF(mi + mj + YR -2, ni + nj + sk)
i J k

Similarly, the other terms of Equation 27 can be expressed in terms of the area integral F.

5.8.6.4 Stiffness Matrix for the Element

The strain energy, Es, can also be expressed as

Es - ½ {a}T [kgenl {a} ,

where [kgen] is the stiffness matrix with respect to generalized coordinates {a}.

that the elements of the matrix [kgen] are given by

klj * _ Ck GllmimjF(ml + mj ÷ Yk " 2, nI + nj + sk)
k-l

+ G22vlvjF(Pi_ + Pj + Yk' vl + vj + sk - i)

+ G33 ((ninjF(mi + mj + Yk' nl + nj + sk - 2)

(Z7)

(zs)

(zg)

(3o)

It can be shown
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+ PiPjF(Pi + PJ + Yk " 2, vi + vj + Sk)

+ niPjF(mi + Pj + Yk " l, ni + vj + sk - l)

+ PinjF(mJ + Pi + Yk " l, nj + vi + sk - l)l

1

!

Im.viF(m. + + - l, nj + vi + sk I)
+ Gl2 _ j j Pi Yk

+ mivjF(ml + PJ + Yk " l, ni + vj + sk - l)j

+ Gl3 l(mjni + minj)F(m i + mj + _k " I, ni + nj + sk - I)

t

+ mjPIF(mj + Pi + Yk " 2, nj + vi + sk)

miPjF(mi + Pj + Yk - 2, ni + vj + Sk) I
+

+ G23 l(PiVj + pjvi)F(Pi + Pj + Yk " l, Vi + vj ÷ sk - l)

(

+ nivjF(mi + Pj + Yk' ni ÷ vj + sk -2)

÷ (31)

I
,11

Using Equation 13, the generalized stiffness matrix [kgen] can be transformed to the element

stiffness matrix [keel as
i

[keel = [H'I]T [kgen] [H"I] .... (32) ....

As a final step, the stiffness matrix is transformed from local element coordinate system to

the basic coordinate system of the grid points and to the global coordinate system. Let the trans-

formation for displacements be

{Ubasi c} = [ElT (Uelemen t} (33)

V

and {Ugloba l} = IT] (Ubasi c}

Then, [kbasl c] = [El [keel [ElT (35)

and [kgg] - IT]T [kbasic] IT]

Substituting Equation 35 in Equation 36, the global stiffness matrix becomes

[kgg] - IT]T [El [kee] [ElT IT]

5.8-48 (12/31/77)
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5.8.6.5 Thermal Load Vector for the Element

PLATES

OF POOR GUALiTY

Thermal expansion of an element produces equivalent loads at the grid points. Thermal expansion

is represented by a vector of thermal strains:

{¢t } •

Cxt

%t

Yt

%2

%3

(_- TO ) = £%} (_" To ) • (3B)

where {_e } • [U]-I {_m } is a vector of thermal expansion coefficients, [U] is the strain transfor-

mation matrix given in Equation 15 on page 5.8.4 and {_m } is the vector of thermal expansion co-

efficients in the material axis system; TO is the reference or stress-free temperature of the

material, and T is the temperature at any point (x,y) in the element and is given by a linear

polynomial

m

T - dI + d2x ÷ d3Y (39)

In concise form, this is written as

3 tz u¢
T- Z:d x y (40)

The temperatures 7 l, T'3' and T--5 at the three vertices of the element will be modified by the

reference temperature TO and used to evaluate the three constants dl, d2, and d3 as

@ !

Tie + T3b
dI - (4])

(a + b)

I !

T3 " TI (42)
dz " (a + b)

T Id3 " _ [ 5 " dl] ' (43)

where

T1 " (T'I " To); T3 • (73 " To); and T5 - (T 5 - To) (44)
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An equivalent elastic state of stress that will produce the same thermal strains is

(_t } = [Gel {¢t} = [Gel {_e } (_- TO ) (45)

An equivalent set of generalized loads {Pgen } applied to grid points of the element is obtained

from the relation

{a}T {Pgen } =_A {¢}T {ot} tdA

=ff{c}T [Gel {ae} /_ dCxt_yU_ 1 (46)

I

Performing the matrix multiplications in Equation 46 and using the following notations, viz.,

Equation 46 reduces to

!

G11

!

G22

!

G33

= Gll_el + 612_e2 + G13_e3

OF POOR QUALi,"_.

(47)

= G12ael + G22_e2 + G23_e3 (48)

= G13_el + G23=e2 + G33_e3 , (49)

(50)

{a}T (Pgen } = CxG 1 + ¢yG22 + YG33)

5.8-50 (12/31/77)
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Performing the integration term by term, the first term in Equation 50 becomes

i //x(ml + Yk + tE - I) (ni + sk + u£)= _E_ G lalmlCkd_ y
i k

dxdy

I

• _]_Z_ GllalmiCkd;_F(mi + Yk + t_ - l, ni + sk + u_)
i k ._,

(51a)

Similarly, the second and third terms of Equation 50 reduce to

!

E G22bt tckd F(Pi÷,k+ vI +sk+ 1> (Slb)

and
!

_E__E__ G33Ckd£{alnlF(mi + Yk * t_, ni + Sk + u_,- l)
I k IL

=

+ biPlF(Pl + Yk + t_ - I, vi + sk + u_)}

respectively. From Equation SO and the results given by Sla, Bib, and Slc, the Ith element of

the generalized load vector {Pgen} is

(51c)

I !(Pgen)i = _E_ Ckdg, GllmlF(ml + Yk + tE - I, nI + sk + ug)
k

I

+ G22VlF(Pi + Yk + t_, vI + sk + u_- l)

l

+ G33(niF(mi + Yk + tL' nl + Sk + u¢ - l)

+ PiF(Pl + Yk + t2," l, vI + sk + up)}]

r

The generalized equivalent load vector {Pgen} Is transformed to the load vector {Pe} in global

coordlnates by the followlng transformatlons:

(Pe} - [H-l]T{Pgen}

(52)

(S3)
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= [T]T[E]{Pe } (54)(Pe}

5.8.6.6 Stress Recovery

After the grid point displacements have been evaluated, stresses in the element are computed

by combining the relationships

= [E][T]T{ug} (55){ue}

[H'l]{u e} , (56)(a} s

and {¢} which is evaluated from Equations Ig, 20, and 21. Stress vector {0} is then equal to

{_} = [Gel ({¢} - {¢t }) (57)

The stresses are computed at the three vertices and at the centrold. The principal stresses

and the maximum shear force are computed from the elements of (_}. The direction of the maximum

principal stress is referenced to the side joining grid points l and 3 of the triangle.

5.8-5Z (12/31/77)
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(O,c)

(a,O)
X

Figure I. TRIM6 triangularmembrane element in element coordinate system.
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5.8.7 Hlgher Order Trlangula F Plate Bending Element, TRPLTI

5.8.7.1 Introduction

This element was developed by Narayanaswaml, References l and 2. It is a modification of the

high precision bending element of Cowper, et al., Reference 3. The element has grid points at the

vertices and at the mld-polnts of the sides of the triangle. At each grid point, there are three

degrees of Freedom, vlz., the transverse displacement, w, normal to the x-y plane, with positive

direction outward from the paper, and the rotations, _ and B, about the x and y axes, respectively.

with positive directions following from the right hand rule shown in Figure I. The element thus

has 18 degrees of freedom. The transverse displacement, w, at any point within and on the boun-

daries of the element Is assumed to vary as a quintlc polynomial. Since the variation of deflection

along any edge is a quintlc polynomial in the edgewise coordinate, the six coefficlents of this

polynomial are uniquely determined by deflection and edgewise slope at the three grid points of

the edge. Displacements are thus continuous between two elements that have a common edge. The

rotation about each edge is constrained to vary cubically; however, since the rotations are de-

fined only at three points along an edge, there is no rotation continuity between two elements

that have a common edge. The element thus belongs to the class of nonconforming elements. The

requirement that the edge rotation varies cubically along each edge establishes three constraint

equations among the coefficients of the qulntic polynomial for w. These equations together with

the IB relations between the grid point degrees of freedom and the polynomial coe??iclents serve

to evaluate uniquely the coefficients aI through a21 of the qulntlc polynomial assumed ?or the trans-

verse displacement.

5.8.7.2 Element Geometry

Rectangular cartesian coordinates are used In the formulation. An arbitrary triangular

element is shown in Figure I. X, Y, and Z are the baslc coordinates; x, y, and z are the local

coordinates. The grld points of the element are numbered in counter-clockwise direction as shown

in the flgu_.

The followlng relationships between the X and x axes, and the coordlnates of the vertices of

the element, can be easily derived from Figure I.

_v
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STRUCTURAL ELEMENTS FOR THE DISPLACEMENT METHOD

OR!GI_AL PA3E ;_

OF POOR QUALITY

X3 " X1 Y3 " Y1
cos e - _ , sin e = _ (1)

Y Y

a • (X3 - X5) cos e - (Y5 " Y3 ) sin e

. (X3 " X5)(X3 " Xl) + (Y3 - Ys)(Y3 " Yl ) (2)
Y

b - (X5 " XI)(X3 " Xl) ÷ (Y5 " YI)(Y3 " Yl ) (3)
Y

c = (X3 " XI)(Y5 " YI) " (Y3 " YI)(X5 - Xl) (4)
Y

where

Y = [(X3 - Xl )2 + (Y3 " Yl )2] I/2 (5)

5.8.7.3 Displacement Field

The deflection w(x,y) within the triangular element is assumed to vary as a qulntlc polynomial

in the local coordinates, that is,

w(x,y) = aI + a2x + a3y ÷ a4x2 + a5xY + a6YZ + a7x3

+ asx2y ÷ agxy 2 ÷ al0 y3 + allX4 ÷ alzx3y

+ al3x2y2 + al4xY 3 + al5 y4 + al6X5 + alTX4y

+ al8x3y2 + al9x2y3 + azoxy4 + a21 y5 (6)

In concise form, this is written as

21 mI nI

w - I-_ alx y (6a)

There are 2l independent coefficients, aI through a21. These are evaluated by the followlng procedure.

S.8-56 (12/31/77)
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The element has 18 degrees of freedom; namely, lateral displacement w in the z-direction,

rotation = about the x-axis, and rotation B about the y-axis at each of the six grid points.

The rotations = and B are obtained from the definitions of transverse shear strains Yxz and Yyz'

that is

3w @__w.
Yxz = _+ B and Yyz " _y (7)

It is shown later on that Yxz and Yyz' and hence _ and B, at any grid point can be expressed

in terms of the coefficients aI through a21. Thus, 18 equations relating w, _ and B at the grid points

to the 21 coefficients are obtained. Three additional relations are required so that the 21 co-

efficients can be unlquely determined. These relations are obtained by imposing the condition

that the edge rotation varies cubically along each edge. It is clear that these three constraint

equations involve only the coefficients of the fifth degree terms in Equation 6, since the lower

degree terms satisfy the condition of cubic edge rotation automatically. Moreover, the condition

depends only on the orientation of an edge. Along the edge defined by grid points l and 3 (where

y = 0), the condition of the cubic edge rotation requires that

al7 • 0 (8)

Along the edge defined by grid points I and 5 (inclined at angle _ to the x-axis), the edge rotation

+ 2algxy3

+ 4a20xy3

re is given by

= B sin _ + _ cos _ - -(Sa16x4 + 4al7x3y + 3al8x2y2

+ a20 y4) sin _ + (al7x4 + 2alsx3y + 3algx2y 2

+ 5a21y4) cos _ + . . .

Also, along this edge,

y = s sin _ ,

r e

(g)

(IO)

(11)

where the dots indicate terms of third or lower degree.

x - s cos 6 and

where s is the distance along the edge and

COS _ • blab _ + C2 and sin 6 - c/_b 2 + c 2
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By substituting x and y from Equation lO and cos _ and sin 6 from Equations II into Equation g and

rearranging (so that the leading terms are positive), the condition for cubic variation of rotation

about edge I-5 is

5b4Cal6 + (4b3c2 . bS)al7 + (3b2c 3 - 2b4c)a18

(2bc4
- 3b3c2)a19 + (cS - 462c3)a20 - 5bc4a2l = 0 (12)

÷

Similarly, the condition for cubic variation of the rotation about the edge defined by grid points

3 and S (Figure l) can be written as

Sa4calG + (-4a3c 2 + aS)al7 ÷ (3a2c 3 . 2a4c)al8

(-2ac4 3a3c2)alg + (cS - 4a2c3)a20 + 5ac4a21 - 0 (13)+ +

The 18 relations between grid point displacements and the coefficients of the polynomial in Equation

6 are written as

V

{6} = [Q] {a} , (14)

where {6} is the vector of grid points displacements, [Q] is the (18 x 21) matrix involving the

coordinates of grid points substituted into the functions w, Equation 6, and the appropriate ex-

pressions of = and B derived in detail later, and {a} is the column vector of coefficients aI

through a21. The [Q] matrix is now augmented by the three constraint Equations 8, 12, and 13 to

form a new (21 x 21) matrix [R] in the fo11owing equation:

where

{_a} = [R] (a} , (15)

{6a} -

0

0

0

(15a)

For use in the evaluation of the stiffness matrix, {a} needs to be expressed in terms of {6a} and,

hence, it has to be established that the inverse of matrix [R] exists. The non-slngularity of such

a matrix [R] for the T-15 and T-21 elements of Bell (Reference 4) follows from the completeness of the

polynomials for w. For the high precision element, Cowper et al. (Reference 3) give an explicit

5.8-58 (I2/31/77)
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expression for the deterwlnant of such a matrtx and show that the matrix is non-singular in all

practica] situations. For this e]ement, a numerical experiment described in Reference 1 verifies

that R ts non-stngu]ar for all practical cases. Hence Equation 15 is inverted to give

{a} • [R] -I (6 a}

This equation can also be written as

(16)

(a} = IS] {6} , (17)

where IS] is a (2lx 18) matrix and consists of the first 18 coluams of [R] -1.

From the computational standpoint, it is advantageous to substitute Equation 8 lnto Equation

6 and replace coefficients a]8 through a2l by coefficients al7 throuqh a20, respectively. The

matrtx [q] then is of size (18 x 20); [R] becomes (20 x 20), and [S] becomes (ZO x 18). To add to

the clarity of presentation, however, the complete quintic polynomial for w in Equation 6 ts re-

tained throughout this section and matrices [q], [R], and IS] and vector {a} will have sizes

(18 x Z]), (Z] x Zl), (21 x 18), and (Z1 x ]), respectively.

5.8,7.4 Elastic Relationships

The elastic relationships are obtained from the theory of deformation for plates (Reference 5).

The curvatures are deftned by ......

,xx_
I I

I
Xxy,

i

.ae
_x

_y

Bending and t_isting moments are related to curvatures by

M X

M
Y

Mxy

Col

xx r

(

where [O] Is, in general, a full symmetric etrtx of elastic coefficients.

plate of unlfom thickness t,

5.8-59 (12/3]/77)
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[D] =
Et3

12(l - 2)
I 1 u 0 ]

,J 1 0 .

0 0 I -,_
2

ORIGI_,IAL p._r_ i!_

OF POOR QUALITY

(zo)

V

The thickness t of the element is assumed to vary bilinearly with position over the surface,

t = cI + c2x + c3Y (21)

In concise form• it is written as

3

t = _ ckxYkysk
k=l

(21a)

The thickness of the three vertices of the element tI, t3• and t5 will be used to evaluate the con-

stants cl, c2, and c3. It can be shown that

tla + t3b i22)
Cl " (a + b)

t 3 - t1
c2 -_ (z3)

V

and cj - _ (t5 - cl) (24)

For an isotroplc plate• [D] becomes

![O] = T_ [Gel j:_ _ ClCjCkX

where

[Gel -

D

Ev E

0 0

0
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For anlsotropic materials with the material orientation axis inclined at @ to the x-axis, the material

elastic modulus matrix [Dm] Is transformed to the element elastic modulus matrix by

[O] = [U]T [Om] [U] , (27)

where

F cos2 ¢ sin2 ¢ cos ¢ sin _ ]

[U] = / sin2 ¢ c°s2 _ -cos $ sin @ J (28)
L-Zcos ¢ sin @ 2cos _ sin ¢ cos 2 _ - sin 2

The positive sense of bending and twisting moments and transverse shear resultants is shown in

Figure 2.

The moment equilibrium equations are written as

BMx _ 0 (2g)
Vx +-_+ By =

and Vy+_y+ _M_-_Y-x- 0 . (30)

Transverse shear strains are related to the shear resultants by

(y} - Yxz

Yyz
(31)

The matrix [J] is, in general, a full (2 x 2) symmetric matrix of elements Jll' J12 (J21 " J12) and

J22" For a plate with isotropic transverse shear material,

[o[j].
0 l

, (32)

where G is the shear modulus and t* is an "effective" thickness for transverse shear.

simple case of a plate of uniform thickness t, t* has the value t.

For the

5.8-61 (12/31/77)
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From Equations 29, 30, and 31, if follows that

and

Yxz =-J11 L-_ + ay _ -J12 Lay + ax j

_.s.<lY.yz: "J12 L-_" + lty - "122 L _ty+ _x J

(33)

Pdrtial differentiationwith respect to x and y of Equation 19 (with subscripts on O denoting

the elements of [D]) gives

and

@x 011-_" + O1 += "l 3 _x

aN._y =,,u12-_ + D22 + 02

3x = "13 ;)x

_y = u13-_" + D23_--_y+ u33 3y

• (34)

where the symmetry of the [O] matrix has been used.

33,

By substituting Equations 34 into Equations

"¢xz = - '311 011"-3_ + 012 3x + u13 _x

+ D aXx 023 + D3313 3y +

aXx + O22-_y + " _Xxy- J12 D12-_ u23 ay

-
+ D13"-_ + 023 3x + u33 ax J

(3S)

V
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YyZ
ro

= " J12 L11 _x + OlZ_x + D13 ax

. + --+ u13-'_ ,'.I ay + u33-'_

r_ _Xx +O22_-_y+ - _Xxy
" J22 LU12"_ ' u23 ay

. _Xx _x . _x,_]+ u13-'_'-_" ÷ 023 ÷ u33-" _

Rearranging and writing Equations 29 and 30 in matrix notation yields

{Yxz I r A11A12A13A14A15A16]

XX ,X

X,,x

iXxy,x

XX ,y

xy,y

Xxy_y

where a comma in the subscript denotes partial differentiation and where

and

All = -(Jl1011 + J12013)

A12 - -(J11D12 + J12D23 )

A13 = -(J11D13 + J12D33 )

A14 = -(O11013 + J12D12 )

AI5 = -(JIID23 + Ji2D22)

A16 = -(J11D33 + J12023)

AZ1 - -(J12D11 + Jz2013 )

A22 = -(JIzDIZ + JzzD23)

A23 - -(J1zD13 + J22933 )

_z4 = "(J1z°13 + Jzzo12)

A25 " -(JIzD23 + J22022)

A26 • -(J12D33 + a22023 )

(36)

(37)

(38a)

(38b)

(38,:)

(:_)

(38e)

(38f)

(3_j)

(38h)

(381)

(:_sj)

(38k)

(38])
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From Equations 7 and 18, it follows that

and

= . _= _2w _Yxz

Xx )x Bx_" Ix

_= @2w @Yyz

×Y' Y7" By

• _ _13= 2 _2w
Xxy b-;" By

OR:GINAL P,'_" _
OF PCOR _bAL_';'V

(39)

Shear forces (and hence shear strains) are proportional to the third derivatives of the displacements.

Since the displacement within the element is assumed to vary as a quintic polynomial, shear strains

are expressed by a quadratic polynomial as follows:

Yxz = bl + b2x + b3Y + b4x2 + bsxY + b6y2 (40)

and Yyz = Cl + c2x + c3Y ÷ c4 x2 + c5xY + c6y2 (41)

The task now is to express the unknown coefficients bI through b6 and cI through c6 in terms of the

generalized coordinates aI through a21. Differentiating XX, Xy, and Xxy and substituting w, Yxz'

and Yyz from Eauations 6, 40, and 41 into Eauatlons 39,

_3w _2yxz

Xx'x " Bx-_'" 7 = 6a7 + 24alIX + 6al2Y + 60a16x2

+ 24al7xY + 6a18y2 - 2b4

= _3w _2yyz

Xy,x 3x)y_ )x)y " 2a9 + 4al3x + 6al4Y + 6alsx2

= 4a 8 + IZa12x + 8a13Y

+ 12al9xY + 12a20y2 - cS

• 2 )3w )2yxz

)x23y " _" )x"

(42)

(43)

(44)

Xxy,x

÷ 24a17x2 + 24a18xY + 12algY 2 - bS - 2c4

_====_m

V

--i-
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I_I1



=, _3w _2Yxz

Xx,y _" _" 2a8 + 6al2x + 4a13Y ÷ 12a17x2

÷ 12aiBxY + 6algy 2 - b5

Xy,y " _- i)_2_yz" 6alO + 6a14x + 24a15Y + 6a]gX2

+ 24a20xY + 60a21y2 - 2c 6

and Xxy,,y = 2 B3---_-w B2yx----_z _2yyz 4a 9 + 8al3x + 12al4Y
BxBy2 " _y2 - _x_y =

+ 12al8x2 + 24al9xY + 24a20 y2 - 2b 6 - c 5

By substituting Equations 40 through 47 into Equations 37, the following are obtained:

b1 + b2x + b3Y + b4x2 + bsxY + b6y 2

= Al1(6a 7 + 24allx + 6a12Y + 60a16x2 + 24a17xY

+ 6alBY2 - 2b4) + Al2(2a 9 + 4a13x + 6a14Y + 6alBX2

+ 12algXy + 12a20 y2 - c5) + Al3(4a B ÷ 12al2x + Bal3Y

+ 24a17x2 + 24alBxY + 12algy2 - b5 - 2c4) + Al4(2a 8

+ 6a12x + 4a13Y + 12a77 X2 + 12al8xY ÷ 6algY 2 - b5)

+ A15(6a10 + 6a14x + 24alSx + 6a19x2 + 24a20xY

+ 60a21y2 - 2c6) + Al6(4a 9 + 8al3X + 12a14Y

+ 12aIBX2 + 24algXy + 24a20Y 2 - 2b6 - c5) •

(45)

(46)

(47)

(48)
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c1 + c2x + c3Y + c4x 2 + CsXY+ c6x2

= A21(6a 7 + 24allX ÷ 6a12Y + 60a16x2 + 24alTXY

+ 6a18y2 - 2b4) + /LZ2(2a9 + 4al3X + 6,1142 + 6a18x2

+ 12a19xY + 12a20Y2 - c5) + Az3(4a8 + 12alZX + 8a13Y

+ 24a17x2 + 24a]8xY + 12algy 2 - b5 - 2c4) + A24(2a 8

+ 6alzX ÷ 4a13Y + 12a17x2 + 12a18xY + 6a19y2 - bS)

+ A25(6alO + 6al4x + 24alSY + 6algX2 + 24azoxy

+ 60a21y2 -'2c6) + A26(4a 9 + 8a13x + 12a14Y + 12a18x2

+ 24a19xY ÷ 2_20 y2 - 2b6 - c5) (4,9)

By comparing coefficients of like powers In x, y, x2, xy, and y2 and constants of Equations 48 and

49, the coefficients b1 through b6 and c1 through c6 can be expressed In terms of the generalized

coordinates a1 through a21. Thus

bE : 24A11a11 + 6(A14 ÷ ZA13)a12 + 4(A12 + 2AlG)a13 + 6A15a14

b3 = 6AllalZ + 4(A14 + 2A13)a13 + 6(AIz + 2A16)a14 + 24A15.a15

b4 = 60A11a16 + 12(A14 + 2A13)a17 + 6(A]2 + 2A16)a18 + 6A15a19

b5 = 24A11a17 + 12(A14 + ZA13)al8 + 12(A12 + ZA16)a19 ÷ 24A15a20

b6 = 6A11a18 + 6(A14 + ZAI3)al9 + 12(A12 + 2A16)a20 + 60AlSa21

b1 ',. 6A11a7 + 2(A14 + ZA]3)a 8 + 2(A12 + 2A16)a9 + 6A15a10

- ZAIIb 4 - (AI3 + A14)b 5 - 2Aleb 6 - 2Al3C4&- (AIz + Al6)C 5

- ZA15c6
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and c2 = Z4Azlall ÷ 6(Az4 • ZA23)a12 + 4(A22 + ZA26)a13 + 6Azsa14

c3 - 6A21a12 + 4(A24 + ZAz3)a13 + 6(A22 + 2A26)a14 + 24A25a15

c4 = 60A21a16 + 12(A24 + 2A23)a17 + 6(A22 + 2A26)a18 ÷ 6A25a19

¢5 = 24A21a17 + 12(A24 + 2A23)a18 ÷ 12(A22 + 2A26)a19 + 24Az5a20

¢6 = 6A21als ÷ 6(A24 ÷ ?'Az3)a19 + 12(A22 ÷ZA26)a20 + 60A25a21

cI - 6Azla 7 + 2(A24 + 2A23)a 8 + 2(A22 + 2A26)a9 + 6A25a10

- 2JLzlb4 - (A23 + k;4)b 5 - ZA26b6 - ZA23c4 "(Az2 + A26)c 5

- 2.A25c5

Zf Equations 50 and 51 are substituted into Equations 40 and 41, the explicit relation between the

transverse shear strain and the genera]ized coordinates (i.e., coefficients of the d|splacement

polynomial ) can be obtained in matrix notation as

(x} = i"e1] {a}

where [Bll is a (2 x 21) matrix whose nonzero elemenLs are as follows:

BI(1,7) = 6Al1

BI(1,8) - ZA31

BI(1,9) - ?-A32

B1 (1,I0) = 6k15

B1(1,11) - 24A11x

81(1,12) - 6(A31x + AllY)

81 (1,13) = 4(A32x ÷ A31Y)

B1(1,14) = 6(AlsX + A32Y)

 0,1s) - 2, lsy

(51)

(S2)

(S2a)

(52b)

(szc)

(SZd)

(52e)

(szf)

(szg)

(52h)

(52t)
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Bl(1,18) =

Bl (l,19) =

BI(1,ZO)-

BI(I,21 ) =

B1 (2,7) =

Bl (2,8) =

Bl (2,9) =

BI(Z,_O)=

-B1(Z,lf)=

Bl(2,12) =

B1(2,13) =

BI(2,14) =

B1(Z,15) =

Bl(2,16) =

BI(2,17) =

Bi(2,18 ) =

-120(A211 + AI3A21 - O.5AIIX2 )

-24[All(A31 + A38) + AI3A33 + AzIA39

-O.5A31x2 - A11xY ]

-12(AliA32 ÷ AI3A34 + A38A31 + A39A33 + ALIA16

+ AlsA21 - 0.5A32 x2 - A31xY - O.SA11y2 )

-12(A11Al5 + AI3A25 ÷ A38A32 ÷ A39A34 + Al6A31

+ AI5A33 - 0.5A15 X2 - A32xY - 0.5A31 y2)

-24(AIsA38 + A25A39 + AI6A32 + AlsA34

- Al5XY - 0.5A32 y2)

-120(Al5Al6 + AIsA25 - 0.5A15 y2)

6A21

2A33

2A34

6A25
+

24Az1x

6(A33x + A21Y)

4(A34x + A33Y)

6(A25 x + A34Y)

Z4A25Y

-120(AllA21 + A23Az1 - 0.5A21x2 )

-24(A21A31 + AllA40 + A23A33 + A21A34

- O.SA33x2 - AzlXY)

-12(A21A32 + A23A24 + A4oA31 + A41A33 + A26All

+ A25A21 - 0.5A34 X2 - A33xY - O.5A21Y 2)

ORIGINAL P._,GE ;_
OF POOR QUALITY

(5zj)

(52k)

(52_)

(52m)

(52n)

(S2o)

(52p)

(52q)

(52r)

(szs)

(5zt)

(s2u)

(5zv)

(SZw)

(52x)

(52y)

(52z)

(52aa)
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81(2,19 ) - -12(Az1A15 + A23A25 + A40A32 + A41A34 ÷ A26A31

+ A25A33 - 0.5A25 x2 - A34xY - 0.5A33 y2)

81(2,20 ) = -2_(A15A40 + A25A41 + A26A32 + A25A34 - A25xY

- 0.5A34 y2)

Bi(2,21 ) - -120(AI5A26 + A225 - 0.5Az5 y2) ,

(52bb)

(52cc)

(52dd)

AI2 , Al3 , Al4 , AI5 , Al6 , A21 , A22, A23, A24, A25, and A26 are as defined in Equations 38

and

A31

A32

A33

A34

A35

A36

A37

A38

A39

A40

A41

• A14 + 2A13 \

• A12 + 2A16

• A24 + 2A23

• A22 + 2A26

• A33 + All

- A34 + A31

- A25 + A32

• A13+ A 14

- A12 + A16

• A23 ÷ A24

• A22 + A26 /

(53)

If the plate is assumed to be rigid in transverse shear, the coefficients All through Al6 and A21 through

A26 of Equations 38 are zero (since G - -) and hence coefficients bI through b6 and cI through c6 of

Equations 40 and 41 are zero. Moreover, the transverse shear strains vary linearly with G"l with {y}

approaching 0 as G _ _; that is, convergence to the limiting case of zero transverse shear is uniform.

5.8.7.5 Stiffness Matrix

The strain energy for a plate'may be written as

(54)
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where {H} is the vector of bending and twisting rants per unit length, {X} ts the vector of

curvatures, {V} is the vector of transverse shear forces per unit length, and {y} ts the vector

of transverse shear strains. Substituting Equations 19 and 31 Into Equation 54, and using the

sy_etry of [D] and [J] matrices, yields

U = ½//{X} T [O] {X} + {y)T [G] {y} dxdy ,

OF poOR QuAL|I"Y

(55)

_ r

V

where

[G] = [j]-l. (56)

With [Kgen] denoting the generalized stiffness matrix, that is, the stiffness matrix with

respect to generalized coordinates (coefficients of the displacement polynomial) {a}, the strain

energy can also be expressed as

U • ½ {a} T [Kgen] {a} (57)

The vector of curvatures {X} is now re_R'itten as

{x} TM {x]} + {x2} = ([ez] + [%]) {a} , (SB) V

where

a2

3x

{X l} =.

)":alml(mi l)x(ml-2)yni

= T:aini(nI - l)xmly(n1-2)

(mr-l) {nl-l)
2_'_.aimlnlx Y

(58a)

and

{X2} - "_Yxz /_y

--_7" _x/ "

5.8-70 (17.J31177)
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It follows that {X1} is the vector of curvature in the absence of transverse shear and {×?.} is the

contribution of transverse shear to the vector of curvatures.

Substituting Equations $2 and 58 into Equation $5 and comparing the resultant equation with

Equation 57 and noting that {a} is independent of x and y, the generalized stiffness matrix can be

obtained as

CKge.]=ff CB2]T[0] CBz]axdy+ff [SZJT ro] r831axdy

*ff In3 iT [D] [B4]dxdy +f/ [B3 iT [O] [B3]dxdy

+fJ [B1 iT [G] [B1]dxdy (5g)

The evaluation of the elements of the generalized stiffness matrix [kgen] in closed form is,

tedious. The ftrst temJy'[B2JT-- [D] [B2]dxdy ts evaluated In closedthough straightforward, very

form; the other four terms are eva]uated by using nuamrtca] integration. If the transverse shear

is neg]igible, the matrices [B1] and [B 3] are nu]l and the last four terms vanish. The numerfca]

integration formulae used are the seven-point integration scheme (Reference 6) and are given below

for easy reference. For a triangle, the tntegra]s of the form

1 [ 1-LI f(LIL2L3)dLIdL2 (60)I • JO

can be integrated by using a seven-point numerical integration which can exactly integrate functions

up to and tnc]uding quintic order. The value of the integral is given by

7

I - _ Wkfk(L 1,L 2,L 3) , (61)
k=l

where the points and the weighting factors ape as follows:

5.8-71 (12/31/77)
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,L_._;_._ j_'_._,J-__-_

OF POOR QUALIT_f

Point Triangular Coordinates

L1 ' L2" L3 Weight, 2Wk

I/3, I/3, I/3 0.225

_1 B1 B1

B1 _1 B1

B1 B1 _1

5 _2 B2 B2

6 B2 _2 B2

7 B2 B2 _2

0.13239415

O. 12593gi 8

with

ml = 0.05971588 B1 = 0.47014206

oL2 = 0.79742699 B2 = 0.101286505

Note the error In the value of ml as given in Reference 6, page ISl.

V

Denoting by G11, GI2, GI3, G22, G23, and G33 the symmetric portion of the [Gel matrix of

Equation 26, it can be shown that the jth element of the ith row of the generalized stiffness

matrix [Kgen], for the case of a plate with transverse shear being neglected, is given by

3 3 3

Gllmimj(m i 1)(mj I) F(m I mj
. . + + Ykl + Yk2

+ - 4, ni + nj + + + )
Yk3 SkI Sk2 Sk3

+ G22ninj(n i - I) (nj - I) F(m i +mj + Ykl

5.8-72 (12/31/77) V
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÷ + nt + nj ÷ ÷ + - 4)Yk 2 Yk 3' SkI Sk2 Sk3

+ (4G33mimjnin j + Gl2{minj(mi - I) (nj - 1)

+ mjni(m j - l)(n i - I)}) F(m i + mj + Ykl

+ + - 2, ni + nj + + + - 2Yk2 Yk 3 Sk I Sk2 Sk3

+ 2Gl3{mimjnj(mi - l) +mlnimj(m j - l)} F(m I

+ mj + + + - 3, nI + nj +Yk I Yk Z Yk 3 Sk I

+ Sk2 ÷ Sk3 - l + ZG23{mjninj(ni - l)

\

+ mininj(n j - l)} F(m i + mj + +Yk I Yk 2

+ - I, nI + nj + + - 3) I
Yk3 + Skl Sk2 Sk3

(62)

All computations involved in evaluating [Kgen] for the case of a plate with transverse shear

neglected can be carried out by the close form expression (62). For plates with transverse shear

flexibility, the contribution of the last four integrals of Equation 59 will be evaluated using

the numerical integration formulae listed earlier and algebraically added on to the closed form

expression for [Kgen] evaluated by Equation 62.

Once the generalized stiffness matrix [Kgen] is evaluated, the element stiffness matrix in the

local element coordinates [Keel is obtained, by virtue of Equation 17, as

[Kee] - CS]T [Kgen] IS] (63)

[Keel can then be transformed to the global coordinate system In the same manner as for all

other elements.
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Let the transformation for displacements be

{U}bast c = [El T {U}elemen t

OF PCOR QUALITi
i

(64)

and

{u}g = IT] {U}baslc (65)

Then, the stiffness matrix in global coordinates is

[Kgg] = [T]T [El [Keel [ElT IT]

5.8.7.5 Equivalent Themal Loads

(66)

The stress-free strains developed in a free plate due to a variation of temperature with depth

are

(o.,)to.,)
{_,_.)_,.(.)o.,((T_,y).{_,)_T._) ,

_Yt y kae3!

where T is the temperature at any point (x,y,z} of the element, Ty is the reference or stress-free

temperature of the material, and {%} Is the vector of thermal expansion coefficients in the element

coordinate system.

An applied stress vector which would produce the thema] strains is

(67)

V

{ot } = [Gel {¢t } " [Gel {_e} (E- Ty) ,

where [Gel is the matrix of elastic coefficients at the point on the cross-section.

The generalized equivalent thermal load vector t
{Pgen } is obtained as

t /,{Pgen } . _ {c}T {_t}dV" (6g)

The strains {c} are related to the curvatures {X} by

{¢} = -z{x} (7R)

S.8-74 (12/31/77)
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where z is measured from the neutral surface of the plate.

Equation 6g,

pt _a J_V z{X}T [Gel {_e} (_ " Ty)dV{ gen} = .

OF PCCR _ .... ..,-'v

Substituting Equations 68 and 70 into

(71)

The variation over the surface of the element of the mean temperature,To, and the thermal gradient

at a cross-section, T', are both assumed as bilinear polynomials:

and

i-_l Pi qiTo . dix y (72)

3 d_xPiyVl
T''_= l

so that the temperature at any point (x,y,z) is

T-T 0 +T'z

The constants di and d_ are evaluated from the values at the vertices.

• +b)

"2 T;3" T_l• (a + b)

d 3 • _ [To_ " dl]

Thus,

(73)

(74)

(7S)

(76)

(77)

Tla + _ib (78)dl" (a +

T_ - Ti (79)
d_-TT_-BT

and d_-_[T_-di] (8o)

where Tol, To3, and To5 are the differences between the grid point temperatures and the reference

temperature at grtd points l, 3, and S respectively.

5.8-75 (12131/77)

-.-_



STRUCTURAL ELEMENTS FOR THE DISPLACEMENT METHOD

It is convenient to define the equlvalent thermalmoment vector

{Mt} = "_z [Gel {me} (T - Ty)ZdZ

_÷t/2

= "J-t/2 [Gel {me} (T_ * T'z)zdz

• [Gel {%} T' t3" T_

OF POOR QUALITY.

(81)

V

Substituting for t from Equation 21a and for T' from Equation 73,

3 3 3
CilCizci3dj

(Yil'_Yi2_Yi3+Pj) (Sil÷Si2+si3+Vj)
x y

At the three vertices, the value of {Mt} will be given by

{Mt}l =-[Gel {%} liT_

{Mt}3 =-[Gel {%} 13T_

and {Mr}5 =-[G el {=e} 15T_ ,

where i], i3, and IS are the moments of inertia of the cross section at the vertices Gl, G3, and

G5 of the element, respectively. The "effective" thermal gradient, T', at the vertices is given by

(BZ)

(83)

(84)

(85)

T_ =,T_]] /TlZdZ (86)

T_ = T_3 / T3zdz (87)

and T' = 1 /
5 "_5 Tszdz ' (88)

V

5.8-76 (12/31/77)
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and the integration is carried out over the effective bending material. The user must specify the

thermal gradient at the three vertices, if the temperature is to have bilinear variation over the

surface of the element. For solid homogeneous plates the option is provided to specify the tempera-

ture at the vertices as a tabular function of depth, in which case the thermal gradients at the

three vertices will be evaluated by the program using Equations 86, 87, and 88.

Substituting Equations 21a, 58, 72, 73, and 74 into Equation 71,

t . l
{Pgen } = T_-'_a'F //({Xl} + (x2 })T [Gel {_e }

3 3 3 3

ll_=l 12_'1 13_'1 j_=1"cllc'12c'13d_j

+Pj) (Sll+Si2+si3 + Vj)
x(Yi1_Yi2 +_i3 y dxdy (89)

AS in the case of the derivation of generalized stiffness matrix, the generalized thermal load

• pt
vector will be evaluated in two stages, viz. the closed form expression [ gen]l due to [XI], the

vector of curvatures in the absence of transverse shear, and the numerically integrated expression

[P_en]2 due to [X2], the contribution of transverse shear to the vector of curvatures. Using the

following notations, viz.,

G_I = Gll_el + Gl2_e2 + Gl3_e3 (90)

G_2 = Gl2_e I + G22_ez + G23_e3 (91)

and G_3 = G13_el + Gz3_ez + G33=e3 , (92)

t will be given by
the ith element of the generalized load vector (Pgen }

5.B-77 (12131/77)
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"3 3 3 3

pt CtlCi2ctldi
{ gen}1 " ]--_il-I iz-I i3=I j-1

_DF p,._,L)R C<UALITY

V

[G_lmi(mi - I) F(mi + YII + Yi2 + Yi3 + pj - 2,

ni + Sll + si2 + si3 + VjJ + G_2 ni(ni - I)

F(mi + + + Pj, ni + ++ Yil Yi2 Yi3 siI si2

+ + Vj - 2) + G_lmini F(mi +Sl3 + YtI Yt 2

+ + Pj - l, ni + + +Vj - ])] .Yi3 + si] si2 si3

t t
The load vector {Pgen}2 is evaluated using numerical integration and [Pgen] is obtained as

pt t pt
the sum of [ genii and [Pgen]2. For plates with negligible transverse shear, [ gen]2 is null.

The equivalent thermal bending load in the local element coordinate system is obtained, by virtue

of Equation 17, as

{p_} [s]T t• {Pgen}

The load vector can then be transformedto the global system by

- cT]T EEl(pt)

5.8.7,7 Recovery of Internal Forces

(93)

(94)

(95)

The internal forces are recovered at the three vertices and at the centrold of the element.

After the displacements of the e]ement are transformed from the global system {U}g to the element

coordinate system {u}e, the generalizedcoordinates (a} are evaluated from Equation 17. The

curvatures {X} are evaluated from Equation 58 with the nonzero elements of [B3] being as listed

below:

B3(1,11 ) - -24All

S3(1,lZ) - -6A31

-.-_o
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83(1,13) =

e3(1,14) -

83(1,16) -

83(1.17) =

B3(],18).

83(1,19) =

B3(1,2o) =

83(2,12) =

83(2,13) =

83(2,14) •

83(2,15 ) -

B3(2,17 ) =

B3(2,18 ) -

e3(z,19).

B3(2,20 ) =

83(2,21) =

B3(3,11 ) =

83(3,12 ) =

83(3,13 ) =

B3(3,14 ) =

83(3,15 ) -

B3(3,16 ) =

B3(3,17 ) =

B3(3,18) =

83(3,19) =

PLATES

-4A32

-6A15

-12Q/z,11x

-Z4(A31x + AllY)

-12(A32x + A31Y)

-12(Alsx + A3zY)

-2_p,

-6A21

-4A33

-6A34

-24A25

-24A21x

-12(A33x + A21Y)

-12(A34x + A33Y)

-24(A25x + A34Y)

-12OA2s_

-24A21

-6(All + A33)

-4(A31 + A34)

-6(A32 + A25)

-24A15

-120A21x

-Z4[(All

-12[(A34

-12[(Azs

......... ' .... .." ;,3

+ A33)x + A21Y]

+ A31)x + (A34 + All)y]

+ A32)x + (A34 + A31)Y]

5.8-79 (12131/77)
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B3(3,20 ) = -2¢[Al5X + (A_2 + A25)Y]

B3(3,21 ) = -120Al5Y ,

where All, Al2, .... A34 are as given in Equations 38 and 53.

obtained from

Moments at the vertices are then

and

{M}l " [D] l {X} - {Mr}l (g6)

6M}3 = [D]3 {X} - {Mt}3 (97)

{M} 5 = [D] 5 {×} - {Mt}5 (98)

The moment at the centroid is evaluated from similar expressions as Equations 96, 97, and 98,

with the value of [D] and {Mt} evaluated from Equations 25 and 82 respectively.

The transverse shears are evaluated as follows:

{y} is evaluated from Equations 52, 53, and 17.

{V} is then evaluated from Equations Z9 and 30.

V
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Z

Ftgure 1. TRPLT] triangular bendtng element geometry.
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Rxy = :

Y

M X

l
|

dy I®

VX

Jl

Vy

Mxy ÷ _y dy

®
: : Vy [

My I dx _l

I
Mxy

aVx
Vx + --_. dx

_Mx
Mx +-'_"

Mxy

dx

Figure 2. Sign convention for moments and shears.
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5.9 THE CONICAL SHELL ELEMENT

The properties of the conical shell element are assumed to be symmetrical with respect to

the axis of the shell. The loads and deflections, on the other hand, need not be axisymmetric;

they are expanded in Fourier series with respect to the azimuth coordinate. Due to symmetry, the

resulting load and deformation systems for different harmonic orders are independent, a fact that

results in large time saving when the use of the conical shell element is comoared with an eaui-

valent model constructed from plate elements.

Equations for the element are developed in terms of Fourier coefficients with respect to

azimuth and in tems of polynomial coefficients with respect to meridional distance. An important

and unusual feature of the NASTRAN conical shell element is that it includes transverse shear

flexibility. At present the conical shell element cannot be combined with other types of struc-

tural elements in the solution of problems.

5.9.1 Coordinate Notation

The coordinate geometry for the conical shell element is shown in Figure I. The internal

coordinate system for the element is oriented in and normal to the surface of the shell. The

coordinate system for grid points at the ends of the element will usually be parallel and per-

pendicular to the axis of the shell.

Stiffness matrices will be derived in terms of element coordinates evaluated at the ends of

the element. The stiffness matrices must then be transformed into the global coordinate system,

which matter is not treated here.

Although the general case of a conical shell is treated, the results obtained are valid for

the limiting cases of a cylinder, _ = O, and of a flat circular plate, _ - _/2.

5.9.2 Harmonic Dependence on Azimuth Position

Since the conical shell element is assumed to be axtsymmetrtc, the motions of the shell at

meridtonal position, s_ can be expanded in a trigonometric series with respect to azimuth position,

¢:
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m _ m

U(S,e) " ! Un(S) sin(n¢) + Uo(S ) - ! Un(S) cos(n_)nl nl

m m ,

V(S,¢) " Vo(S) + _ Vn(S) cos(n_) + Z Vn(S) sln(n¢)n I n-1

m m

w(s,¢) " Wo(S) + _ Wn(S) cos(n¢) + Z Wn(S) sin(n_) ,
n 1 n-l

m m

%(S) cOS(he) + Z an(S) sln(n_)
_(s,_) • %(s) + n!l n=l

m m

B(S,¢) " n!l Bn(s) sin(he)÷ B:(s)- n=_l B_(s)COS(he)

(i)

The rotations _ and _ are independent motions because of the transverse shear flexibility.

Rotation about the normal to the surface ts not included, such rotation being adequately repre-

sented by the gradients of u and v.

5.9.3 Cases to be Treated

The motions corresponding to different harmonic orders (different values of n) are elas-

tically uncoupled. F_rthermore, motions represented by starred parameters are not coupled to mo-

tions represented by unstar_ed parameters. For n > 0 the stiffness matrices for the starred and

unstart_d motions are identical. The reason is that the starred parameters describe motions

that are all shifted _-_ in azimuth from the motions described by the unstarred parameters.

Thus, -cos(n¢) - sln(n¢ - _) and sln(ne) - cos(n¢ - _). The unstarred motions will be used to

develop the stiffness matrices for n > O.

The set of parameters, Vo(S), wo(s ) and %(s) describes axtsymmetric motion of the shell.

*The set of parameters, u (s) and go(S), describes rotation and twisting of the shell about its

axis. The stiffness matrix for n • 0 will Include both starred and unstarn3d motions.

The degrees of freedom for the shell elemant are taken to be the values of the Fourier

coefficients appearing in Equation 1, evaluated at the ends of the shell element. Separate

stiffness matrices w111 be evaluated for the following parameter sets,

{Ueo}T " 19ao,Vao,Wao,%0' _ao;%0' %0' Who'%0' e_o-] , (z)

V

-..-
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and in general

{Uel }T

(Uen}T

THE CONICALSHELL ELEMENT OF FGOR t_::J,_.:_'_

• LUal ' Vat' Wa1' =al' _3aI; Ub1' Vb1' Wb1' a'b1' @b1-J ' (3)

• LUan' Van' Wan' aan' 5an; Ubn' Vbn' Wbn' =on' _bn_ ' (4)

where subscripts a and b refer to the ands of the segment, see Figure 1. Note that, as previously

shown, the stiffness matrices for the starred components are identical to those for the unstarred

components, for n > O. and need not be separately calculated. The general starred parameter set is

• •

{U:n IT • LU:n ' V:n' W:n' =:n' 5an; U;n' Vbn' W;n' C_n BbnJ " (5)

s

If transverse shear flexibility is negligible, the rotations, 8a and _b' are not independent

degrees of freedom. Spectal procedures are required for the case of zero transverse shear flexi-

bility. Stiffness matrices will be separately derived for the following cases, in the following

order. Note that the stiffness matrices for n > 0 can be derived with n as a parameter,

a. Finite shear flexibility,n > O.

b. Finite shear flexibility,n - O.

c. Zero shear flexibility, n > O.

d. Zero shear flexibility, n = O.

5.9.4 General Plan for Derivlnq the Stiffness Matrices

For each harmonic index the displacements of the shell are approximated by power series with

respect to distance along the shell. The power series include a number of independent constants

equal to the number of degrees of freedom. For example, the general case of finite shear flexi-

bility and n • 0 requires ten independent constants, i.e. one for each element of (Uan}. The

relationship between degrees of freedom and the Independent constants, {qn }, can be explicitly

stated as

{Uen} • [Huq]{qn} (6)

The next step is to express strains in terms of the independent constants. The strains, of

course, have harmonic dependence on azimuth stmilar to Equation 1, so that the required relation-

ships are between hamonic coefficients of strain and the independent constants for the same

s.g-3
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STRUCTURAL ELEMENTS FOR THE DISPLACEMENT METH00

Three kinds are involved,

.3F i_COR C';.-.:;-/."/.

{¢} =

{y} =

{X} "

The required relationships are:

[¢s' ¢¢' ¢s¢ ]T' membrane strains , (7)

[Ys' y¢]T transverse shear strains, and (8)

[×s' ×_' Xs¢ IT' bending curvatures. (9)

fen} = [Hcq]n{qn} , (I0)

{yn } = [Hyq]n{qn} , (ll)

{Xn} = [Hxq]n{O n} (12)

The matrix coefficients are evaluated by combining the relationship between strains and dis-

placements with the relationship between displacements and the independent constants.

The total strain energy for the conical shell element is

Ve - ½1_ 12_[{F}T{¢}

o o

where, for a unit width of shell,

{F}T =

{V}T =

{M} T =

Forces and moments are related to strains by elasticity.

of strains are uncoupled so that

{F} - t[E]{¢} ,

+ {v}Tfy} + {M}T{×}] rdCds

[Fs, F¢, Fs¢], membrane forces ,

IVs, V¢], transverse shear forces, and

[Ms, Me, Ms$ ], bending and twisting moments •

{V} - ts[G]{y} ,

, (13)

{M} - [D]{X} ,

(14)

(is)

(16)

It is assumed that the three types

(17)

(18)

(19)

5.9-4
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where t is the thickness of the shell for membrane stiffness, and ts is the thickness of the

shell for transverse shear stiffness, both assumed constant over the surface of the element.

cause of the symmetry of the shell, certain terms in [El, [G] and [D] are zero. The remaining

terms, assumed to be constant over the surface of the element, are

[El - IE12 E22 , (20)

0 E33

Be-

[°io][G] . 1

G22

(21)

and

DII Dl2 0 1[D] = IDl2 D22 0 (22)
I

L 0 0 D33

By substituting from Equations 17, 18 and Ig into Equation 13, we obtain:

Ve = ½19" rZTr T] It{c} [El{e} + ts{y}T[G]{y}+ {×}T[DI{×}] rdCds
o o

(23)

Because of the assumed s_etry, the strain energy can be written as the sum of a series of inde-

pendent terms

m e ITI e

ve -Veo+.!IVen+Veo+.!lYe" , (241

where each term has the form given by Equation 23, with the addition of a sin2n¢ or a cos2n¢ fac-

tot, and the substitutionof harmonic strain coefficients for the strains. Integrationwith res-

pect to ¢ then gives, for n - 0

T
Veo • _[ [t{¢o} [E]{¢o} + ts(Yo}T[G]{Yo} + {Xo}T[o]{xo}l rds

0

(25)

5.9-5
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and, for n > 0

Ven = _[ [t{¢n}T[E]{¢n} + ts{Yn}T[G]{Yn} + {Xn}T[D]{Xn}] rds
0

and similar results for the starred terms.

Substitutionof Equations lO, II and 12 into Equation 26 then gives

(26)

where

Ven - } {Qn}T[KR]{qn} , (27)

[KR] - n I_[t[H q]nT[E][Hcq]n + tsZHyq]nT[G][Hyq]n+ [Hxq]nTED][Hxq]n] rds. (28)

o

The result for n - 0 is the same except that the factor _ is replaced by 2_.

[KX] is the stiffness matrix referred to the independentconstants. The stiffness matrix

referred to the degrees of freedom for the element is

-l T Kq -I
[KX] -[Huq ]n[ n][Huq]n , (2g)

which is the final result.

The plan of the analysis is to develop explicit formulas for the terms in [Huq]n and [KR].

The integration indicated in Equation 28 makes it very difficult, if not impossible,to express

[KR] as a sum of products of elementary matrices.

5.9.5 Stiffness Matrix for Finite Shear Flexibility,n > 0

5.9.5.1 Power Series Expansions

The ten independent constants for each hamonic order, {qn }, are chosen to be the coefficients

in the power series expansions for displacement and shear strain amplitude coefficients as shown

below. Shear strains rather than rotations are employed for convenience.

Un(S) " qln + qzn s '

Vn(S) • q3n + q4ns '

Wn(S) • qsn + q6ns + q7ns2 + qBns3 "

Harmonic Cmlpo_nts

of Deflection

(30)

(31)

(32)

5,9-6
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Yen(s) " qgn + qlons '

Ysn is assumed constant and independent of s.

The magnitude of Ysn is detemlned in terms of

the ten independentconstants.

Hamontc Components
of Transverse
Shear Strains

(33)

Other choices of expansions are possible. The above has been selected by virtue of the fol-

lowing arguments.

a. Only four constants should be associated wtth un and vn because, in the limiting case of

of a flat circular plate, u and v become uncoupled from the other degrees of freedom.

b. The choice of a cubic expanslon for w is analogous to the expansions used for the trans-

verse deflection of beamand plate elements.

c. The identity of two of the independent constants with the circumferential shear strains

is necessary because, in the llmttfng case of zero circumferential shear flexibility, Ba

and Bb are no longer independent degrees of freedom. In this limit agn and qlOn are

omitted.

5.9.5.2 Strain-Displacement Relationships

The strain-displacement relationships for a conical shell are as follows (refer to Figure 1):

a. Membrane Strains

_v (34)

• l(_u + v sln_ + w cos_) (35)¢¢ r \ a¢

¢s¢ " E" r" u slnv; - _- (36)

b. Transverse Shear Strains

Y,

_W

YS " _,l_.. a

l _w u COS_ + B
"_-_

• (37)

(38)

5.9-7
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CF PC,C,q "_,'-_,',-::':"

c. Bending Curvatures

3_ (39)
×s " _"s-

×_ = _- - _- + _sinV: , (40)

3B l{_ )Xs¢ = - T[ + r \;¢ + _sin_ + ewCOS_ , (41)

where e is the rotation about a normal to the shell surface,
W

ew " " _T + r - FT&"

Note that the conventions for {s and % give positive strains For tension and that the con-
....... ::i _ ;=_i_i ....

ventlons selectedfor curvatures are such that the fiber stralhs due to bending and stretching

are algebraically added on the inne___!rsurface of: _he_heil_ _; z_ ....

The above strain-displacement relationships are, with the exception of the twisting strain,

fairly standard and they can be checked by reference to text books or to simole diagrams. For the

derivation of the twisting strain refer to Figure 2. The twisting strain is defined by

a_ _B (43)
×st " r3--;"T_

rather than _ is used because _%- ts not zero in a rigid body rotation of a surface element

about the normal to the surface. _ is defined to be colllnear on opposite edges of the element.

From Figure 2b:

= _ cosec + (ewCOS_ + Bsin_)sina¢ , (44)

so that

aK aa
_%- - _- + (ewCOS_+ _sir_) (45)

Substitution of Equation 45 into Equation 43 gives Equation 41. Equation 42 for the rotation

about the normal can be readily verified by simple diagrams.

For the unstarred parameter sets, the components of strain have the following dependence on

azimuth, assuming only one harmonic order, the n th, to be present. The choice of a sine or cosine

dependence is made from a consideration of symmetry.

5.9-8
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Ys

×s

×_

• cos(n_)

THE CONICAL SHELL ELEMENT

Csn

C_n

Ysn

_sn

×_n

OF FC,GR QUALITY

!Y°I ,.6,

The relationships between the Fourier components of strain and the Fourier components of

displacement are derived by inserting Equation (46) into the strain-displacementrelations. The

subscript (n), which modifies nearly every dependent variable from now in section 5.9.5, is

dropped for convenience.

a. Membrane Strain Components:

_v
¢s 3T

'( )¢<h " _- nu + vsinv_+ wcos_P

@u 1(usin_b + nv)

b. Transverse Shear Strain Components:

(47)

(48)

(49)

C.

Y¢ =

Bending Curvature Components:

YS • -_- a

-l(nw + ucos_)+ Br

(so)

(51)

XS¢ "

3o.
Xs " B-T

1 (._ +<zslr_)X_b = _"

" _'+ F "n_+ Bsi® - cOSV) _-+ r F

(52)

(53)

(54)

5.9.5.3 Development of [Huq]

Equations 50 and 51 are used to obtain the relationships between _,B and the independent con-

stants. Substituting from Equations 30 through 33 into Equations 50 and 51, and dropping sub-

scripts (n),

Bw 3q8s2a • _"_-- YS " q6 + 2q7s + - y_ , (55)

5.9-9
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B = _nw + ucos_) + y¢

= Ir-_n(q 5 + q6s + q752 + q8s3) + cos_(q I + o2s)] + qg + qlO s (56)

In order to express = in terms of the independent constants,Y s must first be expressed in

ternts of the independent constants. Writing Equations 30 through 32 and 55, 56 in matrix notation

yields

...... {u e} " [_u:q_{q}:+_{H'uy_;_S , (57)

where the bar notation ts used to indicate a subset of the complete [Huq ] matrix.

Ys will be found in terms of {q} later. From Equations 8 and ]l

= qJ{q} , (58)Ys _HY s

where _ysq _ is a partition of [Hyq] in Equation llo Thus, comparing with Equation 6

[Huq] " [_uq] * {Huy}LHysaJ (59)

The nonzero terms in the [_uq] matrix are, recal-llng the order of displacement components

Ua: i:Fll • 1

Va: IT23 • 1

wa: i:r35 • 1

=a: _46 • 1

Ba: HS1" _o__._55" ra ;r a

"b: _r61- 1; % .

vb:_73- 1; _74- '-

*b:_8s" 1; _86" '; _87

%: 1T96 = l; g'97 " 2,; 1T98

";[59 = 1 .

¢2; _88 • ¢3

3_ 2

in Equation 3:

V

5.9-10
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- n£2 n¢3

H,o.7" r--;;_lo.a" r--;; "-10.9" 1; _10,10"

(Huy} fs a column vector wtth -1 in the 4th and 9th elements and zero elsewheee.

5.9.5.4 Development of [Hcq] and [H×q]

n_

From Equations 47 and 31:

cs = a4

From Equations 48 and 30 to 32:

¢¢ " _[n(q 1 + q2s) + sintu(q3 + q4s) + cost_(q5 + q6s + q7s2 + q8s3)]

From Equations 4g, 30 and 31:

Cs¢ " q2" _[sin_(ql + q2s) + n(a3 + q4s)]

Hence: _

CHcq]T

n

0

0

0

0

0

0
m

£$

0

0

0

1

¢_ ¢s$

-sin_U
r r

ns 1 s" F sin_

_ -..gn
P r

ssln____ -ns
r r

_ o
r

_ o
r

r

_ o
r

0 0

0 0
m

1

2

3

4

S

6

7

8

g

10

5.9-11
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For the bending strains we consider the dependence on the independent constants and on

separate]y. Thus

so that using Equation 58

{X} = C_q]{q} + {Hx.y}Ys = [H×q]{Q} , (64)

[H×q] = [_q] + {Hxy}_ysOJ (65)

From Equations 52 and 55 and the assumption that Ys is constant,

×s = 2q7 + 608s (66)

Ys

From EQuations 53, 55 and 56

X¢ " _ nB÷ _sin,

= (. ncos$'_
ql \ -7)

+ q8(_ n2s3_"r--F/

.From EQuations 54, 55 and 56

Xs_b

nscos n2 (s_n._

. n)•o o(- ---,-"o°

1 I" n2_" (q5 + q6 s + q7s2 + q8 s3) ncOS_r (al + q2 s)

. n(q9 + q10s ) + sin_(Q 6 + 2q7s ÷ 3qSs2)l . Si_r Ys

sn 2

Ys

zT) q4l" nscos_2r" 2r 2 ' _/

+ q5 ( nsin_ _ 2n 4nsrT/ +q6( nssinSr-_'-r ) +q71 ns2sin_'-l+q8<r---_r ns3sin$

+ qg si__ + qlo -I + _sln_ + _Ys

n2s2

"7/

(67)

(68)

V

so that, in matrix form,
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o .

Xs X$
Xs¢

8

lO

(69)

where

c_ k_
(70)

has been used to form the terms involving HijYq-

5.g-13 (3/1/76)
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5.9.5.5 Development of CHyq]

The first row of [Hyq] is LHysqJ. The second row of [Hyq] as obtained from Equation 33, has

zeroes for the first eight elements and for the remaining two:

H29Yq = 1; H2, l0Yq TM s

LHysq.J is developed by means of an equation of moment equilibrium into which the meridlonal com-

ponent of transverse shear enters.

Consider a surface element as shown below. The symbols refer to physical quantities rather

than to their Fourier c_ponents.

Ms$

V
s s, s

Ms_

11"s¢

= (r + As sin¢)a¢

V
i===

Z

J As sin_

__t

I r'

r I I |

_1i I

The positive direction of moments shown above is consistent with the positive convention for cur-

vatures.

Equlllbrtum about the _-axts requires, constderlng terms of the same order of smallness, that

5.9-14 V

r

----r--_
k



THE CONICALSHELL ELEMENT CF FC3,. " " :".

To first order in As and A¢,

,, _ (rMs)_SMsr • rM$ + _'T

and

(Ms_)=_ .

Substituting Equation 72 and 73 into Equation 71, and dividing by _As,

Since Hs$

Since Ysn

and since

rVs +T_ (rMs) +_-_ (Ms¢) " Mesin$ - 0

Ms¢nSln(ne) for the condltlon described by Equation 46, we may write,

a - M_nStn_ - 0rVsn + i's(rilsn) + nMs$n

l we can now write, suppressing n as a subscript:
ts-'_11Vsn '

'I-' °1Ys " _ _ (rels) " nMs¢ + Mestn '

Ms

Me

Ms¢

m

Oll

• DI2

0
m

Of2

022

0

o

033
,1

m

I Xsh

xm (

Xsm

(71)

(72)

(73)

(74)

(75)

(76)

we arrive at

Ys - nO33xse + sin_(OlZX s + 022Xt)] . (77)

S.9-15
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xsI txslio _
Xs¢ Xs¢ J r

G7 PCCR '_" ' :_-'

Y (78)
s

The relationship between {_} and the independent constants has already been Found (Eauation 69).

Substitute Equation 78 into 77.

= I [ _ - + D12_-¢)) nD33x--s¢YS _ " _ <r(Dll×s

n2D33 + sin2_D22

" "r ' Ys + Dl2sin_ a-s-j (79)

Equation 7g is an exact relationship that indicates Ys to be a variable over the surface,

In order to comply with an earlier aSsumptlon, Equation 33, Y5 must be assumed constant in energy

calculations. Let T s be the weighted average value of Ys obtained by integrating Equation 79 over

the surface.

_rav rYsdS , (80)
0

where

Thus, assuming Ys

Ts-

rav = ½ (ra + rb)

to be constant on the right hand side of E_uation 79

_tsGllrav

+ Ig('onO33Xs'- + sino(D12_s + D22_¢) )dsIj - -_-102 ( n2D33 +{tsGllravSin2*022/]Vs\

where

Iii_ z [ smrl'nds
o

(81)

(82)

V

|
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_tsGllrav I 1

I02 (n2033 + sinZ_022_l

+w \ _tsGll'_av/j
(83)

Then

¼[raIDll_s (a) + Dl2_¢(a)) " rbIDl1_s(b) + D12_¢(b))

o

(84)

Evaluation of the right side of Equation 84 by substituting for the _'s from Equation 6g, now

gives Ys In the form Ys • LHysqJ(q};LHys_ is the first row of [Hyq]. The nonzero elements of

the second row of [Hyq] are:

H2gYq Yq - s.- l; H2,10

On evaluation of the right hand side of Equation 84, we get

\
rb ra _ ,

[H12TM • ¼ Ol2 rb _ 3D33 + D22 _ ,

H13 Yq = ¼E½nZD33cos_O_ 3] ,

/ " _ \ 33 + D22HI5TM - ¼ n2Dl2 rb ra

• - 4"D [n2_2 +
H17Yq ¼[ zDll(ra rb' l'\_-_b )2_I_]2( 2n2D33 + sin2*o22)

. <,o..o,,>}, i
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H18Yq
(n2Z 3 +

_ ['D116_rb + DI2\_)

I33(2D33 +D22/]- n2sin_

HlgYq = _I- nstn_<D22 + D33/1 ,

3122/2n2033s,.20022)-;-- +

(85b)

I [12(D22 D33 ]Hl,lOYq - ¼ n£(Dl2 +D33) - nsimb_ + )

T ._ : •

H Yq|n..... _ are now able to compute [Huq] from Equation 59 and to evaluate the constants lj

Equation 69.

5.9.5.6 Explicit Fom for [K q]

[K q] is, for convenience, separated into parts due to stretching transverse shear, and

bending.

Where

[Kq] • [Kq¢]*ZKq_]*CK_] , (_)

_[Hcq]T E][Hq][Kq¢] = st / [ rds ,
0

[KqY] = _ts _ [Hyq]T[G][Hyq] rds ,

[KqX] = v / [Hxq]T[D][Hxq] rds
0

In the case of [KqY], the calculation is performed as follows. Let

(87)

(88)

(89)

[Hyq] Hysq

L",,qJ

(90)

Then, since [G] is a diagonal r_¢rtx and (Hysq} is independent of s, we may write

[KqY] = [K q_s] , [K q_] , (91)

5.g-18
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;.... , , , . , ,>

where, noting that Ioo is defined in Equation 82,

CKqYs] , tsGllIoo{Hysq}T{Hys q}
(9Z)

and

FKqY@] = _tsG22 _ {Hycq}T{Hy_q} rds (93)

CKqYs] is a full symmetric ten by ten matrix obtained by crossmuitiplying the terms in Equa-

tion 79. Explicitly:

qYs . (Hllyq H yq)tsGlllo0 (94)Kij lJ

[KqY¢] is a symmetric matrix that is zero except in the 9th and lOth rows and columns. These

terms are:

qY_
Kgg • tsGZZlO0

qY¢ qY¢
Kg,IO • KIO,9 • tsG22110

CY¢
KIO,I 0 - tsG22120

(95)

In the c_se of [Kqc], explicit formulas were writteB for the individual terms. The terms

include integrals over the slant length in the form given by Equation 82. The formulas which

are not difficult to write, will be omitted in the interest of brevity.

In the case of [KqX] explicit formulas were also written for the individual terms. The

formulas occupied eleven typewritten pages and it was virtually impossible to verify their cor-

rectness, not to mention that of the corresponding FORTRAN code. At this point it was decided

that the computer should be taught to perform analysis, i.e. that it should evaluate the integral

in Equation 89 from the formulas for the ele_nts of [Hxq] that include the variable of integra-

tion (see Equation 69). The analysis procedure involves recognition of the fact that the Inte-

gral of the product of tems A and B where

asm bsI

A = rn and B ---_

is

_ ABrds • ablm+t,n+j (96)o
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A subroutine was written in which the powers of r and s in the individual products of

[H×q]T[D][Hxq] were logically added and used to call the appropriate integrals. The programmer's

task was greatly reduced, and the reliability was correspondingly increased, because only about

sixty coefficients (see Equation 6g) were involved rather than about six hundred, The only use

made of the explicit formulas for the elen_nts of [KqX] was to check the results of the computer

subroutine for enough terms to ensure its correctness.

5.9.5.7 Summary of Procedures

In summary, the computational steps required to form the stiffness matrix of the conical

shell element for the general case, n > O wlth finite shear flexibility, for both the starred and

unstarred quantities are

I. Form [_uq ] and {Huy}. See Section 5.9.5.3.

2. Form {Hysq} from Equation 85.

3. Form [Huq] from Equation 59.

4. Invert [Huq].

S. Form [Kq¢]. See Section 5.9.5.6.

6. Form [KqY]. See Section 5.9.5.6.

7. Form [KqX]. See Section 5.g.s.6

8. Form [Knq] from Equation 86.

g. Form [Kn u] from Equation 29.

5.9.5.8 Evaluation of Integral, Imn

The integral to be evaluated is

Imn - x _ smr l'n ds
0

(96)

where

r = a + bs, a • r a, and b • ¢
rb - ra

Dwight's Table of Integrals, Formula 8g, gives an explicit formula for the evaluation of Inm. In

terms of our notation the formula Is

s.g-20
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Imn

m! I m (m-j)!('a}Jrm'n'j+2j! I'a)m'n+21°q(r) ]

= _ j!O (m-n-j+2) + (m-n+2)! (n-2)!

jPm-n+2 J=m-n+2

rb

r a

(97)

The second (log r) term replaces the term in the series for J = m-n+2 and should not be in-

cluded unless j = m-n+2 for some j. This will happen if, and only if, m + 2 _n _ 2.

5.9.6 Stiffness Matrix for Finite Transverse Shear Flexibility_ n = 0

The formulas presented in the preceding section are valid for n = O, provided that the final

stiffness matrix, as computed from the formulas of the preceding section, is multiplied by two.

5.9.7 Stiffness Matrix for Zero Transverse Shear Flexibility_ n > 0

The first consequence of zero transverse shear flexibility is that 6na and 6nb disappear as

independent degrees of freedom. The following equations of constraint then occur:

1 I + c°S_Unb)6nb = _ nWnb

__ (9s)

(99)

In the element stiffness matrix, [KnU], the fifth and tenth rows and columns are deleted.

[KnU] is evaluated as before with the following changes:

(a.) In the transformation matrix, [Huq], the fifth and tenth rows and the ninth and tenth

columns are deleted. Also [Huq] = [Huq].

(b.) In the stiffness matrix referred to independent constants, [Knq], the ninth and tenth

rows and columns are deleted. Also [KqY] - O, and all HTM terms in [Kcb(] are set equal

to zero.

Note that it is not correct simply to delete the fifth and tenth rows and columns of [KnU]

from the results of Section 5.9.5.5. -:-_
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Stiffness Matrix for Zero Transverse Shear Flexibilit_ n - 0

OF FC:SR QU#,_#

The formulas obtained by the procedures outlined in the preceding section are valid provided

that the final stiffness matrix is multiplied by two.

5.g.g Static Loads

Special procedures are required in generating loads and reducing data for axisymmetric

shells due to the use of harmonic functions of azimuth position in the analysis.

The basic coordinate system for the shell is a cylindrical (¢,z,r) system, as shown in

Figure 3 below. The local coordinate systems used to define loads and displacement components

at grid points may either be cylindrical (¢,z,r) or spherical (@,B,p). All such coordinate sys-

tems must have the same azimuth reference as the basic coordinate system.

coordinates for
conical shell

f .i; r
I " \ !
I i& i

_u I.

I©

/

reference
azimuth

.--_l..e. z

Figure 3. Coordinate systems.

The element coordinate system is a conical system (¢,s,w) where s is a parallel to the gene-

rator of the element.

The motions along each grid circle are the components of the vector,

{Ug} = Lu¢, uz, ur, Be, ez, er.IT (lOO)
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The components of {Ug} depend on azimuth position. Such dependence is eliminated by Fourier

series expansion as explalned in Section 5.9.2.

Under certain conditions either Bz or er, or both, will be eliminated as degrees of freedom

by single-point constraints. For example, if all of the elements of the structure are rigid in

transverse shear both ez and er will be eliminated. Also if the elements ,1olnedtogether at a

grid circle have the same cone angle, either ez or er should be eliminated.

The degrees of freedom used in analysis are the Fourier coefficients of the motions at grid

points. The loads, or generalized forces, acting on the degrees of freedom are comDuted by the

following fundamental theorem.

Let fi be the forces applied to points where the motions are Yi" Let the motions Yi be

linearly dependent on a set of parameters uj. Then the generalized Force on each uj is

_Yi = (1oi)
Pj " ! fi _ _HiJfi

In the present instance the motions Yi are the components of the {Ug} vector defined by

Equation lO0, and the parameters uj are the harmonic coefficientsin the Fourier expansion of

{Ug}. The expansion of {Ug} is explicitly:

m . _m .

= U¢nsinn$ + U¢o -n__Zlu@ncosn¢ ,u_ !1n

m m .

Uz " Z UznC°Sn¢ + + Z slnn¢n-I Uzo n='luzn

m m .
" UrnCOSn* + + Z sinn¢Ur _I Ur° n=lurnn

m m ,

e_ . nZl e@nCOSn¢ + O¢o +n!lecn slnn¢

e z

m . m .

" n!l eznSinn¢ + ezO "n-_l ezn cosn¢

m . m ,

er . n=_l ernSinnc + ero -n_lern cosn¢

(I02)

V
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The motions corresponding to different harmonic orders are uncoupled. Also the motions cor-

responding to starred and unstarred coefficients are uncoupled. The minus signs have been intro-

duced in order to make the stiffness matrices for starred and unstarred parameters identically the

same for n > O.

The load vectors (generalized forces) acting on the degrees of freedom are designated by:

{Po}T " tPzo ' Pro' M¢oJ '

. . Mro*{Po *}T = tP¢o ' Mzo ' J ,

(1o3)

{Pn}T " LPen' Pzn' Prn' M_n' Hzn' Mrn J, n > o

* . . Mzn* ' *{Pn*}T = LP_n*, Pzn ' Prn ' Men ' Mrn J' n > 0

{Po } and {Po } are combined into a single load vector. {Pn } and {Pn } may be regarded as

separate loading conditions for the same idealized structure, since the stiffness matrices for

the starred and unstarred systems are identical for n > o.

The specific treatment for various types of loading are discussed below.

5.9.9.1 Loads Designated at Grid Points

The following options are available to the user for the specification of static loads applied

directly to the grid points of an axisymmetric shell.

(a) Specification of the harmonic coefficients of a line load density, {f},

along a grid circle. (The local coordinate system need not be cylindrical.)

(b) Specification of concentrated loads {FiC} at azimuth positions ¢i'

(c) Specification of uniformly distributed line loads {fjd} between azimuth positions,

¢lj < Cj < ¢2j "

Considering option (a), let the component of the line load density in the ¢ direction be given by

m m

f¢(¢) ago n=l n=l _"" + Z a_nCOSn¢ + _ b,.slnn¢ (I04)

Then from Equations I01 and 102, replacing the summation by an integration,
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P@o o aU¢o

= [ f_(@) _U¢n rd¢ = vrb@n,P_n o

W 2_.

P_n • f f_(¢) -_ rd¢ = -vra_n,

o 3U_n

OF POOR qUP,MI'_.

n>0 ,

n>0 .

_ (lOS)

Let the component of load in the z direction be given by

m m

fz(¢) " az° + nZ1= aznC°Sn¢ + n!1 bznsinn$
(1o6)

Then from Equations I01 and 102

Pzo = 2_razo '

Pzn m _razn" n > 0

.
Pzn " _rbzn' n > 0

(Io7)

The other components of generalized force and moment follow either the pattern of Eouatlon

I05 or the pattern of Equation I07.

Considering option (b), let the component of the ith concentrated load in the $ direction

be F¢iC. Then from Equations 101 and 102

P_n

P_n

• t F¢Ic '

• ! F¢ic slnn¢i '

• "f F_ic c°sn¢i"
i

(Io8)

For the components of concentrated load tn the z direction, Fzl c,
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Pzo " ! Fzi c

Pzn = I FziCc°sn¢i

t

Pzn = i FziCslnn¢i

(IO9)

and similarly for the other components of force and moment.

Considering option (c), let the component of the jth distributed load in the ¢ direction be

ftjd. Then from Equations 101 and 10Z

P_o = _ /¢2J ftjdrd ¢ • r _ ftjd(¢2j - ¢lj) ,
¢lj

Pen " _ S¢2j ftJdslnn¢ rd¢ - -r_ fejd(cosn¢2j, cosn¢lj ) ,
¢1j

stZJf_jdcosn¢ rd¢

¢lj

t

P@n , . _ _ ftjd(sinntzJ - sinn¢lj)n

(ll0)

and for the components of load in the z direction.

Pzo = r _. fzjd(¢2j - @Ij)
J

Pzn = _n _ fzjd(slnntzj " sinn¢Ij)

* . L_ fzjd(c0sn¢2j cosn¢ij) .Pzn = n

5.g.9.2 Pressure Loads

(111)

The user has the option to specify pressure loads acting normal to the surface of a conical

shell element. The direction of the load is in the w direction shown in Figure 3. Each pressure

load, pj, (there may be several J's for each element) is uniform over the slant length of the

element, ¢, and between azimuth positions _lJ < ¢j < ¢2j '

5.9-26 (3/I/76)
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The pressure load is beamed to the adjacent grid points in such manner that the center of

pressure is preserved. The generalized forces at grid point(_) due to pressure load on the coni-

cal shell element between grid points (_) and (_) in Figure 3 are

Ira )
_- _ Pj(¢zj" eli) 'PWo • +

Pwn = _ + _ pj(sinnCzj - sinn_lj) , \ (I12)

Pwn • . _--+ _ pJ(c°snCzj - cosn¢lj).

The generalized forces in the w direction must, of course, be rotated into the directions of

the degrees of freedom at the grid point.

5.9.9.3 Mass Distribution and Gravity Loads

The user specifies the total mass to be associated with a grid circle. The program then di-

vides the total mass by 2 for n _ 0 and constructs a diagonal 3 x 3 grid point mass matrix in the

usual manner. (The total mass is used for n , 0.) The user can also specify c.g. offsets in the

(r,z) plane and rotary inertias about three orthogonal axes. Rotary Inertlas are _peclfied as

inertia per unit length for each grid circle and are multiplied by 2_r for n = 0 and by _r for

n > O. The latter option (of specifying c.g. offsets and rotary inertias) has not been implemented

in the program.

Structural mass density, Ps' and nonstructural mass density, Pns' can also be specified for

each conical shell element. The equivalent concentrated mass at grid point (_ due to the element

between (_ and (_) in Figure 3 ts

Ma - 2_¢ /
r a

which is divided by 2 for n > O.

The gravity vector is specified by its magnitude, by its azimuth (¢g) and by the angle (Bg)

that it makes with the negative z axis (see Figure 3). Gravity loads excite deformations In the

n • 0 and n - 1 harmonics only. The distributed gravity forces acting on a grid circle are
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fzg

f@g

frg

so that, using Equations lOl and 102

= . M_r ¢OSSg

= . M_r sinBgSin(¢-¢g )

= M-_'-sinegC°S(@'¢g)2nr

2=

" S fz g rd¢ = - Mg cOSeg ,Pzo o

2=

= f f¢gsin¢ rd¢ = - _sinegCOS_gP_I o

. 2=

• - S f@gcos$ rd$ • - _sinegsinSgP$1 o

2=

Prl " f frgcos¢ rd¢ = ?sinegCOSCg
o

Z=

Prl* • o_ frgsin¢ rd¢ = ?sinegsintg ,

(114)

(11s)

V

which are the only nonzero generalized forces. Note that the lateral load is divided eclually be-

tween a radial (r) and a tangential (¢) component.

5.9.9.4 Loads Due to Temperature and Enforced Strains

Temperature is specified at each grid point circle in either of two ways:

(a) As the harmonic coefficients in the expansion

m m .

T = TO + Z T cosn¢ + Z Tn sinn¢ . (116)
n-l " n=1

This option has not been implemented in the program.

(b) As a set of values, Ti, at azimuth positions, ¢i" The temperature is assumed to vary

linearly between azimuth posltfons where it is specified.

The harmonic coefficients in Equation 116 are in the correct form for use wlth the starred

and unstarred degrees of freedom In Equation 102. If the second method of specifying temperature

is used, the harmonic coefficients are computed as fOllOWS:
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2_ I k

I I T(_)d® -_i_l(Tl * Ti.l)(_i,1 - _i)TO = _r_O

i ;w., _,, ' - •

OF PCO;_ _..,.',-_;'Y

(1171

where ¢k is the last specified position, tk+l = 2_ + $I' and Tk+1 • TI.

T n 2_ k f¢i+lF• . - Ti +IiT(_)cos._d_ __Z'I_iT o

= _ I!I ¢i+I " @I n

'T÷;_1 -,,)t
sinnci+l " sinnCiI

Tn

217

. ]- [ T(¢)sin.¢d_
17

0

• _ i!l $I+I " @I "n "c°snci+l + c°snCi

+ n2 slnnCi+l - sinnCl.- nCi+Icosn¢i+I + nCfcosn¢i

cosn¢ d¢

(lls)

(119)

The temperature is assumed to vary linearly along conical shell elements between grid clr°

cles. Thus for a conical shell element between grid circles _) and (_),

T = Ta + ¢_ "(Tb - Ta ) (120)

The incremental strainsThe harmonic coefficients of temperature vary in the same manner.

due to temperature and enforced strain are

A£ s

The harmonic coefficients of strain have the same form, i.e.,

(121)
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_Cso • _sTo + _Cso •

ACsn = asTn + _Csn ' I (122)

)ACsn = _sTn + _sn '

v

and similarly fop the ¢ components. Incremental shear strains, Acs¢, are excluded because they

cannot be induced by temperature in an axlsy_wnetric shell and because there is little application

for enforced shear strains. The incremental strain vector for the nth unstarred parameter set may

be written

{Acn}

l_sTn a + _¢sn t

" l%Tna _ _¢@n 1 + s (Tnb " Tna)
C&S I •? (123)

The generalized forces acting on strain components that are generated by the incremental

strains are

{Fn} = nrt[E](A¢ n} , n > 0 ,

{Fo} - 2_rt[E]{A¢ o}

(124)

and the generalized forces on the independent constants {qn } are

{Pqn} = _ [Hcq]T{F n} ds
o

= (12s)_t yr [H{q]T[E]{ACn} rds, n > 0
O

The generalized forces acting on the degrees of freedom {Uen} at the ends of the element and

represented in the coordinate system for the element are

{Pen} - [Huq'l](Pqn} (126)

The integration indicated in Equation 125 can be neatly expressed in terms of the integrals

Inm defined in Equation 82. The results for the unstarred parameter sets are, for n > O,

Pln " n(loIAn + llIBn )

E
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{PEn} = n([llAn + [ZlBn )

{P3n } = sJn_(Io1A n + I11Bn) ,

{P4n) - sin_(ZllAn + I21Bn) + IoICn + IllOn

{Psn} - cos_(loiAn + lllBn) ,

{P6n} - cos_(lliAn + 121Bn) ,

{P7n) • cos)(121An + 131Bn) ,

{P8n} - cos_(131An + 141Bn) ,

{Pgn} - 0 ,

{PlO,n} - 0 ,

where

An - tE12(%Tna + 6%n) + tE22(%Tn a + 6¢¢n ) ,,

8n - _ (Tnb - Tna)(E12_ s + E22_@)

Cn - tEll(%Tna + _¢sn) + t£1z(atTna + 6¢¢n) ,

Dn - _ (Tnb - Tna)(Ell_s + El2_¢)

(127)

The rlsults for starred parameters are the same with the substitution of starred temperature

components. The results for {Pqo } are obtained by multiplying the above formulas by Z.

v

5.9.9.5 Enforced Displacements

Enforced dlsplacements at a grld ring are introduced into the program by specifying the har-

monlc coefficients in Equation I02. Note that the motions at all points on a grid ring in a given

coordinate direction (e.g., u¢) are thereby restrained. It is not possible to constrain motions at

selected azimuth locations and to leave all other points free, without destroying the symmtry of

the structure.
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5.9.I0 Data Reduction

Displacement information can be requested in two forms:

(a) The harmonic coefficients of motion on a grid circle defined in Equation I02.

(b) The motion at specified locations, ¢i' on a grid circle obtained by evaluating Equation

I02 for each ¢i"

Internal force, moment and stress information can be requested in the same forms, evaluated

at the two ends of a conical shell element (or within other types of elements If such are pro-

vided).

The internal force and moment components within a conical shell element are

{F} = {Fs, F¢, Fs¢}T , membrane forces/unit width

{V} = {Vs, V$}T , transverse shear forces/unit width

{M} = {Ms, M_, Ms$}T , bending and twisting moments/unit width

Fs, F¢, Vs, Ms and Me have even symmetry, similar to uz in Equation I02. Fs¢, V$ and Ms¢

have odd symmetry, similar to u¢ in Equation 102.

The Fourier components of internal forces are evaluated by the following procedure, illus-

trated for unstarred components.

I. Obtain the displacement vector for the element, {Uen}, from the {Ugn} vectors at its

two ends.

2. Evaluate the independent constants {qn } from

{qn} = [Huq]-l{uen }

3. Evaluate the harmonic components of.strain from

{¢n} - [Hcq]n{q n}

(yn } - [Hyq]n{q n}

{Xn} = [H×q]n{q n}

(128)

(129)
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4. Evaluate tnternal forces from

{Fn} - t[E]{_n - Acn} ,

{Vn} - ts[G](yn}

{Mn} = [D](×n}

(130)

where {_¢n} is the incremental strain vector given by Equation 123. [Hcq]n, [H×Q]n and {_¢n}

contain distance along the shell, s, as a parameter. The formulas are to be evaluated for s - 0

and s - 4. The procedures for starred components and for n - 0 are identical. (No factor of 2

this time).

Membrane stress components are obtained from

{_nm} - [E]{_n - A¢n} (131)

In evaluating combined membrane and bending stresses at a distance h from the neutral sur-

face In the w direction, It is assumed that the materlal property is expressed by [El. Thus

{On(h)} - [E]{_n - A¢n - hXn} (132)

Components of internal forces and stresses at specified azimuth positions, {¢i}, are ob-

tained by

m m ,

= Fn sinn¢I + Fo , (133)F(_i) Z Fncosn¢i + _1n-1 n

for quantities with even symmetry, and by

m . m .
• ÷

F(¢i) n_l FnstnnCi F° " n-lZ Fn cosn¢I
, (134)

for quantities with odd symmetry.
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Figure I.
Coordinate geometry for conical shell element.
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(a)

B(") (.)
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J+) \ 8(+)/
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Rotations that Determine _/

Twisting Strain

(b) Determination of

Radial Direction
I

eW I 8wCOS_ + 8sin_

Normal to
Surface / _

I

C&

I
I

""-"'-"-" _ axis of cone

generator'
of cone

Figure 2. Geometrical relationships used in calculatiop of _wlsting strain.
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5.10 THE DOUBLY CURVED SHELL ELEMENT

5.10.1 Introduction

The formulation of the toroidal ring (and shell cap) elements described herein is derived

from, and is mathematically consistent with, the _ormulation described in Reference I.

One of the first discrete element models put forward and one which has since been the subject

of numerous research investigations and reports is the singly curved ring element formed by a

section of revolution of a thin conic shell, (see References 2, 3, 4, 5). The reason for this

widespread attention is twofold. First, there exists a broad and important class of axisymmetric

thin shell structures which are readily idealized with the conic ring. Second, behavior pre-

dictions based on the conic ring have proved, in some cases, to be very poor.

References 6 and 7 have attempted to lay down guidelines in developing shell discrete elements.

These references identify the primary sources of difficulty with the associated discontinuities In

slope which occur along element circumferential interface lines in the conic shell idealization.

Having made this identification, it follows that an advanced ring element is needed which avoids

the troublesome discontinuities. The analytical development of the doubly curved shell element

used in NASTRAN is presented herein.

A mathematical representation is formulated for a doubly curved ring element. This versatile

configuration, defined by an arbitrary section of revolution of a complete right circular toroidal

shell, permits a smoothly continuous idealization of general axlsymmetric thin shell problems.

Section S.lO.3 is devoted to the construction of admissible displacement functions. The importance

of selecting appropriate displacement functions cannot be over-emphasized since they serve as a

basis for all response characteristics of a discrete element model. Osculatory membrane and hyper-

osculatory flexure displacement functions which embody generalized degrees of freedom are con-

structed to achieve smoothness in stress predictions and to minimize the numper of discrete ele-

ments required in a structural idealization.

A general Lagranglan function is utilized to derive a set of element matrices. The appro-

priate function is,

_q-"_+ _t ('-7-) • 0
Bqr

, (I) ._-.

_AG__ITITEFIT:C:'iALLY -_LL_
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where

qr " rth generalized displacement coordinate

qr - rth generalized velocity coordinate

¢I = total potential energy

@Z - total kinetic energy

Application of this Lagrange equation yields the following element matrices

I. Stiffness [K]

2. Pressure Load {Fp}

3. Thermal Load {FT}

4. Prestrain Load {F¢}

5. Gravity Load {FG}

6. Stress IS]

7. Mass [M]

At present other types of structural elements cannot be combined in NASTRAN with the doubly

curved shell element in the solution of problems. The loads that are applied to the doubly curved

shell element must be axisymmetric. For more general loading conditions the conical shell element

described in section 5.g may be used,

V
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THE DOUBLY CURVED SHELL ELEMENT

5.10.2 Coordinate S_stem Definition

The basic coordinate system employed Is toroidal, wh|ch is a righ_-handed orthogonal curvi-

linear system as shown in Figure 1. The mtdplane of the shell is defined by the (=,_) coordinate

surface. Principal curvatures of the shell are aligned with the coordinate axes. Complete

characterization of the coordinate system is achieved by specification of the metric parameters,

A and B, and the principal curvatures of the shell surface, R and R_.

The definition of an increment of length, for a toroldal shell, is

(as) 2 . (d_) 2 + (dn)2 , (])

where d( Is the increment of length along the meridian, and dn is the increment of length along the

azimuth. This leads immediately to the definition of the Lame'parameters, t.e., the metric

parameters,

(2)

where _ is defined in Figure 1, and B is the rotation about the polar axis.

Restricting consideration to circular cross sections, we first write from observation of

Figure 1 the expressions for the coordinate radii of curvature:

R_ - a ,

b
R_ - a +_ (3)

By virtue of the curvlllnear coordinate axes chosen, these are the principal radii of curvature of

the shell mtdsurface. The radius of curvature R ts simply the radius of the circular cross

section. Note that, whtle R= ts constant, R5 is a function of the o coordinate.

The Lame" parameters of the coordinate system also follow directly from observation of

Figure I:

(4)B " b + a stn_

S.10-3
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The conventional characterizationof the curvilinear coordinate systeJn,just stated, does not

allow convenien¢ transition of the toroidal segment ring elemnt to a conic segment ring element

as a special case since (a), and therefor_ (A), would approach infinity. A specification based

on arc length is developed in order to incorporate the conic segment ring element as a special

case. With refe_nce to Figure l, the sys_mcharacterlzation is n_odifiedas follcws:

(ds)z

R

RB

. (d¢)2 + (BdB)2 ,

= 61 ,

r 1 a sin _1
• a +

sin( l+ sln(=1+

A - 1.0 ,

B - rI + a sin(_l-+a_) a sin_l

(s)

V

where

O_ {_ a(_z- _l)

An alternate specification is n_ easily derived for the case of the conic segment ring

element. This-special form is obtained by rewriting R_ and B as

rI sin(_l + _) - sin_1
R_ - +

sln(_l + _) (_)sin(c_l+ _)

8 • rI +
sin(_l + _) - sin_l

(6)

Invoking L'Hospital's rule we obtain the desired characterizationof the conlcrinq

O& m

rI cos=l

(7)

V
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THE DOUBLY CURVED SHELL ELEMENT

A = 1.0
|

ORIGL_IAL PAGE ;_
OF POOR QUALI'i'y

B - r I + { cos= I ,

where

0 _ { ! [(r2 " rl)2 + (z2 " zi)2]I/2 •

Note that further speciallzation to a cylindrical_ri_j___ is immediate, i.e.,

C&

RB • r1

A = l.O

(s)

B -. rI .

Also note that for the special case of the shel...._lca.__element, _l = O, and r 1 • O, so that

in this case

R • a •
c&

RB = a m

A - 1.0 ,

B - a sln(_)

(9)
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5.10.3 Displacement Functions

S.lO.3.1 Introduction

The ge_tric shape and the notation used with the doubly curved ring element are illustrated

in Figure I. By virtue of the assumed axisymmetry of the problem the displacements are functions

of a single coordinate. In particular, with reference to Figure l, the displacements may be

written in terms of the meridional arc length coordinate _, i.e.

(1)

in the assumed function are referred to as "generalized coordinates". Although

Explicit consideration is given to _e construction of displacement functions which satisfy

admissibility requirements. Specifically, admissibility requires that the assumed displacement

functions be complete up to the orcb_r of truncation, enW:ody all rigid body displacement modes, and

provide for interelement continuity. Adherence to this definition of admissibility allows con-

vergence criteria, proven within the framework of continuous mechanics, to be invoked in inter-

preting predicted behavior.

5.10.3.Z Men1:rane Displacement Function

The construction of complete displacement functions which provide for interelement continuity

is particularly simple in the present problem since the functions are essentially one-dimensional.

The proper incorporation of rlgid body displacement modes can be verified using _e strain dis-

placement relations presented in Section 5.10.4.

Displacement parallel to the meridian will be called "membrane" displacement because it is

the princlpal contributor to membrane strain, see Equation 2 of Section 5.10.4. The me_rane dis-

placement function is taken to be a complete cubic in the nwjridional arc leng_ {, i.e.

u(_) = Bl + _2_ + B3_ 2 + B4_ 3 (2)

The coefficients Bi

only two generalized coordinates are needed to establish the required piecewise continuity of

me_rane displacement, four are provided by the assumed complete cubic. The two "extra" coeffi-

cients are included to obtain improved stress continuity across element interfaces by imposing

5.10-6
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continuity of the first derivative of displacement. OF ?_CR _lJAL)I'I'Y

The use of generalized coordinates as degrees of freedom affords maximum simplification in

the development of algebraic expressions for the energy functions; however, in order to apply

physical boundary conditions to an element it is necessary to transform to element boundary or

grid point degrees of freedom {qrm}, i.e.

(Bm} - [r_)]Cqrm} , (3)

where

{Bm}T . L-BI,_2' _3'B4m , (4)

{qrm}T - Lu I, U{l, u2, u{2..J , (5)

in which the notation implies that

u{1 " _(-0, etc. (6)

The transformationmatrix is obtained by imposing the following boundary conditions on the

assumed function:

• ; u_(_)l -u{({)l{-O u{ 1 {-s uE2

, (7)

(8)

Thus

m

1

0

3

"7
2

7

m

0 0 0

l 0 0

.z_ 3 i

1 2 1

7 "7 V

S.10-7
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It is pertinent to note that, while the above development has been conceptually and algebra-

ically simple, the development of admissible modes for arbitrary two and three dimensional shapes

would be much mare difficult.

5.10.3.3 Flexural 0isplacement Function

Displacement normal to the meridian will be called "flexural" displacement because it is the

only contributer to flexural curvature, see Equation 3 of Section S.lO.4. The flexural displace-

ment function is taken to be a complete quintic polynomial in the meridional arc length _, i.e.

w(¢) = _5 + S6¢ + B7_2 + @8_3 + 8g{4 + BIO_5 (I0)

Only four of the six generalized coordinates are required to establish interelement continuity

of transverse displacement and slope. As in the case of the membrane displacement function, the

additional degrees of freedom are provided to obtain improved stress continuity across element

interfaces by imposing continuity of a higher order displacement derivative. Accordingly, con-

tinuity of the transverse displacement function value, first derivative, and second derivative

is maintained.

The generalized coordinates are employed in the derivation of the element representation.

Transformation is then made to grid point degrees of freedom {qrf} i.e.

(Bf} " [rB_f)]{qrf} , (ll)

where

{sf}T . L__s' _6, s7, Bs, _9, Blo--J ' (iz)

{qrf}T - L..wl, WEl, w{{ l, w2, w{2, w_Ez_J . (13)

The transformation matrix [rB_f)], is obtained by imposing the following boundary conditions

on the assumed function:

w({)l{,o = wI , w({)[{,s - wz ,

V

V
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OF POOR QUALITY

- , w{(_)I - w. ,w{({)[_-o w_1 {-s _z

w{{(¢)[{.O = w{{I , w{{(C)[{,s = w{{2
(14)

Thus

[rB_f)]

1 1

1 , 0 , 0 , 0 , 0 , 0

0 , 1 , 0 , 0 , 0 , 0

1
0 , 0 , _ , 0 , 0 , 0

10 6 3 10 4 1

",_' _' "_ ' 7' 7'

15 8 3 15 7 l

6 3 1 6 3 1

"V' "7' "_' _' "7'
1 1

(15)

The full transformation from generalized coordinates to displacement degrees of freedom can

now be written

{B} - [rsr]{q} , (16)

whe_

{B}T = L.Bl ' B2' B3' ..... SIO_ , (17)

F.(m):o ]
Crsr]. I_____I.;_F_I, (_,>

L° F,;_!

{q}T • L.Ul , u2, u_z wl, w , wZ, w_{z._ . (19)• U¢l ' W{l' {_I w_2'

The reader mey _cognize the membrane dlsplac_nt function as a _11 kno_ Lagrange

osculatory interpolation formula and the flexural displacement function as a hyperosculatory

JnCerpo]atlon function. The ftnal form of the displacement forms might well have been wrttten

5.10-9
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immediatelywithout development. The approach taken here was adopted for two reasons. First, it

is applicable without conceptual extension to complex elements where standard interpolation

formulae are not applicable, and second the generalized coordinates afford considerable algebraic

simplification in deriving element representations.

V
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5.10.4 Potential Energ3

Consideration of the potential energy function must be preceded by a statement of the strain-

displacement and stress-strain relations appropriate to the axisymmetrtc thin shell problem, The

general strain-displacement relations are:

.where the membrane strains are

= + zH

¢@ = es + zl.l_

(])

I @u I

(z}

and the flexural curvatures are

• l _ _wH= " X'_' (_)

• 1 a8

(3)

Introducing the coordinate system characterization derived in Section 5.10.2, the following

relationships are obtained:

(4)

H{ • - w{{ ,

H_ • - kzW ,

where the notation kj is defined, as follows:

1
kl • r '

r(

5.lO-11 (411172)
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1 _B
X2 = _T ' (6)

I

RB "

V

It must be remembered in giving explicit expression to the Lj that the degenerate conic and

cylindrical conflgurations require a special form.

Linear elastic material behavior is assumed. In accordance with this assumption a generalized

Hooke's law is employed. The elastic material behavior is assumed to take place from an initial

state of prestrain, ¢i' and an Initial state of prestress, Go, l.e.

{o} - {oo} = [El {{_} - {_i}} . (7)

The initial stress and strain vectors are assumed to be prescribed.

IS] is

The coefficientmatrix

Since the matrix must be symmetric, E vB_ = EB vo_6, Note that orthotropic materials are

Having written equations governing strain-displacementand stress-strain, the desired

Beginning from the strain energy density definition

(9)

permitted,

energy function can be constructed,

U' = / Ld¢l{_} I

the governing stress-strain relation is introduced to obtain

u . /[(½)L=J [E](,} - LcJ E](ct} ÷ LCJ {%})dV

where (¢i} is the prestraln and {oo} Is the prestress.

(I0)

Carrying forward the previously defined separation of membrane strain {e} and flexural

curvature {H} ylelds, after integrationover the shell thickness,the following expression for the

potential energy.

5.10-12
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U s

-(/:2d,)Lal[,]CHi,.i/,2d,)LHJ{o,o}l

(11)

dA

The prestrain and the prestress are related to their membrane and bending components by

{¢i } _ {ei} + z {Hi}

{oo} _ {_mo } + z {:fo }

(12)

Up to this point no assumptions have been made regarding the form of the prestrain and pre-

stress distributions along the merldional coordinate, Explicit consideration will be given to the

specification of these quantities subsequently; it is assumed here, however, that the prestrain

distribution is linear and that the prestress is constant. The membrane prestrain and the curva-

ture can be expressed in terms of their constant and linear components,

{,i}_ ce_}+ (_){eiI"} ,
(13)

where s is the arc length of the element.

Invoking these assumptions and introducing a convenient symbolic notation, the energy func-

U I

tion is rewritten as:

LeJ FIk]{e} + Le/ {I}

LeJ cI°} - (sC)L,,J {:,1}

+ ½ LHJ[Jk]{H} + LH_J{J_}

- LHJ{jo}- (s(-)LHJ{J_ I}I Bd_

(14)

_r
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where, with the thickness of the shell represented by t,

[Ik] - 2_t[E] ,

OF POOR GU,_LI'r'/

V

{Ia} - 2nt{oo} ,

{I¢l} = [Ik](ell}

[Jk] • _ [El ,

(15)

{J_} • [Jk]{Ofo} ,

(jO} • [jk](HiO} ,

{j¢l} = Zjk]{Hii}..... .......

L

5.10-14
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5.10.5 (lenientStiffness Matrix OF POOR _UALITY

The next step in constructing the element representation is to dlscretlze the element by

introducing the previously derived displacement functions. The generalized coordinates are trans-

formed to displacement degrees of freedom, and the energy functions are substituted into the

Lagrange equation. The element stiffness matrix and the load vectors then arise as stationary

conditions of the total potential energy. The stress recovery matrices are derived from equili-

brium condltlons.

The contribution of linear elastic stiffness to the energy function is, from Equation 14 of

Section 5.10.4, omitting terms due to prestress and prestraln

Ck "/1½ L-e-J [Ik]{e} +½L-H-J [Jk]{H}l Bd{
(I)

Substituting for strains in terms of displacements, using Equations 4 and 5 of section 5.10.4,

yields

i

- / [u_ + 2_,lU_W+ kl2W2]

+ ½ Ikl2[2>'Iuu{ + 2;k3uEw+ 2),l>,2uw+ 2>,I_3W2]

+ ½ Ik22[_)u2 + 2_2_3Wu + k)w2]

+ ½ Jkll[w{{2]

+ _ Jklz[2AZw{w{(]

(2)

The development of an algebraic expression for the elasttc strain energy is now pursued by con-

sidering each of the energy contributions of Equation 2 individually. That is, each displacement

quantity is expanded in terms of the assumed functions, and the indicated In_gration is carried

out.

S.lO-tS
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Addition of all the energy contributions yields

ORIGINAL PAGZ _
OF POOR QUAL;'I'Y

(3)

v

Transformation from generalized coordinates to displacement degrees of freedom by means of

Equation 16 of Section 5.10.3 produces the element stiffnes matrix

[K] = [rsr]T[K--][rBr] (4)

Explicit algebralc representation of the elements of [K-l,which is a 10 x 10 matrix with as

many as thirteen terms in each element, is given in Section 8 of the Programmer's Manual. The terms

are functions of the following Integrals, with the index (j) ranging from zero to ten.

o

o

s

o

> (s)

o

o

The k's are defined in Equation 6 of Section 5,10.4, The most general form of B Is glven by

[quatlon 5 of Section :5.10_, ..........................

V

L
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5.10.6 Load Vectors

THE DOUBLY CURVED SHELL ELEMENT r

OF ,:C¢_-_ <.... ,

5.10.6.1 Prestrain Load Vector

The prestrain membrane contribution to the potential energy is, from Equation 14 of Section

5.10.4

(_m_

$

;[ LeJ {,o}. }LeJ c,,1}],d,
O

$

f [ LeJt',; e  + LeJr';kCei' ] sd,
o

(1)

Substitution of the stress-straln relationships, Equation 4 of Section 5.I0.4, and integration

yields

@me " LB--J[F_¢]TEIk]{e_} + LB-J[Fm{l]T[Ik]{ei I} ' (Z)

where

[FmO¢] " ' I , (3)

The _ Integrals are defined in Equation 5 of Section 5.10.5.

The prestrain flexure contribution to the potential energy is

,,. - /[LH_I {,O}÷}LH_I{,.'}]Bd,
o

S

O
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Substitutionof Equation 5 of Section 5.10.4 into Equation 5 yields

~OT 0
¢f¢ " LB] [Ffe] [Jk]{Hi} + L_B_J [Ff¢l]T[Jk1{Hil} , (6)

where

,o,o,o,o,._,._,._;,._, ._

,o,o,o,o,._;,._,._;,._;,-_j
Transfomlng from generalized coordinates to grid point displacementcoordinates and sub-

stituting into the Lagrange's equation, Equation l of Section 5.lO.l, the prestrain load vector

is obtained.

r T_OTI 0{F¢} - [ Be] [ me] [ k]{ei} + [r_r]T[Fm¢l]T[Ik]{eil}

(g)

rr ITr_ 01Trj l_HO_ +Sr_ _ fcJ _ k_" i' [I'sr]T[Ff¢l]T[Jkl{Hil}+

where

, , , J (I0)
{F¢}T = LF{I' f{l' F{Z' f_2' FzI MI31 fzl' Fz2 MBZ' fzz--

Note that the f terms correspond to the extra displacement degrees of freedom and have no physical

meaning.

5.10.5.2 Pressure Load Vector

I1_eexternal work done by the normal pressure on the displacements is,

W = /'p(_) w ({) dA (ll)
J

V

V
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Assume a linear pressure distribution with

P2" Pl
P = Pl s (12)

dA = 2_BdE (13)

Thus

W •

o

p({) w (_) Bd{ (14)

Substituting for pressure and displacement yields

where {_p} contains only integrals of the type

Expllcltly,

s6( • {JBd(

o

{Irp} • 2x

0

0

0

0

pl_ P2 " Pl+ s 61

p1_l + P2 " Pl

pl_ + P2 = Pl

p1_ + P2 " Pl

p16_ + PZ " Pl

5.10-19
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Introduction of the transformation from generalized coordinates to grid point displacement

degrees of freedom, and substitution into the Lagrange's equation yields the pressure load vector

{Fp} - [r_r]T{_p} . (18)

5.10.6.3 Thermal Load Vector

The themal load vector is a special case of the prestrain load vector. The necessary change

is effected by substitution of the thermal strains into the prestraln vectors.

Four temperatures are given:

Tli inner temperature at grid point l

Tlo outer temperature at grid point l

T2i inner temperature at grid point 2

(Ig)

T2o outer temperature at grid point 2

The thermal membrane strains and the flexural curvatures are

{eOT}T Tli + Tlo L_, %J• 2

T21 + T2o-{eT l}T " 2

Tli - Tlo
{H_ }T " 2

T1i + TI°IL_{' _B]
2

aG ' _BJ •

(20)

Substitution of these expressions into the prestrain load vector, Equation g, yields the

thermal load matrix.

5.10.6.4 Gravity Load Vector

l)le gravity load vector is obtained by calculating the work done by displacing the element

mass. Thus

W - [p CwTdV .
J

The mass density is given by p, and the acceleration of gravity by G.

(21)

is the deformation along

5.10-20
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This deformation is

; = w cos(_ 1 ÷ _) - u sin(_ 1 + ¢)

OF PCOR (_,,A-,_ f

(22)

where u and w are given by Equations 2 and I0 of Section 5.I0.3.

Substitution into Equation l with dV - tBd{dB yields

. - {rG , (23)

v

where

{rG} • 2'n'pGt

. /S sin (=l+¢)Bd(

o

- / sin (_l+*)_Bd_

- / sin (_l+¢)_2Bd_

sin (_l+¢)_3Bd_

o

Cos (=I+¢)Bd(

o

cos (al+¢)_lBd_

o
5

cos (=l+_){2Bd_
o

cos (=1+_)_38d_

cos (c$1+¢)_4Bd_

s

cos (=l+¢)_5Bd_

(24)

Introduction of the transformation from generalized coordinates to grid point coordinates and

substitution into Lagrange's equation yields the gravity load vector

5.10-21
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{FG} - CrBr]T(FG} . (2S)
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5.10.7 Stress Recove_

The element stresses ape given by Equation 7 of Section 5.10.4 as

(a} • [El {{_}- (_t}} + {oo} ,

,'k_._._ '+¢_r._. "i _

(1)

where

{a} T - La_, _/ (2)

For shell problems it is more convenient to work wtth stress Pesultan_ acting in the middle sur-

face of the ele_nt. These ape glven by Novozhllov, Reference (8):

T_ • _¢ (1 ÷ )dz

t/Z

t/2

t/2

M_ - /_B(l+_-_)zdz
A/z

(3)

In detemlnJng the dlsplacements, the contribution of the shear stress ¢¢z to the strain ener_

was neglected.

The transverse shear force, Q_, can, however, be evaluated from momentequilibrium, see

Ffgure 2 _nd Reference (8).

_M8
Q_ - X2(M_ - M_) ÷_- . (4)

By substitution of the stress relationships, Equation 1, into Equatton 3, _nd by subsequent Sub-

stltutlon |nto Equation 4, a11 stress _sultants ape obtained. Figure 2 shows the positive dtr-

ectlon of the stress resultants. The stress resultants artstng from el asttc stress, prestratn

and prestress wtll be developed separately.

5.10-23 (4/1/72)
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By proper substitutionthe elastic stress resultants are obtained in terms of the

displacements:

T{ - t[Ell(U_ + Xlw) + El2(xzu + X3w)] ,

TB - t[E]z(U{ + XlW) + Ez2(X2u + _3w)] ,

t3
MB • _[Ell(-W_{ + _lU_) + EI2(-Lzw_ + Xl_ZW)] ,

t3 [EI2('w{{ Xl +H_ - _ + u_) + EZZ(-Xzw_ XlXzW)] ,

t3
Q{ - _{Ell w_{{ - XzE11 w{_ + (X_E22 - k4E12)w{} ,

where

and the simplifying assumption

1 +_-_=I +_-_B=I ,

has been made.

Introducingthe assumed displacement functions into Equation 5, yields,

where

{Te} - [_l]{_} •

{Me} - [_Z]{_} ,

Qe " L_3J{_} '

{Te}T - L_T{, TB_.J ,

(s)

(6)

C7)

V
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(s)

{Me}T = L_HB, H{_ .

_e eleme,ts of CT1],LTz] and[_3_are li_ted tn r,bl, 1 on p,gesS.10-31,nd S.10-32.

Introduction of the transformation fr=n generalized coordinates to grid point displac_n_nts

yields the stress resultants

{Te} - [Sl]{q}

{Me} - [Sz]{q} , (9)

qe " Ls3J(q} '

where

IsI] - [_l]CrBr]

IS2] • [_21[rar]

Ls3J = L_3JCrBr]

, (1o)

For l_e special case of the shel..._j.lcap,element, the following specializations are made

ds)
cos(el+_

X2 - , (11)
r I - R [sln= 1 - sin(= I + _-_)]

G

I

x4 " " _ • (13)

Equations 4, 5, and 6 are then modified to reflect these changes,

ships in Table 1 are replaced by

In addition, the relation-

=
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Sl,2 " E12 + El1 '

S2,2 " E22 ÷ E12 '

_3,7 " "2(E12 + Ell)

34, 7 = 2(E22 + El2)

35, 8 " 3(E22 - 4Ell)

where

, (14)

From Equations II and IZ of Section 5.10.4 the prestrain is

(¢1} - {{eO} ÷_ {el}} + z {{Hi} + _ {Hli}} , (IS)

The stress induced by prestratn ts

{¢i }T - L-¢i{. ¢i@-] , (16)

(oi} - [E](_i} . (17)

Substitution of Equation 17 into the stress resultants, Equations 3 and 4, produces the prestrain

• t([E]{e_} +_[E]{el}} ,

t3 ([E]{H_} ÷ _ [E]{HI}}• T_"

t 3
" T_.(_zLEll - El2. E12- E22-1 {(H_}

(Ia)

{Ti}

(M i}

, Qi

sCress resul rants

The thermal stress resultants follow immedia_Iy by substitution of l_e thermal strains,

Equation 20 of Section 5.10.6, into Equation lB.
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The prestress relationship, Equation 12 of Section 5.10o4, is

{a o} = {amo} + z(_fo} . (19)

The prestress stress resultants are given by

{T}

6Mo }

• t{Omo}

t 3
(20)

Qo • 0 .

Finally the complete stress resultants are:

{T} • {Te} - {Ti} + {To}

{M} - {Me} - {Mi} + {Mo}

Q " Qe " Qi + Qo "

(21)

Note that the stress resultants at any point within the element may be obtained by substitution of

the proper value of the { coordinate.
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5.10.8 Kinetic Eneray and Mass Matrlx

ORIGI,,,-,L • • ....
•, _ "T')

OF FOOR q-'"_'_' "

The approach taken In expressing the element kinetic energy is the consistent mass approach

first put forward by Archer in Reference (9). The same displacement functions employed in repre-

senting the element elastic properties are used to find the element kinetic energy. It is further

assumed that the rotational energies are small compared to the translational. By virtue of these

assumptions, the kinetic energy functional takes the form

where

--5

V

FoJ - F%{,pzJ

are the mass density coefficientsin the meridlonal and normal directions,which need not be equal.

The element mass ma:irlxIs obtained by substituting the kinetic energy into Lagrange's

equation. Introducing the assumed displacementfunctions into the kinetic energy functional,

Equation I, yields

where

and

_rl l]

B

4._l,4.4

4_4,4

4,4

4

5.1O-2B (411/7Z)
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[_Z2] " Pz

m

(See Equation 5 of Sectlon 5.10.5 for _flnltlon of _(.)

m m

_. _. _. _. _. _

_, 4.4. _

-.-., j

(s)

The transfomatton from generalized

coordlna_s to displacement degrees of freedom in Lagrange's equation yields the grid point mass

matrix.

[M] - [r_r]T[i_][r_r] (6)
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Table 1. Stress Resultant Hatrices.

_2E12

k2E12_ + Ell

_2E12¢Z + 2El1¢

_2E12E3 + 3E]IE 2

X1E11 + _3E12

(_IE11 + _3EIz)_

(_IE11 + _3E12)_ z

(_IE11 + _3EIZ)_ 3

(_IE11 + _3E12)_ 4

(_IEll + _3EIz)_ 5
m

0

_IE11

2_IE11_

3_IE11 _Z

E12XI_ 2

E1ZXl_ZE - E12XZ

E12_1_2¢2 - ZEI2X2¢ - ZE11

EI2XIX2 E3 - 3EIzXzE2 - 6E11_

E12_1XZE4 - 4EIzXZE3 -12E11 _2

E12Xl_2 _5 - 5E12_2_4 -2OEll _3

_2EZ2

_2E22_ + E1Z

_2E22¢2 + ZE12¢

_2E22_3 + 3E12E2

_IE12 + _3E22

(_1E12 + _3E22)_

(X1E12 + _3E22)_ Z

(_IEIz + X3Ez2)¢ 3

(XlE12 + _3E22)_4

(_IEIz + _3E22)_ 5
m

0

_IE12

2_IE12E

3_IE12 E2

EZZ_IXZ

EZZXlXZE - EZZX2

E22_1_2_2 - 2E22_2_ - 2E12

E22_lX2_ 3 - 3E22_2_2 - 6E12_

EZ2XI_2_4 - 4E22_2_3 -12E12 _2

I E_2XlXZE5 - 5EzzX2E4 *2OE1z_3 _
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Table I (Continued)

t3

"0

0

0

o

0

-x_E22 + X4EI2

2{(-X_E22 + _4E12) + EII(2_2)

3{2(.X_E22 + X4EI2) + EII(6{_2 + 6)

4{3(._22 + X4EI2) + Ell(12_2_2 ÷ 24{)

5{4(-X_E22 + L4EI2) + EiI(20(3_2 + 60{2)
m

m

V
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rI w

A

R= ffi a

Sectton A-A

Figure I. Toroidal thin shell ring representation.
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Figure 2. Definition of stress resultants.
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5.11 SOLID OF REVOLUTION ELEMENTS

For the purpose of analyzing axisymmetric structures, NASTRAN includes two different shapes

of axisymmetric solid of revolution elements (triangular and trapezoidal) for two different

conditions of loading (axisymmetric and nonaxisymmetric). The elements described in this chapter

are as follows:

TRIARG - An axisymmetric triangular ring element with axisymmetric loading capability.

TRAPRG - An axisymmetric trapezoidal ring element with axisymmetric loading capability.

TRIAAX - An axisymmetric triangular ring element with nonaxisymmetric loading capability.

TRAPAX - An axisymmetric trapezoidal ring elemont with nonaxisy_trlc loading capability.

The TRIARG and TRAPRG set of elements may be used separately or together and the TRIAAX and

TRAPAX set of elements may be used separately or together. These two sets, however, may not be

intermixed nor, at present, can either set be co_ined automatically in NASTRAN with other types

of structural elements. In the discussions that follow, the purely axisymmetric elements (TRIARG

and TRAPRG) are considered to be degenerate cases of the more general elements capable of non-

axisymmetric loading.

The formulation of these ring elements is derived from, and is mathematically consistent with

the formulation described in References l and 2. The ring elements provide a powerful tool for

the analysis of thick-walled and solid axisymmetric structures of finite length. They may be used

to idealize any axisymmetrlc structure taking into account:

I. arbitrary axial variations in geometry,

2. axial variation in orientation of material axes of orthotropy,

3. radial and axial variations in material properties,

4. any loading system including pressure and temperature, and

5. degradation of material properties due to axisymmetric temperature fields.

The discrete element technique was first applled to the analysis of axisymmetric solids by

Clough and Rashid (Reference 3). The formulation of the triangular cross-section ring was extended

by Wilson (Reference 4) to include nonaxis_nnmetrlc as well as axisymmetric loads. Wilson's formu-

lation is extended here to include orthotropic material properties with variable orientation axes.

In addition, the integration of the strain energy over the volume of the ring is affected more

precisely. Thermal and pressure load vectors and mass matrices are calculated.

5.11-I (12/29/78)
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Thus,thediscreteelementrepresentationpresentedconsistsof algebraicexpressionsForthe

Followingmatrices;

I. Stiffness

2. PressureLoad

3. ThermalLoad

4. GravityLoad
5. Stress

6. Mass

[K]

{Fp}

{FT}

{FG}

[s]

[M]

The matrices arise as coefficient matrices in the Lagrange equations for the element.

appropriate generalized form of the Lagrange equation is

- 0

The

(1)

where

qr

¢I =

¢2 "

(_r "

rth generalized displacement coordinate

total potential energy

kinetic energy

r_h generalized velocity coordinate

The contents of this chapter are organized in the following manner. The description of the

basic element geometries and grid point displacement functions are Followed by the general devel-

opment used in formulating the stiffness and mass matrices. Next, the definitions for the

material matrix is given and the general equations for the matrices are specialized for the

individual elements. The differences that occur are noted in the text. The chapter concludes

with the definitions of the load vectors for each element and the stress recovery equations.

5.11.1 General Development for the Axisymmetr!c Solid Elements

The axisymmetric solid elements provide the NASTRAN user with the means of modeling axi-

symmetric structures in which three-dimensional, thick-section stress patterns occur. This

section describes the general basis for the development of the component matrices. The TRIAAX

and TRAPAX elements provide the more general capability by utilizing a Fourier expansion of the

5.11-2 (3/1/76)
V



SOLID OF REVOLUTION ELEMENTS

F

load and displacement terms. Their formulation and usage is similar to the conical shell element

(CgNEAX) described in Chapter lO. The formulation of the more elementary TRIARG and TRAPRG

elements represent the case when only the axisymmetric terms (n = O) are considered. Their form-

ulation differs only in the number of terms to be included in the resulting vectors and matrices.

The differences are noted in the text.

S. ll.l.l Coordinate Notation

The coordinate geometry of the axisymmetric ring elements are presented in Figures l - 5. The

dual coordinate systems illustrated provide for the fact that the element material properties

axes may not coincide with the local element axes.

Any point within the element can be located by ascertaining a radial coordinate, r, an axial

coordinate, z, and an aximuth coordinate, ¢. In the TRIAAX and TRAPAX elements the displacement

degrees of freedom Uri, U¢i, and Uzi, as well as the forces Fri, F;i, and Fzi at each point, i,

are assumed to be sinusoidal 6unctions of the circumferential location, ¢. In the TRIARG and

TRAPRG the displacements Uri and Uzi are constants with respect to ¢.

5.11.1.2 Displacement Functions

These ring elements are assumed to be axisymmetric, therefore, the displacements at a

position (r,z) can be expanded in a Fourier series with respect to aximuth position, @. The

radial, tangential and axial displacements of a point (r,z,¢) located within the element can be

expressed as

u(r,z,,)
m m .

= Uo(r,z) + n_=l Un(r,z) cos n, + n-l_ un (r,z) sin n¢,

m

v(r,z,¢} - Vo*(r,z) + _ Vn(r,z) sin n¢ - n=_l Vn*(r,z) cos he, (2)n=l

w(r,z,¢)
m m

• Wo(r,z) + n_l Wn(r,z) cos n¢ + n-1_ Wn*(r'z) sin n¢.

The coefficients in the above Fourier series can be interpreted as generalized displacement aml_ll-

tudes. Uo(r,z) and Wo(r,z) describe axisymmetric motions of the ring, while vo (r,z) describes

the displacement in the tangential direction. The displacement field for the TRIARG and TRAPRG

elements use only the uo and wo displacements and do not use the vo displacements, which describe

torslonal motion.

5.11-3 (3/1/76)
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Due to the axisymmetry of the ring elements and the resulting orthogonality conditions which

arise, the motions corresponding to different harmonic orders {different values of n) are elasti-

cally uncoupled. Furthermore, motions represented by starred parameters are not coupled to motions

represented by unstarred parameters. For n > 0 the stiffness matrices for the starred and

unstarred motions are found to be identical. The reason for this is that the starred parameters

describe motions that are all shifted _-K in aximuth from the motions described by the unstarred

parameters. Thus, cos{n¢) = - sin(n¢ - _) and sin(n_) = cos(n_ - _). The unstarred motions

will be used to develop the stiffness matrices for n > O. It should be observed that the stiffness

matrix for n = 0 may include both starred and unstarred motions in the TRIAAX and TRAPAX elements

and unstarred motions in the TRIARG and TRAPRG elements.

The degrees of freedom for the ring element are taken to be the values of the Fourier

coefficients in Equations 2 evaluated at the nodes of the element. Separate stiffness

matrices will be evaluated for the following degrees of freedom:

{Ueo}T * ,= LulO, vlO , wlO, u20, v20 , w20 - etc. - J

(3)

{Uen }T = LUln, Vln, Wln, U2n, V2n, W2n - etc. - J

where the subscripts l, 2, and"3 indicate the three nodes of the triangular element {see Figures l

and 4) or subscripts l, 2, 3, and 4 indicate the four nodes of the trapezoidal element {see

Figures 2 and S). It should be repeated that for n > 0 the stiffness matrices for the starred

components will be identical to those of the unstarred components and need not be calculated

separately.

5.li.2 Derivin 9 the Stiffness Matrices

The Fourier coefficients in the series presented in Equations 3 can be interpreted as being

amplitudes which define the generalized displacements u(r,z,$), v(r,z,@) and w(r,z,¢) on the

element. These generalized displacement amplitudes can be related to a set of independent con-

stants {Bn} on the harmonic level, n, via the imposition of an algebraic relationship between the

two in the r and z coordinates. Therefore, if l'Gen}T is defined as

{Gen)T = Lun(r,z),Vn(r,z),Wn(r,z)], {4)

V

V

5.11-4 (311176)
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then the following relationshipmay be obtained

{Oen} " [Ho,B(r,z)]{Bn} (5)

The element strains may be obtained from the displacements by the following standard equations

for strain in a cylindrical coordinate system:

_U

Err )r '

_W

eZZ _Z

. 1 av + u
%¢ r a_ F '

au÷
(6)

1 )u + )__v v
¢r¢ " r _b )r" F ,

)v + 1 lw
¢Z¢ • _-T r _

By substituting Equation 4 into the above functions, and separating the starred quantities, the

strain vector for each uncoupled harmonic, in general, is:

{¢n }

errn

¢ZZ n

c¢¢n

Crz n

n

¢r_

¢z¢n

au n

BW n

)z

n Un

Vn ÷ _r

_un awn
_-_-+ _-T

n aVn Vn
" _ Un + _" T

(7)
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For the TRIARG and TRAPRG elements the strain vector does not contain the last two terms and

the vn terms are omitted. The corresponding starred quantities (_rrn*) have the same form. The

strains vary circumferentially according to the following equations:

{c(_)} {Co}*n_ [%] {%)* _ * *. [cn ](% } , (B)
n=l

where the diagonal matrices [Cn] and [Cn*], obtained from equations 2 and 6, are

[Cn] = [cos n¢, cos n¢, cos n¢, cos n_, sin n¢, sin n¢] ,

(g)

and [Cn*] = [sin n¢, sin n¢, sin n¢, sin n¢, - cos n¢, - cos n¢] .

In the finite element stiffness method, the displacements are assumed to be a function of the

generalized coordinates, _. The strains obtained from Equation 7 in terms of the _ coordinates may

be expressed by the following matrix equations:

{¢n } = [H °(r,z)]{Bo } ,

{En} = [H n(r,z)]{B n} ,

{_n } = [H (r,z)]{B n } .

The strain energy, Ue, of the element is expressed as an integral over the volume of the

element:

(lO)

2Tr

rzo

c_

where the matrix, [Eg], is a basic property of the material defined by Hooke's Law for small dis-

placements, i.e., the basic relationship between the above strain vector and the corresponding

stress vector is

{o} = [Eg]{_} . (12)

Substitution of {¢} from Equations 8 and g into Equation 11 and integrating with respect to

produces the uncoupling of the strain energy:

5.11-6 (3/1/76)
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m m .

Ue = Ueo + n=_l Uen + n=_lUen= , (13)

Ue° = _ I _ {c°}T[Eg]{¢°} rdzdr'r

Uen = _[ I {cn}T[Eg]{_n)rdzdr , (14)
rz

• _ Irl {Cn*}T[Eg]{Cn" }
and Uen - _ rdzdr .

z

To be consistent with the definition of an axisymmetric material, the last two terms in the strain

vector must not be coupled to the other four terms in the vector. When the harmonics can be

uncoupled, an inherently three-dimenslonal problem can be reduced to the consideration of a series

of two-dimenslonal solutions, a phenomenon which occurs due to the axlsymmetric character of

these elements.

Using Equation I0, Equation 14 can be rewritten as

Uen = ½ {Bn}T[Kn]{Bn } , (IS)

where the unstarred harmonic stiffness matrix for the nth harmonic is

[Kn] = _ r_I [H¢_n]T[Eg][Hc_n] rdzdr , (16)

As was stated in Section 5.11.1, the stiffness matrix for the n th harmonic of the starred

series Is identical to the n th harmonic, unstarred serles and, therefore,

[Kn*] = [Kn] , n > 0 (17)

The stiffness matrix for the n - O harmonic is multiplied by a factor of two. It consists of

uncoupled starred and unstarred partitions. In a symmetric (unstarred analysis) the _SII_AN

program limits itself to consideration of only unstarr_ motions (displacements) and starred

motions are eliminated through the use of the single point constraint option. Conversely, in an

S.ll-7 (311176)
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antisymmetric (starred analysis), all starred motions are eliminated. In the sections which

follow, the development of the harmonic stiffness and mass matrices for the solid ring elements is

undertaken. Because the stiffness and mass matrices for the nth harmonic starred series are

identical to those derived for the nth harmonic unstarred series, distinction between starred and

unstarred harmonic quantities are omitted.

5.li.3 Material Definitions

V

As was previously defined in Equation 12 the [Eg] matrix relates the stresses to the strains

and is the means by which the constitutive behavior of the ring element is introduced. Solid

materials which exhibit orthogonal anlsotropy (orthotropy)in the (r,z) plane can be represented.

Principal directions of elasticity which represent this orthotropy for a given point, are

assumed to be in the ¢, rm, and zm directions (see Figure 4). The subscript m indicates a local

material axis which is provided to facilitate the description of the properties which characterize

a given ring element.

The matrix of elastic constants for an orthotropic body with respect to the (rm, zm)

coordinate axes for the general TRIAAX and TRAPAX elements is

where

m

Er(l - VCzVz_) Er(Vzr + Vz¢V_r) Er(VCr + VzrV_z) 0 0 0

Ez(l - VrCV@r) E¢(Vz¢ + Vr¢_zr) 0 0 0

E¢(I - _rz_zr) 0 0 0

AGrz 0 0

(Symmetric) AGr_ 0

AGz¢

A 1 - v_UCr - UCzUz_b - VzrVrz - v_v_bz_zr - VrzVCrVz¢ ,

1

Xla)

(19)

and from symmetry

ErVcr • E_ ; Er_zr - EzVrz ; Ez_¢z - ECvz¢ . (20)

5.li-8 (3/1/76)
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Polsson's ration, Vlj, is defined as the ratio of the strain in the J dlrectoln to the strain in

the i direction due to a stress in the I direction. For the TRIARG and TRAPRG elements, a 4 by 4

matrix, without the last two rows and columns, is used.

If the material axes (rm, zm) are oriented at an angle y from the element geometric axes,

see Figure l - 5, the following transformation between the harmonic stresses and strains of the

two systems must be introduced.

and

{¢n (m)} = [Hy]_¢ n} , (21)

T- (m)
{an} = [Hy] {an } . (22)

The transformation matrix [H ] is expressed as follows:

[Hyl

cos 2 y stn 2 y

sin 2 y cos 2 y

0 0

sin y cos y -sin y cos y

0 0

0 0

0 -2 sin y cos y 0 0

0 2 sin y cos y 'O O

1 0 0 0

0 cos 2 y - sin 2 y 0 0

0 0 cos y -sin y

0 0 sin y cos y

(23)

The transformed material matrix in the cylindrical coordinate system is obtained by the equation

[Eg] • [Hy]T[Em][Hy] . (24)

\ .

S.ll.4 TrianqularRinqElements

Given the general development above, the specific detail of the matrices used for the

triangular ring elements can now be presented.

5.11.4.1 Development of the [HB,u] Matrix

The generalized displacements u(r,z,$), v(r,z,¢), and w(r,z,¢) in the radlal, tangential, and

axial directions of the triangular ring were expressed by Equations 2. The nine displacements for

each harmonic as expressed in these equations can be linearly related to a set of nine independent

constants. Thl_ relationship can be expressed, in general, as

5.11-g (3/I/76)
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u(r) - (B1 + B2r+ B3z),

v(r) - (B4 + Bsr + gfz) ,

w(r) - (B7 + Bsr + BgZ ) .

OF POOR _UALIT'!

(25)

For the TRIARG elements the v motion is zero and

Assembling the constants of {Bn} in vector

[u } =
e

where the coefficients of [HBu]'l

only six B terms are used.

form, Equations 25 can be rewritten as

[HBu]'I {B} ,

are obtained by substituting u(r,z) = Ui, r = ri, and z - zi

into Equation 2 for each of the points i • l, 2, 3.

(26)

This matrix is then:

V

[HBu ]'l -

l rI zI 0 0 0 0 0 0

0 0 0 l rI zI 0 0 0

0 0 0 0 0 0 l rI zl

l r2 z2 0 0 0 0 0 0

0 0 0 l r2 z2 0 0 0

0 0 0 0 0 0 1 r2 z2

l r3 z3 0 0 0 0 0 0

0 0 0 l r3 z3 0 0 0

0 0 0 0 0 0 I r3 z3

Columns 2, S, and 8 and rows 4, 5, and 6 are omitted in the TRIARG formulation. The inversion

of Equation 27 provides matrix [HBu].

The transformation from the harmonic nodal displacements to the harmonic independent con-

stants to be undertaken can be expressed now as follows:

(Bn} - [HBu]{Uen} ,

(27)

(28)

V
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5.11.4.2 Development of the [HOB] Matrix

The strains at any point are functions of the generalized displacements as expressed by

Equation 3. The [HcB] matrix is a function of location and harmonic number and may be obtained

from the derivatives of Equation 2 and the definitions of strain for each harmonic, Equation 3.

In terms of the generalized coordlnaCe _it the strains for each harmonic, n, are

n • 8u
err _'_ - B2 ,

n , _w
Czz _'{ = 89 '

• _ I _ Z¢¢_n 7_.+1;)v rU (B1 + nB4) + (SZ + nBS} + F (83

n _u aw
Crz = _-_+ _-_ = 83 + 88 ,

+nB 6) ,

(29)

and

n . l )u _v v l (nBl + 84 ) . nB 2 z (riB3+ 86 )

n )v l Bw 87 z

Zz¢ = _z-+ _'¢ = - n -_-+ (86 - nB8) - n 789 .

Note that the coefficients 84 , 8S, 86, Cr@" and ¢z¢ are uncoupled (torsion) terms, and are the

starred coordinate in the zeroth (n = O) matrix. Th_v are not used in the TRIARG element

formulation.

In matrix termonology Equations 29 may be expressed as:

{On } = [H¢Bn]{B n} , (30)

where

[HcSn]

0 I 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 I

1 I z_ n n n_z 0 0 0
r r r r

0 0 1 0 0 0 0 1 0

.n -n .zn .1- 0 .z 0 0 0
r r r r

n nz

0 0 0 0 0 1 "F -n "-F"

(31)

..-:-

The middle three columns and the last two rows are not used in the TRAPRG element.
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Equation 16 introduced the expression for the harmonic stiffness matrix [Kn]. This result

is repeated below:

[Kn] = Tr I f [H_-Bn]T[Eg]['NtBn] rdzdr ,
r'z

(32)

The matrices [HtBn] and [Eg] developed in Section S.II.3 can now be utilized in the evaluation of

[Kn ]. The triple matrix produce [H Bn]T[Eg][HcB n] which appears in Equation 32 is evaluated in

explicit form and integrated by substitution of the integrals which arise in the form

= I rizj dzdr . (33)6ij

The harmonic stiffness matrix [Kn] is given in Section 8.25.5 of the _IASTRAN Programmer's Manual.

The integrals defined in Equation 33 can be written in explicit form and thus numerical integration

is not required. Utilizing matrix [HBu ], the element stiffness matrix in terms of harmonic nodal

degrees of freedom [Kn] can now be obtained from the equation

[Kn] =. [HBu]T[Kn][Nau ] . _.... (34)

5.11.4.4 Development of the Mass Matrix

In addition to the stiffness of the triangular ring element, represented by the element

stiffness matrix, an essential property in dynamic behavior of the ring is the inertia or mass,

represented by the mass matrix. Two basic types of mass matrices will be considered here, these

are the lumped mass matrix and the consistent mass matrix.

The lumped mass matrix can be generated in one of two ways:

I. The total mass associated with a nodal clrcle can be specified directly by an analyst.

The program then divides the total mass by 2 for harmonics n > 0 and constructs a

diagonal (3 x 3) nodal point mass matrix in the usual manner. The total mass is used for
: !

the zeroth (n • O) harmonic case, and the TRIARG element.

2. The total mass, specified for a ring, can be equally distributed over the three nodes of

the triangular ring element by the program. Each of the diagonal elemants on the

V

=

=

5.11-1Z (12/31/74)
V
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representative (3 x 3) grid point mass matrix have the following value for the zeroth

har_nic (n • 0):

2_°roA ,
M -

3

(35)

where

A

r o

p

= Cross-sectional area of the ring element

• Centroidal radius of the ring element

- Density associated with the element as a whole

1
The diagonal lumped mass matrix described above is multiplied by (_) for harmonics n > O.

The consistent mass matrix, 'derived from energy considerations, is developed as follows.

The kinetic energy for the triangular ring element can be expressed in the following integral:

v - ½ i P["(r'z'®)2+ G(r'z'_)2÷ &(r'z':)2]dv
r

(36)

where the superscript dot indicates di?ferentiatian with respect to time. The harmonic kinetic

energy component Vn can be detemined following integration of Equation 36 with respect to V.

Vj _ I / -" Tr- _ rdzdr (37)= {Uen} _Uen, •

r z

Utilizing Equations 5 and 26, Equation 37 can be expressed as fo]Iows:

where

vj = {_en}T[HBu]T[Mn][HBu]{_en} , (38)

[M,] - _-rlzl [H_B]T[H_B] rdzdr
• (39)

and

[Howl

1

- 0

0

r z g 0 0 0 0 0

0 0 1 r z 0 0 0

0 0 0 0 0 l r z

_.11-1_(12/31/74)
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The second row and middle three columns correspond to circumferential motion and are omitted in

the TRIARG formulation.

The matrix [Mn] can be expressed as given below if the definitions of the integrals defined

in Equation 33 are utilized.

V

, (41)

[_]

where

I 610 620 611

[_] - 630 621

612

(42)

The harmonic consistent mass matrix in terms of nodal circle degrees of Freedom for harmonics

(43)

It should

n > 0 can be expressed as

[Mn] = [H_u]T[Mn][HBu ]

For the zeroth harmonic (n = O) matrix [Mn] in Equation 43 should be multiplied by 2.

be noted that other than this condition, the harmonic consistent mass matrix is not dependent on n.

5.II.5 Trapezoidal Rinq Elements

The development procedure utilized in Formulating the trapezoidal ring element was previously

established in Section 5.II.4 in the formulation of the triangular ring element. This procedure

will not be repeated here, but the principal matrices which arise in this second development will

be presented.

The generalized harmonic displacements for the trapezoidal ring (analagous to Equation 25 for

the triangular ring) are

V

5.11-14 (12/31/74)
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Un(r'z) " Bln+ B2n r ÷ B3n z ÷ B4n rz ,

Vn(r,z ) - BSn + B6n r + 37n z ÷ _Sn rz ,

- "7 *

ORIC-I,"_:,I-7"._.....

OF FOCR _.2"_.-,L.:.'I

(44)

and whir,z) = B9n + 810 n r ÷ Bll n z + BI2 n rz .

In the TRAPRG elements the v motion is zero and only eight B terms are used. Vector {Uen} for the

trapezoidal ring (see Figure 5) appears as

{Uen}T . [Uln , Vln ,Wln , U2n , V2n , V2n , U3n ..... W4n ] . (45)

The harmonic stiffness matrix for the trapezoidal ring [Kn] can be expressed as

[Kn] = [Hn_]T[Kn][Hns] , (46)

v_here matrix [Kn] is defined by Equation 16.

The harmonic mass matrix for the trapezoidal ring element can be either lumped or consistent

in form. Lumped mass considerations are identical to those of the triangular ring element. The

consistent mass matrix for the trapezoidal ring can be expressed as

[Mn] - CH_n]T[Mn]CHBn ] , (47)

where

, (_)

and where

[A] -

611 621

621 631

612 622

63Z

Note that for the TRAPRG elements, the [Mn] matrix contains only eight rows and columns.

5.11-15 (12/31/74)
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5.11.6 Development of Non-Axisymmetric Load Vectors

_ -_C-C.RC_ _L::T

In the following sections, load vectors resulting from input of temperatures and thermal

expansion coefficients are presented for the TRI/b_X and TRAPAX ring elements. These loads are

presented in a generally 'consistent' framework which implies that the energy or work used to

derive the equivalent nodal loads is correlated to the energy (or work) done by the actual applied

loads. This concept of "work equivalence" provides a simple framework within which to present

the equivalent nodal loads.

Non-axisymmetric direct applied loads, pressure loads, and gravity loads are applied to the

TRIAAX and TPJ%PAX elements with the same method as in the conical shell element (see Section 5.9.9).

The equations transforming temperature field deflnitions to temperature coefficients Tn and Tn

for each harmonic n, are also given in the same section.

5.11.6.1 The TRIAAX Element Thermal Loads

The thermal load vector for the triangular ring element is constructed assuming uniform

distribution of prestrain through the element cross-section. The prestrain contribution to the

total potential energy for each harmonic is

W_n = _rlz / {°n}T{Etn} rdzdr ' (50)

where

{etnm} - Tne{_} . (51)

and where {_} is the vector of coefficients of thermal expansion and Tne represents the tempera-

ture distribution.

{_}T = [_rr' _zz' _eo' O, O, O] . (52)

Utilizing Equations 5, lO, and II, Equation 50 can be rewritten as

Wen - {ucn}T[HBu ]T [ eB]n rdzdr [Eg]{Ctn} . (531

r

The integral terms in Equation 53 may be expressed as matrix

5.11-16 (12/31174)
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[_cBn] -_ I I [Hc_n]T rdzdr .
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(54)

Since the temperature and material are assumed constant over the cross-section, Equation 52 can be

rewritten as

Wen - [Uen}T[HBu]T[HcB]n[Eg]{_tn } • (55)

The harmonic level equivalent nodal loads representing the thermal load vector follow from

Equation 55 and can be expressed as

{Pn t} = [Hgn]T[Hcg]n[Eg]{Ctn } . (56)

Utilizing Equations 51, 52, and 56, the harmonic level equivalent nodal loads representing

temperature load can be expressed as

{Pnt} = Tne[HBn]T[RcB]n[Eg][Hy]-I{_} , (57)

where the order expressed in {Pnt} is established in Equation 3.

The harmonic coefficient, Tne, represents the asymmetrix temperature distribution acting on

the element.

5.11.6.2 The TI_APAX Element Thermal Loads

Loading systems applicable to the trapezoidal ring element are generally identical to those

developed for the triangular ring element. Differences occur in the expression for the ther_ill

load vector.

The har_nic thermal load vector for the trapezoidal ring can be expressed as

{Pnt} - [HnB]T[Htn][h]{T n} , (58)

where the matrix [Htn], given in Table I, is deflned as

[Htn] "I[H¢_][Eg]{_}_,r,z,rz] T

VoI

and -:.-
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r2z4(r3 - r4) - rlz4(r3 - r4) r4zl(r2 - rl) - r3zl(r2 - rl)

- z4(r3 - r4) z4(r3 - r_) - zl(r2 - rl) zl(r2 - rl)

- r2(r2 - r4) rl(r3 - r4) r4(r2 - rl) r3(r2 - rI)

(r3 - r4) - (r3 - r4) (r2 - rI) - (r2 - rl)

ORIGINAL P_._ _

OF POOR QUALi_'TY

, (s9)

A = (r2 - rl)(r3 - r4)(z4 - zl)

The vector Tn represents the harmonic temperaturesat each of the four nodes and can be ex-

pressed as follows:

{Tn}

Tln- To

T2n - To

T3n - To

T4n - To

and the coefficientsare

(60)

h

(61)

5.11.7

and

A1 = Ell_rr + El2_zz + E13_se ,

A2 = El2_rr + E22_zz + E23_ ,

A3 = El3_rr + E23_zz + E33_ee ,

A4 = El4_rr + E24_zz + E34_eB •

ElementsLoad Vectors for the FRiARG and TRAPRG

5.11.7.1 Pressure Vectors for the TRIARG Elements

(62)

The following indicates the procedure for deriving forces corresponding to a pressure loading.

However, this procedure has not been implemented in the p_ogram.

Assume a linearly varying normal pressure distributionon the boundary between corners in

Figure I. Note that the direction of the load is determined by the order of the grid points so

that the grid points should be numbered consistently. Counterclockwiseorder is assumed by the

program. For side 0 , Q ,

p(r,z) = Pl + alr + a2z ' (63)

wd

V

r
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aI

(P2 " Pl)Zl

rlz2 - r2z I
(64)

(P2 " Pl)rl

a2 =
rlz 2 - r2z I

The external work done by the pressure is

W = y (pru ÷ pzw)dA

(65)

where

Pr = -p sin=

Pz = p coso

dA - 2_rds

ds - /dr 2 + dz 2" dr

COSQ&

Substituting back into the work equation

r2

W - I [-(Pl+alr+a2z)(B1+B2r+B3z)sina+(pl+alr+a2z)(B4+BS+B6z)cosa]2 r dr
J

rI

(66)

(67)

This expression results in three definite integrals

r3r 3

Ir2 Ir2 _; _ rz4"rl ¢
61 rdr r22-r122 "; _2 rZdr = _3 4= = _ . • |r2r3dr =

i

rI "rI "rI

(68)

Substituting into Equation 67 we may write the work equation as

W = [B]{Fp} ,

where {_p}, the forces on the generalized coordinates, are

(69)

5.II-20 (12/31174)
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-klz[(Pl+azm12)61+(al+a2k12)62]

"k12[(Pl+aZm12)62+(al_a2k12)63]

-k12[(Pl+a2m12)m12_l÷{Plk12+m12(a12a2k12)}_2+(al÷a2k12)k1263]

(Pl÷a2m12)61+(al+azk12)_2

(Pl+a2mlz)$2+(al+a2k12)a3

(Pl+a2m12)mlZ_l+{Plk12+m12(al+2a2klz)}62+(al+a2k12)k1253•

A special case is obtained when r2

becomes

where

(70)

- rI and the formulation must be changed. Equation 65

W - /PrUdA , (71)

Pr " "(Pl+alrl+a2z)sina ' (72)

thUS,

z2t

W - J -(P1+alrl+aZz)(Bl+BZri+B3z)2_rldZ (73)
]

zI

Note that _ may take two values, 90° and 270°, and sin _ changes sign accordingly. There will be

three definite integrals:

z2 z2 z2

_4 - I dz; 65 - I zdz; 66 - [ z2dz (74)
zI zI "zI

The generalized force vector is

5.11-21 (12131174)
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"[ (Pl+al rl )_4+a2_5 ]

-[(Pl+alrl)rl_4+a2rl_5 ]

"[(Pl +al rl)65+a266]

{Fp} - 2xr I
0

0

0

Transforming from generalized coordinates to grid point displacement coordinates and substituting

into the Lagrange equation, we obtain the pressure load vector

{Fp} = [HBu]T{Fp} , (76)

where

5.11.7.2

Fp T " IFp • Fp , Fp , Fp , Fp , Fp J •rI zI r2 z2 r3 z3

Prestrain and Thermal Load Vectors

ORIG:NAL _CE :_
Q_AL.. iOF POOR " '_

(75)

(77)

The prestrain load vector is constructed assuming uniform distribution of prestrain across

the element. The prestrain contribution to the total potential energy is

= f{E}T[E]{¢i}dV (78)@¢

Substitute Equations 26 and 29 of Section 5.11.4 into Equation 78,

w

¢¢ - {B}T_[ [D]Trdzdr[E]{¢i } (79)

Let

[0] = x I[O]rdzdr

which may be written in terms of the _ij integrals, as

(80)

5.11-22 (3/1/76)
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0 ' 610' 0 , 0 , 0 ., 0

600, 610, 601, 0 , 0 , 0

0 , 0 , 0 , 0 , 0 ' 510

0 , 0 , _lO" 0 ' _lO' 0

For harmonic zero the result is multlplied by two.
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(81)

Transformation of Equation 79 to grid point displacement coordinates and substitution into the

Lagrange equation _jieldsthe prestraln load vector

{F¢} - [HBu]T[D]T[E]{_i} , (82)

where the load components are

{F¢}T

and the prestrain components are

• "/Fe , Fe , F , F¢ , F¢ | ,

L rI z1 r2 z2 r3J
(83)

{¢i}T = Leir, ,io,elz,oj . (84)

The thermal load vector is a special case of the prestraln load vector. Let the initial or

thermal strain be

{_}T , ATL_r, _e' _z' O] ,

where AT is the average temperature rise of the element above ambient, obtained by averaging the

adjacent grid point temperatures.

Substitution into Equation 82 yields the thermal load vector.

• [HBq]TCo]T[E]{_}{FT}

5.li.7.3 Load Vectors for the TRAPRG Element

The load vectors for the TRAPRG elements are evaluated in the same general manner as for the

triangular rlng element.

5.11-23 (3/1/76)
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The pressure load is assumed to vary linearly along each edge, as shown in Figure 2. ,'he

equivalent loads at grid points are derived from the formula for the work done by pressure

W = I (PrU+pzw)dA (87)

u and w are replaced by their expansions in terms of the generalized coordinates, Equations 44 of

Section 5.11.5. The coefficients of the B's in the resulting equation are the forces due to pres-

sure on the generalized coordinates, {_p}. The loads on grid points are obtained by the

transformation

{Fp} = [HBu]T{_p} (88)

The prestrain load vector is computed in the same manner as for the triangular ring element,

Equation 82. The thermal strain vector Is treated differently than in the case of the triangular

ring element in that temperature is permitted to be a function of position. Specifically,

T(r,z) = Kl+K2r+K3z+K4rz , (89)

where the K's are evaluated so that Equation 89 gives the known temperatures at the grid points.

The contribution of thermal prestrain to the total potential energy is

Ce = [ {E}T[E]{¢i}dV , (90)

{ il" TL %, oJT " , (.l)

where

in which the _'s are thermal expansion coefficients. Upon substitution for {ci} from Equation 91

and replacement of {_} by its relationship to grid point displacements, Equation 90 becomes

= {q}T[HBq]T[I [D]TTdv ][E]{_}

= {q}T{FT} ,

The integral In Equation 92 is

(92)

where {PT } is the equivalent thermal load vector at grid points.

easily evaluated in terms of the lij coefficients.

5.]]-24 (12/31/74)
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5.11.8 Stress and Displacement Recovery

Displacement information for the triangular and trapezoidal ring elements can be requested

in two forms:

I. Harmonic coefficients of motion (displacement amplitudes) as expressed in Equation 2,

the TRIARG and TRAPRG elements produce only the zero harmonic (n - 0).

2. Displacements at specified locations, ¢, on a nodal circle obtained by evaluating

Equation 2 for each n for the TRIAAX and TRAPAX elements only.

Stresses for the ring elements are calculated from the expressions

Orr = Orr O + _ (Orrn cos n¢ + Orr n* sin n¢) ,
n=l

°zz = °zz° + n=1_ (°zzn cos n¢ + °zzn* sin n¢)

= o¢¢o n n*o¢¢ + nsl_E_(o$¢ Cos n¢ + _¢ sin n¢) ,

TriO (Trzn n*= ÷ _ cos n_ + sin n_)
_rz n=1 _rz •

(g3)

= ;* (Trn n*Tr_ _r + _ sin n¢ - Tr_ cos n¢) ,
n=l

= o• n_=l n*TIC TZ_ ÷ (TICn sin n¢ - _Z¢ COS n¢)

where for the nth harmonic, unstarred series

(an} " [EgJ[ [,EO]n[HBu]{Uen} - {¢tnm} ] (94)

The matrices and vectors utilized in Equation 94 above are provided by Equations S, I0, 12,

and SI. Equation 94 is evaluated at the centroid of the triangular rlng element and stresses can

be provided as

I. Harmonic coefficients {stress amplitudes) as expressed in Equation 94.

Z. Stresses at specified circumferential ]ocattons _, on a circle generated by the element

centrold, are obtained by evaluating Equation 93 for each @.

Stresses for the trapezoidal rlng element can be recovered by a similar procedure with the

exception that for the trapezoidal rlng element, stresses are evaluated at the four nodal regions

as well as at a f_fth region which corresponds to a polnt that ts obtained by averaging the

coordinates of the four nodal points.
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5.12 CONSTANT STRAIN SOLID ELEMENTS

5.12.1 Introduction

Solid polyhedron elements have been implemented to model three-dimensional elastic regions,

which do _ot have axial symmetry (see Section 5.11 for solid of revolution elements). The geo-

metry of the polyhedron elements is defined by grid points at the vertices. Three geometries have

been iwlemented (see Figure I):

I. Tetrahedron. The tetrahedron is a triangular pyramid which can be constructed between

any four non-coplanar vertices. It is the basic building block which is used to build up

the other elements.

2. Wedge. The wedge is a truncated triangular pyramid that is defined by six vertices. It

has two triangular and three quadrilateral faces.

3. Hexahedron. The hexahedron is a generalized cube. It has six quadrilateral faces.

These elements are subject to the following conditions and limitations:

I. Constant strain In each tetrahedral subelement,

2. Uniform, Isotropic material properties,

3. Uniform temperature in each tetrahedral subelement,

4. Differential stiffness, buckling and piecewise linear analysis have not been implemented,

5. Only translational degrees of freedom are used at the grid points,

6. Stress output is in the basic coordinate system.

A necessary task in formulating a finite element is to relate the coefficients of functions

approximating the displacement field to those displacements at the grid points on boundaries of

the element. One method to do this is to solve a set of simultaneous equations that equates the

functional representation to the actual displacements at the vertices of the element. The tetra-

hedron element with constant strain is defined as being compatible since it has twelve grid point

degrees of freedom (three translations at each of four vertices) and twelve generalized displace°

ments (coefficients of the constant and linear terms for u, v and w). Thus, the matrix of coeffi-

cients relating the two types of displacements is nonslngular. The wedge and hexahedron are not

modeled directly but are built up by tetrahedron elements. The coefficient matrices for the wedge

and the hexahedron are expressed as sums of the coefficient matrices of the tetrahedra into which

they are decomposed, see Figure I.

5.12-1 (4/I/72)
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5.12.2 Displacement Functions for the Tetrahedron

The displacement field is assumed to be linear in the Cartesian coordinates, x, y and z, i.e.,

u(x,y,z) = ql ÷ q2x + q3y + q4z ' (1)

v(x,y,z) = q5 + q6x + q7y + q8z ' (2)

w(x,y,z) = q9 + qlOx + qlly + ql2z " {3)

The NASTRAN basic coordinate system will be used. The assumed displacement field produces uniform

strain and stress within the element. In addition the displacements on common faces of adjoining

elements are compatible. The generalized coordinates, (q's), can be determined from the displace-

ments at the four vertices of the tetrahedron by solving:

lul}lixl,lZIIql}u2 = x2 Y2 z2 q2

u3 x3 Y3 z3 q3

u4 x4 Y4 z q4

, (4)

for the u componentsof displacement, and similar equations for the v and w components. In Equa-

tion 4, uI - U(Xl, Yl' Zl)' etc. A similar relation is written for vI to v4 and wI to w4 in terms

of q5 to q8 and q9 to ql2"

The determinantof the matrix in Equation 4 is six times the volume of the tetrahedron

defined by points l, 2, 3 and 4.

V

l xI Yl Zl1

Jl x2 Y2 z2

l x3 Y3 z3

l x4 Y4 z4

= ± 6 • Volume . (5)

Hence, the matrix in Equation 4 will be nonslngular if the volume of the tetrahedron is nonzero.

5.12.3 Straln_ Stress and Potential Energy

The generalized displacements are related to the grid point displacementsby

5.12-2 (4/1172) _
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m I

ql q5 q9

q2 q6 qlO

q3 q7 qll

q4 q8 q12

SOLID POLYHEDRON ELEMENTS

m

hll

h21
l

h31

ha l
m

g

hl2 hl 3 hi4

h22 h23 h24

h32 h33 h34

h42 h43 h44

.... _. .-_J

OF POOR Q_;_,LIT_/

uI vl

u2 v2

u3 v3

u4 v 4

m

w1

w2
(63

w3

w4
i

In Equation 6, the [hij] matrix is the inverse of the matrix of Equation 4.

and w have been adjoined as additional columns. The six strain components are given by

Cx = au/_x = q2

{y = Bv/_y = q7

_z = _w/az = ql2

Yyz = _vlaz + aw/ay = q8 + qll

Yzx = aw/ax + Bu/_z = qlO ÷ q4

Yxy = _u/_y + _v/_x = q3 ÷ q6

Eliminating the q's from Equation 7 using Equation 6,

The equations for v

(7a)

(7b)

(7c)

(7d)

(7e)

(7f)

E X

_y

EZ

k xy

m

h2T 0

0 h31

0 0

0 h41

h41 0

h31 h21
o

0

0

lUl)
h41

(Vl)+

h31 lWl)

h21

0

m

m

Inoo 0 0

0 h32 0

0 0 h42

0 h42 h32

h42 0 h22

h32 h22 0

v_
_t

w21

n

h23 0 0

0 h33 0

0 0 h43

0 h43 h33

h43 0 h23

h33 h23 0
,,...

_24

t 3p,o°
 v3F!

h44

h34

0 0

h34 0

0 h44

h44 h34

0 h24

h24 0

This will be abbreviated as 4

{_) "i_l[Cl]{u}i (g)

The subscript i in {u}i refers to the vertex of the tetrahedron and not to the component of the

vector. The elements of [Ci] are either _2i' h3i, h41' or zero. The first row of h's is not

v4

w4
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needed. If T is the average temperature rise, the stresses are given by

{o} " [Ge]({_}-{a}T) (IO)

where the stress and thermal strain vectors are:

_x

_y

{o} = °z

TZX

Txy

and {_} -

x1_y
(II)

[Gel is a (6x6) stress-strain matrix in basic coordinates. When material properties are

given in terms of E and v, then

GII - G22 = G33 • E(l-v)l(l-2_)(l+_)

All other terms are zero.

strain energy is

GI2 - G21 = GI3 - G31 - G23 = G32 - Evl(l-2_)(l+v) (12)

G44 : GS5 = G66 = E/2(I+_) .

The strain energy density is a constant over the volume; hence, the

V = (Volume) x _ {¢}T{_} .

The volume can be found from Equation S.

(13)

5.12-4 (4/I172) v
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5.12.4 Matrices in Basic Coordinates

SOLID POLYHEDRON ELEMENTS

The stiffness matrix for the tetrahedron is of order twelve. It is convenient to represent

the matrix in terms of sixteen 3 x 3 matrices each representing interaction between a pair of

grid points. The 3 x 3 partition of the stiffness matrix associated with grid points i and j is

given by

The thermal loads on point i are

[klj] = (Volume)[cT][Ge][Cj].

)p(t)ll. (volume)[cT][Ge]( }T

(14)

(15)

One-fourth of the mass of the tetrahedron Is lumped at each vertex. This choice preserves

the center of gravity. The density is assumed uniform; hence, the mass at the point I is

mI - _-(Volume)p (16)

5.12.5 Wedge and Hexahedron Elements

The wedge and hexahedron ele_nts are decomposed into subtetrahedra. As seen in Figure I,

the wedge can be cut into three subtetrahedra. Of the six possible ways to subdivide a wedge,

only one has been implemented, Other subdivisions and overlapping methods have not been coded

since it Is not expected that the wedge will be used often enough to Justify the additional

effort. It is expected to be used primarily as a fillet. The hexahedron can be cut into five

subtetrahedra in only t_ different ways. The code In_lemented for the hexahedron allows the

user to choose a single subdivision into flve subtetrahedra or to use the average of the results

of the two types of subdivisions. The latter choice, but not the former, results in symmetrical

deformations when symmetrical loads are applled to a symmetrical hexahedron.

The geometries of the wedge and hexahedron are determined by the coordinates of the vertices.

The quadrilateral faces may not be coplanar for generel grid point location. There is no guarantee

of the results If these are not coplanar, and the user should be careful to keep the vertices of

the quadrilateral faces nearly In one plane. The resulting stiffness and thermal load matrices

are the su_ of those due to the subtetrahedre. All matrices must be put into global form, which

requires multiplication by unitary rotation matrices.

s.iz-5(4/1/72)
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5.12.6 Stress Recover/

The stresses, in the basic coordinate system, can be recovered for the tetrahedron using

Equations lO and g, In addition to the stress com_onents, output also includes the pressure

PO = " _ (ax + _y ÷ az) ' (17)

and the octahedral stress

_o " _((°x " Oy)2 + (_y " _z)2 + (_z " _x12 + 6,yz2+ 6Tzx2+ 6_xy)2_I/2 (18)

The stresses in the wedge and the hexahedron are obtained as the weighted average of the stresses

in the subtetrahedra. The weighting factor for each tetrahedron is proportional to its volume.

V

S,12-6 (4/1172)
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SOLID POLYHEDRON ELEMENTS

TETP,AHEDRON

C_"_! ' _.._ ....,

WEDGE A_:C,'N: C_ 'ITZ"i/ _ r,_':"'_SITIONS

?

_EXA_iEDRS_iAND ITS _C DZCCMROSITIONS

6

2

i 2

$ q

r 7

_. 3

2 2

]j

!

?

2

S 7

Figure I. Polyh_ron elements and their subtetrahedra.
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STRUCTURAL ELEMENTS FOR THE DISPLACEMENT METHOD

5.13 ISOPARAME'TRIC HEXAHEDRON SOLID ELEMENTS

Isoparametric hexahedron solid elements may be used to analyze any three-dimensional continuum

composed of isotroplc materials. Examples Include thick inserts in rocket engine nozzles, thermal

protection system insulations, soll structure interaction problems, and geometrically complex thick-

walled mechanical components such as pumps, valves, etc. The isoparametrlc solid elements take into

account;

I. Isotropic temperature-dependent material properties.

2. Pressure and temperature loads.

3. Coupled mass matrix.

Although solid elements employ only three degrees of freedom at each grid point (the three dis-

placement components), they may be combined with all other HASTRAN elements except special s+and-

alone elements.

The Isoparametrlc solid elements were first presented by Irons, Ergatoudls and (lenklewlcz

(References l, 2, 3 and 4). They are also called confomal higher order elements, since the dis-

placement of the element can be represented to any degree one desires, and still malntain Inter-

element compatibility, by using more grid points per edge to define element geometry and defor-

n_tfon. In practice, however, isoparamtrlc solid elements employing either eight, twenty, or

thirty-two grid points have been found to be adequate to solve most problems (Figure l).

These elements correspond to assuming a linear, parabolic, and cubic variatlon of displacement,

respectively. Clough (Reference 5) conducted an evaluation of three-dimenslonal solid elements

and showed that the Isoparan_trlc elements were superior to other solid elements. He further

pointed out that the choice of which isoparametrlc element is best to use depends on the type of

problem being solved. For problems Involvlng plate bending type deformations, the higher order

elements appear to be best, while the linear element is recommended for problems in which shear

stresses are likely to be large. It Is for this rHson that all three Isoparametrlc elements

have been incorporated Into NASTRAN.

The Isoparan_trlc elements governing equatlons are based on mlnln_m energy principles. The

derivation of these equations conslsts of assuming a displacement function for the element which

depends on its grid point dlsplace_nts, substitute these dlsplacements into the potential energy

expression, and mlnlmlze the energy functional to obtaln the governing equations. The detailed

derivation Is presented next.

_I_'_Tr,'_NTIONALLY

PRECEDING PAGE BLAN]K NOT F_TED
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STRUCTURAL ELEMENTS FOR THE DISPLACEMENTMETHOD

Displacement Functlons for the IsoparametricElement

OF POOR QU._LIT'_

The name Isoparametric comes from the fact that the same interpolatingfunctions are used to

represent both the geometry and the deformation of the element. This choice insures that the

element displacementfunctions satisfy the criteria necessary for convergenceof the finite

element analysis (Reference4). Consider the elements shown in Figure I. The curvilinear

coordinates in these elements are related to the "basic" rectangularones by the following defini-

tion:

V

lilM I:I•l[l NI({" n, _)
Z

(i)

where M equals the total number of element grid points,

i refers to the grid point i,

and Ni({, n, _) are interpolating functions which depend on the number of grid points used to

define the element geometry. The Ni functions are either linear, parabolic, or cubic, and corres-

pond to employing two, three, or four grid points, respectively, alonq each edqe of the element.

This choice insures that there are no geometric gaps between grid points. Expressions for the

interpolating functions and their derivatives are presented in Table I. : : : -

The deformationsof the elements are reoresentedwith the identical interpolating functions

used to define the geometry, i.e., - - "

{2} - v " ! NI{{, n, C) - [N]{ue}
w II w

, (2)

where u, v and w are displacements along the x, y and z basic coordinate axes,

and {ue} represents the vector of grid point displacements.

The displacement functions, Nt(E, n, ¢) satisfy the required convergence criteria of adequately

representing a constant strain state, and insure tnterelement c_patlblllty along the complete

element boundary (Reference 4).

V

°_
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ISOPARAMETRIC HEXAHEDRON SOLID ELEMENTS

v|

5.13.2 Strain-Displacement Relationship

The strains at any point within the element are given by the well known relations

{(} -

¢x

Cy

E:Z =

Yxy

"(yz

YZX

_U

aV

aW

+ av
y

aw av
_÷rf

_u _w
_÷_-

(3)

The substitution of Equation Z into Equation 3 yields the relationship for the strain vector in

terms of the grid point displacements

{¢}. [cI C2 ... CNGp]

ul

v 1

wl

u2

v2

ut_

VNG

WNG

• [c](ue} , (4)

and
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[Ci] -

m

BNi

)x
0 0

_NI

o _-T o

@Ni
0 0

@Ni 3NI
-_- _-_- o

@NI @NI
o _i" _"

BNi BNI
_"i" o

w q

ORiGiNAL PA,_ iS

;)F pOOR QUAL|_'Y,

, (s)

In order to evaluate the strain matrix [C]. we must calculate the derivativesof the shape func-

tions, Nt, with respect to x, y and z. Since Nt Is defined In terms of E, n and _, it is necessary

to use the relation that

aNi

(6)

where [a] is the aacoblan matrix and is easily evaluated by noting that

i

_x

CJ]- _x

___x

m

Lz_n

Bt41 aN2 BNNGp

_-_-,-_ ....,-_

@N1 _N2 _NNGp
"_'' "r_-, ....

_'N1 aN2 aNNGp
-_-, -_-, ....

n I

Xl Yl Zl

x2 z2

XNGP ZNGP

Y2

YNGP

(7)

The derivatives of the shape functions with respect to E, n and _ are given in Table I,

xl' Yl and zI are the coordinates of the element grld points, and NGP Is the number of ele_nent

grid points.

5.] 3-4 (12/31/74)
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5.13.3

ISOPAJLANETRICHEXAHEDRONSOLID ELENENTS

Stress-Stral n Relattons

•_.. ;+. : ......_.,'/

The stress-strain relations for a general elastic anisotropic matertal are

(o} • • [Ge]{_- %} , (a)

where for an isotroptc matertal

[Ge] " (_1 + v}_l - Iv)

m

1-v v v 0 0 0

v 1-v v 0 0 0

v v 1-v 0 0 0

l-2v
0 0 0 _ 0 0

l-2v
0 0 0 0 "T" 0

l-Zv
o o o o o T

and {G} is the stress vector in the basic rectangular Cartesian coordinate system, [Gel ts, in

general, a full symmetric material elastic modulus matrix, c is the total strain vector given by

Equation 3, and ct is the thermal strain.

{¢t}- {%}T -

_X

_y

_z

_XY

, (9)

where {=e} is a vector of thermal expansion coefficients and T Is the temperature distribution

within the element, determined from user-specifled grid point temperatures, {Te}, by
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applying the interpolating relation

n

= _ Ni(_, n, _)Ti = [N](Te} .il

ORIGINAL PAGE lS

OF PoOR QUALITY

(lO)

At present in the NASTRAN program, the user may only specify isotropic material properties.

When a general anisotropic material is defined and is available to the isoparametricsolid elements,

then the user may specify the anisotropic material properties with respect to a particular orienta-

tion that does not necessarily coincide with the basic rectangular coordinate system. NASTRJ_Nwill

then transform the material properties to the basic coordinate system by constructing a transformation

matrix, U, such that the material properties In the basic coordinate system are given by

ZGe] = [u]T[Gm][U]

• (11)

(me} - [U]'1(_m}

where [Gm] and {am} are the material modulus matrix and thermal expansion coefficient vector

specified by the user.

5.13.4 Stiffnesst Mass and Load Matrices

The stiffness• mass and load matrices for the Isoparametric element may now be derived by

applicationof the principle of virtual work

_u-_w-o , (12)

where 5U is the internal strain energy in the element due to a virtual displacement, 6_, and

_W is the work perforatedby the external loads during the vlrtual displacement, i.e.,

_u " Vf{=}T(_c}dV I
)

_W • f{_IT(pIdS + f{6_}T{F}dV
S V

(13)

V

where {p} and {F} are 3 x 1 vectors representingsurface pressure and body forces, respectlvely,

in the x, y and z directions, and the integrationsare performed over the element volume, V, and

surface area, S, on which the pressure load, p, acts.

5.13-6 (12/31/77)



v

ISOPARAMETRICHEXAHEDRONSOLID ELEMENTS

..... ., ._ . ,,,.,;:._'.."f

Substituting Equations 2, 4 and 8 into Equation 13 and applying the principle of virtual work,

Equation 12, yields

{lue}T([Kgg]{Ue} - {Fe}) - 0 , (14)

or, for any virtual displacement

[Kgg]{Ue} - {Fe} ,

where [Kgg] is the element stiffness matrix and {Fe} is the element load vector to surface

pressures and temperature.

Stiffness Matrix

CKgg] " f[c]TCGe][C]dV ,

where the infinitesimal volume is In terms Of the curvilinear coordinates, (, n and C,

dV - dx dy dz - det.[J]d( dn d_

(IS)

(16)

(17)

Surface Pressure Load

Thermal Load

{Fp} - /[N]T{p}dS (18)
S

{FT} - /[c]T[Ge]{_e}[N]{Te}dV (19)

For dynamics problems, the mass matrix is also required and Is easily derived by adding the

kinetic energy to Equation 12. The result is:

Mass Matrix

[M] • /[N]T[N]pdV , (20)
V

where p ts the mass density.
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5.13.5 Numerical Integration

The integrals in the tsoparametrtc element stiffness, mass and load matrices are evaluated by

the use of numerical integration. The Gausstan Quadrature Formula (Reference 6) ts used in

NASTRAN. Thus, for example, the stiffness matrix is calculated by the triple summation

_I fl n n n[K]- -lfl-I [c]TEGeI[C] Ij) d(dn de "i_l J=_lkZ-IHi Hj Hk([C]T[Ge][C])IJI,(21)

where the weight coefficients He and abscissa S¢ are given in Table 2. Note that the triple

product matrix operation in Equation 16 as well as the determinant of the Jacoblan, JJl, must be

evaluated at each integration point. This process could be very time consuming, and requires that

efficient programmingpractices and mathematical techniques be used to minimize this time. In

NASTRAN, for Isotroplc materials, the triple product In Equation 21 is explicitly evaluated to

avoid calculating Zeroes and thereby minimizes the number of mathematical operations performed.

The number of integration points needed to evaluate the stiffness, mass and load matrices

depends on the element geometry, displacement function and material property varlatlons. Elements

whlch are extr_ly distorted from a rectangularshape require more integrationpoints. Best

results, however, are obtained using rectangularelements as far as possible, and, therefore,

extremely distorted elements should be avoided (References8 and g). It has been found that for

most problems satisfactoryresults may be obtained using a 2 x 2 x 2 integrationmesh for the

linear element and a 3 x 3 x 3 integrationmesh for the quadratic and cubic elements. These

meshes are used as default values In NASTRAN. However, since good results have also been reported

using smaller meshes than suggested above (References7 and 8), the user has the optlon of specl-

fylng the Integratlonmesh size.

5.13.6 Transformation from Basic to Global Coordinates

As previously stated, all computationsfor the Isoparametrlc elements are carried out in the

basic coordinate system. If the global coordinate system at any grid point ts different from the

basic system, NASTRANtransforms the final matrices and vectors tnto the global coordinate system

using the appropriate transformationmatrix, [TI], corresponding to grld point I. Thls calculation

Is identical to that performed for the other elements In NASTRAN.

5.13-8 (12/31/74)
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5.13.7 Stress Recovery

Element stresses may be obtained by combining Equations 4, 8 and 9 to yield

{o} = [Ge]([C]{ue} - {_e}[N]{Te}) , (22)

where the matrices [C] and [N] are functions of the element coordinates {• n, and {. In NASTRAN

these stresses are calculated in the basic coordinate system and they are printed at the following

1ocatlons, depending on element type•

a. Linear Element - Eight corner points and at center of element.

b. Quadratic and Cubic Element - Eight corner points, center of each edge, and at center of

element.

The prlncipal stresses, principal angles, mean stress and octahedral shear stress are also

computed and output at every point at which the basic stresses are computed. The mean stress, or

hydrostatic pressure, is given by

% --_ (ox+Oy+ °z) (23)

The octahedral shear stress is given by

ao= {_[(S x +_n)Z+ (Sy
2 _i/2

+On)Z÷ (sz+%) ]) • (24)

where Sx, Sy and Sz are the three principal stresses.
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V

(a) Linear

(b) Quadratic

Figure I.

(c) Cubic

Three Isoparametrlc elements

5.13-10 (12/29/7B)

If| :1_



v

ISOPARAHETRICHEXAHEDRONSOLID ELEHENTS

Table la. Isoparametrtc shape functions and

their de_lvatlves for 11near element - 8 grfd pofnCs

:-j#

CF FCOR QU._L,;Y

CORNERGRID POINTS

_I " ±I, nI - ±I , _I " ±I

Nf -_(1 +_o ) (1 +no ) (1 +z:o)

_N|
"_-'_t (1 +n o) (1 +_o )

"_'g'_t (1 +_o ) (1 +%)

3NI
"_:t ('1 +_o ) (1 +n o)

where _o • {{I'

¢o " ¢¢I"
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Table lb. Isoparan_trlc shape functions and their

derivatives for parabolic element - 20 grid points

OF PCCR Q_._,.:m "/

CORNER GRID POINTS MID-SIDE GRID POINTS

6i - ±I , ni - ±I , _i " ±I

N 1 - _(I + 60)(I + no)El + _o)((o + no + {o " 2)

_- _61 (I + no)(l + ¢o)(2(o +no + {o " I)

INi .
_ ni (I

BNi
_T" _ {I (I

+ 6o)(I+ Co)(2no + 6o + so - l)

+ _o)(I+ 60)(2{0+ (o + no " I)

(i " 0, nI - ±I, _i = ±l

N I • _ (I - 6Z)(l + no)El + {o)

iNl
- - ½6(I + no)(l + {o)

)N1
- _ (l - 6:)(I + :o)nl

)Nf
- _ (l - 6')(I + no){I

MID-SIDE GRID POINTS MID-SIDE GRID POINTS

61 - ±I, nI - O, El - ±l

N I - _ (I - nZ)(l + (o)(l + {o)

BNi
- _ (l - n2)(l + Co)61

iNl -½n(l + {o)(l +6 o)-_'6""

INI
- _ (l - n2)(l + 6o){I

61 - ±I, nI - ±l , El • 0

Ni "¢(I - _Z)(l+6o)(I +no )

BNi
- _ {l - {')(l + no)(I

INI
- _ (l - {Z)(l + (o)nl

BNI
_--½_(I +6o)(I +no )

where _o " ((i'

rio " IIIIim

(;o " _¢I"
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Table lc. Isooarametric shape functions and

their derivatives for cubic element - 32 grtd points

CORNERGRID POINTS

i

_t =±1,n I =±I,¢j =±I

Nt =_(1 +{o)(1 +no)(1 +¢0)({ 2 +n _ +¢_ - lg)

"_'_'= _ (1 + no)(1 + _o)[_i(3{2 + n2 + ¢z . 19) + 2{]

_Nt
-_-= _,_ (1 + _o)(1 + Co)[ni(3n2 + Cz + Ca . lg) + Zn]

aNi
-_-_-=_,_(1 + Co)(1 + no)[_1(3¢2 + _2 + n2 . 19) + 2_]

MID-SIDE GRID POINTS

I • -+I -+I{i = -+_r, nI ' {1 •

N i = _ (I - {')(I + 9{o)(I + no)(1 + _o)

BNi
-_= _r (1 + no)(1 + {o)(-Z{ + 9{ t - 18{{:o]

_Ni •
_r (] " _')(1

BNi
-_(l -{')(I

+ 9{o)(1 + ¢o)nt

+ 9{o)(1 + no)¢ i

MID-SIDE GRID POINTS

{1 =-+I

NI= _

3Ni =

@Ni .

BNi
Tc' 

• nf " -* _' _;1 • -+1

(1 - nz)(1 + griD)(1 + _o)(1 + _o)

(I - n')(1 + 9no){ t

(l + _o)(1 + {o)(-zn + 9nt - len%)

(1 - n=)(l+ 9no){i

MID-SIDE GRID POINTS

N t

- _¢ (1 - _2)(I+ 9_o){i

1
_j • ----, 1 , nl • -+1 , ¢i • ± _'

• _¢ (l-- ¢')(I+ 9%)(I + {o)(I+ %)

i)Ni
• _r(1 +_o )(1 +%)(-Z¢+ gel

where {o • {_I' no • nnl' ¢o • ¢_I'
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Table 2. Gaussian quadrature formula

ORIGIHAL _ ,_-.'_

OF POOR CUAL,_ !
V

1 1 1

ff/
-i -I -I

f(x, y, z)dx dy dz -
n n n

Abscissa (s)
i

±0.57735026919

±0.77459666924

O.O

-*0.86113631159

_. 33998104358

Weight Coefficient (H)

l.O

0.55555555555

0.88888888888

0.34785484514

0.65214515486

..-_.
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5.14 THE TRIANGULAR THIN SHALLOW SHELL ELEMENT

5.14.l Introduction

This higher order element (TRSHL) was developed by Narayanaswami (Reference l). The element

has grid points at the vertices and at the midpoints of the sides of the triangle. At each grid

point, there are five degrees of freedom in the element coordinate system, viz., the membrane dis-

placements u and v parallel to the x and y axes, the transverse displacement, w, in the z-direction

normal to the x-y plane, with positive direction outward from the paper, and the rotations of the

normal to the shell, a and B, about the y-z and x-z planes, with positive directions following from

the right-hand rule. The element, thus, has 30 degrees of freedom in the element coordinate system.

The membrane displacements u and v for the shell are expressed as quadratic polynomials and

are the same as for the linear strain triangular membrane element, TRIM6. The displacement function

for the normal deflection, w, is taken as a quintic polynomial as for the higher order triangular

plate bending element, TRPLTI. The geometry of the shell surface is approximated by a quadratic

polynomial in the coordinates of the base. The shallow shell theory of Novozhilov {Reference 2)

is used for including the membrane-bending coupling effects. Thus, the element can strictly be

used only in cases where the shell is shallow. However, reasonably good accuracy is seen even

when the elements are used to analyze shells that are only marginally shallow. The user is cau-

tioned, however, to be careful while interpreting results obtained when the shell analyzed is deep.

Due to the excessive computation time associated with such calculations, the transverse shear

flexibility is not taken into account in the element formulation. The element can be used in the

statics, normal modes and differential stiffness rigid formats.

5.14.2 Element Geometry

Rectangular Cartesian coordinates are used in the formulation. An arbitrary triangular element

is shown in Figure I. X, Y, and Z are the basic coordinates; x, y, and z are the local coordinates.

The grid points of the element are numbered in counterclockwise direction as shown in the figure.

5.14.3 Displacement Field

The displacements u(x,y) and v(x,y) at any point ix,y) in the element are assumed to vary

quadratically with position on the plane of the element, while the displacement w(x,y) within the

• _"
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triangular element Is assumed to

and

u(x,y)-

v(x,y)-

w(x,y)-

÷

In concise form, u, v, and w can

OR'GI_:AL PAGE l_)

OF POOR QUA Ll_'Ir

vary as a quintic polynomial in the local coordinates. Thus,

aI + a2x + a3Y + a4xz + asxY * a6Y2 ,

a7 + a8x + agy + aloX2 + allxY + alyY 2 ,

al3 + al4 x + alSY + al6x2 + al7xY + alSY2

al9X3 + a2oXZY + a21xY 2 ÷ a22y3 ÷ aZ3x4

a24x3y + a25x2y z + a26xY 3 + a27y4 + a28x5

a29x4y +a3ox3y2 + a31x2y 3 + a32xY 4 + a33y5

be written as

(1)

v

33 m i yn I
u " I-_ ai x , ai - mi - ni - O, i - 7 to 33 , (2}

33 xPi yqi
v - i_ bi ' bi " Pi " qi " O. I - 1 to 6 and (3)

i - 13 to 33 ,

33 ri yS i
and w- _ ci x , ci - ri - si - O, i - 1 to 12 (4)

i=I

5.14.4 Oerivat(on of the Stiffness Ma_rlx

The detailed derivation of the stiffness matrix for the triangular shell element follows closely

that for the TRIM6 and TRPLTI elements. Hence, only the salient features of the derivation are given

in this section.

The geometry of the shell surface is approximated by a quadratic polynomial in the coordinates

of the base:

z(x,y) - h I + hzx + h3Y + h4x2 + hsxY + h6y2 (5)

5.14-2 (12/31/77)
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Hence the curvatures of the shell surface are

and

C."R-dG];'IAL P,',.CZT;J

OF POOR QUALITY

Z,xx = 2h4 , (6)

Z,xy - hS , (7)

Z,yy - 2h6 (8)

The membrane thickness of the shell element is assumed to vary linearly over the surface of the

element, i.e.,

3

tm - _ dl xtl yUl {g)

The bending thickness of the shell element is also assumed to have a similar linear variation:

3 t' U'

tb - l_]ld_ x i y I (lO)

Following the shallow shell theory of Novoshilov (Reference 2), the membrane strains in the

shell are given by

CX • _X" Z'XX W

33 ( xml-I xri )mi ai yni . 2h4.ci ysl
i-I

(ll)

Lv.
cy " _y Z,yy W

33 yqi'1 rIo, ;,), (IZ)

and
)u _v

Cxy " _+_" ZZ'xy w

33 yn i-1 xPt-1
. i_I (hi al xml + pi bi yqi

- 2h5 cI xrl ySl) (13)

5.14-3 (12/31/77)
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In the absence of transverse shear effects, the bending strains are given by

OF PCOR QUALITY

32w = 33
Z;i=l

. xri-2
ri (ri 1) ci yS_ , (14)

= _ . r. ySi-2aZw= _ si (si I) ci x i
Xy 3Y2 i-l

• (is)

and Xxy 2 _2W 3=_ ri-l ySi-I= _ = 2 rI sI ci x (16)
_x_y i

Following the procedure outlined in Sections 5.8.6 and 5.8.7, the jth column of the ith row of

the generalized stiffness matrix is obtained as

klj = [611 m i mj dk F(m I + mj + tk - 2, ni + nj + uk)
k-1

- h4 mi dk F(m i + rj + tk- l, ni + sj + uk)

- h4 mj

+ h_ dk

+ G22 (qi

dk F(mj + ri + tk - l, nj + si + uk)

F(r i ÷ rj + tk, si ÷ sj ÷ Uk))

qj dk F(Pi + PJ + tk' qi + qj + Uk " 2)

" h6 qi dk F(Pi + rj + tk, ql + sj + uk - l)

- h6 qj

÷ h2 dk

+ G33 (nt

+ ni Pj

- h5 nI

dk F(r i ÷ pj + tk, sI + qj + u k - I)

F(r i + rj + tk, si ÷ sj + Uk) )

'n + nj + uk - 2)nj dk F(m I +mj + tk, I

dk F{m I + pj + tk - l, nI + qj ÷ uk - l)

dk F(m I + rj + tk, nI + sj + uk - l)

+ Pl nj dk F(p i +mj ÷ tk - l, ql + nj + uk - l)

+ Pi Pj dk F(Pi ÷ PJ ÷ tk " 2, ql + qj + Uk ) (17)
continued)

5.14-4 (12/31/77)
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h5 Pl dk F(pf + rj + tk - l, qi + sj + uk)

h5 nj dk F(r i + mj + tk, si + nj + uk - 1)

h5 pj dk F(r i ÷ pj + tk - l, si ÷ qj + uk)

÷ dkF(rl÷rj÷tk' ÷ ÷"k))

+ GI2 (m| qj dk F(m| + pj + tk - l, ni + qj

- h6 m( dk F(m I + rj + tk - l, n| + sj + uk)

- h4 qj dk F(r i + pj + tk, si + qj + u k - 1)

+ 2h4 h6 dk F(r i + rj + tk, si ÷ sj + uk)

"2i mj

" h4 ql

- h6 mj

+ 613 (ml

+ m i Pj

- h5 m i

- h4 nj

- h4 pj dk F(r i + pj + t k - l, s i + qj + uk)

+ 2h4 h5 dk F(r I + rj + tk, Sl + sj + uk)

+ ni mj dk F(m I + mj + tk - l, ni + nj + uk - I)

- h4 nt dk F(m t + rj + t k, n t + sj + uk- 1)

* Pt mj dk F(p t * mj + t k - 2, qt * nj + uk)

" h4 Pt dk F(Pi + rj + t k - 1, qt + sJ + Uk)

÷u k - I)

dk F(Pl + mj + tk - I, qi + nj + uk - I)

dk F(pj + rj + tk, q_ + sj ÷ uk - I)

dk F(r i + mj + tk - I, si + nj ÷ Uk) )

nj dk F(mi + mj + tk - I, ni + nj + uk - I)

d k F(m i + pj + tk - 2, ni + qj + uk)

dk F(m i ÷ rj + tk - l, ni + sj + uk)

dk F(ri + mj + tk, si + nj + uk - I)

OF PCC'_ '._" .",

(17)
(contlnued)
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F(r i + mj + tk - l, si + nj + Uk) )

dk P(pi + mj + tk, qi + nj + uk - 2)

F(p i + pj + tk - l, qi + qJ + uk " l)

F(p i + rj + tk, qi + sj + uk - ])

h6 nj d k F(r i + mj + tk, si + nj + uk - l)

h6 pj dk F(r i + pj + tk - l, si + qj + Uk)

+ 2h5 h6 dk F(r i + rj + tk, si + sj + uk)

+ nI qj dk F(m i + pj + tk, ni ÷ qj + uk - 2)

- h6 nI dk F(m I ÷ rj + tk, ni + sj + uk - I)

+ Pi qj dk F(Pi + Pj + tk " l, ql + qJ + uk " l)

" h6 Pl dk F(Pl + rj + tk - l, qi + sj + uk)

- hS qj dk F(r i + pj + tk, si + qj + uk - l)) ]

3 3 3

+ kl.l_ k2_.l k3_.l [ ]_2 d'kld'k2d'k3(Gll ri rj (ri - l)(rj - l)

•F(i"i + rj + t_l + t'k2+ t'k3- 4, si + sj + Ukl'+ U'k2+ Uk3')

+ G22 sI sj (sI - l)(sj - l) F(r i + rj + t_.I + t'k2+ tk3,'

si÷'J÷ ukl* ÷ "k3-4)

+ (4G33 ri rj si sj + GlZ{ri sj (rI - l)(sj - I)

+ rj sI (rj - l)(si - l)}) F(r I + rj + t_l ÷ t_2 ÷ t'k3- 2.

si+sj+ ÷ + - z)

+ 2Gl3{rl rj sj (ri - l) + ri rj si (rj - l)} F(r i + rj

S.14-6 (12131177)
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+t_+t_÷t_-3,si÷sj+u_÷u_+._.I}l 2 3 1 2 3

+ 2G23{rj si sj (si - l) + ri si sj (sj - l)} F(ri + rj

+ t'kl* t_2 + t_3 - l, Si + sj * U'kl+ u_2 + u_3 - 3)] (concluded(171

The generalized stiffness matrix can be transformed to the element and global coordinates by

transformations similar to those for the TRIM6 and TRPLTI elements.

5,14.5 E.lulvalentThermal Load Vector

The equivalent thermal load vector for the triangular thin shallow shell element consists o_

loads due to thermal expansion as well as due to thermal bending caused by variation of temperature

with depth. The detailed derivation of the thermal load vector is similar to that developed for the

TRIM6 and TRPLTI elements; hence, only the essential steps are given here.

The vector of thermal strains is

{¢t, - )¢yt (.)_e2 (_-Tref)= {¢e} (_- Tref) , (18)

_¢xyt/ t_el2

where {_e} = [U]-l {_m} is a vector of thermal expansion coefficients, [U] is the strain transforma-

tion matrix given by Equation 15 in Section 5.8.I, {om} is the vector of thermal coefficients in the

material axis system, Tref is the reference or stress-free temperature of the material and _ is the

temperature at any point (x,y) in the element.

An applied stress vector which would produce the equivalent thermal strains is

{¢t} - [Ge] {¢t} - [Ge] {_e} (T- Tref) (19)

The generalized equivalent thermal load vector t{Pgen} is obtained as

t

V

OF FCCR c._.;;_i'?/

L

5.14-7 (12/31/77)



STRUCTURAL ELEMENTS FOR THE DISPLACEMENT METHOD

The strain vector {¢} is given by

OF POOR QUALI_

where Z,xx, Z,yy

surface of the element.

{¢} -
cX
Cy

Cxy

I 1
- Z,xx W - Z ×x

m 3V

+_- 2Z,xyW- z Xxy

and Z,xy are the curvatures of the shell surface and z is measured from the neutral

The temperature Tat any point (x,y,z) is given by

_ TO + T' z , (22)

where TO is the mean temperature and T' is the thermal gradient.

The following derivation to obtain the equivalent thermal load vector is given for the case of

linear variation of thermal gradient over the planar coordinates of the element; the values of the

thermal gradient at the three vertices being defined as T_, T_, and T_. This capability is not

operational in NASTRAN currently. The derivation, however, is valid for cases with the same thermal

gradient at the three vertices by setting T_ and T_ equal to T_. Thus, TO and T' of Equation 22

vary over the element as follows:

V

i.e, t

TO " eI + e2x + e3Y (23)

T'. ei÷ ÷ (24)

To = i_l el xvi yWl (25)

3 V' W'

T'- Z] e xiyi (26)
l-I

The constants eI, e2, e3 and e(, e_, and e_ can be evaluated from the user supplied values of the

man temperature and temperature gradient at the vertices of the element; however, as stated earlier,

only the capability of specifying a temperature gradient for the element is currently available and

hence e_ will be equal to the element temperature gradient and e_ and e_ will be equal to zero,

5.14-8 (12/31/77)
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Substituting Equations II through 16 into Equation 21 and substituting for {¢} and {Gt} in

t is obtained as
Equation 20, the generalized equivalent thermal load vector {Pgen}

(Pgen} -
v

33 ml-I nI rI sI t

i-_l(mi ai x y - 2h4 cI x y

ri-2 sI
- z rI (ri - l) ci x y )

33 xpi ql'l 2h c xri Sl
i._l_(ql bi Y " 6 I Y

ri si-2
- z sI (s i - 1) c i x y )

33

I-_ (nl ai xml yni l + Pi bl xpi 1 yql

r. si rl-I ySl-I- 2h5 ct x 1 y - 2z r i si c i x )

V' Wt ](ej xvj ;J + e_ x j y j z) dxdydz (27)

Integratingover the thickness and noting that

.t/2 f(x,y) z dx dy dz - 0
t/2

(28)

Equation 27 reduces to

33

,  t33
xml"l xrimI ai ynl . 2h4.ci ysl

ql bi xpi yqi-I xri- 2h6 ci ysl

nl qi xml ynl'l

)• [Ge] {_e} ej xvj yWj

PI'I ri
+ Pi bi x yql . 2h5 cl x ysi

(29)
conttnuedl

5.14-9 (1Z/31/77)
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' xri'2 I

ri (rI - I) ci ySi t

si (si I) ci xri ysi'2

ri'l si'l 1
2ri si ci x y

[Gel (me}

_,_,._,_ i_.'.,__

OF POOR O UALITY

j=l k k

UkI+Uk2÷Uk 3 )
* Y dxdy

3 tkl+tk2+tk3

k3_=l dkl dk2 dk3 x

(29)
(concluded)

The generalized equivalent thermal load vector wili be obtained by performing the differentiation

t
and integratlon operations of [quation 29 and the final expression for {P...} will be similar to

those obtained for the TRIM6 and TRPLTI elements, except that an additional expression involving

the curvatures of the shell surface h4, h5, and h6 will be added now, The generalized themal

t
load vector {Pgen } can then be transformed to the element and global coordinate systems by the

usual procedures.

v

v

5.14-10 (12/31/77)
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Figure I. Triangular thin shallow shell element geo_try.
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7. DIFFERENTIAL STIFFNESS AND BUCKLING

7.1 INTRODUCTION

The term "differential stiffness" applies to linear terms in the equations of motion of an

elastic body that arise from a simultaneous consideration of large, non]inear motions and the ap-

plied loads. The theow of differential stiffness ts not an exact theory and it tnvolves Inherent

assumotions that are arbitrary and that may be changed depending on their practical effect. The

approach presented here to the theory of differential stiffness is based on Lagrange's equations

for the motion of a system with a finite nun_oer of degrees of freedom. This approach is useful

because it points out some of the assumptions and limitations of the genera] theory.

Consider a system with a finite number of degrees of freedom, qr; with a set of springs whose

potential energy is V; and with a set of loads, Pa' applied to displacements ua. The equations of

motion for the system may be written

aV = Qr r = I, 2, 3 .... n , (1)
)qr

where the generalized force

)u a
. _w " Z --% (z)

Qr )q'-'_ a )qr

W is the work done by the external forces. It is assumed in the theory of differential stiffness

that the potential energy is a quadratic function of the degrees of freedom, i.e.,

V " ½ l!j aijqiqj ' (3)

_u a

but that the partial derivatives, _-_r'
are not necessarily constants.

As a simple example to illustrate concepts, consider a pendul_n with spring restraint shown

on the following page.

7.l-I (1Z/31/77)
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ua _ p

a

The potential energy of the spring is

v - ½ Kee2 (4)

The displacement at the point of application and in the direction of the applied load is

ua - _(cose-l) , (5)

so that as a result of Equations I and 2,

KBB = " Pa _sine (6)

V

At this point the term on the right is linearized with the result

('KB + Pa_)B - 0 (7)

Pa_ is the "differential stiffness".

In a practical problem with many degrees of freedom it is difficult to calculate the partial

derivatives appearing in Equation 2, primarily because the points of application of the loads may

be remote from the degrees of freedom. The problem is simplified by replacing the applied loads

by a statically equivalent set of loads acting directly on structural elements, such as are used

in free body diagrams. The generalized forces Qr are then computed from the work done by the load

subsets for individual elements and Equation 2. As an example consider the following pendulum,

7. I-2
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Pa

The single load Pa is replaced by the following pair of equivalent loading systems

-v

P
a

a _--_e I

P
a

The work done by loading system (1) during general motion is:

Wl - Pa_iCOS@l , (8)

while the work done by loading system (2) is:

W2 - Pa{2COSe2 . (9)

4

It may be concluded, by referring to Equation 2 and llnearizing, that Pa 61 is the differ-

ential stiffness for Bl and that Pa_2 is the differentialstiffness for B2.

It is important to observe that the equivalent loading systems remain fixed in magnitude and

direction, and move with their points of application during motion of the system, so that the

7.1-3
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equivalent loading systems are in equilibrium with each other during the motions. This implies

that the actual applied loads also remain fixed in magnitude and direction and move with their

points of application.

The Lagrangian discrete element approach can be applied to a general elastic body, if it be

imagined that the body is made up of infinitesimal cubes, each of which is joined to its six

neighbors by a universal joint at the midpoint of each face. For a given static loading on the

body the stress distribution is computed throughout the body, ignoring differential stiffness ef-

fects in the process. This internal stress distribution is taken as the equivalent loading, and

is applied to each cube in turn to determine the differential stiffness for the cube.

The degrees of freedom for each cube are taken to be its three translations, three rotations

and six elastic strains. It is clear that not all of the degrees of freedom can be independent,

in view of the attachments to other cubes. It is, however, permisslble to consider them to be In-

dependent in computing the work done on each cube.

The work done by the static loads is computed for general motions of the degrees of freedom

using Equation 2. The terms in the differential stiffness matrix for the cube are then computed

from

_Qr B2W
Krs , - _ I , (lO)

3q s 3qs_q r

for the condition qr I qs = O, which Is the linearizlng assumption.

Consider a view of a unit cube from the positive z axis shown on the following page. During

general motion the loads a_plied to the cube remain fixed in magnitude and direction and remain

attached to the midpoints of the faces. It is clear that no work is done on the cube during trans-

lation because the forces acting on the cube are in equilibrium. The strains are e11minated from

consideration on the assumption that they are small compared to the rotations. This assumption is

not essential, and it may be removed In cases, such as occur in built-up structures, where the

elastic resistance to some strain components is small. The remaining degrees of freedom, the ro-

tations, are the only significant ones.

During a rotation about the z axis, point (1) In the following figure moves to the left by

the amount ½ (l - cOS_z) and moves upward by an amount of ½sl_ z. The work done by the forces

acting at point (1) during rotation about the z axis is

7.1-4

V

V

II I k



INTRODUCTION
OF _Cg_R Q:_AL.,'F_'

v

WI,z - - ½(I - cOS_z)_ x + ½ stn_z'Txy (11)

°x J

xy

io-- 
Y_ "rxy

_Z X

®

Xy _ i

°y

"_L

The total work done by all forces is

W z = - (1 - cOS_z)(Ox + Oy) , (12)

so that the differential stiffness, for rotation about the _z axis Is, from Equation lO

KZZ " o x + ay (13)

For the case of general motions _x' Wy, and Uz considered slmultaneously, first compute the

work done by the force components in the z plane shown in the above figure. The work for other

force components can then be evaluated by permutation of indices. The work done in rotations wx,

wy, and _z by the normal stresses, °x and ay, is, (for small _)

Wo • - _[Wz2(O x + ay) * _xZOy ÷ wyZOx ] (14)

The cross-product Wx_y also produces work via the shear _xy' Consider that the rotation _x occurs

first, causing outward motion at point (2) and inward motion at point (4) both approximately equal

to ½ _x" A subsequent rotation wy, about the original y axis, produces motion at points (2) and

p.-
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1
(4) approximately equal to _ _x_y in the direction of the applied shear loads. The work done is

therefore

v

w = _x_yTxy (15)

The same result is obtained if the order of rotations is reversed, the work being done, how-

ever, by the shear forces on the vertical faces. Thus we conclude that Equation 15 is correct for

any general small motion.

The total work done by all components of force on a cube of volume AV is, by extension of the

above results,

_W - -_-_[_x2(Oy+ _z) + _y2(_z+ %)+ Wz2(_x +Oy)

- 2_x_yTxy - 2_y_z_yz - 2_z_xTzx] (16)

The matrix of differentialstiffness coefficients for a cube of volume AV is, from Equation

lO

_[K_d] - aV

WX _V _}Z

÷ °z II " xy 1i .Tzx

"Txy I _z+_x ', "Tyz

I I Ox÷;;"
"_zx i "TYZ I --

(_X

"'Z

(17)

The above general result is applied, in subsequent sections, to the evaluation of differen-

tial stiffness matrices for specific structural elements. The steps for including differential

stiffness in a problem are

I. Solve the linear static response problem for the structure in the absence of differen-

tial stiffness, and compute the internal forces in elements.

2. Using the results of Step 1, calculate the differentialstiffness matrices for individual

elements, and apply the standard reduction procedures (constraintsand partitioning) to

form the differential stiffness matrix [Kaad] in final form.

--z
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3. In buckling problems, find eigenvalues and eigenvectors for

[Kaa + _ Kaad]{u} - 0 (18)

The eigenvalues are the factors by which the applied static loading is multiplied to pro-

duce buckling.

4. In response problems in which the stiffening effect of a static preload is desired, add

At present, rigid formats which include differential stiffness are provided only for the buck-

ling problem and for static problems in which the applied load is a multiple of that used to calcu-

late [Kd], (see Section 3.2). Other applications of differential stiffness, such as its inclusion

in dynamic problems, can be treated by using the ALTER feature, Section 1.3, to modify one of the

rigid formats.

An imoortant limitation of the automatic procedures provided with NASTRAN is in the assumption

that the applied loads from which the differential stiffness is derived remain fixed in magnitude

and direction during motion of the structure, and that their points of application move with the

structure. An example in which the direction of the load changes is the buckling of a container

loaded by external fluid pressure. An example of a stability problem in which both the magnitude

and direction of the loads change is the development of a bulge on a balloon. In such examples,

the burden is placed on the user of NASTRAN to prescribe the additional stiffness terms (via di-

rect stiffness matrix input) that result from changes in the magnitudes or directions of applied

loads. Such terms are usually unsymmetrical. Dynamic routines (complex eigenvalue extraction,

and frequency response) are then used to solve the problems. The frequency response module pro-

vides the means for solving static response problems wlth unsymmetrical stiffness n_trices. The

user selects the frequency to be zero.

The algorithm has been changed in Rigid Format 4 (Static Analysis with Differential Stiffness)

to iterate the differential stiffness calculation. The idea is that, in general, since [Kd] is a

function of {u}, a better solution will be obtained by using the most recently updated value of

{u} in computing [Kd]. In its simplest form the iteration algorithm is

[K + Kd(ul)]{ui+ l} " {P} , (19)

7.1-7 (3111763
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where the subscripts i and i+l refer to the Ith and i+Ist iterations. It is by no means self-

evident that the algorithm will converge to a better solution than simply basing [Kd] on the

elastic solution {Ul}, or, indeed, that it will converge at all. Mathematical analysis shows

that iteration is equivalent to retaining some, but not all, second order terms In the cal-

culation of the differentialstiffness.

Figure 1 shows the results of applying various methods to a simple problem. The structure

consists of a hinged rigid rod with an over-centerspring attached to one end. The spring is

assumed to be long enough that movement of the attachment point does not significantly change

Its direction. It is clear, from the results, that the iterated differential stiffness solution

Is a significant improvementover the one-step differential stiffness solution, but that it still

differs considerably from the correct solution.

The mathematical development of the iterated solution for this simple case is as follows.

Let the force in the spring be F, and let the lateral deflection at the end of the rod be u.

Then the compressive load in the rod is F/_- (for small motions) and the linearized differential

stiffness presented to u is, accordlng to Equation 7,

V

2

Kd = -F/¢,/'2" (ZO)

The force in the spring is related to u by

(Zl)F " KU/_'2- ,

(2Z)

(Z3)

so that

Kd = -Ku/2£

In addition, the linear eiastic stiffness presented to u by the spring Is

K_ = K/2

or

The explicit form of the iteration algorithm corresponding to Equation 19 is

" _ Ul+l = p ,

7.1-8 (3/I176)
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Ui+l 2P/OK
T" uI

l- T

(25)

v

Both the lower (stable)branch and the upper (unstable) branch obtained by replacing ui and

Ul+l by u are plotted in Figure I. Convergence to within one percent of the lower branch is

obtained in three iterations for P/ZK - .10. The algorithm is divergent for P/ZK • .125, the

stability limit.

As a matter of practical computation, Equation 19 is inconvenientbecause it requires

+ Kd(ui)] at each iteration. Improved efficiency could be achieved bydecomposition of [K

[Kd(ut )] to the right hand side. Convergence would, however, be adversely affected.moving

As a compromise [Kd(ul)] is replaced on the left by an approximation [Kd(ue)] where {ue} is

initially the linear elastic solution. The quantity, {Ue}, maY be updated at a later iteration

if it is advantageous to do so. The iteration algorithm used by NASTRAN is

[K + Kd(ue)]{Ul+l} = {P} + [Kd(ue) - Kd(ul)]{ui}

, (26)

• {P} + [Kd(ue - ui_{ui} • {Pi}

where the second form follows from the linear dependence of [Kd] on its argument.

Criteria are needed to determine when the solution is sufficiently converged, and when (if

at all) {ue} should be updated to be the current estimated solution, {ui}. These criteria are

computed automatically from parameters supplied by the user.

Convergence Is deemed to have been achieved when the difference between successive right

hand sides of Equation 26 is sufficiently small. A weighted criterion for this event is that

(u $ (ri+l " Pil < ¢o (27)¢i " _ i+llT,
u $ vi

where ¢o Is a user-supplied parameter and {PI} is the right hand side of Equation 26 at the Ith

iteration.

If an exponential decay in the error is assumed, and if k - ¢i_i/¢i is the ratio of the

error on two successive iterations, then the number of additional iterations required to achieve

the desired accuracy is approximately

_o
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¢i

log Co
Nf = (28)

V

Exponentialdecay will be approached after a few iterations for algorithms having the general

form of Equation 26, as may be inferred from the ana]ysls of the NASTRAN algorithm for nonlinear

steady-state heat transfer in Section B.

The number of additional iterations,Nf, may be used in conjunction with the known computer

times for matrix decomposition and for one cycle of iteration, to decide whether it is more
....i-_z_i_ __._. _ _ _ _ _ ..... _ .........

efficient to continue iterating or to "shift," i.e., to replace {ue} by the current approximate

solution. A flow diagram for the logical steps involved in deciding when to stop, and whether

to "shi_t," is shown in Figures Za and 2b. In the diagram, B is a User-supplied parameter equal

to his estimate of the number of iterations that will be required for convergence after a shift

has occured.

7.1-1o (3/l/76)
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Flgure 2a. Flow diagram for module DSCHK (first part}.
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DIFFERENTIAL STIFFNESS AND BUCKLING

RODS, BEAMS, AND SHEAR PANELS
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7.2.1 Extensional Rods

The calculation of differential stiffness for an extensional rod Js particularly simple. If

the x axis is selected to coincide with the axis of the rod, Ox is the only nonzero stress and the

work done by static preload is

_x ZFx
Wr = " T (_y2 + _z2) = . T (=yZ + =z2) , (1)

where ¢ is the length of the rod, A is its cross-sectional area, and _y and _z are rotations about

transverse axes. FX is the axial force in the rod. Consider the following diagram.

Uzb/Uy b

UXa

The rotations are computed from deflections at the ends

_x = (Uzb - Uza)/¢

uz - (uy a - Uyb)/_

Thus the work done by _x is

Fx I(Uzb Uza)2 Uyb)2 ]Wr " -_r_ - + (uya-

, (2)

(3)

(4)

->
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The differential stiffness matrix is given by

m

fya 1

fyb Fx -l

fza 0

fzb 0
m

m

-I 0 0

1 0 0

0 1 -I

O -I 1

a

Uya

Uyb

ZZZ

OR|G|NAL pR.C-__.-_

OF poGR QUALIT"/

(s)

Note that Fx is positive for tension.

7.2.5 Quadrilateral Shear Panels

Treatment of differential stiffness for the quadrilateral shear panel is simple because the

forces exerted on the shear panel are directed along the principal diagonals as shown below,

F2

F1

Forces F1 and F2 are evaluated from corner displacements during stress data recovery (see Section

5.3). The diagonals are treated as independent extensional rods, for the purpose of calculating

differential stiffness. The resulting matrices are then transformed from element coordinateS,

which are oriented parallel and perpendicular to the diagonals, to grid point coordinates. Details

of the procedure are described in Section 8 of the Programmer's I.bnual.

|

D
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7.2.3 Prismatic Beams

The differential stiffness matrix for a prismatic beam (BAR), is relatively complicated if

the effects of moments and shears as well as of axial force are considered. This is done in

NASTRAN in order to achieve generality of application. Consider a small length of prismatic beam

shown below.

-v

_Z

'.'y

(_) Y 'UZ'eZ
wx

....
- _ Fx,T,Ux,e x

All forces, moments, dfsplacements and rotations follow right-hand rules. The rotations of

an infinitesimal element located within the beam are also indicated in the figure.

For a prismatic beam the stress components _y • c z = _yz • O. Thus the energy due to static

Dreload can, from the general theory developed in Section 7.1, be expressed as

i IE_x(=y2W • . _ + =z 2) . 2,.,x=yTxy - 2=xUzTzx]dV , (6)

where the integration is carried out over the entire volume.

The rotations aopeartng in Equation 6 are related to the motions that define the position and

orientation of the beam axis by the following fon_ulas.

7.2-3
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_x = ex ' (7)

The rotations _y and _z appearing in Equations B and g are the rotations of filaments origin-

ally parallel to the x axis. They differ from the average rigid body rotations by one half of the

corresponding shear angles. It is clear that they are the correct rotations to use for the axial

stress terms in Equation 6, and it can be shown that they are also correct for the shear terms.

Equation 6, written in terms of the local slopes of the beam axis, is

W  fIol 1. ' ')2, . zBx )2X (Uz ÷ yB x (Uy

ITXY (uZ' ' "Tzx(Uy ' ' I]+ 2Bx + ye x ) - ZBx ) dV

The terms in the differential stiffness matrix are obtained from

(lO)

d _2w , (11)

, , , BxJTwhere u'i is an element of {_i} = Luy , uz , ex ,

iength dx

Thus, for a differential element of

KIId • laxdV = FxdX. , (12)

d
K,_ = 0 (13)

Kl3d • - IZ_xdV - - MydX ,

KI4d • . TzxdV = . VzdX ,

(14)

(is)

V

7.2-4 (3/1/76)
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K22 d = IaxdV = FxdX ,

K23d - IOxYdV = . MzdX ,

K24d = I'rxydV = VydX ,

K33d = IOx(y2 + z2)dV =

K34d = I(y'rxy + Z'rzx)dV = 0 ,

K44d = 0

(16)

(17)

(18)

(_-) FxdX , (19)

(2O)

(21)

In Equation 19, I is the polar area moment of inertia about the centroid and A is the cross-

sectional area. It is assumed, in Equations 19 and 20, that the cross section is symmetrical

about the y and z axes. The assembled differential stiffness matrix for an incremental beam of

unit length is

[Kijd]

! ! I

Uy uz CJx ex

o I'"y l'Vz

0 1 Fx I .M z Vy

-vz ! Vy I o I o
-- I I I --

|

Uy

!

uZ

!

0 X

0 X

(22)

The energy due to static preload for the entire beam can now be written as

W = ½1:{_i}T [Kljd]{_i}dx (23)

In order to obtain the differential stiffness matrix in terms of displacements at the ends of

the bar, {Ue}, let the relationship between local displacements {_i } and {ue} be

7.2-5
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{Ti} = [D]{u e} (24)

The differential stiffness matrix referred to {ue} is related to the energy by

W = ½ {ue}T [Keed]{ue } , (25)

V

so that, substituting Equation 24 into Equation 23 and comparing with Equation 25

[Keed] = [I[D]T [Kijd][D]dx (26)

The result clearly depends on the form assumed for the terms of the [D] matrix. Let us con-

!

sider, for example, only the first row of [D], which gives the bending slope Uy . If it is assum-

ed that the variation in displacement is linear, i.e., if _

uy = T (Uya" Uyb) ' (27)

then the terms in [Keed] corresponding to Uya and Uy b are

- --_ . , (2B)

which is identical to the resu]=t?or an extensional rod expressed In Equation 5.

More accurate results are obtained If the elements of [D] are chosen to correspond to the de-

flection functions for beam bending (Reference I).

Since the deflection function for a uniform beam is a cubic function of distance from one end,

!

the slope will be a quadratic function. The exact relationship between uy and end motions Is,

neglecting transverse shear strain,

V
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where x-= x/_ .

Similarly

RODS, BEAMS, AND SHEAR PANELS
"_ ..4° , _ _ _ . o ._
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6 (_. _2)(Uya - Uyb)-eza(E- 3_2) ÷ ezb(l - 4_ + 3x-_) , (29)

Uz' " T6(;. _-_)(Uza- Uzb) + eya(2;- 3x-_)-eyb(l - 4;+ 3;z) , (30)

and

0x - ; 8xa + (l - ;) 8xb , (31)

' l
ex " T (exa" 8xb) (32)

The coefficients appearing In Equations 29 through 32 are the nonzero terms in the [D] matrix.

Substitution of the coefficients and Equation 22 into Equation 26 results, upon integration, in the

differential stiffnessmatrix shown on the following page. For example, the leading diagonal term

is

' /iKll . _- 36Fx _'-P)Z_T - E (33)

In performing the integration the variations of the bending moments with distance,

My = _My a - (I - _) Myb , (34)

Mz = _Mza - (l - _) Mzb , (35)

are used. Note that the convention for positive direction of end moment glves My • - Myb and

Mz = - Mzb at _= 0 .

The final operations on the differential stiffness matrix are to remove the effects of pin

flags (which constrain one or more of the end forces and moments to zero value) and to transfer

the _esultlng matrix from element coordinates to grid point coordinates, See Sectlon 4.87 of the

Programmer's Manual for details of the procedure.
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V

fya

fza

mxa

_ya

mza

fyb

fzb

mxb

myb

mzb
, J

z

6Fx

F X

"TIT

6Fx

" _"T"

F X

"To

Fx 6F x
--..E-_ o "l'O - _TZ- o

6F x Mza Fx 6Fx
T TO" o o " _'_'i-

_ Mza

F X

TO"

. 6F x

."Mz_._b

Fx

Tg

IFx
_,_ _Vz Mya Mza" "T _ T

2_ Fx
l-l-l-gFx0 0 " TO"

ZVz 2_ Fx
" T 0 l-1--_Fx

M
ya

Mza

IF x

_.Vz

T

Fx 6F x

5T

F X

"TO o o

_'v--._.z .Myb.6 9.

_,Fx
-_T- o o

6Fx
E

Mzb

F
X

"1-6"

M .

ilzb

IF

_,V

t_V z
rT

Mzb

IF x

F
X

TO"

Q.Fx

F X

-T'O-

2_F x

-13-

0

F
X

"TO"

_V z
T

0

F
X

TC

0

_,Vz

"T

0

2£F
X

-TS'-

_Uya

i Liza

Oxa

Oya

eza:

Uyb

Uzbl

exb

eyb

bezb

(36)
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The coordinate system for the basic triangular NASTRAN plate element is shown below.

r B ;,

Figure 1. Plate element.

The stress distribution in the plate is:

oz • 0

GX z _X "

Oy - 6y -

Txy • Txy

Vx
TXZ =

_'yz " _

MxZ

"T-

.a¢
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where

_x' _y' _xy are average in-plane (membrane) stresses ,

Mx, My, Mxy are bending moments,

VX, Vy are transverse shear forces,

h3
I is the bending coefficient ( T_- for a homogeneous plate) .

Applying Equation l to Equation 16 of Section 7.1 and integrating over the depth of the plate

2

! " "k " Je " .

The last three terms involve rotations about an axis normal to the plane of the plate and

they are frequently omitted in buckling analyses. The _ term, however, is important for the

overall buckling behavior of a built-up beam-like structure and will be retained. The terms

proportional to VX and Vy will be omitted.

The rotations are expressed in terms of displacements as follows:

Ox- ½

(3)

Equations 2 and 3 are the basis for calculating differential stiffness of a plate on the

assumption that the strains are small compared to rotations. This assumption will not be

made. In removing it, the inplane rotations, _x and my, will be treated differently than the

normal rotation Uz" The transverse shear Strains are

Yx T_ T_ = -_-+B ,

= _w + _V 3w
Yy ay _" = _" a •

(4)

V

V

-_=
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+w+1
:x )y 2" Yy '

Jw + 1
_y " " _-_ _Yx"

(s)

The transverse shear strains, Yx and yy, are usually small and unimportant. They are, how-

ever, important for sanoh_ich plates with stiff face plates and a soft core. For such plates, the

)w 3w
rotations mx and _y should be _by _-_ and - __)x in Equation 2 as can easily be shown.

Consider the term _ _x_y,2- in Equation 2 for a sano_wich element that is subjected to simple shear

as shown below.

z

t
Figure 2. Shear deformation of a sanohwich plate.

The core material is subjected to a shear strain, yy, and also experiences a volume change,

- - ½ y_, which produces tractions tending to increase the length of _e face plates. SinceAV/V

_e face plates are stiff c_pared to the core material, they will not change in length and the

energy due to differential stiffness is simply

_w - ½A c_yx_! '

where A is the cross-sectional area of the face plate material. It is seen that Equation 5
c

would give a different result. For sano_ich plates _x should, therefore, be replaced by _y in

Equation 2 and _ should be replaced by - _x " Since the shear strains are small for other types

of plates, _ese substitutions will be used in all cases.
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The situation with respect to the normal rotation, _z' is much more delicate, and a correct

treatment of the effect of strains depends on assumptions regarding the behavior of materials with

finite strains. Blot (Reference l) has developed the following formula for the energy of differ-

ential stiffness of compressible materials in plane strain problems.

V

where

,°),

_U

Cx " _-_ ' (e)

av

Cy " _--_--

i T Z =:

An independent proof of Equa_{6n'7 is_'a_;:foilow_=. Consider a unit cube under a constant

axial tension which undergoes shear strain as shown in Figure 3.

_'m V

I
I

Figure 3.

))yo/

Shear deformation of a unit cube.
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Themoment about the z axis due to the displaced force is
CR_"_I_L .'-:" ..T.2,'-j

Mz " _y ayLU (9)

The shear strain, y • 2¢xy, and the average rotation _z' are given by the following

equations:

_z = Tx @y ' (I0)

Solving Equations lO and ll:

av + ___u
y- )_ )y (ll)

_v ½)_ = Y + _z (13)

The work done due to the mon_nt is

Wa • Mz d_ z (14)

Substituting Equations g and 12 into Equation 14 gives

W

Integrating Equation IS produces

(IS)

W_ - -½1y(_2 z - Y_z) " "°y(½_2z " _z{xy) ' (16)

which is the same as the second tem in Equation 7. The terms proportional to o x and Txy in

Equation 7 may be similarly derived. In particular the term proportional to Zxy is obtained by

considering the equivalent normal stress components in a coordinate system rotated through 45 °.

In summary, the expression that is used for the energy of differential stiffness per unit

!

area of a plate element consists of a part, Ub, due to out-of-plane (bending) motions and a part,

7.3-5 (4/I/7Z)
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Um, due to in-plane (membrane) motions
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I 1 !

UA - Ub + Um , (17)

V

where

I { w/2 2 1Ub = _ _x \Tx! + _y _?y/ + 2_xy _j , (18)

_w _w
is the energy for bending motions obtained by substituting _-_ and Ty for -Wy and _ux respectively

in Equation 2, and where

_(Ix(_z + 2Wzexy) + _y(_z " 2_zexy) + 2_xy(¢y - Cx)_zl ,

(19)

is the energy for membrane motions obtained from Equation 7.

The differential stiffness matrices are developed below separately for bending and membrane

motions.

7.3.2 Differential Stiffness for the Basic Bendin 9 Trlanqle

The notation and development in Section 5.8.2 will be used without further reference.

The out-of-plane deflections of the basic triangle are described by the polynomial

= Wa + Y_a " xBa + XYx + YYy ÷ ql X2 + q2 Xy + q3y2 + q4 x3 ÷ qs xy2 ÷ q6y3w

(2o)

where wa, _a and Ba are the out-of-plane displacement and rotation at point (a) in Figure I.

V

The linear terms are combined in the equations

WX • ¥X " Ba '

\

(21)

7.3-6 (4/1/72)
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The slopes of the surface at any point x, y, may be described by the matrix [Heq] where:

w X

Wy

" -_w" " [Hoq(x'Y)]--.-"
41

Q2

;,

(22)

and

[Heq]

, _ i I l 2 I 2 l
1 i 0 I 2x , y _ 0 j 3x I y _ ol
--+-- +-- - +-- --_r ----+-----_----- _----_|
- ' " ' - ' '2yI 0 ',2xy:3yjU I / I u I x I

(23)

The differential stiffness in terms of the slopes at any point x,y, is given by the equation

Substituting Equation 18 into Equation 24 results in the matrix:

(24)

[_x "_xy]
[K do] = h dA (25)

_y ;yJ

The differential stiffness for the entire plate in terms of generalized displacements,

L;,'_'q_'q2.....q_Jist,eintegral:

[Kdq] - h i [H_q]T[Kdg][Heq] dA (26)

Explicit formulas for the terms of [Kdq] are given in Table l in terms of integrals Ik_ defined as

Ik{ • h [ xk y_ dA (27)

A

7.3-7 (4/1/72)
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The integrals are easily evaluated by using the natural coordinate functions fi defined by

the equation:

V

r(x,y) = flrl + f2r2 + f3r3 , (28)

where r is a linear functlon over the area, and ri, r2, _r3 are the values of the function at

gridpoints a, b, and c, respectively, in Figure l.

Since x and y are obviously linear functions we may use the equations:

x = f2x2 + f3x3

y = f3Y3 ,

(29)

note: Xl = Yl = Y2 = 0 •

A property of these transformations is that:

i _iBayff2B f_ dA = 2A (2+ _'+'B'+ y)! (3O)

Substituting Equation 29 into Equation 27 results in the function:

Ik_ = hy_ I (f2x2 + f3x3)k f) dA

A

(31)

This expression,with the aid of Equation 30, is used directly to evaluate the integrals.

For example,

V

Using Equation 30 for each of the three terms, produces the result

" LT' x) ÷ 2_ x2x3 ÷ _ x " ,-C--4x)+ 12x2x3 ÷ 24x

(32)

(33)

P

7.3-8 (411172)
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The remaining task is to define the variables _x' _y' and {a} in terms of the disolacements of the

connected points. In this connection, the following matrix equations are taken from Section 5.8.2.

{q } = [H]'ll{ui}l " [S]{Ua}l , (34)

where

IYx I - [Hyq](q} ,
Yy

{u i} .....
wC

_¢

_c

{Ua} = oa

Ba

(35)

,, (36)

(37)

In the actual application, three 6 x 3 matrices are generated by multiplication and partitioning

as follows:

[Ha] • -[H]-I IS] , (38)

I Hc] - [H]-I (39)
[Hb i

7.3-9 (4/1172)
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The generalizedcoordinates are then related to gridpoint displacements by

_X

_y

ql

q6

- [Ca]{Ua} + [Cb]{Ub} + [Cc]{Uc}

where, using Equations 2l, 34, 35, 38, and 39:

l_ikllkw_,jm il._'li_ • , .

OF pGOR _,,:_L:"7:,

(40)

[ca] - - - + , (41)

Ha 0 j

- - , (42)

[Cc] = (43)

The differentialstiffness matrices in terms of the displacen_nts at the corners of the

tr,iangle are given by the matrix [Kdt], where

F.c;_]

rvdt I vdt I vdt7

F'J-;  JL _"tLI
• |,.dt I ,.dt I .dt l

i _ba _ %b L _bc_l (44)

|_dt I Kdt ) Kdt )
L-"ca i cb I cc -J

7.3-10 (4/1/72)
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The Membrane Triangle CTRMEM) and quadrilateral (qDMEM)
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For out-of-plane motion, the menbrane triangle is assumed to rotate as a rigid body.

energy is expressed in terms of rotations _x' _y' _z' and strains {x' Cy' and Cxy' assumed

constant over the surface of the triangle. From Equations 17, 18, and 19:

The

9 - 2
U " -_-lhA&_x _Y2 + _y _x2 . 2_xy_x_y + _x (_z ÷ 2_zCxy) + _y(Wz " 2_Z_xy) + 2_xy(¢y " Cx)_z) '

(4s)

where hA is the volume of the element.

The differential stiffness matrix in terms of the rotations and strains Is

, (46)

where _i " _x' u_y,_z' Ex' Cy' Cxy"

The rotations and strains are related to corner displacements by

ul + I u2
vI [C_] v2

w I w2

l u
+ [C_] v3

w 3

The differential stiffness In terms of the corner displacements Is

- [cd]{ue }.

(47}

rKdee]- [cd]T cKd][cd] (40)

The elements of matrices [Kd], [C_], [C_], and [C_] are shown in Table Z.

Quadrilateral elements (QDMEM) are treated as overlapping pairs of triangular elements for

the calculation of elastic stiffness, and their differential stiffnesses are similarly treated.

o_

w_
7.3-II (12/3T/74)
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The Triangular Composite Elements ITRIAI and TRIA2)

OF PCOR Q'JAL_TY

For inplane motion, the elements are assumed to have constant rotation and strain. For this

purpose, the equations for the triangular membrane, Equations 45 - 48, are used with no contribu-

tions from _x and _y.

For out-of-plane motion, the element is assumed to have the same deflected shape as that

assumed in generating the elastic stiffness matrix. The inplane stresses are calculated using the

membrane properties. The centroid of the triangle is used to divide the triangle into three sub-

triangles as shown in Figure 4 below.

Figure 4. Clough triangle.

The displacement of the center point is constrained to produce compatible slopes, _i'

between adjacent triangles, see Section 5.B.3.3.

The calculation procedure is as follows. First, the partitions of Equation 44, are generated

for each subtriangle. These matrices are then transformed to the element coordinate system and

addedtoproduce wherei,j l,2,3 4.

The equations of slope constraint are

I auyl 1AvJ2

A_ 3

- [Gl]{U l} + [G2]{u 2} + [G3]{u3} + [G4]{u 4} , (49)

where a_ l, A_2, A_3 are the differences in slope between adjacent triangles when point 4 is free,

and

7.3-12 (12/31/77)
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{ul} - 9x1 , etc., are the displacements of the corner points in the element coordin-

Byl

ate system. See Section 5.8.3.3 ?or details.

Applying the equations of constraint to eliminate the elements of {u4} results In the

Kd
differential stiffness matrix of the element, [ ij], referred to the vertices of the composite

trianale. Each oartition of the matrix corresponding to points i and j is:

(so)

7.3.S The quadrllateral Composite Elements (qUADI and qUAD2)

These elements are composed of four overlapping triangles. The inplane differential stlff-

hess of each triangle is calculated with the same equations as the membrane triangle, Section

7.3.3, except that the _x and _y terms are ignored. For out-of-plane motions, the element Is

assumed to lie in a plane, parallel to, and midway between the diagonals. The corners of the

element are connected to the four grid points by rigid bars. The inplane stresses Gx' Oy, and Txy

are calculated independently for each triangle and the differential stiffness is calculated using

the equations given in Section 7.3.2. The differential stiffness matrix terms for each triangle

are then transformed to the element coordinate system and added.

7.3-13 (4/1/72)
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Table l Elements of [Kdq]

G:: POOR GL_AL'I'I'Y

The elements of the (8 x 8) differential stiffness matrix [Kdq] are evaluated below from

Equation 26. The matrix is symmetric so only the upper triangle terms are given. The superscript

(dq) is omitted for convenience.

Kll - ox I00

Kl2 - T I00

Kl3 - 2ox ll0

KI4 " °x 101 + T ll0

Kl5 = 2z 101

Kl6 = 3_x 120

Kl7 - ox I02 + 2z Ill

Ki8 = 3_ I02

K22 - Oy 100

K23 • 2T If0

K24 - T 101 + oy ll0

K25 - 2Oy 101

K26 = 3T 120

K27 " T I02 ÷ 2Oy Ill

K2B " 3_y I02

K33 " 4ox 120

K34 " 2(O x Ill + _ 120)

K35 " 4z Ill

K36 " 6_x 130

K37 - 2(_ X ll2 + 2T 121)

K38 " 6T ll2

K44 " _X I02 + 2T Ill + Oy 120

K45 " 2(T I02 + Oy Ill)

K46 " 3(O x 121 + _ 130)

K47 - ox I03 + 3z I12 + 2_y 121

K48 " 3(T I03 ÷ Oy I12)

KS5 - 4_y I02

KS6 " 6T 121

KS7 " 2(T I03 ÷ 2_y ll2)

K58 = 6Oy I03

K66 " 90 x 140

K67 • 3(o X 122 + 2_ 131)

K68 " 9T 122

K77 • OX I04 + 4_ If3 + 4_y 122

K78 " 3(T 104 + 2ay I13)

K88 " g_y 104

7.3-15 (12129/78)
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Table 2 Matrices for the TRMEM Element.

CK_] - At
0

0

0

m

w

Cy "Oxy 0 0 0 O

-axy ax 0 0 0

0 0 (Ox+_y) -Txy Txy (Ox__y)

0 -Txy 0 0 0

0 Txy 0 0 0

0 (_x-Oy) 0 0 0

The corresponding degrees of freedom are:
_x' _y' _z' _x' Cy' and {xy. )

m

0

Y2-Y3
--2--

Cc_] -
"Yl

0

. Y2"Y_.._3
2

0 0 y3-Y2

0 Yl

Yl'
-T 0

0 0

Y3"Y2 0

cc)]

0 0 "Y3

0 0 "YI

Y3 Yl
T T o

Yl 0 0

0 -Y3 0

Y3 Yl
"T T 0

ORIGINAL F:_G_ i_

OF POOR QUALIT/
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where

[C_] •

0

Y2
"T

0

0

Y2
T

0 Y2

0 0

0 0

0 0

Y2 0

0 0

l

Yl = x2

l

Y2 = )'3

y x3

3 = x2Y3

7.3-17 (12/29/78)
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7.4 THE CONICAL SHELL ELEMENT

The elastic stiffness matrix for the conical shell element is derived in Section 5.9. The

differential stiffness matrix due to static axisymmetrlc preload is derived here using the nota-

tion and the results of Section 5.9 and the general theory of differential stiffness developed in

Section 7.1.

7.4.1 General Method

The static preload used to generate differential stiffness must be axlsymmetrlc because an

unsymmetrical distribution of preload provides an unsymmetrical distribution of differential stiff-

hess, thus violating the symmetry assumption of the conical shell element. Furthermore, the ef-

fects of static bending moments and transverse shears on differential stiffness will be neglected,

which is the usual practice in the analysis of the buckling of shells, leaving only the direct

membrane stresses, aso and _@o' of zero harmonic order as contributors to differential stiffness.

The stiffening effect of membrane shear stress of zero harmonic order, =s¢o' is not axisymmetric,

since shells that have been subjected to a clockwise twist can be distinguished from those that

have been subjected to a counter-clockwise twist.

The potential energy of differential stiffness for a conical shell element can be written as

follows, using the result given in Equation 14 of Section 7.1.

o joLFso ,+ F¢o_s 2 + (Fso + F¢o)_w 2 rd*ds (l)

FSO and F_o are the direct membrane forces per unit width of zero harmonic order in the meri-

dional and azimuthal directions. _, us and _w are rotations about the orthogonal axes defined in

Figure l of Section 5.9. The rotations _¢ and us should be computed from translational motions

normal to the neutral surface rather than from the tangential motions of points on the inner and

outer surfaces. They are, therefore, equal to the quantities _ and B in Equations 37 and 38 of

Section 5.9, with the transverse shear strains, Ys and Yd' set equal to zero. _w is identical to

ew given by Equation 42 of Section 5.g. Thus the rotations are related to translational displace-

ments by

-:-_

7.4-1
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us .... + u , (2)r Be

lUw = " _T+ "r 7T;

The rotations have the following harmonic dependence

m m

u S = _ cosn¢ + + _.%n sinn¢n 1%n %0 n=l

m . m

u_s = !l=sn sinn@ + _SO - =_l=sn cosn¢ , (3)
n n ,

m m .

_w = n!l_wn sinn¢ + _0" n=_l_wncosn¢

As with all other displacements and strains, the harmonic coefficients of different harmonic

orders are uncoupled, and the starred and unstarred coefficients of the same harmonic order are un-

coupled. By virtue of these facts, Equations 2 can be written for each harmonic coefficient as

follows

V

_W n

%n = _T '

= n Wn ,co_._EUn (4)_SR _ r '

"w." L T* r Tvn '

and similarly for the starred coefficients.

The potential energy of differential stiffness can be separated into independent terms

m . m ,

Vd = Vdo + n=l_ Vdn + Vd° + n_l vdn ' (S)

7.4-2
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where, performing the integration with respect to ¢

Vdo = _ f Fso_2lordS ,
o

" y'[,°o<o(,,oVdo • _ +
0

I@

The form for Vdn

n [_" IFso_n2Vdn = 2" o

and also

.2]+ rl_O) % rds0

+ F¢o_sn 2 + (Fso + F_o)_wn 2]

(6)

(7)

rds (8)

is identical to that for Vdn with the substitution of starred coefficients.

It is convenient to deflne the following diagonal matrix

Fso 0 0

0 F¢o 0

0 0 Fso + F_o

I

IFo] -

m

, (g)

{_n} " _S n

_wn

, (lO)

{_}

_¢o

t

• _SO

UJwo

. {ll)

so that Equations 6, 7, and B can be written as

* [_ {Wo}TVdo + Vdo • _ [Fo]{_ O} rds
o

(12)

7.4-3
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Vdn = _Ii{_n}T[Fo]{_n}rds n > 0

ORIG|I2AL P:_G_ ig

OF pOOR QUAL_"F_

(13)

The Fourier components of rotation are related to the independent constants {qn } by

(_n} = [H q]n{qn} n > 0 , (14)

so that

* 1 {qo}T[Koqd]{qo}Vdo + Vdo = _ , (15)

Vdn = ½ {qn}T[Knq_] {qn} , (16)

and

Vdn* . _l {q:}T[Knqd _ {q_} , (17)

where

and

-[Koqd]-= 2v [Fo]_[H_q]n rds , (18)

[Knqd ] = _r _" [H ]TnZFo][H q]n rds (Ig)
Jo _q

are the differential stiffness matrices referred to the independent constants. (Note that the

differential stiffness matrices for starred and unstarred coefficients are identical.) The dif-

ferential stiffness matrices referred to the degrees of freedom for the element, {Ue}, are

-I T qd -I
[KnUd] = [Huq ]n[Kn ][Huq ]n n _ 0 (20)

Formulas for evaluation of the elements of [Huq] are given in Section 5.9.

The remaining task is to derive formulas for the elements of [Knqd].

[Koqd] differ only by a factor of two, (compare Equations 18 and 19).

The formulas for
m_

7.4-4
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7.4.2 Evaluation of [Knqd ]

The relationship between the harmonic coefficients of disolacement and the independent con-

stants is stated in Equations 30, 31, and 32 of Section 5.9.

pressing the subscript (n), we find

Substituting into Equation 4 and sup-

_ = q6 ÷ 207s + 308s2 '

n q7s2 qSs 3) cos_Us " T (q5 + q6 s + + + _ (ql + (12s) ' (21)

_w " q2 + (ql + q2s) + _ (q3 + q4s)

The coefficients in these equations are the elements of the [H q] matrix, written below in trans-

posed form

[H_qlT

0

0

0

0

= 0

1

2s

3s 2

0

0

cos@/r - sin_/2r

l
scos_/r - _- s.sln_/2r

0 - n/2r

0 - ns/2r

n/r 0

ns/r 0

ns2/r 0

ns3/r 0

0 0

0 0

_s _w

l

2

3

4

5

6

7

8

g

I0

(22)

Turning now to the evaluation of the elements of [Fo], Equation g, it is required to find the

explicit dependence of the elements of [%] on distance, s, along the conical segment. From Equa-

tion 17 of Section 5.9:

7.4-5
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FSO = t[E11(%o - aCso) + E12(E$o - _¢¢o )]

F¢o = t[E12(%o - 6_so } + E22(%o - _¢¢o )]

where the _c's are enforced strains including those produced by temperature.

From Equations 60 and 61 of Section 5.9, with n = O,

%0 q40 '

%0 " ½Istn_(q30 + q40s) + c°s_(qso

Formu]as for the Ae's are given in Equation 123 of Section 5.9,

where

÷ q60s + q70s2 + q80s3)]

Thus, Fso

Fso = ao + als + a2s2 + a3s3 ,

F¢o = bo + blS + b2s2 + b3s3 ,

1
ao = t[Ellq40 + T El2(sin¢<130+ cos_q50)] + (part due to A¢'s)

al = T1tEl2(sin_xl40+ cos_L<160)+ (part due to _¢'s)

I
a2 = _ tEl2C°S_70 ,

I
a3 = _ tEl2C°S¢<lSO ,

1
bo • t[El2q40 + _ E22(sin_q30 + cos¢<150)]+ (part due to _e's)

I tEz2(sin_x140+ cos_q60) + (part due to A¢'s) ,bI •

I
b2 = F tEz2C°S_70 '

1
b3 = _ tEz2c°sC_lSO

OF PCCR QUALITY'

(23)

(24)

and F¢o may be written

(25)

(26)

(27)

V

°_
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and q30--qB 0 are, of course, obtained as part of the stress data reduction procedure for the pre-

ceding static solution, see Section 5.9.10.

[Knqd ] will now be evaluated from Equation 19, carrying out the indicatedThe elements of

integration. For the purpose it is convenient to define the integrals

{ smrl. nAmn = _ FsodS ,
0

_ smrl.n F¢oBmn = _ ds 1

0

Amn and Bmn

5.9, and the coefficients defined in Equations 26 and 27.

(28)

Cmn = Amn + Bmn

can be evaluated in terms of the integrals Imn defined in Equation 82 of Section

= ÷
Amn aoImn ÷ afire+l,n ÷ a21m+2, n a31m+3,n

= + + (29)
Bmn bolmn ÷ biIm+l, n b21m+2,n b31m+3,n

The evaluation of the (i,J) element of [Knqd] consists of multiplying the ith row of Equation

22 by the jth row, with the weighting ?actors Amn, Bmn, and Cmn applied to the terms from the

first, second, and third columns respectively, m is equal to the power of s appearing in the num-

erator of the product, and n is equal to the power of r occurring in the denominator of the oro-

duct. The resulting matrix is symmetric. Explicit formulas for the elements will be found in

Section 4.87 of the Programmer's Manual.
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7.5 ISOPARAMETRICHEXAHEDRON THREE-OIMENSIONALSOLID EL_ENTS

OF PCOR QUALITY

The differential stiffness matrix for the isoparametric solid elements

adding the energy due to initial stresses to the potentlaI energy function.

is derived in Section 7.1, and is given by

Is obtained by

This additional energy

where the rotations are given by the relations

_x "_ _'_ )

, _-_ ,/
(2)

and may be express_ in te_s of the grid point dlsplace_nts by using Equation 1 of Section 5.13.1,

i.e.,

_x

u_z

I _2, _3 !• [cll , , ... CNGP]

ull

v1

w1

Fu2
I

v2

w2
[---

UNGP

VNGP

WNGP
k

• [E]{ue} , (3)

and

aNI
-_- o

@Ni @Nt

_y _x

_Ni

_Ni
--_-

.I JL 'E!QI:t  "- ","",
7.5-1 (12/31/74)
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The substitutionof Equation 3 into Equation l and the addition of this function to the.potential

energy expression .yieldsthe differential stiffness matrix:

cK:eJ-Ic JTcK JCEJdV (+)
V

where

I! • . .

÷ (Iz " TxY " TZX 1

[Kd]= rxY _x ÷Oz TzY I (5)

TZX - TZy (rx + _J
T

As in the structural stiffness matrix, the evaluationof the integral in Equation 4 is ob-

talned by application of the Gaussian Quadrature Formula (see Table 2).

V

E

V

F

7.5-Z (12/31174)

_° ,

Ii_; !ti



"v

v

7.6

JIFFERENTIAL STIFFNESS AND BUCKLING

THE TRIANGULAR THIN SHALLOW SHELL ELEMENT

CF FCC,R Q:'#_LITf

The expression that is used for the energy of differential stiffness per unit area of the tri-

I

angular thin sha]low shell element consists of a part U_ due to out-of-plane motions and a part Um

due to In-plane motions. The expressions for U_ and U_ are the same as those for plate elements

and are given by Equations 18 and 19 of Section 7.3.1; the expressions for the membrane strains,

however, involve the effects of coupling due to bending. Thus,

where

and

!

u - u_ + um , (1)

}x @y I

I 2 2 2Txy% =zIu_. _ _ (_z÷2z _xy_+_y(_z- 2_z_yl• _xl I (3)

The stresses _x' _y' and Z"xy at any point within the element are assumed to vary linearly, the

values at the three corner grid points being used to evaluate the coefficients in the linear varia-

tlon. Thus,

_x (x,y) = e I * e2x + e3Y , (4)

_y (x,y) = fl + f2x + f3y ' (5)

and a-'xy(x,y) - gl + g2x + g3y (6)

In condensed form,

3

_" i_ el_Riysi ' (7)

3
_y"i_f_XRiysl ' (_

I_=I xRl Sland _xy " gt Y (g)
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and

____w
mX = ay

aw
_y " " a-T '

_z " E " _" '

a_u.
EX = aX Z,xx W ,

Cy Lv.= aY Z,yy w ,

= av + aw
Cxy a-_" _" - 2Z,xy w

The thickness t of the element at any point (x,y) is given by

3

t(x,y) = T_ dk xtk xuk
i=l

The jth column of the ith row of the generalized differential stiffness matrix is

3 3

kij • _ L_I [dk eL ri rj F(r i + rj + tk + R_ - 2, si + sj + uk + SL)

+ dk f_ si sj F(r i + rj + tk + RL, Si + sj + uk + SL - 2)

+ dk gL si rj F(r i + rj + tk + RL - I, sI + sj + uk + Sj_ - l)

+ dk gL sj ri F(r i + rj + tk + RL - l, sI + sj + uk + S_ - l}

+ 0.25 dk eL Pi Pj F(Pi + PJ + tk + R_ - 2, qi + qJ + Uk + SL)

+ 0.25 dk eL ni nj F(m i + mj + tk + RL, ni + nj + uk + SL - 2)

- 0.25 dk eL p| nj F(Pi + mj + tk + RL - I, qi + nj + uk + Sj_ - l)

- 0.25 dk eL ni pj F(m i • pj ÷ tk + R_ - I, ni

+ dk eL Pi nj F(pi ÷ mj + tk + RL - I, qi + nj

+ dk eL pj pj F(p i + pj ÷ tk + R_ - 2, ql + qj

" dk eL Pi h5 F(Pi + rj + tk + RZ - I, qi + sj
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- dk e_ ni nj F(m I

- dk e_ ni pj F(m i

+ dk e_ ni h5 F(m i

+ 0.25 dk f_ Pi Pj

- 0.25 dk f_ Pi nj

+ 0.25 dk f_ ni nj

- 0.25 dk f_ ni pj

" dk f_ Pi nj F(Pl

" dk f_ Pi Pj F(Pl

+ dk fl Pi h5 F(Pi

+ dk f_ ni nj F(m|

+ dk f_ ni Pj F(m i

+ mj + tk + R_, ni + nj + uk + S_ - 2)

+ pj + tk + R_ - l, n i + qj + uk + S_ - l)

+ rj + tk + R_, ni ÷ sj ÷ uk + S& - l)

F(p i + Pj

F(Pi + mj

F(m i + mj

F(m i + Pj

+ tk + RQ. - 2, qi + qj ÷ Uk + Sj_)

+ tk + R_ - l, qi ÷ nj ÷ uk + S_ - l)

+ tk + Rg, ni + nj ÷ uk + S_ - 2)

+ tk + Rg.- l, ni + qj + uk + S_ - l)

+ mj + tk + R_ - l, ql + nj + uk + Sj_ - l)

+ pj + tk + R_ - 2, qi + qj + Uk + S_)

+ rj + tk + R_ - ], qi + sj + u k + S;_)

+ mj + tk + R&, ni ÷ nj ÷ uk + S_ - 2)

+ pj + tk + RI_ - l, ni + qj + uk + S& - l)

- dk f_. ni h5 F(m I + rj + tk + R_,

+ 0.5 dk g_.qi Pj F(Pi + Pj + tk +

+ 0.5 dk g_ qj Pl F(Pi + Pj + tk +

- 0.5 dk g_ qi nj F(Pi + mj + tk +

- 0.5 dk g_. qj ni F(pj ÷ m i + tk +

- 0.5 dk g_. pj h6 F(v I + pj ÷ tk +

- 0.5 dk g& Pi h6 F(vj ÷ Pi + tk ÷

+ 0.5 dk g_ nj h6 F(r i + mj + tk +

+ 0.5 dk gg. nl h6 F(rj + mI + tk +

- 0.5 dk g& m i pj F(m I ÷ pj + tk +

ni + sj + uk + S_ - l)

+ uk + S_ - l)

+ uk + S_ - l)

R_, qi + nj + uk ÷ S_ - 2)

R_, qj + n i + u k + S_ - 2)

R_ - l, si + qj + uk + S_)

R_ - l, sj + qi + Uk + S&)

R_, si + nj + uk + S_ - l)

R_, sj + nI + uk + S_ - l)

R_ - 2, ni ÷ qj + uk + S_)

- O.S dk g& mj Pi F(mj + Pi + tk + R&- 2, nj + qi + uk ÷ S&)
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+ O.S dk g¢ mi nj F(m i + mj + tk + R_ - 1, ni + nj + uk + S_ - l)

+ O.S dk g_ mj ni F(m i + mj + tk + R_ - l, ni + nj + uk + S_ - 1)

+ 0.5 dk g¢ pj h4 F(r i + pj + tk + R_ - 1, si + qj + uk + S_)

÷ O.S dk g_ Pi h4 F(rj ÷ Pi ÷ tk ÷ R_ - l, sj + qi + Uk ÷ S_)

- 0.5 dk gz nj h4 F(r i + mj + tk + R_, si + nj + uk + SZ - 1)

- 0.5 dk g¢ ni h4 F{rj + m i + tk + R_, sj + ni + uk + Sj_ - 1)] (17)
(concluded)

The generalized differential stiffness matrix is transformed to the element coordinate system,

the basic coordinate system and the global coordinate system in the normal manner.

7.6-4 ('12131177)
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8. HEAT TRANSFER ANALYSIS

8.1 GENERAL FEATURES

An analogy between thermodynamics and the mechanics of solid bodies has been exploited to ex-

tend the capability of NASTRAN to heat transfer analysis. As in the case of structural anaTysis,

the analysis of heat transfer in a solid continuum can be reduced by Finite element techniques

(see, for instance, Reference l) to the solution of a set of equilibrium equations in which the

unknowns are defined at a discrete set of points. Thus, the general equation that is solved when

finite element methods are applied to heat transfer analysis may be written in the form

[K]{u} + [B](_} = {P} + {N}, (1)

where

{u} is a vector of temperatures at gridpoints

{P} is a vector of applied heat flows that are known as functions of time

{N} is a vector of nonlinear heat flows that depend on temperature

[K] is a symmetric matrix of constant heat conduction coefficients

[B] is a synlnetric matrix of constant heat capacity coefficients.

The symbols used in Equation l have been deliberately chosen to coincide with some of

the structural analysis symbols defined in Table l on Page 3.3-4, thereby defining the

thermo-mechanical analogy. Heat transfer analysis with NASTRAN uses all of the normal analytical

tools provided for structural analysis, the difference being that the arrays [K], [B], {P} and

{N} are computed from thermodynamic properties, rather than from structural properties.

Gridpoints are used to locate temperatures just as they are used to locate displacements in

structural analysis. However, one of the major differences between thermodynamics and mechanics

is that temperature is a scalar function of position, whereas displacement is a vector which

NASTRAN assumes may have as many as six components. Thus, in heat transfer analysis, NASTRAN

provides only one degree of freedom at each grldpolnt.

-.--_
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HEAT TRANSFER ANALYSIS

The heat conduction matrix, [K], and the heat capacity matrix, [B], are formed from

"element" properties, just as in structural analysis. Volume heat conduction "elements"

are analogous in many ways to structural elements and they even use the same connection and

property cards. In addition, a part of the heat conduction matrix may be associated with

surface heat convection or radiation. The theory for NASTRAN's volume heat conduction elements

is derived in Section 8.2, and the provisions for surface heat transfer are described In

Section 8.3.

The components of the applied heat flow vector, {P} are associated either with surface heat

transfer or with heat generated inside the volume heat Conduction elements. The vector of

nonlinear heat flow {N} results from surface radiation, from temperature-dependent surface

convection, and from temperature-dependent heat conductivity.

In the case of linear static analysis, [B] and {N} are null, and Equation I is solved in the

same manner as In llnear static structural analysis. The flow diagram on Page 3.2-4 applies to

this case. The user has the option to employ both single and multipoint constraints and many other

specialized features normally associated with structural analysis. New solution techniques are

used in nonlinear static analysis and in transient analysis. Flow diagrams for these cases are

shown in Figures l and 2. Details of the computational procedures are explained In Section 8.4.

The output of a NASTRAN heat transfer analysis includes the temperature at gridpoints, the

temperature gradients and heat fluxes within volume heat conduction elements, and the heat flow

into surface elements. The heat flow into surface elements is further separated into components

due to user-prescribed flux, radiaticn, and convective heat flux.

w

8.I-2 (12/15/72)
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GENERAL FEATURES

REFERENCE

Zienkiewicz, O. C., and Cheung, Y. K., The Finite Element Method in Structural and Continuum

Mechanics, McGraw-Hill Publishing Company Limited, London, 1967, Chapter lO.
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Figure I. Simplified flow diagram for

thermal nonlinear statics analysis.
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Existing modules to which heat transfer capability has been added

Figure 2. Simplified flow diagram for

thermal transient analysis.
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HEAT TRANSFER ANALYSIS

8.2 VOLUME HEAT CONDUCTION ELEMENTS

The volume heat conduction elements are the same as _IASTRAN structural elements.

for which heat conduction is available are listed in the following table:

The elements

Heat Conduction Elements

Type Elements

[inear

Planar

Solid of Revolution

Solid

BAR, ReD, C_NReD, TUBE

TRMEM, TRIAl, TRIA2,
QDMEM, QUADI, QUAD2

TRIARG, TPJ_PRG

TETRA, WEDGE, HEXAI, HEXA2,
IHEXI, IHEX2, IHEX3

Scalar elements, single point constraints, and multipoint constraints are also available for heat

transfer analysis. The same connection and property cards are used for heat transfer and struc-

tural analysis. Linear elements have a constant cross-sectional area. For the planar elements,

the heat conduction thickness is the meni)rane thickness. Elements with bending properties, such

as BAR and TRIAl, have been included so that the user may use the same elements for the thermal

and structural analyses of a given structure. The bending characteristics of the elements do not

enter into heat conduction problems. The trapezoidal solid of revolution element, TRPRG, has been

generalized tO accept general quadrilateral rings (i.e., the top and bottom need not be perpendi-

cular to the z-axis) for heat conduction only.

The heat conduction elements are con_osed of constant gradient lines, triangles and tetra-

hedra. The quadrilaterals are composed of overlapping triangles, and the wedges and hexahedra are

formed from sub-tetrahedra in exactly the same way as for the structural case. The IHEXi elements

are Isoparametric hexahedron elements and are similar to the Isoparametric solid elements described

for structural analyses.

Thernwil conductivity and capacity are specified on MAT4 (isotropic) and MAT5 (anisotropic)

bulk data cards.

The heat conduction matrix for a volume heat conduction element may be derived from a thermal

potential function in the same way that the stiffness matrix of a structural element is derived

from the strain ener_ function. The thermal potential function is

8.2-1 (12/31/74)
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u--_ f_'VudV,
V

(1)

where _ is the heat flux density, Vu is the temperature gradient, and the integration is performed

over the volume, V. The components of the heat flux are related to the components of temperature

gradient by

3u

qi''Zhj ' (2)
J

where klj is an element of the material conductivity matrix and the index j is summed over the

dimensions of the space (one, two, or three dimensions). Using Equation 2, Equation l may be

expressed in matrix form as

u - ELj(ue}e

- :± L_ . 'L_I L .

where, in general, the elements of the row vector _eJ are functions of position,

gradient vector is, therefore,

u - ½ [kij] dV (3)

The temperature, u, at an interior point is a linear combination of the temperatures, (Ue},

at the vertices of the element, l.e.,

(4)

The thermal

{a_x-_l-[Le,j]T{ue } , (5)

where the derivative matrix [Le,j] is, for the case of a two-dlmensional triangular element,

-3L 1 aLl]

_L 2

aL 3 _L 3 I

j;--

[Le, J] - (6)

V

;-%
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In general the number of rows and columns of [Le,j] are the number of vertices of the element,

and the dimension of the space, respectively. The substitution of Equation 5 Into Equation 3 pro-

duces an expression with the form

°-½LueJC e (ue, (,>

where the element heat conduction matrix is

[Kel . f [Le,i][kij][Le,j] TdV
V

Equation 8 is a general form that is valid for all cases.

Elements of the heat capacity matrix [B] are calculated by the Lumped Mass method, see

Section 5.5.

(8)

8.2.1 Constant Gradient Heat Conduction Elements

For the special case of a constant gradient element with homogeneous properties, [Le,i] and

Ckij] in Equation 8 are constant within the element, so that

[Kel . VeCLe,i]Ckij]CLe,j] T , (9)

where Ve Is the volume of the element. There is only one general type of constant gradient

element for each type of space, i.e., a line segment for a one-dlmensional space, a triangle for

a two-dimenslonal space, and a tetrahedron for a three-dlmensional space. In the constant gradient

case, the elements of the vector {Le} are called the "natural coordinates" of the element. It is

apparent from Equation 4 that each natural coordinate has unit value at one vertex and zero value

at all other vertices of the element. The natural coordinates are obtained by the solution of

CH]{Le} • {f} , (10)

where the specific forms for one, two and three dimensions are

one dimension - , (ll)

(line segment) xI x2 L2

B.2-3 (12/15/72)
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V

two dimensions
(triangle)

x1

1

x2 x3 L2

Y2 Y L3

(12)

three dimensions
(tetrahedron)

I

l l 1

xI x2 x3

Yl Y2 Y3

z I z 2 z 3

Ix 4 L 2

Y4 L3

z 4 L 4

q

x
I

Y

z

(13)

The determinant of the [H] matrix has a useful property, namely that:

for one dimension, det[H] - _, the length of the segment,

for two dimensions, ½ det[H] = A, the area of the triangle,

for three dimensions, _ det[H] = V, the volume of the tetrahedron.

....... In order to obtain the derivatives of {Le} required in Equation 9, we observe that, for the

two-dimensional case,

(Le} - [H] °l (14)

where IN] "l is a matrix of constant coefficients.

Equations 6 and 14, be expressed formally as

The derivative matrix may, by comparing

6Le,j] = CH] "l (15)

which means that [Le,j] is equal tO the last two columns of [H] "l, In general, for a space of (n)

dimensions, [Le,j] is equal to the last (n) columns of [H] "l.

For the case of the tetrahedron, the [H] matrix is inverted numerically, [Le,j] is taken to

be the last three columns of [H] "l, and [Kel is evaluated numerically from Equation g. All

8.2-4 (12115/72)
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calculations are performed in the basic coordinate system. For one and two-dimenslonal elements

it is more practical to write explicit formulas for the natural coordinates. In fact, for one-

dimensional elements the heat conduction matrix is simply

E::]EKe] (16)" __

where A is the cross-sectlonal area, k is the thermal conductivity, and Z is the length of the

element.

In the case of a triangular element, the x-axis is taken along the side _ - 2 as shown

below:

_x

@ @

The natural coordinates are, by inspection,

L1 = 1 -_-2 + - 1

L2 , x x3 3_
x2 x2 Y3

(17)

%._/
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[Le,j] -

-1/x2 ;(x3 -

I
I/x2 } "x3/x2Y3

- 0 I l/y 3

(18)

The material conductivity matrix [km] is specified in the material coordinate system which

makes an angle e with respect to the element coordinate system as shown above. The conductivity

matrix referred to the element coordinate system Is

Fcos e-sln_] Fcose sin:][klj] = [km]
Lstn e cos L.-sin e cos

(19)

Equations 18 and 19 are used in Equation 9 to obtain the heat conduction matrix for a tri-

angle. The volume, Ve, is equal to the product of the surface area and the thickness.

' For the triangular solidof revolution element (TRIARG) the differential volume to be used

in Equation 8 is 2_r dr dz, where r and z are cross-sectional coordinates. The temperature is

assumed to be constant in the circumferential direction and to vary linearly over the cross-

section. Thus, Equation 8 becomes

[Kel = [Le,l][kijELe,j] T 2_Ir dA

where Ae

a triangular ring is exactly

• o_._(rl + r2 + r3)Ae[Le,l][kij][Le,j] T , (20)

is the cress-sectional area. Equation ZO is identical to Equation 9 since the volume of

Ve "_(r I + rz + r3)Ae (Zl)

V

Quadrilateral plane and revolutlon elements are formed by overlapping triangular elements

in exactly the manner described in Section 5.8.3.1. Hexahedra and wedges are formed from sub-

tetrahedra fn exactly the manner described in Section 5.12.6.

e.z-6 (IZllSlTZ)
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Elements of the heat capacity matrix [B] are calculated by the Lumped Mass method, see

Section 5.5. The total thermal capacity of an element is distributed equally among the connected

grid points for lines, triangles and tetrahedra. In the case of triangular solid of revolution

elements, the heat capacities lumped at the three grid circles are selected so that the total heat

capacity and its center of gravity in the transverse plane are preserved. The equation for the

heat capacity lumped at grid circle (i) is

bi - _-_ (ri + rI + r2 + r3)_ i • I, 2, 3, (22)

where, in addition to prevlously defined terms, Cp is the heat capacity per unit volume.

The heat capacity matrices of elements formed by overlapping triangles or tetrahedra are

computed by assigning one-half of the capacity to each overlapping set of sub-elements.

Thermal gradients are produced as part of the output, using Equation 5 and the various

expressions derived above for the derivative matrix, [Le,j]. The components of the heat flux are

also output, using Equation 2, and the thermal gradient vector.

The temperature gradient and the heat flux are, of course, assumed constant over each sub-

element. In the case of overlapping elements, a weighted average is computed. The areas of the

subtrianglesare used as weighting functions in the case of planar elements, and the volumes of

the subelements are used as welghting functions in the case of solids.

8.2-7 (12/15/72)
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8.2.2 Three.-DlmenslonalIsoparametric Solid Element Hea+_Transfer Matrices

The heat transfer conductionmatrix for the three-dimensionalIsoparametric elements

(Referencesl, 2 & 3) are derived by using Equation 8. For these three elements, the temperature,

{u} at an exterior point is given by

{u} - [Le]{Ue} • (23)

where[Le]IS a function of the curvilinear coordinates {, n and ¢ and is identical to the IN] matrix

described in Section 5.13. The derivatives of_e]with respect to the basic Cartesian coordinates

x• y• z are calculated in exactly the same manner as presented in Section 5.13 for these elements,

ioeo•

@LII
-_-, -

_Li /

[j]-1

_Lt

_Lt

_Li

(24)

where [J] Is the Jacoblan Matrix, and the derivatives of LI with respect to (• n and _ are listed

in Tables 5.13-I and 5.13-2. Since, in general, the matrix [Le,i] Is a function of _, n and {,

the integrationof Equation 8 Is carried out by Gausslan Quadrature numerlcal integration, and the

heat conduction matrix Is calculated from the equatlon

where

[Ke] " I_I J_l k_l Hi Hj Hk([Le,l][klj][le,j]T)JJl

[Le,J] •

m

_L1 _L1 _L1

_L2 _L2 _L2

BLNGP _LNGP _LNGP

• (25)

• (26)

and NGP Is the number of grld points In the element. NGP equals eight, twenty and thirty-two for

the linear• quadratic and cubic Isoparametrlcelements, respectively. The weight coefficients H_

8.2-8 (12/31/74)
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and abscissa S¢ are given in Table I.

Elements of the heat capacity matrix [B] are calculated by the coupled mass method (see

Section 5.13.4). The equation for this matrix is

where Cp

Identlca] to the structural mass matrix with the single exception that the heat capacity, Cp,

used instead of the material density. The heat capacity matrix is also evaluated using the

[B] = "vJELe]T[Le]CpdV , (27)

is the heat capacity per unit volume. Examination of this equation shows that [B] is

is

Es;'i- lJ- lk!1"i"j"k(E'e;TELe;ICpTM

Gausslan Quadrature formula

(28)

8.2-9 (12/31/74)
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HEAT TRANSFER ANALYSIS

8.3 SURFACE HEAT TRANSFER

Four types of surface heat transfer are provided for both steady state and transient analysis.

The types are a prescribed heat flux, a convective heat flux due to the difference between the

surface temperature and the local ambient temperature, radiation heat exchange, and a prescribed

directed vector heat flux from a distant radiating source. In all cases the heat flux is applied

to a surface element defined by grldpoints. There are six distinct types of surface elements:

1. POINT, a flat disc defined by a single gridpoint.

2. LINE, a rectangle defined by two gridpoints.

3. REV, a conical frustrum defined by two grid circles.

4. AREA3, a triangle.

5. AREA4, a quadrilateral.

6. ELCYL, an elliptic cylinder defined by two gridpoints. Its use is restricted to pre-

scribed vector heat flux.

The user supplies the area, A, for POINT, and supplies a width, w, for LINE to be used with

the distanc_ _ between its grilpofnts in calculatlng the surface area. For ELCYL the user specifles

the principal radii of the cross-section. The surface area is calculated automatically in the

other cases.

8.3.1 Prescribed Heat Flux

The user defines a distributed heat flux, Q, and the program calculates the vector of heat

flows {pe} to be applied to the grid points connected to an element. The genera] form of the

calculation for the jth component of {pe} is

where A_ is a subarea of the element associated with its Jth vertex and Q_ is the heat flux at the

Jth vertex. There are two optlons for assigning heat fluxes to elements. In the first option

(QBDYI card) the user specifies a heat flux that Is constant over the surface of the element. In

option 2 (QBDY2 card) the user speclfles separate heat fluxes at the vertices of the element,

which are then used directly In Equation I. In transient analysis, the time dependence of the

8.3-1 (12/lS/72)
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e
flux is specified on a TLOAD card. The subareas Aj are calculated in the same manner as heat

capacities. Thus, for LINE, A_ is one-half of the width multiplied by the distance between the
J

end points, and for AREA3, A_ is equal to one-third of the total area. For AREA4, A_ is com-
J J

puted from the areas of the overlapping subtriangles connected to the Jth grid point. For REV

the total area is distributed to the two end points so as to preserve its center of gravity.

ELCYL is not available for prescribed heat flux.

8.3.2 Convective Heat Flux

V

Convective heat flow into an element's grid points is described by the general relationship

where {Ta

element.

type. In the equations, K is the thermal conduction coefficient, which may be a function of

temperature.

(pe} = [KS]{Ta . Ue } , (2)

- ue} is the difference between ambient and surface temperatures at the vertices of the

The surface conduction matrix [Ks] is calculated as follows for each surface element

POINT: Ks = KA (3)

3rI + r2 i rl + irI

CKs]- _ .... _- (5)
I rl +Lrl + r2 s

REV:

[Ks] - _ Z , (6)

l

where A is the area of the triangle.

AREA3:

KIj.  ij>(al+a2÷a3"a4>-<ai"aj>], (,)AREA4:

V

where llJ

ai

Olfl J

• area of the subtriangle which does not touch vertex (I).
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The surface conduction matrices are, in each case, derived under the assumption that the

temperature difference varies linearly over the surface of the element, except that, in the case

of the quadrilateral (AREA4), the temperature difference is assumed to vary linearly over the

surface of each overlapping subtriangle. Each ambient temperature, Ta, is assigned a degree of

freedom in the analysis. The value of Ta may be specified on an SPC card in linear static

analysis. The method used in nonlinear static analysis is described in Section 8.4.1. In transi-

ent thermal analysis, the various techniques for prescribing a displacement in transient structural

analysis are used.

8.3.3 Radiation from a Distant Source

Radiation from a distant source, such as the sun, can be treated as a prescribed heat flux.

The flux into a surface element depends upon the orientation of the radiation vector relative to

the element. The total heat to a single element from a single distant source is given by

P - -aA(e-_)*Q 0 , (8)

where P • power Into the surface element from the source

qO • power per unit area in the beam

A - surface area of the element

• unit vector of radiation beam (the source is so distant that rays are parallel)

= outward normal to surface

a • absorptivity (if a < l, it is assumed that the reflected radiation is lost from the

system)

(_-_)* is replaced by zero in the equation when _._ is positive, i.e., when the radiation

comes from behind the surface.

No provision iS made for shading by other surface elements.

In addition to the POINT, LINE and AREA elements, the e11iptic cylinder element, ELCYL, can

receive prescribed vector radiation, as shown below. An integration of the normal component of

flux over the surface is needed to compute the power.

-:--.
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Figure 1. Blllptic Cylinder, ELCYL.

The result of the integration is

P " 2Qo_I(eyny)ZR_ + (eznz)ZR_] I/2 , (9)

where ey, •z are components of _1 ny, nz are components of _& and _ is the length of the cylinder.

In dynamic analysis the flux in the incident beam, QO' and the components of e may be pre-

scribed functions of time. The latter provision Is useful in the analysis of rotating spacecraft.

8.3.4 Radiation Exchanqe Between Surfaces

The relationship between the vector of radiative heat flows, {Qg}, into grid points, and the

grid point temperatures, {Ug}, is of the form (see, for instance, Reference 1)

{Og} = -[Rg]{Ug + Ta}_ (io)t

V

t If {T} is a vector, {T}W is defined as the vector whose components are the fourth power of the

e]ements of {T}.

8.3-4 (12/29/78)
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The addition of Ta converts Ug to an absolute temperature scale. The grid point radiation matrix

[Rg] will be derived. As an intermediatestep, an element radiation matrix, [Re], will be found

which relates the radiative heat flow (power) into a finite element to the temperature of the

element by

{Qe} = -[Re]{Ue}' , (11)

where Ue is the temperature of the element measured on an absolute scale and assumed to be con-

stant over the element,

The radiation power into a surface area may be considered as the result of two effects:

qe°Ut (radiostty), the power per unit area leaving the surface, due either to direct radiation or

to reflection of incoming radiation; and q_n (irradiation), the power per unit area arriving,

m

due

to the radtosity of the other elements, The radiation exchange formula is

[A]{q}_n - [F]{q}:ut , (12)

where [A] is a diagonal matrix of areas, and IF] is a matrix of exchange coefficients whose

elements are given by

Ai_ A_ c°SBI cosej
• dAi dAj ,

F1j _r)j

(13)

where rij is the length of a llne connecting two points on the surfaces, and BI and ej are the

angles between the connecting llne and the normals to the surfaces. The range of integrationmust

be limited to regions of the surfaces which "see" each other. The IF] matrix has units of area

Its elements are related to the more commonly used form factors (or shapeand is symmetric.

factors) flj by

(14)

The elements of

(IS)

FIj - Aj flj '

where flj is the fraction of the power leaving element j which reaches element i.

IF] are supplied by the user; tt is expected that, in many cases, they wtll be computed by a

separate computer program. The surface condltion is

-out
q)e " °[E¢]{Ue}_ + [I - E_]{q}_n -.-_
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where E¢ and E are diagonal matrices of emissivities and absorptivities and _ is the Stefan-

Boltzmann constant. For gray bodies with no transmission, E¢ Is equal to E¢, according to

Klrchoff's Law.

The simultaneous solution of Equations 12 and 15 yields

In = o[(A F(I )-l{q}e - - E ) F E¢]{Ue}_ , (16)

.out
q_e = _[Ee + (I - E )(A - F(I - E ))"I F E¢]{Ue}_ . (17)

The net power exchange is

• [A]({q}_n...out tq_ e ) (18){Qe}

The element radiation matrix, found by substitutingEquations 16 and 17 into Equation 18 and

comparing the result with Equation II, is

[Re] = o[AE¢ - AE (A - F(I - Ee))"l F Eel (19)

This matrix is symmetric if Ea = E¢ and F is symmetric.

flow to grid point heat flow is given by

The transfomation from element heat

(Qg -[G]Tmj , (2o)

where [G]T is a matrix of constant coefficients. The nonzero elements of [G]T are easily found

for each element type. They are, in fact, the fractions of the area of the element attributed

to_B_=_ectea gF_a points, see _ection 8.3.1.=_:T'he_seme"matrixtransposed is used to inter-

polate the fourth powers of temperatures, i.e.,

{Ue}_ - [G]{Ug + Ta}_ (21)

Combining Equations 20 and 21 with Equation II, and Comparing with Equation I0, it is seen that

[Rg] • [G]T[Re][G] , (22)

which is also a symmetric matrix if [Re] is symmetric. The net heat flow into the element due to

radiation,which is available as output fr_m_NAS_N_ is " '_

{Oe} • -[Re][G]{Ug ÷ Ta}' (23)

8.3-6 (12/15/72)

V

V

I!| _I



SURFACE HEAT TRANSFER

The sources of the information required to simulate radiation heat exchange are:

a. parameters _, Ta 1

b. Properties E¢, Ea I User Supplied
c. Exchange Matrix [F]

d. Areas A

e. Transformation [G]

Computed from grid geometry and

element properties

8.3-7 (IZ/IS/7Z)
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8.4 METHODS OF SOLUTION

The types of heat transfer problems that are solved with NASTRAN are described in Section 8.1.

There are three types: linear steady-state analysis, nonlinear steady-state analysis, and

transient analysis. Nonlinear relationships are optional in transient analysis.

Linear steady-state analysis uses the NASTRAN statics rigid format (format No. I). The

principal additions are subroutines for conduction and heat capacity matrix generation, described

in Section 8.2, and for surface heat transfer, described in Section 8.3.

Flow diagrams for nonlinear steady-state analysis and for transient analysis are shown in

Figures I and 2 of Section 8.1. Special features of the solutions are described in the subsections

that follow.

8.4.1 Nonlinear Steady-State Analysis

The nonlinear properties permitted in steady-state heat transfer analysis with NASTRAN are

radiation, temperature dependent film conduction, and temperature dependent volume heat conduction.

The general form of the equation to be solved is

Clgg]{Ug} ÷ [Rgg]{Ug ÷ Ta}_ - {qg} + (Pg} (I)*

The temperature set {Ug} includes degrees of freedom that are restrained by single point and

multl-point constraints, see Section 3.3. The vector {qg} represents the forces of constraint.

Sections 8.2 and 8.3 describe the manner in which the heat conduction matrix, [Kgg], the radiation

matrix, [Rgg], and the applied heat flow vector, {Pg}, are formed from the properties of volume

elements and surface elements. The elements of [Kgg] may be functions of temperature.

The first step In the solution is to rewrite Equation 1 in terms of the set of temperatures,

{Un}, from which multi-point constraints have been removed. The procedures used are identical to

those described in Section 3.S for structural analysis. In order to avoid difficulties in inter-

polating temperatures to form the nonlinear terms, a restriction is placed on the form of the

multl-point constraint relationships, namely that, if a grid point is adjacent to a volume or

surface element with nonlinear properties, the constraint relationship is restricted to be an

t

If (T} is a vector, {T} _ is defined as the vector whose components are the fourth power of the

elements of {T}.

8.4-1 (12/15/72)
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"equivalence." The tern "equivalence" means that the constrained temperature is equal to one of

the independent temperatures.

The form of the thermal equilibrium equation after the multi-point dependent temperatures

{um) have been eliminated is

[Knn]{U n} + [Rnn]{U n + Ta}W - {qn } + {Pn } (2)

V

If {un} is partitioned into {uf} (free points) and {us} (single point constraints), Equation

2 may be written in partitioned form

L sf: ssjluslLR,f:Rss.J Ms+'a s
(3)

The components of {us} have values prescribed by the user, and the lower half of Equation 3

is used to evaluate the single point "forces" of constraint {qs} during data recovery. Rearrang-

ing the top half of Equation 3 we obtain

[Kff]{uf} + [Rff]{uf + Ta}_ = (Pf} - [Kfs]{U s} - [Rfs]{U s * Ta}' (4)
v

Equation 4 is solved by an tterative method. The technique used is to expand {uf} into

constant, linear, and higher order terms with respect to an initial estimate, {u_}, supplied by the

user. The linear terms are kept on the left hand side of Equation 4 and all other terms are placed

on the right hand side, where they are evaluated precisely for the current estimate of {uf}. If we

define {L} to be the left hand side of Equation 4, then the new left hand side is

{L } = {uf} - [K}f]{uf} + 4[Rff]_u_ + Ta_l'{u f} , (5)

where the partial derivatives are evaluated for {uf} - {u)}. Using this expression, Equation 4

may be written as

[K;f]{uf} - [K)f - Kff]{uf} + [Rff](4_u} + Taj'(u f} - {uf _ Ta}')

+ {Pf} - [Kfs]{U s} - [Rfs](u s + Ta}* , (6)

8.4-2 (3/'1176)
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[K;f]- CK}f]+4CRff] u}+TaJ' (7)

It is convenient, for computationa] purposes, to combine terms proportional to {uf} and {us}

on the right hand side of Equation 6 to produce terms proportional to {Un}. Thus, if we define

{un} - __

tUs)

[K;s] " [K}s] + 4[Rfs]_ us + Ta J'

[Kfn] • [Kff I Kfs]

[K}n]- [K f:K s]

[Rfn] - [Rff' Rfs]

then Equation 6 may be written as

where

, (s)

{Nf} = {Pf

[K;f]{uf} - CNf} , (9)

w

- Kfsus} - [Kfn - K}n]{U n} - [Rfn]({u n + Ta}W - 4[_u n + Ta.]3Cun}) . (lO)

The first term in Equation lO is a constant, and the other terms are functions of temperature.

Equation g is an exact relationship. The iteration algorithm consists of evaluating {Nf} for

{un} - {u_}, the current estimate of the temperature distribution, and of solving Equation g to

obtain a new estimate, {u_+l}, of the unknown temperatures. The starting vector is {u}}, supplied

by the user.

The algorithm is simple enough, but the number of iterations to obtain satisfactory con-

vergence (if indeed conve_jence can be achieved) remains an open question. The question of con-

vergence can be treated without dlfflculty in a small neighborhood of the correct solution within

which the nonlinear load may be approximated as a linear function of the error in the temperature

distribution. The iteration algorithm is

8.4-3 (12/15/72)
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(11)

As an approximation, let

- {Nf}+ -uf}-IN?]+[C]{+ui} ,

where [C] is the matrix of the partial derivatives of {Nf} with respect to changes in {uf}.

Substituting Equation 12 into Equation II and using Equation 9, the iteration algorithm is,

approximately,

(12)

[Kff](_ui+l}* - [C](6u i} . (13)

Equation i3 resembles the power method of eigenvalue extraction, see Section I0.4, and its

convergence is related to the distribution of the elgenvalues of the associated elgenvalue problem,

[K;f_ - XC]{_u} - 0 (14)

In order to establish the condition for convergence, expand the iterates {6u i} and {+ui+l}

in terms of the efgenvectors {¢j}, i.e.,

{6ul} = _ ai{¢ j}
• (Is)

<,.j-l%+.
J LL_ - +

(16)

It can be proved quite generally (see, for example, Section 10.4.4.3) that a property of the

llnearlzed Iteratlon algorithm is that

- xj _j , (17)

i will
where kj Is the elgenvalue corresponding to {}j}. Thus, it is seen that, if Ikjl < l, _j

increase in magnitude at each iteration and the algorithm will be divergent. The necessary and

sufficient condftlon forcoBvergence in a Small neighborhood of the correct solution is that all

elgenvalues of Equation 14 have magnitudes greater than one.

NASTRAN provides both an estimate of the lowest elgenvalue and an estimate of the error in

the solution after each iteration. If the iteration has proceeded to the point where one

8.4-4 (3/1/76) V
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eigenvector, {¢i}, dominates the solutlon, it is seen from Equations 15, 16, and 17 that

.l
[_ui - _ui'l} _T{_ul-I - _uI'2} , (18)

so that the ratios of successive increments in the elements of the solution vector provide an

estimate of the lowest elgenvalue. By analogy wlth a procedure used in the inverse power method

with shifts, see Section I0,4, a slng]e weighted estimate is obtained by multiplying both sides

of Equation 18 by the transpose of the nonlinear load vector. Thus, the estimate is

I T l-I ul-2}
Nf} {u? -

_I " {N_}T{u_ _ u_"1}f .

(19)

Equation Ig is evaluated after every iteration starting with the third, i - 4.

The vector (_ui} is the error in the solution at the beginning of the Ith iteration. In

order to obtain a measure of the error, we observe, from Equations 15, 16 and 17, that if only

one eigenvector is present

{_ui - 6uI'1} - (I - _i){6uI} (20)

The measure of the error in temperatureused in NASTRAN is the ratio of the work done by the

nonlinear loads acting on the error vector to the work done by the nonlinear loads acting on the

total solution, i.e.,

(21)

Another error measure is also provided, which measures the error In the applied heat flux,

including nonlinear terms. That measure is

I JlN1f- CK;f]ulj( iJN_ " Ni'lll
- (22)

Cp " II, ll II.;ll
where tlxll is the Euclidean norm of the vector {X}.

-:-.
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The iteration algorithm will terminate for any of the following reasons:

a)

b)

c)

¢_ is less than a user-specifled value and also )),I)> I: No=al convergence.

f_II < l for i _ 4: The algorithm is assumed to be divergent.

The number of iterations reaches the maximum number specified by the user.

d) The available time is used up.

In all cases, the values of _, ¢_ and _I may be output for

vector for the last iteration will be output.

every iteration, and the solution

Radiated heat flux is proportional to the fourth power of the temperature, thereby providing

a very strong nonlinear effect if the radiation terms are large compared to other terms. In

order to guage the effect of radiation on cOnVergence of the iteration algorithm, consider an

isolated perfectly- conducting body in thermal equilibrium with radiation from distant sources.

The thermal equilibrium equation is

Ru W s p ,

where u is measured on an absolute scale, and P is constant.

the temperature, uI.

discussion,

(23)

The user supplies an estimate of

The iteration algorithm used by NASTRAN is, in accordance with preceding

(4Ru()uI+ l - P - RCCUl)W - 4u(u I] (_)

= u) isThe derivative of the right hand side at the correct solution (ui

C • -4R(u_ - u)) , (25)

so that the eigenvalue problem corresponding to Equation 14 is

I-x4R(uI- -o

The elgenvalue is

,ul
_k m_

U_ - UI

(26)

(27)

V

V
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The critical value for convergence, X - -l, is achieved if

u_- ½u' ,

OF PCO:R .......

or

uI - .794u •

Thus, the solution converges if uI is greater than about 80% of the correct temperature,

measured on an absolute scale. The user can assure convergence, at the expense of extra iterations,

by overestimating the temperature.

8.4.2 Transient Analysts

The nonlinear terms permitted in transient heat transfer analysis include radiation and the

general purpose nonlinear elements described in Section II.2. Nonlinear heat conduction and heat

capacity are not permitted. The reason is that the computational effort required to recalculate

the heat conduction and heat capacity matrices at each time step by the finite element method used

in NASTRAN is Judged to be excessive. The general purpose nonlinear elements can, however, be

used to represent nonlinear surface fllm conduction and other relatively simple nonlinear relation-

ships.

The general equation solved in transient analysis has the form

[K]{u}+ [B]{G}- {P} + {N} (I)

The conduction matrix includes llnearized radiation terms. It is, In fact, identical to [K_f]

given by Equation 7 of Section 8.4.1, except possibly for terms due to "extra points," see

Section 9.3.2. The nonlinear term in Equation 1 is

{N} - {Ne} + [R](4_ uI + Ta _{u} - {u + Ta}_) , (Z)

where {N e} is due to general purpose nonlinear elements and the second term is due to radiation.

An option is available to substitute {u*} for {u} in the second term, which reduces it to a

constant vector and which, thereby, ltnearizes the effect of radiation.

The load vector {P} may be formed in the same manner as for static heat transfer analysis

with certain parameters permitted to be functions of time. These include the prescribed volumetrlc

p:.
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and surface heat fluxes, and the prescribed vector heat flux. In the latter case, both the

direction and the magnitude of the heat flux are permitted to be-functlons of time. The user

also has available the methods used to prescribe transient loads In structural dynamic analysis,

see Section l].l. Prescribed temperatures at grid points, and the ambient temperatures used for

film heat transfer are treated in the same manner as prescribed displacements in dynamic analysis.

The user connects a large scalar conduction element, KO, to the grid point in question and also

applies a thermal load P - TK0 to the grid point, where T is the desired temperature function of

time.

The algorithm used to integrate Equation I has been selected with the following criteria in

mind:

I. Unconditional stability for linear problems, regardless of the size of the time step,

2. Ability to handle a singular heat capacity matrix,

3. Good stability for nonlinear problems,

4. Good efficiency,

5. High accuracy.

A useful general observation is that stability, efficiency and accuracy are conflicting require-

ments that must be compromised. The algorithm that has been selected can satisfy the 'first two

criteria and scores reasonably well on the last three. Basically, it is a difference equation

approximation to Equation I with a free parameter that is adjusted to produce a compromise of

the stability, efficiency and accuracy requirements. In this respect it is analogous to the

Newmark B method used in structural dynamics, see Section If.3. The form of the difference

equation is

1
[K]{B Un+ I + (I - S)un} +_-T[B](Un+l - un} =

{BPn+l + (I - B)P n} + (l + B){Nn} - B(Nn. I} (3)

The subscript n refers to the nth time step. The parameter, B, may be selected by the user

in the range 0 < S < I. Putting terms proportional to {Un+I} on the left side yields the itera-

tion algorithm
-.--
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+ B{Pn+I} + (I - B){Pn} + (I + B){Nn} - B{Nn.I} (4)

rl ,I
The matrix L_-_B + BKJis first decomposed into its triangular factors fromwhich the

equations are solved at each time step using a forward and backward substitution procedure, see

Section 2.3. The time step, A'C,may be changed at discrete times by the user. Certain values of

the parameter B result in well-known algorithms, vlz.,

B = 0 : Euler integration

B = 1/2: Central differences

B = l : Backward differences

Euler integration (B=O) is usually the most efficient choice because only the [B] matrix,

which is frequently diagonal, is decomposed. However, Euler integration cannot be used if [8]

is singular and it suffers with respect to both stability and accuracy as will be seen.

The effect of B on stability will be examined for the linear case, for which the matrix

equation of motion is

[K]{u} + [S]{_} = P (S)

A more convenient set of equations is obtained by a transfomatlon of {u} into modal

coordinates, {{i}:

{u} - [¢]{{i}

where each column of [_] is an eigenvectorof Equation 5.

is uncoupled from the others and has the form

where hi is the elgenvector and Pi

stable if all _I ) O.

, (6)

The equation for each modal coordinate

_I + XI El " PI '

is the generalized force on (i"

(7)

The system of equations is

8.4-9 (12/15/72)
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Applying the integration algorithm to Equation 7 we obtain

l
A-t"({n+l " _n ) + Xi(B En+l ÷ (I - B)E n) = B Pn+l

ORIGINAL PAGE i$
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*(I -B)P n , (8)

where the subscript (i) has been omitted for clarity. The solution for the homogeneous case

(Pn = Pn+l • 0) has the property that

(n+l " E En ' (9)

where E is a constant, called the shift operator. If IEI s l, the homogeneous solution is stable

because it approaches zero for large n. By substituting Equation 9 Into Equation 8 for the homo-

geneous case, we obtain

(E-II+ E+I- 0 (I0)

Setting the coefficient of {n to zero, which must occur if {n is not to be zero, produces a

functional relationship between E, B, and Liar, which may be expressed in the form

l - E
_i At " E B'@ 1 - B (ll)

The range of E for stability is -I ( £ _ I. Substitution of the upper limit into Equation II

is seen to produce no restriction on the time step. Substitution of the lower limit, however,

gives as a stability limit

2
XIAt - _ (12)

Thus, If B " 0 (Euler integration) the stability limit Is _iAt - 2. Since hi Is the recipro-

cal of the time constant of the ith mode of the system, the practical restriction on Euler inte-

gration is that the time step can be no greater than twice the smallest decay time constant of the

system. If B " 1/2, there is seen to be no limit on the time step, nor Is there for B > I/2,

which can most readily be seen by solving Equation II for E:

l - (l - B)klat

E = "I ÷ B _iAt (13)

From the viewpoint of stability then, 6 should be chosen greater than or equal to I/2. For

linear problems B TM I/2 is adequate, but for nonlinear problems in which the nonlinear terms must

8.4-I0 (12/15/72)
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necessarily be evaluated at the nth and earlier time steps, a larger value of B may be advisable.

Insight into the question of accuracy can be gained by examining the eigenvalues produced by

the integration algorithm and comparing the_ with the eigenvalues of the real system. The eigen-

value, Ai, produced by numerical integration is defined implicitly by

"AjAr (14)
_n+1 = e {n '

or, by comparison with Equation 9,

so that, using Equation 13,

Ai - _-_n E , (IS)

l - (l - B)klAt )Ai =_t _n 1 + B _iAt (16)

If klAt is assumed to be less than one, Equation 16 can be evaluated by power series expansion

with the result

It is seen that, If the time step, At, is small compared to the decay time constant of the

mode, I/h i , the error will be a minimum near B = I/Z. Since efficiency or stability considera-

tions will be overriding in many cases, the choice of B is left to the user. The default value,

in the event that the user declines to make a choice, is B " 0.55.

The provisions for initial conditions are as follows. The initial thermal load (for

Equation 4 at n = 0) is taken as

{po} • [K]{Uo } - {No} , (18)

which sets {_} to zero initially (see Equation I). Since {un} Is not defined for negative n, the

nonlinear load at t • -At is taken to be

{N.I} • {No} (Ig)

Equations 18 and Ig have the property that they yield smooth results when step loads are

applled to degrees of freedom without thermal capacity. Special conditions are also needed if it

8.4-11 (12115/72)
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is desired to change the time step. The situation is similar to the starting equations except

that the new initial velocity vector, {u}, is set equal to the old fina] vector. Let N be the

index of the last step with the previous time step At]. Let &t2 be the new time step and let the

time step counter be reset to zero. The new initial conditions are

The new initial thermal load is

{uo} = {uN} , (20)

l

{Uo } - _ {uN - UN_ l} (2l)

{Po } = [K]{u o} - {No} - [B]{u o} (28)

Interpolation is used to produce an estimate of the nonlinear load at t = -&t2:

_t2 ( _t2_IN.ll. _(NN.I_+ 1-_] _NN_ (23)

These provisions are designed to minimize discontinuities associated with time step changes.

The coefficient matrices in Equation 4 are recomputed, and the matrix coefficient of {Un+ l} is

decomposed before contlnulng_he integration with the new initial values.

V

V

p..
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g. l GENERAL PROBLE_I FLOW IN DYNAMIC ANALYSIS

Figure 1 is a flow diagram showing the major functional modules employed in the solutlon of

dynamic problems by the displacement method, except for aeroelastlc problems which are described

in Figure l and 2 of Section 17.6. Three basic types of analysis are performed (£igenvalue Extrac-

tion, Frequency Response Analysis, and Transient Response Analysis) according to either of two

methods of problem formulation (Direct or Modal). In all there are nine different paths through

the flow diagram of Figure I, corresponding to the following seven rigid formats for dynamic

analysis, which supplement the six rigid formats for static analysis described in Section 3.2.

(The numbers are the Rigid Format numbers assigned in the Program.)

3. Normal Modes Analysis

7. Direct Complex Elgenvalue Analysis

8. Direct Frequency and Random Response Analysis

9. Direct Transient Response Analysis

10. _4odal Complex Elgenvalue Analysis

If. Modal Frequency and Random Response Analysis

lZ. Modal Transient Response Analysis

13. Normal Modes Analysis with Differential Stiffness

15. Normal Modes Analysis using Cyclic Symmetry

In the modal method of dynamic problem formulation, the vibration modes of the structure in

a selected frequency range are used as degrees of freedom, thereby reducing the number of degrees

of freedom while maintaining accuracy in the selected frequency range. In the direct method, the

degrees of freedom are simply the displacements at grid points.

It is important to have both direct and modal methods of dynamic problem formulation in order

to maximize efficiency in different situations. The modal method will usually be more efficient

in problems where a small fraction of all of the modes are sufficient to produce the desired ac-

curacy and where the bandwidth of the direct stiffness matrix Is large. The direct method will

usually be more efficient for problems in which the bandwidth of the direct stiffness matrix is

small, and for problems with dynamic coupling in which a large fraction of the vibration modes

are required to produce the desired accuracy. For problems without dynamic coupling, I.e., for

problems fn which the matrices of the modal formulation are diagonal, the modal method will fre-

quently be more efficient, even though a large fraction of the modes are needed. The choice of

9.1-I (1Z/31/77)
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method is of course, left to the user.

The flow diagram in Figure 1 is simplified to the extent that it shows only the major oper-

ations that are performed. Complete descriptions of the sequences of module calls for all rigid

formats are contained in the NASTRAN User's Manual. The functions indicated in Figure l are de-

scribed in succeeding subsections of the Theoretical Manual as follows.

Section 9.2 - Real Eigenvalue Analysis, READ
Complex Eigenvalue Analysis, CEAD

Section 9.3 - Dynamic Pool Distributor, DPD
Direct Dynamic Matrix Assembler, GKAD
Modai Dynamic Matrix Assembler, GKAM

Section 9.4 Dynamic Data Recovery, DDR

Section II. Transient Response Analysis, TRD

Section 12. Frequency Response Analysis, FRRD
Random Analysis Module, RANDOM

The use of the real eigenvalue analysis module, READ, for buckling problems has been describ-

ed in Section 3.2. Section 9.2 contains information concerning the selection of methods, the

checks that are performed, and other organizational details for both real and complex eigenvalue

analysis. The mathematics of the eigenvalue extraction methods employed with NASTRAN are develop-

ed in Section 10.

A basic feature of NASTRAN is its generality and flexibility with regard to the specification

of input data for dynamic analysis. The general means provided for specifying damping, control

system characteristics, aerodynamic influence coefficients, etc., are described in Section 9.3.

Further information on special problem formulation techniques for dynamic analysis is given in

Section 14. Hydrodynamic theories are discussed in Section 16. Aerodynamic methods, using special

rigid formats, are discussed in Section 17.

I"

V

V
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GENERAL PROBLEM FLOW IN DYNAMIC ANALYSIS

Enter from Previous Portlon of Program with.)

Dynamic 1
Pool Distributor

DPD

Direct Dynamic
Matrix Assembler, GKAD l Real EigenvalueAnalysis, READ

I Modal DynamlcMatrix Assembler, GKAM

I

Complex Elgenvalue IAnalysis, CEAD

__Frequency ResponseAnalysis, FRRD

__ Transient ResponseAnalysis, TRO

Wf
Dynamic

L Data

w Recovery
DDR

Recovery of Dependent
Displacements and

Stresses

Deformed File Analysis _ l

Structures Processor Modul e,
Plotter RANDOM

Figure I. Simplified flovldiagram for dynamic analysts by the dlsplace_entmethod.
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9.2 EIGENVALUE ANALYSIS

Real and complex eigenvalue analyses are performed in NASTRAN by separate modules, as indi-

cated in Figure I of the preceding section. The real eigenvalue analysis module, READ, is used

to obtain structural vibration modes from the symmetric mass and stiffness matrices, [Maa] and

[Kaa], generated in the statics part of the program, and to obtain buckling modes from the elas-

tic stiffness and differential stiffness matrices, [Kaa] and [Kaad]. All other eigenvalue prob-

lems, i.e., those with matrix terms from additional sources, are solved in the complex eigenvalue

analysis module, CEAD. Examples include the vibration modes of damped systems, the stability

analysis (flutter) of structures with aerodynamic coupling and/or control system feedback, and

the buckling of structures with nonsymmetric terms in the differential stiffness matrix.

The eigenvectors and eigenvalues produced by READ may be used to generate modal coordinates

for further dynamic analysis by the modal method. The results of CEAD, on the other hand, are an

end product. The organization of the real and complex elgenvalue modules is discussed below in

separate subsections.

v

%___

9.2. I Real Elqenvalue Analysis

A flow diagram for the real eigenvalue analysis module, READ, is shown In Figure I. The

user has a choice of three methods for solving buckling problems and of four methods for solving

vibration mode problems. More than one method is provided in order to optimize efficiency for

different types of problems and also to provide back up In case one method gives unsatisfactory

results in a particular case. The tridiagonal method is not provided as an option for buckling

problems because it would require that the differential stiffness matrix be negative definite,

which is seldom the case. The methods of elgenvalue extraction used in NASTRAN are described in

detail in Section 10. The introduction, Section I0.I, includes a comparison of the methods for

different types of problems.

The general form of the eigenvalue problem for vibration modes is

2
The elgenvalues hi - wI

[Kaa - _ Maa]{U a} - 0 (I)

are the squares of the natural vibration frequencies. The results of

the calculation performed by the module are the eigenvalues, hi, and corresponding eigenvectors

{¢ai }, normalized in one of three optional ways. At the user's request the modal mass matrix

9.2-1 (_znl/77)
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[mii] = [¢ai]T [Maa][%i]

ORIGINAL PAGE '_
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(2)

is calculated and checked for orthogonality of the modes (see page g.2-S).

are the eigenvectors, {¢al}.

The general form of the eigenvalue problem for buckling is

The columns of [¢ai]

[Kaa ÷ _ Kaad]{ua} = 0 (3)

The eigenvalues hi are the factors by which the static loading condition must be multiplied to

produce buck]ingLThe resultsof the calcul:at(b_'_erfo_ea b_ the module are the el_envaiues, hi'

and the correspondlng etgenvectors {%i }. Additional data processing is performed by other modu-

les, as indicated in Figure 1 of Section 9.1.

The user has a choice, for either type of problem, of the number of eigenvalues to be ex-

tracted and/or of the range of _ within which they are to be extracted. The available options,

which vary slightly for the different methods, are explained in Section lO.

Rigid body vibrationmodes are calculated by a separate procedure provided that a set of re-

action (support) points, ur, have been specified by the user (see Section 3.5.5). Thts Is done to

Improve efficiency and, in some cases, reliabilttLy. The supports are not appiied to the structure

during calculation of the remaining eigenvalues. If the user does not specify the reaction points

(or if he specifies an insufficient number of them) the (remaining) rigid body modes will be cal-

culated by the method selected for the finite frequency modes.

It wlll be recalled, Section 3.5.5, that the rigid body mass matrix referred to the reaction

points, [mr], and the rigid body transformationmatrix, [D], in the equation relating the remain-

ing degrees of freedom, u_, to ur,

{_z} " CO]{ur} , (4)

are computed In the static portion of the program. The rigid body modes are a set of vectors

lCro) ),Cro) '
(s)

such that the medal mass matrix,

V
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[mO] = [*ro ]T [mr][*ro] , (6)

is diagonal and normalized. The Schmidt orthogonalization procedure (Reference l) is used to

obtain the vectors {_ro} that are the columns of the modal matrix [_ro]. The specific procedure

used in 14ASTRAN is as follows:

I. Define a set of vector delta functions

{Il} - • {I2} - , etc., (7)

2,

a set of unnomalized eigenvectors {Vlo}, I - l, 2, . .

eigenvectors {¢io }, i = l, 2 .... r.

The relationship between {¢io } and {Vio} is

. r, and a set of normalized

{Vio}
{¢io} - (8)

({Vio}T [mr]{Vio}) I/Z '

3.

i.e., {¢io} is normalized to unit generalized mass.

Set the first unnormalized eigenvector equal to the first delta function.

{Vlo} - {Il} (g)

4, The second unnormalized eigenvector is obtained from

{V20} - {I2} - _12{¢I0 } • (lO)

where al2 - {¢i0}T [mr]{l 2} (ll)

--L-
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Generalize, to obtain the remaining eigenvectors

i-I

{Vio} - {Ii} - ._ _ji{¢jo } , i = 2, 3 .... r,
j=m

:3:L,_""Tl

OF pCCR C_:_ ....

(12)

_ji = {¢jo}T [mr]{li} (13)

Turning to another peripheral matter, the form of the tridlagonal method used in NASTRAN re-

quires that the eigenvalue problem be stated in the form

[J- xZ](w} . o , (14)

where[I] is the identity matrix and _]is symmetrical. The operations indicated in blocks 4 and 5

of Figure l put the problem in this form. The first operation is to perform a Cholesky decompo-

sition of the matrix

[Maa] " [C][C] T , (15)

where [C] is a lower triangular matrix. This decomposition is performed by subroutine SDC_MP

(see Section 3.5.14 of the Programmer's Manual).

The symmetrical [j] matrix Is then obtained by the following transformation of the eigenvalue

problem. Premuitiply Equation 1 by _C] "l and substitute for [Maa] in Equation 15.

[C]"I [Kaa]{U a} - _[C]-IEc][c] T {ua} = 0 (16)

Let

{ua} - [C] "l'T {w} , (17)

where {w} is called the transformed vector. Equation 16 then reduces to Equation 14 with

[J] - CC]'ICKaa][C]"I'T (IB)

After the transformed eigenvectors of Equation 14, {¢w }, have been calculated by the trt-

diagonal method they are converted to phystcaI form by

9.2-4 (3/1/76)
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(%} . Cc]-I'T{%} (Ig)

In order that the Cholesky decomposition,Equation 15, be possible, it is required that [Maa]

be a positive definite matrix. For many problems [Maa] would naturally be singular, as for ex-

ample, when rotary Inertias at rotational coordinates are zero. In these cases the user should

request that the Guyan reduction, Section 3.5.4, be used to eliminate the massless degree of

freedom, if the tridiagonalmethod ]s used.

The inversion of the [C] matrix is not difficult to perform since [C] is triangular. In addi-

tion [C]"l will be banded if there is no mass coupling between grid points and if the Guyan reduc-

tion has not been used extensively.

Once the finite frequency eigenvectors, {Car}, have been calculated by the selected method,

they are merged with the zero frequency elgenvectors, {%o }, to form the complete modal matrix of

eigenvectors

[%i] " [%o! %f] (20)

The last operations performed by the real elgenvalue analysis module are to normalize the

elgenvectors and to perform the mass orthogonality test, if it has been requested by the user.

The test requires that

mlj - {¢al}T [Maa]{¢aj} < _ , i # j , (21)

where ¢ is supplied by the user, and {¢ai} has been normalized to unit generalized mass, i.e.,

{¢ai}T [Maa]{¢ai} = I (22)

If the test fails, the program provides the number of mode pairs failing the test and the

value of the largest off-dlagonal term.

It is recognized that the eigenvectorsof extremely close or Identlcal elgenvaluesmay be

substantially correct even though they do not pass the orthogonaltty test. Efgenvectors obtained

with the Inverse power method are orthogonallzed with respect to all previously extracted elgen-

values. If the determinant method has been selected a preliminary test on the closeness of

elgenvalues

g.2-5 (12/15/72)
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_i " _J < .01 (23)

ki + kj

is made. If a group of adjacent elgenvelues satisfy the closeness condition, the orthogonality

test, Equation 21, is applied to the group. The eigenvectors of the group that fail the orthogon-

ality test are then orthogonalized by the Schmidt procedure

i-l

{_ai} _ {¢ai}- _m..{_.} (24)
j=l Ij aj '

where {¢'ai} is a "purified" eigenvector, and the sum extends over preceding members of the group.

Once the purification of close eigenvectors is completed, the complete mass orthogonality test is

performed.

The user may request any one of the following forms of normalization for the eigenvectors

I. Normalize to unit generalized mass •

2. Normalize so that the largest element of the vector is unity.

3. Normalize so that a particular element of the vector is unity.

generalized mass, {¢ai}T [Maa]{¢ai}, is included In the output for each eigenvalue.The

It may be noted here that, in the case of non-multiple elgenvalues, each of the four extrac-

tion methods will, for a given type of normalization, give essentially the same eigenvectors. How-

ever, in the case of multiple eigenvalues, the Four methods will, In general, give different elgen-

vectors even though they may employ the same type of normalization. This discrepancy may seem dis-

turbfng, but It is only apparent and not real. This is due to the Fact that the arbitrary

constants that are inherently assumed in the computation of eigenvectors are, in general, different

for the different methods. It can be easily shown that the apparently different eigenvectors of

multiple elgenvalues obtained by different extraction methods have certain definite relationships

among them. Thls is fully explained In Reference 2.

9.2.2 The APPEND Feature for R_al Ei_envalue Analysis

In real elgenvalue analysis, it is frequently necessary to add new eigenvalues and eigenvec-

tots to those already computed in e previous run. A capability called the APPEND feature makes it

.possible to do this without re-executlng the entire problem. It is available only when using the

9.2-6 (12/31/77)
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Inverse Power, Determinant and Tridiagonal Reduction (FEER) methods of eigenvalue extraction in

Rigid Formats 3, lO, II, 12, 13, and 15 (Displacement Approach) and in Rigid Formats lO and II

(Aeroelastic Approach).

In order to use the APPEND feature, the user first requests a checkpoint of an eigenvalue

problem. This run can terminate for any reason so long as the READ module finds at least one

eigenvalue and eigenvector and the LAMA (eigenvalue) and PHIA (eigenvector) files are successfully

checkpointed. The READ module also sets the parameter NEIGV to be equal to the number of elgen-

values and eigenvectors ?ound in this checkpoint run.

The user then restarts and activates the APPEND feature by changing either the METHOD card in

the Case Control Deck and/or the EIGR card in the Bulk Data Deck so as to ?orce the re-executlon

of the READ module.* The method of eigenvalue extraction used in the restart need not be the

same as that used in the checkpoint run, but the structural model and the constraint data must

be the same. Also, the user must ensure that the range of eigenvalues specified on the EIGR

Bulk Data card for the restart does not include the eigenvalues that have previously been found

and checkpointed. It is left to the user to satisfy this requirement. The program does not

check for this condition.

The APPEND feature causes the READ module to retrieve the specified number (the first NEIGV)

of eigenvalues and eigenvectors from the previously checkpointed LAMA and PHIA files (this retriev-

al is done in subroutine READ7 within the READ module; the number of eigenvalues and eigenvectors

retrieved is indicated by a user information message) and to subsequently combine them wlth the

newly computed results. (See the flow diagram in Figure l.) The elgenvalues and eigenvectors

output by the restart include those retrieved from the previously checkpointed run. Also, the

resulting eigenvectors are normalized according to the method of normalization specified in the

restart.

9.2.3 Complex El_envalue Anal_sis

The form of the complex eigenvalue problem using a direct formulation is

[Mdd p2 + Bdd p + Kdd]{Ud} . O. (2S)

*Additionally, if the user wishes to retrieve only the first n (n < NEIGV) (rather than all the
NEIGV) elgenvalues and elgenvectors found on a checkpoint run, the parameter NEIGV should be reset
to n in the restart by means of a PARAM statement Just before the READ module in the DMAP sequence.
This is done by means of a DMAP alter in the Executive Control Deck of the restart.
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The vector (ud} includes the set, ua, of deqrees of freedom at structural qrid points and the

set of extra points, ue, that are described in Section 9.3. The elements of the mass matrix, [Mddl,

the damping matrix, [Bdd], and the stiffness matrix, [Kdd], may be real or complex and the matrices

may be symmetric or nonsymmetric, singular, or nonslngular.

homogeneous solution of Equation 25,

{ud} = {¢dj} epjt

or

where _j

The eigenvalue, pj, corresponds to a

eOjt
{ud} = {¢dj} sin(_jt)

is the real part of pj and _j is the imaginary part.

, (26)

, (27)

The form of the complex eigenvalue problem using a modal formulation is

[Mhh p2 + Bhh p ÷ Khh]{Uh} = 0 (28)

The components of {uh} are the set of modal coordinates,{i' and the set of extra points, Ue,

(see Section g.3). As in the case of the direct formulation,there are no restrictionson the

matrices in Equation 28.

Two optional methods of elgenvalue extraction, the inverse power method with shifts, and the

determinant method, are provided. They are described in Section lO.

The eigenvectorsare nomallzed to a maximum element value of unity, or to a value of unity

for a specified element, according to user's option. Generalizedmodal masses are not calculated

and orthogonality tests, if such could be defined, are not performed.

V
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Figure I. Flow diagram for the real eigenvalue analysis module, READ.
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9.3 ASSEMBLY OF DYNAMIC MATRICES

The matrix properties of the dynamic system are assembled in three different modules, as

shown in Figure I of Section 9.1. The modules are

I. DPD, The Dynamic Pool Distributor

2. GKAD, The Direct Dynamic Matrix Assembler

3. GKAM, The Modal Dynamic Matrix Assembler

The Dynamic Pool Distributor performs a number of preliminary bookkeeping chores. It gener-

ates flags defining members of various displacement sets; it generates tables relating internal

and external grid point numbers, including Extra Points introduced explicitly for dynamic analysis;

it organizes Transfer Function data and Eigenvalue Extraction data; it prepares tables for Dynamic

Loads and Nonlinear Functions; and it compiles lists of response quantities for Transient Analysis.

The function of the Direct Dynamic Matrix Assembler is to assemble the mass, damping, and

stiffness matrices from various sources in terms of displacements at grid ooints. The function of

the Modal Dynamic Matrix Assembler is to apply a modal transformation to the mass, damoing, and

stiffness matrices.

Other modules performing functions in connection with dynamic system assembly are the Frequen-

cy Response Analysis Module, which assembles loads, and the Transient Response Analysis Module,

which assembles loads and nonllnear terms in the equations of motion. Discussion of these func-

tions is included with the discussion of the other functions of the modules(see Sections II and

12).

9.3.1 Notation System

Before proceeding to a detailed description of the process of matrix assembly, it is well to

review the notation system used in dynamic analysis, which was briefly described in Section 3.3.

The main differences from static analysis are the addition of modal coordinates, {i' and the addi-

tion of extra points, ue, The nesting of the displacements sets used in dynamic analysis is de-

picted by the following diagram.

g.3-1
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Mutually
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Sets
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uurI Iu a

u I
_o I _i
(f

uh

The definitions of the mutually exclusive sets are

ue
terns, etc., . :::

(o rigid body (zero frequency) modal coordinates,

.... _f ffnit..____efrequency modal coordinates.

ur points to which determinate reactions are applied In static analysis,

u_ the remaining structural points (points left over) which are evaluated in static
analysis by direct solution of the stiffn-'e'_Tmatrix,

extra degrees of freedom introduced in dynamic analysis to describe control sys-

The combined displacement sets are

U a =

Ud "

Uh "

ur + u_ , the set used in real elgenvalue analysis,

{o + {f ' the set of all modal coordinates,

ua + ue , the set used in dynamic analysis by the direct method,

{i +Ue ' the set used In dynamic analysis by the modal method.

Load vectors and two-dimensionalarrays employ the subscripts of the displacementsets with

which they are associated. Occasionally additional subscripts are used to distinguish between two

members of the same set. Superscripts are used to distinguish different kinds of entities. See

Section 3.3 for further details.
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9.3.2 Extralpotnts and Transfer Functions

In NASTRAN dynamic analysis is performed via a basic quadratic format,

IMp 2 + BO + K]{u} - {P} (1)

Situations occur, rather frequently, where some of the properties of a dynamic system cannot

be expressed directly as constant coefficients in a mass, damping, or stiffness matrix. If the

problem is formulated in the frequency domain, as are many problems in aeroelasticity and hydro-

elasticity, terms may occur that have other than constant, linear or quadratic dependence on p.

These terms may, however, be expressed as frequency-dependent coefficients in the mass, damping,

or stiffness matrices. This creates a certain awkwardness fn elgenvalue extraction, but it is not

a serious inconvenience in frequency response analysis.

If the problem is formulated in the time domain, in which case p is a derivative operator, the

nonconforming properties cannot, even conceptually, be treated as time-deoendent coefficlents.

There are two types of nonconformities: those In which the resulting forces are nonlinear func-

tions of displacements and of their derivatives; and those in which the resulting forces are linear

functions of higher order derivatives, or, in general, are convolution integrals of the displace-

ments. The former type of nonconformity, which is included only in transient analysis, Is discuss-

ed in Section ll.2. The latter type is discussed here.

A convenient representation of a convolution integral is its transfer function in the frequen-

cy domain, i.e., its Laplace transform. The properties of control system components, or even of

complete control systems, are most frequently described by transfer functions, represented by

algebraic expressions of the form

e 2 • Hl2(P)e I , (2)

where

pn
ao + alP + a2p 2 + . . . + an

HI2(p) - (3)

bo + blP + b2p2 ÷ . . . + bm pm

9.3-3
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e I and e2 may be variables representing voltages in amplifier circuits, valve positions in hydraul-

ic actuators, etc. All such quantities are treated as degrees of freedom and are included in the

displacement vector {ue} (extra points). Transfer functions, Equation 3, are brought within the

basic quadratic format as follows.

If n < 2 and m .< 2, then Equation 2 may be written

(b2p2 + blP + bo)e 2 - (a2p2 + alp + ao)e I = 0 , (4)

which may properly be regarded as a differential equation of second order, (p = d/dr). The co-

efficients b2, bl, and bo are, respectively, the diagonal terms of the [M], [B], and [K] matrices

in the row reserved for •2. The terms -a2, -al, and -ao are, respectively, those in the row cor-

responding to •2 and the column corresponding to eI in the [M], [B], and [K] matrices,

If 2 < n < 4 or 2 < m _ 4, the transfer function H12(P) may be factored into a pair of quad-

ratic fractions such that

. H (a) (p) • H(b) (p)

The transfer function is then brought within the required format by defining another extra

point, e3, such that

•3 - H (a) (p) • •l

e 2 - H (b) (p) • e 3

(6)

The extension to higher order polynomials is evident. The factoring of polynomlals, which

will not often be required, is left to the user. An alternative reduction of the high order trans-

fer function is provided by fraction series expansion:

V

=

V

i

=
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which has the advantage of not requiring the numerator to be factored.

and

In this case auxi}lary variables ei are introduced such that

ei = H(i)(P)el , i = 3, 4, 5, etc., (8)

ez - _e i (g)

Equation 8 is treated as a set of differential equations, as before. Equation 9 is also

treated as a differential equation where the only non-zero matrix elements are in the row of K

corresponding to e2.

In order to facilitate the treai_mnt of control systems, NASTRAN includes an input data for-

mat for the specification of transfer functions in the form

I (I0)
Ue w +bo+ blP b2P2_ taol +alip + a2ip2) ui ,

which is l_terpretedby the program as a differential equation with terms in the rows of [M], [B],

and [K] corresponding to ue. ue must be an extra point, but ui can either be an extra point or

any structural point contained in Ug.

Structural loads proportional to displacements at extra points are represented by adding

terms in the stiffness matrix at the intersections of r_is corresponding to the structural points

and columns corresponding to the extra points, Direct input data cards are provided for this pur-

pose. The superposition of all such terms, including those generated by transfer functions, ts

called the direct input stiffness matrix, [K2]. The direct input mass and damping matrices are

[M2] and [_2]. Terms in the direct input matrices may refer to extra points, to structural points

or to both. Since dynamic loads may also be applied to extra points, the means are available for

the complete simulation of subsystems by means of extra points. Some applications to control

system simulation are described in Section 14.2.

f'- "7
4
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9.3.3 Direct Dynamic Matrix Assembly

The Direct Dynamic Matrix Assembler, GKAD, performs three main functions.

I. It decodes transfer function information and adds it to the direct input matrices [Mpp2],

[Bpp2], and [Kpp2] as explained above.

2. It reduces the direct input matrices by the application of constraints and partitioning

from the displacement set, Up, (all physical points) to the ud set. See Section 3.3.

3. It assembles the complete dynamic matrices [Mdd], [Bdd], and [Kdd] from the direct input

matrices and from the structural matrices generated in the statics portion of the program.

Direct input matrices are, at present, generated by transfer functions or they are supplied

directly by the user. It is possible to modify the program so as to provide internal calculation

of direct input matrices corresponding to particular aeroelastic and hydrodynamic environments.

The extra points are carried along in the apolication of constraints and partitioning to the

direct input matrices, at the positions In Up Indicated-in-the grid point sequence list. For this

purpose the nmltipoint constraint matrix [Gm] (see Section 3.5.1), and the Guyan reduction matrix

[Go], (see Section 3.5.4), are expanded to include the ue coordinates. The corresponding columns

are, of course, null.

The specific steps in the reduction as applied to [Kpp2] are:

I. Eliminate multipolnt constraints.

[Knn2] - ['_nn2] + [Knm2][Gm ] + [Gm ]T [Kmn2] + [Gm ]T [Kmm2][G m] ,

where the partitions of [Kpp2] are given by

[Kop2] = nn I _'nm

Kmn2 KJ

(The u e coordinates are Included in the u n coordinates,)

(11)

(iz)

9.3-6
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Eliminate slngle-point constraints by extracting [Kff2] from

(The ue coordinates are Included In the uf coordinates.)

Eliminate the omitted coordinates, uo, via the Guyan reduction

(13)

[Kdd2] - _dd 2] + [Kdo2]CGo]+ [Go]TCKod2] + [Go]TCKooZ]EGo] , (14)

where the partitions of [Kff2] are given by

(The ud set Is the union of ua and Ue.)

The direct input mass and damping matrices are treated in an identical manner. When the ele-

ments of the direct input matrices are complex numbers, which they may be for frequency response

and complex elgenvalue analysis, the real and imaginary parts are reduced at the same time.

The final assembly of the dynamic matrices is perfomed as follows. The structural matrices

[Kaa], [Kaa4], CMaa], and CBaa] are expanded by the addition of zeroes in the rows and columns

corresponding to extra points, to form [lddl], [Kdd4], [Mddl], and [Bddl]. [Kaa4] is a structural

damping matrix obtained by multiplying the stiffness matrix [Kel of an individual structural ele-

ment by a damping factor, ge' and c_Inlng the results for all such structural elements. 6ac_

element may have a different damping factor. [Baa] Is a viscous damping matrix resulting from

viscous rod elements (extension or twist) and viscous scalar dampers.

For frequency response analysis and c_lex elgenvalue analysis the complete dynamlc matrices

ale

[Kdd] - (I + Ig)[lddl] + [Kdd2] + l[Kdd4] , (16)

g.3-7
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[Bdd] - [Bddl] + [Bdd2]

[Mdd] = [Mddl] + [Mdd2]

ORIGINAL P;_G_ i._
OF POOR QUALITY

, (17)

(18)

[KddI] is multiplied by the factor (I + ig) to include uniform structural damping in

cases where it is appropriate. The constant g is specified by the user.

For transient response analysis the complete dynamic matrices are

[Kdd] = [Kddl] + [Kdd2] , (19)

+ I [Kdd4] , (20)[Bdd] = [Bddl] + [Bdd2] +_" [Kddl] _44

[Mdd] = [Mddl] + [Mdd2] (21)

The constant u3 is the radian frequency at which the term _- [Kddl] produces the same damping
=3

forces as the term ig[Kddl] in frequency resnonse analysis. The viscous damping forces are larger

at higher frequencies and smaller at lower frequencies. A small value of g/u3 is frequentlyuse-

ful to ensure stability of higher modes in nonlinear transient analysis. The user selects the

values of _3 and _4" If they are omitted the corresponding terms are ignored.

9.3.4 Modal Dynamic Matrix Assembly

l_e Modal Dynamic Matrix Assembler, GKAM, assembles the dynamic matrices [Mhh], [Bhh]O and

[Khh] in the general dynamic equation

[Mhh p2 + Bhh p + Khh](Uh} = {ph} (22)

The modal analysis coordinates, uh, are related to the corresponding physical coordinates,

ud, as follows. The set uh is the union of the modal coordinates {i and the extra points ua

I_I ---=={uh} (23)

_ I

9.3-8
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and ue, The transformation between {i and ua

{ua} = [¢ai](_i} ,

is

_.,,.,.,,_,.',1 _.,F'[- "_'

CF POOR C_UAL}TI

(24)

where [¢ai ] is the matrix of eigenvectors obtained in real eigenvalue analysis, (see Section 9.2.1).

The transformation from uh to ud is obtained by augmenting [¢ai] to include the extra points.

Thus

where

{ud} = [¢dh]{Uh} , (25)

°i1[¢dh ] = -- (26)

I

[@dh] is actually in this form because the components of ue are placed last in uh and also in ud

for modal analysis.

The dynamic system properties, exclusive of loads, included in dynamic analysis by the modal

method are the direct input matrices [Mdd2], [Bdd2], and [Kdd2], obtained from the Direct Dynamic

Matrix Assembler, and the modal matrices, [mi], [bi], and [ki], obtained from the Real Eigenvalue

Analysis module. [mi] is the modal mass matrix defined by Equation 2 of Section 9.2.1, with off-

diagonal terms (which should be zero anyway) omitted. The damping matrix [bi] and the stiffness

matrix [ki] are obtained from [m i] by

(27)

(2el

[bl] = [ui g(=i)mi ]

[ki] - [=i2m i] ,

where =i is the radian frequency of the Ith normal mode and g(_l ) is a damping factor, g(_l ) is

obtained by interpolation of a table, g(=), supplied by the user to represent the variation of

structural damping with frequency.

It will be noted that the specification of damping properties for the modal method is some-

what less general than it is for the direct method in that viscous dampers [Baa] and nonuniform

damping [Kaa4] are not used. The damping function g(_) is regarded as an adequatestructural sub-

stitute.

_v _

9.3-9



ORGANIZATION OF DYNAMIC ANALYSIS

ORIG|DIAL PAG_ ;_

OF POOR QUALITY

The complete dynamic matrices for the modal method of dynamic analysis are obtained from

F_m'J0]
[Mhh] = LTIOj + [¢dh]T [Mdd2][_dh] , (29)

[Bhh] = + [$dh]T[Bdd2][¢dh] , (30)

[Khh] - + [¢dh]T[Kdd2][¢dh] (31)

The user can specify the number of modes, starting from zero frequency and including rigid

body modes, or he can specify that all the modes within a prescribed frequency range be used.

A useful feature of NASTRAN is that the user can specify the structural properties of parts

of the structure by means of scalar elements and constraintswhose values are derived from sub-

structure modes {see Sectlon 14.1). The program treats such elements in the same manner as all

other elements, so that their effects are included In [Kaa], [Maa], and [Baa].

V

L
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9.4 DYNAMICDATA RECOVERY

The dynamic analysis modules for complex etgenvalue analysis, frequency response analysis,

and transient response analysis produce either {u d} or {uh} as solutton vectors, depending on

whether a direct or a modal formulation has been employed. The transient response module a]so

produces the first and second time derivatives of the solution vectors. The addlttonal operations

in the data recovery chain are indicated in Figure 1 of Section 9.1. The solutton vector is

partitioned, transformed, and augmented in various ways to obtain desired output quantities.

The main function of the Dynamic Data Recovery module (DDR), see Figure I of this secJ_ton,

is to produce a displacement vector, {Ua}; which can be processed by the static data recovery

modules to produce the complete structural displacement vector, {Ug}, and the Internal forces

and stresses in selected structural elements (see Section 3.7). In the standard method of

dynamic data recovery, which was the only method available prior to Level 16 of NASTRAN, the

static data recovery modules process the solutlon vector for each mode, time step, or frequency

as though it were a static solution vector, i.e., all calculations are repeated for every vector.

Beginning with Level 16 of NASTRAN, a second method, called the Matrix Method of Dynamic Data

Recovery, has been added for transient response and frequency response whtch fs considerably

more efficient when the number of time steps or frequencies exceeds the number of independent

degrees of freedom. In this method a matrix ts precomputed which relates the desired output

quantities of whatever type directly to the independent degrees of freedom. Thus, in direct

analysis,

and in modal analysis,

(uj} = [Sjd]{Ud} , (I)

{uj} - [Sjh]{Uh} . (2)

[Sjd] and [Sjh] are matrices of constant coefficients and {uj} Is the vector of desired output

quantities, which may tnclude displacements, velocities, accelerations, internal forces, stresses,

and forces of constraint. Note that the re]atfonship of output quantities to Independent degrees

of freedom is ltnear so that nonlinear stress resultants, such as principal stresses, are ex-

cluded.

9.4-1 (12/31/74)
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The matrix [Sjd] is formed in two steps. First, the columns of an identity matrix of order

(dxd) are processed sequentially by module SDRI, which recovers the degrees of freedom eliminated

by constraints (see Section 3.7.]), to form a matrix [Upd] in which each column is the vector of

grid point displacements, extra point displacements,and single point forces of constraint

due to a unit value of one dynamic degree of freedom. Second, the columns of [Upd] are processed

sequentiallyby module SDR2 (see Section 3.7.2) to form a matrix [Oed] in which each column is

the vector of user-requestedstresses and internal forces in elements due to unit value of one

dynamic degree of freedom. The union of [Oed] with user-requestedrows of [Upd] fo_m the matrix

[Sjd].

The matrix [Sjh] is formed in a similar way except that in the first step the identity

matrix is replaced by [¢dh], the augmented modal matrix (see section 9.3.4).

If the number of dynamic degrees of freedom Is less than the number of time steps or fre-

quencies, the matrix method of dynamic data recovery will be more efficient than the standard

method. The saving may be very great, particularlyin the case of the modal formulationwhen

the number of modes is sma11.

In the event that it is desired to print or plot each output quantity versus time or fre-

quency, it is required that the matrix of output quantities, [uj], be transposed. This is

actually performed by transposing the output data recovery matrix first, followed by the calcu-

latlon

[uj]T - [ud]T[Sjd]T or [uj]T - [uh]T[Sjh]T (3)

One of the two methods for multiplying [A]T[B]described on page 2.1-4 is used. Both methods

avoid the transpositionof [uh] or [Ud].

In the mode accelerationmethod, which is only available as a subcase of the standard method

{see Figure I). the vector {ua} that describes unconstrained motions of the structure is

replaced by another vector {uS} that will produce mere accurate estimates of the stresSeS.

The motivation stems from the fact that when modal analysis is employed, the modal vector {{i}

that replaces {ua} is nearly always a smaller set from which higher modes have been omitted.

The influence of the higher modes can be appmXIN-ted by obse_ing: that the_r_resPonseto low

frequency dynamlc excitation is almost purely static. Thus, the inertia and damping f0rces on

the structure contain very little contribution from the higher modes. In the mode acceleration

g.4-1a (3/I176)
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method, the inertia and damping forces are computed from the modal solution. These forces are

then added to the applied forces and are used to obtain a more accurate displacement vector for

the structure by static analysis. The details of the computation are as follows.

When the general dynamic system is formed using modes, the vector {uh} used in the analysis

contains the modal coordinates {{i} and the extra degrees of freedom {ue}. The system from

which {_i} is abstracted consists of the stiffness matrix [Kaa], the mass matrix [Maa], and

modal damping elements, bi. The presence of the modal damping elements is ignored in data

recovery. The general system includes, in addition, direct input matrices [M2], [B2], and [K2]

and loads {Pa} and {Pe] applied, respectively, to points {ua} and {Ue}.

9.4-lb (12/32/74)
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In order to apply the mode acceleration method, the system that existed prior to the applica-

tion of modal constraints is reconstructed, as follows:

V

[Mdd p2 + Bdd 2 p + (KddI + Kdd2)]{Td } = {Pd } (4)

{_d } differs from {Ud}, the solution vector actually obtained, due to the presence of higher

modes. Note the presence of [Bdd2] from Equation 30 of Section 9.3.4.

The elastic properties of the structure are represented by [Kddl ] which is the structural

stiffness matrix [Kaa ] augmented by zeroes In the rows and columns corresponding to the extra

points, Ue, (see Section 9.3.3). [Kdd l] represents the complete structure as opposed to the modal

stiffness matrix [ki] which ignores the higher deformation modes. The viewpoint is taken that the

transformed solution vector, {ud} = [¢dh](Uh }, is adequate to evaluate the inertia (and damping)

loads on the structure but that stresses derived from it could be improved.

The improved solution is the vector {u_} obtained by solving

ZKddl]Cu }= , (5)

where, comparing Equations 4 and 5

{p_} = {pd} [Mdd p2" + Bdd 2 p + Kdd2]{Ud } (6)

The derivative operator p In Equation 6 is simply a number for complex eigenvalue and fre-

quency response analysis. For transient analyses the velocity and acceleration vectors, {PUd_ and

{p2 Ud } , are contained in the output of the transient analysis module.

The procedure indicated In Equations 5 and 6 Is modified in the program by the removal of

extra points, Ue, and by the use of a special procedure for free bodies. First {P_} and {u_} are

partitioned

9.4-2 (3/I/76) v
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Then, if there are no free body motions, [u:} is obtained by solving

ORIGINAL PAG" 19
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iS)

[Kaa]{u - (9)

by the standard procedures used in static analysis. Note that for comnlex eigenvalue extraction

and for frequency response analysis {Pl) may be complex, in which event the real and imaginary

parts are considered as separate loading conditions. The operations of the static data recovery

module are then applied separately to the real and imaginary parts of {ul}.

If free body modes are present, [Kaa] is singular, indicating the need for an alternate pro-

cedure. It is assumed that the motions at a set of fictitious reaction points, ur, (see Section

3.5.5) are correctly given by the modal solution. The elastic deformations of the remaining points,

ul, relative to ur are obtained by solving

where {P_} is the appropriate partition of

The improved solution vector is obtained from

where [O] is the matrix that evaluates the rigid body motions of the structure (see Section

3.5.5).

Although the mode acceleration technique will produce better stresses, it may be expensive,

particularly in transient analyses Involving many time steps. Its use must, therefore, be separ-

ately Justified for each application.
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lO. EIGENVALUE EXTRACTION METHODS

lO.l INTRODUCTION

Four methods of eigenvalue extraction are provided with NASTRAN because no single method,

or pair of methods, has been found that is satisfactory with respect to efficiency, reliability,

and generality of application in all situations. IVe are living in a time of rather explosive

growth, engendered by the digital computer, in the variety and capability of eigenvalue extrac-

tion routines. New methods will be added to NASTRAN and old methods will be improved as dis-

coveries are made.

MOst methods of algebraic eigenvalue extraction belong to one of two groups - transformation

methods and "tracking" methods. In a transformation method the matrix of coefficients is first

transformed, while preserving its eigenvalues, into a special form (diagonal, tridiagonal, or

upper Hessenberg) from which eigenvalues may easily be extracted. In a "tracking" method the

roots are extracted, one at a time, by iterative procedures applied to the original dynamic

matrix . Two of the methnds _msed in NASTRAN are transformation methods (Trldiagonal M_thnd _nd

Tridiagonal Reduction or FEER Method), and the other two (Determinant Method and Inverse Power

Method with Shifts) are tracking methods.

In the Tridiagonal Method, the full matrix of coefficients Is converted into a condensed

form, requiring that the major share of the total effort be expended prior to the extraction

of the first eigenvalue. Thus, the total effort is not strongly dependent on the number of eigen-

values that are extracted. However, in the Tridiagonal Reduction Method, the matrix iS not only

converted to a condensed (tridlagonal) form, but it is simultaneously reduced in size. The size

of the reduced matrix is of the same order of magnitude as the number of modes requested by the

user. Therefore, this method possesses a major efficiency as compared to the straightforward

Tridiagonal Method, namely that the effort expended is proportional to the number of extracted

elgenvalues. The computations required in the tracking methods are also linearly proportional

to the number of extracted elgenvalues and as a result they tend to be more efficient when only

a few eigenvalues are requlred.

The general characteristics of the methods used in NASTRAN are compared in Table I. The

Tridlagonal Method, due to restrictions on matrix form, is available only for the evaluation of

the vibration modes of conservative systems (see Section 9.2) and not for buckling or complex

eigenvalue analysis. The Tridiagonal Reduction (FEER) Method, however, accommodates both

I0.I-I (12/31/77)
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vibration modes and buckling analyses. The other two methods are available for all real and com-

plex eigenvalue problems currently solved by NAST_N. The Determinant Method would, in addition,

be applicable to future problem types in which th.ecoefficients of the dynamic matrices are

general functions of the eigenvalue.

It may be noted, from Table l, that a narrow bandwidth, as well as a small proportion of

extracted roots, tends to favor the tracking methods and the Tridiagonal Reduction Method.

An example of such a problem is the evaluation of the lowest few modes of a launch vehicle.

When several modes of a real eigenvalue problem are required, the Tridlagonal Reduction

Method will probably be the most efficient one to use, since it is a finite, non-iterative

process usually requiring only one initial eigenvalue shift. When almost all the modes are

required, the Tridiagonal Method may exceed the efficiency of the Tridiagonal Reduction Method,

particularly if the bandwidth is relatively large. It should be noted, however, that when the

order of the coefficient matrix exceeds two or three hundred, the Tridiagonal Method will pro-

bably require prohibitively time-consuming out-of-core operations, even on computers with

relatively large central memor_j capacities, thereby losing its efficiency. This disadvantage

does not apply to the Tridlagonal Reduction Method which is more efficient for out-of-core

operations.

The Determinant Method and the Inverse Power Method with Shifts have the same general char-

acteristics with respect to all current NASTRAN problems. The Inverse Power Method is, however,

more efficient except when the bandwidth is extremely narrow as, for exaeq01e, in beam problems.

The main advantage of including both methods is the redundancy that is provided in case one

method should fail (as sometimes happens with any method of eigenvalue extraction).

V

1o.I-2(12131177)



INTRODUCTION

C';; ?C,-..', ;"' 7!

Table I. Comparison of Methods of Eigenvalue Extraction

Method

Characteristics

Most general form of

I matrix

Restrictions on
matrl x character

i Obtains elgenvalues
in order

I

Takes advantage of
bandwidth

Number of calculations
order of

Trldlagonal
Method

[A - pl]

A real) syill.,
constant

All at once

No

O(n 3)

Inverse Power
Method With

Sh I fts

[_2 + Bp + K]

M, B and K
constant

Nearest to
shift point

Yes

O(nb2E)

i Determinant

i Method
l

[A(p)]

None

(Usually) nearest
to starting points

Yes

O(nb2E)

Tridlagonal
Reduction
Method

IMp2 ÷ K]

M, K, real,

sym., constant

Vibration: Nearest

shift point
Buckling: Lowest

ei_envalue First

Yes

O(n[_E] 2)

to

Note: n = number of equations

b • stmt-bandwtdth

E = number of etgenvalues extracted

-.:-_
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I0.2 THE TRIDIAGONAL METHOD

EIGENVALUE EXTRACTION METHOOS OF POOR QU_LIT'(

I0.2.1 Introduction

The tridiagonalmethod is particularlyeffective for obtaining vibration modes when all, or

a substantial fraction, of the eigenva!ues and eigenvectors of a real symmetric matrix are desired.

The general restrictionson the use of the method within NASTRAN are described in Section lO.l.

The basic steps employed in the method are as follows. First, the eigenvalue problem,

[Kaa - XMaa]{Ua} = O, (I)

is transformed to the form

[A]{x} = x{x}. (2)

Second, [A] is converted, while preserving its eigenvalues, to a tridiagonalmatrix by the Givens

Method, Reference I. Third, all the eigenvalues of the tridiagonalmatrix are extracted using a

modified Q-R algorithm. Fourth, the eigenvectors ape cr_puted over a given frequency range or for

a given number of eigenvalues, and are converted to physical form. The transformation of the

eigenvalue problem from Equation l to Equation 2 and the conversion of the eigenvectors to physical

form are described in Section 9.2. A simplified flow diagram for the tridiagonalmethod is shown

in Figure I.

10.2.2 Tridiag°nalizationbY the Givens Method

The most stable transformationmethods of solution of eigenproblems fop large sy_tnetric

matrices are based on the tridiagonalizationtechniques of Givens (Reference l), Lanczos (Reference

2), and Householder (Reference 3). The Givens method, which is used by NASTRAN, depends on orthog-

onal transformations IT] [A] [T]T of a symmetric matrix [A]. An orthogonal transformation is one

whose matrix [T] satisfies

[T][T]T " [T]TCT]" CI]. (3)

The eigenvalues of a matrix are preserved under orl_ogonal transformation since

[T] ([A]-X[I])[T] T - [T][A][T]T - X[I].

Consequently If det ([A]-X[I])vanishes, then det ([T][A][T]T - X[I])also vanishes.

(4)
---2

I0.2-I (12-I-69)
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The effect of a series of orthogonal transformationson the eigenvectorsof a matrix is that

of a succession of multiplicationsby orthogonal matrices. For if

[A]{x}_ x{x},

and if [Tl], [Tz], ..., ITr] are or_ogonal matrices, then

[Tr][Tr.I] ... [T_][TI][A]{x} -_[Tr][Tr_l] ... [T2][Tl]{X}.

Write (x} = [Tl]T [Tz]T .-- [Tr.l]T [Tr]T {y}. Then

[Tr][Tr_l] ... [T2][TI][A][TI]T[T2]T ... [Tr.I]T[Tr]T{y}

= X[Tr][Tr.11 ..- [T2][Ti][TI]T[T2IT ... [Tr.l]T[Tr]T{y}

(5)

C6)

- k{y},

where Equation 3 is applied repeatedly to obtain the final form. It follows that (y} is an

eigenvector of the transformedmatrix

[Tr][Tr_l] ...[Tz]ZTI][A][TI]TZT2]T ... [Tr.I]T[TrIT,

(7)

V

and that {x} may be obtained from {y} by

{x} - [TI]T[T2]T --. CTr.I]T[Tr]T {y}. (8)

The Givens method uses orthogonalmatrices IT] which are identicalwith the unit matrix [I]

except for the four elements

tl+l, I+I " tj, j - cosBl+l, j ,)

tl+l, j = -tj, I+I " slnei+l, j "

(9)

The orthogonal transformation[T][A][T]T leaves unchanged all the elements of [A] except those in

Be l+lst and jth rows and coJumns, the so-called plane of rotation. The four pivotal elements of

the transformed matrix are

lO.Z-2(IZ-l-691
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=i+l, i+l • ai+1, i+I c°sZei+l, J ÷ aj, j sln2ei+l, j + ai+l, j sinZei+l, j ,

=j, J = ai+l, i+l sinZei+l, j + aj, j cosZel+1, j ai+1, j slnZei+l, j ' (IO)

1
=i+l, J " =j, i+l • ai+l, j c°s281+I, J " _ (ai+1, i+l " aj, j) sinZei+l, j

where aj, j etc., are elements of the untransformed matrix. The other elements of the i+lst and

jth rows and columns of the transformedmatrix are:

=I+I, s " =s, I+I " ai+l, s c°sli+l, j + aj, s slnei+l, j

_j, s " as, J " "el+l, s sinel+l, j + aj, s c°sll+l, j

(II)

In the Givens method li+l, j is chosen such that _I, J will vanish, which happens when

tanei+l, J " el, jlai+l, i' (12)

The calculation of el+l, j followed by the orthogonal transfomatlon

[A(m)] - [Tm][A(m'll][TmIT, {131

is carried out for a sequence of iterations with [A(0)] - [A]. The values of i used in Equations

go I0, II, and 12 are l, 2, 3o .... in-2) and for each i, a set of n - I - l such transformations

is performed, with j taking values I + 2, I + 3, ...o n before the next value of i is used. The

result is that elements in the matrix positions (I,3), {I,4), ..., (l,n), (2,4), (2,5)..... (2,n),

..., (n-I,n) are successively reduced to zero, together wlth their transposes, the (3,1), (4,1),

..., (n,n-2) elements. The set of transformations thus reduces the matrix to trldlagonal form.

NASTRANemploys a procedure introduced by Wilkinson (Reference 4) in which the Givens method

is medtfied by grouping together the (n - i - 1) transformations which produce zeros tn the ith

row and col_. This procedure should not be confused with the Householder method, Reference 3,

which annlhilates a row and column at a time. The Wilkinson process is particularly advantageous

when the matrix [A] is so large that the elements cannot all be left in core storage at one time;

it requires only n - 2 transfers of the matrix to and from auxiliary storage instead of the in-l)

(n-Z)/t transfers required by the unmodlfled Givens method. The method requires 4n core storage

10.2-3 (12-I-69)
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locations for working space and these are divided into four groups of n storage locations each.

The first (I-1) rows and columns play no part in the i th major step. This step has five substeps:

1. The l th row of [A] is transferred to the set of core storage locations in group I.

2. The values of cosBi÷l, i+2' sinei+l, i+Z .... c°sOi+l, n' sinei+l, n

successively from

(j-l) I

. alt i+l

c°s"i÷l'J I//a(J-l)_z
V \i,i+i)÷a_,j

. ai, J ,

sin_i+l'J I/ (a(J"It_2
V _i,i+I/+a_,j !

where the superscripted term is computed By

are computed

(14)

a(J'1)"V /a(j-2)_2I, l+l + 2, j-I '_i, i+I/ a

and the starting value for j - i + 2 is

(i+l).. alal, i+! , i+l

cosOl+l,j may be overwrittenon the elements of the untransformed matrix, al, j, which

are no longer required, and the slnBi+l,j are stored in the group 2 storage locations.

3. The l+lst row of [A] Is transferredto the group 3 storage locations. Only those

elements on and above the diagonal are used in this and succeeding rows.

(15)

For k - i + 2, t + 3, ..., n in turn, the operations in substeps 4 and 5 are carried out.

4. The kth row of [A] is transferred to the group 4 storage locations. The eleJnents

al+l, l+l' ai+l, k and ak, k are subjected to the row and column operations involving cosOi+l,k

and sinei+l,k. For _ - k + l, k + 2, ..., n in turn, the part of the row transformation

involving ¢osei+l, k and sinei+l, k Is performed on ai÷l, _ and ak, ¢. For _ - k + l, k + 2,

..., n in turn, the part of the column transformation involving cosOi+ l, ¢ and stnel+l, _ is

performed on at+l, k and ak, _. Now all the transfomattons involving the i th major step have

been performed on all the elephants of row k and on ele_nts i + Z, t + 3 ..... n of row i + 1.

10.2-4 (3/1/76)
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5. The completed k_ row is transferred to auxiliary storage.

When substeps 4 and 5 have been completed for all appropriatevalues of k, the work on row

i + l has also been completed. The values of cosBi+1 k and sinBi+I k for k- i + 2, i + ._,..., n
s

are transferred to auxiliary storage and row i + I Is transferred to the group l core storage

locations. Since the i ÷ Ist row plays the same part in the next major step as did the ith in the

step Just described, everything is ready for subsi_p Z in the next major step. Substep I is, in

fact, only required in the first _aJor step because the appropriate row is already in the storage

locations of group 1 in subsequent steps.

I0.2.3 Extraction of k_e.Eigenvalues of a Tridiaqonal Matrix

NASTRAN employs the Q-R transformation of Francis (Reference5) which is an orthogonal trans-

formation [Ar+l] - [Qr]T [Ar] [Qr] such that [Ar] may be factored into the product [Qr] [Rr] where

[Rr] is an upper triangular matrix. Thus

and

Now [Qr]T[Qr]

[Ar] = [Qr][Rr] , (16)

[Ar+l] = [Qr]T[Ar][Qr]

= [Qr]T[Qr][Rr][Qr] •

- [I] by virtue of the orthogonaltty property, Equation 3, so that

EAr+l] - [Rr][Qr] • (17)

It follows that CAr+l] is determined from [Ar] by performing in succession the decomposition

given by Equation 16 and the multiplication glven by Equation 17. Francis has shown that if a

matrix [A] - JAil is nonsingular, then, in the limit as r - -, [Ar] will approach an upper trian-

gular matrix; because eigenvalues are preserved under orthogonal transformation,it follows that

diagonal ele_nts of the limiting matrix are the eigenvalues of the original matrix [A]. Although

the method can be applied to any matrix, it is particularly suitable for tridiagonalmatrices

because the bandwidi_iof the _trix can be preserved, as will be shown. In the case where [A] is

symmetric, the matrix [Ar] will, of course, tend to a diagonal form as r * -.

I0.2-5 (12-I_9)
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It may be shown that the upper triangularmatrix, [Rrl, and the orthogonal matrix [Qr] are

unique, Reference 4, page 241; several methods, however, are available for performing the decompo-

sition. In the method of calculation devised by Francis, [Qr] Is expressed as a product of (n-l)

elementary rotation matrices, where n is the order of [Ar]:

[qr] - [T(I)][T(2)1 .-- IT(n'l)] . (IB)

The nonzero elements of the jffi eI_entary rotation matrix are

t (J) - -t (j) - sjJ+l, J J, J+l '

t_J) = l, k_j orj+l.,k

(19)

The manner in which the cj and sj

shown shortly. [Rr] is, from Equation 16 and the orthogonality property,

[Rr] = [Qr]'1[Ar] = [Qr]T[Ar]

= [T(n-l)]T[T(n'2)]T ... [T(2)]T[T(1)]T[Ar] .

coefflc_entsare obtained from the elements of [Ar] will be

(20)

Let the nonzero elements of [Ar], JAr.I] and [Rr] be defined as follows:

al b2 _ 0 -

L 'o

(21)

T : i

V

)

I0.2-6 (311176)

if,_1!



and

EAr+l ] -

THE TRIDIAGONAL METHO0

0 _I an-1 bn

- _ bn an

ORIGIP,!AL PAGe. ;_

OF POOR QUALI';'f

(22)

4

[Rr] "

_ ql tl_o -

L \'°

(Z3)

The coefficients of the elementary rotation matrices are selected so as to reduce the sub-

diagonal terms of [Rr] to zero. Speciflcally,

sj

¢j

bJ+l I

• I

+ bj+1

• PJ ,_½

,,,b2 .
j+I/

j " I, 2, ..., n - 1 , (24)

where

Pl " al '

PZ • claz " Slbz '

pj - cj. 1 aj - sj. 1 ¢J-2 bj .

10.2-7 (3/1/70)
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rj = cjpj + sjbj+1 ,

rn = Pn '

ql = Cl b2 + Sl a2 '

qj = sj aj+1 + cj cj.1 bj+l ,

tj = sj bj+2 ,

The elements of [At+l] are, from Equation 17,

al = Cl rl + Sl ql '

aj- cj.l cj rj + sj qj ,

a'n • crl-I rn j

_j+l " sj rj_l ,

J = l, 2, ..., n - 1 ,

J = 2, 3, ..., n-l ,

j • l, 2..... n - 2 .

(26)

j = 2, 3, ..., n- l ,

J - I, 2, ..., n - l .

(27)

NASTRAN uses a variation, Reference 6, of Francis' original method that avoids the calculation

This is done by using the following equations in place of Equation 27

(I÷s])gj÷s] aj+l

m

= gnan

b-_n" s2 2n-l Pn '

j = l, 2..... n - l ,

j = I, 2..... n - 2 ,

of square roots.

(28)

(29)

10.2-8 (3/1/76)
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gl = al '

2

gj • cj. l pj = aj - sj. l (aj + gj.l ) ,

2 2

Pl " al '

2 2 2

Pj = gj / cj. l if cj. l _0 ,

OF POOR _.:J,_L.;T'(

j = 2, 3, ..., n ,

j = 2, 3, ..., n ,

!
2 b2. if =o j-2,3, n /

" cJ-2 J cJ "I ......

(3O)

v t

The reason that the use of Equations 28, 29 and 30 in place of Equation 27 avoids the calcu-

lation of square roots can best be seen by considering the terms input to and produced by these

equations.

For Equation 27, the input terms consist of the elements of [Ar]. That is; al, a2..... an

and b2, b3 ..... bn. The data produced is a l, a'2..... an and b2, b3 ..... _n which are the ele-

ments of JAr+l]. Hence, this completes one iteration step, but involves the calculation of square

roots.

However, for Equations 28, 29, and 30, the input terms consist of al, a2 ..... an and b_, b) ,

--•.., bn.2 The data produced are al, a2, ""' _n and , , .... which serve as the input to

the next iteration step. Here nO square roots need to be computed.

Convergence of the tridiagonal matrix to a diagonal form Is speeded up by origin shifting.

NASTRAN employs a procedure suggested by Wilkinson (Reference 7), who has shown that when the

eigenvalues are real, the best shift strategy is to subtract an from each diagonal element of [A],

thereby reducing each eigenvalue by an.

Another useful device in speeding up the determination of elgenvalues of trldiagonal matrices

takes advantage of zeroes which may occur in the off-diagonal rows. Let the [Ar] matrix be

represented in partitioned form as follows.

I0,2-9 (311/76)
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m

a1

b1

b1

a2 b2

w

aj.2

bj-z

bj+l

bn_2

am+l

an

(3l)

In thls matrix the dlagonal i_ in the l_er right hand partition are elgenvalues that have

been de_nnlned in previous iterations. The jth row is the next lowest In which the off-diagonal

_m, bj.l, vanishes, thereby uncoupling the _uatlons In the first j-I Ms fro the rest. As a

_sult, the eigenvalues of the matrlx in the central block may be _tair,ed separably. Other

uncoupled blocks n_y be found In the upper left partition.

iteratlonescrl_dThe by Equations 28, 29 and 30 is continued until ___l vanishes to satls-

factory accuracy so that _ may be accepted as an elgenvalue of the shifted mtrlx. _21 must be

negligible compared to a"m2. (Bin.21+ a"m2must approximately equal _. a"m is transferred to the

lower partition and the process is continued until all the eigenvalues of the partitionedmtrix

have been extracted.

V

=,

]0.2.4 Coepu.tatlo) of .Etqenvectors

The etgenvector cor_espondlng to any etgenvalue, k|, of the trldiagonalmatrix may be deter-

mtned by solving (n-l) of the equations:

lO.2-10 (3/1/76)
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(aI - Xi) xI + b2xz • 0 ,

b2 xI + (a2 - ki) x2 + b3x3 • 0 ,

bn.l Xn.1 + (an.1 - kl) Xn.1 + bnXn = 0

bn Xn.1 + (an - Li) xn - 0

OR!GIr, IAL P._..'- 19

OF POOR QUALITY

(3Z)

If the first (n - I) equations ape used, the solution is obtained by taking xI to be unity and

back substituting in the equations to obtain values of x2, x3, ..., xn. Hilkinson (Reference 7)

has shown that this method Is unstable and has suggested the following approach which is used

in _ST_N.

The tridlagonal matrix [A - kl I] Is factored into the product of a lower unit triangle ELI]

and an upper triangle [UI]. In the decomposition partial pivoting Is used, l•a., the pivotal row

at each stage Is selected to be that equation which has the largest coefficient of the variable

being eliminated. At each stage there will be only two equations contalnlng that variable. The

elgenvector {¢i) is then obtained from solution of the equation

[UI](¢I} -{C} , (33)

where (C} Is a_Itrarlly selected•

[UI] has the fom

CUI] -

The solution is eastly obtained by back substitution because

l

Pl ql rl

P2 q2 r z

Pn-2 qn-2 rn-2

Pn-1 qn-1

Pn

(34)

An improved solution Is obtained by repeated application of Equation 33 using the current

estimate of 6_t} on the right hand side, Thus

10.2-11 (3/1/76)
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[Ui]{,In)}.{@}n-l)}, (3S)

where {_I0)} = {C}. Wilkinson, Reference 7, shows that, if the computed eigenvalue Xi is a close

approximation to the true eigenvalue, convergence is SO rapid that more than two iterations are

never required. The test applied is that the maximum component of the eigenvector does not

change (to single precision accuracy) in one iteration. The initial vector {C} is chosen so that

each element is unity.

In the case of a double eigenvalue, the above method gives one eigenvector {@i}. If we start

with any initial vector {b} orthogonal to {¢1} and apply the previous algorithm, convergence to

{@2}, the other elgenvector,will result. The following procedure is used in NASTRAN to extract

multiple eigenvalues. If eigenvectors {@l}, {@2}..... {mm} with elements {ms} - L als, a2s.....

T have been obtained, an initial vector {b} orthogonal to each of these eigenvectors is
ans-_

obtained by taking the components bm+l, bm+z, .... bn as unity and solving the slmultaneous

equations

bI all + b2 a21 + ... ÷ bm amI = . _ (asl) ,

s_n+1

n

bI ai2 + b2 a22 + ,.. + bm am2 = . __ (as2) ,

bI alm + b2m a2m + ... + bmamm - .

s=m+l

(36)

Accumulated rounding errors will result in the computed multiple eigenvectorsnot being exactly

orthogonal to one another. The following Gram-Schmidt algorithm described by Bodewig (Reference8)

is used to produce an orthogonal set of k eigenvectors {ys} from the almost orthogonal set {Xs}.

For s • l, select

(yl} - {xl} / (( {xl} () (37)

Then for 1 < s _ k, calculate

10.2-12 (3/1/76)
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s-1

{zs} - {xs} -

t-1

({xs}T (yt}) {yt} , and

ty s} " (z s} / II {z s} II ,

(38)

2 + 2 2 of a vectorwhere l[ {zs} II denoted the Euc1_dean norm, Zsl Zs2 + ... + Zsn , L.Zsl,Zs2,

..., ZsnJT, and where {xs}T {yt} is a scalar product of the vectors {xs} and {yt}.

Finally, when all the eigenvectors of the trldiagonal matrix have been extracted, the matrix

multiplications of Equation 8 are carried out to obtain the elgenvectors of bhe original matrix

CA].

10.2-13 (12-I-6g)
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See Section g.2.l

Reduce [A] to
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See Section 10.2.2
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by the Q-R Method
See Section 10.2.3
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See Section 10.2.4
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Figure 1. Simplified flow dlagram for the tridiagonalmethod.

10.2-15 (12/2g/78)

C VO





THE DETERMINANT METHOD

10.3 THE DETERMINANTMETHOD

10.3.1 Fundamentals of the Determinant Method

The basic notion employed in the determinant method of etgenvalue extraction Is very simple.

If the elements in a matrix [A] are polynomial functions of the operator p, then the determinant

of [A] can be expressed as

D(A) - (p - pl)(p - p2)(p - p3) . . .(p - pn) , (1)

where Pl' P2' P3 ' ' 'Pn are the eigenvalues of the _atrix. The value o= the determinant va-

nishes for p - Pi" i - 1,2,3 . . . n.

In the determinant method, the determinant is evaluated for trial values of p, selected

according to some iterative procedure, and a criterion is established to determine when D(A) is

sufficiently small or when p is sufficiently close to an eigenvalue. The elgenvector is then

found by solution of the equation

v

[A]{u}- 0 , (2)

with one of the elements of (u} preset_ _

The most convenient procedure for evaluating the determinant of a matrix employs the trian-

gular decomposition

[A] - [L][U] , (S)

where ILl is a lower unit triangular matrix (unit values on the diagonal) and [U] is an upper tri-

angular matrix. The determinant of [A] is equal to the product of the diagonal terms of [U].

Two versions of the triangular decomposition operation are provided. In the standard ver-

sion row interchanges are used in order to improve numerical stability. In an optional version,

which is available for real elgenvalue extraction only, row interchangesare not used. The

optional version is approximately four times as fast as the standard version for banded matrices,

but it includes a small risk of numerical failure due to the fact that [A] Is seldom a positive

definite matrix. The algorithms employed in both versions are described in Section 2.2.

The matrix [A] may be expressed as

[A] • -p[M] + [K] ,

lO.3-1 (3/1/70)
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for real elgenvalue problems, and as

[A] = p2[M] + p[B] + [K]

ORIGINAL PAGE _5
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(s)

for complex eigenval ue problms.

The determinant method is not a particularly efficient method because a large number of

triangular decompositions of the [A] matrix are performed if more than a few eigenvalues are de-

sired. An exception occurs in the case of very narrowly banded matrices, such as those in beam

problems, where matrix decomposition is a relatively rapid operation. The main strength of the

determinant method is its insensitivity to the functional form of the elements of the [A] matrix

which could, for example, contain poles as well as zeroes, or be transcendental functions of p.

These effects occur frequently in hydroelastic and aeroelastic problems.

I0.3.2 Iteration Algorithm

Wilkinson's recent, but already standard, treatise (Reference I) includes an authoritative

discussion of polynomial curve-fittlng schemes for tracking the roots of a determinant. He shows

that little is to be gained by using polynomials higher than the second degree. Accordingly,

Muller's quadratic method (Reference l, page 435) is used in NASTRAN. The form of the algorithm

is as follows.

Consider a series of determinants, Dk.2, Dk. l, Dk, evaluated for trial values of the eigen-

value, p = Pk-2' Pk-l' Pk" A better approximation to the eigenvalue is obtained from the follow-

ing calculations. Let

hk = Pk " Pk-I ' (6)

hk
_k = _ ' (7)hk_ l

_k = 1 + Xk (8)

Then

hk+ l • _k+lhk , (g)

V

V
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Pk+l = Pk + hk+l ' (10)

where

in which

-2Dk6 k

gk = Ok-2_k 2 " Dk-16k 2 +Ok(_k + 6k ) (12)

The (+) or (-) sign in Equation (ll) is selected to minimize the absolute value of _k+l"

In the case when Pk' Pk-l' and Pk-2 are all arbitrarily selected initial values (starting points),

the starting points are arranged such that

Dk _ Ok. l _ Dk. 2 , (13)

and the (+) or (-) sign in Equation II is selected to minimize the distance from Pk+l to the

closest starting point rather than to Pk"

In a real eigenvalue analysis, it is possible to calculate a complex value of _k+l from

Equation II. In order to preclude the occurrence of complex arithmetic in a real eigenvalue

analysis, only the real part of Lk+l is used to estimate Pk+l" The real part corresponds to the

minimum absolute value of the parabolic approximation.

lO.3.3 Scal inj_

In calculating the determinant of [A] (Equation 3), some form of scaling must be employed,

because the accumulated product will rapidly overflow or underflow the floating point size of a

digital computer. Accordingly, the accumulated product of the diagonal terms of [U] is calculated

and stored as a scaled number

where

O - d x I0n , (14)

l
TO" -< d < I (15)

The arithmetic operations indicated in Equations II and 12 are calculated in scaled arithme-

tic. _k+l is then reverted to unscaled form,

10.3-3
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Once an eigenvalue has been found to satisfactory accuracy, a return to that elgenvalue by

the iteration algorithm can be prevented by dividing the determinant by the factor (p - Di'),

where Pi' is the accepted approximation to Pi' in all subsequent calculations.

Thus

D(1)(A) . D(A) (16)
P " Pl'

should be used in place of D(A) after the first eigenvalue has been found. In general, the re-

duced determinant used for finding the i+Ist eigenvalue is

D(i)(A) D(i'l)(A) DIA]. (17)
= P " Pi' " _-p Pl ')(p " P2 ) " " " (p " Pi ')

Wilkinson states that this sweeping procedure is qu_te:satisfaCtory provided that a11 Pi'

have been calculated to an accuracy that is limited only by round-off error.

In some instances there are known eigenvalues for which calculations need not be made. An

important example is the set of rigid body (zero-frequency) modes tha_are_calcuiated by a sepa-

rate subroutine (see Section 9.2). In addition• the user may know of other eigenvalues, such as

those extracted in a previous execution or those resulting from transfer functions (see Section

9.3), that should be avoided. A special data card (EIGP) is used in complex analysis to specify

the location of such roots. They are then eiimtnated from the determinant by a preliminary

operation _

D(O)(A ) , D(A) (18)

k_'r(p - pk)mk '

where mk is the multiplicity of the known elgenvalue• Pk"

For problems with conjugate complex eigenvalues (complex eigenvalue analysis with real ma-

trices) the conjugates of the extracted eigenvalues are also swept from the determinant. Thus

D(i-l)(A)

o(i)(A) , (p - pi')( p -pl')
• (19)

where Pt' Ts the conjugate of Pi'"

10.3-4 (311176)
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There is a danger in this procedure that if Pi' is very near the axis of reals, the exact

eigenvalue may, in fact, be real. To avoid this situation a test is applied to the imaginary part

of Pi' and the conjugate of Pi' is swept only if

IIm Pi'I>.lO00.O(Rmax)(_) (20)

The parameters Rmax and _ are discussed in the next two sections.

I0.3.5 Search Procedures

Three initial values of p (starting points) are needed in order to start the iteration algo-

rithm. The determinant method is essentially a root-tracking method that finds nearby roots with

ease and remote roots with difficulty. Thus it is not advisable to use the same three starting

points for all eigenvalues because the eigenvalues are usually distributed throughout a region of

the p-plane and at lease some of the eigenvalues will be remote from any given set of three

starting points.

In the case of real elgenvalue analysis, the starting points are initially uniformly dls-

tributed in an interval of p. The user specifies the lowest and highest eigenvalues of Inter-

est, Rmin and Rmax, and also supplies an estimate, NE, of the number of roots in the range.

A total of 2NE + l starting points are then initially located such that the first coincides

wlth Rmln and the rest are placed at uniform intervals between Rmin and Rmax. It has, how-

ever, been found that this distributionof starting points, while satisfactory in most cases,

causes computational problems when the higher frequency in any interval is larger than the

lower frequency in that interval by several orders of magnitude. In order to avoid this

difficulty, any initial interval in which the higher frequency is larger than (or equal to)

ten times the lower frequency In that range is further subdivided into smallerunequal

intervals, resulting in additional unequally spaced {as per a geometrical progression)

startlng points. This scheme thus guarantees that every starting point has a frequency that

is less than ten times the frequency of the next lower starting point. Accordingly, the

resulting number of starting points may therefore be larger than 2NE + I.

The process of extracting elgenvalues is initiated from the three smallest starting

points, Psi' Ps2' and Ps3" After all elgenvalueswithin the "range" of these starting points

have been extracted, Psl Is dropped, Ps4 is added, and the search Is repeated. The details

will be described later.
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The search procedure for complex eigenvalues is more complicated because the roots are dis-

tributed throughout a plane rather than along a llne. Fortunately, in structural analysis, most

roots are found near the imaginary axis so that a set of starting points placed along the imagi-

nary axis wi11 usually produce satisfactory results. In order to provide for more general problems,

rectangular search regions may be located by the user in any part of the complex plane as shown

in Figure I. It is intended that all eigenvalues within the search regions be extracted (as

limited by the desired maximum number of roots). There may be any number of search regions, and

the search regions may overlap. The search regions are established by means of the coordinates

of end points (A_,jBj) and the width of the region (_j). The user estimates the number of roots

V
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(Nej) in each search region. For problems with real coefficients, all roots are either real or

they occur in conjugate complex pairs, and it is inefficient for the user to specify regions in

the lower half of the complex plane since the existence of conjugate pairs is assumed. The user

will not, however, be prevented from specifying a search in the lower half of the complex plane

since it is useful, in many cases, for a search region to include the origin or a band along the

real axis.

The steps in the search procedure for complex eigenvalue extraction are as follows:

]. Select 2Nej ÷ 2 starting points equally distributed along the llne _j, Bj. Do not use

Aj and Bj as starting points.

2. Find the starting point in Region I that is nearest to the origin as shown in Fiqure 2

and designate it Psi" Draw a line perpendicular to AIB l midway between Psl and Psi"

the point next nearest to the origin, thereby dividing Region I into Regions IA and IB.

3. Select the three starting points in Region IA nearest to the line, a - a', as the initial

set and proceed to extract roots. Then proceed to the three starting points in Region IB

(Psi" Ps2" Ps3 ') that are closest to the line a - a'. Then return to the points Ps2'

Ps3' Ps4 in Region IA, and, in general, alternate back and forth between the two regions

until all starting points have been used once, or until termination occurs for some other

reason.

4. When all starting points in Region I have been used once, proceed to Region If, etc.

Sweep out all previously extracted roots from whatever region, in evaluating determi-

nan'S.

5. When all starting points in all regions have been used once, return to Region I, II, etc.

in turn and repeat the above procedure. Continue to repeat until no new roots are found

in any pass through the regions or until termination occurs for some other reason.

When searching for either real or complex roots from any set of starting points, the search

is terminated if a root is predicted to lie outside of the local search region. In the case of

complex analysis, the local search region for the current starting point set is bounded by lines

parallel to AjBj at a distance _and extends from the first starting point on the other side of

a - a' to a line that is 55% of the way between the current starting point that is farthest from

a - a' and the starting point that will be picked up in the next set (see Figure 2).
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In the case of real etgenvalue analysis the local search region extends from Rmin to a

point that is 55% of the way from the largest current starting point to the one that will be

picked up In the next set. The reason for permitting the local search region to extend all the

way back to Rmi n is to improve the chance of finding eigenvalues that were initially bypassed.

Additional assurance is obtained by making repeated passes through all of the starting points

until no new eigenvalues are found on one complete pass. The computational effort for the last

pass is trivial because the determinants for all starting points are saved.

The search for eigenvalues is finally terminated when no additional roots are found in one

complete pass through all regions or when the maximum desired number of roots for each region,

Ndj, as requested by the user, have been extracted.

Failure to find additional roots normally occurs because all of the roots within the desired

reglon(s) have been extracted. Situations can occur in which some roots will be missed. The

most common occurs in complex elgenvalue analysis when one or more desired roots lie at a large

distance from the centerline of the region, see Figure Z, and several other roots lie just beyond

the ends of the region. The search procedure Is likely to be attracted toward the latter roots

and may not find the former. The possibility of such failures is one reason for permitting mul-

tiple search regions. Another possible reason for missing roots is failure of the iteration al-

gorithm to converge, as discussed below,

10.3.6 Convergence Criteria

The convergence criteria are based on successive values of the Incremen_ hk, in the estimated

eigenvalue. No tests on the magnitude of the determinant or on any of the diagonal terms of the

triangular decomposition are necessary or desirable.

Wilkinson (Reference I, page 437) shows that, for hk sufficiently small, the magnitude of hk

is approximately squared for each successive iteration when using Muller's method to find isolated

roots. This is an extremely rapid rate of convergence. In a very few iterations, the "zone of

indeterminacy" is reached within which hk remains sinai1, but exhibits random behavior due to round-

off error.
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Wilkinson states that, if it is desired to calculate the root to the greatest possible precision,

the convergence criterion for accepting Pk as a root should be

)hk÷ll> lhki

We accept his advice, tempered by practical considerations.

tion 21 may be satisfied during the first few iterations while the root tracking algorithm is

picking up the "scent". Thus it must, in addition, be required that lhk), lhk.iI and lhk.21 be

reasonably small. The second practical consideration is that several iterations may be wasted

within the zone of indeterminacy while waiting for Equation 21 to be satisfied, This can be

avoided by accepting Pk if lhkl is sufficiently small. Finally, if the number of iterations be-

comes excessively large without satisfying a convergence criterion, it is best to give uP and

proceed to a new set of starting points.

Figure 3 is a flow diagram of a set of tests which meet the requirements discussed above for

real eigenvalue problems.

defined as

(21)

The first of these is that EQua-

The tests are based on calculated values of HI' R2' and _3 which are

Thkl

, (22)

, (23)

(24)

(2S)

An equivalent expression, in terms of vibration mode frequencies,

where Pk " kth estimate of an eigenvalue, and hk • Pk " Pk-l

The standard test in Figure 3 for accepting an eigenvalue is

H3-.< 2¢ Rm/_ax

¢ may be specified by the user.

is

Wk+l " _k

.i< E (26)(_maX

A similar set of tests are performed forwhere _max is the highest frequency of interest.

10.3-8
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complex etgenvalue problems.

The magnitude of the convergence criterion, _, should be selected as a comoromtse between

running time and accuracy. If, for example, it is found that the algorithm fails to _ind roots

because of an excessive number of iterations, the value of ¢ should be increased. If failure

occurs because the number of iterations exceeds the iteration limit, NIT, for two successive sets

of starting points, the value of ¢ is increased by a factor of ten. If successive pairs of fai-

lures still occur, _ is again increased by a factor of ten, until the number of permissible

changes in _, N¢, is exceeded. The user is informed of the reduced precision of the calculations.

The values of the convergence parameters used in NASTRAN are

¢ - l0-ll ,

NIT - 20

N - 4

The above value of ¢ may be overridden by the user.

The convergence rates for the Muller method are quite satisfactory for isolated roots and

for double roots. For higher order multiple roots, the asymptotic rate of convergence is linear,

i.e.,

hk+ l - a-h k , a < l (27)

Convergence is progressively slower as the multiplicity increases. Zero freouency roots are the

only kind that commonly occur with high multiplicity in structural analysis and provision is made

for eliminating them, or other known roots, beforehand (see Section I0.3.4).

Experience with the determinant method indicates that, on average, convergence to isolated

roots is achieved In about six iterations. The number of iterations increases for problems with

multiple roots, many close roots, or roots clustered Just beyond the ends of the desired region.

I0.3.7 Test for Closeness to Starting Point

Once an elgenvalue has been extracted it is tested for closeness to one of the starting

points, and if it is found to be too close, the starting point is shifted. The reason for the

shift is that the value of the determinant near a root is small and contains considerable

lO.3-g
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round-off error, so that the value of the swept determinant, D/(p - pk) may have considerable

error. The criterion for shifting in real eigenvalue analysis is

" Pk < 400¢Ps,i

The magnitude of the shift is

<P,i) " Ps,i+2000¢
' shifted

(28)

(zg)

10.3.8 Recovery of El_envectors

Once an approximate elgenvalue, pj, has been accepted, the elgenvector Is determined by back

substitution into the previously computed triangular decomposition of [A(pj)]. Now since

[A(pj)] {u} - [L(pj)][U(pj)]{u} • 0 , (30)

and since [L(pj)] is nonslngular, only [U(pj)] Is used. The last diagonal term fn [U(pj)] Is nor-

The normal appearance of [U(pj)] Is as follows, formally the only term with very small value.

n=7.

"x x ×

X ×

X

0 0 0"

X 0 0

X X 0

X X X

X X X

X X

5_

ul

u2

u 3

u4

u5

u6

u7

. o (31)

The terms In the upper right corner are zero due to bandwidth. _ is a very small number.

The eigenvector may be extracted by assigning an arbitrary value (such as 1.0) to u7 and solving

successfully for u6, u5, etc., from the preceding rows. Note that this is equivalent to placing

a load vector {F} on the right hand side that is null except for the last term which IS set equal

to _.

Situations may occur In which Unn is not the smallest diagonal term. Let Uii be the smallest

dlagonal term with i < n. The most common reason for this occurrence Is that the degrees of

lO.3-10
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freedom ui+ l, ui+ 2 • • • un are, for some reason, not coupled to the preceding degrees of freedom.

In this case all of the elements in the ith row of [U(pj)] will be very small as shown below for

I-4, n=7.

m

X X X O O O ul

X X X 0 0 u2

X X X X 0 u3

(32)

In the event of multiple or pathologically close eigenvalues, two or more rows or [U(Dj)]

will consist of very small values, exhibited below for the very exceptional case when Unn is not

very small.

l X X X

X X

X

0

X O O O--

X X 0 0

X X X 0

644 645 646 647

X X X

666 667

X

• 0 (33)

In order to accommodate the exceptional cases described above with the more common case when

only the last diagonal term is small, a full load vector, {F), is used in the eigenvector calcula-

tions. A different load vector is formed for each eigenvalue to ensure that independent eigen-

vectors are calculated for multiple or pathologically close roots. The ith component of the vec-

tor {F} is calculated by the following formula. -_-.
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where

6 - smallest Uil ,

J = elgenvalue count ,

n = number of rows •

6I-1) ij
Fi - , (34)

l + (l- ni-)j

There is a possibility that the smallest diagonal element of [U] may be exactly zero for

some eigenvalue, i.e., that an accepted eigenvalue (pj) may be an exact eigenvalue of the problem.

When this situation occurs, the zero diagonal element is set equal to a small finite number.

Eigenvectors are checked for orthogonality and normalized (see Section 9.2).
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Begi nConvergence Tests
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Figure 3. Real elgenvalue convergence tests,
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I0.4 THE INVERSE POWER METHOD WITH SHIFTS

lO.4.1 Introduction

The Inverse Power Method with Shifts is particularly effective for problems that are formu-

lated by the displacement approach when only a fraction of all of the eigenvalues are required.

The rudiments of the method are described in Wilkinson's recent book (Reference I) where it is re-

garded chiefly as a powerful method For refining the accuracy of eigenvalues and eigenvectors that

have been approximately located by other methods. In NASTI_N, the method is used as a stand-alone

method to find all of the eigenvalues within a domain specified by the user.

It is well known that the standard inverse power method has a number of important defects for

the solution of structural problems by the displacement aoproach. These include: awkwardness of

procedure in the presence of zero eigenvalues (rigid body structural modes); slow convergence

rates for closely spaced roots; and deterioration of accuracy in the higher modes as more roots

are found. All of these defects are eliminated or minimized by the following modification of the

method.

Let the eigenvalue problem be stated as follows,

[K - _M]{u} = 0 , (1)

where, employing structural semantics, [K] is a stiffness matrix, [M] is a mass _trix, {u} is a

displacement vector, and k is the square of the natural frequency. Let

= _ + A , (2)
o

where _o is called the shift point. The iteration algorithm is

[K - LoM]twn } . [M]{Un.1 } , (3)

{Un} . 1_._w} (4)
_n n

It is easy to

the shifted eigenvalue nearest to the shift point, and that {un}

where Cn is equal to the value of the element of {wn} with largest absolute value.

prove that I/C n converges to Al,

p_
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converges to the corresponding eigenvector of Equation I.

nent.

The following observations are perti-

I. A triangular decomposition of the matrix [K - LoM] is reauired in order to evaluate (wn}

from Equation 3. The effort requlred to perf6_he_riang_iar:_ecomDosi_on is greatly

reduced if [K - LoMy is a narrow band matrix. Structural analysis by the displacement

approach is characterized by narrowly banded stiffness and mass matrices.

2. It is unnecessary for [K] to be nonsingula_ so that rigid body modes cause no special

difficulty.

3. The shift point Xo may be changed (at the cost of an additional triangular decomposition)

in order to improve the rate of convergence toward a particular eigenvalue, or to improve

accuracy and convergence rate after several roots have been extracted from a given shift

4. Xo can be placed so as to obtain the eigenvalues within a desired frequency band and not

Just those that have the smallest absolute value.

The Inverse Power Method with Shifts can also be applied to complex eigenvalue problems. In

NASTRAN the method is applied to problems stated in the quadratic ?orm

[M_2 + B_ + K]{u} = 0 , (5)

c; _wher_[M]' [BY and [K] maybe real or complex, syn_etrix or nonsymmetric, singular or nonsingular.

The development of the method is divided into separate subsections for real eigenva]ue analy-

sis, Section I0.4.2, and complex eigenvalue analysis, Section I0.4.4. In addition the procedures

used by the program are scunmarlzed in Sections 10.4.3, real eigenvalue analysis, and Section

10.4.5, complex elgenvalue analysis.

I0.4-2
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10.4.2.1

THE INVERSE POWER METHOD WITH SHIFTS

Theory for Real Eigenvalue Analysis

Iteration Algorithm

The problem is to find the eigenvalues and eigenvectors for

[K - XM]{u} - 0

Both [KIand [M]are symmetric, but they may be singular.

ORIGINAL m.',_¢

OF FCOR QUALIT'Y

(1)

The eigenvalues may be either positive

or negative, but we are predominantly interested in the positive elgenvalues.

multiple.

of k.

Let

Elgenvalues may be

It is required to find all the elgenvalues and eigenvectors within a specified range

x • xo + k , (2)

where ko is a constant called the shift point, so that A replaces k as the eigenvalue parameter.

The algorithm used in the nth iteration step is

[K - koM]{w n} = [M]{Un. l} , (3)

l {Wn} ..... (4)
{un} = _

where Cn is equal to the value of the element of Twn} with largest absolute value. It may be

shown that l/Cn converges to A l, the shifted eigenvalue nearest to the shift point, end {un} con-

verges to the corresponding eigenvector. Conver;ence is proved as follows. In the proof use wlll

be made of the orthogonality properties for the theoretically obtainable normalized exact eigen-

vectors, ¢i and ¢j, of Equation 1 which are

tjTM¢ i = O, i # j , (B)

sjTMcj = l , (6)

¢jTK¢ i - 0 , i # J, and (7)

tjTK_j - kj (8)

Note that the use of brackets to indicate matrix quantities has been omitted in the interest of

conciseness. Expand the trial vectors, un and Un. l, in terms of eigenvectors:

10.4-3
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where oi,n

the orthogonality conditions.
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un • ! Oi,n@i , (9)

Un'l " I _l'n'l¢i ' (10)

and _l,n-I are coefficients. Substitute into Equation 3, premultiply by _jT, and invoke

Then tt is seen that

(/J " ko)Cnoj,n = _j,n-I ' (11)

or, substituting _j = Xo + Aj,

_till.
Pj,n • _j,n-I

Equation 12 shows that the relative proportion,Pj,n'

l l
• (12)

c, xj

of an elgenvector in successive trial

vectors increases in inverse proportion to the magnitude of its shifted eigenvaiue. Thus the pro-

portion of the eigenvector that is closest to the shift point increases at the expense of the

others and the process converges to the elgenvector whose etgenvalue ts closest to the shift

poin t. The product Cnh] converges to unity.

10.4.2.2 Convergence Criteria

The most commonmethod for gaging the convergence of elgenvectors is to compare the difference

of the elements of successive trial vectors, each of which has been normalized so that the largest

elemnt is unity, to an -arbitrarily_selectedsmallnumbe_

un - Un.l <

Thls method is not used in NASTRAN because it is unscientific in two respects:

I. The criterion ¢ is not related to the mass orthogonallty test which is finally used to

Judge the suitabilityof eigenvectors.

2, Normalizing on the largest element of un neglects the fact that the sizes of elements are

largely determined by scaling, (e.g., angles are usually much smaller than translations).

Closely related methods can be devised that overcome these objections and that also predict the

rate of convergence. In NASTRAN, the convergence criteria are derived from the parameter ¢ that is

supplied by the user for the mass orthogonality test

¢iTMcj < _ I p J , (13)

10.4-4
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where the approximate eigenvector_, ¢i' have been nomalized such that

-I . (14)

The mass orthogonality test is applied after all the eigenvalues have been computed.

For a pair of _ell-converged approximate eigenvectors that have close elgenvalues but which

are well removed from all other eigenvalues:

T1 = _l + ¢12¢2 ' (15)

T2 = ¢2 + ¢21_I , (16)

since it may be assumed on the basis of Equation IZ that the power method yields negligible contri-

butions of all other eigenvectors. Thus

TITM_2 = _12 ÷ _Zl (17)

The program is able to estimate ¢12 and _21 from tests that will be described. A reasonable

convergence criterion to be applied after each iteration is that

¢ij < A¢ , (18)

for all i and J where ¢ is the criterion used in the mass-orthogonality test and A is a factor,

less than unity, introduced to ensure passage of the mass-orthogonality test.

It has been shown (Equation 12) that the contributions of eigenvectors to the trial vector

increase from iteration to iteration in inverse proportion to their shifted eigenvalues. Thus,

during the late stages of iteration for ¢I' it may be assumed that only two eigenvectors have sig-

nificant contributions:

Un " %(_1 +_z ) ' (19)

where _ " ¢1Z is introduced for la_er convenience and aln (see Equation g) is shortened to =n"

By virtue of Equation IZ the _lative contributionof CZ In the precedlng iteration step will be

(zo)

(Zl)

larger by the ratio of the shifted eigenvalues AZ/A1. Thus for the two previous steps

Un-l = _n-l ¢I + _ vr'_ntZ '

Un-z =n-2 (_l /^Z_2 "

I0.4-5
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It will be assumed that Iit2i>iAiI.

Applying the mass orthogonality properties, Equations S and 6, to Equations 19 and 20, it is

seen that

unTMu n = an2(l (22)

Assuming _11 v_n << I

Un.iTMUn.l =

(l n

+ _n ) ,

+\Alj

> I, then to a very close approximation

= ±(unTMun)I/2 , (24)

_,.1o ,(u.iT,U,.l)II2 ¢2s)

From Equation 12, a good approximation to the eigenvalue is

I an-1 = -,-1 (Un ITMun I_I/2

A'l = Cn (:in _t UnTMUn" ) ' (26)

v_here Cn is the normalizing factor introduced in Equation 4. The ambiguity in sign Is removed by

comparing the signs of selected components in un and Un_ I. A better approximation that can be

evaluated when A2/A l and _n are known is obtained by using Equations 22 and 23 for an and _n-l"

/u TMu \llZi \1121 =n-1 .1 Vn-1 n-l/ / 1 + _n

^l " _n <_n : _ unTMun l+t_)_ n

V

Equation 27 shows that Equation 26 is good enough because _n must be extremely small in order

that ¢12 " _ pass the eigenvector convergence test. Equation 26 is used in NASTRAN.

Turning now to the evaluation of _n and A2/Al, we first define the normalized difference of

successive trial vectors,

u n Un. 1 u n Un. 1

(SUn (unTMun)I/2 (Un.l TMun.1 ) 1/2 Cin Cln. 1

10.4-6
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Then, from Equations Ig, 20 and 21:

(29)

, (30)

and, by virtue of Equation 6

so that

and

The convergence criterion Is

(Sun)TM6un . (1 . A2 _2

• A2

A_2 = (6un)TM_un-I

Al (_un)TM6un

(6un)TM_un

A1]

, (31)

Z

_n • (3Z)

, (33)

(34)

< A_ (35)

Note that the application of the criterion requires three successive trial vectors. In some

cases the rate of convergence may be so rapid that A2/Al, as computed by EQuation 33, may have

lost all nu_rical significance. In order to avoid thls difficulty and also to improve efficiency

in the event of rapid convergence, a test based on only two trial vectors is applied first.

The rapid convergence test is based on the fact that the sweeping procedures, Section

10.4.Z.4, guarantee the orthOgonallty of very close etgenvalues. It is only necessary to avoid

contamination wlth elgenveci_rs that are not in the cluster. Thus if

f 2- ,lIA2"^,I
"Pl ÷ < Y , (36)

where y is a small parameter built into the program, then it is not required that Equation 35 be

satisfied.

10.4-7
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If the criterion obtained by multiplying Equations 35 and 36 together, namely
V

IA2 " Al i

is satisfied, then either Equation 35 or 36, or both, are satisfied. From Equation 34

(37)

A2 - Al _ ,,

I A]-T--_--_O l v' 6n [(cSuiCTM(_Un) ] l/2+A__ t

The rapid convergence test is, therefore

(38)

. [ ]1/2< I+ (39)

Al is evaluated from Equation 26. The test require's only two successive trial vectors, and it is

performed as often as possible. The value of y stored in the program is .01.

I0.4.2.3 Change of Shift Point

The rate of convergence of the iteration algorithm can be estimated from the parameters,

Al, A2, and 6n. From Equations 19 and 20, the estimated proportion of the second eigenvector fn

the (n+k)th trial eigenvector is

Al_k
(4O)

If the (n+k)th trial eigenvector satisfies the convergence criterion, Equation 35, then

(41)

and the estimate of the required number.ol_ additional liberations, beyond the nth, is

\ a¢/
k > > k -l

k2,o,
(42)

10.4-8 (12/31/77)
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If (A2/AIIis nearly equal to unity, the required number of iterations may be very large.

Suppose, for example, that

A2 =

¢ = I0"6, A = I0"l, 6n = I0"4' _ l.lO . Then

k > _ = lip

If, however, the shift point is changed to the current estimate of the eigenvalue, AI, n + 1o,

the number of additional iterations will usually be quite small. The error in the calculation of

Al from Equation 26 is of the order of 6n, as may be seen by comparing Equation 26 and Equation

Z7. Thus assuming the new shift point to be located at Al(l-6n), the ratio of the first and

second elgenvalues from the new shift point is

A_ A2 - AI(I-_ n)

= kl - kl(1-6n)

AZ - A1 (43)

"

Using this result in the previous example, the estimated nun_0er of iterations from the new

shift point is

..... k' - _ • 1.6

log(lO _)

In many cases the time required to complete the estimated number of iterations from the old

shift point may exceed the time required to make a triangular decomposition and to complete the

iteration from the new shift point. In such cases a decision to shift is made at the earliest

time that it can reliably be made.

Let Td be the time for one triangular decomposition and let T i be the time for one iteration.

Then, if

Td < (k - k')T i , (44)

a new shift point is selected. 131eminimum estimate of k' is 2, to permit testing for convergence

after the shift. The relatlve times for decomposition and iteration depend on the bandwidth of

the dynamic matrix. As a first approximation

Td B (45)
= _

I0.4-9
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where B is the semibandwidth.

ted if

Thus, as a first approximation, a new shift point should be selec-

B < 3(k- k') . (46)

In practice accurate values of Td and Ti are available to the computer because at least one

triangular decomposition and several iterations have already been performed.

Although the test described above will predict the rate of convergence, it is not foolproof

for two reasons. The first is the requirement that the proportion in the trial vectors of all

eigenvectors except the two lowest be very small. The second is that there must be a sufficient

proportion of the second eigenvector to permit reasonably reliable calculation of A2. A check on

the convergence criteria is provided by examining the series of values of ^l and A2. If the dif-

ferences between successive values decrease monotonically, we are assured of uniform convergence.

On the other hand, a sudden jump in the value of A2 will indicate that the limit of digital pre-

cision has been reached.

Two additional tests are performed in NASTRAN to improve reliability.

Define the normalized increments In the approximate elgenvalues from successive iterations

_l_n " _Itn-I l

_1,n TM Ro = _o (Al'n " A1 ,n-I) ' (47)

and

LZ_n " _2rnT1 (A2_n " A2_n-1)
=

h-2,n = Xo Xo (48)

where Ro is a normalizing factor to be specified later (see Equation 69). The shift test, Eaua-

tion 44, is applied provided that

I_l,n I < ¢I (49)

The criterion c 1 ts not made very severe. The reason for the criterion is that, if we de-

cide to shift, we wish some assurance that the new shift point is substantially better than the

original shift point.

The second test relates to the reliability of A2. If

cz > Ihz,nl > Ih2,n-ll ' (SO)

]o.4-lO (4/1/7z)
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then AZ,n.I will be used in all subsequent calculations of 6 from Equation 34. Otherwise continue

to compute A2 at each step. Note that the ratio A2/AI from Equation 33 is no longer reouired

after the ¢2 test has failed.

I0.4.2.4 Sweeping of Previously Found Eigenvectors

The trial vectors must be swept to eliminate contributions due to previously found elqen-

values that are closer to the shift point than the current elgenvalue. The algorithm is developed

as follows. Let the unswept trial vector be Tn which, from Equation 9, can be represented as:

m

;n " l!l i,n i+Un ' (Sl)

where ¢i' i = l,Z...m, are exact values of the previously extracted elgenvalues and un

swept trial vector which will include only contributions from the remaining modes.

values for previously extracted eigenvectors are

Ui)N . , (52)

_I " /Ui,NTMui,N

where Ul,N is the last (Nth) trial vector obtained in the iteration for ki.

If ¢i were an exact eigenvector, then, from the mass-orthogonality properties,

_l,n = TiTMun ' (53)

is the

The computed

and

!

which is the sweeping algorithm.

Let us examine the error in the process.

where _i and ,j are exact elgenvectorsand _I

ed. Also let

Suppose

¢i + cCj , (SS)

is the eigenvector that is currently being extract-

_n • el,n¢l + _J,ntJ (56)

v lO.4-11
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Thus,

(57)

and, considering only one previously swept eigenvector in Equation 54

Un = ai,n¢i + _j,nCj " (ai,n + ¢_J,n)(¢i + _¢j)

= (_j,n( l . Z) . E_i,n)¢J . _ej,n¢ i

Redefine the coefficients of @i and Cj in Equation 58

(58)

un = _j,nCj + _i,n¢i (5g)

The ratio of the relative amplitudes of elgenvector components in the unswept vectors obtained

after the next _teratlon _s, for c << I,

_._
Ai _j ,n Ai

I (60)

Convergence to Cj rather than to ¢i requires that

(61)

If all previous eigenvectors are reasonably accurate, we need only to be concerned for cases

in which Aj >> Ai. This is, however, precisely the condition that exists at the shifted shift

I

point, _ '. Thus, Xo should not be used for obtaining additional eigenvalues.o

Furthermore, if an elgenvalue Is found to be very close to the original shift point, then

the shift point should be changed in the search for other eigenvalues. The criterion for chang-

ing starting points (original shift points) may be written

I R° I_ > ¢3 , (62)

where _ is the coefficient specified in the mass-orthogonality test, Equation 13, _l is the first

eigenvalue found from the starting point ko' Ro is the distance from _o to the farthest elgenvalue

to be extracted from _o' and E3 Is a safety factor. Suppose, for example, ¢ = 10-6 and ¢3 " I0"2"

Then the starting point should be changed if

10.4-12
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4o - lI 0-4 (63)

Another conclusion to be derived from Equation 62 is that the trial vectors should be swept

at each iteration. If, for example, trial vectors were swept every k iterations, proper conver-

gence would require that

Ro ] k_ < l , (64)

which, if k were larger than about 3 or 4, would require continuous changing of starting points.

I0.4.2.5 Initial Trial Vectors and the Extraction of ),iultlpleElgenvectors

The choice of a trial vector for finding the first elgenvalue from any starting point is

clearly arbitrary. The vector used in )LASTRANhas a broad spectrum with regard to spatial distri-

bution in order to provide efficient extraction of elgenvalues in the complete wavelength range.

There is an advantage in finding successiveeigenvalues from the same starting oolnt, in

using one of the trial vectors employed in a late stage of the previous iteration. The reason

for the advantage is that such a vector, after having been swept, is qulte "rich" in the elgen-

vector that is next closest to the starting point and will, therefore, converge more rapidly.

There is a difficulty, however, in that, if the previous elgenvalue is a multiple elgenvalue, a

return to it will probably be prevented since the swept trial vector contains no component of the

multiple vector(s). If the process of transforming trial vectors is repeated often enough, how-

ever, the process will eventually return to the multiple elgenvalue by virtue of the growth of

round-off error. Unfortunately thls cannot be relied upon. The safer course, which is to use a

new initial trial vector for each elgenvalue,will require more iterations since there is no

"enrichment",

The following scheme, in which we might have our cake and eat it too, is used in NASTRAN:

I. Find the first eigenvalue from a starting point with an arbitrarily selected trial vec-

tor.

2. Use the next to last trial vector obtained at the starting point during the first itera-

tion sequence as the initial trial vector for the second iteration sequence. This

will ensure a very large proportion of the next closest elgenvector. Since we are

I0.4-13
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required to save two vectors at every iteration step in order to check convergence,

this should be no burden on storage requirements. Furthermore, since all calculations

are done in double precision, and only single-precision convergence of eigenvectors can

be required, the swept vector should not contain much random noise.

3. Continue until an eigenvalue is found that is outside the orescribed range of the star-

zing point (see Section I0.4.2.6).

4. At this stage, use a new arbitrarily selected initial vector and find one eigenvalue.

5. If the eigenvalue found in step 4 is outside the range of the starting point, go to a new

starting point. If it is not outside the range, repeat steps 2, 3 and 4 until the eigen-

value found in step 4 is outside the range. The maximum number of times that steos 2, 3

and 4 will be performed is equal to the multiplicity of the eigenvalue with greatest

multiplicity.

An exception to the above sequence occurs if step l yields an eigenvalue outside the range.

In that case, the program goes directly to a new starting point.

10.4.2.6 Distribution of Starting Points

For Vibration Analysis the user specifies:

I. The maximum frequency of interest, fmax"

2. The minimum frequency of interest, fmin"

3. The estimated number of modes in the range, Ne.

4. The desired number of modes. Nd, to be computed.

For Buckling Analysis the user specifies:

I. The maximum eigenvalue of interest, _max"

2. The minimum eigenvalue of interest, Xmin' which may be negative.

3. The estimated number of modes in the range, Ne.

4. The desired number of modes, Nd, to be computed.

For Vibration Analysis, the elgenvalue

V

10.4-14
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. (2_f)2 . 2 (65)

If the desired number of modes, Nd, is not specified, then all modes in the range will be

found provided that there are not more than 3Ne modes. If the desired number of eigenvalues is

less than the expected number, those that are closest to zero will be computed.

Starting points are distributed on the assumption that the eigenvalues are uniformly distri-

buted with respect to _, (frequency-squared), and that about six eigenvalues will be found from

each starting point.

The number of starting points, Ns, is selected such that

Ne
Ns - l < _-- < Ns , (66)

and they are distributed as follows.

- .-7 ,-7

min

- A ql

)'sl _'s2 )'s3

max

where A_ - _max " Xmin " (2_fmax)2 . (2_fmin)2. Thus the nth starting point,

l

n-_ (67)

The search-ranges for the starting points are selected to overlap each other by I0%. Thus,

the search-range for shifted eigenvalues, A - _ - Xsn, is

-R 0 < A < +R0 •
(68)

I0.4-15
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where

_ (69)
R° _ .55

R is also used both in deciding whether or not to relocate starting points, Equation 62, and in
o

the cI preliminary convergence test, Equation 47.

I0.4.2.7 Termination

The process of finding eigenvalues can be terminated for any of the following reasons:

I. All of the eigenvalues that theproblem contains have been found.

2. All of the elgenvalues in the desired range, _min < L < _max' have been Found.

3. The desired number of eigenvalues, Nd, have been found.

4. The number of eigenvalues that have been found is larger by some factor than the number

estimated to be in the desired range.

Reason I is imperative because, if the iteration process is continued, it will converge on

eigenvalues that it has already found and give false results. A reasonable, although not fool-

proof, test for whether or not all (finite) eigenvalues have been found is to compute the total

number of eigenvalues from

where

Nt = Neq - No - NoM , (70)

Neq -

NO -

NoM -

number of rows in the dynamic matrix.

number of zero eigenvalues prescribed by the user, and found by separate

procedures.

number of diagonal terms of the mass matrix that are equal to zero.

The test is not foolproof because the mass matrix can be singular even if none of the diago-

nal terms are zero. The detection of general singularity is regarded as too dlfficult to be

worthwhile for the present application.

Reason 2 is detected quite simply by applying the range test to the last starting point.

io.4-16(4/I/7z)
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The recommended value for the factor mentioned in reason 4 is 3.0.

Once the process of extracting eigenvalues has terminated, all of the eigenvalues and eigen-

vectors that have been found (and not just the desired nu_er or those within the desired range)

are prepared for output. If eigenvalues are to be used in a modal solution they will all be

positive and only the desired nun_er closest to the origin (if that number has been specified),

or the total number within the specified frequency range, whichever is less, are used.

v
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10.4.3 Summary of Procedures for Real Eiqenvalue Analysls

Flow diagrams illustratingrecommended procedures are shown in Figures l, 2 and 3.

cedures involved in eachblock are summarized below.

I. Compute Distributionof Starting Points (see Section I0.4.2.6)

a. Select number of starting points, Ns, by:

Ne
Ns -l < r < Ns ' (l)

where Ne is the estimated number of eigenvalues in the frequency range of interest.

b. Locate starting points by:

where

ORIGINAL PAGE ;9

OF POOR QUALITY

1
n-_

_'sn = )_min+ -_S Ak , (2}

2. Select a Startinq Point

A_. - kmax - Xmin " (2_fmax)2 - (2_fmin)2 (3)

The pro-

The first starting point is _sl' the second starting point is _s2' etc., until all starting

points are used up or until the desired number, Nd, of roots has been found.

3. Select an Arbitrary Startlnq Vector

Each arbitrary starting vector is distinct from all preceding starting vectors. The vector

should have a broad spectrum with regard to spatial distribution (i.e., not concentratedin the

long wavelength or in the short wavelength range).

4. Compute One _|_envalue and One Ei_envectQr

See flow diagram for this block, Figure _.

4.1 Decompose Dynamic Matrix

The matrix to be decomposed is [K - XoM] which is real and symmetric and where _o

l

Is either a starting point, _s' a moved starting point, ks , or a shifted shift point,

Iko Real arithmetic without pivoting is used. Partial pivoting is available on an

optional basis.

I0.4-18 (4/I/72)
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One Vector Iteration (see Sections I0.4.2.1 and I0.4.2.4)

ORIGINAL PAGE _

OF POOR QUA L|l_f

The iteration algorithm is:

[K-_oM]{Wn } = [M]{Un.l} _ {Fn.l} , (4)

l

{_n} . _{w n} , (s)

{Un} " (_n}" I [¢iTM_n]{'i}' (6)

where Cn is equal to the element of {wn} with largest magnitude and {_i} is a normalized

eigenvector, previously found:

6¢i} . (ui,N} (7)

Ui,NTMUi,N

(ui,N} is the last vector found in iterating for the ith eigenvalue. The sum on (i) in

Equation 6 extends over allelgenvectors previously found, including rigid body modes

found in separate procedures. The sweeping operation, Equation 6, Is also applied to

starting vectors, {_o}.

4.3 Convergence Tests (see Section I0.4.2.2)

a.

See flow diagram for this block, Figure 3.

The quantities Al, A2, n, and 6 are computed as follows.

I. Form {Fn} • [M]{un} ,
(8)

which is also required In the next iteration (see Equation 4).

Z. Compute an = ({un}T{Fn})I/2
(9)

3. Compute (un} (Un.l}
{_un} =

an _n-1

(Fn} {Fn.I}4. Compute
{_Fn} •

Then

S. A1

an _n-I

I _n-I

Cn an

(10)

(ll)

(12)

-.j
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8.

q = ({6un}T{6Fn})I/2

used in the rapid convergence test.

A2

AI

a

except that the maximum value of

b. In the rapid convergence test,

C°

do

{_un}T{6Fn.1}

{6un}T{6Fn}

[6un}T(6Fn}

p •

_ z

y =

A - safety factor (= lo'l).

The default value of _ is lO-4.

The test sequence

is limited to I0.0.

n < Acy 1 + _Tl

criterion specified by the user for the mass-orthogonalitycheck,

close root criterion (= 10"2),

C=.,,.;',:._ PAt2 :_

'A ,T'"OF POO:-_ C ....

(13)

(14)

(15)

(16)

nn. 1 < 10"6 , (17)

nn > 1.01 nn. 1 , (18)

is introduced to provide for situations in which round-off error dominates the conver-

gence criteria. These tests were not discussed in Section I0.4.2.

The c2 test is:

If ¢2 > -.Ihz,nl> ..lh2,n-l): Fail (Ig)

Otherwise: Pass.

10.4-20 (4/1/72)
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where, using successive values of A2 computed by Equation 14,

_2,n A2tn " A2'n'l. L Xo (20)

The value of c2 stored in the program is .02.

If the _2 test fails, the value of A2 is set equal to A2,n. l in calculating

(Equation 15) and is not changed until the shift point is changed or an eigenvalue

is found.

"v"

4.4
¢I

The ¢I test Is

if

Test (seeSection I0.4.2.3)

kl'n "Ro'hl'n'l I < ¢I : Pass . Proceed to 4.5. (21)

Otherwise: Fail.

Where

Return to 4.2.

Ro .55 _k" N-_

The value of _I stored in the program is lO"3,

the rapid convergence procedure, see Figure 2.

4.5 Shift Decision (see Section I0.4.2.3)

(22)

The {I test is also applied as part of

The criterion for shifting is

If Td < (k - 2)T I ,

or If for two successive Iterations

(23)

AA_l2 i l : Shift.

O_e_l se: Continue to iterate.

10.4-21 (4/l/72)
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Where

Td =

Ti -

k=

k is evaluated from

EIGENVALUE EXTRACTION METHODS

Change.Shift Point

Change shift point to

estimated time for one triangular decomposition,

estimated time for one vector iteration,

estimated number of additional iterations.

k

_' ' = _o + AIo

where A1 is computed by Equation 12.

Reset Iteration Counter

Set n = O, and also remove the flag that the ¢2 test has failed.

OF PCC:_ CU;_LiTI

(24)

(25)

5, Are We Done?

The answer Is yes if:

a. The total desired number of eigenvalues, Nd, have been found, or

b. The nu_er found exceeds three times the estimated nu,_)er, Ne, or

c. The nmnber of eigenvalues found equals the total nun_)er in the problem.

in the problem is contoured from

The total number

Nt - Neq--N o - NoM , (26)

where

Neq

NO

NoM

= number of rows in the dynamic matrix,

= nun_er of zero elgenvalues prescribed by the user and found by separate procedures,

- number of diagonal terms of the mass matrix that are equal to zero.

I0,4-22 (411/72)
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Is Eigenvalue Outside Range? (see Section I0.4.2.6)

The test is:

.Ro < k t . ks < +R° : Inside range. (27)

Otherwise: Outside range.

Select Next-to-Last Trial Vector as Starting Vector (see Section 10.4.2.5)

a. If there was no shift in finding the previous eigenvalue (i.e., if EQuation 23 has never

been satisfied) set:

m

Ul+l, o " Ui,N. l • (28)

b. If there were one or more shifts, set u--i+l,o
equal to last tria] vector before the

first shift.

• - ,,, i,- . _ _" _'_ "7

C.-.._ ..... -,L;?'I

8.

where

Too Close to Starting Point? (see Section 10.4.2.4)

The criterion is:

¢ > ¢3 : Too close , (29)

¢ = criterion used in mass orthogonality test,

_i " elgenvalue just found,

_s " starting point,

Ro = range, see Equation 22.

The value for ¢3 stored In the program is .05.

9. Move Startin 9 Point

Change starting point location to

t

_'s " ;ks ± .02 Ro ,

where the (+) or (-) is selected to move the starting point away from the eigenvalue.

(30)

10.4-23 (4/1/72)
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Is This the First Eigenvalue Found Since the Arbitrary Startinq Point Vector Was Changed?

See Section 10.4.2.5 on InitialTrial Vectors.

]l. Last Starting Point?

If the answer is yes, we are done. If the answer is no, select a new starting point.

I0.4-23a (4/I/72)
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I0.4.4 Theory for Complex Ei9envalue Analysis

I0.4.4.1 Iteration Algorithm

The problem is to find the eigenvalues and eigenvectors for

[Mp2 + Bp + K]{u} = 0 ,

OF PCOR QUALITY

(1)

where_[B_ and[K]may be real or complex, symmetric or nonsymmetric, singular or nonsingular. Ei-

genvalues may be multiple. All the eigenvalues within specified regions of the p-plane are to be

found.

Define the velocity vector

{v} - p(u}

Equation 1 may then be rewritten in partitioned form as

Let

(2)

o (3)

P -- _'o+ A , (4)

m

V

where the constant _o is called the shift point. Substituting Equation 4 into Equation 3:

I  oJI:lI:B - MX° , -K
!

? = A
!

I I-

or, assuming for the moment that[M]is nonslngular:

I i "_°I

, (s)

(6)

I_AGE/_V_J_INTENTIONALLY BI,_
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Equation 6 is an eigenvalue problem in standard form, i.e.,

where

[A]{x} = A{x} ,

Iv_)
The standard iteration algorithm for the inverse power method is

l

[A]{Xn} = _n {Xn'I} '

where Cn

.__.,_ -_

OF pOOR q UALI'('f

(7)

(8)

is a normalizing factor to be determined. Convergence of the algorithm is discussed in

Section I0.4.4.3.

An alternate form of the iteration algorithm corresponding to Equation 5 is:

i_v _1 o711I.... !__ Vn-,. i ___ (9)

A form that is more convenient for computation is obtained as follows: From the second row

of Equation g, suppressing matrix brackets for conciseness,

1 (1o)
vn = _oUn + _n'n Un.1

Substitute Equation lO into the top row of Equation g:

1 l

-(B + _oM)(XoUn ÷ _n Un.l ) - lun , Fn MVn.l , (II)

or

'( ) <,_>(Xo2M + _oB + K)U n • - l_n (B + XoM)Un. 1 + MVn. 1

Let

Wn , CnU n (13)

I0.4-Z5
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The complete algorithm is, then

(_o2M + _oB + K)w n = -(B + _oM)Un.l - MVn. 1

1

un = _nWn ,

I

vn = toU n + _nn un.1

OF _CCR _;_--

(14)

Cn is selected equal to the element of wn with largest magnitude. Note that triangular de-

composition of the dynamic matrix [p2M + pB + K] is required at the point p = _o"

10.4.4.2 Orthogonality Properties for Nonsymmetric Matrices

Development of orthogonality properties is required in order to prove convergence and to de-

rive sweeping techniques. Consider the pair of eigenvalue problems

Ax = Ax , (lS)

ATy - Ay , (16)

The eigenvalues of Equation 15 arewhere A is a general, nonsymmetric, real or complex matrix.

the zeroes of the determinant IA - All. The eigenvalues of Equations 15 and 16 are the same be-

cause

IA - Al I = [(AT - AI)TI • I(AT - AI)I .

The eigenvectors of Equations 15 and 16 are not, however, identical.

satisfy

(17)

The eigenvectors

(A - Ai)¢i = 0 , (18)

(AT - Aj)_j = 0 (Ig)

¢i is called a right eigenvector of A and_j is called a left eigenvector of A because, transpos-

ing Equation lg,

V

V

I0.4-26
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_jT{A - Aj) - 0

The left and right eigenvectors are orthogonal for Ai P Aj.

tion 18 by _jT

_jTA¢i" &i_j Tel " 0 ,

or, using Equation 20

so that, for Ai f Aj

""_"""- --- _I
CF ='"":="'-"-',, _L,'._L_ Pf

(20)

To show this, premultiply Equa-

(21)

(Aj- Ai)_jT_i - 0 , (22)

_jT_ i - 0 , (23)

which is known as the property of biorthogonality.

Equation 29w_ll be useful in proving convergence of the iteration aIgorfthm. It is not use-

ful for sweeping procedures because transposition of the A matrlx in Equation 6 leads to a form

that is extremely awkward for computation. A more convenient for_ of orthogonality property is

developed as follows. Let _i be an eigenvector satisfying

(pi2M + piB + K)¢i - 0 , (24)

and _j be an eigenvector satisfying

_jT(pj2M + pjB + K) - 0 (25)

Premultiply Equation 24 by pj_jT, postmultiply Equation 25 by Pi¢i , and subtract;

pj_jT(pi2M + piB + K)¢i - _iT(pj2M + pjS + K)pI_ i - 0 (26)

10.4-27
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V

so that for Pi _ Pj

(Pi " Pj)_jT[PiPjM " K]¢i : 0 , (27)

_jT[piPjM - K]¢ i

Postmultiply Equation 25 by $i' and find that

. o (2B)

"_jTK ¢i = _jT(pj 2M + pjB)¢i ' (29)

Substitute this result into Equation 28:

(Pi + Pj)_j TM ¢i + _j TB ¢i = 0 , (30)

which is the desired result. Equation 30 is used in the sweeping algorithm, Note that Equation

30 is the analog of the mass orthogonality relationship (Equation 5 of Section I0.4.2.1) extended

to complex unsymmetric matrices_ including the presence of damping.

I0.4.4.3 Proof of Convergence for the Iteration Algorithm

Consider the vector

V

introduced in Equation 7.

{Xn]' -

Expand {xn} and {Xn.l} in terms of eigenvectors

(31)

xn " _ _i,n¢i , (32)

Xn'l = ! =i'n'1¢i (33)

Then, substituting into Equation 8 and premultiplylng by which is the left eigenvector

satisfying Equation 20,

I0.4-28
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, (34)

or, using Equation 18,

I

and using the orthogonality property, Equation 23,

l

_j,n = A-_n _j,n-I (36)

Thus the eigenvector with lowest value of :tj (i.e., with eigenvalue closest to the shift

point) increases more rapidly than the others. The above proof of convergence is curious in that

it requires the postulation of a second eigenvalue problem. It would be more satisfying if such

were not required.

A more serious objection to the proof of convergence is the assumption that the mass matrix,

[M], is nonsingular, which assumption is required in the reduction of the eigenvalue problem to

standard form (see Section I0.4.4.1). The objection may be resolved by examining what happens as

[M] approaches singularity. What happens, in fact, is that one (or more if the defect of [M] is

greater than one) of the eigenvalues approaches infinity. Convergence to the corresponding elgen-

vector from any (finite) shift point is impossible. Otherwise the problem is not exceptional, and

it may be concluded that convergence to finite eigenvalues will exist even in the limit when [M]

is singular.

It will be noted that the rate of convergence of eigenvectors is the same as the rate of con-

vergence in the real eigenvalue problem (see Equation 12 of Section I0.4.2.1). Thus arguments

concerning the rate of convergence of eigenvectors in the real eigenvalue problem also apply to

the complex eigenvalue problem. In particular, the test used in the decision to change the shift

point is the same.

10.4.4.4 Sweeping of Previously Found Eigenvectors

Before each iteration, components of previously found elgenvectors are removed from the vec-

lu:ltor {xn} • in order to permit convergence to a new eigenvector. The procedure is as

10.4o29
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V

• (37)

where ¢j is a previously accepted approximation to an eigenvector, where the sum extends over all m

previously extracted eigenvectors, and where the last term on the right is the "purified" trial

vector. The problem is to evaluate tJ,n' For this purpose it is helpful to form the scalar

matrix product

Sin = _jT[pjMu n + Mvn + BUn] , (38)

where ¢j is a previously accepted left eigenvector. Expanding un

as in Equation 37, except, that m ranges over all eigenvalues,

and v n in terms of efgenvectOrs

m

or using the orthogonality relationship, Equation 30,

(39)

Sjn = tj,n_jT(ZpjM + B)¢j (40)

Thus• comparing Equations 38 and qO,

_J•n

_jT[pjMu n + Mv n + Bun]
(41)

_jT(2pjM + B)¢j

A subtle point is the fact that the same factor _j,n may be used for both un and vn as Indi-

:ated in Equation 37. The reasons are that it is valid• under most circumstances, to regard the

union of un and vn as an independent vector (Xn), and that the dimension of the vector space for

x n is equal to the number ofeigenvalues. Thus the independent eigenvectors l-_J--I fo_a

basis for the vector space of xn except for the circumstance described below.

10.4-30 V
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When the dan_plng matrix, [B], is null, the orthogonallty condition, Equation 30, is identical

in form to the orthogonality condition for real eigenvalues, _jTM¢ i - O. As a result, consider-

ing only the bottom half of Equation 37, the factors _j,n may be calculated from

_j ,n
, (42)

as well as from Equation 41. Since vn is not rigidly dependent on un, Equations 41 and 42 will,

in general, give different values of _j,n" Thus, if[B]is null, the assumption that _j,n may be

used for both un and vn is not valid. For this case Equation 42 is used to evaluate (Un)p; (Vn)p

is obtained by substitution of (Un)p into the basic iteration algorithm, Equation 14,

+ l (un l)p (43)
(Vn)p = Xo (Un)p q -

The left elgenvector ;j required in Equations 41 and 42 is evaluated after the corresponding

right elgenvector, _j, and the elgenvalue, pj, have been found. The procedure is to form the low-

er and upper triangular factors [L_] and [U_] of the dynamic matrix at the accepted value of the

elgenvalue,

and then to solve the equation

[L&]CU_] - [M O i2 _ B pj + K] . (44)

[_ITpj2 + BTpj + KIWi} ---[U_]TCL_]T{_j} - {F} , (45)

for {_j} by forward and backward substitution (see Section 2.3). The excitation vector, (F}, may

be specified arbitrarily since [U_] is nearly singular (see Section I0.3.8).

The above procedure is similar to that used in finding elgenvectors by the determinant method

(see Section I0.3). It has the disadvantage that it requires an additional triangular decomposi-

tion of the dynamic matrix for each elgenvalue extracted in order to evaluate the left elgenvector.

It is, however, more certain to obtain the correct left eigenvector than any other method that has

been examined, and it is relatively efficient for problems with narrow bandwidths.

v
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Convergence and Shift Criteria
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The convergence and shift criteria for real eigenvalue analysis developed in Sections 10.4.2.2

and I0.4.2.3, and summarized in Equations 9 to 24 of Section 10.4.3, are used with sllght modifica-

tion in complex elgenvalue analysis. It should be noted that the ambiguity with respect to the

sign of % noted in Equation 24 of Section 10.4.2.2 is still present and that it is removed by

comparing the phases of selected components of un and Un_ l.

The derivation of formulas for the convergence parameters, Al, A2, and _n' uses the mass

orthogonality property of eigenvectors. Since the mass orthogonallty property, _jTM¢ i = 0 for i_Jo

does not apply in complex eigenvalue analysis, these formulas require revision.

The orthogonality condition for complex elgenvalue analysis, as derived in Section I0.4.4.2,

is

_jT[(p i + pj)M + B]¢ i = 0 , i _ J . (46)

It cannot be used directly in the convergence criteria because we have no advance knowledge of

eigenvectors, _jT. For the special case of symmetric matrices, however, the left eigen-
the left

vectors are equal to the right elgenvectors. For use in the general case, define

6ij M + Pl,n-I + Pz,n-I
(47)

which is assumed to be normalized to unity for i = J. The parameters Pl,n-I and P2,n-1 are the

current estimates of Pl and P2" Also define

Am, n u + Pl ,n-I + P2,n-I

Then, substituting for um and un from Equations Ig and 20 on Page lO.4-S, and using Equation 47,

we find that

An, n = %= (l + 6n * /_n (612 + 621)) , (49)

and

An-l,n-I " %-I 1 + 6n + V_n (612 ÷ 621) . (SO)
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Substituting from Equations 49 and SO into Equation 36, a good approximation to the lowest

eigenvalue is

The error in replacing the last bracketed term by unity is seen to be, since Sn << V_n , of the

order of V_n (612 + _21).

The normalized difference of successive trial vectors is, by comparison with Equation 28 of

Section I0.4.2.2,

un Un_l

SUn = )I/2 (An.l l/2 (52)(An,n ,n-I)

Substituting from Equations 49 and SO, and assuming _n << v_n (S12 + _21) << I,

[ ISUn=_ l-__ (_12+_21 _n-I "r_ _ (_12÷s21!' (53)

and, using Equations 19 and 20 of Section I0.4.2.2

A2

(54)
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_.-I %-z " 2kAI/ _(f12 +_21)

(SS)

Therefore, using Equation 47,

- (Sun

(56}

and

.k

2

- I-E _.I+_ (f12÷_21)'"_(f12÷621):,

(S7)

An,n.1 = _u + Pl,n-I + P2,n-1

V

Dividing Equation 56 by Equation 57, it is seen that :::

From Equation 56,

(_n m
_ntn

10.4-34 (4/1/72}
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Since we do not know what 612 and 621 are, we will assume that they are zero. It is seen that

the resulting approximation to 6n is accurate only if (_12 + _21)/2 << I. If this condition is not

satisfied, 6n' which is used to estimate the degree of convergence, may have a large error. Con-

vergence itself, however, is guaranteed by Equation 36. The only dangers are that the algorithm

will stop iterating before satisfactory convergence is achieved, or that it will iterate too long.

_v

I0.4-35 (411172)



EIGENVALUE EXTRACTION METHODS

10.4.4.6 Search Procedures

In extracting complex eigenvalue_rectangular search regions are set up in the complex plane

as shown in Figure 4. It is intended that all eigenvalues within the search regions be extracted

(as limited by the desired maximum number of roots). There may be any number of search regions,

and the search regions may overlap. The user establishes search regions by means of the coordin-

ates of end points (Aj, Bj) and the width of the region (_j). The user estimates the number of

roots (Nj) in each search region. For problems with real coefficients, all roots are either real

or they occur in conjugate complex pairs, and it is inefficient for the user to specify regions in

the lower half of the complex plane since the existence of conjugate pairs is assumed. The user

will not, however, be prevented from specifying a search in the lower half of the complex plane

since it Is useful, In many cases, for a search region to include the origin or a band along the

real axis.

The tasks performed by NASTRAN in the search'procedure are as follows:

I. Divide region I into square subregions and place a starting point at the center of

each subregion. The side length of the square subregion is set equal to ¢I' and

the number of subregions is selected to be

B - AIJ B1 - Al

--q-'l I "<"r< + 1
(59)

The sum of the subregions redefines the search region as shown in Figure 5. The

redefined search region is symmetrical with respect to the center of the original

search region.

2. Select the starting point that is closest to the origin as the first starting point.

Select the next closest starting point as the second starting point, etc.

3. Terminate search from any starting point when a root is found outside of a circle

passing through the corners of its square, according to rules set forth in Section

10.4.2.5.

4. When the search in region l has been completed, proceed to regions 2, 3, etc., in

order. Sweep out all previously extracted eigenvectors from whatever region.

V

V
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10.4.5 Summary, of Procedures for Complex Eigenvalue Analysis

The procedures for complex eigenvalue analysis are very similar, and in many instances identi-

cal, to those for real eigenvalue analysis. The only major change in the flow diagrams for real

eigenvalue analysis (Figures I, 2, and 3) is the amendnw_nt of Figure 2 to include the calculation

of the left eigenvector after passage of the convergence tests. Changes In procedure are indicated

below according to the numbered blocks in the flow diagrams.

I. Compute Distribution of Starting Points

See Section 10.4.4.6.

2. Select a Startinq Point

See Section 10.4.4.6.

4.1 Decompose Dynamic Matrix

The matrix to be decomposed is

[_o2M + hob + K] , {l)

which iS, in general, complex and nons3n_netric and where _o is either a starting point, As, a

i

moved starting point, _s ' or a shifted shift point, _o'. Double-precision arithmetic with partial

pivoting is used.

4.2 One Vector Iteration (see Sections I0.4.4.1 and 10.4.4.4)

The iteration algorithm is, for B _ O,

[_o2H + XoB + K]{wn} • -[@ + koM]{Un.1 } - [M]{Vn.l} , (2)

I

• _ {wn} , (3)

{Tn} - xoc n}• {.n.l} , <4)
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CF FC 2.R r".__.!:,_._i_,

(5)

(6)

_j
{_j}T[2pjM÷ B]{_j}

Cn - largestelement (in magnitude) of{wn] ,

(7)

{_j} - previously found eigenvector ,

{_j} - previously found left eigenvector

Pj - previously found elgenvalue ,

_o " shift point.

The sweeping operation, Equations 5 and 6, is also applied to starting vectors.

(j) extends over all previously found eigenvalues.

For the special case, [B] - 0, Equation 6 is replaced by

l

{Vn} • Xo{Un} + _{Un. I } ,

The sum on

(a)

and Equation 7 is replaced by

{;}TCM]{T.}
• _ i mm (g)

4.3 ConvergenceTests

The convergence tests are identical to those for real eigenvalue analysis except that

{Fn} is formed in the followingmanner
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I l Bl{Un}{Fn} = _ + 2kO + _l,n-I + A2,n-I
(9a)

where kl,n_l and A2,n. l are the estimates of A1 and k2 from the previous iteration.

4.8 Comoute Left £i_envector

Left eigenvectors satisfy the equation

[pj2MT + pjB T + KT]{_j} • 0 , (I0)

where pj is identically equal to the eigenvalue for the given problem, i.e.,

[pj2_.1+ pjB + K]{_j} - 0 . (11)

See Section I0.4.4.4 For the method employed in calculating {_j} i

b. Have We Found All the Eiqenvalues?

The answer is "yes" if the number of eigenvalues found equals the total number estimated to

be in the problem. The number found should include conjugate eigenvalues for problems with real

M, B, and K matrices. The total number estimated to be in the problem is

N t , 2Neq - Not.I , (12)

for problems in which [B] # O, and

Nt

for problems in which _B] - 0 and where

, 2Neq - 2No_4 , (13)

6,

Neq

NoM

Is El_envalue Outside Ranqe?

The test is:

- number of rows in dynamic matrix

• number of columns of the mass matrix that are nu11.

(seeFigure S)

Pj - _s( > Rc : Outside Range, (14)
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where Rc is the distance from the starting point Is to the corners of the starting point's search

region, see Figure 5.

v

7. Select Next-to-Last Trial Vector as Startin9 Vector

a. If there was no shift in finding the previous eigenvalue

q

Ui+l,o = Ui,N.l , (IS)

i

Vi+l,o = Vi,N.l (16) '

b. If there were one or more shifts: Select _i+l,o and Ti+1,o equal to the last

vector before the first shift.

8. Too Close to Startinq Point? (see Section 10.4.2.4) j
|

The criterion is

¢ > ¢3 : Too close (17)

where

¢ = criterion specified by user for convergenceof

eigenvectors (Default value = lO"4)

Pi = eigenvalue Just found

_s = starting point

Rc = range.
K

The value stored In the program for ¢3 is .05.

10.4-40 (411172)
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Figure I. Overall flow diagram for Inve_e power method with shifts.
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I

4.5 Shift Declsien

$hi _t

4.7 "eset

I
Figure 2. Flow diagram for block 4, compute one eigenvalue and one eigenvector.
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Figure 3. Flow diagram for block 4.3, convergence tests.
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10.5 THE UPPERHESSENBERGMETHOD

The upper Hessenberg method can be used for extraction of elgenvalues and etgenvectors from

general, real or complex matrices. The techniques are more general than those employed in the

Tridlagonal Method for Real Symmetric Matrices (Section 10.2). The fundamental reference is

Wilkinson (Reference l). The algorithms of Wilkinson for complex matrices have been automated by

Funderlic and Rinzel in the subroutine ALLMAT {see Reference 2), which has been modified for _STRAN.

The following outltne is presented in the logical order of the calculations: Reduction to

Canonical Form, Reduction to Upper Hessenberg Form, the QR Iteration, Convergence Crlterta,

Shifting, Deflation, and Etgenvectors.

10.5.1 Reduction to Canonical Form

The Upper Hessenberg Method requtres that the elgenvalue problem be put tn canonical form

[A - n]{_} - o (1)

Matrix A is then reduced to the upper Hessenberg form through transformation techniques. The

first step is the reduction to the form of Equation 1, which is performed automatically in module

CEAD. Two cases are considered

I. IMp2 + Bp + K]{U} - 0 (The general form) (2)

,.F.oi,l
_M'IK .M'IB .

p=

U - The upper half of @. The lower half of ¢ contains the
velocity vector and is discarded.

2. IMp2 + K]{U} • 0 (B is not present) (3}

A- [-M-ZK]

p - /_" with Ira(p)> 0

U=_ ":'L

.L!,,/.

10.5-1 (12/31/74)
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In Case 2, the decomposition of M is bypassed tf tt is an identity matrix. The reduction to

canonical form requires that the matrix M must be nonsingular. The order of the problem is

doubled when the matrix B is not null.

I0.5.2 Reduction to Upper Hessenberg Form

i

If the given matrix is denoted as [A], it can be reduced to the upper Hessenberg matrix [AO] by

using elementary stabilized transformations. The basic algorithm and two alternatives are given

in Reference I (pp. 354-355). The selected method uses Equation 9.1 of Reference 1 (p. 355) in

its reduction and it appears to be appropriate for the task. The total number of multiplications

in the complete reduction is approximately (5/6)n3, which is half the number in Householder's

reduction and one-quarter the number in Givens' reduction.

I0.5.3 The qR Iteration

The QR iteration of Francis (Reference 3) is defined by the relations (Reference I, p. 515)

[A_ s)] - [Q(S)][R(s)] , (4)

[A_s+l)] - [R(S)][Q (s)] , (5)

where [Q(s)] is the product of the (n-l) elementary unitary transformations necessary to reduce

[A_ s)] to the upper triangular form [R (s)] with positive real diagonal elements,

[Q(S)] [T_I)][T_2)] (n-2) T(n-l)" "'" ITs ][ s ] ' (6)

so that

[R(s)]- [Q(s)]'IEA(S)] (7)

The transformation matrices [T_j)]/ are the Givens' rotations as discussed tn Reference 1 (p. 239-

240) (and In thls manual, Section 10.2, in real form for real matrices) but in complex form for

I(s) J<¢.thecomplex matrices. The iteration is continued until the nth diagonal element an,n. l

convergence test, at which point the smallest eigenvalue _1 (s); if the convergence proceeds so• an jn-

1 (s) I < ¢ befor'et (s) -that an_l,n. 2 an,n.li < ¢, the two smallest elgenvalues are the roots of

.Is) I
(s) - X "n-l,n Ian-I ,n-1

_(s) ..(s) I " 0 (8)
Qntn-/• antn 1

10.5-2 (12/31/74)
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The roots will be complex for complex matrices, and either real or complex conjugates for real

(s) .I< ¢,
matrices. Before each iteration, the subdiagonal elements should be tested and if some el,i_I

the matrix should be split according to this occurrence, and the iteration continued with the lower

main submatrix only.

I0.5.4 Convergence Criteria

The convergence criteria suggested by Wilkinson (Reference l, p. 526) is based on the

Euclidean norm of the matrix IIAo)(E and is

¢ - 2-t ,,,,IlAoIIE

for floatlng-point calculationswith mantissas of t binary bits.

p. 57) is found from

n n 2

lIAI1 -iZlj211aijl

(9)

The Euclidean norm (Reference l,

(10)

Declmal equivalents of Equation 9 are used.

I0.S.5 Sh!ftlng

Since the QR iteration converges to the smallest elgenvalue, the convergence can be accelerated

by shifting, i.e., by subtracting scalar matrices from the original matrix. The matrix [A_s)] is

replaced by the difference [A_s)] - ks[I] after each iteration, in which ks is an estimate of the

eigenvalue The shift elgenvalue ks is that root of Equation 8, Ps or qs that makes I_(s) - psI
• _ _n ,n

or l-(s) - qsI a minimum. The shifted algorlthm then becomes (Reference 1 p. 524)
an, n

and

[A_s)] - ks[Z]- [Q(s)]ER(S)] , (ll)

[A_s+l)] • ksZI] + [R(S)][Q(s)] (12)

Equations II and 12 represent the algorithm for a shift to a slngle eigenvalue and is appro-

priate for a complex matrix or a real matrix with all real elgenvalues.

10.5-3 (12/31/74)
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I0.5.6 Deflation

When convergence to a single eigenvalue occurs i.e. when I (s) -I < c the Hessenberg
, , anon. | '

matrix [Ao] is deflated by elimination of its last row and column and the principal submatrlx

[Al] of order one less is the Hessenberg form for seeking the next eigenvalue. (Note: the

subscript on A denotes the number of eigenvalues removed from [Ao].) If convergence occurs to a

(s)
pair of eigenvalues, i.e., lan_l,n.21 < ¢, the matrix [Ao] is deflated by deleting the last two

rows and columns, and the principal submatrix [A2] of order two less becomes the basis for

seeking the next eigenvalue. Each deflation removes either one or two eigenvalues depending on

the two convergence tests.

10.5.7 Ei_envectors

The inverse power method with shifts (Reference I, pp 626-628) converges rapidly to the

eigenvector corresponding to each shift eigenvalue. This algorithm for real and complex matrices

has been discussed thoroughly in Section I0.4. No further discussion is required here.

V

V
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10.6 THE TRIDIAGONAL REDUCTION (FEER) METHOD

I0.6.1 Introduction

The Tridiagonal Reduction or FEER Method is an automatic matrix reduction scheme whereby the

eigensolutions in the neighborhood of a specified point in the eigenspectrum can be accurately ex-

tracted from a tridiagonal eigenvalue problem whose order is much lower than that of the full pro-

blem. Specifically, the order, m, of the reduced problem is never greater than

m - z_+ 10, (I)

where _ is the desired number of accurately computed eigenvalues. Thus, the intrinsic power of

the method lies in the fact that the size of the reduced eigenvaIue problem is of the same order of

magnitude as the number of desired roots, even though the discretized system model may possess thou-

sands of degrees of freedom. The process is effected without arbitrary lumping of masses or other

physical quantities at selected node points and thus avoids one of the basic weaknesses of the

Guyan Reduction Method (Reference 1) and other techniques (References 2 and 3) requiring a

judicious selection of the degrees of freedom to be retained.

TridiagonaI reduction was first suggested by Cranda]1 (Reference 4) as a truncated version of

the Lanczos Algorithm (Reference 5). However, it was soon discovered that the original scheme

possessed numerica] instabilities (References 8 and 7). The necessary improvements to correct

these weaknesses were made by Ojalvo and Newman (Reference 8) who were the first to develop a

successful tridlagonal reduction program for large scale structural vibration problems. Further

refinements were later introduced by Ne_Inan and Pipano in the F£ER computer program (References g

and I0}, including the following extended features:

l, Highly efficient numerical computation schemes which take advantage of matrix banding

and sparsity.

2. Calculation of upper and lower error bounds on the extracted eigenvalue estimates.

3. Accommodation of singular mass matrices and stiffness matrix singularities associated

with rigid body modes.

I0.6-I (12131177)
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The last capability, which is also present in the Inverse Power Method with Shifts, overcomes

a basic restriction of the Tridiagonal (Givens) and upper Hessenberg methods, namely, the need to

eliminate massless degrees of freedom.

For real eigenvalue analysis, the computational soeed of the Tridiagonal Reduction Method is,

in many cases, almost as fast as the Givens (Reference II) and Householder methods (Reference 12)

when all the eigensolutions are calculated, and becomes increasingly more efficient as the number
................ T

of required eiqensolutions is reduced. In addition, in order to avoid prohibitively long runninq

times, both the Givens and Householder methods require the use'of a relatively large computer

central memory for even moderate problem sizes, while the Tridiagonal Reduction Method is extre-

mely efficient with regard to core requirements.

In the case of complex eigenvalue analysis, the above remarks are also applicable for the

complex version of FEER when compared to the Upper Hessenberg method.

As shown in the ensuing development, the T_idiagonal Reduction Method employs only a single

initial shift of eigenvalues and hence usually requires only one matrix decomposition. It conse-

quently tends to be much more efficient than the Inverse "Power Method when more than one or two

eigensolutions are required.

V
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I0.6.2 Theory for Real Eiqenvalue Analysis

C'RIG:?,_,*-,L_.'."_,C:-Z.'_
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The development of the Tridfagonal Reduction Method and its implementation for real efgen-

value analysis, as typified by structural vibration and buckling problems, are described in the

following subsections. The restrictions on the use of the method are as follows:

I. For structural vibration mode applications, the method extracts a preselected number of

eigenvalues which are closest to a specified shift value, ko' rather than computing the

eigenvalues in a prescribed range.

2. In buckling problems, a preselected number of eigenvalues of smallest magnitude are ob-

tained, i.e., no shifting is performed. Physically, this implies that the buckIing load

parameters, whether positive or negative, are computed in order of increasing magnitude.

The basic steps employed in the method are as follows. First, the original eigenvalue problem

[K- _aM]{_} = O, (2)

is converted to a symmetric inverse form

[B]{X} = A[D]{X}, (3)

A m
1 (4)

>'a " >'o

where

and ko is a shift value which is used in structural vibration mode applications. Second, the tri-

diagonal reduction algorithm is employed to transform Equation 3 into a tridiagonal form of reduced

order. Third, the eigenvalues of the reduced matrix are extracted using a Q-R algorithm similar to

that described in Section I0.2.3. Fourth, the corresponding eigenvectors are computed and converted

to physical form. Finally, upper and lower bounds on the extracted eigenvalues are obtained.

A detailed summary of the computational procedures and explanatory flow diagrams are provided

in Section 10.6.3.

v

10.6-3 (12/31/77)

?l&



EIGENVALUE EXTRACTION METHODS OF pCOR O.UALIT'I

10.6.2.1 Preliminary Operations

The problem is to find a specified number of real eigenvalues and corresponding eigenvectors

for

V

[K - XaM]{¢} - O. (5)

It is _o6ther required that these elgensolutions constitute the set lying closest to a speci-

fied point, _o' in the eigenspectrum.

The definitions of the eigenvalue, _a' the matrices [K] and [M], and their mathematical

properties, depend on the type of problem being solved within the program environment. For real

analysls, only two separate problem types need be considered; structural vibration and bucklina

problems. The matrix definitions and mathematical distinctions for these two cases are summarized

in the following table:

Table I. Problem Formulations

Problem

Type

Structural
Vibration

Modes

Buckling

Quantity

CKT"

CM]

Definition

Stiffness Matrix -

analysis set

Mass Matrix -

analysis set

Square of a
circular natural

frequency

NASTRAN

Notation

[Kaa]

[Maa]

2
_J

Most General

Properties

Sjnnmetric, non-

negative, semidefinite
matrix

Same as above

_a Positive

Stiffness Matrix " LjrKaaq Sy_Tnetric, positive-[K]
analysis set definite matrix

Differential Stiff-
Sy_etric, indefinite

[M] hess Matrix - [K_a] matrix
analysis set

ha Buckling LoadParameter -_ Posltive or negative

V

The essential mathematical differences between the two types of problems center around the

properties of the [M] matrix, which is non-negative for vibration mode problems, but indefinite for

10.6-4 (12/31/77)
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buckling problems, thereby permitting the existence of both positive and negative eigenvalues in the

latter case. In addition, the stiffness matrix may be singular for vibration problems while it is

always positive definite in buckling applications, which implies that the buckling analysis is per-

formed on a klnematically stable structure.

In summary, the two problems under consideration are of the forms

[Kaa - 2Maa]{_} = 0 (structural vibrations)

and

(6)

+ lK_a]{@} = O. (buckling) (7)[Kaa

Further, if the user requests vibration modes in the neighborhood of a specified frequency,

_o' Equation 6 can be written as

[K]{¢} - l'[Maa]{_), (8)

[E] - CKaa- _Maa], (g)

where

and

k' • _2 . w_. (I0)

The resulting effective stiffness matrix, [K], is indefinite in this case, since it possesses both

positive and negative eigenvalues. This requires that a non-square root decomposition scheme be

used in subsequent operations. However, _o " 0 is taken as a default value, or it may be speci-

fied by the user. In this case, a specified number of natural frequencies starting with the

lowest will be computed. In order to utilize a more efficient Cholesky decomposition of [K] under

, . _2 (see Section 10.6.2.6) is used, yielding

[Kaa + _2Maa], (ll)

these conditions, a small negative shift ko

[R] .

and

k' = _2 + a2. (12)

I0.6-5 (12131177)
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It'is easy to prove that the resulting effective stiffness matrix [K] is positive-definite

provided that the system masses generate positive kinetic energy due to any kinematically admiss-

ible rigid body motions of the structure. This requirement is always satisfied by the mass matrix

in a physically well posed problem, thereby allowing a Cholesky square-root decomposition to be

performed when the roots are computed in the neighborhood of zero. Since no shifting is performed

in buckling problems, the effective stiffness matrix is [K] - [Kaa], which is always positive-

definite, again permitting the use of a Cholesky decomposition.

In any event, a decomposition or factoring of [2] is next performed:

[K] - [L][_d,][L] T, (shifted vibration mode problems) (13)

or

[K] = [C][C] T, (buckling problems or vibration (14)

modes in the neighborhood of
zero desired)

where ILl and [C] are lower triangular factors and _'d,] is a diagonal matrix.

To facilitate computation of eigenvalues closest to the point of interest within the eigen-

spectrum, inverse forms of the eigenvalue problems are employed, as in the Inverse Power Method

with Shifts.

The general form of the inverse problem may be written as

[B]{X} : A[D]{X}, (IS)

where the above terms are defined as follows:

V

I0.6-6 (12131/77)
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Table 2. Inverse Eigenproblem Definitions

Problem [B]
Type

I.

.

Shifted
Vibration

Modes

f- ; ........

Unshifted
Vibration
Modes (in

the neighbor-
hood of zero

frequency)

3. Buckling
Modes

[Maa]([L]'l)T['d..]'l[L]'l[Maa]

[C]'l[Maa]([c]'l)T

[C]-I [Kada](CC]-I )T

[D] {X} A

[Maa]

Ill
(Identity
Matrix)

Ell

{¢}

[c]T{¢}

I 2 + _2

1[c]T{¢} T
i

The above triangular matrix inverses are treated as purely operational symbols, since in

actual numerical computations vectors defined, for example, by

are obtained from the solutions of

{a}- [L']-l{b},

{_} . ([L]'I)T{_}

[L]{a} - {b} ,

[LIT{a} = {b} ,

(16)

(17)

employing forward and backward passes.

10.6.2.2 The Reduction Algorithm

A reduction of the order of the eigenvalue problem, Equation 15, is effected through the

transformation

(_} . [v] <y},

nxl nxm mxl

where {X} is an approximation of {X}, n is the order of the unreduced problem, and m _ n.

(2O)

The

v

10.6-7 (1Z/31/77)
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trans?ormation matrix Is taken to be orthonormal to [D]*, so that

[v]T[D][V] - [I].

From Equations 15, 20 and 21 it is seen that

[A]{y} - A{y},

where

[A] : [v]T[B][V],

mxm

and A is an approximation of the eigenvalue, A.

Thus, Equation 22 is an mth order eigenvalue problem where m _ n.

lished according to the criteria given in Section 10.6.2.3.

(21)

(22)

(23)

The value of m is estab-

The essence of the reduction scheme lies in the choice of the transformation matrix IV]. In

the present case the Lanczos algorithm is used to build up the IV] matrix, vector by vector, i.e.,

[V] - [{Vl},{v 2} ........ {Vm}],

n_

(24)

such that the reduced mxm matrix [A] is tridiagonal and its eigenvalues accurately approximate the

roots of Equation 15 having the largest magnitude (or, equivalently, the roots of the physical

model closest to the specified point of interest in the eigenspectrum).

Define the matrix

[B] _ [O]'I[B] "*, (25)

and let

*In problem types 2 and 3 (see Table 2), [D] is the identity matrix and, therefore, [v]T[v] - ell.

**For shifted vibration mode problems, where [D] - [Maa], this operation is purely symbolic (since

[Maa] may be singular) and Equation 25 merely implies that [B] = ([L]'I)T[ d ]-l[_|aa3.

10.6-8 (12/31/77)
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di+l{vi+ l} • {;i+i } - [B]{v i} - ai,i{v } - ai,i.l{Vi_ l}

- ai _v _............. ,1"I

i

=[B]{vl}'Z ai {v.}"
j=l 'J J'

i • l, m- I (26)

where (vI} is a startinq vector (see Section I0.6.2.4) and all m {v)-vectors are orthonormal to [O].

This implies that

ai,j • {vj}T[B]{vi }, (27)

while di+ l is a normalizing Factor g_ven by,

di+ l - [{;i÷l}T[D]{_i+l}] I/2. (28)

The recurrence relationship, Equation 26, when carried out to one additional step (i.e., over

the range i - l, m), can be expressed in the following matrix form:

[B]EV] " [V][H] + dm+l[Gm+l], (29)

nxn nxm nxm mxm nxm

where [H] is an upper Hessenberg matrix given by,

all a2l a31 .... aml

d2 a22 a32 .... am2

[H] -

d 3 a33

dm atom

(30)

and

! ! I I

[G l ] - [{o)' (o} ' ' (o}' {Vm+]}].,,.,
m_ i i i i

Premultiplying Equation 29 by cv]T[D], it can be seen that

(31)

I0.6-9 (12/31/77}
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[v]T[B][V] " [V]T[D][V][H] + [0],

ORIG|NAL PA,_$ I_
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(32)

or

[A] = (HI. (33)

However, the matrix [A] is symmetric and hence [H] is symmetric, requiring that it be tridiagona].

It follows that

ai,j - 0; j < i-l, (34)

and

di - ai,i. l, {35)

while Equation 29 assumes the form

[§][V] : [V][A] + dm+l[Gm+l]. (36)

As a consequence of Equations 33 to 35, the reduced tridiagonaI eigenvalue problem, Equation

22, is

[A]{y}

Fal

d2

d2

a22

d3

d3

a33

d
m

{y} = _{y} , (37)

and the matrix coefficients are theoretically given by the simplified recurrence formulas

ai'i " {vi}T[B]{vi} 1

{vi+l} - [B]{v i} - ai,i{v i} - di{vi, l} i -

di+ l - [{_i+l}T[D]{_i+l}] I/2 ,

{Vi+l} - __Z..l.{_i+l} ; i :
di+l

],m (38)

I, m - I (39)

where the sequence is initialized by choosing a random starting vector for {vl} and setting

10.6-10 (12/31/77)
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dI = O, {Vo} " {0}"

Although the ?ina] off-diagonal term, dm+ l, given by Equations 38 is not needed to construct

the tridlagonal reduced matrix, it is calculated and saved for use in _stablishlng error bounds

(see Section I0.6.2.7). In addition, the above algorithm is modified in the computer program as

follows:

I. Each vector ._vi+]}, calculated by Equation 3g is re-orthoqonallzed to all _revlously com-

puted {v}-vectors and eigenvectors, as described in Section I0.6.2.5, before re-enterlng

Equations 3B.

2, The actual size, m, of the reduced eigenproblem is established by the criteria given in

Section 10.6.2.3, one of the restrictions being that it cannot exceed the rank of the

matrix [Maa ] for vibration mode problems or [K_a] ?or buckling problems.

The elgenvalues, X, and eigenvectors, (y} of Equation 37 are extracted using a Q-R algorithm

and eigenvector computational procedure similar to that described in Sections 10.2.3 and 10.2.4.

They are then converte_ to physical form as Follows:

l
= - :'- , (buckling problems) (40)

-2 l 2 (unshifted vibration {41)

A i mode problems)

Q_ l
+ _ (shifted vibration (42)_i = --"-

_i mode problems)

{$i } : ([c]'l)T[v]{Yi},(buckling or unshifted (43)
vibration mode problems)

{_i } - [V]{y i} . (shifted vibration (_4)
mode problems)

normalized ({yl}T{yl } • l) for convenience in establishingIn addition, the vectors {yi} are

error bounds (see Section I0.6.2.7).

v
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10.6.2.3 Criteria for the Size of the Reduced Eigenvalue Problem
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The total number of eigensolutions, including any existing rigid body modes, is equal to the

rank, r, of the matrix [M] = [Maa] or [M] = [K_a], depending on whether a buckling or vibration

mode problem is being solved. Thus, the slze of the reduced problem, m, cannot be greater than r.

If, for example, [M] is diagonal, then the maximum permissible value of m is equal to the total

number of non-zero diagonal entries. In addition, if f eigensolutions have previously been com-

puted, these must be swept out of the problem by making all {v} vectors orthogonal to the previously

This implies that the maximum size of the reduced problem is further reducedcomputed eigenvectors.

to

r - r - f. (45)

As a result of numerical experiments and application experiences (References 8, g and 13), it

has been found that in cases where m << _, a first grouping of more than m/2 eigenvalues closest to

the shift point are In accurate agreement with the corresponding number of exact eigenvaIues, pro-

vided that 12 _ m _. The remaining reduced-system roots are spread across the reaminlna exact

eigenspectrum.

Thus, if the user requests a total of q eigenvalues Closest to a specified numerical value*,

the order of the reduced problem solved will be

where

m - min[2q + 10, _], (_6)

. q.f. (47)

It should be noted that in all cases m _ _, and whenever m is set equal to r, all the eigen-

solutions of the unreduced problem, which have not been previously computed, are generated.

From the above discussion it is apparent that, depending on the number of eigensolutions re-

quested, the rank of [M] may have an influence on the order of the reduced problem which is

*q includes the number of previously computed eigensolutions, f. These consist of modes generated
prior to a restart plus rigid body modes generated by using a SUPBRT card in the bulk data deck.

10.6-12 (12/31177)

Iii -_I

-° .



v

v

THE TRIDIAGONAL REDUCTION (FEER) METHOD

G? PCCR QU_,LiTY

generated by the program. Although the user should never request more than _ eigensolutions, the

value of _ may not always be a simple matter to calculate, particularly in buckling problems.

Therefore, the computational scheme has been designed to resolve the question of rank in the

following manner:

I. The matrix [M] is first checked for inordinately small off-diagonal elements, i.e.,

those which lie in the round-off range of the computer. These terms can sometimes

introduce artifically large physical eigenvalues and are therefore eliminated. Any off-

diagonal element for which

Imij I _ 10"2t/3 Imiil; i # j, mii # O, (48)

is set equal to zero, where t is the number of decimal digits carried in the computation

of the [M] matrix.

2. The number of non-null columns or rows of the above modified [H] matrix is counted and

designated as _. Since the rank, r, cannot be greater than _, the program initially sets

= B - f in Equation 46 to provide a tentative size, m, of the reduced eigenvalue pro-

blem. If the user has asked for more than _ eigensolutions, the program will try to find

all the existing solutions.

3. If the re-ortho(]onalization tests (see Section 10.6.2.5) fail for some vector {Vi+l},

this is an indication that a null vector has been generated because the maximum number

of r - ? linearly independent {v} vectors have already been obtained. The recurrence

sequence is then terminated and the order of the reduced eigenproblem is further reduced

tom=i.

I0.6.2.4 Choice of the Initial Trial Vector and Restart Vectors

Prior to tridiagonal reduction, the original elgenvalue problem

[K - _aM]{_} " O,
(49)

is cast in the inverse form

10.6-13 (12/31/77)
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[B]{X} • ,_[D]{X},

-...

(50)

[B]CX} = A{x}, (Sl)

A = 1
_a " 40" (52)

From Equation 49 it can be seen that if the problem size is designated as n and r is the rank

of the [M] matrix, then there are (n - r) spurious eigensolutions corresponding to A = 0 or,

equivalently, _a _ _" If, for example, a relatively small number of nodal masses or differential

stiffness elements are employed, then [B] contains a large multiplicity of zero eigenvalues which

are of no interest and cause numerical difficulties. These are eliminated from the reduced tri-

diagonal problem by employing a constrained sub-set of v-vectors having zero projection on the set

of eigenvectors associated with A = O.

To accomplish this, use is made of the fact that any non-null vector {_l}, generated from any

other non-null vector {w}, through

{;i} = [B]{w}

will contain no components of the eigenvectors corresponding to A = O.

follows.

(S3)

This can be seen as

First, express {w} as a linear combination of all the eigenvectors of [B]:

r n

{w} = _ ci{xi} , _ ci(Xi}, (s4)
i=l i=r+l

where {Xi} , (i = l, r), are the eigenvectors for A # 0 and {Xi}, (i = r + l, n), are the eigen-

vectors for A = O.

Next, substitute Equation 54 into Equation 53, giving

r n

{;I} " ci[§]{xi} ÷• " i=r+l

Since

(S5)

10.6-14 (12/31/77)
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[B]{X i} - Ai{Xi}; I - l, r , (56)

[B]{X i} - 0 ; i - r ÷ l,n, (ST)

r

{_i } - [ ciAi{Xl} . (68)
i:l

Thus, {vI} contains no eigenvectors corresponding to A • O, and is a null vector only if {w}

happens to be a A - 0 eigenvector. Further, it is easy to see that after r- _ is normalized
tvI,

{Vl} " [{;l l _]I/2{_l}' (sg)>TcD]T_I;

the next vector generated,

{_2} • [B]{v i} - al,i{Vl}, (60)

as well as all subsequent trial vectors will be free of A : 0 elgenvectors.

Employing a somewhat similar argument, it can be shown that the most desirable initial trial

vector, {Vl }, and hence the vector {w} from which it is generated, should contain all components

of the eigenvectors ?or A # O. However, since there is generally no a-priori knowledge of the

modal matrix, {w} should be selected in such a way as to make it as "irregular" as possible with

respect to the system of eigenvectors so that it is most likely to contain a mixture of all the

mode shapes. It has been found that this is best achieved by using a random or pseudo-random

number generator to obtain the elements of {w}.

If the vector {w} selected in the above manner should, by some chance, be deficient in eigen-

vector Components, then a null v-vector may be generated at some point by the recurrence algorithm

(Equations 38 and 3g). In the context of a finite digit computer, this is indicated by the appear-

ance of an off-diagonal term, di+ I, which is exceedingly small compared to the corresponding

diagonal term, ai, i, in the reduced tridiagonal matrix. The test used is that

Idi+iI_ IO2-t Iai,i( (61)
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Implies that the newly generated vector {$i+1 }, is null, where t is the number of decimal digits

carried by the computer. In this event, di+ l is set exactly equal to zero and a new restart

vector is emp]oyed for {;i+l }. This vector is generated exactly as in the case of the initial

trial vector {vl}, but using a different pseudo-random number seed. The recurrence algorithm for

the _eneration of the v-vectors is subsequently continued in the usual manner until the required

number of vectors has been generated.

A further constraint on each v-vector, including the initial one, is that it be orthogonal to

all previously generated v-vectors and previously calculated eigenvectors**. The imposition of

these additional constraints is discussed in the next subsection.

I0.6.2.5 Sweeplng-out of Previously Obtained Eigenvectors and Re-orthononalization of the Trial
Vectors

Assume that a combination of f rigid body and non-rigid body eigenvectors has already been

extracted prior to the current application of the tridiagonal reduction method. Let these vectors

be designated by {XI}, {X2} ...... {Xf}. In order to avoid regenerating these previous eigensolu-

tions, which would be inefficient, the initial trial vector, {Vl}, obtained in the manner just de-

scribed, should be made orthogonal or "swept clean" of these eigenvector components. This is theo-

retically accomplished by setting

f

{vT} : {vl} "j!l [{xj}T[D]{vI}]{XJ}' (62)

where {v_} is the swept initial vector to be used in place of {vl} following its normalization. It

can then be shown that all succeeding v-vectors generated by the recurrence algorithm (Equations

38 and 39) form a theoretically orthogonal set which does not contain components of {Xj}, J = l, f.

However, it has been shown (Reference 14) that the v-vectors degrade rapidly as the computations

proceed, such that the later vectors are far removed from orthogonality to the earlier ones. This

**Previously calculated eigenvectors may be available from the following sources:
(1) The specification of fictitious free body supports on a SUP_RT card, which causes an equal

number of rigid body modes to be automatically generated prior to entering an eigenvalue
extraction routine.

(2) Checkpointing of previously obtained eigensolutions followed by a restart to obtain additional
etgensolutions.

10.6-16 (12/31/77)
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is caused by unavoidable computational round-off which, because of repeated multiplications by the

unreduced eigenmatrix, [B], tends to amplify the contributions of the eigenvector components

nearest the shift point in the calculated trial vectors. Thus, unless sufficiently accurate ortho-

gonality of the trial vectors is maintained, they will be excessively rich in the modes near the

shift point, and the solution of the reduced tridiagonal elgenvalue problem will yield a false

bunching of eigenvalues around this point in the eigenspectrum.

To correct this problem, Gregory (Reference 6) experimented with the use of higher-precision

computer operations, but found only marginal improvement in the final results. Later, Lanczos

suggested a re-orthogonallzation of the type

i f

{v'i+ l} -_ {vi,l} - _ C(.vj}Tco]{Vi+l}](v J} - _ C{_}Tco]{vi+l}]{Xj}, (63]
j-I j-I

where {vi+]} is calculated by the unmodified recurrence algorithm and {v_+I} is an improved vector.

While this improves matters substantially, it still does not eliminate the precision problem

adequately. However, Ojalvo and Newman (Reference 8) found that the introduction of an iterative

re-orthogonalization loop can make the trla] vectors as erthogonal as necessary for extremely large

systems. The procedure is as follows:

The vector {Vi+l}, obtained from either the recurrence algorithm or the pseudo-random number

{v(0)} and re-orthogonalized with respect to all the
generator (see Section I0.6.2.4) is denoted as i+1

previously obtained vectors. This is accomplished by iterating,

f

(1) Tv(O)_ ! T (O)}]_vj}.
{Vi÷l} " " i+l" "j_l C{vj} [O]{vi+ l j=l

i (l}_izv f
tvi+]_ j=]

T O v(0)} -
[{ J} [ ]( i÷l ]{Xj},

X T D v(7) {xj},[{ j} [ ]{ i÷_}]

(64)

until an acceptable vector

i f

{v(S+l)}i+l" tvi+!-(s)} "j_l- [{vj)TrDl_'(s))]{vj}i+l "j,l_
" T (s) x

[(Xj}[D]{Vi+l}]{j}. (65)
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is found which satisfies the orthogonality criteria

-t.

i02-t,

l_<j
(66)

max I{Xj"T (s)[O]{Vi÷l}l _ 102-t, (67)
l_f

where t is the number of decimal digits carried by the computer. If, for some vector, the above

criteria are not satisfipd after a set number of iterations, then the proqram assumes that a new

trial vector cannot be generated, and a reduced eigenvalue problem of order m = i is solved, as

discussed in Section I0.6.2.3.

If the above criteria are met, then the resulting vector is normalized and set equal to the

new normalized trial vector, i.e.'

(s+l)
{vi+l }

{vi+I} " FTv(S+l)}T[O]_v!S_1) I/2 " (6B)}]
-" i+l I+! =

This new vector is used to compute the next off-dlagonal term in the reduced tridiagonal matrix

From the formula

di+ l = {Vi+l}T[B]{vi}. (69)

However, if

Idi+iI<_lO2-t lai,il, (70)

it is probable that {vi+l} is a null vector, possibly because the maximum number of linearly inde-

pendent vectors, corresponding to the rank of the problem, has been exceeded. In this event, a re-

duced eigenvalue problem of order m = i is solved, as above.

If the criteria given by Equations 66, 67 and 70 are all met, then the new normalized vector

{vi+l} is used to continue the reduction algorithm.

I0.6-18 (12/31/77)
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Criterion for the Negative Shift Parameter, _2

OF _OC _:,-,EL,._:'"'. . :

Before tridlagonal reduction, the eigenvalue problem for natural frequencies in the neighbor-

hood of zero is

where

[B]{X} = A{X}, (71)

[B] • [c]'l[Maa]([C]'l)T, (72)

{x} - [c]L_} , (73)

[Kaa + _2Maa] : [C][C] T , (74)

and

A - l
3 + _2 " (75)

The criterion involved in the choice of the shift parameter, 2 is that it be large enough to

render a possibly singular stiffness matrix non-slngular (to the extent that Cholesky symmetric de-

composition can be performed accurately in a finite digit computer), and small enough to prevent

troublesome clustering of the eigenvalues, A.. As an approach toward solving this problem, it is
1

helpful to note that, given a symmetric positlve-definite matrix [J], the result

[C][C] T - [J] + [6J], (76)

is obtained when it is factored, because of computer rounding errors. According to Wilkinson

(Reference 15), the following inequality is almost always satisfied,

(l_Jl{]! n(lo]'t)IiJifI, (77)

where the above Holder-one matrix norms are equal to the maximum row sums of absolute values, n is

the order of the matrix, and t is the number of decimal digits carried by the computer.

Thus, in order to render the matrix [Kaa + _2Maa ] non-slngular, even when [Kaa] itself is

singular, some matrix norm of the modification _2 [Maa] should be appreciably larger than the

corresponding norm of [6Kaa], where the latter matrix is In the "noise level" of the computer. On
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the basis of Equation 77, the minimum _2 should therefore satisfy the requirement

2. iiMaalfl>n(iol-t)IiKaatllin

n

( max _ I)l<i<n j I Ikij
2 > n(lol-t) _ __min - n

( max _ Imi.il)
l<_i<.n J 1

(78)

(79)

V

where Kij and mij are the elements of [Kaa] and [Maa ],

To further enhance the removal of possible singularities in the stiffness matrix, a factor of

ten is applied to the right side and the maximum ratio of diagonal matrix elements is used. The

resulting value of _in is

Kii

_2min = n(lO2"t)Jm-Ti'iJmax; mli _ O. (80)

A final requirement imposed on the shift parameter is that it be large enough to effect alter-

ations in the last two-thirds of the significant digits in each diagonal term of the unmodified

stiffness matrix, or equivalently,

_2 = lO-t13 iKill ;
o m-TTimin mii _ O. (81)

Consequently, the actual value of the shift used by the program is

2 max( in, (82)

If the resulting modified stiffness matrix is still singular, as indicated by a failure of the

Cholesky decomposition process, the above value of m2 is multiplied by a factor of lO0 a maximum

of two times in an attempt to render the undecomposed matrix non-singular. If this procedure

fails, the problem execution is aborted due to unremovable stiffness matrix singularities.

10.6.2.7 Error Bounds on the Computed Eigenvalues

Once the modes of the reduced problem have been extracted, close upper and lower bounds on

the eigenvalue errors can be obtained rather economically. This provides the user with an a

posteriori check on the number of accurately calculated eigenvalues which, in most cases, will be

10.6-20 (12/31/77)
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greater than the number requested.

t_

OF _QC:-" ,':" ....

v

In carrying out the development, it is convenient to write the eigenproblem in its inverse

form

where

C§]{x} - A{x}, (83)

A = 1 (84)
_a " _o "

Considering some approximation, {Xi}, to an exact eigenvector, {Xi}, it can be expanded in

terms of the exact modal matrix as follows:

where

and

{Ri} , [Z][bi], (8S)

B t s

[z] - [(xl} ' (x2} ' ....' _x }], (86)
nxn , , , n

{bi} - (

'bl]
b2L
"I

bn J

(87)

is a vector of scalar coefficients.

If the eigenvalue approximation associated with {Xi} is denoted by Ri, then the residual

vector for the ith modal approximation Is given by

However

[_][z] - [z][^d ] '

. (88)

(Sg)

where [ Ad ] is the diagonal matrix of eigenvalues, AI, i - I, n.

It follows that

10.6-21 (12/31/77)



EIGENVALUE EXTRACTION METHODS 07 ......... /

{Ri} - [Z][[ Ad ] - Ai[l]]{bi}. (90)

Denoting a weighted root-mean-square residual by

ri : ({RI}T[D]{Ri}) I/2, (91)

it can be seen that

2
r. - {bi}T[[ Ad ] - Ai[I]][z]T[D][Z][[ Ad ] - Ai[I]]{bi}.i

(92)

However, without any loss of generality, the elgenvectors can be orthonormalized so that

[I; i "Jl
{xj}T[D]{Xi} -

O; i#j
(93)

The modal matrix is therefore unitary, i.e.,

and ,

[z]T[D][Z] : [I] ,

2 : {bi}T[[ Ad ] . _i[i]]2{bi}ri

(94)

n 2 2
[_ bji (Aj - AI) , (95)

J=l

where {bji} refers to the jth element of the vector {bi}.

At this point it should be noted that the program also normalizes the elgenvectors {yi} of

the reduced tridiagonal problem, so that

where

Thus

and it follows that

{xi}TCD]{Xi } = {yl}T[v]T[D][V]{Yi } - l, (96)

IV] = [{vI} ,'{v2} ,'.... :{Vm}]. (97)

2 =
{xi}T[D]{Xi } = _ bjl I, (98)

j-1

2
ri _ min (A4 - Ai )2.

l<3_n

10.6-Z2(12/31/77)
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Therefore, when Ai is close to an exact eigenvalue, Ai, it can be seen that

or

I Î - ii

{(Xai" 1o l
_ai " Lo) "

<_Iril.

ri
<_I:-I.

A i

Since _ai is close to lai when i. is close to Ai, Equation lOl implies that
i

II lai < I- ri

 ai1_Ai(l+ olpI'

which is a measure of the maximum relative error in the ith physical eigenvalue*.

O_ POC:i 4..,..i*i'_'J"'y,.

(IOO)

(lOl)

(102)

The residual, ri, in the above equation can be evaluated quite easily via the following

approach.

Set

in Equation 88. Then

{Ri} =

However. from Equation 36, it is seen that

[B]CV] •

cRi} . [v]{yi}

[[_][v]- ^iCv]]{yi,_.

[V][A] + dm.iZGm+l],

where [A] is the tridiagonal reduced matrix and

i i i

[Gm+I] = [fO} ' {0} ' {0} ' {Vm+l}].
i ! i

Therefore

(103)

(io4)

(lOS)

(IO6)

{Ri} • [[V][A] + dm+l[Gm+ l] - Ai[V]]{yl}. {107)

*This test is obviously invalid when _ai = O, i.e., a rigid body solution. In this event, the com-

puted value of _ai is, in itself, a measure of the absolute error in the physical eigenvalue and
no further accuracy information is needed. The existence of an eigenvalue as an additional rigid
body mode not requested on a SUP_RT card in the Bulk Data deck is detected by the criterion

)_aiI < IO-t/3, in which case Equation I02 is bypassed.
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But

[A]{y i} : Ai{Yi}, (]o8)

so that

and

It can be seen that

so that finally

r2 .
1

{Ri_' " dm+l [Gm+l]{Yi _''

2

{Ri}T[D]{Ri} " dm+1{yi}T[Gm+l]T[D][Gm+l]{Yi }"

[Gm+I]T[D][Gm+ I] : .... 0 ,

• ,,, 8

(io9)

(l]O)

(llt)

2 d2 2r. : (I12)1 m+lYmi '

where Ymi is the last element of the vector {yi }.

Therefore, Equation 102 assumes the form

!I - _ai{ Idm+l " Ymi l

Xai _ !Ri(1 + >,oXi)[

(713)

Thus, it is seen that the eigenvalue errors are proportional to dm+ l, which is the next off-diagonal

term that would be generated, had the reduced tridiagonal matrix [A] been increased from order m to

order m÷l. Equation ll3 shows that this term is further modified by a weighting factor Ymi' which

r
is the last term in the reduced-system eigenvector associated _ith Aai.

The use of the above error bound formula as a criterion for selecting acceptable eigensolu-

tions is described in Section 10.6.3.

I0.6-24 (12/31/17)
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10.6.3 Summary of Computational Procedures and Flow Charts - Real Ei(jenvalue Analysis

Flow diagrams illustrating the computational procedures are shown in _igures l and 2. The

details of each block are summarized below.

I. Ca]culate Small Neqative Shift Parameters_ 2 <see Sect:ion 10.6.2.6)

In the case of unshifted vibration mode problems, the negative shift 9arameter for removing

possible singularities is found from:

=2 . ' (114)

where

and

2 • n(lO 2.t) IKii_ ; mii # O, (115)
_min 'mi"-T'max

2 o-t/3 Kii i" 1 .m ; m. # O. (116)
o mii'min Ii

Kii and mii are the diagonal elements of [Kaa] and [Maa], respectively, n is the number of {u a} de-

grees of freedom, and t is the number of decimal digits carried by the commuter.

2. Zero-Out Excessively Small Elements of [M] Matrix (see Section 10.6.2.3)

a. Compare the magnitudes of all off-diagonal elements of [M] with the corresponding diagon-

al elements to determine whether

mij r i0-2t/3
< i _ j, mii _ O.m..

11

(I17)

b, Set mlj - 0.0 for every off-dlagonal element satisfying the above criterion.

3. Establish Tentative Reduced Problem Size (see Section I0.6.2.3)

a. Count the number, n, of non-null columns or rows in the above modified [M] matrix and

set

F . _- f, (]]8)

where f is the number of previously computed eigensolutions.
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Calculate a tentative size, m, of the reduced eigenproblem from

ORIGINAL PAG_ ,g

OF POOR QUaLiTY,

where

m - min[2q + I0, _], (119)

: q - f, (12o)

and q is the total number of accurate eigenvalues requested by the user, including pre-

viously computed modes. If q > r, the program will try to find all existing solutions.

Factors of [K] Matrix (see SectionConstruct I0.6.2.1)

a. Set

bo

or

or

(i) [K] • [Kaa - _Maa], (Shifted Vibration (121)
Mode Problems)

(ii) [K] - [Kaa + _2Maa], (Unshifted Vibration (122)
Mode Problems)

(iii) [K] - [Kaa],

Perform a non-square root decomposition:

(Buckling Problems) (123)

[K] • [L]['d.]ZL] T, (124)

for case (i), or a Cholesky symmetric decomposition:

[K] - [C][C] T (125)

for cases (ii) and (iii), using real arithmetic without pivoting. Save the triangular

and diagonal factors. If the decomposition for case (i) fails or the decompositions for

cases (ii) and (iii) fail after'two increases in _2 by factors of one hundred, then the

problem execution is aborted because of unremovable stiffness matrix singularities.

Execute Tridiagonal Reduction Allorithm (see flow diagram for this block, Figure 2)

5.1 Initialize the Recurrence Algorithm (see Section I0.6.2.2)

V

I0.6-26 (IZ/31/77)
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Initialize the vector index to i - 0 and set

rv _ = {0_

where {v } is an CnxT) nuIT vector.
o

Generate a Startinq or Restart Vector and Set di+ 1 - 0._____00(see Section I0.6.2.4)

a. Construct an n-element vector {w_ using a pseudo-random number generator.

b.

C,

:":-':"_ " , "'/

(]26)

Solve for an unnormalized trial vector from the equation

{_i+l } • [B](w},

where

or

or

(iz7)

[B] " ([L]'l)TE-d,]'IEL]'1[_4.aa], (case i) (128)

CA] [c]l
• [Maa]([C]'I)T , (case ii) (129)

[§] - [c]'l[K_a]([c]'l)T. {case lii) (130)

Forward and backward passes are used to perform the above inverse operations.

Normalize the above vector:

v(O).i+li l• [ ]I/2{_i+I} , (131){
{Vi,l}T[D]{_i+l }

[0] - [Maa], (case I) (132)

[O] - Ill (cases li and iii) (133)

where

d. Set di+ I = 0.0 and proceed to block 5.5.

10.6-27 (12131177)
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5.3 Create One Approximate Trial Vector and One Diagonal Coefficient (see Section I0.6.2.2)

The recurrence algorithm Is:

where

5.4

{vi+l}

di+ l

ai, i = {vi}T[B]{vi} ,

= [_]{vi} - ai,i{vi) - di{vi.]

= [{_i+l}T[D]{;i+l}] I/2,

l{v(°)} = -:--- },
i+I {vi+1

di+l

[B] = [D][_],

_;(o),
and , i+l s is an approximation to the new trial vector.

First Normalization Test (see Section I0.6.2.4)

The test is

(]34)

), (135)

(136)

(137)

(13B)

Idf÷]l -->]o2"t lai,il- (139)

V

Pass:

Fail:

Proceed direction to block 5.5.

• (0)_
Return to block 5.2, generate a new restart vector for tvi+lj, and proceed to

block 5.5.

5.5 l.t_erateto Obtain Orthogonaliz_d Vector (see Section 10.6.2.5)

Designate {Xj}, J = l, f as previously calculated and stored eigenvectors.

iterations,

' )
"i+l s 1 "j=1_

f -

Jl

,0.6-28 (12/31/77)
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l<_j_i
and (14l)

max ){X }TrolYv (s)_
l_j_f' J _ J" i+l_{ _ 102"t'

or

s : 14.

If the orthogonality criterion, Equation 141, is satisfied, proceed to block 5.6. Other-

wise, set the problem size, m, equal to i and proceed to Exit.

5.6 Normalize the Orthogonalized Trial Vector (see Section I0.6.2.S)

Compute (s+l)}
{vi+l

{vi+I} = _, (s+l) ..... (s+l)}]i/2 (142)
LtVi+ l yLUjtVi+ 1

This is the new orthogonalized and normalized trial vector.

5.7 Second Normalization Test and Creation of Off-Diagonal Coefficient (see Section 10.6.2.5)

a. Compute the next off-diagonal term in the reduced tridiagonal matrix from

= {Vi+l}T[B]{vi}. (143)di+ l

b. Verify whether the following test is met:

Idi+l{ _ IO2-t lai,ll. (144)

If it is, set I - l+l and return to block 5.3 for continuation of the recurrence

algorithm. If the test fails, set m - I to reduce the problem size and proceed to

Exit. Only I modes can be obtained, since more than r - f modes may have been re-

quested.

Solve Reduced-System Eigenvalue..Problem (see Section I0.6.2.2)

a. The coefflclents all, a22 ...... amm and d2, d3...... dm, computed in block S (of
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Figure 1) are interpreted as the following symmetric, tridiagonal array:

[A]

m

all

d2

ii

D

d2

a22

d 3

d 3 .

a33 ".

•.,. "',. ' dm

• dm ' amm
g

(14s)

b° The mth order eigenvalue problem

[A]{y} - A{y}, (146)

is solved for the elgenvalues, Ri,and elgenvectors {yi} using a Q-R algorithm and

eigenvector computational procedure similar to that described In Sections 10.2.3 and

I0.2.4.

c. The reduced system eigenvectors are normalized so that

{yi}T{yi } : I; i : I, m. (147)

7. Compute Maximum Eigenvalue Errors (see section 10_6.2.7)

a, The maximum absolute relative errors in the computed physical elgenvalues are obtained

from

• ; i - I, m, (148)
(RiO + _oRi)i

where dm+ l is the last off-diagonal term computed in block 5.3 and Ymi is the last ele-

ment in the vector {yi }. If the physical eigenvalue, l_+ 40 , corresponds to a rigid
Ai

body mode, the above computation is invalid and therefore bypassed. A rigid body mode

is assumed to occur whenever

)!--+ _ol _ lO"t/3 (149)
A t

and is denoted by setting the relative error, _, equal to an exact zero.

I0.6-30 (12131177)
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The elgenvalues are processed in order of increasing distance from the center of range

of interest, Lo, to determine whether their associated {i values meet an acceptable re-

lative error tolerance set by the user on the EIGR or EIGB bulk data card (the default

value is O.OOl/n where n is the order of the unreduced problem). The first eigenvalue

not meeting the tolerance test, as well as all subsequent eigenvalues further removed

from the center of interest, are considered to lack sufficient accuracy and are there-

fore rejected.

C, Acceptable eigenvalues obtained in the above manner are reordered in terms of increasing

physical value for subsequent processing by the program.

8. Compute Physical Ei_envalues and Eiqenvectors {see Section I0.6.Z.2)

The mathematical eigenvalues, Ai' and eigenvectors, {yi }, are converted to physical form as

follows:

_i = . I__, (buckling problems) (150)

Ai

-2 1 :2,
_i " ---" (unshifted vibration (lSl)

Ai mode problems)

-2 = rl _, (shifted vibration (152)ui + _
ki mode problems)

where

{$i } = ([C]'I)T[v]{Yl }, (buckling or unshifted (153)
vibration mode problems)

{_i} = [V]{Yi}, (shifted vibration (154)
mode problems)

[v] = [{Vl},{vz}..... {vm}]. (155)
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10.6.4 Theory for ComplexEigenv.alue Analysis

I0.6.4.1 Problem Formulation

The general complex eigenvalue problem is stated in the form

[Mp 2 + Bp + K](u} = 0 ,

ORIG|._!_L _,r,,_'. :_
OF POGR C'-'_L'_T_'.

(156)

where the matrices [M], [B] and [K] may be real or complex, symmetric or unsymmetric, and singular

or non-singular. A soecified number of eigenvalues, p, lying closest to a specified point, _o'

(called a shift point) in the complex plane are to be found, as well as the associated eiqenvectors

{u} . The eigenvalues may include multiplicities.

Following a development similar to that of Section I0.4.4.1, a velocity vector

{v} = p{u} , (157)

and a shifted elgenvalue

X = p - _o ' (158)

are first defined.

Substitution of Equations 157 and 158 into Equation 156 gives

K : B+_QM]

or, using the inverse form,

wher_

and

ro .M1{} (159)

[A] =

[A]{x} - A{x}, (160)

F K i B+XoMl'lFo:-Ml
....

{-:-}{x} _

(161)

(162)

V
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• .. "ir

A l______ (163)
P " _o '

Equation 160 is an elgenvalue problem in standard form, showing that the order of the eigen-

value problem is doubled due to the presence of the [Bl matrix. In the special case where [B] is

null (i.e. no dam_Ing), the problem formulation becomes

[Mp2 + K]{u} - O, (164)

and the double-slze elgenvalue problem can be avoided by considering the mathematical eigenvalue

to be p2. Thus, let

and

_2 p2 2 (165)
= "_0 '

l^ - (166)

Substitution of Equations 165 and 166 into Equation i64 and the use of the inverse form result in

[K+_o2M]'I[-M]{u} = A{u}. (167)

Comparing the above with Equation 160 shows that the standard form with a null [B] matrix Implies

that

• [K+_o2M]'I[-M], (168)[A]

and

{x} - {u}. (169)

Since the elgenmatrix [A] is, In general, unsymmetrlc, the elgenvectors {x} are orthogonal to

the elgenvectors, {_}, of the transpose eigenproblem

[AIT{_} = A{_}, (170)

10.6-33 (12131/77)
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so that for Ai )iAj,

{_j}T{x i} = O; i#j. (171)

The above relationship is a biorthogonallty condition and the associated eigenvectors {xi} and

{_j} are called right and left eigenvectors, respectively.

10.6.4.2 The Reduction Algorithm

A reduction of the order of the eigenvalue problem, Equation 160, is effected through the

transfomation

(x}-- IV] {y}, (172)

nxl nxm mxl

and

{x}. [_] G},
nxl nxm mxl

(173)
V

where {x} and {x} are approximations of {x} and {_}, respectively, n is the order of the unre-

duced problem, and m<_n. The above transformation matrices are chosen to be biorthonormal, so

that

[o]T[v] -[I]. (174)

From Equations 160, 172, 173, and 174, it is seen that

where

[HI{y} : X{y}, (17S)

[H] - [)]T[A][V], (176)

and X is an approximation of the eigenvalue, A.
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Thus, Equation 175 is an mth order elgenvalue problem, where m(n. The value of m is estab-

lished according to the criteria qiven in Section I0.6.4.3.

As in the case of real eigenvalue analysis (see Section I0.6.2.2) the Lanczos algorithm is

used to construct the transformation matrices vector by vector, i.e.,

[V] = [(Vl}, {v2} ...... (Vm}], (177)

nxm

[_]. [{_,i}, (;z}......{_m}], (178)

nxm

o

V

such that the reduced mxm matrix [HI is tridiagonal and its eigenvalues accurately approximate

the roots of Equation 160 having the largest magnitude (or, equivalently, the physical roots, p,

c]osest to the specified point of interest, _o' in the complex plane).

The form of the algorithm for generating successive vector pairs is, according to the Lanczos

technique,

di+l{Vi+ l} - {wi+l} = [A|{v i} -ai,l{Vl } -ai,2{v 2} ....-ai,i{vi},
(179)

_i+l{;i+l} • {;i+] } = [A]r{;i} -;i,l{_l}-;i,2{_ 2} ....-;j,i{_i}, (18o)

where {vl} and {_i } are starting vectors (see Section 10.6.4.4), 1_i<m-l, and all m vector pairs

are biorthonormaI. This implies that

and

ai, j • {_j}T[A]{vi}, (181)

_i,J = {vj}T[A]T{_i}' (182)

while the normalizing factors are given by
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di÷l = _i+l " [{_i+l}T{wi+l }]I/2 (183)

Through the use of symmetry arquments similar to those employed in Section I0.6.2.2 for real

eigenvalue analysis, it can be shown that

al,i= )i,i' (184)

and

ai,i-I = di " _i,i-l' (185)

ai,j = _i,j = O; J<i-l. (186)

The transformed, reduced eigenmatrix in Equation 175 is consequently tridiagonal and symmetric,

having the form

[H] = [_|T[A|[V] =

D

all

d 2

dz

a22

d3

d3

a33 d4

" dm

dm "_ atom

(187)

The matrix coefficients are theoretically given by the simplified recurrence formulas

al, i = {_i}T[Aj{vi }

{wi+I} = [A]{vi} - ai,i{v i) - di{vi. I}

{_i+i} = [A]T{_I} - ai,i{_i} - di{_i, l}

di+ l = [{_i+1}T{wi+l}] I/2
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{vi+I) - ]_]_-,
di+l _wi+l}

{_i+l} - di+l {_i+l}

i - I, m-I (189)

where the sequence is initialized by choosing random, biorthonormal starting vectors for {Vl}, {_l}

and setting dI - O; {vO} - {_o} - {0}.

The final off-diagonal term, dm+l, given by Equations 188 is used in establishing error esti-

mates for the computed eigenvalues (see Section I0.6.4.6). In addition, the above algorithm is

modified in the computational scheme as follows:

I. Each pair of vectors {Vi+l}, {_i+l}, calculated in Equations 18g is reorthogonallzed

to all previously computed pairs, as described in Section I0.6.4.5, before re-entering

Equations 188.

, The size, m, of the reduced problem is a function of the number of accurate eigenvalues

requested by the user and is limited to the number of finite physical eigenvalues avail-

able (see Section I0.6.4.3).

The eigenvalues, A, and eigenvectors, {y}, of Equation 175 are extracted using the Q-R itera-

tion algorithm and eigenvector computational scheme described in connection with the Upper

Hessenberg method (Section I0.5). They are then converted to physical form as follows:

v

Ai } [B] _ [01,

Pi " ( I + _o2)I/2; Im()I) > 0
Ai

{ui} - [V]{yi}
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The velocity vector {vi} in Equation 190 is discarded prior to further processing of the set of

eigensolutions by the program. Also, all solutions which fail the FEER error test are rejected.

However, the number of acceptable solutions will, in all probability, equal or exceed the number re-

quested by the user when the reduced problem size is chosen according to the criteria described in

the following section.

I0.6.4.3 Criteria for the Size of the Reduced Eigenvalue Problem

The maximum number of finite eigensolutions, including any existing rigid body modes, is equal

to the rank, r, of the eige_natrix [A]in Equation 160. Thus, for example, massless degrees of

freedom, appeari"g as zero diagonal terms in the [M] matr(_,_w_llr-esu1_t in singu1_arities (rank

reduction), which imply infinite physical eigenvalues. These spurious roots are swept out of the

problem in the complex FEER process (see Section 10.6.4.4) with a consequent reduction in the

available eigensolutions.

A further consideration in limiting the maximum problem size is that the user has the option

of requesting eigensolutions in the neighborhood of several shift points (_0+" _02 ....) in the

complex plane. In the Tridiagonal Reduction method, all elgensolutions, f, obtained for previous

shift points are swept out of the problem to prevent their re-generation when dealing with the

current shift point (see Section i0.6.4.S). This implies that the maximum possible size, m, of

the reduced problem is further limited tO

mma X = r - f. (192)

On the basis of numerical experiments, similar to those cited in Section I0.6.2.3 for real

eigenvalue analysis, it has been found that when m << mma x, a first grouping of more than m/2

computed eigenvalues closest to the shift point are in accurate agreement with the corresponding

number of exact eigenvalues, provided that 7 < m < mma x. The remaining reduced-system roots are

spread across the remaining exact eigenspectrum. To enhance the accuracy of the associated elgen-

vectors, the minimum problem size is further increased to twelve, again assuming that m << mma x.

Thus, if the user requests a total of q elgenvalues closest to a specified point in the

complex plane, the order of the reduced problem is initially set to

10.6-38 (12/31/77)
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m - min [(2q+lO),(2n-f)]; [B] # [0], (193)

• min {(2_+I0), (n-f)]; [B] - [0]. (194)

Although the total number of eigensolutions requested should not exceed mma x, there is

usually no simple way to discern this upper limit in complex elgenvalue problems. However, the re-

orthogonalization tests of Section I0.6.4.5 are designed to automatically establish this upper

limit. If the latter tests fail for some vector pair {Vi+l}, {_i+l }, this is an indication that a

null vector has been generated because mma X linearly independent vectors have already been obtained.

The recurrence algorithm, Equations 188 and 18g, is then terminated and the order of the eigen-

problem is further reduced to m = I.

10.6.4.4 Choice of the Initial Trial Vector and Restart Vectors

Because of the inverse relationship between the computed eigenvalues, A, and the physical eigen-

values, _, (see Equations IgO and lgl), spurious eiqenvalues corresponding to _ - 0 are equivalent to

_ ®. Since these eigenvalues and their corresponding, eigenvectors are of no interest and may

cause numerical instabilities, they are eliminated from the reduced tridiagonal problem by employ-

ing a constrained set of (v, _) vector pairs having zero projection on the set of eigenvectors

associated with A = O. Extending the argument developed in Section I0.6.2.4 for real eigenvalue

analysis, any non-null, right and left vectors {Wl}, (_l }, generated from any other non-null

vectors {Wr}, {_r } through the transformations

{Wl} , [A]{Wr} , (195)

{_l} - {AIT{_r }, {196)

will contain no components of the elgenvectors corresponding to X - O. Further, after the above

vectors are orthonormalized

10.6-3g (12/31/77)
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{vI} , 1 {wI} .

[{_l}T{wl}]I/2

{Ig7)

the next vectors generated,

{_i}. l (_i}'

[{_l}T{wl)] I/2

(198)

{w2} = [A]{vl} - all{vl }' (199)

{_2 } = [A]T{_I } - all{_l}, (200)

as well as all subsequent trial vectors will be free of A - 0 eigenvectors,

Thus, the starting vectors, {Vl}, {_l }, in the reduction algorithm are generated from Equa-

tions 195 through Ig8, starting with pseudo-random vectors {wr} and {_r }. If these pseudo-rendom

vectors should, by chance, be deficient in some true eigenvector components, then a null vector

{vi+l} or {_i+l } may be generated at some point in Equations 188 and 18g. This is indicated by the

appearance of an off-diagonal term, di+l, which is exceedingly small compared to the corresponding

diagonal term, ai, i, In the reduced trldiagonal matrix. The test used Is that a null vector has

been generated when

Idl+lI <_ lo'tl2lal ,iI, (2oi)

where t Is the number of decimal digits being carried in the computations. In this event, new

restart vectors are employed for {Wi+l}, {_i+l }. These vectors are generated exactly as in the

case of the initial trial vectors, but using different pseudo-random number seeds. The recurrence

algorithm for the generation of subsequent vector pairs {Vl+l}, {_i+l }, etc., Is then continued in

the usual manner until the required number of vector pairs have been generated.

I0.6-_ (12/31/77)
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I0.6.4.5 Sweeping-outof Previously Obtained Eigenvectors and Reorthogonalizationof the Trial

Vectors

As in the case of real eigenvalue analysis, successive trial vectors generated by the theoreti-

caJ algorithm, Equations 188 and 189, tend to degrade rapidly as the computationsproceed in a finite

digit computer, such that later right vectors are far removed from orthogonality to earlier left

vectors, and previously computed elgenvectors, {Xl}, {x2}......{xf}; [_i}, {_2).....[_f}. There-

Fore, each new vector pair {Vi+l}, {_i+l} obtained from either the algorithm or the pseudo-random

fv(0)_ r_(O)_ and reorthogonallzedwithnumber generator (see previous Section) is denoted as , i+I.... i+l"

respect to all the previously obtained vectors. This is accompllshed by iterating,

i , .T. (k-l)} f .T. (k-I
(k) ;v(k'I)} - E [{v_ ]{vj} - _ )}]{xj} (202){Vi+l} = _ i+l J=l J_ tVi+l j=1 [{_j_ tVi+l "

• f_(k-l) i .T.=(R-I)} f T •(k-I
"'i+l } - E [{vj ]{_j} - _ )}]{_j}j-I _ tVi+l J-I{{xj} {vi+l '

{:(k)_ (203)
"i+l"

(s)_ _(s)_ is found which satisfies the
where k - 1,2.....s until an acceptable vector pair {Vi+l_, ,.i+l,

orthogonality criteria

max .T. (s)
l<__jsil{_j? tvi+1}I _< 102-t, (204)

max _T_(s)
l<__j_i({vj, "'i+l}I _< lO2"t, (205)

max - T (s)
l_<_f ){xj} {Vi+l}l _ I02"t, (206)

max _Tr_(s)_j
l<_j<fl{xj < 102.t,_ " _'i+l'_ -

(207)

where s <_.lO, and t is the number of dlgfts carried in the computations. If, for some value of

I, the above criteria are not satisfied, then it Is assumed that a new pair of trial vectors cannot

be generated and a reduced etgenvalue problem of order m - I is solved as discussed in Section

10.6.4.3.
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If the above criteria are met, then the resulting vectors are biorthonormalized and set equal

to the new trial vector, i.e.,

{vi+l} I (s) (208)- {vi+]},

{_(s),T_.(s)}]l/2
_'i+l _ _'i+l

"'i+l "
[_(s)_T_v(S)}]I/2
" i+1" " i+I

(209)

These new vectors are used to compute the next off-diagonal term in the reduced tridiagonal matrix

from the formula

di+ l - {_i}T[A]{Vi+l }. (210)

However, if

Idi+l ) < lO"t/2 )ai,iI, (211) V

it is probable that either {vi+l} or {_i+l } is a null vector. In this event, a reduced eigenvalue

problem of order m = i is solved, as above.

If the criteria given by Equations 204 throuqh 207 and 211 are both met, then the new,

normalized vectors are used to continue the reduction algorithm.

10.6.4.6 Error Estimates for the Computed Eigenvalues

Following a development similar to that of Section I0.6.2.7 for real eigenvalue analysis, it

can be shown that

lfAil- IXtll _ Idm.,.1YmiI. (212)

The above relation shows that the absolute value of the difference between the computed and true elgen-

value magnitudes is proportional to the magnitude of dm+ 1 (which is the next off-dlagonal term that
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would be generated had the reduced tridlaqona]matrix [H] been increased from order m to order m+l)

and Ymi' which is the last term in the reduced-systemeigenvector associated with Xi,

Converting Equation 2]2 to physical eigenvalue form, using Equations 163, 165 and 166, yields

)1_i - XoI 11 Idm+lYmi)
lPl xo I _ IXI( ; [B] ¢ [0], (213)

l'Pi2 " _o2) r )dm÷lymil- 1 < ; [B] - [Ol. (214)

IPi2 - xo21 _ IXil

The use of the above error bound estimates as criteria for acceptable eigensolutions is des-

cribed in Section I0.6.5.
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10.6.5 Summary of Computational Procedures and Flow Charts - Complex Eigepvalue AnaIxsis

Flow diagrams illustrating the computational procedures are shown in Figures 3 and 4. The de-

tails of each block are summarized below.

I,

2.

Establish Tentative Reduced Problem Size (see Section 10.6.4.3)

Calculate a tentative size, m, of the reduced eigenproblem from

m = min [(2q+lO),(2n-f)]; [B) _ [0) (215)

= min [(2q+lO), (n-f)]; [B| - [0], (216)

where n is the order of the [K], [B] and [M] matrices, _, is the number of user-re-

quested eigensolutions, and f is the total number of previously extracted eigensolu-

tions calculated for earlier shift points (_o or _o2).

Construct Factors of Dynamic Matrix

(a) Set

[_] - [K+_oB+L_M]; [B] # [0] (217)

- [K+_M] ; [B] - [0]. (218)

(b) Decompose the above dynamic matrix:

[0] - ILl[U], (219)

where ILl is unit lower triangular and [U] is upper triangular, using complex

arithmetic (subroutine CDCOMP).

Save the triangular factors for later use in premultiplicatlon operations involving the

eigenmatrix, [A], and its transpose. If the decomposition fails, the shift value is
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increased by A - .02(l+i) and a new decomposition is attempted. If this second decom-

position is also unsuccessful, then the program assumes that the problem contains unre-

movable singularities in the neighborhood of the current shift point and proceeds to the

next shift point, if any.

Execute Complex Tridi@gonal Rgduction..Algorithm (see flow diagram for this block,

Figure 4)

3.1 Initialize the Recurrence Algorithm (see Section I0.6.4.2)

Initialize the vector index to i=O and set

{vo} - {_o} = {0}. (220)

3.2
Generate a Palr of Startinq or Restart Vectors and Set di+ l = 0.0 (see Section

10.6.4.4)

(a) Construct right and left vectors {w r} and {_r } using a pseudo-random number

generator. The vectors contain 2n elements for [B]÷[O] and n elements

for [B]-[O].

(b) Sweep-out components corresponding to A = O:

{wi+I} - [A]{Wr}, (Z21)

{_i+l ) - [A]T{_r }. (222)

(c) Normalize the above vectors:

v(O)}. ]
i+l {Wi+l}' (223)

[{_i+l}T{wi+l}] 1/2

,,._j
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{_(o)). I
i+l {_i+l )"

({_i+l}T{wi+l}] I/2

(224)

3.3

(d) Set di+ l = 0.0 and proceed to block 3.5.

Create One Pair of Approximate Trial Vectors and One Diaqonal Coefficient (see

Section I0.6.4.2)

The recurrence algorithm is:

ali = {_i}T[A]{vi }'
I

{wi+l} = [A]{vi} - al,i{v i} - di{Vi.l},

{_i+l} = [A]T{_i } - ai,i{_ i} - di{_i_l},

di+l = [{_i+l}T{wi+l }]I/2'

v(O)} , I
i+l _ {wi+l}'

di+l

-(o). l
vi÷lt =-- (_i+l },

di+l

(225)

V

where the above vectors are approximations to the new right and left trial vectors.

3.4 Flrlt Normalization Test (see Section 10.6.4.4)

The test is:

[al+l) _lO -t12 lai,il. (226)

Proceed directly to block 3.5.

Return to block 3.Z, generate a new pair of restart vectors for {v (0)}
i+l

10.6-46 (12131/77)

Iii_I



v

THE TRIDIAGONAL REDUCTION (FEER) METHOD

3.5

_c(o)_
and _'i+l" then proceed to block 5.5.

Iterate to Obtain Orthogonallzed Trial Vectors (see Section I0.6.4.5)

Designate (xj}, {_j}; _ = I, 2...... f as previously calculated and stored eigen-

vector pairs, i.e., calculated earlier by complex FEER for previous shift points

in the complex plane. Perform the iterations,

i = T

{vi+1(k)}= {v(k-l)}i.l"j=l_ {{v_}_(v!kTl)}J{v_}1.j

= i

f .T. (k-l)}]{xj)'E [{_j? tvi+l (227)
j=l

{c(k)i (k-l) i
"i+l'" (_I+1 } "j.El[{Vj_T_"(k-l""'i+l )}]{_j}

f

j=l
(228)

k = 1,2.... until

max = T (k) lO2-t
l{vj}{Vi+l}) <l<.c.,,i<._i - ,

or k - lO.

max T "(k)
l<J<_i){Vj} {Vi+l}I <_lO2"t,

max j._ iTt.(k)_ --i<_j<_fI,^j, _-i+l,l < lO2"t,

max T =(k)
l<_.J_fI{xj} {Vl+l}l _ lO2-t,

(229)

If the orthoqonallty criteria, Equations 229, are satisfied, proceed to block 3.6.

Otherwise, set the problem size, m, equal to i and proceed to Exit.

10.6-47 (12/31/77)
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3.6 Normalize the Orthogonalized Trial Vectors (see Section I0.6.4.5)

Compute

{Vi+l} , l [vi+I.(k)}, (230)
[.=(k)_T. (k)..l/2
tVi+ll tvi+it]

{_i+i}. ; _(k)_-i+l}.
[_=(k).T, (k)_.l/2
tvi+It tVi+lYJ

(231)

3.7

These are the new orthogonalized and normalized trial vectors.

Second Normalization Test and Creation of Off-Diagonal Coefficient (See Section

I0.G.4.5)

(a) Compute the next off-diagonal term of the reduced tridlagonal matrix from

di+ I = {_i}T[A]{Vi+l }. (232)

(b) Verify whether the following test is met:

Idi+ll& IO"t12 lai,i). (233)

4,

If it is, set I - i+l and return to block 3.3 for continuation of the re-

currence algorithm. If the test fails, set m=i to reduce the problem size

and proceed to Exit.

Solve Reduced-System Eigenproblem {see Section 10.6.4.2)

(a) The coefficients all, a22¢ ....amm and d2, d3, ....,dm computed in block 3

form the diagonal and off-diagonal tems of an m th order symmetric, tridlagonal

matrix [H] (the matrix is, however, usually' complex rather than real).

I0.6-48 (12131/77)-
-

U_



THETRIDIAGONALREDUCTION(FEER)METHOD
} . _ ..

(b) The mth order eigenvalue problem

[H]{y} = R{y} (234)

is solved for the eigenvalues, Ri' and the eigenvectors, {yi }, using the Q-R

iteration algorithm and eigenvector computational scheme described in connection

with the Upper Hessenberg method (Section 10.5).

(c) The reduced system eigenvectors are normalized so that

{yi}T{yi } = l; f=l, m. (235)

5, Compute Estimate of Eigenvalue Errors (see Section I0.6.4.6)

(a) Estimates of absolute relative errors in the computed eigenvalues are obtained

from

Pi " XO I

I m+lYmi I
[B] _ [O], (23S)

-1 <
,,,,

IXil
; [B] - COl, (Z37)

where dm+ l Is the last off-dlagonal term computed in block 3.3 and Ymi is the

last element in the vector {yi}. If the physica] elgenva]ue, Pi' corresponds to a

zero root (e.g., a rigid body mode), the above computational scheme is invalid and

therefore bypassed. A zero root is assumed' to occur whenever

where,

IPil < lO"t/3, (Z38)

RMS- _ [1_]2t + IB221 +..... , l_m2[] 1/2,

10.5-49 (12/31/77)
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and is denoted by setting the error, {i' to an exact zero.

The eigenvalues are listed in order of increasing distance from the shift point, _o'

to determine whether their associated estimated errors, {i" meet an acceptable rela-

tive error tolerance set by the user on the EIGC bulk data card (the default value

is .OOl/n where n is the order of the unreduced problem). The First eigenvalue not

meeting the tolerance test, as well as all subsequent eigenvalues further removed

from the center of interest, are considered to lack sufficient accuracy and are

therefore dlscarded.

6,

(c) Acceptable eigenvalues obtained in the above manner are reordered according to the

magnitude of the imaginary part, with positive values considered as a group ahead

of all negative values.

Compute Physical Eiqenvalues and Eigenvectors and Store (see Section I0.6.4.2)

The mathematical eigenvalues, Ai' and eigenvectors, (yi }, are converted to
_hy_ _ cal

form as follows:

[B]_ [0] (240)

V

where

Pi " (l+ _o2)I/2; im(_i) > 0

Ai

{ui} - [V](yi}

[B]= [01 (241)

The velocity vector

IV] = [[Vl},{v 2} ....... {Vm}].

(vi} in Equation 240 is discarded.

(242)

-.h
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II. TRANSIENT ANALYSIS

ll.l INTRODUCTION

Figure l shows a simplified flow diagram for the transient analysis module. Each of the

functional blocks in Figure l is discussed in a separate subsection. The equations that are solved

by the module may be expressed in terms of physical coordinates, ud, or in terms of augmented modal

coordinates, uh. Section 9.3 should be consulted for a complete explanation of the assembly of

the matrices in the equations of motion. If, in a modal formulation, there is no direct input,

i.e., if [Mdd2 ] = [Bdd2] = [Kdd2] = O, and if there are no nonlinear terms, the equations of motion

for the individual medal coordinates are uncoupled and are of the fo)Iowing form:

mini + bi_ i + kl_i " Pi (I)

The uncoupled equations are sufficiently simple that they are integrated by analytical rather

than strictly numerical methods, see Section II.5. The coupled equations are solved by a rela-

tively simple numerical integration algorithm that has been developed to meet the requirements of

structural analysis, see Section ll.4.

Choosing between the coupled direct solution and the modal coordinate solution involves several

considerations. Given a sufficient nu_er of modes, the uncoupled modal solution generally produ-

ces more accurate results, but the options are limited. The type of structural damping Is restric-

ted. Also. initial conditions other than zero and nonlinear loads may not be applied to the

structural grid points. The cost of extracting the modes and the error introduced due to the

omission of higher modes must also be considered.

The direct matrix solution to the transient problem is often more costly. Also, smaller

time steps are required to retain commensurate accuracy. However, Its generality allows complete

definition of initial displacements and velocities, as well as damping effects and nonlinear loads.

It is most effective in solving problems with impulsive type loads. The accuracy and the stability

of the method are discussed in Section ll.4.

The results of the transient analysis module are the displacement vectors, [ud} or {Uh}, and

their first and second time derivatives. They are passed to the Dynamic Data Recovery Module for

further processing, see Figure l of Section g.l. The final results, which also include internal

forces and stresses, are printed and/or plotted versus time. In addition, for a list of times

provided by the user, structural displacements may be superimposed on a plot of the undeformed

structure, see Section 13.

ll.l-I(I/30/811
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TRANSIENT ANALYSIS

A different approach to integrate the equations of motion Is used for aeroelastic response

problems. Aerodynamic matrices are often known only in the frequency domain, which does not permit

direct integration. A Fourier method is used, in which applied loads are transformed to the fre-

quency domain. Frequency responses, computed by the method of Section 12, are then transformed

back to the time domain. Section ll.6 presents the theory which is used in NASTRAN for aeroeIas-

tic problems.

v

• = mk

V

_=
_z

_o
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Figure 1. Simpllfied flow diagram for transient analysis module, TRD.
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TRANSIENT ANALYSIS

ll.2 TRANSIENT LOADS

In static analysis a number of automatic load generating subroutines (gravity load, pressure

load, temperature induced load, etc.) are employed in order to simplify the user's task of input

data preparation. Similar schemes are not made available for transient analysis mainly because

of the great variety in the possible sources of dynamic load. Instead the user is provided with

flexible input data formats which allow for a varying degree of generality vs. simplicity.

The generation o? transient loads can be a formidable task. The most general form of loading

is one which has a different time history of load for each point in the structure. Even for a

problem of moderate size (say 50 loaded points and 200 time intervals) the data set required to

specify a general loading is large" (SO x 200 = 10,000 entries). Thus it is essential to provide

data formats that accommodate special cases.

In NASTRAN, the applied transient load vector, {pjc}, that is used in a specific subcase is

constructed as a combination of component load sets {gjk},

{pjc(t)} = _ Sck{P k(t)} , (])
k J

where Sck is a factor that gives the proportion of component load set k used in combined load set

c. The advantage of this system is that it facilitates the examination of different combinations

of loads from different sources.

Two separate forms are provided for specifying component load sets.

form

In the first, or general,

{pjk(t)} • {Ajk}FK(t - rjk) , (2)

where Ajk and Tjk are tabulated coefficients that may be different for each loaded degree of free-

dom (J). (Alternatively, Ajk may also refer to the components of a simple static load set vector.)

A given table of coefficients (A or _) may be referenced by more than one component load set.

Fk(t - T) is a tabulated function of time that is linearly interpolated between entries. The form

provided by Equation Z is partlcularly useful for loads due to traveling waves. In such problems

Fk represents the pressure produced by the wave, Ajk is the exposed area associated with the jth

degree of freedom, and _Jk is the travel time required for the wave to reach the Jth degree of

freedom.

In the second, or special, form of transient loading

ll.2-1 (I/3O/Bl)
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TRANSIENT ANALYSIS

w_ere

n _

{pjk(t)} k(ek ] + T,= cos(2_fkT Ck), 0 _< T2k

{pjk(t)} = 0, 0 > t" or T > T2k - Tlk

- Tlk , (3)

T = t - Tlk - Tjk (4)

The coefficients Ajk and Tjk have the same meaning as they do In the general form, Eouation

2. The six constants, Tlk, T2k, nk, ok, fk and Ck are entered on a separate data card for each

load set. Although the appearance of Equation 3 is formidable, its application to a variety of

special cases is straightforward. The time constants, Tlk and T2k, define the time limits of

nonzero load for a point at which the time delay Tjk is zero. A sauare wave between Tlk and T2k

is specified by setting nk = =k • fk = Ck = O. A sine wave with frequency f starting at t = Tlk

is specified by setting nk = ok = O, fk = f and Ck = -_/2. A polynomial function, P = a + bt +

ctZ + .., is specified by combining a number of load sets with different integral values of nk

and ok = uk = @k • O. Since blank entries are interpreted as zeroes by the comouter, the extra

burden on the user due to the generality of Equation 3 is minimal in all of the above examples.

The loads are referred by the user to the displacement set, up, of all physical points

(structural grid points, Ug, plus extra points, Ue). The reduction to final form consists of

applylng single and multipoint constraints, the Guyan reduction, and in the case of a medal for-

mulation, the transformation to modal coordinates. Except for the medal transformation, the

steps are identical to those for the reduction of static loads to final form described in Section

3.6.2. The loads on extra points are included in their proper sequence in each intermediate load

vector.

Since the number of time steps is large (typically of the order of lO00), the reduction pro-

cedure would be slow and cumbersome if it were applied directly to the load vector at each time

step. A mere efficient procedure, if the number of loaded points is fewer than the number of time

steps, is to precompute a load transformation matrix, [Adk ] or [Ahk], such that the final combined

load vector is calculated by

{PdC(t)} = [Adk] {Fk(t)} , (5)

V
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TRANSIENT LOADS

in the case of a direct formulation, or by

{Ph c(t)} " [Ahk]{Fk It)} (6)

in the case of a modal formulation. {Fk(t)} is the vector of unique loading functions of time,

and the matrices [Adk] and [Ahk] define constant factors for each load function and degree of

freedom.

v

The load transformation matrices are calculated as follows (compare with Section 3.6.2):

1°

2.

Form a matrix [Apk] with the number of rows, p, equal to the total number

of physical points_ and the number of columns, k, equal to the number of

unique load functions of time. The elements of [Apk] correspond to the

factors Ajk in Equation 2.

Partition [Apk] into [Amk], points eliminated by multlpoint constraints,

and lAnk].

[Apk] " (7 )

3. Apply multipoint constraints.

EApk] " [ink] + [Gm]T[Amk ] {8)

4. Partition lAnk ] into [Ask], points eliminated by single point constraints,

and [Afk].
F I

[Afk] " _A-fkl (9 )

5. Partition [Afk] into [Aokl, points eliminated by the Guyan reduction,

and [Adk],

[Afk] , d (10)

6. Apply the Guyan reduction.

T
[Adk] " [Adk] + [Go] [Aok] Ill)

11.2-3 (1/30/B1)
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7. In a direct prob]em formulation, the matrix of load vectors is calculated by

the equation

[Pdt ] = [Adk] [Fkt] ,

where each column Of [Pdti and [Fkt] corresponds to a time step in

.....the integration.

(12)

V

8°

9,

For a modal problem formulatlon only, transform [Adk] to the modal coordinates

(see Section g.3). ....

EAhk]" [ dh]T[Adk]

The r_tHx of load vectors in the _dal coordinates are:

(13)

[Pht] = [Ahk] [rkt] , (14)

where each column of [Pht] and [Fkt] corresponds to a time step in the

integration procedure. The rows of [Pht ] cbrrespond to the modal degrees

of freedom. The rows of [Fkt] correspond to the different loading

functions.

The above procedure is used in both structural and heat transfer transient solutions. In

structural analysis, each combination of load function input and each time delay, T, for that

function of time_ defines a unique term Fk(t). In heat transfer analysis, additional functions

of time are defined for the cases of vector heat flux loads which change direction with time.

V
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11.3 NONLINEAR ELEMENTS

Nonlinear effects are treated as an additional applied load vector, (N}, whose elements are

functions of either displacements or velocities. {N} is added to the hight side of the equations

of motion and is treated in a similar but slightly different manner than the applied load vector,

{P}, during numerical integration (see Equation 31 of Section II.4).

In order to eliminate the cumbersome task of reducing nonlinear loads from the Up displace-

ment set to the ud or uh displacement sets, it is required that the points to which the nonlinear

loads are applied and the degrees of freedom on which they depend be members of the ud set, i.e.,

that they not be points eliminated by constraints. It is further required, for the same reason,

that if a modal formulation is used, the points referenced by the nonlinear loads be members _f

the ue set (extra points). Otherwise two complete modal transformations (one for displacements

and one for loads) would be required at each time step. The means for working around this res-

triction are explained later on.

NASTRAN at present includes only four different types of nonlinear elements. They are, how-

ever, sufficient to generate almost any type of nonlinear relationship when used in conjunction

with transfer functions and direct input matrices. It is expected that additional types will be

added later as a convenience to the user.

The four nonlinear elements are:

I. Arbitrary Function Generator

where

Ni(t) - SiF(xj) , (1)

Ni(t) is the load applied to uI,

Si is an arbitrary (cOnvenience) factor,

F(xj) is a tabulated function,

and xj is any (permissible) displacement or velocity component.

The function F(xj) is interpolated llnearly. Several nonlinear elements may re-

ference the same table, in order to avoid duplication of input preparation when several

nonlinear elements of the same type are used.

11.3-1 (I/30/81)
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r ....... _.L F "
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2. Multiplier

.

Ni(t) - Slxj-yk

xj and Yk are any (pemissib]e):pair of displacement or_VeloCity Components.

the same.

Positive Power Function

(2)

They may be

4. Negative Power Function

Ni(t) - Si(xj)_ xj > 0

- 0 xj _ 0

(3)

Ni(t}
- -si(-xj)= xj < o , ) (4)

)- 0 xj ) 0

The negative power function is the negative reflection of the positive power function for

the negative range of xj' _ may be any positive or negative real number. Taken together, the

positive and negative power functions are useful in representingsuch things as pneumatic springs,

hydraulic dampers, and latching mechanisms whose characteristicsare freauently represented by

power functions. -

As an example of the application of the nonlinear elements, consider the Coulomb damper con-

nected between degrees of freedom uI and u2 shown below.

F(V)

V

r_

F

Figure I. Coulomb damper.
_o

._
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NONLINEAR ELEMENTS

The forces exerted on the degrees of freedom are

Fl = F(V) ,

F2 _ -F(V) ,

(s)

where V - u2 " _l and F(V) is the step function of velocity shown above. The arbitrary function

generator is used to simulate the Coulomb damper, but if the independent variable is taken to be

a displacement, it is first necessary to create an extra point uel such that

Ue I _ u2 " Ul " pu 2 . puI (6)

This may be done by means of a transfer function (see Equation lO of Section 9.3.2). We may

then declare a pair of nonlinear loads

N1 " F(Ue l) ' (7)

N2 = -F(Uel) ,

applied respectively to uI and u2.

Alternately, if the independent variable is taken to be a velocity, the nonlinear loads can

be applied to uI and u2 without the need for creating an extra point. Thus
\

Nl = F(G2) " F(Ul) ' I (7a)

N2 = F(Gl) - F(G2) )
In order to avoid difficulty with numerical integration, the step in the force-velocity curve

shown in Figure l should be replaced by a ramp as shown below.

Figure 2.

F(V)

Recommended force-velocity curve for coulomb damper.
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The slope of the ramp should be large enough that, when the velocity changes sign, the value

of the velocity will lie within the interval _V for at least a few time steps in the numerical in-

tegration,

If a modal formulation has been used, the nonlinear loads may not be applied directly to

structural gridpoints. In this case a second extra point, Ue2, is created and the nonlinear load

is applied to It;

Ne2 - F(Uel) . . (8)

In addition, terms are added to the direct input matrix, [Kpp2], in order to provide Ue2 with a

unit spring restraint (so that it will be numerically equal to Ne2) and to produce forces on ul

The added terms to the equations of motion are
(and u2) that are equal (and opposite) to Ue2.

- l 0 O-

-l 0 0

1 0 0

Ue2

u1

u2

Ne2

0 (9)

The Coulomb damper may also be used to assist in the dynamic representationof plastic defor-

mation as shown in Figure 3 below.

I

u3 u2 KIK2/(KI - K2)

Coulomb
Damper

C+-Fo)

V

Figure 3. Plastlc deformation element.

11.3-4 0/30/81)
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NONLINEAR ELEMENTS

The springs shown in Figure 3 may be represented by scalar elements. The Coulomb damper is

represented in the manner described previously. The composite element exhibits the hysteresis

illustrated in Figure 3, which is a characteristic of plastic deformation. Additional break

points in the force-displacement curve can be produced by adding more springs and more Coulomb

dampers.

11.3-s (1/3o/B1)
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11.4 INTEGRATION OF COUPLED EQUATIONS

ll.4.1 Solution Technique and Procedure

The price paid for high efficiency in the numerical integration of differential equations is

a tendency toward instability. Frequently, a choice exists between an efficient algorithm that is

unstable for large time steps and an inefficient algorithm that is excessively stable and rela-

tively inaccurate.

In a structural dynamics problem, the stability limit of the integration algorithm may be ex-

pressed as the ratio of the maximum permissible time step to the period of the highest vibration

mode of the system. For very large systems a limitation of this kind is intolerable because the

period of the highest mode of the system is generally not known and is, in fact, zero for the

very practical case when the mass matrix is singular. Thus, every effort should be made to pro-

vide an integration algorithm that is stable for the widest possible spectrum of practical pro-

blems without sacrificing either accuracy or efficiency.

An integration algorithm will be described that satisfies these requirements. It is a particu-

lar form of the Newmark Beta Method (Reference I). The stability of the algorithm will be examined

and compared with the stability of other algorithms in the class to which it belongs.

The differential equations of a linear structural problem may be written in the general ma-

trix form

[p2M + pB + K]{u} - {P} , (1)

d
where p = _-T

Numerical integration is achieved by replacing p and pZ by finite difference ooerators.

p - fI(E) ,

p2. f2(E) ,

(2)

where the shifting operator, E, is defined by

un

un+l - Eun (3)

is the value of u at t - tn.

In examining the stability of a n_erlcal integration procedure as applied to Equation I, it

11.4.-1 (I/30/B1)
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is convenientto transform{u} into thenormalcoordinates{{} bymeansof th?matrixof eigen-

vectors,[¢]:

{u} = [¢]{c} (4)

The resulting equations for {{} are uncoupled and their stability may be examined one at a time.

The actual integration algorithm is applied to {u} rather than {{}. Before makinq the transfor-

mation, we must be sure that the transformation matrix [@] is independent of the way in which

is related to E in order to ensure that the results of the stability analysis apply to the actual

algorithm. If [B] is a linear combination of [M] and [K], i.e., if

[B] = aiM] + b[K] , (5)

where a and b are constants, the damping is said to be "uniform ='.

damping the eigenvalue problem is

[(p2 + ap)M + (l + bp)K]{u} • 0

For a condition of uniform

(6)

or, dividing by l + bp,

[XM* K]{u} = 0 , (7)

where

(2) l_ f (E) 2 + a f (E)

• I + op • "l + b firE) (8)

The eigenvalues, _i' of Equation 7 are related by Equation 8 to the corresponding eigen-

values, Ei, of the shift operator. The eigenvectors of Equation 7 depend only on the values of

the elements of [M] and [K]. They are, therefore, independent of the functional relationships

between _, p, p2 and E.

For the more general case of nonuniform damping, the eigenvectors are not independent of the

functional relationships between p, p2 and E. For such cases the stability theory to be presented

can oniy be regarded as approximate.

The question of stability has, by the above maneuver, been reduced to the examination of a

single second order differential equation that is representative of the uncoupled equations for

the normal coordinates, namely

]1.4-2 0/30/81)
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INTEGRATION OF COUPLED EQUATIONS

(Mp2 + Bp + K)_ - P (9)

In performing numerical integration of this equation by whatever scheme, the differential opera-

tor, Mp2 + Bp + K, is replaced by a function of the shifting operator, f(E), so that the stability

equation becomes

f(E) - 0 , (no)

which may have a number of roots, El , E2, E3, etc. The condition for stability of the integra-

tion scheme is that the amplitude of the homogeneous solution not increase as time increases,

which requires that

JEll_ 1 for I - I, 2, 3 .... (II)

for each of the normal coordinate equations. This is required because, from Equation 3

-IEI (12)

For all numerical integration procedures f(E) is, or may be reduced to, a polynomial. Consi-

der, for example, the case in which we let

P_ =' _(_n+l" {n)= _'t ( E - l)_n

.  n+2 V E2.

Then the stability equation is

, (13)

2E +I)_n (14)

which is a quadratic equation in E.

The cases in which f(E) is a second degree polynomial are of special interest because they

represent the simplest integration schemes that can be applied to a second order differential equa-

tion and also because they permit a thorough algebraic examination of the question of stability.

Let the quadratic equation be written in the form,

11.4-3 (1/30/81)
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E2 + 2bE + c = 0 , (16)

where the constant coefficients b and c are real functions of the physical parameters of the pro-

blem.

The roots of the stability equation are

= -b ± _- c (17)
EI,2

For c ) b2 IEi,2I - c, so that for this condition the system is stable provided that c < l_ •

For c < b2, the roots of Equation 17 are both real, so that

IEI,zI = IbJ-+b2_-c (18)

Stability limits may be obtained by substituting the limiting value JEi,2I = 1 into Eauation 18

and solving for c in terms of b. The result is

c = -1 _*2b , (Ig)

which represents a pair of straight lines in the b, c plane.

The stability limits that have been found bound a region of the b, c plane within which both

solutions to the quadratic equation are stable. The region is depicted in Figure l, below.

c

Figure I. Stability triangle,

,.-_.
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As an example of the application of the above analysis, consider Equation IS with the dam-

ping coefficient, B, set equal to zero. For this condition Equation 15 may be written as

E2 - 2E + l + A¢2 , 0 , (20)

where _@ - At ¢_

meters are b - -l,

is the phase change associated with the time step At. The stability para-

c - l + A¢2. The point (b,c) is outside the Stability triangle for any value

of _¢ except zero and the numerical integrationwill yield an unstable solution.

As a second, and more important example, consider the following central difference equivalent

of Equation 9 wherein (a) is an arbitrary coefficient, to be determined.

M _n+2 " 2{n+l + {n ÷ _ {n+2 " _n ÷ K a{n+2 + (l - 2a)6n+l + aEn = Pn+l

(21)

Note that the expression is symmetrical with respect to the n ÷ Ist time step, a condition

that will result in greater accuracy than an unsymmetrical expression. The coefficient (a) will

be determined by stability considerations. Normalize Equation 21 by multiplying by At2/M, which

results in the following stability equation:

where _ - AtB/M is a dimensionless time constant and A¢ has the same meaning as before.

The stability parameters are

-1 + 1(1 - 2a)A¢ 2
b -

l + _ ÷ a_¢2

l - _ ÷ a_¢2
C •

I + _ ÷ aA_2

(22)

(23)

The case T- 0 is of special interest because it implies no structural damping in which case

the original differentialequation from which Equation 21 was derived is marginally stable for all

values of A¢. For this case

11.4-5 (1/30/81)
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-I +½(I-2a)A¢ 2
b -

l + aA¢2
I

C =m l

ORIGINAL "r_

OF POOR OUALIT'/

(24)

v

so that, as A¢ increases from zero, the point in the b, c plane starts at the upper left corner

of the stability triangle and moves along the upper edge of the triangle. We desire that the

system be marginally stable for all values of 4¢. In Equation 24 let b attain its limiting value,

+l as 4¢ _ _. Then for the system to be stable

or

l _l -2a
2_ ' (25)

l
a _I (26)

This is an interesting result because it shows that unconditional stability (instability in-

dependent of size of time step) can be achieved with Equation 21 for certain values of (a). In

the usual finite difference approximation, (a) is set equal to zero which, of course, gives un-

stable results for sufficientlylarge 4¢.

It remains to show that the system point remains within the stability triangle for all posi-

tive values of z and all values of &¢, provided that Equation 26 is satisfied. The system point

remains below the upper edge of the triangle, c - I, for positive T, as may be seen from Equation

23. The condition for crossing either of the lower edges is, from Equation 19

c + 1 ± 2b - 0 , (27)

v

which becomes, after substituting for b and c from Equation 23

+ I m 2 + (l - 2a)(_b)2 .
T

l +_+ a(A_b)2 l +_+ aA@2 JL
o (28)

The denominator may be cleared since it is always positive for T > 0 and a > 0, with the result

4¢2 - 0 , (29)
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when the plus sign is chosen, and

4 + {4a - 1)_2 , 0 ,

when the minus sign is chosen.

CF ,_CCR QUALI,'-y

(30)

Neither condition can be satisfied for a finite A¢ provided that

a ? I/4. Furthermore, b and c are, from the form of Equation 2_continuous functions of T and _¢

for a _ O. The system polnt never crosses the boundaries of the stability triangl_ and the sys-

tem is stable for any _¢ provided that T ) 0 and a > I/4. Thus, if the original system of dif-

Ferential equations is stable, the substitute finite difference system will also be stable. Fur-

thermore, if one of the roots of the original system is neutrally stable, (Ti = 0), the corres-

ponding root of the substitute system is also neutrally stable.

In the integration algorithm provided with NASTRAN (a} is chosen equal to I/3, which is

somewhat larger than the stability limit, and which provides a margin of stability for more gene-

ral problems (e.g., those in which the damping is nonuniform or in which nonlinear terms occur)

than have been considered in the derivation. The difference equation, in terms of Ohysical coor-

dinates, u, based upon Equation 21 with (a) set equal to 1/3, is:

1 M + l_-_B + _.K {un+ 2} - _. {Pn+2 + Pfl+l + Pn} + {Nn+l} M ,. _-,K {un+ l}

+ -I M + _ B - K {un} (31)

{Nn+I} is the nonlinear load vector described in Section 11.3. Note that the load vector {P} is

averaged over three adjacent time steps in the same manner that [K] Is averaged. This is done in

order to provide statically correct solutions for massless degrees of freedom.

As long as the time step, At, remains constant, the matrix coefficients of {Un+Z}, {Un+ I}

and {un} do not change with time and they may be precomputed. The coefficient of {un+2} is

decomposed in a preliminary step into its triangular factors [L2] and [Uz]. The solution algo-

rithm consists of the forward pass

[tz]{Yn+2} " _ {Pn+z + Pn+l + Pn} + {Nn+1} + [Al]{Un+l} + [Ao]{Un} ' (32)

and the backward pass

[Uz]{Un+ 2} - {Yn+2 } , (33)

11.4-7 (1/30/81)
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The number of scalar multiplications required at each time step is approximately eoual to

4Nb where N is the number of equations and b is the bandwidth. A forward integration scheme

in which the coefficient of {Un+2} is [M]/&t2 where [M] is diagonal and nonsingular, requires

about one-half as many multiplications. The latter procedure, however, has stability and accu-

racy difficulties which can be overcome by reducing the time step to a very small value.

A great advantage of the unconditionally stable integration procedure is that it permits

large phase steps in the higher modes without incurring instability. The only limitation on the

time step is provided by accuracy considerations. It should be noted in this regard that exces-

sively small time steps produce large round-off errors while large time steps produce large finite

difference errors.

A measure of finite difference error in the numerical integrationis the discrepancy between

the eigenvalues of the original system of differentialequations and the eigenvalues of the sub-

stitute finite difference system. Of equal importance is the discrepancy in the amplitude of the

transient response. Numerical studies indicate that errors In amplitude and errors in frequency

have the same order of magnitude. A conventionalerror analysis (see, for example, Reference 2) of

the integration algorithm has been made in which it Is assumed that the phase step, AS, is small

compared to unity. Under these conditions the error in frequency (for a • I/3) is given by

wf 1
A52-- • ,I - _ + ---

W e

where wf is the frequency for the finite difference system and we

is I/4 radian, the error In frequency is a little less than I%.

;e 1 - _a¢ 2 + ---

(36)

is the exact frequency. If 45

The error in damping is given by

(37)

V

= -z

V

---

11.4-8 (I/30/81)
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One percent error in damping Is obtained for Z_¢equal to about I/5 radian. Note that the

error in damping is proportional rather than additive as in the case of bootstrap integration

procedures in which only the mass matrix is inverted.

In order to illustrate the error in the amplitude of response to transient excitation, consi-

der a simple undamped oscillator with prescribed initial conditions

mu+ku " 0 ,

u(o) - I ,

_(o) - o

(38)

The correct solution is

U Ii oo,< cos<R° t>
(39)

The approximating difference equation is

m(Un+2 - 2Un+l

with initial conditions

uo - 1

u.1 " 1

The exact solutton of the dtf_rence equation and the lntttal conditions, as obtained by the

method of undetermined coefficients, ts

Un I

where

and the phase step

cosB - l
COS n8 +_sln nS , (41)

I - _ A_2
cosB - (42)

l + _ _¢2

(43)
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For small phase steps, from Equation 36

_f _f• . -

OF POOR _._:.L.., ,

(44)

The ratio of the approximate amplitude of response obtained from Equation 41 to the exact ampli-

tude of response is

Af 2 sin

Thus the error in amplitude has the same value and opposite sign as the error in frequency.

An estimate of the total number of time steps required may be obtained with the aid of EQua-

tion 36. For example, assume that a solution is to be obtained for a time interval eoual to five

times the period of the lowest mode. Assume further that I0% error in frequency and amplitude is

permissible for modes with frequencies higher than ten times the frequency of the lowest mode.

The permissible phase step relative to the lowest mode is therefore about .09 radlan. The total

number of time steps is 5 x 2v/.09 = 349.

Initial conditions are specified by the user as the values of physical displacements {Up} and

velocities {_p} at t - O. Nonzero initial conditions are only permitted for a direct problem for-

mulation. The specification of nonzero initial conditions for a modal formulation is not permit-

ted because the selection of a number of modes less than the total number of degrees of freedom

places constraints on the physical points that are incompatible with an arbitrary set of displace-

ment values.

In a direct formulation, the initial conditions for all unspecified degrees of freedom are

assumed to be zero, so that the user must be careful to provide a complete set of initial condi-

tions. Initial conditions specified for points that are eliminated by constraints or by the

Guyan reduction are ignored.

The initial conditions presented to the integration algorithm, Equations 32 and 33, are the

values of {%}, {u l}, {Po } and {P_l}. Two alternative starting methods have been provided, each

having its own advantages. The first method is as follows:

The values of {u l}, and {P.I} are computed on the assumption that the acceleration for t < 0 is

zero. Since the mass matrix [M] may be (and often is) singular, the evaluation of the accelera-

tion at t = 0, from the load at t - 0, may be impossible in any case.

V

V
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{u.1} = {uo} - {_o}At , (46)

[P.I} - [K](U.l}+ [@]{Uo} . (47)

In addition, the load specified by the user at t = 0 is replaced by

{Po} - [K]{uo} + [B]{Go} , (48)

which, in effect, sets the acceleration to zero at t = O. The main reason for doing so is to

avoid the "ringing" of massless degrees of freedom that are subjected to steo loads. Consider,

for example, that[ML [BL and[Nlare zero in Equation 31, which then becomes

1 p + Pn } . (49)_[K]{Un+2 + Un*l * Un} = i"[ n+2 + Pn+l

If the values for {P_l } and {Po } given by Equations 47 and 48 are substituted into Equation 49,

then

{uI} - [K]'I{PI } ,

i.e., {uI} is the correct static solution for any initial conditions.

time steps will also be correct.

(50)

Solutions at subsequent

On the other hand, supDose that Po = Pl = P2 " " " = l and that

the initial conditions are uo = GO = O. Then U.l

values of un, considering only a single degree of

u0 •

uI •

u2 •

u3 =

u4 •

u5 •

u6 =

etc.

• O, from Equation 46, and the sequence of

freedom, are

0 ,

Z
,

1
,

O I

2

l

0 I

(51)

11.4-11 (1130181)
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Thus the solution continues to "ring" indefinitely. The example cited is quite practical

because the application of a load to a point which is restrained by a very stiff spring is often

used to simulate the time history of an enforced displacement.

Although the starting algorithm shown in Equations 46 to 48 eliminates the problem of massless

degrees of freedom, an approximation error is Intorduced in the initial velocities. Note that the

initial load, Po' given by the user is ignored and the initial acceleration is assumed to be zero.

These assumptions are approximate for the general case in which an initial load is applied to mass-

loaded degrees of freedom.

For example, consider a single degree-of-freedom system having only mass and initial conditions

Uo " Uo = O, and a constant applied load P(t) - M. Using Equations 47 and 48 to determine Po and

P-I" the calculated and theoretical sequence of displacements and velocities are

Calculated Theoretical

Step Displacement Velocity Displacement Velocity

0 0 I/6 _t 0 0

l .33 Atz 2/3 At .5 At2 At

2 1.33 At 2 1.5 At 2.0 At 2 2At

3 3.33 At 2 2.5 At 4.5 At2 3At

4 6.33 At 2 3.5 At 8.0 At 2 4At

5 10.33 At 2 4.5 At 12.5 At 2 5at

Note that the calculated velocities lag the theoretical velocities by At/2. In ef?ect, a con-

stant velocity error of_ ,as been introduced by ignoring the initial load. Because of this

"drift", the displacement errors become progressively larger. Hence, the user is cautioned to be-

ware when the initial loads are significant. If the structure is initially at rest, better answers

are obtained using the second starting method option, described below.

To correct the above errors, which occur when the initial loads are dominant, a second (or al-

ternate) starting method is provided. In this method, the initial load at t - 0 is assumed to

be discontinuous, i.e., at t < 0 the load is described by Equation 48, at t _ 0 the user input load

is included. Thus

V

--t

11.4-12 (1130181) _
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Po=½1Pou+[K ] {Uo}+[B ] {_o}I , (S2)

is the initial user-defined load and {uo}, {u i}, andr{P.1} are the same as in the first

method. The resulting equation for the first time step, obtained by substitution in Equation 31,

is

l 1 l • +
{ {Pou ÷ 2Pl} " _ [K] {uO} + _ [B] (uo} + _ [M] _u o GO _t}. (53)

For all points _massless degrees of freedom, Equation 53 provides correct ?Jrst order

results. For the massless points, the effects of non-equilibrium initial conditions provide errors

equal to one-half the errors given in Equation 51.

It is frequently advantageous to change the size of the time ste_ one or more times during

a solution. For example, higher frequency components may be damped out auickly so that after a

while errors in the higher frequency modes become unimportant, and an ecomony without loss of

accuracy can be obtained by increasing the size of the time step. At the time of the change, the

system matrlces [Ao], JAIl, [L2] and [U2],Equations 3Z to 35, are recalculated and In_tlal condi-

tions {Uo}, {u]}, {Po} and {Pl } are set internally to restart the integration algorlthm. The

criterion used for selecting the new initial conditions is that the displacement, velocity and

acceleration are continuous at the time of transition.

Let N be the last step with the previous time step, At I. The formulas used for calculating

the previous velocity and acceleration at the transition are

l

(GO } - A-_l (uN - UN. I} ,

. 1

{00} _ {UN - 2UN_ 1 + UN_ 2}

(54)

11.4-13 (i/3o/81)
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The initial conditions for the new integration are

(%} = {uN}

{U_l} • {uN} - _t2 {uo} ÷ ½_t22{Uo }

{Po} = (PN} ,

[K]{U.l} + [B]{_.l} + [M]{U.l}

[K]{U.l} + [B]{Go

{P.l} I

- At2uo} + [M]{uo}

(55)

, (56)

(57)

, (58)

where At2 is the new time step. Note the assumption, in Equations 56 and 58, that the acceleration

is uniform for t _ NAtI. A smooth transition is thereby assured.

The outputs of the transient analysis module include velocities and accelerations as well as

displacements. The formulas used for velocity and accelerationare

(_n} = _{Un+ l - Un.I} , (59)

(Un} • _ {Un+l - Zun + Un.l} (60)

The output may be requested at even multiples of the integration time step, i.e., for every

step, every second step, or every third step, etc. This feature affords some economy in output

data preparation in cases where a small time step is needed for greater accuracy.

II.4.2 The CONTINUE Feature for Coupled Equations

In transient analysis, it is frequently necessary to continue the inteqrationof the coupled

equations beyond the last (or from any earlier intermediate)output time for which the solution was

obtained in a previous run. Thus, the initial time for the new run is to be a specified output time

of the previous run. Also, the displacements,velocities, and accelerations correspondlnq to the

specified output time of the previous run are to be used as the initial conditions for the new run.

A capabilitycalled the CONTINUE feature makes it possible to do this without re-executingthe entire

problem. It is available in both Rigid Formats g and 12 (DisplacementApproach).

In order to use the CONTINUE feature, the user first requests a checkpoint of a coupled tran-

sient analysis problem in a normal manner. This run can terminate for any reason so long as the

TRD module computes the solution for at least one output time and the UDVT (displacement-velocity-

11.4-14 (1/30/81)
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acceleration) file is successfully checkpolnted, (The T_L (list of output times) file would have

been previously checkpointed subsequent to the execution of the TRLG module). The TRD module also

sets the parameter NC@L to be equal to the number of output time steps (which is also equal to one-

third the number of columns in the UDVT matrix).

The user then restarts and activates the CONTINUE feature by changing any one or more of several

cards either in the Case Control Deck (DL_AD, NONLINEAR, TSTEP cards) and/or in the Bulk Data Deck

(TSTEP, DAREA, DL_AD, F@RCE, etc.) that define either the dynamic loading and/or the time step se-

_r

lection. This forces the re-execution of both the TRLG and TRD modules. Note that the dynamic

loading and/or the time step selection in the restart need no..__tbe the same as that used in the

checkpoint run, but the structural model and the constraint data mus_.___tbe the same.

The CONTINUE feature causes the integration of the coupled equations to continue from the

specified output time of the checkpoint run. The first displacement of the restart (or continued

run) is given by

[D] {uI} = _ {P-I + PO + P1 } + {No} + [C] {un} + [El {u.l} , (61)

where the matrices [D], [C] and [El are as defined in Section 4.65.7.3 of the Programmer's Manual

and,

{Po } " [K] {un} + [B] {0n} * [M] {Un } , (6Z)

{u l} - {un} - At {_n } + A_ {_n} , (63)

{_.l} - {On} - {_n } At , (64)

and {P_l} = [M] {Un } ÷ [B] {_.i} + [K] (u l} , (65)

where [K], [B], and [MI are as defined in Section II.4.1, {Un}, {Gn }, {Un} are the displacements,

velocities and accelerations, respectively, at the specified output time tn of the checkpoint run,

and At is the initial tlme step for the restart. {PI } is the load at time t - tn + At and {NO}

is the initial non-linear load.

*Additionally, if the user wishes to restart the integration from an intermediate (rather than the
last) output time of the checkpoint run, the parameter NC)L should be appropriately reset (to corres-
pond to the desired intermediate output time) by means of a PARAM statement just before the TRLG
module in the DMAP sequence. This is done by means of a DMAP alter in the Executive Control Deck
of the restart,

**The errors that are inherently introduced by the restart IEquations 63 through 65) may be minimized
by selecting the initial time step in the restart to be the same as the time step used in the check-
point run Just before the restart.
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The output of the restart does not include the so]utions of the checkpoint run, but only those

solutions that are computed by the restart. Also, any initial conditions specified in the data for

the restart are ignored since the solution is continued by using the displacements, velocities, and

accelerations corresponding to the specified output time of the checkpgint run as initial conditions.
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ll.5 INTEGRATIONOF UNCOUPLED LINEAR EQUATIONS

When there are no direct input tams, i.e., when [Mdd2] = [Bdd2] - [Kdd2] - 0 , and when

there are no nonlinear terms, the equations of motion using the modal formulation are uncoupled.

Each modal coordinate, Ci' satisfies a separate second order differential equation,

mini +bl _i +ki {i " Pi(t) ' (1)

which is convenient to rewrite as

_i + 2B _i + _oz {i - mllPl(t) , (2)

where

bi
(3)B " __ ,

_"i

v

kI
_ - -- (4)

o mi

The general solution to Equation 2, expressed in terms of arbitrary initial conditions, r_-_1 ,n

and _i,n at t - t n, and a convolutlon Integral of the applied load, Is, for t _ t n,

l It G{t-T) PI(T) dT
(I(t) " F(t'tn) (l,n + G(t'tn) (l,n + _?,tn

(s)

The functions F and G are combinations of the homogeneous solutions

(-B _ _B2 " _oZl)(t-tn)
{l(t) - e (6)

F and G satisfy, respectively, the initial conditions for unit displacement and unlt velocity.

The applied load, Pi(t), Is calculated by the procedures described in Section II.2 at times

tn - to + nh where h is the time increment and to Is the time of the last change In time Incre-

ment. It Is assumed that the load varies linearly bei_een tn and tn+I, so that, In Equation 5,
-t.--.

ll.6-1 (1/30/81)
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T - Pi,n ) (7)Pi {T) = Pl,n + _ (Pi,n+l

V

For this form of the applied load the integral in Equation 5 can be evaluated in closed form.

The general form of the solutions at the next time step, t = tn+l, in terms of the initial condi-

tions at t = tn and the applied loads, is

(i,n+l = F (l,n + G _i,n + A Pi,n + B Pi,n+l ' (8)

I I I I

+ A + B Pi (g)_i,n+l = F {i,n + G _l,n Pi,n ,n+l

The coefficients are functions of the modal parameters, mi, B, %2, and of the time incre-

ment, h. The uncoupled modal solutions are evaluated at all time steps by recurrent application

of Equations 8 and g. The accelerations, which may be requested as output, are calculated by

solving for _ from Equation 2:

_i,n+l " mI " ,n+l %2 ,n+l !

The algebraic expressions for the coefficients in Equations 8 and g depend on whether the

homogeneous solutions are underdamped (%z > B2), critically damped (%2 = B2), or overdamped,

(%2 < Bz). In addition, a separate set of expressions is used for undamped rigid body modes,

(_o = Bo = 0). For reasons of numerical stability, the expressions for the critically damped

case are used within a small interval near the critically damped condition, (l_o2 - BzI < EI%2),

and the expressions for the undamped rigid body case are used within a small region near the

rigid body condition, (_2 + B2)I/2 h < _z" The coefficients for all four cases are listed in

Table I.

Once the coefficients have been eval_uated, the integration algorithm, Equations 8 and g, pro-

ceeds very rapidly, provided that the time step, h, is not changed frequently. The algorithm is

about as efficient as the finite difference integration algorithm, Equation 31 of Section II.4,

but is much more accurate. It is also more efficient, by a very large factor, than algorithms

that employ convolution integrals over the entire preceding time history.

V
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Formulas for the Coefficients in Equations B and g.

Define:

I.

Underdamped Case, (moZ . B2)imo2 ) {: = 10-8

F - e'Bh(cos_h + _ sin_h)

v

G " ! e-Bhsln_h

A w

_ i\_o, \_o_ _o_

-'IE I :_o_)

2

F = . _° e-_hsin(_h

G' - e'Bh(cos_h - _ sinmh)
W

' l
[e'Sh{(8 + hWoZ)Sin_h. + _cosmh} - w]A z

hT_

2.

' 1
B - hTm [-e'Bh(Bslnmh + _cosmh) + m]

Critically Damped Case, IroD' " 821 <c: - I0-8

I _o_ I

F - e-Bh(l + 8h)

G • he"Bh
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3,

i

G = e'Bh(l- Bh)

A = + hB + h=B z) -

B = _ I - e'Bh(Bh + 1)

Overdamped Case, (_o 2 - Bz)/% z -<" ¢_ = "10"8

F - e'Bh(cosh_ + _ slnh_h)
¢d

G " _ e'=hsinhuh
W

A •

B =I

-hB sinh_h ° _ + h_ cosh_h +

_0 2 _(_0 2 _0 Z

1 - .- sinh(=h + _ cosh(oh + _h -e-Bh F_ z + 6 z 2_W3

L %z %= %=

F' = %Ze'Bhsinhuh

V

!

G = e-Bh(cosh_h- _-sinh_h)
_d

' l
A . _ [e'Bh{(B + h% z) sinh_ + _cosh=h} - _]

B - [-e-6h(Bsin h=h + _cosh=h) * ¢u')

1'I.5-4 ( 1/30/81 ) V
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Undamped Rigid Body Modes, (_z + 62)I/2 h < ¢2 = I0"6

F - ]

G - h

h2

A •

h2

!

F . 0

G • l

OF POOR QU_3'..;,-y
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If.6 TRANSIENT ANALYSIS BY THE FOURIER METHOD OF FC_R _ _._.'(

Transient analysis by a Fourier transformation is separated into three phases. First, the

loads (defined as a function of time) are transformed into the frequency domain. Second, the re-

sponses are computed in the frequency domain. Third, the responses (in the frequency domain)

are transformed back to the time domain.

Two forms of the transform are considered, the Fourier series and the Fourier integral, which

are defined in Table I. Both methods must be numerically modified, which produces approximations.

The inverse transform includes an infinite sum, for which only a finite number of terms are

numerically evaluated. This approximation leads to truncation errors. The inverse Fourier integral

must be numerically integrated, which leads to integration errors. The number of frequencies at

which the integrand is evaluated is limited by cost of calculations.

Table I. Definitions of Fourier Transforms

A. The Fourier Series

The basic time interval is 0 < t < T, with the Function periodic. The circular Frequencies

are given by

_n " 2xnaf , (I)

&f = I/T (2)

The load transformation for a load at point a is

Pa(_n) =

The response at point j is given by

uj(w n)

The response in the time domain is

uj(t) - (_.,l_)_½)u(O) ÷

where Re means "real part of."

, -i_nt

Pa(Ue dt (3)

- Hja(Wn)Pa(_ n) (4)

_ i_nt IRe(uC_n)e )j , iS)
n=]

OHALI'I_L,,_,("
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Table 1 (Continued)
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B. The Fourier Inteqral

This is the limit as T ÷ ®, Af + O, 2_n_f + +of the Fourier series.

tinuous variable.

Pa(w) + /Pa(t)e'i_tdt
o

_j(_) = Hja(_)Pa(_) ,

uj(t) = (l/r) fRe(_(_)eiwt)dm
0

Here, _ is a con-

, (6)

(7)

(8)

11.6.1 Transformation of Loads

The user specifies loads in the same manner as given in Section 11.2. The two general forms

are the tabular (Equation 3) (plecewise linear) and the general purpose Function (Equations 4 and

5). The transformation is given by Equation 6 in Table 1 above, in which it is assumed that the

user defines a function which vanishes for_t > T ..........

For plecewise linear tabular functions, a table of pairs (xi, Yi ) (i = l, N) is prescribed,

which defines N-I time intervals. In addition, an X/ shift and an X2 scale factor are allowed.

Thus, the time-dependent load at point j is given by

t - Tj - X1 )Pj(t) - AjY X2 (9)

Aj and zj are an amplitude factor and a delay which may depend upon the point which is loaded.

The transformed load is

N-I

Pj(_) - Aje'i_zJ X2.i! l (Xi+l - xi)(LiY I + RiYi÷l)/2 ,
(I0)

_

where

-Im(XI+X2 xi)
L i -.e E2(-i_XZ(xi+ 1 - xi)) , (ll)

Ri - e-i'''(Xl+X2xi+l)E2(+imX2(xi+ l - xi)) , (12)

II.6-2 (1/30/81) V
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TRANSIENT ANALYSIS BY THE FOURIER METHOD

and

E2(z)=

z2-_-(eZ-l-z) for large z

Z 2

I * _ _3_T_) • ,.. for small z

The general purpose function is defined by

Aj _ne_tcos(2xf_ + @) 0 < t < T2 - T I

0 Otherwise

ORIGINAL P:_C-_ _
OF POOR QUALITY

(13)

, (14)

v

where

- t- Tl - Tj (lS)

The value of n ts restricted to be an integer for transient analysis by the Fourier method, The

transform is given by

In Equation 16

Pj(_) = Aj e-l_TJ + - T1)n+1(R2 RI)(T 2 IZ(n+1)

R2 = ey En+l(Z) ,

y = I_ + (_ + i2_f)(T 2 - TI) - i_T 2 ,

z - -[_ + i2_f - i_](T2 - T I)

RI is the same as R2 except the signs of @ and f are reversed. Also,

I_ + Z ÷ Z 2

' _ (K÷I)(K+Z)

Z 3
÷

(K+I)(K+2)(K+3)

The second form is used for small values of z.

÷ Q,!

(16)

(17)

(18)

(ig)

(20)

Theseloads,which appear in the form required for frequency response, are transformed to the

modal coordinates exactly as in the modal frequency response method.

One other source of loads for aeroelastic problems is a one-dimensional gust. The same time

dependencies are allowed as defined above& however, the amplitude (Aj) and delays (_j) for the

11.6-3 (l/3O/el)
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aerodynamic elements are computed from areas, dihedrals,and coordinates in the flow direction.

II.6.2 Calculation of Frequenc X Re_onse

The responses are computed by the method for coupled equations (see Section 12.2), since in

aeroelasticity, which is the principal area of application, the aerodynamic matrices produce modal

coupling. The aerodynamic matrices are computed at a few frequencies, and automatically inter-

polated to the others for computationa] efficiency. For small problems, a special core-held

equation solver is used to increase the efficiency.

II.6.3 Inverse Transformation of the Response

The response is found From numerical approximation to Equation 8 or from the Fourier series

result (Equation 5) which can be thought of as a special Form of approximation to the integral

(Equation 8). Three approximate methods have been coded to evaluate the inverse. In all cases,

the quantity _(_) is first calculated at a set of frequencies, _i' by the frequency response

module. The _i's do not need to be equally spaced. For all methods _(_) is set equal to zero

outside the range of w's computed. The methods are:

Method 0 - Approximate _(_)e iwt as a constant in each interval. This method reduces to the

Fourier series approximation, Equation 5, for equal frequency intervals.

Method l - Fit _(_) with a piecewise linear function, and do not approximate ei_t.

Method 2 - Fit _(w) with a cubic spline function, and do not approximate eiWt.

Consider Method 2. Solving the "three-moment equations," the second derivatives _"(_) can

be Found at each _ for which a frequency response has been computed. Then, in any interval

_i < w < _i+l'

_(m) = [_(_i)'S + _(_i+l)-r] - [(_i+l " _i)z/6]'Eu"(_i )(s's') + O"(_i+l )(r'r3)] ' (21)

where

s = 1 -rr= (m-wi)l(mi+ 1 - uI) I"

Integrate Equation 8, using Equation 21 for 0(_), and sum over the intervals.

terms for each wn, with the result,

(22)

Then collect the

11.6-4 (l/30/81 )
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N
u(t) (I/_) Z Re([C.(t)O(_.) - l_nt

= + Dn(t)u"(Un)]e }
n=l _ " "

O_)_,)_.j_L-..._.L_.-:;:

OF .--,3-St__J'"--"' '

, (23)

_n'_n.l
Cn(t ) = T E2(-it(Wn-_n.l)) + _n+l'C_n E2 (it(_n+l'Wn)) , (24)

(_n'_n'l)324G(it(_n'Wn-l)) (Wn+l'_n)J24= - - Gkit(wn+l-_n)!( _ (25)Dn(t)

For the first term in Equation 23 (n=l), use only the second terms on the right side of Equations

24 and 25. For the last term in Equation 23 (n=N), use only the first terms on the right side of

Equations 24 and 25. Also,

G(z) = 2E2(z) - E4(z) , (26)

where EK(Z) is given by Equation 20.

The above form for the inverse transform has two advantages. Numerical problems for small

values of _ are efficiently evaluated by choosing the series form of Equation 20. Also, the

other two methods are easily derived as subcases. If u" terms are removed from Equation 21, a

plecewise linear fit occurs; thus, Method l results are given by deleting _" from Equation 23, i.e.,

N [ l_ntI
u(t) = (I/=)n_lRe Cn(t)_(Wn)e j , (27)

with Cn defined by Equation 24. Method O results if we replace E2 by l.O in Equation 24.

The above procedure for Method 0 always multiplies the first and last term in the series by

I12. In order to force agreement with the Fourier series, which is the limiting case of equal

frequency intervals, the first term in the series is multiplied by I/2 only if the value of the

first frequency is zero.

Other special considerations are given the equal frequency interval case. If all Af's are

equal, and the first frequency is an integer multiple of Af, the time step At is adjusted to make

Af.At = I/Integer, which reduces the number of distinct values of sin _nt and cos =nt used in

Equation 27. Also, Cn(t) and Dn(t) (Equations 24 and 25) become independent of n and do not need

to be computed at every frequency.

11.6-5 (1/30/81)
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Some important practical considerations must be observed to use these methods successfully.

To illustrate one problem, consider the response of a simple damped oscillator to a pulse (Figure

l). The upper three curves show the pulse and the response of the system if it is very stable

and then slightly stable. Using the Fourier method, the pulse is replaced by a series of pulses,

with period I/Af. As can be seen, this gives good results if the system is very stable, but an

incorrect impression if the system is slightly stable. Thus, in order for the results of the

Fourier method to be valid:

a. The system should be stable,

b. The forcing functions should be zero for some time interval to allow decay, and

c. The frequency interval Af S I/(Tpuls e + Tdecay).

If the system has unstable modes, these will appear as a precursor before the pulse, Just like a

"stable mode in the reverse time." In general, Methods l and 2 are more accurate than Method O.

However, these methods introduce positive artificial damping into the result, which may lead to

erroneous conclusions in stability studies. To see this, consider the function Cn(t ) in Equation

24. If equal frequency intervals are chosen, then

On(t) _I _ "

l - cos(tz_)
½(t_)2 -_(1-½(_)'+...)

Method 1

Method 0

(28)

Thus, Method 1 (and also Method 2) produces a decaying envelope which the usermey incorrectly

interpret as additional damping.

The use of equal frequency intervals versus unequal intervals has been studied (Reference l).

It has been found that the combination of a few well-chosen values near the resonant frequencies

and a uniformly spaced set of frequencies produces excellent results for liohtly damped systems.

V

V
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Figure I. Response of a Damped Oscillator to a Triangular Pulse.
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12. FREQUENCY RESPONSE AND @IDOM ANALYSIS

12.1 INTRODUCTION

The ability to calculate the response of a system to steady sinusoidal excitation is important

both because such excitation exists fn the real world and because methods for solving other prob-

lems often depend on the knowledqe of frequency response. The latter category of problems includes

stability analysis (via Nyquist diagrams or Bode plots), random response analysis, and transient

response analysis (via Fourier or Laplace transforms).

In NASTRAN, the calculation of frequency response and its use in random response analysis are

performed by separate modules. There is at present no internal application of Frequency response

results to stability problems or to transient problems.

It is assumed that the reader fs famfTfar with the theory of steady-state frequency resoonse

(which reduces linear differential equations to linear algebraic equations) and with the rudiments

of random noise theory. The equations of motion are assumed to be linear and the statistical pro-

perties of the random excitation are assumed to be stationary with respect to time.

12.1-i(i/3o/81)
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FREQUENCY RESPONSE AND RANDOMANALYSIS

12.2 FREQUENCY RESPONSE

Figure 1 shows a simplified flow diagram for the frequency response module. The calculations

are of two kinds: the generation of loads; and the solution of the dynamic equations to obtain a

displacement response vector. Subsequent data reduction procedures are discussed in Sections g.1

and 9.4.

In static analysis a number of automatic load generating subroutines (gravity load, pressure

load, temperature-induced load, etc.) are employed in order to simplify the user's task of input

data preparation. Similar schemes are not made available for dynamic analysis, mainly because of

the great variety in the possible sources of dynamic loads. All that is done in frequency response

analysis, and perhaps all that should be done, is to provide the user with a flexible input data

format which allows for a varying degree of generality vs. simplicity.

The generation of dynamic loads can, at least in principle, be a formidable task. The most

general form of loading in ?requency-response analysis is one that varies arbitrarily in magnitude

and phase with respect to the point of load application and with respect to frequency. Even for a

problem of moderate size (say 200 degrees of freedom and 50 frequencies) the data set required to

specify a general loading is large (200 x 50 = 10,O00 entries). Thus it is desirable to have input

data forms that accommodate special cases.

In NASTRAN, the dynamic load vector that is used in a specific subcase, {pjC}, is constructed

combination of component load sets, {pjk}.as a

{pjC(_)} = I Sck{pjk(_)} ' (l)

where Sck is a factor that gives the orooortion of component load set k used in combined load set

c. The advantage of this system is that it Facilitates the examination of different combinations

of loads from different sources. The f0rm provided for specifying a component load set is

i(ejk - _Tjk)}.Gk(W ){pjk(_)} = {Ajk e , (2)

where Ajk, Bjk and Tjk are tabulated coefficients that may be different for each degree of freedom

(J). Gk(_) is a tabulated complex function of frequency {with two alternate forms) that Is lln-

early interpolated to the frequencies, _t' at which solutions are requested. The form provided by

iz.z-I (I/3Olal)
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Equation 2 is most useful for loads due to traveling waves (in air, under water, or in the earth).

A meaningful interpretation of the symbols in Equation 2 for such problems is l:hat Gk_(W) is the

pressure produced by the wave, that Ajk is the exposed area associated with the jth degree of free-

dom, and that Tjk is the travel time required for the wave to reach the Jth degree of freedom.

The coefficients Ajk, Ojk and Tjk are tabulated separately and one list of coefficients may

be referenced by several load sets. Complete generality can be obtained with Equations l and 2 by

identifying each load set with a sDeciflc frequency, i.e., by specifying

Gk(m) - 1 ' _ = _k "

(3)

Gk(_) = 0 , _ # _k

The loads are referred by the user to the displacement set, up, that includes all physical

points (structural points, Ug, and extra points, Ue). The reduction to final form consists

of applying single and multiooint constraints, the Guyan reduction, and in the case of a modal

formulation, the transformation to modal coordinates. Except for the modal transformation, the

steps are identical to those for the reduction of static loads to final form described in Section

3.6.2. The loads on extra ooints are simply included in their proper seauence in each intermedi-

ate vector. The specific operations are

I. Partition Pp into Pm' loads on points eliminated by multipoint constraints, and _'n"

(4)

2. Apply multipoint constraints.

{Pm } = {_'n } + [Gm]T{Pm } (5)

V

V

3. Partition Pn into Ps' loads on points eliminated by single ooint constraints, and Pf.

{Pn } - (6)

4. Partition Pf into Po' loads on points eliminated by the Guyan reduction, and Fd"

]2.2-z (1/30/81)
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{Pf} - (7)

5. Apply the Guyan reduction.

{Pd} = {Fd} + [Go]T{Po } (B)

6, For a modal problem formulation only, transform Pd to the modal coordinates uh, see Sec-

tion 9.3.

{Ph} - [¢dh]T{Pd } (9)

The above operations can be time-consumlng if there is a large number of load vectors to be

transformed. If the vector of time constants, Tjk, in Equation 2 is null, the relative magnitudes

and ohases of the loads at different grid points are independent of frequency. In that event the

load transformation is apDlled once for each load set to the complex coefflclent_Bjk - Ajk eiSjk,

before the transfomed load sets are combined. If Tjk is not null for every load set in a parti-

cular cmblned load, {ppC}, the reduction procedure Is aDplled to the combined load for each fre-

quency,

For a direct formulation the equation to be solved is

[. 2 Mdd + l_Bdd + Kdd]{_d} . Tpd} , (lO)

while for a general modal fomulatlon, including direct (nonstructural}input the equation is

[. 2 Mhh + l_hh + Khh]{Uh} . {ph} (ll)

The direct input matrices [Mdd2], [Bdd2]. and [Kdd2] (see Section 9,3.3), are pemltted to be

dependent on frequency. If they are, an exit is made I_ the dynamic matrix assembler, GKAD, after

each frequency (see Figure l). The user can request solutions for a specified list of frequencies,

or he can request a uniform or a logarlthmlcdlstrlbutlon of frequencies In a speclfled range.

The selectlon of zero as a frequency pemltz the user to solve static problem wlth nonstructural,

[Kdd2], terms.

12.2-3 (l/30/81)
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The standard matrix decomposition and solution routines provided with the program are used in

the solution of Equations lO and If. The following options are available: (a) double-precision

arithmetic with row interchanges (partial pivoting); (b) double-precision without pivoting; (c)

single-precision without pivoting. Option (a) is the default option.

If, in a modal formulation, there is no direct input, i.e., if [Mdd2] = [Bdd2] = [Kdd2] 0

the equations are uncoupled and a separate procedure is used as indicated in Figure I. The solu-

tion ?or the modal coordinates is simply

, (12)
{_i } = "mi_2 ÷ ibi_ + ki

where mi, bi, and ki are the generalized mass, damping and stiffness of the ith mode (see Section

9.3.4), and Pi is the ith component of {Ph}.

The evaluation of Equation 12 is trivial compared to the solution of Equation I0. It is not

true, however, that a modal formulation of an uncoupled problem is always more efficient than a

direct formulation, since it is first necessary to calculate the modes and to transform the loads

and then, afterwards, to obtain physical coordinates from _i by the modal transformation. The

question of whether the modal approach is more efficient for any given problem depends on several

factors, including the number of modes, the number of response frequencies, the bandwidth of the

problem when formulated directly, and the presence or absence of nonstructural coupling.

The results obtained by the Frequency Response module are passed to the Dynamic Data Recovery

module for further processing and thence to other modules in the data recovery chain, see Figure 1

of Section 9.I. The results that may be requested in either printed or plotted form include the

components of displacement, acceleration and velocity; components of applied loads; and selected
....... _ _: _. -_ _ _ _T _ -, :_/!! ....

Inte_al_+orces and SEresses. 'Re printed information may be sorted by frequency or by component.

The plotted information consists of the magnitude and phase angle of any component plotted versus

frequency. The magnitude scale is either linear or logarithmic and the frequency scale is either

linear or logarithmic.

J

V

12.2-4 (1/30/81)
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Flow diagram for frequency response module, (FRD).
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12.3 RANDOM ANALYSIS

The application of frequency response techniques to the analysis of random processes requires

that the system be linear and that the excitation be stationary with respect to time. The theory

includes a few important theorems which will be reviewed.

An important quantity in random analysis theory is the autocorrelation function, Rj(T), of a

physical variable, uj, which is defined by

lim I I T uj(t) uj(t-T)dt (1)
Rj(T) = T--T o

Note that Rj(o) is the time average value of uj 2, which is an important quantity in the an-

alysis of structural failure. The power spectral density Sj(_) of uj is defined by

(2)

It may be shown (using the theory of Fourier integrals) that the autocorrelation function and

the power spectral density are Fourier transforms of each other. Thus (1)

Rj(T) - _ I_ Sj(_)cos(,,_)dw , (3)

from which follows the mean-square theorem,

uj2 = Rj(o) = _-_ Sj(_)dw

The expected value of the number of zero crossings with positive slope, or mean frequency, is

a quantity of interest for fatigue analysis, airplane design for gusts, etc. This frequency, No,

can be found from the power spectral density.

1
(1)The factor _-_ in Equation 3 is omitted by some authors, and is sometimes replaced by other fac-

tors. The value of the factor depends on the definition of Sj(_), Equation 2.

k /
v lZ.3-1 (I/30/BI)
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= = o (4a)No

The frequency NO is thus the root mean square frequency, where the power spectral density is used

as a weighting function.

The transfer function theorem (Reference l) states that, if Hja(=) is the frequency response

of any physical variable, uj, due to an excitation source, Qa' which may be a point force, a Ioad-

ing condition or some other form of excitation, i.e., if

uj(u) = Hja(=) • Qa(=) , (s)

where uj(=) and Qa(m) are the Fourier transformsof uj and qa' then the power spectral density of

the response, Sj(_), is related to the power spectral denslty of the source, Sa(u), by

112Sj(_) " Hja(U) " Sa(_) (6)

Equation 6 is an important result because it allows the statisticalproperties (e.g;, the

autocorrelationfunction) of the response of a system to random excitation to be evaluated via the

techniques of frequency response. Another useful result is that, If sources Ql' Q2' Q3' etc., are

statistically independent,i.e., if the cross-correlationfunction between any pair of sources

lim I -FT
Rab(T) = T _"==_F]o Qa(t) Qb(t-T)dT , (7)

Is null, then the power spectral density of the total response is equal to the sum of the power

spectral densities of the resoonses due to indlvidual sources. Thus

112Sj(_) - _"Sja(_j) . _ Hja((_) Sa(c_)
a a

(a)

12.3-Z (1/30/81) t. J
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If the sources are statistically correlated, the degree of correlation can be expressed by a

cross-spectral density, Sab, and the spectral density of the response may be evaluated from

Sj = _ Z Hja Hjb Sab , (g)
ab

where Hjb is the complex conjugate of Hjb.

In applying the theory it is not necessary to consider the sources to be forces at individual

points. An ensemble of applied forces that are completely correlated (i.e., a loading condition)

may also be treated as a source. For example, a plane pressure wave from a specified direction

may be treated as a source. Furthermore, the response may be any physical variable including

internal forces and stresses as well as displacements, velocities and accelerations.

In NASTRAN, Random Analysis Is treated as a data reduction procedure that is applied to the

results of a Frequency Response analysis. The Frequency Response analysis is performe_ for loading

conditions, {Pa }, at a sequence of frequencies _i" Normal data reduction procedures are applied

to the output of the frequency response analysis module (see Figure 1 of Section 9.1), resulting

in a set of output quantities, uj. The calculation of power spectral densities and autocorrelat!on

functions for the output quantltltes is performed in the RandQm Analysis module.

Figure l is a simplified flow diagram for the Random Analysls module. The inputs to the mod-

ule are the frequency responses, Hja(_i), of quantities uj to loading conditions {Pa} at frequen-

cies, _i' and the auto- and cross-spectraldensities of the loading conditions, Sa and Sab. The

response quantities, uj, may be displacements, velocities, accelerations, internal forces, or

stresses. The power spectral densities of the response quantities are calculated by Equation 9 or

by Equation 6, depending on whether the loading conditions are correlated or uncorrelated. At

user's option the spectral densities due to all sources, considered independent,may be combined

by means of Equation 8.

The autocorrelation function is computed by the following approximation to Equation 3

Rj(T) l N-ll_l_ISj(_l+l)(_i+l"'"i)_Sj("i) [C°S(_I+IT) " c°s(_i_)]

f

+ Sj(Wl+l) sln(_l+IT) " SJ(_I) sin(wiT) I '

\

)

(lO)

12.3-3 (1/30/81)
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whfch assumes that Sj(_) varies linearly between _i and _i+I" The user specifies the sequence of

values of T. The rms value of the response, _j, is evaluated as the square root of a trapezoidal

approximation to Equation 4, i.e.,

I N-I_j " I i+_l[Sj(_i+l) + Sj(_i)](wi+ l - _i)II/2
(ll)

The rms frequency, N0, is also evaluated from a trapezoidal curve for Sj(_)

where

rlo - rj/uj , (12)

÷BSj( i+l)) , (13)
Li.1

- (3_ + 2_i_i+ l + wI+i)196_3 , (14)

B - (_ + z_i+ 1 + 3_+i)/96_' (Is)

The power spectral densities, Sj, are plotted versus frequency and the autocorrelation func-

tions, Rj(z), are plotted versus the time delay, z, at the user's request.

Cross-correlations and cross-spectral densities between different output quantities are not

calculated.

The power spectral density function for atmospheric turbulence has been f_t_by Several'

authors by analytic functions. Two of the comiBoniy used functions are those due to Dryden and

Von Karman (Reference 2). They can both be expressed by the equation,

Sa(_) - 2W_ (L/d)[Y+_(p+I)(kL_/U)z]
[l+(kL_/U)2]p+3/2 , (16)

where Sa(_) - power spectral density (per Hz),

Wg = ms gust velocity,

w - radian frequency,

L - scale of turbulence (length, units),

U - airplane velocity (velocity units),

and parameter values are given by the following table:

12.3-4 (1/30/81)
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Von Karman

k 1.0 1.339

p I/2 I13

A special data card is used to select this analytic form in NASTRAN.

U and selects either the Dryden or the Von Karman parameters.

ORI31D!._L :_.:2: ;_

OF POOR _'-'ALi_-_f

The user supplies Wg, L, and
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yes

I sj - Z sja I

(Equation 8) I

no t

Sja = HjaI2Sa

(Equation 6)

Compute Autocorrelatlon
Functions

(Equation lO)

Compute rms value
(Equation ll)

Flow diagram for random analysis module.
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13. COMPUTER GRAPHICS

13.l STRUCTURE PLOTTER

Structures, as modeled by the finite element method employed in NASTRAN, readily yield to

pictorial presentation by automatic plotters. The structural model is defined by a group of grid

points, each of which has its location in space defined by a set of coordinates. These grid

points are connected by structural elements with straight edges, which are easily drawn on the

two-dimensional surface of the plotter output media.

For structures with many elements, plotting is a vitally important tool for detecting errors

in the geometric location of grid points and in the connection of elements to grid points. Gross

errors are prominently displayed, particularly if the structure has a regular geometry.

Structure plotting is also an important aid for visualizing the vibration and buckling mode

shapes of geometrically complex structures, and the deflections of statically loaded structures.

The ability to display the deflections at selected times of dynamically loaded structures is also

available and may prove to be useful for some applications, in spite of the relatively large

expense.

Since grid point coordinates are available in a common basic coordinate system (see Section

3.4), the operations of theoretical interest which the plot generating modules perform are:

I. to obtain the coordinates of a projection of the structural model on a user-selected
two-dimensional surface by one of three available projection systems;

2. to convert the coordinates of points on the user-selected two-dimensional surface to
plotter coordinates ;

3. to scale the structural deformations in order to produce observable deflections of the
structural model.

The theory used to produce orthographic, perspective, and stereoscopic projections will be

described, followed by a discussion of model-to-plotter and deformation scaling.

A discussion of the means by which the NASTRAN user requests structure plots will be found

in Chapter 4 of the User's Manual.

13.1.1 Structure Plotter Coordinate System and .Orthographic Projection

In order to define the coordinates of an orthographic projection of the structural model, an

R, S, T plotter coordinate system is defined as shown in Figure l,

13.1-I (12/31/77)
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Plotter coordinate system.

The S-T plane is taken as the plane of projection. The structural model is defined in the basic

coordinate system, which is denoted as the X, Y, Z coordinate system. The user specifies the

position of the structural model with respect to the S-T projection plane by the angles y, B and

_. These angles position the X, Y, Z coordinate system with respect to the R, S, T coordinate

system. The two coordinate systems are coincident for y = B = _ = O. The sequence in which the

rotations are taken is crucial and has been arbitrarily chosen as y, the rotation about the T-axis,

followed by B, the rotation about the S-axis, followed by _, the rotation about the R-axis.

Normally, _ is not used since it does not affect the appearance of the S-T projection, but only

its orientation on the page.

The orthographic projection is obtained by computing the S and T coordinates of each point

having coordinates X, Y, Z from _e transformation equation

IxlIS = [A ][AB][A Y] Y ,

IT Z

(1)

V
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cosy -siny il
[Ay] = siny cosy

0 0

[%] - l

L-sinB 0 coss]

OR!GI_!AL p..._£ {.3
OF POOR QUALITY

, (2)

(3)

and

I 1 0 Oc_1
[A ] - 0 COSC_-sin (4)

0 sincx coscxj

In order tO i11ustrate clearly the orientation process, Figure 2 shows a rectangular

parallelepiped as it is rotated through the y, 3, _ sequence. The final S-T plane shown in

Figure 2d contains the desired orthographic projection.

13.1.2 Perspective Projection

In addition to the three angular relationships required for orthographic projection, the per-

spective projection requires knowledge of the vantage point in the R-S-T system (i.e., the three

coordinates of the observer), and the location cf the projection plane (plotter surface). The

vantage point is selected by the user (or automatically by the program), and lies in the positive

R half space as shown in Figure 3. The projection plane is chosen to lie between the observer

and the S-T plane.

For each point, the coordinatesS' and T' on the projection plane (see Figure 3) are obtained

from the orthographic projection coordinates R, S. T by

t ,f)soI , (s)

• + _ T TOT' TO

where Ro, So, To are the coordinates of the vantage point and do is the separation distance

between the vantage point and the projection plane.
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13.1.3 Stereoscopic Projection
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The stereoscopic effect is obtained through the differences in images received by the left

and right eyes. Each is a perspective image, but with a different vantage point, The two vantage

points are separated horizontally by 70 mm (2.756 inches), the nominal ocular separation standard

used in commercially available stereoscopic cameras and viewers. Two plots are produced for view-

ing with a stereoscopic viewer.

13.1.4 Projection Plane-to-Plotter Transformations

Since the plotter surface is defined differently for each of the plotters used in NASTRAN, and

since it is desirable to minimize the amount of special coding for each plotter, a common interface

with the plotter routines is provided wherein the plotted surface is assumed to have a lower left

corner defined by x, y coordinates (0,0) and an upper right corner defined by x, y coordinates

(l,l). Plotter utility routines are utilized to convert from this system to each individual

plotter.

Since the coordinates of points in any of the projection planes previously discussed may

have arbitrary numerical values, a linear mapping of the form

• [Aij] + (6)
T Yo

is used, where the transfomation constants [Aij] and xo, Yo are determined as shown below so as to

fill that portion of the x, y space required by the user or automatically selected by the program.

In the case of a perspective projection, {S} and {T} are replaced by {S'} and {T'} . Since we

desire no distortion of the plotted object and the orientation has already been specified, we set

o][Aij] = A (7)
1

Let

M = ½ [(Tmax -Tmi n) -(Sma x - Stain)] (8)

V
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Then, to f111 the avallable x, y space we require, for M > O,

0 = A Tmln + Yo

1 = A TmaX + Yo

m • A Smin + x0

l-m • A SmaX + xo

or, for M < O,

m = A Tmin + Yo

l-m • A TmaX +yo

0 = A Smin + xo

l = A SmaX + xo

(g)

(lO)

where m is the horlzontal margin for M > 0 and the vertical margin for M < O.

From (g) or (lO) the quantities m, A, Xo, Yo' and thus the plotter coordinates, are deter-

mined.

13.1.5 Defomation Scalinq

In plotting deformed structures, the components of displacement are added to the coordinates

of the undeformed grid points to obtain the coordinates of the grid points of the de¢omed struc-

ture. Since the numerical magnitude of the physical structural displacements is usually much

smaller than the size of the structure itself, additional scaling must be performed on the dis-

placement vectors in order to obtain a viewable plot. In NASTRAN this is done by the user who

specifies a value for the magnitude of the maximum structural deflection in units of length of the

undefomed structural model. Thus, If max (TmaX - Tmin, Smax - Stain}were, say, lO00 units, a

specification of 50 would result in a plotted maximum deformation equal to 5% of the maximum plot

size. In addition, the scale of the deformed structure, described in Section 13.1.4, is reduced

by 5% to accommodate the deformation vectors.

13.1.6 Structure Plotter Ex_ples

Figures 4 and S show examples of plots generated by the NASTRANStructure Plotter using the

Stromberg-Carlson SC-4020 electronic plotter. Titling tnfomation usually presented on plots has

13.1-5
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been deleted from the figures.

Figure 4a shows a typical undeformed orthographic projection of a section of the structural

model for a large dish antenna. This is about as detailed a model as one should attempt using

the SC-4020 since the ability to "see" the object being depicted is marginal. Using one of the

Calcomp plotters, however, a plot up to 30 inches square may be requested. Thus, considerably more

detailed objects may be plotted without loss of clarity on the table plotters,

Figure 4b shows a perspective view of an undeformed 5 x lO plate model. Grid point labels

have been requested and are shown positioned adjacent to each grid point. A vector deformation

request has resulted in the displacement patterns indicated. On the Calcomp plotters, a different

pen could be used to draw the vectors with heavier or lighter lines than those of the undeformed

shape, or with lines of a different color, or even on a transparent overlay. For the SC-4020

plotter, only a heavier line density can be employed to make the vector lines contrast with those

of th_ undeformed structure.

Figure 5 shows two perspective views of plate models using the shape deformation option.

These deformed shapes may be superimposed on the undeformed shape if desired.

13.1.6 (12131/77)
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(c) y • 30°, B • 300 (d) • y • 30o, fi • 300, = - 300
(Plotter Will Plot on the S-T Plane)

Ftgu_ Z. Plotter -model orientation.
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a Undefor1_d plot (orthographicprojection)

$

(b) Deformed plot using vectors (perspective projection)

_o

Figure 4. Structure plottee examples.
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(a) Deformed shape (perspectiveprojection)
V

(b) Deformed shape (perspectiveprojection)

Figure 5. Structure plotter examples.
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13.2 CURVE PLOTTER

The NASTRAN curve plotter provides the user with the ability to generate x-y graphs of any

available response quantities as functions of Frequency (for frequency response analysis), time

(for transient response analysis), or subcase (for static analysis). Scaling, axes, axis labeling,

grid lines, logarithmic scales, and titling are all features automatically provided by the plotter.

The user also may control those items if he wishes. Two basic forms are provided, the whole frame

and the split frame. Whole frame curve plots utilize the whole sheet of graph paper or camera

frame, whereas the split frame consists of an upper half Frame and a lower half frame. The latter

form is useful for plotting complex quantities resulting From frequency response analysis or for

making comparisons.

On any of the frays described above, one or more curves may be plotted. If not controlled

by the user, scaling will be acco_lished so as to accomodate all curves on the same frame. Only

one ordinate and one abscissa scale is provided for any single frame. The user has the option of

drawing lines between the points of the tabu]at function, drawing symbols at the points of the

tabu]ar function or both. The use of different synW)ols for the several curves of a single frame

is not provided, however.

The detailed description of the user input cards needed to request curve plots will be found

in Section 4.3 of the User's Manual.

13.2-1 (12/3_/77)
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13.3 MATRIX TOPOLOGYPLOTTER

The NASTRANMatrix Topology Plotter generates a picture showing the location of nonzero

elements in a matrix. This feature is useful in displaying a stiffness matrix since the bandedness

and location of active columns are important for efficiency as described in Section 2.2.

Use of the Matrix Topology Plotter is fully described in Section 5.3.2 of the User's Manual

under Utility Module SEEMAT.

P.RECEDINC PAGE BLAN_ NOT FIL'_D"
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14. SPECIAL MODELING TECHNIQUES

REPRESENTATION OF PART OF A STRUCTURE BY ITS VIBRATION MODES

It is sometimes required in a structural analysis to describe part of a structure by ortho-

gonal vibration modes. In some instances structural informationmay not be available in other

forms. The modal informationmay be derived either from other analyses or from vibration tests.

In the methods to be described, no special programming instructionsand no special input data

are used in describing the substructureto NASTRAN. The simulation of the part within the com-

plete idealized model is accomplished by means of ordinary scalar elements and multipoint con-

straints. The particular arrangements of elements to be described are not the only possible ones,

and the user is encouraged to employ variations of his own. The only general restrictionsare

those imposed by linearlty, conservation of energy, and reciprocity.

The main purpose of this section is to illustrate the manner in which scalar elements and

multlpoint constraints can be used to simulate structural properties when they are expressed in

abstract terms (e.g. by modal coordinates). A secondary purpose Is to illustrate procedures that

have been found useful in many practical situations.

When part of a structure is described by vibration modes, it must first be ascertained how

the degrees of freedom at which it is connected to the remainder of the structure were supported

when the vibration modes were measured (or computed).

I.

2.

3.

Three cases are distinguished:

All connection coordinates free.

All connection coordinates restrained.

Some connection coordinates free and some restrained.

The first condition Is usually employed In vibration tests or analyses of large parts, such

as an airplane fuselage. It is recognized that often it is not possible to achieve test condi-

tions that are effectively free from restraint. (No such aualification applies of course to cal-

culated modes). The second condition is usually employed in vlbratlon tests or analyses of small

parts, such as a horlzontal stabilizer.

Case l will be discussed first, because it is the simplest. The required data are the

vibration mode frequencies,_I' the mode shapes or elgenvectors, {¢i}, and the mass distribution

of the part, expressed by the mass matrix [Mp]. The elgenvectorsneed not be normalized In any

particular manner. Let the degrees of freedom at the points of connection to the remainder of

the structure be designated by the vector {Uc}. Then the motions of these points are related to

F.-
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modal coordinates {¢i} of the part by

( {uc} = [¢ci]{_i} (l)

(See Section g.3.4 for a discussion of modal transformations.) The columns of [¢ci] are the

eigenvectors, {¢i}, abbreviated to include only the degrees of freedom at connection points, {Uc}.

The usual approximation of including only a finite number of elgenvectors in [®ci] produces an

idealized model for the part that is too stiff. Specification of the part is completed by calcu-

lating the generalized mass, mi, stiffness, ki, and damping, bi, associated with each modal coor-

dlnate, _i' as follows (See discussion In Section 9.3.4).

mi = {$i}T[Mp]{$l} , (2)

ki = _i2ml , (3)

bi = gimi_i , (4)

where gi is a damping factor for the Ith mode. Frequently gi will not be accurately known.

The equation of motion for the generalized coordinate, El' is

(mlP2 + biP + kl)_i = {¢ci}T{fc} (5)

where {fc} is the vector of forces applied to the substructure at the connection points, and {¢cl}

is the elgenvector {¢i} abbreviated to Include only the degrees of freedom at connection points.

Equations ] through S contain all of the informationrequired to describe the part. The

way in which Equation l is used in the constructionof the Idealized model is to regard each of

its rows as an equation of constraint between a constrained degree of freedom, Uc, and the free

scalar points, {{i}. mi, ki, and bi are, respectively, concentratedscalar mass, stiffness, and

damping elements connected to _i" Figure I illustrates the Interconnectionof the elements in

diagrammatic form.

The user prepares the Ideallzed model of Figure l for NASTRAN by fllling out data cards that

declare the existence of scalar points, El; the values of scalar structural elements mi, bl, and

kl; and the coefficients in the equations of constraint. Since the information Is input to the

program at the element level, it is available for the solution of any static or dynamic problem

by any of the rigid formats provided with NASTRAN.
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REPRESENTATIONOF PART OF A STRUCTURE BY ITS VIBRATION MODES

The derivation of an idealized model for the case when seme or all of the connection points

are restrained during measurement (or calculation) of the substructuremodes is considerably more

involved. A general solutlon, that was first devised in Reference l, is developed below. The

objective is to derive a set of relationships between the modal coordinates and the degrees of

freedom at connection points (both free and restrained) that can be treated as equations of con-

straint. The modal mass, damping, and stiffness properties will, as in case I, be simulated by

scalar structural elements. The reader may find it helpful to review the notation and procedures

described in Section 9.3 before proceeding.

Let the degrees of freedom of the substructurebe partitioned into {Ua}, degrees of freedom

that are free in the substructuremodes, and {Ub}, degrees of freedom that are restrained In the

The equations of motion for the substructure (without damping) can then besubstructure modes.

written as

I

I• T; -
labT i }

(6)

{fa} and {fb} are forces applied to the substructure. The mass of the substructureis assumed to

be concentrated at the free coordinates, {ua}, which include all coordinates not restrained in the

substructuremodes. Any substructuremass on the restrained coordinates, {Ub}, should be lumped

into the remainder of the structure because the masses on restrained coordinates produce no effect

during the vibration modes of the substructure. They are, therefore, ignored in the modal repre-

sentation of the substructure. The stiffness matrix is partitioned in Equation 6 according to free

and restrained coordinates. Note that {ua} contains the free connection coordinatesas a subset.

The substructuremode shapes are described by a modal transformation between the free coor-

dinates, {ua}, and modal coordinates, {(i}.

{Ua} = [¢al]{(l} (7)

The corresponding generalized forces on the modal coordinates are

{fl} , [¢al]T{fa} (B)
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By virtue of the orthogonality property of vibration modes

[¢ai]T[Kaa + p2Maa][@ai] = [kI + mip2] , (g)

where [ki] and [mi] are diagonal matrices of the modal coefficientscomputed by Equations 2 and 3.

Thus, using Equations 7, 8, and 9 to transform Equation 6,

(lO)

It is convenient to separate the inertia forces from Equation lO, so that, defining

{_i} - {fi} - [mi]{p2{i} , (11)

I

"fb.... _¢ai:Ka"K Ci

I

(12)

Equation 12 is a stiffness equation in standard form. A form that leads more directly to a

useful physical model is obtained by placing {i on the left-hand side. Thus

r:::flu1..... , (]3)

L"I °
where

[_ib] " -[kl]-l[¢ai]TEKab] , (14)

V

and

_bb ] " [Kbb] - [_ib]T[ki][_ib] (15)

If the set of restrained points, {Ub}, is nonredundant,the matrix _i_'bb],is null (see

Section 5.7). This condition wlll be assumed. The matrix [_ib] is calculated from properties of

the vibration modes as follows. During a vibrationmode, {ub} - O, and the vector of forces

14.1-4
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acting on the constraints is, from Equation 13,

{Fb} = -{fb} = [_ib]T{iri} • [_ib]T[ki]{{i} (16)

Define [Kbi] to be the matrix of forces on the constraints due to unit values of the modal coor-

dinates while the substructure is vibrating in its normal modes.

{Fb}

Then, comparing Equations 16 and 17,

C$ib] •

or, in other words, [_ib] is equal to [Kbi]T

= [Kbi]{{ i} (17)

[ki]'l[Kbi]T , (18)

with each row divided by the appropriate element of

[ki]. [_ib] may also be used to define an auxiliary set of modal coordinates

{_i} • [_ib]{Ub} (Ig)

Then, from the top half of Equation 13,

{_i} • [ki]{Ei - ;i} (20)

The free connection coordinates {uc} are a subset of {Ua}. The relation between {uc} and the

modal coordinates {{i} is

[uc) - [$ci]{_i} , (21)

where [@cl] is the appropriate partition of [@ai].

Equations II, Ig, 20 and 21 provide a complete description of the substructure. They are

also used to construct the idealized model of the substructure, shown in Figure 2. The modal

dampers, bi, are placed across the modal springs, ki, If they simulate structural dampfng. If

they simulate damping due to the viscosity of a surrounding fluid environment, they should be

placed between the modal coordinates and ground. The user may also, if he desires, retain some

non-connection coordinates in the model tn order to record motions at other points tn the sub-

structure. This is done by constructing constraints from additional rows of Equation 7. Equation

Ig expresses a new set of constralnt equations between the auxiliary modal coordinates and the

degrees of freedom that are restrained in substructuremodes.
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Theinput datafor theprogramconsistof thecoefficientsof the equationsof constraint,

[_ci] and[_ib], thevaluesof the scalar elements, mI, bi, and ki, and their connections.

The techniques discussed above provide the capability for complete dynamic partitioning of

a structure, since all of its parts, rather than a few, may be representedby their respective

vibration modes (Reference 2). The general case shown in Figure 2 is particularly useful for

this purpose. Consider, for example, the missile structure shown in Figure 3. The missile is

physically partitioned with support conditions for the calculation of uncoupled vibration modes as

shown in the figure. The first partition, (a), is unsupported while the others are cantilevered.

The lumped element model for the composite system consists of parts with the form of Figure 2 con-

nected in tandem. It is evident from the form of the lumped element model that the independent

degrees of freedom consist of the modal coordinates {{a}, {{b}, {{c}, etc. The displacement sets

{Ua,b}, {_b}, {Ub,c}, etc., are all constrained. The dynamic equations,when written by the stiff-

ness method, are banded with bandwidth equal to the number of modal coordinates in three successive

partitions.

The user should be cautioned against an uncritical use of dynamic partitioningtechniques.

Use of a smeller number of modes as degrees of freedom to represent a dynamical system always re-

sults in a loss of mass, a loss of flexibility,or both. Procedures have been developed (Refer-

ences 1 and 3) for incorporating the "residual mass" or the "residual flexibility" into the

analysis with substantial increase in accuracy. In general, however, established techniques

for truncating the modes of a complete system do not automatically give good results when applied

to partitions.

V

V
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Figure I. Representationof part of a structure by its vibration modes when all connection
points are free whi]e the modes are calculated.
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Figure 2, Representationof part of a structure by its vibration modes in the general case when
some connection points are free and some are rigidly constrained.
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Figure 3. Dynamic partitioning of missile structure.
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REPRESENTATIONOF CONTROLSYSTEMS

The principal maans by which linear control systems are treated in NASTRANare the Extra

Points and the Transfer Function, described in Section 9.3.2. Nonlinear control systen_ employ,

tn addition, the Nonlinear Elements described in Section II.2.

The general viewpoint is taken that the control system is an adjunct of the structure, rather

than vice versa. Thus, the properties of the control system are expressed in the quadratic format

(Mp2 + Bp + K) of dynamic structura] analysis. Since some readers, including control system ana-

lysts, may not be familiar with the technique, an example that includes the major points is des-

cribed below.

The variables that exist in control systems (voltages, valve positions, etc.) are assigned

degrees of freedom, ue, that are called extra points. The vector of extra points, 6Ue}, ts merged

with {Ua}, the degrees of freedom at structural gridpolnts, to form the dynamic analysis set {ud}

(see Section 9.3.1). In the direct method of problem formulation, the extra points can be assigned

sequence numbers such that they are interspersedwith structural degrees of freedom. In the modal

method of problem formulation they are collected together at the end of the augmented modal vector

(uh} (see Section 9.3.4).

In order to facilitate the treatment of control systems, NASTRANincludes an input data format

for the specification of transfer functions in the form

Ue , I + allP + a2ipZ) ui (9)
bo + bI P + b2p2 !(aoi

where ue must be an extra point but uI can be any degree of freedom. As explained in Section

9.3.2, Equation 9 is treated as a differential equation

+ blP + bzp2) ue - I(aoI + allp + a2ip2) ui - 0 , (10)(bo

which is incorporated into the general dynamic matrix equation

[K + Bp + Mp2]{u) • {P} (ll)

The coefficients in Equation 10 thereby assume the Poles of coefficients in the direct input stiff-

ness, damptng and mass matrices, [Kdd2], [Bdd2], and [Mdd2]. The user may also add terms directly

/
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to these matrices by means of a separate direct matrix input format. It is also permitted to ap-

ply a load to an extra point, so that the vector {P} in Equation II, includes the vector of such

loads, {Pe }, as a subset.

As an example of the general approach, consider the control system shown in Figure I which

might represent a simplified model of the autopilot of a launch vehicle. It contains many of the

components found in control systems Including attitude and _rate s_s6rs,_signal conditioners, and

a nonlinear mechanical actuator with local feedback. The stP_u_-Is represented in-Figure 1 by

the displacement components which are sensed by the control system, or to which loads are applied.

The equations of the control system are iiSted in Table• I. The first six equations give the

outputs of the devices labeled l to 6 in Figure l in terms of their inputs. Equation 7 defines

the input signal, ulO, as a known function of time. Equation 8 states that the force on the struc-

ture, Fll, is a function of the input to the mechanical actuator, u9.

In the analysis, an Extra Point is assigned to each of the new variables, u4 - - - UlO. The

coefficients of the transfer functions, expressed by Equations I to 8, are listed in Table 2. In

the case of the input signal, Equation 7, a load equal to e(t) is placed on coordinate lO, and the

diagonal term in the stiffness matrix, bo, is set equal to unity.

The mechanical force produced by the control system, Fll, is a nonlinear function of the in-

put to the actuator, ug, as shown in Figure I. This function is most easlly treated-by the Arbi-

trary Function Generator element (see Section II.2), for which the governing equation is

Ni(t) - Si r(xj) , [IZ)

where

and

Ni(t) is the load applied to ui,

Si is an arbitrary (convenience) factor,

F(Xj) is a tabulated function,

xj is any (permissible) displacement or velocity component.

If the actuator were linear, such that

FII = K Ug , (13)

the effect could also be represented by placing -K in the element of the direct input stiffness

34.2°2 (]2131/77}
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matrix [Kdd2] corresponding to the row of Ull and the column of u9. Nonlinear terms are not per-

mitted in complex elgenvalue analysis or In frequency response analysis, so that the linear form

of representation Is required for such cases. Also, in a modal formulation of a transient res-

ponse problem, it is not permitted to apply nonlinear loads directly to structural grld points.

This restriction is imposed in order to avoid the modal transformation of nonlinear terms. If a

modal formulation has been selected, the representation of the mechanical actuator in Figure l is

modlfled as shown below.

Linear Nonlinear

Actuator Actuator

FlI

Ul2

i F12

Kl2 - l

An additional extra point, u12, is created to which the nonlinear force Fl2 = F(u 9) is ap-

plied. Two terms are added to the direct input stiffness matrix: the element of [Kdd2] corres-

ponding to the row and column of u12 Is set equal to +l; the element of [Kdd2] corresponding to

the row of Ul] and the column of Ul2 is set equal to -l. By this means the force on the structur_

F1l, is made equal to F12, and modal transformation of the nonlinear force is avoided.

-.-_
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v

TABLE I. Equations of Example Control System

l

u4 =, _ (Apu2 + Bpu 3)

l
= uI ,

u5 l + "_2p

l

u6 = +'_3 p ulO ,

(1)

(2)

(3)

u7 A°+ AlP (C u4 + D u5 + E u6)

Bo + BlP + B2p2

GUll

u8 = _ '

u9 = u7 - u8 ,

Uto =

Fll =

O(t) ,

F(u9)

(4)

(5)

(6)

(7)

(_)
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.... _ F_

TABLE 2. Transfer Function Table

Transfer
Function

No.

ue bo bI b2 uI ao

1 u4 1 "c1

2 u5 1 T2

3 u6 1 _3

4 u7 Bo B1

5 u8 I

6 u9 I

7 ulO 1

"r4

B2

u2

u3

u1

ulO

u4

uS

u6

Ull

u7

uB

l

l

C Ao

D Ao

E Ao

G

l

-I

aI a2

A

B

C Al

D Al

E Al

14.2-5
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SPECIAL MODELING TECHNIQUES
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V

u2

_ttitude
Sensor

®

U3

Structure

Gyros

Non-llnear

Actuat_

Mec,a.ica__ (_Z)
Force _ U9

_Oisplacement
Feedback

Ffgu_ T. Example control system.

14.Z-6

-.-z



15. ERROR ANALYSIS

lS.l SELECTION OF SIGNIFICANT FIGURES BASED ON ROUND-OFF ERRORS

One of the more important early decisions in the design of NASTRAN was the decision to use

double-precision arithmetic (approximately sixteen decimal digits) in most of the calculations made

with NASTRAN, including the formation of structural matrices and matrix decomposition. Since most

existing structural analysis programs employ single-precision for stiffness matrix formation and

matrix decomposition, an explanation of the reasons for the decision is In order. It should, per-

haps, be emphasized that the decision was made on the assumption that a single-precision number has

27 binary bits (approximately eight decimal digits) rather than the 21 bits that are available with

the IBM 360/370 computers, or the 48 bits that are available with the CDC 6000 series computers.

The only significant exceptions where single-precision is used in NASTRAN occur in calculations

involving previously computed response vectors, such as in modal transformation and in the calcula-

tion of stresses from displacements.* Section 2 of the Programmer's Manual documents the precision

of the matrix data blocks. If a matrix data block is in double-precislon format, then it was gen-

erated using double-precislon arithmetic. All table data blocks are in slngle-precision format.

It was known at the time the decision was made that NASTRAN would be called upon to solve

structural problems that were large according to the then current standards. Previous experience

with single-precision arithmetic was not, therefore, regarded as a reliable guide, and a brief ana-

lytical and experimental investigation was made of the effects of round-off errors in beam and

framework problems. No attempt was made to develop a comprehensive view of the effects of grid

point sequencing, stiffness tapering, different kinds of elements, etc., on the growth of roundoff

error. It was known from previous experience that beams (particularly cantilever beams) have no-

toriously ill-conditioned stiffness matrices so that results based on the study of beams should be

conservative for other structures. Since the decision to be made was whether or not to include

eight additional decimel digits, only very rough accuracy was required. The results of the study

are reported below.

Two different kinds of errors were considered: errors arising in the calculation of the ele-

ments of a stiffness matrix; and errors arising in the subsequent triangular decomposition of a

stiffness matrix. One of the more interesting results of the study was that errors of the first

kind have about the same magnitude as errors of the second kind.

* Single precision has been selectively added to the COC version of NASTRAN for most

matrix operations. Details are described in Section 5.5.1 of the Programmer's Manual.

IS.l-I (12/31/77)
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The equilibrium equation for the displacementmethod

[K]{u} - {P} ,

becomes, In the presence of errors in the stiffness matrix,

[K+ K¢]{u + u¢} - (P}

(I)

, (2)

_e_K_]_is theerro_in the Stir+hess=matrixand_(%}_i_su)tinb errorln the solution

vector. Neglecting the product of two errors and subtracting Equation 1 from Equation 2 results in

[K]{u¢} = -[Kj(u} _ {P} (3)

V

This result shows that the error vector can be (approximately)calculated from the application of

_a ioa_ vector, {Pc}, to theoriginal:_tructura'isystemw_c_is :t_e Product of'the error matr_,x

and the Correct diSpiac-ementsolution Vector. ....
i

An idea of the magnitude of error due to this source in uniform beams may readily be con-

structed if it is assumed that the error exists only in the diagonal (self) term for displacement

at the free end of an end-loaded cantilever beam. Let the magnitude of the error be one binary

bit Cn the 27th place. The term under consideration in the stiffness matrix is equal to 12EI/Ax3

where Ax is the length of one element in the beam.

trix is

K , 2-27 /12El

Thus the corresponding term in the error me-

(4)

The correct solution for the displacement at the free end is

pc.3
u - _ , is)

where ¢ is the total length of the beam. The load to 6e used in Equatlon 3 (whichin _Ys Case_

reduces to a scalar equation) is, therefore,

Pc - -Kcu - -2 "27 ' 4P(-_) 3 • (6)

The ratio of the displacement error to the true displacement at the free end is equal to the

ratio of load, so that

u¢ P
" _ " -2"27 " 4N3 , (7)

IS.l-2 (4/1/72)
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where N - _/Ax is the number of ceils in the cantilever beam. This resultis shown in Figure l

for various numbers of elements in the beam as the llne labeled "tip modified."

A more meaningful [and probably conservative) estimate for the error ratio can be calculated

by assuming that all diagonal elements in the stiffness matrix are in error in the same direction

by one binary bit in the 27th place. The result of this calculation for a uniform cantilever beam

and for uniform square frames is shown in Figure l as the lines labeled "all elements modified."

It will be noted, in the case of the beam, that the error increases as the fourth power of the

number of grid points, as may be expected since the number of terms in the error load vector, {Pc},

increases in direct proportion to the number of grid points, and the error in displacement for a

single term increases as N3. If the errors are randomly distributed with respect to sign, the ra-

tio of the net error loading to the error loadlng for a single term will increase approximately in

proportion to the square root of the number of grid points. Thus it may be expected that, in prac-

tical problems where rounding errors are randomly distributed, the error in the displacement at

the tip of the beam will increase as the 3.5 power of the number of grid points.

Several experimental points indicating the errors for actual problems are also shown in Figure

I. In the experiments, the accumulation of signlflcant additional error during triangular decom-

position was avoided by using higher precision in the decomposition. Severe local variations in

the stiffness of elements can cause substantially greater errors than those indicated in Figure I.

Examination of Figure l indicates that if three significant decimal digits are desired in the

solution vector and single-precision arithmetic is used to generate the stiffness matrix, canti-

lever beam problems are limited to about 20 grid points and square frames are limited to about ISO

grid points. Since it was desired to solve larger problems, and since this error cannot in general

be reduced substantially except by carrying more binary bits in the stiffness matrix, it was con-

cluded that all stiffness matrices must be generated using double-precislon arithmetic. With 8

additional decimal digits in the sill?hess matrix, examination o? Figure I indicates that the prob-

lem size for cantilever beams can be extended to several thousand grid points, and for square frames

to hundreds of thousands of grid points before significant round-off error is accumulated.

The errors that occur during decomposition of the stiffness matrix (round-off errors) were

investigatedby experimentalmeans only. Care was taken to ensure that the terms in the stiffness

matrix were integers that would not be truncated in the conversion from decimal to binary arlth-

metlc. Some experimental determinations of error ratios due to round-off In the solutions for

15.1-3
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cantilever beams and square frames are indicated in Figure 2. The results indicate that if three-

figure accuracy is desired, the number of grid points is limited, with single-precision arithmetic,

to about 30 for both cantilever beams and square frames. If, on the other hand, double-precislon

arithmetic is used, extrapolation of Figure 2 indicates that problem size can be extended to sev-

eral thousand grid points for cantilever beams and to hundreds of thousands of grid points for

square frames.

Some improvement in the accuracy of single precision calculation can be achieved by means of

an iterative solution technique (see Section 3.6.2) provided that double precision is used in ac-

cumulating the residual load vectors. The error ratio must, however, be less than unity in order

for the iteration algorithm to be stable, so that, by inspection of Figure 2, only a modest in-

crease in problem size is afforded.

Similar conclusions on the necessity for"using double-precision arithmetic for generating the

stiffness matrix and for decomposing matrices result if one considers dynamic problems. Consider,

for example, the fundamental frequency of a cantilever beam with a concentrated mass at the free

end. Let the error in the stiffness matrix be equal to 2-27 in the self term for lateral displace-

ment of the free end and be equal to zero elsewhere. Then the calculated frequency, is

where

K = EI/3_3 ,

K = 2-27 . 12El
7

The ratio of the calculated frequency to the analytically correct frequency, ua' is

/K + K _I/2 K¢ 1 + 2"27 " 2N3
___cI _-..RI._.)-._1 + I/2 "R-" "
_a

(9)

Thus the error in frequency is about one-half as great as the error in dlsplacement for the cot-

responding static problem, Equation 7.

in the analysis of free-free structures the accumulation of truncation error in the formation

15.1-4 _

ii_ !



SELECTION OF SIGNIFICANT FIGURES BASED ON ROUND-OFF ERRORS

of the stiffness matrix may be interpreted as a set of springs (either positive or negative) that

restrain the rigid body motions. Analysis shows that, for direct numerical integration of the

equations of motion, double-precislon formation of the stiffness matrix is required in order to

contain the errors in the rigid body motions. For such problems single-precision arithmetic is

inadequate for beam problems with more than about ten grid points.

A consideration that does not enter into the examples treated above is the effect of varia-

tions in stiffness with position in the structure. A common mistake made by beginners in the dis-

placement method is to simulate a rigid constraint by connecting two grid points with a very stiff

spring. Such an element will, of course, obliterate the contributions of other elements to the

subpartition of the stiffness matrix corresponding to the pair of grid points, and wrong answers

will result. (A stiff element connected from an independent grid point to ground will not, on the

other hand, produce errors.)

NASTRAN provides the means, via multipoint constraints and rigid elements, to avoid errors

associated with extremely stiff elements. The user must, however, still decide whether to treat

a stiff element as an elastic body or as a rigid body. The decision will probably be based on

an estimate of whether the modeling error made in replacing an elastic element by a rigid connection

is significant. Assuming that the elastic representation will be retained provided that the modeling

error is greater that lO"3, the expected degradation in accuracy due to increased round-off error

is approximately a ?actor of l,O00. Even so, Figures l and 2 indicate that, if double-preclsion is

used, accurate results can be obtained for cantilever beams with several hundred grid points and

square frames with several thousand grid points.

The conclusion of the investigation can be stated very simply. For problems of the size for

which NASTRAN has been designed, double-precision arithmetic (16 decimal digits) is necessary, and

the accuracy of the solutions obtained with double precision arithmetic should be satisfactory, in

the vast majority of cases.

15.1-S(12/S1/77)
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Figure 1. Effect of stiffness matrix error in static solutions.
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15.2 MODELING ERRORS IN THE BENDING OF PLATE STRUCTURES

15.2.1 Triangular Element

The errors associated with the use of the Clough bending triangle are documented in Reference

I. One of the checks made on the Clough triangle in NASTRAJWwas to run several plate bending pro-

blems and cor_Darethe results with those given in Reference I. These results confirmed the equi-

valence between the triangle of Reference l and the triangular bending element in NASTRAN.

15.2.2 Quadrilateral Element

In order to check the accuracy of the QUADI element, comparisons were made with the Clough

triangle and the Melosh rectangle (Reference 2). In developing the stiffness matrix for the Melosh

rectangle, the bending curvatures are obtained by assuming that the displacements along the edges

are third order polynomials,and that the curvature varies linearly in the direction normal to the

edge. It is further assumed that the twisting effects are resisted by a state of uniform twist in

the element. Unlike the NASTI_RNquadrilateral, the Melosh rectangle cannot be applied to nonrec-

tangular shapes.

Results of the comparisons of the NASTI_N quadrilateral with the Clough triangle and the

Melosh rectangle are shown in Figures 2 through 9. The schedule of the eight cases considered is

shown in Figure I. All calculations were made on a quarter section of the plate with the indicated

mesh sizes. The central deflection was used as a measure of the quality of the results. In the

case of uniformly loaded plates, the central deflection is given by

wc - _ , (1)

where _ is a deflection coefficient, D is the flexural rigidity, a is the length of the shorter

side (see Figure l) and q is the load Intensity.

For the concentratedload cases, the central deflection is given by

p a2
wc - B _ , (2)

where B is a deflection coefficient and P is the concentrated load.

15.2-1 (12/31/77)
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Examination of the curves reveals that, in the case of the square plates, the NASTRAN quadri-

lateral gives results that are quite similar to those for the Melosh rectangle. However, for the

plates with 2/I aspect ratio, the Melosh rectangle gives somewhat better results, particularly for

the coarse meshes. In all cases the quadrilateral gives better results than the triangle, parti-

cularly in the case of the square plates, where the accuracy is substantially better. The com-

parisons indicate that the NASTRAN quadrilateral is a good element to use for plate structures in

the case of nearly rectangular geomet_ and with the aspect ratio near unity. This is precisely

the case for which the element was designed.

Experience indicates that the error associated with increased aspect ratios tends to grow

roughly in proportion to the aspect ratio. Therefore, it is desirable to avoid quadrilateral ele-

ments with large aspect ratios, particularly when using coarse meshes. Although the quadrilateral

element is not restricted to a plane figure, it should not be used in modeling sharply curved sur-

faces. In this case triangular elements are preferred.
I

Triangles are also preferred if the geometry departs significantly from a rectangular pattern.

Experience with rhombic elements, having a 45-degree sweep angle, indicates errors that are two to

five times greater when using quadrilateral elements than when using triangular elements with acute

angles. The error is even greater if obtuse triangular elements are used. The large error for

the quadrilateral element in the 45° swept case is probably the result of the composite nature of

the element. Relatively large errors are associated with the two obtuse triangles forming half of

the quadrilateral element, and significantly smaller errors are associated with the two acute tri-

angles forming the other half of the element, see Section 5.8.3.2.

With regard to twisting behavior, the quadrilateral element does not involve any approxima-

tion for the case of a square element subjected to uniform twisting n_ments along its edges. In

this case, the constraints imposed on the diagonals of the quadrilateral conform exactly to the

deformed shape.

15.2.3 Higher Order Trianqular Plate Bending Element

The rectangular plate shown in Figure 1 was also analyzed by using the higher order triangular

plate bending element (TRPLTI) employing the modeling scheme shown in the figure. Because of sym-

metry, all calculations were made on only a quarter section of the plate with the indicated mesh

sizes.

V

z
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The results of the analyses are also presented in Figures 2 through 9. As can be seen, the

results with the TRPLTI element are more accurate in some: cases than those with the QUADI element.

This is due to the use of the quintic displacement field employed in the formulation of this element.

_v z
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IS.3 MODELING ERRORS IN MEMBRANE ELEMENTS

IS.3.1 Quadrilateral Membrane Elements

NASTRAN includes three quadrilateral membrane elements (QOMEM, QDMEMI, and QDMEM2) which are

identical in their connections and physical properties but which produce different results due to .

differences in mathematical formulation. All three elements give identical correct results for a

flat element in a state of uniform plane stress. The differences occur when the element is warped

out of plane and, more significantly,when the state of stress is not uniform within the element.

A frequent application of quadrilateral membrane elements Is to model the central web of a

beam, in which case they are subjected to a steep constant stress gradient. The extraordinarily

large errors displayed In this application by the original NASTRAN quadrilateral membrane element

(QDMEM)were an important motivating force for introducing the other two quadrilateralmembrane

elements. Figure l shows a comparison of results for the three NASTRAN elements when a pure bend-

ing couple is applied to a square. The improvement of QDMEMI and QDMEM2 over QDMEM is evident,

although even their accuracies are low. The use of two triangularmembrane elements (TRMEM) will

produce almost the same result as QDMEM in this example. In the case of the isoparametrlc element

(QDMEMI), the result shown in Figure l can be extended to a general rectangular shape by means of

the formula

ABQOMEMI = l-vz

THEORY

(i)

Better accuracy can be achieved by subdividing the beam web into two or more rows of elements.

Figure 2 shows results taken from Reference 1 for a cantilever beam modeled by two rows of elements.

The error in tip displacement for QDMEMI is 14%, which might be acceptable for some applications,

but the error for QDMEM is still unacceptable by any standard.

15.3.2 Linear Strain Trianqular Membrane Element

The cantilever beam of Figure 2 is modeled by using eight equal linear strain triangular mem-

brane elements (TRIM6). The modeling scheme and the results are shown in Figure 3 (in which the

results of Figure 2 are reproduced to facilitatecomparison). The high accuracy obtained from the

use of the TRIM6 element iS quite evident from this figure. This Is due to the use of a quadratic

displacement polynomial in the formulation of thls element.

 frIINItO   L BU:;;(
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REFERENCE V

I. Adelman, H. M., Walz, J. E., and Rogers, J. L., Jr., "An IsoparametricQuadrilateral Membrane
Element for NASTRAN," NASTRAN: Users' Experiences,NASA TM X-2637, September 1972, pp. 315-336.
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15.4 DECOMPOSITION ERROR CHECKS

The question of numerical accuracy is a constantly recurring issue. The sources for such

errors can be attributed to the discretization of the original model, grid point sequencing

schemes, and numerical manipulation errors. Once the model has been established, the solution

accuracy comes into question. The causes of questionable results can sometimes be determined by

the magnitudes and signs of the diagonal matrix terms which result during the decomposition of the

stiffness matrix.

A special decomposition routine, SDCMPS, provides the following when erroneous matrix terms

are detected:

I. Singular columns. Prior to actual decomposition, null columns are detected and the actual

decomposition is not attempted. This is usually caused when an unconnected degree of

freedom is not constrained by a slngle-point or multipoint constraint or by a rigid

element.

2. Positive definiteness check. Negative or zero diagonal entries of the decomposed matrix

are detected and listed. User options are provided to terminate after decomposition de-

pending on the type and number of potential errors. Zero diagonal entries have l.O sub-

stituted to prevent numerical problems. Absolute values of negative entries are similarly

substituted only if the Choleski option is being exercised.

3. Singularity error measure. The round-off error is estimated by a ratio of the decomposed

and input diagonal terms and a measure of the word length, using the equation:

2l-P

es - (Dil/Kii I , (1)

where P is the number of bits in the mantissa of real values on the machine being used,

Dii is the decomposed diagonal entry, and Kii is the input diagonal entry. This is com-

pared to the user's requested accuracy criteria, Ts, where Ts - 2"n and n is the number

of bits of accuracy desired. Note that n should be less than 24, 27, or 48 far single pre-

;islon words on IBM, UNIVAC, or CDC machines respectively. Values of •s exceeding Ts

suggest near singularities.

1S.4-1 (12131177)
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4. Nonconservative matrix. If the decomposed diagonal term is larger than the original input

diagonal term, the matrix is nonconservative. This may occur if negative springs are

introduced into the matrix.

These matrix checks are particularly significant to real symmetric decomposition for static

analyses. They do not retain this significance for elgenvalue extraction, unsymmetric matrix

decomposition, or complex matrix decomposition.

For user convenience, the column numbers referenced in the diagnostic output are converted to

grid point/component format, User options are provided for control over continuing or aborting

the decomposi tion.

V

V
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16. INTERACTION BETWEEN STRUCTURES AND FLUIDS

16.1 COMPRESSIBLE FLUIDS IN AXISYMMETRIC TANKS

16.1.1 Approach

In the class of problems considered here, the motions of the fluid are assumed to be small

compared to the dimensions of the container so that nonlinear terms in the equations of motion can

be ignored. Such problems should properly be classified as acoustic problems rather than as fluid

flow problems. Another general restriction is that the shape of the container is axisymmetric.

There is, however, no implication that the structure of the container has axisymmetric mechanical

properties or that the combined motions of the fluid and the structure are axlsymmetrlc. The

restriction regarding container shape is introduced in order to simplify the equations of the

fluid which, due to the assumption of small motions, can then be decomposed Into uncoupled Fourier

components with respect to azimuth position,

Compressibility of the fluid and the effects of gravity on a free surface are both included

in the formulation. Thus, the capability described below can be used to solve a wide practical

range of fluid-structure interaction problems for both liquids and gases.

Two different mathematical approaches are practical for the solution of linear fluid-structure

interaction problems with interface surfaces of arbitrary shape. In the first approach a funda-

mental solution of the Fluid field equations is used to formulate an integral equation relating

motions and pressures at the Fluid surface; the integral eauatlon is then replaced by a finite set

of simultaneous linear equations. In the second approach the field equations are approximated by

a set of linear difference equations (or linear finite element e_uations) in which the variables

are defined at a finite set of points within the fluid and on its surface_ The first approach

has the advantages that it results in a smaller number of equations and that the user is not

burdened with the task of locating grid points within the fluid. It has the disadvantages that

the resulting matrices are completely full, that problems involving compressible fluids can only

be formulated in the frequency domain, that the matrix coefficients are transcendental functions

of frequency if the fluid is compressible, and that the effects of inhomogeneous fluid density

cannot be treated. It is, however, an excellent methbd for homogeneous, incompressible fluids and

it Is the only practical method when the fluid is infinite in extent. The second approach has

been selected for the class of problems considered here mainly because it can easily handle

compressibility and space-varlable fluid density for all types of analysis. The restriction to

axlsymmetric shapes reduces the disadvantage regarding the location of grid points in the Fluid,

16.1-1 (12131177)
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in that grid points need only be specified on a cross-section of the fluid and not throughout Its

volume. A finite element formulation has been selected, rather than a finite-difference fOrmula-

tion, in order to facilitate the solution of problems with arbitrary axlsyr_netric tank shapes.

The field equations can be expressed directly in terms of the components of motions or, if

the fluid is irrotational, they can be reduced to the solution of the wave equation for a scalar

potent(al function. The latter formulation has the advantag_ 't_a_ _h_ number;o_ variables iS_Oniy

one third as large, bUt it has the disadvantage that the enforcement of compatibility at the

boundary between the fluid and the structure is awkward. The awkwardness is not, however, so

_eat as to CaUse serious dYffl_uities in problem solution, so t_ai_ a formulation in terms Of a

scalar potential function (specifically the pressure) has been adopted.

In summary, the selected approach is one In which the unknown variables include the harmonic

components of pressure at a finite number of grid points In the fluid, and also the structural

displacements throughout the structure, including points on the interface. The harmonic coml)onents

of pressure are mathematically treated by NASTRAN as components of displacement. The inertia

properties of the fluid are represented by a matrix that is treated like a stiffness matrix and the

compressibility is represented by matrix terms similar to a _SS:_:trix. The.se matr(ces are

generated from the properties of "l_luid elements" interconnecting fluid grid points. The coupling

between the fluid and the structure is represented by special matrices that are treated as direct

input matrices (see Section g.3.3).

The above Capabillty is imple_ted in _ASTRAN primarily by modlflcation; of existing func-

tional modules. The modules that are affected most significantly are the Input File Processor,

the Structural Matrix Assembler (which processes the fluid elements), and the Geometry Processor.

A new functional module is introduced to generate the fluld-structure interaction matrices.

All of the existing analysis types are available for the solution of fluid-structure inter-

action problems, including the calculation of vibration modes, the solution of frequency response

problems and the solution of transient problems. In addition, vibration modes can be obtained for

the fluid alone, with a rigid container replacing the structure.

16.1-2 (4/I/72)
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COMPRESSIBLE FLUIDS IN AXISYMMETRIC TANKS

16.l.2 Fluid Field Equations.

The governing equations used in the analysis of the Irrotatlonal motions of an inviscid

compressible fluid are:

where:

Odl+ ½°d " " °dl

p - -BV-G ,

C -- '3,',-"

(1)

(z)

_d " p - V.(p;) , (3)

is a small displacement of the fluid from a fixed reference point,

is the velocity, ()_/Bt),

is the acceleration, (Bz_/_t2),

° is the mass density of the fluid, at rest,

Pd is the mass density of the perturbed Fluid,

is the vector of the gravity field (opposite to the direction of free fall),

p is the pressure,

B is the bulk modulus of elasticity.

Due to the assumption of small motions, the second term on the left side of Equation 1 will be

ignored. The second term on the right side of Equation 3 will be ignored on the grounds that it is

small and unimportant for most problems. If small motions are assumed, it is significant only in

problems where the effects of gravity are included and the density varies throughout the fluid.

With these assumptions, Equation 1 may be replaced by the following simplified equation:

Equations la and Z are combined as follows to obtain a single equation in terms of the

pressure.

we _b_in:

(la)

Taking the second time derivative of Equation 2, and the divergence (V-) of Equation la

i; - - ev.{i , (4)

• I vp - v._ (s)

16.1-3 (4/1/72)
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INTERACTIONBETWEEN STRUCTURES AND FLUIDS
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OF PCOR _':'"_'#

!_.v.!vp . v._ : o (6)
B p

where ?._ = 0 is assumed in the following development.

Equation 6 is a form of the wave equation. Energy expressions will be derived from it, with

the aid of which equivalent stiffness and mass matrices can be formed. To this end define the sum

of the terms on the left side of Equation 6 to be the generalized force;

J - i_ - V. lvp (7)
P

Introducing the concepts of the calculus of variations, the volume integral of the product of

the variation of the pressure, 6p, times the generalized force will produce a variation of the

generalized energy:

The V operations may be transformed by the identity:

I Vp)] = _pV.(_Vp)v-C_p(_

Substituting Equation 9 into Equation 8 results in :

l

I I ] vp._(_p)dV I v.[_p(_vD)]dV (10)8H = i _ 6p dV + _.

Applying the divergence theorem to the third integral produces an integral over the surface S

I 1 I ] vp).d_ (ll)v.E_p(; vp)]dV • _p (;

where the vector i is normal outward from the surface.

tion I0 may be modified by the identities:

The flrst and second integrals in Equa-

d {ax%
= 2 _-_-_Ej6x - 2_x ,

_(;x.Vx) - 2Vx.V(_x) ,

(12)

16.1-4 (4/1/72)
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where x is any function.

The variation in energy _H after applylng Equations II and 12 to Equation I0 is:

The generaliJed energy internal to the fluid is the value of the first integral which, it is seen,

contains a term similar in form to kinetic energy, and a term similar in form to potential energy.

The energy flow through the boundary is given by the second integral.

In the finite element method of solution, a set of variables, Pi' equal to the values of p at

specific points, is chosen and the volume is divided into subregions, called fluid elements, with

vertices defined by the location of the variables.

potential energy U by the equation:

A "stiffness"matrix [K] is formed from the

_2U

KIj " )Pl )Pj
(14)

The "equivalent" potential energy for each subregion is, from Equation 13,

U = / _p Vp.Vp dV
V

(15)

The pressure field for each subregion (fluid element) is dependent on the pressures Pi at its

vertices.

The "equivalent" kinetic energy for a fluid element is, from Equation 13,

T • ! dV
(16)

A "mass" nkltrlx[M] is formed from the kinetic energy by the equation

_2T
MIj " --

_Pi _PJ

(17)

The set of simultaneous equations describing the pressures at discrete points may then be written

in matrix form as

16.1-5 (411/7Z)
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[MIj]{Pj} + [Kij]{Pj} : {li} , (IB)

V

where {pj} is the vector of pressures at fluid points and {II} is the vector of generalized forces

imparted to the Nuid. For the uniform gravitational field treated by NASTRAN, {Ii} is null except

at the boundaries.

V

16.1-6 (411172)
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COMPRESSIBLE FLUIDS IN AXISYMMETRIC TANKS

16.1.3 Boundary Conditions

Two types of fluid boundaries will be defined. The first is a free surface, which is defined

as an area with zero pressure relative to ambient pressure. Since the .fluid pressure is measured

at points fixed in space, the actual surface will be displaced and the pressure measured at the

original position may not be zero. The second type is a structural boundary, through which the

fluid may not diffuse, and at which it must'have displacement comparability normal to the surface.

Viscous boundary layer and rough surface friction effects depend on relative tangential velocities.

These effects will be ignored for the present.

A fluid-to-fluid interface is a trival matter since nonuniform fluid density and bulk modulus

are allowed. Except for gravity effects, the pressure and flow through these Interfaces are con-

tinuous and compatible. When finite elements are used, the differential equations of motion are

set up in each fluid element separately and each element may have a separate set of physical

parameters.

From Equation 13, Section 16.1.2, the outward energy flow through the boundary is:

6H(b°undary) • i _p(_ ?p)-dS , (1)

showing that

" I I vp).d_ (2)ISi (_
i

is the generalized force acting on the pressure over an element of surface area SI.

tion la of Section 16.1.2,

so that

From Equa-

!vp . ._._ , (3)
p

" "i +
I

(4)

16.1-7 (12115/72)
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It is interesting to note that at interior points the quantity

- ;vp - -u-_ (s)

assumes a role that is analogous to the gradient of the stress tensor in elasticity or to

current density in electrical conduction.

on the structural bouhdary de, he

I iG.d_ ,Uni " _i (6)

i

Then from Equation 4as the average normal displacement over Si.

"'si "" " i _''j_ISi Uni

i

(7)

At the structural interface, Uni is a structural displacement. Equation 7 shows that the coef-

ficient Si has the form of a mass coefficient.

At a free surface the acceleration may be directly related to the pressure as follows.

_ disolaced surface

(zero oressure)

oricinal surface

For small motions it mY be assumed that the pressure near the surface varies linearly with

distance from the displaced surface. Thus, at a point on the original surface, using Equation la,

p - -;-vp - G.o(; ,_) (8)

The pressure is evaluated at points on the original surface rather than on the dlsplaced surface

due to the Eulerlan view point taken in fluid mechanics i.e., that the reference frame remains

fixed as the fluid moves about. Differentiating Equation 8 twice with respect to time. and

16.l-B(4/I/72)
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COMPRESSIBLE FLUIDS IN AXISYMMETRIC TANKS

ignoring the nonlinear term, _'pu,

6 " ou'g

CR;S:TJALF?,_IZ :_
OF PC'JR "",:" ":';

(9)

It will be assumed that the gravity vector is in the direction of the outward normal to the

original surface (which is necessary for the original surface to be In equilibrium). Thus

_u dS- .; - , (io)

where dS and g are the magnitudes of d_ and _. Substituting Equation I0 into 4

', I
i i

{ll)

Define the average pressure over surface element Si,

- _ p dS (12)Pi

t

,'henfrom Equation II, if pg is uniform over Si,

SI

Isi " " o-F_i
_.d_ (13)

The first term in Equation 13 can be represented as a generalized inertia force In which the

mass coefficient is Si/pg . If the gravity field is absent (or is ignored) the n_ss coefficient

becomes infinite and

Pt " 0

Equation 14 ts treated in NASTRANas a rigid constraint,

(14)

on the surface.

The effect of the term _ _-d_ in Equations 7 and 13 is to produce a static variation of
$t

pressure with depth. It is neglected in NASTRANdynamic analyses since pressures are measured

relative to static equilibrium.

16.1-9 (4/I/72)
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The force produced by the fluid on a structural grid point at the boundary is obtained as

follows.

dls.laced surCace__ '

According to the Lagrangian formulation which is used in structural mechanics, the force on

the structural interface is equal to the integral of the pressure over the displaced surface,

which, to first order in small quantities, equals the pressure on the original surface plus a term

due to the gravitational force on the fluid between the two boundaries. Thus the force on the

boundary structural grid point in the direction of the normal is, assuming small nmtions,

where Pl

structural point.

forill.

Fi , Si{Pi - o_._i) , (IS)

is the average pressure defined in Equation 12 and _i Is the displacement vector of the

The terms in Equation 7 and in Equation 15 can be written as follows in matrix

" : s  (uti }
"ogni:i i i.l 1

........ _":""hUnt I '

(16)

where s - d/dt and gni and gti are the components of gravity in the normal and tangential direc-

tions. Equation 16 is a statement of the boundary conditions at the structural interface.

As an example to Illustrate the theory developed to this point consider the following simple

problem.

16.1-10 (¢/I/72)
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incompressible
_luld

structural
mass, M

0

S

-T
h

1

G; ,=,.;;, _ :]L._.iLj""/

: Uz' m

Compute the vertical motion uz, in response to an oscillating vertical applied force, F.

I. If uniform vertical motion is assumed, the pressure gradient Is a constant functlon of

the pressures, PI' at the upper and lower surface:

Vp = _ :' Pl " P2 (17)

From Equations 14 and IS, Section 16.1.2, the elements of the "stiffness" matrix are:

KiJ" (vp)2,v

- _pi_Pj h-
(18)

The complete "stiffness" matrix is, therefore,

[KiJ] " _ 1 I
(Ig)

2o Due to free surface effects, the addltlonal generalized force at point Pl is, from

Equation 13

I - S Pl " S s z
S I " P_ - p] Pl (20)

-:-_

16.l-ll (4/I/7Z)
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Noting the fact that the gravity vector and the displacement uz are both opposite in

direction to the normal vector at the lower fluid boundary, the forces due to the inter-

face, obtained from Equation 16, are

, (21)

where Fz2 is the force on the structure, In the direction of uz, due to fluid pressure.

The total equilibrium equation, including the contributions of Equations 19, 20 and 21,

and of the structural mass, Mo, is:

a

L
I I

s ,-_ , :I ', "Ss2

' Mos20 _ S ) - pgS

P2

u Z

(22)

The pressures and forces, it must be remembered, are measured relative to the static

equilibrium. The applied force AF is therefore:

_F = F w g(DSh + Mo) . (23)

The validity of Equation 22 is verified as follows. The first two rows of Equation 22

are solved to obtain:

l
_" P2 g

" " '
h g

(24)

and

P2 " Pl + phS2Uz • (25)

16.1-12 (411172)
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or, substituting Equation 24 into Equation 25,

g

P2 " _ P2 phS2Uz
g + hs_ "

-.. . .....

which reduces to

P2 " o(g + hs2)Uz (26)

Substituting Equation 26 into the third row of Equation 22 results in:

AF = [pS(g + hs2) + MoS2 - pgS]u z

Substituting for AF from Equation 23 produces the final equation of motion:

(M0 + phS)(u z ÷ g) - F , (27)

which is the obvious answer for the uniform acceleration of the total mass of the system.

---.

J
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INTERACTION BETWEEN STRUCTURES AND FLUIDS C,_:-",,_'- 7_:__" "_"

OF pOOR _-_!;_

16.1.4.1 Method of Derivation

The mathematical model for the compressible fluid consists of a grldwork of points at which

pressures are calculated, and a set of "fluid elements" which are connected to the grid points and

which fill the space occupied by the fluid. The model is analogous to a finite element structural

model. The pressure is analogous to displacement and the pressure gradient is analogous to strain.

The problem is assumed to have axial symmetry so that the "structural" model is defined by a set

of fluid grid points in a plane that includes the axis of symmetry. Each fluid element occupies

the interior of a circular ring that is concentric with the axis of symmetry. The surfaces of the

ring are cones which intersect along circles that pass through the fluid grid points. For this

reason the ?luid grid points will also be referred to as fluid circles.

Due to the assumption Of axial symmetry, the pressure within a fluid element can be expanded

in a Fourier series with respect to the azimuth coordinate, ¢,

N N

p(r,+,z) = pO + _ pn cos n¢ + _ pn* sin n¢ (1)
n 1 n=l

The coefficients pO, pn and pn* are functions of position in a radial plane.

expanded in truncated power series of the radial and axial coordinates. Thus,

They will be

n n n
pn(r'z) " qo + ql r + q2 z + ... n _ 0

n* n* n* n*
P (r,z) = qO + ql r + q2 z + ... n _ 1

, (z)

(3)

n n e

The coefficients qj and qj are called the generalized coordinates of the element.

selected to make the values of pn and pn* match the values of the pressure coefficients at the

fluid grid points located at the corners of the element.

Thus, if Pin is the value of pn at the ith fluid grid point

They are

{q_} " [H_p] (P_} , (4)

{q_*} = [Hqp] n*{Pl } ' (s)

16.1-14 (4/1/72) V
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where [Hnp]_ is a matrix of constant coefficients. Note that the matrices for the starred and

unstarred coefficients are identical. Since [H_p] is evaluated from its inverse, see Section

16.1.4.Z, it must be a square matrix, and the number of generalized coordinates for harmonic coef-

ficient must be equal to the number of fluid grid points to which the element is attached.

The generalized potential energy contained within the volume of the element is, from Equa-

tion 15, Section 16.1.2,

u = _ (vp.vp)dV , (6)

where the gradient of the pressure, Vp, is the vector:

l"
Vp = _rer + F_¢_¢ az z

(7)

Using Equation (1), the gradient is:

r_pO

Vp = L_-_

Nn

F_,PO

+ L

N /_pn 3pn* cDlln!l \_ COS nch+ _sin n _r '

_'n (.pn sin n¢ + pn* cos n_)1 _$

+ n!l\_ cosn, + Wslnn* _z
(S)

The Integral over the volume consists of separate Integrals over the angle, ¢, and over the

cross-sectional area, A. Thus,

o]u - _vp-Tprd dA , (g)

where dA - dr dz.

The inner integration results in zero values for all products of different harmonics and all

sine-cosine products. The potential energy expression after applying the inner integration is:

-.-.
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"IT + joA

N :rF(_p.h2,_pn.2n2 ]

]N I_ r F_Pn*_2 _Bpn*_2 + n2+ n_l 2"°°L\'-'_'r'-/+ \_) r'_ (pn*)2 dA
.(io)

Mote that the harmonics, n, are uncoupled, and that the starred and unstarred terms are uncoupled.

The pressure coefficients pO, pn and pn*, which vary throughout the element, are evaluated in

.... i -_ _ _ _ _o_ .... _* _ .... i..... !_
terms of the constant coefficients (or generallzed coordinates) qj, qj and qj . Thus the energy

can be expressed as a quadratic function of these coordinates. The elements of the generallzed

stiffness matrix referred to the generalized coordinates for the nth harmonic order are

nq B2U

Using Equation 4, which expresses a linear relationship between_ the pre_ssure coefficients at

grid points and the generalized coordinates, the stiffness matrix for each harmonic is:

n T [H_p][K?j] - [Hqp] [K?_] (12)

The stiffness matrix for the starred pressure coefficients is identlcally the same.

The equivalent mass matrix is derived in a similar manner. The "kinetic" energy, given by

Equation 16 of Section 16.1.2, Is first expanded in terms of the harmonic pressure coefficients.

When the integration with respect to _ is carried out, the result is

N N ,

T - TO ÷ 2 Tn + 2 Tn , (13)
n l n-I

V

where

16.1-16 (4/1/72)
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T° " i _ (_o)2dA

° /

Tn _' I _-_ (_n)2 dA

Tn _ (_n*)2dA

(14)

The pressure coefficients at interior points can, by combining Equation 2 wlth Equation 4 and

Equation 3 with Equation 5, be expressed in terms of the pressure coefficients at the fluid grid

points. The result is

(IS)

where _ (r,z) is an, as yet, undetermined function.

The terms in the mass matrix, referred to pressure coefficients at the fluid grid points, are

_j _2Tn [" -n .---'--K" _ _ _ r dA n _ ] (16)

_Pi_Pj

The result for n - 0 is twice as large. The mass matrices for the starred terms are identical to

those for the unstarred terms.
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16.1.4.2 Triangular Fluid Element

A triangular fluid element contains the volume of fluid interior to a ring of triangular cross-

section. Each circular edge of the ring defines a fluid point in the cross-section. The pressure

in the element is assumed to be a linear function over the triangular section. A Fourier series is

used to represent the variation of pressure around the circumference. The pressure is:

N N
p(r,¢,z) - pO + Z pn cos n¢ + _ pn* sin n¢ , (17)

n=l n_l

where the assumed pressure distribution over the cross section is:

pn(r'z) = qo q2 z , n ->0 ,

n* n* n* n*
P (r,z) - qo + ql r + q2 z , n _>I , )

where q_, ql' and q , n = O,l,...,N, and the corresponding starred terms, are the generalized

coordinates of the element.

The transformationmatrix [H_p], defined in Equation 4, is

[H_p] = l

l
N

rl

r2

r3

-- -I
zl

z2

z3

Substituting Equation 18 into Equation lO, the potential energy for each harmonic is:

(18)

(Ig)

V

i_r Fi 0\2 2]
uo - TLtql) + (q_) dA ,

)

°n _ +(q_)+ 7 (";*_?r+_z)2 d., n>O

"n" = q?')_"("))" 7 (qO_"q_r+q))2
A
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The terms in the upper half of the symmetrical stiffness matrix referred to the generalized

coordinates are, from Equations II and 20,

n=O:

Oq Oq • 2_
Kll " K22 o 120

Oq . Oq . ,Oq .
KO0 KOI '_2

Oq
Kl2 = 0 ,

(21)

n>O:

and similarly for the starred terms.

cross section:

K_Oq - n2_-;- Ioo ,

nq n2_
KOl • -6- IlO ,

Ioi ,

nq
Kll = _ (l + n2) 120 .

nq . n2,_iiKl2 -;- l '

+ n2

(22)

The Ik_ coefflclents are the following integrals over the

• i rk'l z_ dA, k 30 _0 (23)
Ik_

The integrals Ikg may be evaluated by dividing the triangular surface into three trapezoids

as shown below:

16.1-1g (411172)
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The three points a, b and c are described by their r and z coordinates at @ s O.

integrals take the form:

The

Ik_ = GkE(a,b) + Gk_(b,c) + Gk_(c,a) (24)

The general trapezoidal integral Gk_ is derived as follows. Let Gk_

Pl = rl' Zl and P2 = r2' z2" Then

be evaluated for two points

IL z2"z J
rI z=z I + r2.rl (r'rl)

Gk_ _ !2 z 0 rk'l z_ dz dr

(zs)

Performing the integration with respect to z results in the expression:

rl

GkZ - _ rk'l + _ (r - rI) dr
1 r2-r1

r2

(26)

A convenient set of parameters is:

16.1-20 (4/I/72)
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C'F ,:_: . " ,

6r = r2 - rI

Az • z2 - z I

- z I _ " r I

(27)

Rearranging the integrand of Equation 26 in terms of these parameters

rI

I (_zIZ+l _ (8 + r)4+I rk'1
Gk£ = _ _'_) J

r 2

dr (B_)

The polynomial expansion of a binomial raised to a power is a series of the form:

(B + r)4+I _+l (4+I)! B4+I-J rJ
= j_O (j!)(_+l-j)! (2g)

Substituting Equation 28 into Equation 27 and rearranging gives a series of simple integrals:

1 az._+l J_l(i_+l_-_ B4+I-J rl rl 1 _z _+I 4+I

(30)

The term for j = 0 requires special treatment. Thus,

and

rI

I rlCo = B_+I r"I dr = B_+I log _ , k = 0

r2

rI

r2

(31)

The complete series is
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1 _z L+I F + ;_+I (L+l).l 3;_+l-j _r1/ k+j . r2k+J\7)I

If _r = O, Gk% should be set equal to zero.

In the evaluation of the mass matrix by means of EQuation 16, the function _ may be written

n r(z2 " z3) _ r2(z3 " z) + r3(z - z2)

fl " rl(z2 _ z3 ) + r2(z3 . Zl ) + r3(zl.z2 ) , (33)

which is a linear function of r and z that equals unity at (rl, zl) and vanishes at (r2, z2) and

n and n
(r3' z3)" f2 f3 are similar with appropriate permutations of subscripts. The final result,

for both starred and unstarred terms, is

Mij (rI ÷ r2 + r3 + ri + (l + a ) , n > 0 , (34)

i l
where 5j - ,

= O,

and A is the surface area in the (r,z) plane.

ifi =j

ifi #j

The mass matrix for n = 0 is just twice as large.

16.1.4.3 Quadrilateral Fluid Element

The quadrilateral fluid element consists of four triangular fluid elements defined by the

exterior edges and diagonals of the quadrilateral as shown below:

The "stiffness" and "mass" matrices for the quadrilateral are taken as one-half of the sum of

stiffness and mass nw1trices for the individual triangles.

16.1-22 (411/72)
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16.1.4.4 Center Element OF PCC,_ _C_LiT_

Triangular and quadrilateral fluid elements are not permitted to be connected to a fluid ooint

on the axis of symmetry because the resulting pressures will be inconsistent and the element

integrals may be singular. For safety in computation it is not recommended that a fluid grid point

be placed close to the axis. Instead a special element may be used which is bounded by two paral-

lel planes perpendicular to the axis and a conical outer boundary. The geometry of the element is

specified by two rings at the outer edge of the upper and lower planes as shown:

/

r

The pressure is assumed to have the following functional form, which is an asymptotic solution

of the wave equation as r _ O:

N pn ip(r,_,z) = pO + Z cos n_ + pn* sin n_
nl nl

N

N n* q_*z) sin n¢ (35)
+ n!l (r)n (ql ÷

This function disappears at the axis for all harmonics except zero. Its gradient approaches zero

at the axis for all harmonics except the zero and first harmonics.

The relation between the generalized coordinates q_ and the harmonic coefficients of the

pressure on the two corner rings is:

16.1-2) (4/I/72)
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= I (rl)n (rl)nZl
(r2)n (rz)nz2

-I
Pl

n

P2

(36)

Z

V

The generalized potential energy for each harmonic, according to Equation lO, is:

dA

A

Un I_-_p[2n2 r(2n'l) (q? +q_z)2 + r(2n+l) (q_)2]
= _ dA

A

n>O ,

A

dA n>O •

The stiffness matrix terms, Kqn
ij' extracted by using Equation II, are:

qn 2_n2
Kll " p 12n,O "

Kqn qn 2_ n2
12 " K21 = T 12n,l '

o. )K22 _ 2n2= 12n,2 + 12n+2,0 •

(37)

n > 0 (38)

V

where Ikx is defined in Equation 23. The starred terms are identical to the above and the zero

harmonic (n = O) terms are multiplied by 2.

The integrals Ik_ are evaluated as follows. From the definition of the integral and the shape

of the region

r2"rl

I dr dz (3g)Ik_ -

zI 0

After performing the integration with respect to r,
---_
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J

,.(

z2 k

Ik_ = _I I (rl + r2-rl (Z-Zl)) z_dZz2.z----T , k > O (40)

zI

coefficients are zero.

with

From Equation 38 it Is seen that the integrals for k - 0 are not actually required since their

Define Ar = r2 - r] and Az = z2 - zl, and integrate Equation 40 by parts

du = (rl + _(Z-Zl)) k

V = Z'£

dz •

(41)

,,_.,,,

The result Is

ik_ _z _T_r(Z.,l),k÷lz_ (rI (Z.Zl)),_-I= r+ - _ d .

zI zI

C42)

The integral term in Equation 42 is replaced by zero for _ - O.

The integration by parts is performed _ times, i.e., until the exponent of z in the integral

is zero. The result may then be expressed as

, Az [(r_+l k+l z_). _z [(r )Ik_ _ z_ - rll _ _'' Z _ " 1 rI+' Zl . '

........ ....]]]. ""
Equation 43 has L+I closing brackets.

case in which Ar/r I << I.

z2

Ik_ " / r_z_dz

The following approximation may be used for the special

r_ (z)+I - z)÷I)

" _'k(_.+l) (44)

The stiffness matrix referred to the harmonic coefficients of pressure at the fluid grid

points is
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n T [Kqn] [H_p] (45)[K_j] = [Hqp] ij

The elements of [H_p]"l are shown in Equation 36.

The mass matrix associated with the center element is generated from the kinetic energy

integrals, Equation 14. Substituting

•n z) , (46)

into Equation 14, the generalized kinetic "energy" of the element for each harmonic is

f (-°.°Tn = _ (r)Zn ql + q2 z dA , n > 0 (47)

The mass matrix terms for the generalized coordinates are calculated from the equation:

22 Tn
(48)

In terms of the previously defined integral parameters, Ik_, the terms in the mass matrix for

the generalized coordinates are:

qn
Mll " _ 12n+2,0 ,

qn , Mqn
Ml2 21 " B 12n+2,1

qn
M22 - _ 12n+2,2

n > 0 (49)

The elements of the starred mass matrix are identical. For n - 0 the above results are

multiplied by 2. The mass matrix referred to the harmonic coefficients of pressure at the fluid

grid points is

[M_j] - [Hqp]
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The relation between the pressures, {pj}, forces, {FI}, and displacements, {Ul}, at the

structural boundary, given for an individual point by Equation 15 of Section 16.1.3, has the

general matrix form

{Fi} • [A]{pj} - [Kg](Ui} (1)

The terms in the vector {Fi} are the forces on the displacements, {ui}. The [Kg] matrix Is a

function of the gravity.

The generalized forces on the fluid, {lj}, corresponding to pressures, {pj}, are dependent on

the structural acceleration, {_i}, as shown by Equation 7 of Section 16.1.3. The general matrix

relation has the form

where s • d/dt.

necessary that

[R] - - [A]T

Several structural points are attached to each boundary fluid circle as shown in the

following figure.

{zj} - sz CR]{ui} , (2)

In order to conserve the energy flow, {ul}T{pi}, through the surface, it is

(3)

Fluid Circle -_

UZ -b

Structural :olnts

16.1-27 (4/I/72)
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rk is the radius of the circle

is the slant length of an equivalent conical surface associated with the circle

¢i is the angular position of point i

_i is the displacement vector of point i

pk(¢) is the pressure around the kth fluid circle

is the vector normal to the equivalent conical surface

,p is the angle between _ and the (r,¢) plane

i

The pressure function around the circle is

n

(4)

V

The outward normal force on an increment of area, given by Equation 15, Section 16.l.3, is

dF I - [p(_) - og'C(¢)] dS i (5)

Thus the total outward force acting on the element of surface area associated with the ith

structural grid point can be found by integrating

Si i

(6)

The vertical displacemen& uz

displacement, uj. Thus

can be expressed in terms of the available co_#onents of structural

where the coefficients A?, A_, A?* and Kij will be found by expanding Equation 6 and comparing

the result with Equation 7.

in order to produce the coefficients in Equation 7, we must define the limits of integration

in Equation 6 and the manner in which the direction of the normal varies in the vicinity of the

fluid circle. The pressure function of a fluid circle is assumed to be a function of ¢ only and

16.1-28 (411/72j
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acts over the area as defined below.

The boundary is assumed to consist of conical surfaces interconnecting fluid circles as shown

below. The forces acting on a fluid circle are taken as the forces acting on the adjacent halves

of the adjacent conical surfaces as shown. /_

<,. <

rk_i, Zk-_

The forces on each of the two sections, for a unlt increment of azimuth angle, are

6l

F1 = I p rl dsl
0

62

F2 = [ p r2 dsZ
0

(9)

where

h " ½ _/(Zk-I-'k7+(rk-I"rk)2'

• I . )2 rk+l)2 i62 _ _/(Zk Zk+l + (rk -

(rk - rk.I)

rI = rk - sI Z_i

(rk+l - rk)

r2 = rk + s2 2£2

(10)

-h
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Performing the integrations indicated in Equation g we obtain:

OF pOCR r_U:'L//_-

F2 : P_2 rk + _\ _k

(II)

Resolving the forces into r and z components and adding them, produces the radial and vertical

components of the force on the ring:

where

_z - 9.l

Ar = _I

Fr - p rk AZ ,

Fz = p rk Ar ,

\ rk 242 /

" rk-ll(rk" rk-l) _2 II 1 /rk+l" rk_-_.rk+1 " rk)

(12)

i

(13)

V

An equivalent conical section, which produces the same magnitude and direction of force, has

a slant length, _, and cone angle, _, given by:

= _/_r 2 + _kz2 ,

- Arctan (-_)

(14)

The structural grid points are, in general, placed at irregularly spaced azimuth angle, ¢i'

around the _uid circle. The limits of integration for the ith
grid point are eli _ (¢i+l+¢i)/2

and _Oi = (_i+_i-l)12" Thus, using the results expressed by Equation 14 in Equation 6, the

force applied to the ith grld point in the direction of the normal, _, is

o.

16.1-30 (411172)
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eli

f[o o. ]Fi = rk_ P_ + Pk cos n¢ + Pk sin n¢ - og (Uni sin $ + uti cos _) d, , (IS)

¢01

where Unl is the normal component of displacement and uti is the tangential component of displace-

meritat the ith grid point. Note that the assumption is made, implicitly, that the angle (¢ - _i)

between the local normal and the radial direction at the ith grid point is small enough that

cos(¢ - _i) may be assumed equal to unity.

Performing the indicated integratlon,the coefficients in Equation 7 are:

A? - rkC (_li " ¢0i) '

n rk_
Ai " T (sin ¢Ii" sin _Oi)

AT* rkL" T (cos _Oi " cos _li)

The components of force in a cylindrical (r, ¢, z) coordinate system are

(16)

I Fir

Fiz

cos ,_I
0 Fi

sin

(17)

In order to produce loads on the point in any other coordinate system, the vector in Equa-

tion 17 is multlplled by a transformation matrix. The stiffness coefficient in Equation 7 that

relates normal force, FI, to motion in the direction of the normal is

Kil - rk_g sin _ (_II " ¢04) (18)

The off-diagonal term that relates normal force to tangential motion, ut, is

Kit • rk;_pgcos ,_ (¢Ii " _Oi) (19)

These coefficients are rotated into the directions taken locally by the global coordinate system.

' 16.1-31 (4/I/72)



INTERACTION BETWEEN STRUCTURES AND FLUIDS

As an example, the boundary stiffness matrix in a cylindrical (r,_,z) coordinate system is, for

an individual structural grid point,

(r) (_) (z)

[Kij] " rk_og (*li " *Oi ) 0 O ,) (20)

0 sin _b_I(z)

In summary, the arrays which describe the interconnection of the fluid and the structure are

the matrices of the coefficients A° n n*
i' Ai' Ai ' and Kij defined in Equation 7 and evaluated in

0 n n*

Equations 16 and 20. The A i, Ai, and Ai coefficients also serve, by virtue of Equations 2 and 3,

as the arrays that give the generalized forces on the harmonic pressure coefficients due to the

structural displacements. In the latter capacity they have the form of a mass matrix. NASTRAN

includes a separate functional module, the Boundary Matrix Generator, for the generation of these

arrays. The outputs of_the module are treated as direct input matrices by the Direct Dynamic

Matrix Assen_ler (GKAD). See Section 9.3.3 for details.
=

The boundary condition at a free fluid surface is given by Equation 13 of Section 16.1.3.

Neglecting the static term, it is seen that the boundary condition describes a surface "mass"

distribution with surface density equal to I/pg. If the gravity field is absent (g - 0), the

pressure is zero at the surface. This condition is treated automatically in NASTRAN by applying

single point constraints to the degrees of freedom that are the harmonic pressure coefficients at

the free surface.

When gravity is present, the program satisfies the free surface boundary condition by con-
....

necting a mass matrix to the harmonic pressure coefficients at surface grid points. The elements

in the mass matrix are obtained by an energy method. The pressure is assumed to vary linearly with

radius between two adjacent fluid circles on the free surface, so that the pressure coefficient is

r - rI n r2 - r

pn . ;2- IP2 + r2 rlP , (21)

between the two fluid circles. The "kinetic" energy for the nth harmonic coefficient is, by

analogy with Equation 14 of Section 6.1.4

V

mB
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r 2

F (_n)2 r drTn =

rI

n n
The elements of the mass matrix interconnecting P. and P. are then obtained from

#

_2Tn

Hi, =

(22)

(23)

The results are, for both the starred and unstarred coefficients,

_l x(r2 " rl) {3rl + r2)
= 12_g

n n(r2 " rl)
H_12 = M21 = 12pg {rl + r2)

M; 2 _(r2 - rl) (3r2 + rI)
• 12pg

n > 0 (24)

The values are multiplied by two for n = O.

For the region between the axis of symmetry and the first fluid circle, the pressure

coefficients are assumed to be proportional to the nth power of the radius (see Section 16.1.4.4).

Thus, in this region,

and

,o. ° |

rl

Tn _ (_;)2 I 2n

(25)

dr, n > 0 {26)

The element of the mass matrix is

_2Tn _ r_
, n > 0 , (27)
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M_l . _r_
Pg (28)

V

OF POOR QUALITY
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16.1.6 App)ications

The hydroelastic capability described in the preceding subsections may include many different

effects such as variable density and compressibility, a free surface, rigid or flexible structural

boundaries, multiple boundaries, free surfaces with gravity, and user defined matrices For the

simulation of viscous effects and auxiliary connections to the fluid.

The general restrictions on the problem to be solved are: l) the fluid must have axisymmetric

geometry and properties; the motions, however, may be general; 2) the mathematics are valid only

for small displacements; 3) the solution is accomplished only For dynamic pertubatlons from the

static equilibrium. Both of the latter restrictions rule out direct solution of problems with

large steady-state velocities. Indirect methods may be applied to these problems, but they must be

provided by the user via direct input matrices.

In order to model fluid problems, a number of special considerations must be kept in mind:

I. The degrees of Freedom for the tluld are harmonic pressure coefficients. The generalized

forces acting on these degrees of freedom are actually the accelerations of the fluid.

The applications of a dynamic force Is not allowed except through a structural boundary.

2. At a free surface the gravity effect Is modeled automatically with finite elements. If

gravity is missing the pressures at a free surface will be constrained to zero. If

gravity is present, the geometry of the free surface must be compatible with static

equilibrium, l.e. it must lie in a plane perpendicular to the axis of symmetry.

3. The structural boundary may be either rigid or flexible. A fluid with no boundary defini-

tion in the input data will have a fixed rigid boundary.

4. The effects of variable fluid density and of a gravity field are not completely compatible.

If the effects of either gravity or variable density are small they may be used together

but second order errors may result.

The hydroelastic capability may be used with any of the available rigid formats. The rigid

formats for static analysis and for elastic stability analysis will, however, produce trivlal

results, since the fluid-structure interaction matrices are ignored by these rigid formats. Recom-

mended Rigid Formats and the restrictions on each are described below:

IB.l-3S (411172)
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Rigid Format No. 3 - Normal Modes Analysis

The modes of a fluid in a rigid container may be extracted with this rigid format. Any

structural data in the deck will be treated as a disjoint problem. (The structure may also produce

normal modes.) Free surface effects with or without gravity will be accounted for.

Rigid Format No. 7 - Direct Complex Eigenvalue Analysis

The combined modes of the fluid and structure are obtained with this rigid format. If no

damping or direct input matrices are added, the resulting complex roots will be purely imaginary

numbers, whose values are the natural frequencies of the system. The mode shape may be normalized

to maximum quantity (pressure or displacement) or to a specified structural displacement.

Rigid Format No. 8 - Direct Frequency and Random Response

It should be remembered that loads may be applied only to structural grid points. The use of

overall structural damping (parameter g) is not recommended since the fluid matrices will be

affected.

RX_id Format No. 9 - Direct Transient Response

Transient analysis may be performed for the fluid-structure system. The following rules apply.

I. Applied loads and initial conditions may only be given for the structural degrees of

freedom.

2. All quantities are measured relative to static equilibrium. The initial values of the

pressures are assumed to be in equilibrium.

3. Overall structural damping (parameters _3 and g) should not be used.

Rigid Formats IO T II r and 12 - Modal Formulations

Although these rigid formats may be used in a fluid-structure interaction problem, their

practicality is limited. The modal coordinates used to formulate the dynamic matrices are the

normal modes of both the fluid and the structure solved as uncoupled sys-_ms. Even though the

range of natural frequencies is typically very different for the fluid and the structure, a

similar number of modes should be chosen from each. The safest method with the present version of

NASTRAN is the extraction of a large number of modes using the Tridiagonal Method. This procedure,

V

--L
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COMPRESSIBLE FLUIDS IN AXISYMMETRIC TANKS

however, results in a dynamic system with large full matrices. The Direct Formulation is probably

more efficient.

In applying the hydroelastic capability, the user selects the harmonic coefficients for the

representation of the fluid. There is no requirement relating the number of harmonics and the

number of structural grid points around the circumference nor is it required that the structural

grid points be evenly spaced. If Ng is the number of structural grid points around a circumference,

then the results for harmonic orders greater than ½ {Ng - l) will, however, be not meaningful for

that circumference since these harmonics are not excited. For problems with transverse symmetry

planes it will frequently be possible to el|minate the starred (sine) harmonic coefficients, i.e.,

_--_P• 0 at _ - O or 7.
;0

The program includes a provision whereby advantage may be taken of one or more planes of struc-

tural symmetry. The user specifies an even number m, where I/m is the fraction of the circumference

used in the structural model. The boundary conditions at the radial planes bounding the structural

model may be both symmetric, both antisymmetrlc or one of each. The matrix, [A] T, defining the

generalized forces on the pressure coefficients is multiplied by m. The matrices defining the fluid

forces on the structure are unchanged. It is required that the pressure harmonics selected by the

user be consistent with the symmetry assumptions. Thus, if m - 6 and symmetric boundary conditions

are placed at @ - 0 and ¢ - _/3, the permissible values of n are O, 3, 6, g, etc.

At present the axisymmetric structural elements (conical shell, doubly curved shell, and

solid of revolution) cannot be used in hydroelastic problems. All other structural elements

are available.

The topology of the fluid surface is quite arbitrary. Figure l shows several examples of

permissible topologies. The major restriction is that, when the problem contains two or more

tankS, they must have the same axis of symmetry. AS an aid in establishing topology, the user

must provide separate sequential lists of free surface points and structural boundary points for

each disjoint boundary segment. The fluid must be located to the right of the boundary when the

boundary is traversed according to the sequence in the llst. Rigid inclusions or rigid external

boundary segments, are not included in the lists. The existence of a rigid boundary is implled

simply by the absence of elements in the boundary matrices.
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The input data consists of card entries that describe the following.

I. The cross-sectional coordinates of fluid grid points (fluid circles).

2. Connection information and physical properties (density and bulk modulus) for fluid

elements.

3. Identification of structural grid points.

4. Sequential lists of fluid circles on free surfaces and on structural boundaries.

5. The harmonic components of pressure to be considered.

6. The magnitude of the gravity vector.

7. Identification of radial planes of symmetry.

8. The location (radius and azimuth) of points on free surfaces at which normal disDlacements

are desired for output.

g. The location of points in the fluid at which values of the pressure are desired for Output

(pressure points).

10. Direct input matrix terms coupling fluid degrees of freedom with each other or with any

other structural degree of freedom or extra points.

A useful special feature of the program is that the specification of a pressure point in the

fluid, item 9 above, may be used in conjunction with direct matrix input, item I0, to define a

pressure transducer in a servo control system. In this application the pressure point is related

to the harmonic pressure coefficients by the analyst using a multipoint equation of constraint.

Another use of direct matrix input occurs in the treatment of viscous damping due to tank

wall friction. The effect may be represented by viscous dampers interconnecting the harmonic

pressure coefficients in the fluid, and the resulting matrix of damping coefficients may be

inserted by means of the direct matrix input feature. The arrangement of the viscous dampers is

derived as follows. Let the frlctional effect be represented by uniformly spaced porous baffle

plates normal to the wail as shown below.

V
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The frictional force on the wall per unit of surface area is,

f - -h_ - CG x (]l

The height of the baffle, h, is made equal to the thickness of the boundary layer. Consid-

ering the sides of the baffle to be external fluid surfaces, Equation 7 of Section 16.1.3 may be

used to calculate the generalized force transferredthrough the baffle,

Ix - - SUx " - S s Gx ,

where S is the area of the baffle and s 8 d/dt. Substituting for u
X

Sh _(_)Ix -

from [quatlon l,

(2)

(3)

Substituting harn_nlc coefficients for Ix and p, and integratingover the circumference,

n _rh2
ix . _ _(_n) n >0 ,

(4)

ixO . _2_rh2 _(_o) n-O

_rh2
The coefficient Bn - _ (l+6_) has the form of a viscous da_Ing coefficient. A model

which incorporates its effect is shown below.
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Each fluid grid point on the boundary is replaced by a pair of closely spaced grid points,

between which a viscous damper, Bn, is connected for each harmonic order. One, but not both, of

each pair of fluid grid points is identified as lying on the structural interface.

The above model neglects the velocity of the structure and also neglects the frictional force

on the structure. These relatively small effects may be incorporated by means of additional

direc_ matrix terms.
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INTERACTION BETWEErl STRUCTURES AND FLUIDS

16.2 COMPRESSIBLE FLUIDS IN ROTATIONALLY SYMMETRICAL CAVITIES WITH SLOTS

This section describes an application of NASTRAN to the acoustic analysis of cavities with

the symmetr7 properties shown in Figure I. The cavity is assumed to consist of an axisyn_netric

central region and two or more symmetrically arranged slotted extensions. The appllcation does

not consider interaction with the surrounding structure. Internal procedures and data cards have

been designed to automate the computation of the vibration modes of the cavity. Additional

information is included in the User's Manual and in Reference 1.

16.2.1 _r_j. lation of the Problem

The general case of an unsymmetrical acoustic cavity may be solved with a finite element

model representing the wave equation in three dimensions. In the case of symmetrical cavities,

the problem may be reduced, depending on the actual symmetry and shaoe of the cavity. The various

choices of simplification are:

I. If planes of symmetry exist in the cavity, a three dimension finite element model may be

used to model a port,on of the cavity and the acoustic resonance modes may be extracted

in separate runs using different boundary conditions. Figure 2 shows an examole of the

use of synwnetry tO reduce the model to one-fourth size using two olanes of symmetry.

2. If the shape of the cross section does not vary along the axis, the problem may be solved

with a two dimensional model of the cross section. See Figure 3 For an illustration of

this technique.

3. If the cavity is axisymmetric, i.e., if the outer radius is indeoendent of the circumfer-

ential angle, the problem may be reduced to a two dimensional oroblem in r (the radius)

and z (the axis). The motion is expressed as harmonics about the circumference and each

harmonic is solved as a separate disjoint oroblem. This is the type of _roblem treated

in Section 16.1.

PRECEDING PAGE BLANK NOT I_/I_M'EI_
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4. A special case exists for typical solid rocket motor cavities wherein the cross section

contains a round central hole and symmetrically arranged radial slots as shown in

Figure I. If the slots are sufficiently narrow the gradient of pressure across them can

be ignored; and if the slots are evenly soaced, the formulation of the oroblem in terms

of harmonic degrees of freedom becomes relatively easy. The net result is that the

vibrations within the slots can be modeled by harmonics. Thus both the slots and the

central circular cavity reduce to two dimensional oroblems in harmonic analysis. This is

the formulation that has been selected.

The theoretical treatn_nt of the axisymmetric central region is identical to that described

in Sections 16.1.2 and 16.1.4. The cross-section is divided into triangular and ouadrilateral

elements and soecial trapezoidal elements next to the axis. The slotted reoion Is also divided

into triangular and quadrilateral elements. The complete finite element model has the aoDearance

shown in Figure 4. Note that axisymmetric tubular regions that have no direct connection to the

central cavity may be attached to the slots.

The main subjects treated in following sections are the development of finite elements for

the slot region, and the procedures used to interconnect the slots with the axisy_metric regions.

The formulas required to recover velocity components for both types of regions are also described.

The slot elements can also be used by themselves to solve both static and dynamic two-

dimensional potential problems including, in addition to acoustic _roblems, fluid flow, heat

conduction, gravity waves in shallow water, electrical wave transmission, etc. The user can

specify a different slot width at each gridooint in the field.

16.2.2 Fluid Elements for the Slots

16.2.2.] Energy Expressions

A slot region is defined as a series of narrow, evenly spaced cavities with their midplanes

defined by planes passing through the axis of the fluid. If the pressure gradient across each

slot is ignored, the pressure in the jth slot can be. described by a finite Fourier series:

N N*

- on*(r,z) sin nCj . (l)PJ P°{r,z) + Z on(r,z) cos n¢j + !ln=l n
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The slots are placed at angles

_j - _rt j = 0,i,2.....M-I , (2)

w_ere M is the total number of slots. The total nu_er of terms in the series, I+N+N*, must equal

M in order to provide a unique decomposition of an arbitrary pressure distribution into Fourier

components. If M is an odd number

N - N* = M-IT (3)

If M is an even number

M

N* = _- 1 .

(4)

For this case sin (_¢j) = sin(jr) = O, so that the sine coefficient of order n* = _ orovides no

pressure and we may select the upper limit of N* enual to _ if we wish.

The equation for generalized potential energy is the same as Equation 9 of Section 16.1.4,

except that the integration over @ is carried out as follows:

2= M-I

I f(_)r d¢ = Z w f(¢j)
0 j-O

(5)

where f(¢) is any function and w is the slot width assumed to be equal for all slots.

Substituting Equation 5 into Equation g of Section 16.1.4 results in the following exoression

for the potential energy:

A jZO Vp(_j)._p(_j
(6)

where dA - dr dz.

Ignoring the gradient in the @ direction, the equation for the pressure gradient is:
--.-
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-- _- I _ n* )ILBr * nZ] _r

C7 :sC'C-_C" ......

KS_

where K = MI2 for M even and K = (M-l)/2 for M odd.

Do sin n_'-'_- _'z ' (7)

Substituting Equation 7 into Equation 6 results in a rather involved exoression. The cross

product terms between different harmonics will, however, disaopear, which may be shown as follows:

Since ¢ = 0 is a plane of symmetry:

M-I

jO! c°s 2'M-_ sin 2_nJM = O
all m,n (8)

Define the coefficients:

M-I

Rnln = Z
j=O

M-1

Smn = Z
j=O

cos _ cos _ " _Mil(cos_m-n) + cos-_(m+n_,
M M 2 J=O"

The only conditions under which the sums of the cosine terms give a nonzero result occurs

when T = 0 or l, or when = 0 or I. The latter condition can occur only if n = m. Since

n < M/2 and m < M/2 the former condition can occur only if m = n = 0 or if m = n = M/Z. Thus all

of the cross product ter_ (m # n) disappear. In additionl

M

Rmm = Smm = _" for m # O,

RO0 = RM M = M

_,_

SO0 = SM M = 0

(10)
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COMPRESSIBLE FLUIDS IN ROTATIONALLY SYMMETRICAL CAVITIES WITH SLOTS

Since the cross-product terms disappear, the potential energy may be written,

U - U° + [ (un + Un*) + U[r ,
nl

(ll)

where

- _-(?2pn).(72 pn) dA o < n < ,

i n* n*
w (_2p ).(_2p ) dA 0 < n* <Un* , _

U° " _; _ (t/2pO)'(v2pO)dA

A

M

u_
" _ i { <_2PM/2)'(_zPM/Z)dA

V2 is the two dimensional gradient operator

(12)

" +

In an analysis of the vibration modes of the cavity, the results for the sine coefficients,

n*

p , will be identical to the results for the cosine coefficlents, and they are, therefore, Of _o

further interest. Each distinct cosine coefficient, 0 _ n _ M/2, produces a distinct set of

vibration modes.

The kinetic energy may be analyzed in the same manner as the potential energy. From

e . _i{ (6.)2dA o<n<./2,

Equation 16 of Section 16.1.2

A

T"/2 . _I_ (_./2)2dA

16.2-5 (4/1/72)
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16.2.2.2 Triangular Slot Elements

The pressure distribution within each triangular slot element is assumed to be linear with

respect to r and z and of the form:

V

n + f2(r,z ) n ÷ f3(r,z ) npn(r'z) = fl(r'z) °l °2 _3 " (15)

n
where pj, J = l, 2, 3, are the values of pressure at the corners.

Each term of the stiffness matrix is calculated as a second partial derivative of the energy,

Kn _2 Un
ij _ _ n n (16)

_Pi ;oj

Thus, from Equations i2, 15, and 16,

_ w 72 Ifi).ry2 (fj) dA ,
Kn. . M
ij

A

(17)

for 0 < n < _ . For n • O, _, the stiffness matrix terms are twice as large.

manner the mass matrix terms for 0 < n < _ are, using Equation 14,

./

In an analogous

(18)

The functions fi may be evaluated as follows. Observe that the exoresslon

X(r,z)-

r2 z2

r3 z3

Xl

I! rl z1

+ r z

r3 Z3
l!rlIX2 + r2 2 X3

r

li rl Zl

r2 z2

r3 z3

(Ig)

implies that X iS a linear function with values XI, X2, and X3 at positions (rl, Zl), (r2, z2) and

(r3, z3) respectively, f1' f2' and f3 are thereby equal to the coefficients of Xl, X2, and X3
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respectively in the equation above. The value of the denominator equals twice the cross sectional

area.

The integrals given in Equations ll and 18 are evaluated under the assumotion that the com-

pressibility, B, and the density, o, are constant over the element. The thickness, w, is assumed

to vary linearly over the element. It may, therefore, be expressed by the equation:

The gradients are:

w(r,z) - fl(r,z)w I + f2(r,z)w2 + f3{r,z)w3 (20)

V2 fi(r,z) = _[(zj- zk) _r + (rk- rj)ez] ' (21)

where j and k are the other two points in cyclic order and A is the area of the triangle.

Observing that the gradient of pressure is constant over the element, the stiffness matrix

terms, obtained by inserting Equation 20 into Equation 17, are

Kn +ij "  v2(fi)' 2(fj)I ( l"l+  2"2  3w3)dA (22)
A

ConW_ining Equations 18 and 20 the mass matrix terms are:

° ;MIj = _ (Wlfl + w2f2 + w3f3)fi fj dA (23)

The integral equations for stiffness and mass may be evaluated by the identity

[ f_J Yfk (2+_+B+_),_I3' Y!
f_i dA - 2A , (24)

where i, J and k are distinct and A is the area of the triangle.

Substituting Equation 24 repeatedly into Equations 22 and Z3 results in stiffness and mass

terms for the triangular slot ele,w_nt for 0 < n < M/2 as follows:

16.2-7(411172)
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Kn MA [_2(fi).V2(fj)] ,ij " _p (wl + w2 + w3)

M_j = i'_ (wi + wj + wI + w2 + w3)(l + 6ij) ,

(25)

V

where:

and

6i = 1j , i=J ,

_i = 0j , i#j ,

l [(Zj Zi) + (rk rj)(ri rk)]" Zk)(Zk - . .?2(fi).?2(fj) =

For n = O, M/2, the values are _ice as large.

16.2.2.3 Quadrilateral Slot Elements

The quadrilateral slot element consists of four triangular slot elements defined by the

exterior edges and diagonals of the Quadrilateral as shown below:

(26)

Z

The points may be input in any order but each interior angle must be less than 180 degrees.

The stiffness and mass matrices for the quadrilateral are taken as one-half the sums of stiffness

and mass matrices for the individual triangles.

16.2-8 (4/1/72)
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16.2.3 Corrections for the Effects of Finite Slot Width

16.2.3.1 Circumferential Variation of Pressure

In the central cavity, it is assumed that the pressure

CF PCOR QU:_LI_/

= n

Pc Dc (r,z) cos n¢

It is also assumed, in the slotted region, that, in the mth slot,

(1)

= n (r,z)cos (2)°s,m PS n_m

where tm is the azimuth angle at the midplane of the mth slot, see sketch below. A auestion then

arises as to how the pressure at the mouth of the slot is related to the pressure in the cylindri-

cal region.

We might, for example, assume that the pressure in the mouth of the mth slot, Ds,m, is eoual

to the pressure in the cylindrical region evaluated at ¢ = Sm' the midpoint of the slot. A better

assumption, particularly for wide slots, is that Ps,m is eaual to the _ _ressure in the

cylindrical region, averaged over the slot width. Thus, using Equation I, the pressure in the

width of the mth slot is

16.2-9 (4/1/72)
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W

:'m_ro

: n (to,Z)l IPs,m Pc _oo cos ne.ro d ¢
W

'_m° r_o

n

oc (ro,Z) cos n¢m.

nw o

sin

nw o

r o

OF FO',:R ,__:._LlT'.f'

nw o

sin

Pc,m nw0 (3)

Note that the ratio ps,m/Pc, m is independent of m so that, umon substituting Eouations I and

2 into Equation 3,

n

Ps (ro'Z)

n (to,Z)Pc

nw 0

sin
z

nw 0

2%

(4)

nw

The factor _ achieves a maximum value of _/2 for n = M/2 (the highest mode index) and

wo : 2_ro/M, i.e., if the slots occupy the entire circumference. The following table shows how

n to n depends on nWo/2r othe ratio of Ps Pc

V

V

nw o

0 .2 .4 .6 .B 1.0 _/2

n

o S

l.O .995 .975 .942 .89B .840 .636

Dc

Note that the effect becomes significant for nwo/2r o > 0.5, i.e., when each slot covers greater

than a _#elfth of a wave length.
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16.2.3.2 Effect of Shard Corners

It may be shown that the effect of an abrupt change in the diameter of a pipe is to add a

coupling impedance that is equivalent to a short additional length of pipe (Reference 2). The

problem here is a little different in that the slot is long (in the z direction) compared to its

width. Smythe (Reference 3) has solved the analogous problem for the added resistance of a con-

ducting strip whose width suddenly changes. His soIutlon may easily be expressed in terms of the

added effective length, _'e'of the strip whose dimensions are shown below.

The impedance of the added length is

Wlt

Ke " O_e" ' (5)

where p is the density of the fluid and t is the transverse dimension of the slot in a direction

normal to the plane of the figure. Smythe's expression for _e is

h [_._ (K+h) K_-_ lOge(K-h)21Oge4hK ] (6)£e " T log e - - ,

where h = Wl/2 and K = w2/2.

where B = w2/w I.

Manipulation of EQuation 6 leads to

;te • _ (B + ) loge _ + 2loge I_+l)(B-l_4_ ' (7)
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Equation 7 is plotted in Figure 5. The bracketed expression has a logarithmic singularity

as _ - _, but it is seen that _e/JWlW'--'2remains finite (in fact approaches zero) as _ - =. By

way of com_arison, the effective length of a round pipe of diameter w I approaches 4wi/3_ : .42wI

as 3 -- m.

In our application

\

wI : width of slot mouth, wo ,

!
w2 : 2_ro/M ,

(8)

'Mwot M
Ke = , 0 < n <

2_ e

_, Ke is twice as large; t is the length of slot in the (r,z) olane associated with theFor n O,z

grid point.

16.2.3.3 Con_ination of the Two Effects

The effects described in the two preceding subsections may be combined to define a stiffness

n and n The two effects may be represented schematically as followsmatrix that couples Ps Pc'

I 1
"'_C : : : _ 0

"C '

The eauation of constraint is

nw o

sin _
"nn

PS PC nwo
(g)

The scalar spring is given by Equation 8.

produce a "stiffness" matrix as follows

The equation of constraint and the scalar spring

16.2-12 (4/1/72) w
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nw o
sin

._ : 2r0

nw 0

2ro

(1o)

(II)

In the finite element model, Figure 4, the grid points on the slot boundary each have two degrees

n n which are coupled by the stiffness matrix in Equation lO. All other gridof freedom, Ps and Pc'

points have only one degree of freedom. In the limiting case of sharp corners between slots,

w2/w I = l.O, so that the effective length, _e' is zero and the stiffness Ke is infinite. In order

to avoid recoding for this special case, the effective length is chosen to be not less than one-

hundredth of the width of the slot.

16.2.4 Recovery of Velocity Comoonents

The velocity components within the fluid are calculated in the stress recovery ohase of

NASTRAN. Using the momentum relation, E_uation la of Section 16.1.2,

I _p (1)

Since the frequency is known in the cases of interest, the velocity is:

? 1
u - - l-_-ETp , (2)

where _ is the radian frequency and i is the imaginary number indicating a ohase shift of go

degrees. In normal modes analysis, the velocity is considered to be composed of real numbers and

the phase shift is ignored. In frequency response analysis the velocity will be given as a commlex

number. In complex eigenvalue analysis, the complex eigenvalue p _ i_ + _ is used instead of i_.

The velocities in a triangular fluid element at any point (r,z) in the axisymmetric region

are:
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l _ . 1 n
Vr " - _ _r " l_ql ' (3)

v_ - . _o . . n (%+_r+_z) (_)
l_oro 3¢ l_o'_"-_ . '

] _o l n
Vz = " _ = " u_2 ' (B)I up

n

where qi are the generalized coordinates described in Section 16.1.4.2. In the elements for the

slotted region, Vr and Vz have the same formulas, but Ve is zero. The velocities are evaluated

at four points, the centroid and the midpoints of the outer edges. De velocity in the circum-

ferential direction, V_, is the value that occurs at _ = - _ , n # O. The other values occur at

¢ - O.

At the centroid:

l

t CuO

"_ 1 0

nz

_C n rc

0 0 l

[H_p]

n

Dl

n

P2

n

P3

(6)
V

whe re

rc : _ (rl + r2 + r3)

zc - ½ (Zl + z2 + z3) '

_p] nand [H is the matrix which transforms pressures, p_, to generalized coordinates, ai, see

EQuation Ig of Section 16.1.4.2.

(7)
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At the midpoint of each edge:

.
_ij

n Pi_+Pj
V_j - -

i_xo ri + rj

where _ij " / (ri " rj)2 + (zi " zj )2 '

(B)

These formulas are derived using the assumotion that the pressure is a linear function of

S
position. Vii is the component of velocity directed along the edge of the element in the r,z

plane (at ¢ = 0). V_j is the velocity in the circumferential direction (at _ = - v/2n).

The velocities of the quadrilateral Fluid element are calculated at the intersection of the

diagonals by averaging the velocities of each of the four subtriangles. The velocities along each

edge are calculated using the same equations as with the triangular fluid element.

The velocities in the trapezoidal fluid elements next to the axis of symmetry are calculated

at the center (r • O) and along the outer edge. The velocity at the center has nonzero values

only for n - 0 and n • I. At the center:

V l (Pl + D2)= n-l
r - _ (rI + r2)

V - 0 nfl
r

l (Pz" Pl)
n-O

Vz " I)

Vz - 0 nfO

(9)
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At the outer edge:

-I [___. (r2 " rl ) _pn (z2 " Zl) ]Vs " _ _r _ + _z

. -n pn
V _ ,

where _ = (r - rl)2 + (z2 - Zl)2

(lO)

Since the velocities are calculated at the midpoint of the outer edge, the terms are

evaluated at:

rI + r2
I

zI + z2

2

(II)

The derivatives of the pressure at the midpoint of the outer edge are:

3r
r

. _n n
_Z q2 '

(12)

where the generalized coordinates at points (1) and (2) are related to the pressure coefficients

by,

I n

ql

n

q2

= [H_p] (13)

See Equation 45 of Section 16.1.4.4 for evaluation of [H_p].

Evaluating Equation II through 13 results in the velocity vector along the outer edge:

I'V_-}Vs" _(r2"rl) nz(r2"rl) + _(z2"zlL"I" " 'n n_" [Hnp]q _p_I-p-_-I

(14)
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Figure 1. Symmetrical acoustic cavity with slots.
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Arrows (+) denote flow direction at boundary

SYM = Symmetric Boundary

ANTISYM = Antisym_etrlc Boundary

Figure 2. Boundary condltlons for one-quarter symmetry.
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Figure 3. Two dimensional reoresentation of a three dimensional oroblem.
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Figure 4. Finite element model of acoustic cavity,
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Figure 5. Effective length bf an abrupt change in the width of a striD.
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17. AEROELASTIC ANALYSIS

17.1 INTRODUCTION

Aeroelastic analysis brings a whole new range of capability to NASTRAN, which can be used with

the structural analysis. Modules have been introduced to:

(a) Generate aerodynamic grld points,

(b) Provide connection (interpolation) between the structure and aerodynamics,

(c) Compute aerodynamic matrices, and

(d) Solve the equations for flutter or response.

Existing modules have been modified to provide, for example, a new method of eigenvalue extraction, the

ability to plot aerodynamic elements and to plot the curves produced. Two rigid formats are available:

one is for modal flutter analysis (by three methods, namely, the K-method, the KE-method and the PK-

method) and the other is for modal transient and frequency response analyses of aeroelastic models.

Aerodynamic analysis, llke structural analysls, is based upon a finite element approach. The

finite elements are strips or boxes for which there are aerodynamic forces. There are two major

points to be considered. The aerodynamic elements, even for rather complex vehicles, tend to be

in regular arrays. Thus, while NASTRAN has the provision to generate arrays of structural elements,

it is also desirable to generate arrays of aerodynamic elements. In particular, the aerodynamic

elements for lattice methods are arrays of trapezoidal boxes whose sides are parallel to the air-

flow. These should be described simply by defining properties of the array (panel). The grid

points defining the structure usually will not coincide with the grid points defining the aerodynamic

elements. Provision has been made to generate equations of constraint between the two sets of grid

points. The geometry interpolation is a key feature, since it allows the choice of structural and

aerodynamic elements to be based upon structural and aerodynamic considerations separately.

Aerodynamic forces are generated via the flow surrounding the structure. The theory produces

a matrix defining the forces upon the structure in terms of the deflections of the structure.

State-of-the-art methods which involve interactions between aerodynamic elements are available

only for sinusoldal motion. Phase lags occur between the motions and the forces, thus the matrices

are complex. Furthermore, these complex matrices depend upon parameters of the flow, namely reduced

frequency (ratio of frequency to velocity) and Mach number (ratio of velocity to speed of sound).

Such a matrix, if computed by an interaction theory such as the doublet lattice method, will be

expensive to produce. The most effective method to evaluate the matrix for a large number of

paru_ter values is to compute the matrix for a few selected ones, and then interpolate to others.

17.l-I (12129178)
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This parametric interpolation is an automatic 6eature of the solution modules for modal aeroelastic

analyses.

V
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17.2 DATA INPUT ANDGENERATION

Aerodynamic elaments are strips, boxes or bodies which represent the structure for computation

of aerodynamic forces. These elements, like the structural elements, are defined by their geometry,

and their motions are defined by degrees of freedom at associated aerodynamic grid points. Often

requirementsof the aerodynamic theory wlll dictate the geometry of the boxes. For example, the

doublet lattice theory requires trapezoidal boxes with their parallel edges along the streamlines.

Also, if one box lles in the wake of another, their edges must be on the same two streamlines. Aero-

dynamic elements and grid points will be generated to reduce the labor of the user (many less data

cards will be required) and to help insure that theoretical requirementsare met.

Aerodynamic calculations are made in a cartesian aerodynamic coordinate system. By the usual

convention the flow Is in the positive x direction. The basic coordinate system was not chosen,

since it would place an undesirable restriction upon the description of the structural model. Any

NASTRAN cartesian system may be specified, and flow wlll be defined in the direction of its positive

x axis. All aerodynamic calculationsare made initially In the aerodynamic coordinate system. All

element and aerodynamic grld point data, computed initially in the basic coordinate system, will be

converted to the aerodynamic coordinate system. The global (displacement)coordinate system of the

aerodynamic grid points will have its Tl direction in the flow direction. T3 is normal to the ele-

n_entfor boxes, and parallel to the aerodynamic Z direction in the case of bodies. Coordinate system

data are generated for the aerodynamic grid points.

The grid points are physically located at the ce,ters of the boxes and body elements. Perma-

nent constraints are generated for the unused degrees of freedom. A second set of grid points,

used only for undeformed plotting, is located at the element corners. All six degrees of freedom

associated with each grid point in this second set are permanentlyconstrained. Grid point

numbers are generated based upon the element identificationnumber. For any panel, the external

grid point numbers for the boxes start with the panel identification number and increase consecutively.

Aerodynamic degrees of freedom, along with the extra points, are added after the structural

matrices and modes have been determined. This introduces the following displacement sets:

uk Aerodynamic box and body degrees of freedom

UsA Permanently constrained degrees of freedom associated wtth aerodynamic grid points

Ups Union of Up (physical) and UsA

UpA Union of uk and Ups (physical and aerodynamic).
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The set UpA replaces Up
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as the set available for output at grid, scalar and extra points.

z

r
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17.3 INTERCONNECTIONOF STRUCTURE WITH AERODYNAMICS

Structural and aerodynamic degrees of freedom will be constrained by interpolation. This

feature allows the selection of grid points and elements for the structure and for the aero-

dynamics to each be chosen in a method which is well suited to the particular problem. The

structural model for a wing may involve a one-, two- or three-dlmensionalarray of grid points.

The aerodynamic theory may involve a strip theory, or a lifting surface theory. A general inter-

polatlon method is available which can interconnectthe various combinations. Any aerodynamic panel

or body can be subdivided into subzones for interpolation, using a separate function for each.

The interpolationmethod will be "spllnlng." The theory involves the mathematical analysis

of beams and plates {see Figure l). Linear spllnes are a generalization of the simple beam,

which allows torsional as wall as bending degrees of freedom. Surface spllnes are solutions for

infinite uniform plates. Several spllnes, including combinationsof the two types, can be used in

one model. For example, a model may use one linear spllne for the horizontal tail, and three sur-

face spllnes for the wlng {inboard section, outboard section, and aileron). This local spllnlng

allows discontinuous slopes (for wing-aileron hinge), separate functions (for wing and tail),and

smaller zones. Smaller zones wlll reduce the computing effort (cost).

The structural degrees of freedom have been chosen as the independent degrees of freedom; the

aerodynamic degrees of freedom are dependent. A matrix is derived which relates the dependent

degrees of freedom to the Indeper.dentones. The structural degrees of freedom may include any grid

components.

17.3.1 Theory for Surface. Spltnes

A surface spltne is a mathematical tool used to find a function w(x,y) for all points (x,y)

when w is known for a discrete set of points, wi - W(Xl,Yl). A linear spllne is a "beam" function

which passes through the known points. The natural extension to two dimensions Is to introduce an

infinite plate, and solve for its deflection, given its deflection at a discrete set of points.

This surface spllne Is a smooth continuous functlon which will become nearly llnear in x and y at

large distances from the polnts (xl,Yl). Furthermore, the problem can be solved in closed form

Involvlng _thlng more difficult than to evaluate some logarithm functions.

The deflection of tileplate will be synthesized as the response due to a set of point loads

on the Inflnlte plate. The response due to a single load is called a fundamental solution. The
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fundamental solutions have polar symmetry. If the load is taken at xi = Yl " O, and polar coordinates

are used (x = r cos 8, y = r sin 9), the governing differential equation is

l d
D V4W = D _._Ir_r [_ r r _r] ( . q (1)

The load q vanishes except near r = O. A solutlon to the general spline problem, formed by super-

imposing solutions of Equation l is given by

N

w(x,y) - a0 + alx + a2Y + Z Ki(x,y)P i , (2)
i=l

where Ki(x,y) -O/16xO)r_ In r_, ri - (x-xi)2 + (y-Yi)2 ,

and Pl = concentrated load at (xi,Yi).

The N+3 unknowns (aO, aI , a2, PI' i=l,N) are determined from the N+3 equations

£ Pi = E xiP i = E YiPi = O, and

N

wj = a0 + alx j + a2Y j +i_l Kij Pi (j-I,N) ,

where Kij = Ki(xj,Yj).

Note that Kij = Kji, and KIj = 0 when i = J.

Reference I.

The details of the derivation are given in

These equations can be summarized In matrix form:

w(x,y) = [l, x, y ) Kl(X,y), K2(x,y) ..... KN(x,Y)]

ao

aI

a2

P2

(3)

(4)

V

where K|(X,Y) Is defined below Equation 2.

17.3-2 (12/29178)
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The vector of a's and p's is found by solving

7
0 0 0 0 l II

0 0 Yl ' YN

wI = x I Yl 0 Kl

_N " : "
XN YN KNI

CRTGIIH._L P.-',C-" iS
OF PCCR qUALIw"Y

, (5)

where Kij is defined below Equation 3.

The interpolation to any point in the plane (x,y) is then achieved by evaluating w(x,y) from

Equation 2. Slopes can be found by analytic differentiation of Equation 2.

17.3.2 Theory of Linear Splines

Linear spllnes are easily solved by the three-momentmethod, which is excellent for simple

linear spllnes. Unfortunately, the method does not work as well for splines with torsion, rigid

The derivations sketched below are based upon an analogy with thearms and attachment springs.

surface spline derivation.

a. Linear splines

Equation: _, dMEl d'w q -_ , (6)
dxW

where q = applied load and M • applied moment.

k symmetric fundamental solution for x f 0 is used for loads q - P((x), and an antfsymmetrtc funda-

mental solution is used for moments. The solution for the general case is found by superimposing

the fundamental solutions,

•

, (7)
N / MI(X-XI))X-XI( PIIx-xI('

w (x) - a0 + aIx + ! _' 4El + -12E)II

e(x) dw N / MiIx-xlI P(x-xl)(x-xi(

=_'= al + i=_l \'_ + '" 4EI

(s)
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These are written in matrix notation as
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w(x)

e(x)

m

I

0
(x-x I ) I x-x I f

4El

(x'xI)Ix-xII

4El

Ix-xll
"T

The unknowns a, P and M are found from

WN

eI

o _T _

R1 A11 AZTI

RZ AZI , A22

where it has been assumed x l< x2 .,. < xH, and

I 1 ... I]RT • Xl x2 ... xN

[oo...o]RT.
I I ... I

(g)

(io)
V
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0

(x2-xl)3

1ZEI

(XN-Xl)3

1ZEI

(x2-Xl)3 (XN-Xl)3-

12EI 12EI

(xN-x2)3
0 *,io

12El

(XN'X2)3 0
o,i,

12El

OF PCCR '"" ''"

A21

(x2-xl)2 (XN-Xl)2 "
0 =w,w

4El 4EI

(x2-xl)2 (xH-xs)2
*,i,

4EI 4EI

: . ::::

(XN-Xl)2 (XN-X2)2
e.., O

4EI 4EI

A22 =

i

(x2-xI) (XN-Xl)
0 i,°,

2EI 2El

(xZ-x I ) (XN-X2)
0 ,,lJ

2EI 2EI

: :::: ,

 XN-X1!(xN-xz)
i ° l_ ,°., 0

2EI 2EI

b. Torsion Bars

Equation: (11)
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The solutlon is

e(x)-

where the unknowns come from

°I°e1 l

z

Le 1
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,I.o 

2GJ 2GJ

.Lk_l o .....Lt_
2GJ 2GJ
: • ._....
• : ::':

, ._ .Z_ .... o
1 2GJ 2GJ

(12)

(13)

17.3.3 Attachment of Splines with Elastic Sprin_s

The change in the formulas for splines to accommodate the springs is very easy. A derivation,

valld for the several types of splines, is as follows: The spline deflection is given by Equations

4, g or 12 and can be written

uk(r) • [R(r)]{a} + [Aj(r)](P} , (14)

where uk is the deflection of the spllne and the r may be a one- or two-dimensionalargument. Thus,

including the equilibrium equations S, I0 or 13

0 - [Ri]T{P} , (IS)

and

{uk} - [Ri](a} + [Aij]{P} (16) _C

17.3-6 (12/31/77)
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The structural deflection, Ug,

spring, resulting in forces

INTERCONNECTIONOF STRUCTURE WITH AERODYNAMICS

will differ from the spline deflection by the deformation of the

(P }" [ Ks-](Ug - uk} , (17)

where the matrix, Ks, has the spring constant, K, along the diagonal. These are nonzero {if K

were - O, then there would be no attachment and that grid point would be discarded) and thus the

inverse of Ks is

I °1_-Ks ]-I , " (18)

"l

Eliminate uk between Equations 16 and 17 to get

{Ug} = [Rl]{a} + ([Aij] + )K s j-l){p} (Ig)

Thus, all that is required to accommodate springs is to add the spring flexlbillties to the diagonal

of the spltne influence coefficient matrix. This is obvious by physical reasoning, since the spring

and spltne flextbilfttes are in series and can be added directly.

17.3.4 Rigid Arms on Linear Splines

The linear splfnes used for geometry interpolation have rigid arms (see Figure I).

Mathematically, these represent equations of constraint between the displacements and rotations at

the spline end and attachment end of the spline. The constraint equations are used to transform the

influence functions from the spllne ends to influence functions at the attachment ends. The com-

plete transformed influence functions are shown in Table I.

17.3.5 Coordinate Systems @ndConstraints

The spltne constraints are derived in spltne coordinates, transformed to the global coordinate

system, then all spllnes are appended to a common constraint matrix, Gkg. Finally, the multi,

single and omtt constraints are applied to reduce this to Gka.

-.. 4= 17.3-7(12/31/74)
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Figure I. Spllnes and their coordinate systems.
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Table I. Matrices for spline interpolation

The A Matrix for Surface Splines:

where r_j = (xt - xj) 2+ (Yt "YJ)2

o

(yl-yj)(l+In r_j)
81,0

(xl-xj)(l+In r_j)

{P}j

61J = for i J

• . ._-._,_-,_ :,_

CF PCC, R _:.r-.!,_/

The R Matrix for Surface and Linear Splines

m

uI_ez 1

ex - 0

0
Y ,..

Yi

l

0 l

m

"X i Uz

Bx

ey

The A Matrix for Linear Spllnes

n

]YI'Yli(YI'Yl)
4El

xIIYI'YJ{
2_

m

I I

,.lyi-yj{(ylyj), xi{yi'yJ{
4El { ZG,1

]

- ÷ 0

F

PZ

Mx
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17.4 FLUTTER SOLUTION TECHNIQUES

Flutter analysis is an unsteady stability problem. It may be solved for subsonic or super-

sonic flows by merely substituting the correct aerodynamic formulation. For the linear case, the

solution involves a series of complex eigenvalue solutions.

17.4.1 The K-method of Flutter Solution

The basic equation for modal flutter analysis by the K-method is

[-Mhh_2 + iBhhW + (l+ig)Khh - (½pVZ)Qhh(k,m)]{u h} = 0 , (I)

where Mhh = modal mass matrix, usually (but not necessarily) diagonal,

Bhh =

Khh =

Qhh(k,m) =

s

g =

p =

V =

and uh =

The above parameters are not independent, since k = _/2V, where c is a reference length.

For the K-method of solution, the aerodynamic terms are converted to aerodynamic mass

hh + _ Qhh (k'm) _{_I'g+ Bhh

modal damping matrix,

modal spring matrix, usually (but not necessarily) diagonal. May be complex (for
real structural damping). May be singular if there are rigid body modes,

aerodynamic force matrix, which is a function of parameters k, reduced frequency,
and m, Mach number,

circular frequency - 2xf,

artificial structural damping,

density,

velocity,

modal amplitude vector.

The term involving B in Equation Z was multiplied by /T_, which Is valid only at flutter, i.e.,

when g - O. Equation Z is solved as an elgenvalue problem for a series of values for parameters

k, m and p. The complex eigenvalue Is_2/(l+i_, which can be interpreted as real values of _ and g.

Velocity, V, is recovered from V - _/2k. Flutter occurs for values of k, m and p for which g - O.

the solutions are not valid except when g - O, since the aerodynamic force terms are valid only

for sinusoidal motion.

A slight variation has been used in NASTRAN. The equation is written as

17.4-1 (12/29/78)
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j hh k'm + iVk /hh +ATT'C- hI{Uh}
_+ Kh 0 (3)

Thus, the eigenvalue is

Equation 4 is approximated by

pZ = .V21(l+ig) (4) !

, 15>

The advantage of this niethod iS that it is Jossible tO iet k = O, since division by zero is not

required. This may actually allow solution of static divergence problems. ,._

To solve Equation 3, it must first be reduced to the canonical form for the Hessenberg method,

[A - _I]u = 0 (6)

To do this, use the method of Section i0.5.1.

As the flow chart for modal flutter analysis (Figure l, Section 17.6) shows, the K-method of

flutter analysis is a looping procedure. The values of V, g and f are solved for various values

of k, m and p. Plots of V versus g can be used to determine flutter (when g goes through zero to

positive values).

17.4.2 The KE-method of Flutter Solution

=

A more efficient K-method of flutter analysis (see Section 17.4.1) is possible if the analyst

is willing to assume no viscous damping from any source, e.g., from the structure or a control sys-

tem, and to restrict his solution to eigenvalues and not require eigenvectors. Then many of the

operations can be done in-core with a consequent increase in efficiency. This efficient K-method

algorithm is called the KE-method. With this increase in efficiency, a greater number of points on

a fiutter stab_Itycu';Ve can_be obtained for a given cost: and cases with poorly behaved stability

curves can be studied more thoroughly. This method gives results similar to those of Desmarals and

Bennett (Reference l).

In or_r to sort the roots so that curve_ (an-be-_awn, t-he-foot5 muR be or_ered, For the

first value of k, the roots are accepted in the order output by the elgenvalue subroutine ALb_IAT.

17.4-2 (12/31/77)
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(see Section I0.5). If the i-th eigenvalue for the n-th reduced frequency kn is denoted by Pi,n"

then an extrapolated eigenvalue may be defined as

(e) _ . = (7)
Pi,n = Pi,n-l ÷ (kn " kn-l)(Pi,n-l " Pi,n 2)/(kn l " kn-2) n 2, 3, 4 ....

_(e)
in which Pi,o is chosen equal to Pi,l" Then the Pi,n are ordered according to closeness to Pi,n

where the "closeness" is measured by a minimum value of

17.4.3 The PK-method of Flutter Solution

The fundamental equation for modal flutter analysis by the PK-method is

where Mhh =

Bhh =

Khh =

Q_h =

Q_h =

p=

W =

y=

0 " density,

V = velocity,

[Mhhp2 + (Bhh . ¼p_VQ_h/k)p + (Khh - ½pVZQ_h)]{u h} = 0 , (g)

modal mass matrix, usually (but not necessarily) diagonal for inertial terms. Inclu-

sion of control systems (as extra points) can introduce off-diagonal terms,

modal damping matrix. An equivalent viscous structural damping matrix is usually

diagonal. Controlsystems can introduce off-diagonal terms,

modal structural stiffness matrix, usually (but not necessarily) diagonal. May be

singular if there are rigid body modes. Control systems can add off-diagonal terms,

modal aerodynam(c damping matrix, a function of reduced frequency k and Mach number m,

modal aerodynamic stiffness matrix, a function of reduced frequency k and Mach number m,

elgenvalue = _(y±i),

circular frequency,

transient decay rate coefficient,

• reference chord,

k = reduced frequency = _w_12V,

and uh = modal amplitude vector.

The matrix terms in Equation g are all real. Q_h and Q_h are the real and imaginary parts of

Qhh(k,m), respectively. Note that the circular frequency and the reduced frequency are not inde-

pendent since k - _/2V.

For the PK-method of solution, Equation g is rewritten in a canonical form with twice the order.
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where[A] is the real matrix
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[A - pl]{Gh} = 0 •

C'_, _
a-,#

'3F POOR _UJ_LITI

(IO)
V

I

[A] -
M (Kh ½pVZQ h) I -M (Bhh - ¼pcVQ h/k)

I

and {_h } now includes both modal displacements and velocities.

The solution of Equation I0 requires iteration So that the condition

(ll)

k = (_/2V)Im(p) (12)

may be satisfied. The iteration is diagrammed in Figure l' It begins with k = 0 (actually a

I
small value so that Qhh/k can be computed) and all real roots immediately satisfy Equation 4 but

the complex roots do not. For the real roots, the decay rate coefficient is

y = pc/(_.n2)V (13) -

The iteration for the complex roots proceeds as follows.

written as

p(J) = i)_(j)t (J)+
rs rs _Yrs - '

where r denotes the oscillatory mode number ordered by frequency (_Is < _2s < "')' s

number of the oscillatory mode under investigation, and j denotes the iteration (eigenvalue

solution) number, so that the next estimate of the (nonzero) reduced frequency is

Let the complex pairs of eigenvalues be

(14)

denotes the

(IS)

The estimate of the first nonzero reduced frequency is taken as

(16)

Convergence to the first oscillatory root occurs when

IklJ)

Let the converged complex eigenvalues be

. klJ'l) j < (17)
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¢c>, (18)

where only Pss satisfies both Equations 10 and 12. The search for the next oscillatory mode begins

by Increasing s by one. The first estimate of the next reduced frequency is

k_O) (c) ._ 2V ," _s,s-i / (19)

and the iteration of Equations 14 and 16 is continued until Equation 17 is satisfied. Equations 18

and Ig begin the search for each of the higher modes of interest.

The eigenvalues and eigenvectors of Equation lO are found by a real version of the Upper

Hessenberg method described below. The order of calculations for different values of altitude

density, velocity and/or Mach number is indicated in Figure 2.

The principal advantage of the PK-method over the K-method (or the KE-method) is that it pro-

duces results directly for given values of Mach number (or speed), whereas the other methods require

(c) in Equation 18 is a better approximation to the
iteration. In addition, the damping given by Yrs

decay rate than the parameter g in Equation 5.

17.4.3.1 Eigenvalue and Eigenvector Extraction for the PK-method

The Upper Hessenberg method is used to extract the real or complex conjugate eigenvalues of

the real matrix in the canonical form of Equation lO. The Upper Hessenberg method is described in

Section I0.5 for complex matrices. The basic reference is Wilkinson (Reference 2) for both the

real and complex cases, but Parlett (Reference 3) has given a concise discussion of the algorithms

for the real case which have been automated in the subroutines HSBG (Reference 4) and ATEIG (Refer-

ence 5) and modified for NASTRAN. The subroutine ATEIG utilizes the elegant procedure of Francis

(Reference 6) for determining complex conjugate eigenvalues of general unsymmetric real matrices.

This is known as the Double QR-Transformatlon and it retains entirely real arithmetic operations.

The algorithm permits a double shift (see Section I0.5.5 on Shifting) to accelerate convergence

after each iteration and the unitary transformation is that of Householder (Reference 2, page 533)

rather than that of Givens. The algorlthm also deflates (see Section I0.5.6 on Deflatlon) two

eigenvalues at a time.
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When requested, the eigenvectorsare found in two iterations by the Inverse Power method with

shifts (see pages 323 and 626-628, Reference 2 (see previous page, 17.4-5)) using the subroutine

EGNVCT written by Dr. A. M. Cunningham, Jr., of General Dynamics, Fort Worth, Texas. The subrou-

tine EGNVCT finds the eigenvector {u} from the complex matrix [A] and the complex eigenvaIue _ by

solving the equation

[A - xl]{u}: 0 (20)

NASTRAN utilizes the subroutine by setting

= O , (21)

and

[A] = [Mp2 + Bp + K] (22)

in Equation 20.

F_

V
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Figure 1. Basic flow diagram for PK-Flutter method.
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Figure 2. Complete flow diagram for PK-Flutter analysis.
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17.S UNSTEADY AERODYNAMIC THEORIES

Three matrix equations summarize the relationships required to define a set of aerodynamic

influence coefficients (Reference l). These are the basic relationships between pressure and down-

wash (normal-wash),

{wj} = [Ajj]{Pj} ,

the substantial differentiationof the deflections to obtain downwash,

(1)

2
{wj} = [O_k + ik Ojk]{Uk}

and the integration of the pressure to obtain forces,

, (2)

{Pk} = [Skj]{Pj} , (3)

where Uk' Pk = displacement and forces at aerodynamic grid points,

wj _ downwash (normalwash),

Pj - pressure on lifting element,

Ajj(k,m) - aerodynamic influence matrix,

D_k, D2jk " substantial differentiationmatrices,

and Ski = integrationmatrix.

In general, the matrices A, Dl, D2, and S are computed, although for some aerodynamic theories A"l

is obtained directly; in the case of extra points, e.g., when an active control system is included,

some partitions of the matrices Dl and D2 must be supplied by the user. The matrix A (or A"l)

is computed for a user supplied list of (k,m).

17.S.l Doublet-LatticeMethod

The Doublet-Lattice Method (DIM) can be used for interfering lifting surfaces in subsonic

flow. The theory is presented thoroughly in the literature (References2, 3, and 4) and will not

be reproduced here. The following general remarks summarize the essential features of the method.

PRECSDII_G PAGE BLAN_[ NOT FlTi_f£_
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The theoretical basis of the DLM is linearized aerodynamic theory. The undisturbed flow,

about which the perturbations occur, is uniform, i.e., no spatial variations, and either steady or

gusting harmonically. Thus, all lifting surfaces must lie nearly parallel to the fiow. The DIM

is an extension of the steady Vortex-Lattice Method to unsteady flow.

Each of the interfering surfaces is divided into small trapezoidal lifting elements ("boxes")

such that the boxes are arranged in strips parallel to the free stream so that surface edges,

fold lines, and hinge lines lie on box boundaries. The unknown lifting pressures are assumed to

be concentrated uniformly across the one-quarter chord line of each box. There is one control

point per box and the surface normalwash boundary condition is satisfied at each of these points.

The control point is centered spanwise on the three-quarter chord line of the box.

The code for computing Ajj was taken directly from Giesing, Kalman, and Rodden (Reference 5).

Any number of arbitrarily shaped interfering surfaces can be analyzed, provided that each is

idealized as one or more trapezoidal planes. Various symmetry options are also available. These

include geometry (planform), motion (symmetric or antisymmetric), and ground-effect.

17.5.2 Subsonic Wing-Body Interference Theory

The method of images, along with Slender Body Theory has been added to the Doublet-Lattice

Method (DIM) by Glesing, Kalman, and Rodden (References 5, 6, and 7). The DIM is used to represent

the configuration of Interfering lifting surfaces, while Slender Body Theory is used to represent

the lifting characteristics of each body, i.e., fuselage, nacelle, or external store. The primary

wing-body interference is accounted for by a systm of images of the DLM vortices and doublets

within a cylindrical interference body that circumscribes each slender body. The secondary wing-

body interference that results from the DIM bound vortices and doublets is accounted for by a llne

of doublets located on the longitudinal axis of each slender body. The boundary conditions of no

flow through the lifting surfaces or through the body (on the average about the periphery) leads

to the equations for the lifting pressures on the surfaces and for the longitudinal (and/or

lateral) loading on the bodies in terms of the normalwashes on the wlng-body combination.

V

V
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The code for computing the aerodynamic matrices was adapted for NASTRAN from Reference 4. The

adaptation required matrix formulation of all of the body interference and body loading calculations.

These equations are written using the symbols adopted for NASTRAN and showing the equivalences to

names used in the documentation of Reference 4.

The program of Reference 4 finds the forces on the lifting boxes and bodies of an idealized

airplane in terms of the motions of these elements. The lifting surfaces are divided into boxes.

The bodies are divided into elements. There are two types of body elements: slender elements are

used to simulate a body's own motion; and interference elements are used to simulate the inter-

action with other bodies and boxes. The body elements may have y (lateral), z (vertical), or both

degrees of freedom.

The basic method is the superposition of singularitles and their images. There are two basic

types, which are "forces" and modified acceleration potential "doublets." Each "force" singularity

Is shown to be equivalent to a line of doublets in the wake. The wing boxes use the "force" type

of singularity concentrated along the box quarter chord. The interference elements use the

"doublet" type of singularity. The slender elements use both types. The first equation relates

the downwashes to the singularities:

tw s) ', 0 ) AssJL_ s )

, (4)

where

ws •

cw-

]JI "

IJ$ s

the wing box downwashes at the 3/4-chord,

the downwashes for interference elements due to singularities other than slender
elements In the same body,

the downwashes for slender body elements,

the forces distributed along wing box quarter chords,

the interference doublets,

the slender element doublets,

- [DT], Section 5.3.1, Reference 4,

i AII. j!
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= [OZIDY], Section 5.5.3, Reference 4,

= _D2D'IJ, which is not matricized but is diagonal and will be discussed later.

The next equation relates the forces to the singularities:

..... uI , (s)

where Cs : the slender element forces,

Sww_ = box areas (not matricized, but diagonal), and

[Ssw ) Ssl I Sss] = [BFS], Section 5.8.I, Reference 4, but rearranged In the order of the

rows. These equations use Method I of Reference 4; Method 2 cannot be used since it is not matri-

clzed. All of the above matrices have been modified to include the images of the sources on the

symmetry plane. Reference 4 uses the convention that images are not used for bodies or surfaces

on a plane of symmetry.

In the slender body part of the program developed in Reference 4, there is no matrix which re-

lates the slender body forces, Cs, to the slender body modified doublets, us . This relationship in-

volves only elements of the same body and of the same orientation. Hence, we must derive thiS

matrix. The differential equation relating distributions of these iS

where C(x) = lift per unit length/dynamic pressure (i.e., has units of length),

_(x) = doublet strength per unit length/free stream velocity (i.e., has units of length2),

x = axial coordinates,

and _/U = reduced frequency.

The elements of the vector {Cs} are Ax-C(xcenter), which are the total forces on the elements

divided by the dynamic pressure. The elements of {us} are U(Xcenter). In subroutine MUZYC

(Section 5.5.4, Reference 4), the values of Cs (called ACp_A in the reference) are evaluated from

an equation which is equivalent to
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_d÷ i _)u(X)]x,Xcenter

u(x) - (D2D)"l Ws(X)

A

(DZD)"I - 2_(l+AR)ao(x) (z bodies),

ws • downwash (dimensionless),

ao(X) = halfwidth (radius),

AR = height/width ratio of body,

r_An(xs/_)n = polynomial mode shape, which is input data in Reference 4.

•_ _'..-,.I

(7)

(s)

(9)

and

The method used was to derive a matrix, [G], which relates the vector of {Cs} to {Us},

{cs} • [G]{us} (lO)

The derivation of [G] assumes that u/a_, which is proportional to w, is a smooth function. Thus,

u(x) - a_(x).Cu(x)/a_(x)]. Using Equation 6,

. a 3-_ (II)_-_o_+i _+a o

The numerical derivatives required for the last term in Equation II are evaluated by the following

rules:

One point per body: derivative - 0

I 2 point rule at end points
Two or more points per body: derivative - (3 point rule at interior points

The 2 point rule comes from a linear fit, the three point rule from a quadratic fit. Examples are,

1 " x2 - Xl (Z-point) , (12)

d_z) .Yz " Yl Y3 " YZ Y3 " Yland dx 2 xz . x--_-T+x3 . xz x3 . Xl (3-point) (13)
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Using this, the part of [G] for one body is given by

[Gij] : (Ax)i ij ao _ + i T i

where gij is tridiagonal and is given by

gij

(a_)i

(a_)j

I I j= i-I
xi+ 1 - xi. 1 xi - xi. 1

I I
_- j=i

xi - xi_ l Xi+l - x i

l 1 j = i+l
xi+ l - xi xi÷ l - xi_ l

0 otherwise

s ' . "

(14)

(IS)

For the first element (i:l), delete terms involving (i-l). For the last point (i=N), delete

=

terms involving xi+ _._

Equation lO is used to eliminate the slender element forces Cs from Equation 5, giving

= : ', .. I_I = ESkj]{P j}

s _Ssl _ Sss C

(16)

Equations 4 and 16 relate forces to downwashes. The relationship of deflections to downwashes

is given by Equation 2. As can be seen from Equation 4, there is zero "downwash" for all inter-

l 2
ference body elements, hence the rows of Djk and Djk associated with interference body elements

vanish. All other rows represent total derivatives for downwashes of boxes and slender body

elements. The basic form of Equations I through 3 is kept, even in the case of panels with

interference and slender bodies.

17.5.3 Mach Box Method

The Mach Box Method (MBM) can be used to estimate generalized aerodynamic forces on isolated

planar wings with two (adjacent) control surfaces oscillating in supersonic flow. The MBM is based

on the box method first proposed by Pines, Dugundji, and Neuringer (Reference 8) as refined by Moore

17.5-6 (12131177)
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and Andrew (Reference 9) and by Donato and Huhn (Reference IO). The general features of the

method are summarized in the following remarks,

The MBM is a numerical solution of the linearized, three-dimensional, oscillatory, supersonic

perturbation potential flow equation. The regions disturbed by the lifting surface are divided

into a grid of rectangular lifting elements, called Mach boxes, i.e., rectangles whose diagonals

are parallel to the Mach lines. The regions divided into Mach boxes include the wing and

control surfaces, and regions off the lifting surface affected by any subsonic edge of the surface,

i.e., an edge whose normal Mach number is less than unity. Calculations are made of the influence

of unit sources distributed uniformly over the area of each box on the aerodynamic loading at the

center of every box, assuming that the constant source strength on each box is equal to the value

at the box center. These calculations generate the aerodynamic Influence coefficients for the

surface. The coefficients obtained are velocity potential influence coefficients and are indepen-

dent of the mode shapes of the structure. They are combined with the source strengths associated

with a prescribed mode to obtain the corresponding velocity potential distribution over the plan-

form. The knowledge of the modal velocity potential distributions and the mode shapes permits the

calculation of the generalized aerodynamic force coefficients. The accuracy of the MBM depends on

the validity of supersonic linearized theory which is generally assumed to be In the Mach number

range from about 1.2 up to 3.0. At high Mach numbers, the _esults approach those from flrst order

Piston Theory.

The supersonic Mach Box code used by NASTRAN is based on subroutines of a modified version

of the program of Reference I0; the modifications were made by L. V. Andrew, G. V. Owens, and J. W.

S1eison of the Space Division of Rockwell International. The subroutines have been adapted to

calculate the aerodynamic influence coefficients Aj directly. The general planform that can be

analyzed is shown in Figure I. The following options are available to the user:

I. Leading- and/or trailing-edge cranks;

2. None, one or two adjacent trailing-edge control surfaces with sw_pt-back hinge lines; and

3. Symmetric or antisymmetric motion (no harmonic gust fields are considered).

The freestream velocity is parallel to the x-axls as shown in Figure I.
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Figure I. P1anform geometry for mach box method.

17.5.4 Strip Theory

The firs_csolut_ons tO_the_unsteady theoretical aerodynamic problem were obtained in two dimen-

sions (References ii and_2). These solutions were utilized in flutter analysis by assuming that the

loads at each spanwise station of a wing depended only on the motion of that station. Practical

flutter analysis (Reference 13) divided the wing intoa number of Strips and the aerodynamic loads

on each strip were calculated on the basis of the two-dimensional coefficients evaluated at the

centerllne of the strip. This "Strip Theory" was surprisingly accurate although its successes were

primarily in applications to unswept wings with high aspect ratios.

L ......

• ..... -I Reference 12 and iS an extension of a program
The NASTRAN code for computing Ajj is based on

written by E. Albano of the Northrop Corporation. Although Reference 12 includes a trim tab, only

the airfoil and an aerodynamically balanced control surface are considered; both the airfoil and

the control surface are assumed to be rigid in the chordwise direction, and the control surface

hinge line is assumed to remain on the wing chord line, i.e., no camber motions or hinge failures

are considered. The Theodorsen function for the unsteady circulatory loads is written as

C(R) = F(k) + iG(k) , (17)

V

where k - _b/V is the local reduced frequency, i.e., b is the semi-chord of the strip. The user

has the option of calculating F(k) and G(k) from their exact expressions in terms of Bessel

17.5-8 (12/29/78)
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functions, or from approximations of the form

CR_.3[.'..[L _;,-_.

OF PCOR ;_' _ .-_"
_r._r.L._.i/

and

bn

F(k) = Z I * (Bn/k)= ' (18)n=O

bn(Bn/k) (19)
G(k) = nZ l I + (Bn/k)2 '

in which Bo = O. The choice of values for the parameters bn and Bn is left to the user. In this

way, Strip Theory can be adjusted to account for compressibility or aspect ratio effects. Some

values of bn and Bn are tabulated on pages 350 and 394 of Reference 14. An approximate sweep cor-

rection is also incorporated. The correction is the factor cos A, where A is the one-quarter chord

line sweep angle for the aerodynamic macro element defined on a Bulk Data card, and is applied as a

multiplier to all loads acting on the element.

17.5.5 Piston Theory

In the limit of high Mach number (mz >> l) or high reduced frequency (m2k= >> l), the three-

dimensional pressure-downwash relationship on a lifting surface becomes a nonlinear point relation-

ship. The nonlinear point relationship can be llnearized for small oscillatory disturbances while

retaining the nonlinear aspects of the steady-state condition. The result is known as third order

Piston Theory and has been developed by Ashley and Zartarian (Reference 15).

-l
A computer program to obtain Ajj has been written by Rodden et al. (Reference 16) in the form

of a strip theory (see Section 17.5.4). This computer code has been added directly to NASTRAN

with only minor adjustments for sign conventions. It has the following general features. It is

an extension of Reference 15 to account for sweep and steady angle of attack and to lower the lower

supersonic Mach number limit so that agreement with Van Dyke (Reference |7) is obtained through

the second-order terms. A rigid chord is assumed as well as a rigid control surface hinged at its

leading edge, i.e., no aerodynamic balance is considered since balance is not desirable on super-

sonic vehicles. Experimental correlations indicated the validity of Piston Theory in the range of

Mach numbers from about 2.5 to 7.0.

FL-

=
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17.6 AEROELASTIC RIGID FORHATS

Aeroelastic modules are arranged into two rigid formats. The flutter analysis rigid format

is shown in Figure I. The following capabilities are provided:

I. Complete modal flutter analysis. The user supplies a finite element model for structure

and aerodynamics. V-g and V-f curves are drawn. If desired, flutter mode shapes may be

plotted.

2. Three methods of Flutter analysis are available, see Section 17.4.

3. The analysis can proceed in steps with intermediate output to check partial results.

This would use the RESTART procedure and could involve rigid format switch.

4. A change of mass or spring without recalculating modes, by means of DMIG data.

5. Selection of the number of modes. A change of modes does not require aerodynamics to be

recalculated.

6. The matrix values for additional Mach numbers and reduced frequencies can be appended

during restart.

7. The full extra point, DMIG, transfer function capability is available for control

systems, etc. Special provision is made for user supplied matrix of downwash due to

motion of extra points.

8. Restart tables are provided, which allow modules to be turned on during RESTART due to

changes in the Bulk Data Deck.

9. Data recovery is available for structural displacements, constraint forces and element

stresses and forces for any etgensoluttons seiected.

lO. Output of the modal amplitudes may be requested using a SDISP request in the Case Control

Deck.

The following capabilitiesThe aeroelastlc response dynamic rigid format is shown in Figure 2.

are provided:

l° Choice of Frequency Response, Random Analysis or Transient (by Fourier transform) Analysis

is provided. Transient is defined by supplying transient type load cards and time step

data. Frequency lists are required for all methods.

17.6-1 (12/31177)



AEROELASTIC ANALYSIS

2. Complete RESTART/Rigid Format Switch capability.

3. Choice of loading by specified loads or gust (Doublet-Lattice Theory only).

4. Selection of Times/Frequencies for recovery of physical data.

5. Use of modal participation type of data recovery.

6. Output may be displacements, stresses, or constraint forces. Both deformed structure

and XY plots are available. Aerodynamic data (pressures) are also available in fre-

quency response.

7. Random analysis for power spectral density, rms values and zero crossings.

T_
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AEROELASTIC RIGID FORMATS

_nanter after real elgenvalue'l_'_

lysis with Khh, Mhh, Bhh, )

, Go, etc., + geometry dataJ

IAerodynamic Pool Distributor APD I

IGeometryZnterpolationGIJ
, , , I

I Aerodynamic Matrix Generator AMG J

Aerodynamic Matrix Processor AMP I

i
I Complex Eigenvalue Analysis CEAD I

] Solution Set Data Recovery VDR J

j Flutter Analysis Phase 2 FA2]

curves XYTRAN, XYPLOT I

Yes

I Data Recovery DDRI, SDRI, SDR2J

(,t

Figure I. Modal flutter analysis rigid format.
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nter after real eigenvalue_

alysis with Khh, Mhh, Bhh, )

• Go , etc.., + geometry dataj

OF POOR GUALIT_¢

Frequency

I Aerodynamic Pool Distributor APD I

Iond.,o °o01otsPi TI

I Geometry Interpolation GI I

Aerodynamic Matrix Generator AMG I

Aerodynamic Matrix Processor AMP I

Direct and Gust Loads FRLG, GUST j

i Transient

I I Invers iTransfOrm

I- So]ution Set Output VDR, XYTRAN I

Figure 2. Modal aeroelastic response rigid format.
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ORfG_NAL pA_£ _
OF PCOR QUALITY

l

I s.i_t F,-_,,.,,_yor n,..s _'o,-0,taRecove_j M_DACC

Frequency _

[_Aerodyn_icOata ADR 1

I Data Recovery for Phystcal PointsSDR1, $DR2, OOR_

i
I Structure Plots (Oefomed) PLgT

Frequ4mcy _

_IT

Transient

Tr_nsfent

Figure 2. Hoda] aePoe|asttc response rigid format (continued).
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