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Abstract

We treat a fault as an array of asperities with a prescribed statistical

distribution of strengths. When an asperity fails the stress on the failed

asperity is transferred to one or more adjacent asperities. For a linear

array the stress is transferred to a single adjacent asperity and for a

two-dimensional array to three adjacent asperities. Using a renormalization

group (RG) method to extrapolate to an arbitrarily large scale we show that

the solutions bifurcate at a critical applied stress. At stresses less than

the critical stress virtually no asperities mail on a large scale and the

fault is locked. At the critical stress the solution bifurcates and asperity

failure cascades away from the nucleus of failure; we interpret this

catastrophic failure as an earthquake and it corresponds to the transition

from stick to slip behavior on the fault. Thus the stick-slip behavior of

most faults can be attributed to ehe distribution of asperities on the

fault. Our results explain why stick-slip behavior on faults is commonly

observed rather than. stable sliding, they explain why the observed level of

seismicity on a locked fault is very small; and they explain why the stress

on .a fault is less than that predicted by a standard value of the coefficient

of friction.
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Introduction

This paper preser.s a simple friction model to provide an understanding

of the stick-slip behavior of faults. A large fraction of active faults

appear to behave in a stick-slip rather than a stable sliding manner. For a

fault system sut;h as the San Andreas, which has well over 1000 km of surface

exposure, approximately 55 mm/yr of relative motion, and has been extensively

studied (Turcotte, 1977), it is possible to differentiate between these two

alternate behaviors. The San Andreas can he subdivided into three principal

sections based on the type of behavior observed: northern and southern

locked sections and a central, creeping section. There is string evidence

that the northern and southern locked sections, the sites of the 1906 and

1857 earthquakes, behave in a stick-slip fashion. There has been no

significant seismicity on these sections of the San Andreas in the period

since adequate instrumentation has been available. In the cent.	 one,
7

aseismic creep has been observed along with many small and moderate size
ai	 t

earthquakes, suggesting a st*able sliding type of behavior.
h

Since repetitive sequences of earthquakes are observed to occur on

active fault systems it is appropriate to treat faults as approximately

planar surfaces with a coefficient of friction. Using frequency magnitude 	 j

and moment magnitude relationships Aki (1981) has shown that the fractal

dimension of a fault is D = 3b/c, where b is the slope of the log frequency

magnitude relation and c is the slope of the log moment: magnitude relation.

For c = 1.5 (Hanks and Kanamori, 1979) and b = 1, the fractal dimension is 2,

the same as the topological dimension of a plane (Aki, 1981). For regions

where the b value is near 1 the planar approximation should therefore be	 j

quite good. Since most earthquakes occur on preexisting faults it is not

appropriate to model earthquakes, on active faults as the fracture of pristine
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rock. While surficial fault traces have been observed to go through

previously unfractured rock, there is much evidence that earthquakes

repeatedly occur on the same fault surface or zone of surfaces (Sieh ;, 197E).

We will therefore model a fault system which can contain fault trace

offsets, multiple fault traces and varying amounts of curvature or roughness

as an array of ;asperities with a statistical distribution of strengths.

There is evidence that large asperities, or barriers, can control the

propagation of an earthquake along a fault.

Several authtrs have previously modelled the stick-slip behavior of

faults in terms of frictional effects. Weertmann (1979) modelled the

instability in terms of a frictional stress on a fault that decreases with

increasing slip velocity. Stuart and M.avko (1979) modelled the instability

in terms of a strain-softening constitutive relation for the fault zone.

In this paper we present an alternative hypothesis to explain the stick-slip
M

behavior of faults.

In terms of mathematical modelling an earthquake is clearly a

catastrophic change in the behavior of the system. Recently, renormalization

group (RG) techniques have been successfully applied to models that exhibit

catastrophic behavior of the type found in natural systems (Wilson and Kogut, 	 i
i

197+; Fisher, 1974). A classical example is that of a system undergoing a

i
phase transition.	 -	 +

.	 t
Renormalization group (RG) techniques have been used by Madden (1981) to	

I

relate the macroscopic elr,trical conductivity and fracture of rocks to the

microcrack population, and by Allegre et al. (1982) to study the coalescence

of fractures. Newman and Knopoff (1982, 1983) have also studied the

coalescence of fractures and while they use the term renormalization in their

i	 1
I
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work no rescaling is done so their approach is substantially different from

the usual RG methods.

Formulation of the Problem

In this paper we model a fault as an array of asperities with a

statistical distribution of strengths. We will consider both linear and

two—dimensional arrays of asperities. In order to illustrate the approach we

will first consider a linear array as illustrated in Figure 1. This model

should be appropriate for large scale asperities (barriers) on a long fault.

The fault is broken into n elements of length Sx and each element is assigned

an asperity failure strength f; the asperity will fail when the stress on

the asperity reaches this value. The asperities have a distribution of

strengths which will be specified by a statistical distribution function.

When a stress	 is applied to the fault all asperities with a failure

strength f <	 will fail.

We will divide the linear array of n asperities into n/2 cells, each

containing two asperities as illustrated in Figure 1. When one asperity in a

cell fails we assume that the stress on that asperity is transferred to the

other asperity in the cell. This is an essential feature of our model and is

equivalent to the transfer of stress to adjacent regioc.ls when a crack is

introduced into an elastic solid. The cell size is a"measure of the distance

over which the stress is redistributed after an asperity failure. The reason

we assume that there are two asperities in a cell is that the stress in the

failed region is applied over a length which is of the order of the length of

the failed region.

A cell may contain two broken, two unbroken, or a broken and an unbroken

asperity. If a cell contains a broken and an unbroken asperity the strength

{

J
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o f of the unbroken asperity must be greater than 20 if it is to survive

the transfer of stress o from the broken asperity. We assume that a cell

fails only when both asperities in the cell fail. The basis of the RG

approach is that after the first renormalization, each first order cel-^ is

now treated as a second order (r = 2) asperity and pairs of second order

asperities form second order cells. This is illustrated in Figure 1. The

statistics of failure of the second order asperities and cells is the same as

the first order asperities and cells. The process is repeated by iteration

to infinite order. It should be emphasized that the same statistical

distribution of asperity strenghts is applied to the higher order cells even

though asperities are destroyed at each of the lower levels of calculation.

This is an essential faature of the RG method.

The process of stress transfer and induced failure tends to increase the

lengLhs of segments of broken asperities. As the applied strei:s is

increased, a value is reached at which failure of an infinite length of

asperities will occur and the behavior changes catastrophically from stick to

slip. The stress at which this change occurs is equivalent to the

temperature at which a phase transition occurs. The statistical distribution

of energies in a solid, liquid, or gas is equivalent to the statistical 	 9

distribution of asperity strengths in our model. The utilization of the RG
i

Mr	method allows us to study the development of failed segments as the	 i

characteristic lengths of the failed segments increase with increased applied
r

i

stress.

We first consider the distribution of asperity strengths. Clearly a	 3

wide variety of strengths on a wide variety of scales must exist on any real 	 {

fault. For example, fault bends and offsets correspond to strong

asperities. However, data on actual distributions of asperity strengths are
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not available. It is possible that studies of the type given in this paper

may allow asperity distributions to be inferred from such seismic

observatiors as the dependence of earthquake fregl^aency on magnitude. In the

absence of applicable data we assume a quadratic: Weibull distribution for the

probability Pa that the failure strength o f of an asperity is less than

the stress as

P	 1	
e -( 

ax) 2
a

where

x = Q/a
0

and a 0 is a reference asperity strength. Wiebull distributions are often

used to represent a statistical distribution of failure strengths (Harlow and

Phoenix, 1982). It should be emphasized that our approach can be applied to

any continuous distribution of asperity strengths. The probability

2
P 1 = 1 - e

-x	
(2)

that of < a is shown in Figure 2a as a function of o /ao. Ten percent of

the asperities have failed when a/ao = 0.32, fifty percent of the

asperities have failed whei a /0 0 = 0.83, and ninety per cent of the

asperities have failed when a/ao = 1.52. Since the relation between P1

and a is invertible, '?l can be used as a measure of the applied stress.

The probability that fail%ire will occur at the applied stress a/ao is given

by dP1/dx and is shown in Figure 2b. The probability that of = a is zero

at zero stress and increases to a maximum at a = 0.71 co. The mean

strength of an asperity is a = ( 3 7r 12)a o = 0.8862ao.

An essential feature of our model is the transfer of stress from a

failed asperity to its nearest neighbors. Without this transfer of stress

(l)

a

i
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the behavior of the system is simple and uninteresting. Since strong

asperities will not break until large stresses are applied they can block the

propagation of broken segments and there is no change from stick to slip

behavior on the fault. It is the transfer of stress from broken asperities

onto the remaining unbroken asperities that leads to catastrophic behavior at

an applied stress that is less than the average strength of the asperities.
i

It is clear that stress transfer to the adjacent unbroken sections of a fault

will occur on a real fault.

In order to quantify the failure of asperities due to the transfer of

stress we introduce the conditional probability Pa,b that failure will

occur when a stress ( a-b)(Y is transferred to an unbroken asperity supporting
^I

a stress ba, so that the final stress on the asperity is aco, This

conditional probability is given by

P	
Pa - Pb	

(3)
a, b	1 - P

b	 f	 t

with

2

Pa	1 - 0 - P1 ) a	(4)

for the probability function given in (1).

In principle this problem could be solved without the use of the RG

i
technique. However, the range of scales that could be studied is quite

limited even with the largest computers available. Although we will utilize
^Ir

the renormalization group method in the standard manner, it should be

recognized that the approach is semi-empirical and has been principally

justified ',;y its success in solving a variety of fundamental unsolved

problems in physics. These problems fall in a broad class in which a	 1
i

..I..^	 "..x A

r -	 ^ +r..aN- .tai
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continuous system on the microscopic scale exhibits catastrophic behavior on

the macroscopic scale. We argue that the stick-slip behavior of faults falls

in this general classification of physical problems.

We will first illustrate the application of the renormalixation group

technique to the failure of a linear array of asperities using a basic cell

composed of two "asperities" and the probability distribution given in (1).

Note that the (r+l)th order "asperities" which result from r iterations of

the RG transformation contain 2r actual first order asperities. The first

three renormalizations are illustrated in Figure 1. For a cell containing

two asperities which are either broken or unbroken, four states are possible:

1) [bb), 2) [bu), 3) [ub), and 4) [uu), where b represents a broken asperity

and u represents an unbroken asperity. Note that states 2 and 3 are

equivalent and can be combined into a single state with a multiplicity of 2.

The probabilities for each of these states neglecting any interactions

between asperities is given in Table la.

Next it is necessary to consider, the influence of a broken asperity on

an adjacent unbroken asperity. We use the conditional probability P2,1

that an unbroken asperity already supporting a stress o will fail when an

additional stress o is transferred to it from an adjacent broken asperity.

Including the effects of such induced failures leads to the probabilities

given in Table lb for each of the cell states. Since "the conditional

probability from (3) is given by

	

P2 - P1
	

(5)P2,1	
1 - P1

the probabilities with stress interactions in Table lb can be expressed in

terms of P1 and P2.

i
I

i

f
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We must prescribe a condition for determining whether a rth order cell

is broken or unbroken. We assume that a rth order cell, is broken only if

both "asperities" in the cell are broken. Under this condition the

probability that a first order cell is brok,', P 1 (2) is given by

P1(2) = 2P
IP 2 	P i

 
	 ,	 (6)

and substitution of P 2 from (4) gives

P 1 (2) s 2P 1 (1 - (1 - P 1 ) 4I - P12	 (7)

For higher order cells (7) is used as an iteration equation to determine

PL(r+l) from Pl(r), where r is the order of the cell being

considered. Implicit in the RG method is the assumption that the probability

distribution applicable to a first order, r+l, cell is also applicable to

higher order cells. This assumption is an essential feature of the method

and is clearly an approximation. The general form of (7) is

P (r+l) = 2 P (r) [1 - (1 - 
P (r))4^	

(P 
(r))2	

(8)1	 1	 1	 1

The dependence of Pl ( r+1 ) on p l( r ) is given in Figure 3. The points

0 and 1 are stable fixed points of the system. The straight line

corresponding to P l (r+l) = Pl ( r ) is also included in Figure 3. The

iterative relation crosses this straight line at PL( r ) = P* = 0.2063. We

will show that P* is an unstable fixed point that separates the region of

stick behavior from the region of slip behavior. 	 -

The RG iteration can be performed graphically using Figure 3. For

example, we take P1 = 0 . 6 and from ( 8) find Pl( 2 ) = 0.8093. This cell

behavior at order 1 now becomes the asperity behavior at order 2. To do this

graphicall y a horizontal line is extended to the line P1 (r+l) = p1(r)

1

,.J
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to reflect the total cell behavior at order 1 into the asperity behavior at

order 2. Thus the probability of cell failure at order 2 is P l (3) -

0.9615. This procedure is repeated to give P 1 ( 4) - 0.9985, etc., and the

probability of failure rapidly approaches unity as the order is increased.

On the other hand, if we take P 1 - 0.1 we find Pl( 2) * 0.05"kl8, Pl(3)

0.02184, pl(4) . 0.00322, etc., and the probability of failure

decreases towards zero as the order is increased. If P 1 y P* failure occurs

for infinite length scales and slip behavior results. If P 1 < P* the

behavior is stable and failure occurs only on the smallest scales.

Bifurcation of the solution occurs at P 1 = P* = 0.2063 and the critical

stress leading to failure is a* = 0.4807 ao from (1). The dependence of

P l ( r ) on r for several values of P1 is given in Figure 4. The

bifurcation of the solution at P 1 = PJ, = 0.2063 is clearly illustrated. Note

that the value of the critical stress is considerably less than the value of
R	 ,^

the mean strength of an asperity a = 0.8862 co. 	
U

The stable behavior of the system at a < a* can be characterized by a

correlation length L which measures the maximum length over which failure

occurs for P 1 < P*. The rapid increase of L as the threshold is approached

from below is described by a power low

L - (P* - P 1 )
-v 

,	 (9a)

or equivalently

L ,, (a* - a) -V	 ,	 (9b)

where v is the correlation length exponent (Wilson and Kogut, 1974).

According to this result the magnitude of precursory seismicity would be

expected to increase as the critical stress on the fault is approached. The
k
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onset of catastrophic behavior at a A o* corresponds to the divergence of the

correlation length L.

The correlation length exponent v is easily obtained from the RG

transformation (8). Given the dependence of pl(r+l) on P l (r), the

slope of the curve in Figure 3 at P1 n P* is given by

dP (r+1)

A - dP1 (r)	
(1Q)

As long as (P* - P l ( r )) << 1, a linear approximation to (8) is valid, and

P* - 
P (r+1)

A	
1 

(r)	
(11)

^-P1
It then follows that (Wilson and Kogut, 1974)

A = b l/v 	 (12)

where b is the linear resealing factor. For the b	 2 RG transformation that

led to (8) we obtain A = 1.6189, so that v = 1.4388.

So far we have considered only a linear array of asperities. We will

next consider a two-dimensional array of asperities distributed uniformly on

a planar fault as illustrated in Figure 5. We will divide the

two-dimensional array of n asperities into n/4 cells each containing four

asperities. The failure of individual asperities will be treated in the same

way as in the linear case and (1) is assumed to be applicable. When one or

more asperities in a cell fail we assume that the stress on those asperities

is transferred equally to the remaining asperities in the cell. That is, if

one asperity fails the stress on the three remaining asperities is 4a/3. We

choose four asperities in a cell so that the stress in the failed region is

I

i

i
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applied over a length which is of the order of the length of the failed

region. We again assume that the cell fails when all asperities in the cell

fail.

A second order cell is composed of four first order cells or second

order asperities and, therefore, sixteen primary asperities as illustrated in

Figure 5. The statistics of failure of the second order asperities And cells

is the same as the first ,:der asperities and cells. Again, the process is

repeated by iteration to infinite order. The RG transformation thus

constructed corresponds to a linear rescaling factor b = 2 on a two-

+1

dimensional array. This case is

array example considered above.

Table 1 and using the definition

the prob q,i.' a ty that a cell fail,

P1(2) . P14 + 4P 1 30 -

considerably more

Following the same

of the conditional

s is given by

Pl)P4,1 
+ 6P 1 2 0 -

:omplex than the linear

procedure illustrated in

probability we find that

2	 2
Pl) ^P2,1

+ 2 P 2,1 (1 - P 2,1 )P4,2 J + 4P 1(1 - P 1 )3[P43 1

3 P 24/3,1 (1 - P4/3,1 ) P4,4/3 + 3P4/3,1 (1 - P4/3,1)2(P2,4/3

+ 2 P2,4/3 (1 - P2,4/3 )P4,2 11 	 ,	 (13)
i

i

and introducing (3) we obtain

i

`	 P (2)	 P4+4P 3(P - P) +6P 2(P -P) 2 +12P 2(P - P)(P - P)1	 1	 1	 4	 1	 1	 2	 1	 1	 2	 1	 4	 2

• 4P (P	 - P ) 3 + 12P (P	 - P ) 2(P - P	 )1 4/3	 1	 1 4/3	 1	 4	 4/3

• 12P 1 (P4J3 - P1 ) (P2 - P4/3)2
1

+ 24P1 (P4/3 - Pl )(P2 - P4/3 )(P
4
 - P2 )	 (14)

i

The dependence of Pl( r+1 ) on Pl(r) shown in Figure h follows from

introducing Pa from (4) and using (14) as an iterative relation.
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The general behavior of this two-dimensional case is the same as that of

the linear example considerei" above. Again, an S-shaped curve is generated.

The points 0 and 1 are atable fixed points, The crossing at P* = 0.1707 	 I

separates stick from slip behavior. From (1) the bifurcation of the solution

occurs at a* = 0.4327 co. Thin is just about one-half the mean strength of

the asperities a	 0.8862 vo,. We also find that A 	 2.357; the correlation

length exponent v = 0.8084 follows from (12) with b = 2. The quantitative

differences between these results and those for the linear array, as listed

in Table 2, illustrate the effect of the physical dimensionality on the

critical behavior of the system. Note the decrease in both the critical

probability P* and the correlation length exponent v with increasing D.

Simpler percolation models exhibit the same trend when D is increased from I

two to three (Stauffer, 1979).

,
iry

Conclusions	 ^^	 3

We have shown that a statistical distribution of asperity strengths

leads to stick-slip behavior of a fault. The transfer of stress from failed

sections of the fault to adjacent locked sections is an essential feature of

our model. We have used the RG approach to obtain the behavior of the model 	
z	

j

as a function of applied stress, The main result is the existence of a

finite critical stress below which the fault breaks are always bounded in

their growth.	 ^'
i
I

We also find that the value of the critical stress is considerably

smaller than the mean strength of the asperities. This may explain the low

stress levels associated with displacements on the San Andreas fault.

Laboratory studies of friction generally result in a coefficient of friction
6

near 0.6 (Byerlee, 1978). However, the low measured heat flow adjacent to

i

_„	 a
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the San Andreas fault is strong evidence that the equivalent coefficien ,. of

friction on the fault is about a factor of two less than the laboratory value

(Turcotte et al., 1980). We find that the critical stress on a fault is

about a factor of two less than the mean strength of asperities. A similar

result has been found for fibrous materials (Harlow and Phoenix, 1982).

Clearly the model considered in this paper is based on a number of

simplifications. These include:

1) The assumption that the applied stress o on the fault is a constant

is not a good approximation. The stress on an actual fault will have spacial

variations. Stress concentrations are expected to occur at the edges of

locked sections. These concentrations would be expected to initiate

catastrophic failures on a fault. However, significant levels of stress will

have accumulated on all sections of the fault and our model shows how a

failure, once nucleated, can spread due to the transfer of stress.

2) The form of the asperity strength distribution given in (1) is

arbitrary. However, the RG method given here is applicable to any continuous

distribution of asperity strengths.

3) Failure on actual faults does not extend to infinity. There is ample

observational evidence that strong asperities (barriers) can block the	 it

propagation of a zone of failure. This limiting behavior can be included in 	 6

our analysis by utilizing a more complex relationship for the distribution of

asperity strengths.

4) The assignment of the same scale 8x to all ,at;perities is a poor

approximation. Clearly large asperities may have larger physical dimensions 	
s

than smaller asperities. On the smallest scale asperities may have atomic

dimensions whereas major barriers such as bends in a fault may have
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dimensions of tens of kilometers. However, this additional complication

would not be expected to affect the gual!'-hive predicted behavior.

We would argue that our results make physical sense. Once a broken

patch on a fault starts to grow the transfer of stress is sufficient to break

adjacent asperities as long as the distribution of strong asperities is

sufficiently small. Obviously real fault breaks have finite lengths. We

argue that a fault break is terminated when a very strong asperity is

reached. This is confirmed by tine observation that long fault breaks are

often terminated by bends or offsets in the fault trace. The scale upon

which large asperities are distributed will determine the length of fault

breaks and the behavior of the fault.
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[bb]	 (gab]	 (uu)

P 1 2	 2P1(1 - P 1 )	 0 - P1)2

9

a) Probabilities without stress interactions

[bb]	 [ub)	 [uu]

P 1 2 + 2P 1 („ - P 1 )P2,1	 2P1(1-P1)(1-P2,1)	 (1 - P1)2

2P I P 2 - P12	 2P10 - P 2 )	 (1 - P1)2

b) Probabilities with stress interactions

[ b 2 ]	 [u2]

2P 1 P2 - P1 2	 1 + P1 2 - 2PIP2

c) Probability of failure applied to the next order cell
f

Table 1. Renormalization group applied to a basic cell composed of two

asperities. The probability of the failure of an individual aspority is P1

and the probability of an induced failure is P2.
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D	 P* o*/oo v

1	 0.2063 0.4807 1.4388

2	 0.1707 0.4327 0.8084

Table 2. Renormal.ization group results for the critical probability P*, the

critical stress o*/o o , and the correlation length exponent v in one and two

dimensions.
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Figure Captions

Figure 1. Illustration of the statistical distribution of asperity

strengths of for a linear array; ao is a reference asperity

strength. An asperity is assigned to each unit length dx. Also

shown are the cell sizes for orders r = 1 to 4.

Figure 2. (a) Dependence of the probability P 1 that .failure of an asperity

will have occurred on the normalized stress a/ao. (b)

Dependence of the probability that failure will occur at the

normalized stress oloo. This is the change in the probability

of failure SP l when there is a change in the normalized stress

d (a/a o ) .

Figure 3. Dependence of the probability of failure for the r+l cell

P l (r+l) on the probability of failure of the r cell Pi (r)

for cells containing two asperities with a quadratic Weibull

distribution of strengths. The procedure described in the text

for determining the probability of cell failure for successive

iterations is illustrated for P 1 = 0.6, 0.1 . The critical

probability of failure P* gives the bifurcation point for

catastrophic failure of the system. If P 1 < P* the solution

iterates to P1 00 = 0 and no failure occurs. If 'P 1 ? P* the

solution iterates to P i' = 1 and the system"has failed.

Figure 4. Dependence of the probability of failure P1 (r) on the order r

for several values of P 1 , The bifurcation of the solution at P1

Pte• = 0.2063 is clearly illustrated.

Figure 5. Illustration of the two-dimensional array of asperities with

four asperities per cell. Second (2), third (3), and fourth (4)

order cells are also shown.
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Figure 6. Dependence of the probability of failure for the r+l cell

P l (r+l) on the probability of failure of the r cell Pl(r)

for cells containing four asperities with a quadratic Weibull

distribution of strengths. The critical probability of failure P*

gives the bifurcation point for the system. If P 1 < P* the

solution iterates to P1' = 0 and no failure occurs. If Pi J P*

the solution iterates to P 1 1 = 1 and the system has failed.
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