
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

4

3

WNW DEIIELO1"E1rT GUIDELINES
CPD 902

Job Order 53-449

Prepared By

Lockheed Electronics Company, Inc.

Systems and Services Division

Houston, Texas

Contract NAS 9-15800

For

ENGINEERING ANALYSIS DIVISION

ENGINEERING AND DEVELOPMENT DIRECTORATE

January 197;

s

LEC- 13182

pasA -C8- 171748) SOFTVAEE DEVELOPMENT
GUIDELINES (Lockheed Electtoaics Co.) 48 p
MC A0318F A01	 CSCL 09B

88'♦ - 189 19

UAclas
G3/6 1 12354

i

ORIGINAL PAGE 18
	

JSC-14710

OF POOR QUALITY

SOFTWARE DEVELOPMENT GUIDELINES

Job Order 53-449

'	 PREPARED BY

r

Ic*hoas kova sky	 J. M. Un rwoo
Job Order Manager	 Technical Monitor, ADAP-I
Dynamic Systems Department

APPROVED BY
I

I	 `i

LEC

^. H. Horsley, Supervfsor
Data Management Section

^.
W. J. R cks, Manager
Applied Mechanics Department

NASA

ayman	 e

Aerodynamic ranch

Prepared By

Lockheed Electronics Company, Inc.

For

Engineering Analysis Division

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER

HOUSTON, TEXAS

January 1979

LEC-13182

ORIGeM PAGE 0
OF POOR QUAL"

^i

CObTENTS

W .

m .

Section Paye

1.	 INTRODUCT10N. 1

2.	 DESIiN CONSIDERATIONS	 2

2 .1 ANALYSIS	 2

2.t AUDULARIZATIUN 2

2.3 FLUYCdARTING 3

t.3.1	 S YMBOLIC 3

2.3.2	 PROGRAM DEIGN LANGUAGE 3

2.4 EXISTING PROGRAMS AND_SUBRGUTibES. 	 7

i.5 COMPATIBILITY. 5

2.5.1	 LOCALUNUNIT_ASSiGbMENTS. 9

2.5.2	 USE OF FLAGS 9

2.5.3	 CONSISTENCY AMONG_ VARIABLES 9

2.5.4	 ftACNINE DEPENDEb1 SOFTWARE.	 . 10

2.5.5	 USE_OF_SPECIAL_COMPPILER FEATURES. . . . 10

2.b INPUT AdD-UUTPUT_DATA 10

2.b.1	 GE_NF_.FcAL	 10

2.6.t	 GROUPING-BY-CASES 	 10

2.6.3	 iN EDIATE QUTPUI.	 . 10

2.7 AJAPTABILITY_TLChECKQUT 11

1.7.1	 CHECKOUT IATIHOD 11

1.7.2	 USAGE QPNRITBSIA EMENTS	 . . 11

2.8 G§j!AEAL-PURPQSE_S UBROU ì N S .	 . 11

. mm^

I

9 v

ORIGINAL PAGE IN

OF POOR QUALITY .11

Se.-tioa Page

3.	 CODING.	 a*	 .	 .	 .	 ,	 .'	 12

3.1 CO BBENTS	 1 t

3 .1.1	 GENE RAL 	o	 12

3.1.2	 #ZkDAg COM SEBTS 0	 0 L.,

3.1.3	 PRVGRAM 1 -021FICATION5 16

3.1.4	 SUBR O.U PINE COAMEMS	 16

3.1.5	 DI5T RIBUTION_UF CGhMENTS.	 16

3.1.6	 ERROR REC OVE RY * i6

3.1.7	 ARRAY D1 ENSIOSS.	 16

3.1.8	 PRiN TING STYLE.	 16

3.1.9	 PROSNA,i NO DULA cI ZATION C LAnE!lS .	 .	 . 17

3.2 INITIALIZAT ION	 17

3.3 blATEMENT ORDERING AND NUMB ERING 17

3.3.1	 NO -E%ECUTAB_E.		 o 17

3.3.2	 FORMAT_SIATEAENTTS 19

3.3.3	 SIAT EMENT NUMBERING	 15

3.4 SPECIFICATION_STATE_1 EK Sj__COMM0N_6 6RAGE .	 .	 . 19

3. 4. 1	 SPECIFYING_VARIAB IE TYPE. .	 o 19

3.4.2	 CUeMON BLUCRS	 20

3.5 VARIABLE N_A p ::S	 20

3.5.1	 GENERAL 20

3.5.2	 CUSSTANTS	 21

3.5.3	 NAMING_CUNVENTION	 i1

i

I
I	 4

ORIGINAL PAGE 18
OF POOR QUALITY

Pay

141

21

22

42

22

22

23

L.J

24

25

t6

26

26

26

27

27

28

2s

25

33

11)

31

31

w

3.6 ARRAYS

3.6.1 CWBi ING	

3.6.2 SUBSCRIPTS.

3.b.3 USAGE IN SUBkd2jRAMS.	

3.7 ARiTlidETIC EYPxySSIGNS AND STATEMENTS.	 .

3 .7.1 UNAMblGUUOUS USAGE

3.7.2 IEST_FOR IMPROPER CON_DiTiGbS.	

3.7.3 COdPOUND E%PRESSiONS.

3.7.4 USAGE OF	 SQRT	

3.7.5 PREFERRED_CONSTRACTIGNS 	 .

3.8 CONTROL STATEMENTS	

3.8.1 CALCULATIONS_ lb A LOOP.	 .

3.8.2 COaPUTER_GO TOO' S.	
3.8.3 A_SSIGN_STAlEdENTS	

3.8.4 DO	 LOOPS

3.8.5 C ALL_STATEAENTS

3.9 LNPUZLO UTP UT	

3.9.1 RECORD FORMAT	

3.9.2 PLACLMENT_GF_ILO_UPEhAT10N5

3.9.3 DEFAULT	 VALUES

3.9.4 OUT PUT	 F .UR11	

3.9.5 LR Q	 MESSAGES

3.9.6 1NTF4RMF4DIATE_OUZPUl 	

3.9.7 CA_Rll RE I Ip		 0	 .

I	 .

Section

j.

._... .._

ORIGINAL PAGE IS
OF POOR QUALITY -^

Section Page

3.10 SUBS_OUTINES. s2
3.10.1v N RAI. 32

3.10.2 CALLIEG A_R GUMJ!j§ .. 32

3.10.3 MI CODES j3

3. 10.4 RETURN S TATE M ENT S 33

3.10.5 ARRAYS 33

3.16.6 COMMON BLOCKS	 34

4.	 CHECKOUT	 AIDS	 35

4.1 1NZERMEDIelE RESULTS 35 -

4.1.1	 PRUG RARFLOW 35

4.1.2	 DAT1_STRUCTURE5	 36

4.1.3	 VALID ITY OFF RESULTS 36

4.2 DESK_CHECK14G 36

4.2.1	 GENE RAL 	 36 5:

4.2.2	 PROG RAM LOGIC CH ECK I.IS Z .	 . 37

4.2.3	 DECK STRUCTURE ChECK_LIST 37

4.3 CHECKOU T DA TA 38

4.3.1	 GENERAL 38

4.3.2	 VEKIFICA_TION_OFF INPUT 36

4.4 DUMPS * 39

4 .4.1	 GENERAL	s9

4.4.2	 CORE	 DUMPS 39

4.4.3	 TECdN.Lg E 39 I:

4.4.4	 l X S T RUCTLO N_ ll UEP 5	 40

I^

ORIGINAL PAGE 18
OF POOR QUALITY

• • .

. •

.

S°
pag e

40

40

40

40

y

r

RAJ
 }

t

1

^	

0

x.40 lk,:

ORIGINAL PAGE 19
OF POOR QUALITY

v ► I

FIGURES

page

Fiqure 1. Structured flowchart syabols 4

Fiqure 2. A	 POL example	 8

Fiqure 3. Routine general structure.		 13

Figure 4. header comwents	 14

Fiqure 3. Specification statements	 18

o -_

i

ORIGINAL PAGE IN
OF POOR QUALITY	 1

1. INTRODUCT10N

PROGRAMAING - The art of creating logical ccmputer programs.

PROGRAdHER - A person who prepares problem solving procedures
through functional.Ly designed and logically coded
routines for the computer to execute and wuo
typically also debugs those routines.

The purpose of this document is to provide engineers,
programmers and managers with software development procedures
which may be applied in the development of computer software
systems. The intent of the procedures presented is to
;promote quality and uniformity of FOR.ThAN programs and
thereby lessen the time and cost of program development,
maintenance, and modification, and to increase program
efficiency and reliability.

The key to program reliability is to design, develop, and
manage software with a formalized methodology which can be
used by computer scientists and applications engineers to
describe concepts, perform data analysis, and evaluate
systems with visual, conversational, and descriptive data
prints or data displays.

The first step in defining and developing a system (be it a
large software program or just a few small routines) ii-th a
formal methodology is to apply a formalized set of rules and
enforce those rules, especially on a large project wui.ch is
subject to change of personnel or task definition. This
document presents a set of rules which may be applied by a
FORTRAN programmer/engineer to aid him iu writing efficient,
reliable, easy to change, and system compatible programs.

i

2.1 r :jUj§ s

the first step in solving a scientific problem is to analyze
the; problem. Then a functional design to solve the problem
can .,e made. of primary importance are the logical. Clow or 	 i
the program, data tables, equations and definition of
variabies to be programmed, where and how the i:rograa is to 	 j
be executed, the program's input/output, and other special
considerations and/or constraints.

The logical flow should be a simple secuence of descriptive
block steps, including equations, with side comments
concerning future program expansions and possible
constraints. These descriptive blocks should verbalij
describe the functions to be performed and should aevei
include programming language.

2.2 SODULARIZATION
{

After the problem has been analyzed and a functional design
developed, the next important step before coding the program 	 j
is to dezine all the possible routines or modules. Bach
module should be.a function of the level of execution 	 _4
rfsquired. This will reduce program complexity, improve
progra2 clarity, and permit easier moditications aha program
checkout, easier production program maintenance and easier 	 _ =
building of a new advanced product.

The -L oilowing are guidelines that the coder should iojlou:

1. Each module should be well documented iuternd.Liy Ly
the use of header and i.L-line comments.

1. Use as many levels of modularity as needes to
simplify program control flow.

{

3. Organize modules logically to.make the Froyrdnk
easier to understand and moditl. 	

ll
4. Allow room for expansion witLout destroying	 1

simplicity of sequential flow.

5. Each wodule's vdriabl gs and arrays should be weii
defined and the source of each given.

b. Use separate module icr data input/output.

7. Use separate module for each specialized Lunction;
I.E. nit manipulation function or frequentli cdlltd
mathematical function.

I

-- -_ _ -	 __ k _, _ --.ter „«► •:mow.....	

ORIGINAL PAaE 19
OF POOR QUALI'F'Y

3

8. Modules should not be larger tuan 100 lines of
executable code.

2.3 L12119"lTI V

The functional logic flow of the program may be in the
•	 form of a structured flow using structured logic

symbols, or a functional level program design l.aLyuage,
PDL.'

2.3.1 SYMBOLIC

in general, a flowchart gives a pictorial
representation of logic within the prograL and
its routines. The tiowchart should be readily
understandable to the exteLts that other
programmers/engineers could code the routines
without lengthy deciphering.

The following are the suggested coLventioL,:

• Use flowchart symbols wnich have been aezinea
as standard for the project(s) problem. For
structured flowchart symbols refer to
figure 1

• Use page number references to indicate logical
connections

• Include all subroutine and executive
references

• Use programming language for equations aLa
logic

• Use structured program flow; that is, tae main
program or module flow is always top/down on
the left side of the paper and the
intermediate flow is trom left to riyat dLa
top/down

1.3.2 PRGGRA[4 DEAIjAI kANGUAGj

The program design language PDL is a tool zor
desig , i.ng programs in detail prior to coding.
Its t irpose is to enable one to express the logic
of a grogram in an English-like language.

Figure 2 illustrates the PDL usage.

t
i.
i
i
i

i
I

1

,j

aORIGINAL PAGE if
OF POOR QUALITY	 4

PROCESSING
A group of instructions which perLoru
a processing function os the rout:.Le.

EXTERNAL PROCESSING
Identifies the exit to and return
from an external function or
subroutine with its calling arg umeuts
which performs a processing iunctlou
of the routine.

DECISION/DO
The decision function used to
document points in the routine where
a branch to alternate, patas is
possible based upon variable
conditions or the DO loot,
specification statement.

TERBINAL LNIERRUPT
The beginning, end, or point or
interruption in a routine.

OFF 'PAGE rLGW TRAESFEh
A connector uses to show that rim.
transfers to another part oz tac z..-)w
chart. The symbols i ana L inaicate
d transfer to entry aumoer i on Faye
number n of the flow chart.

ENTRY INDICATOR
An indicator that shows aL entry into
the logic . flow from another part oz
the flow. The entries on each page
are sequentially numbered 1, 2, ...

Figure 1. - Structured tlovchart symbols

w"`' v s.

w

The CASE symbol.

oiRiGINAL PAOF, 19
OF pOOR QUALITY

5	
11

gags

The basic unit of a structured flog
chart is the segment. A segment is a
module that has a single eLtraLce and
a single exit. This segment
accomplished the procesviag
identified within.

THEH

CI-^	 LSE

	

Oat.")	 C!

The 1F THEN ELSE
symbol with the
else clause.

EXTRY
EzrT

A segment that is an external
reverence to another routine.

The terminal interrupt - the
beginning, end, or poiut of
interruption in a program.

Figure t. - Continued

symbol

IV*

The DO WHILE syoDol.

r

ftw ilpOF POM QtML,*
U^agg

The IF ThhN ELSE
symbol eith a null
else clause.

ne

6

vurrL
(P)
	 The DO UNTIL symbol

D O FOR.
The DO FOR symbol.

ii
t

Figure 1. - Concluded

ORIGINAL PAGE IG
OF POOR QUALITY

7

The PDL has the following advantages:

• It states logic in an easy-to-read fashion

• It permits concentration on logic; it trees
the designer/programmer with the low-level
details of coding

• it can be converted easily to executable code;
r	 this is accomplished by step-vise re=ining the

English-like statements until they DECoae
statements of a higher level language

• It contributes to the readapility asiect of a
structured walkthrough for the nonprogramaers

• It can be used to teach structured
programming; in fact it is a method of
expressing structured programming logic

• It can be retained as comments at tue
beginning of a program for documentation
purposes

• It can be kept on the file in the text mode,
updated using the editor, and listed

The main disadvantage to the PDL usage is:

• It does not present.the logical flow of the
problem in a pictorial form

2.4 EXISTING PROGR AMS AND SUBROUZINES

Before writing a program, s earch for ava ilable piosraps
and subrout ines related to your problem. These &ay do
all or part of the job, or may be useful in auaiysis.

When designing a system, a file should be startea which
contains all program, subroutine and function Lames, as
well as any entry points within routines. This bill
avoid future use of a routine name which is aireaay 1L
existence.

n #

n

ORIGINAL PAGE 0
OF POOR QUALITY

INITIATE PROGRAM

GET FIRST TEXT RECORD

DO WHILE MORE TEXT RECORDS

DO WHILE MORE WORDS

GET NEXT TEXT WORD

SEARCH TABLE FOR WORD

IF WORD FOUND

TdEN INCREMENT WORD'S COUNT

ELSE WORD NOT IN TABLE

INSERT WORD INTO ThE TABLE

END IF

INCREMENT WORD PROCESSED COUNT

END DO END OF TEXT RECORD

GET NEXT TEXT RECORD

END DO ALL RECORDS DAVE BEEN PROCESSED

PRINT TABLE

TERMINATE PROGRAM

Figure 2. - A PDL exanple

8

rim .rt •.-w..► W._ w. ^: ^.►---- t* OL

ORIGINAL PAGE 19
OF POOR QUALITY 	 9

2.5 CGIipAT^BILI

2.5.1 LOGICAL UNIT ASSIGN!!_EVTS

When ae signing a system, logical uLit assignments
within programs snould be planned and be
designated before any programming starts. TLis
way any inconsistencies in suture rile usage caL
be eliminated beforehand, and cumbersoae and
time-consuming releases between executions can be
avoided.	 r

2.5.2 USE OF FLAGS

Be consistent in the use of flags on iLput caress
to avoid confusing production personnel setting
up the program decks. For example, a zero or
blank value could always imply "do not ao", and a
nonzero values can describe more than one "do"
condition (e.g., 0 = do not plot, 1 = plot on
linear grid, 2 = plot on log grid; or u = ao not
calibrate data, 1 = calibrate using polluominal
expansion, 2 = calibrate using linear
interpolatiou).

2.5.3 CONSISTANCY AMONG VARIABLES

Extend this same consistency to all otner
variables used in aitferent programs such as
start times, stop times and time biases. it is
nerve-racking to production personnel, to say tae
least, to have one pr%gram read a start time iu
integer days, hours, minutes and seconas; a
second program read it in interger milli-seconds;
and a third program read it in floating-point
seconds. The field size for these variables
should also be identical iL all programs.

When using additive aria multiplicative tine
biases to correct or convert time in a program,
their usage should AM speciLied bef orenaaa to
avoid future problems. Someti,aes one program
will add the additive bias and another one will
subtract it; sometimes a program will daa t first
and then multiply, and a second program wili
multiply first and then add. Obviously, these
operations will not give the same results.

i

s

i

I

I
i

4e

►5 .

4
I

'-
&=Nona^ .

ORDINAL PAGE 19
OF POOR QUALITY

10

.4C IN -DEPEBDEN1 SOAP!
xeep hj machine-dependent R0rti0ns of a prograa
separate; for example, plan individual modules
for I,M operations. This simplifies conversion
to otuer computing systems.

.5 USE QZ SPECIAL CO! P .	 FEATUPES

Do not use special features provided by a
particular compiler unless it is absolutely
necessary. When special features are used, tney
should, of course, be identified and justified in
comments.

2.6 INPUT AND OUTPUT DATA

2.6.1 GENERAL

Design a program so that input data are easy to
create and output data easy to read.

2.6.2 GROUPING BY CASES

When data can be distinctly grouped for separate
cases, provide a means of flusing data zor the
currea.t case and going on to the next.. This way,
an irrecoveranle error in processing one case
does not necessarily preclude processing othErs.

2.6.3 INTEEdEDIATE OUTPUT

Make available to the.uset an oition for
obtaining selected intermediate output. AL input
code can easily be used to indicate which
intermediate results, if any, are desired.

Jis

OFI^^ PAGE 19
OF	 QUALITY

11

2.7 ADS TA IL I D !g EECKOUT

2.7.1 CE$MUBE TROD

Plan your checkout method While designing a
program. Organize the program so checkout data
are easy to prep-ce. !lake up a block diagram a4d
preAiminary checkout data before coding. Use tae
checkout data and block diagram in "desk
checking" the program.

2.7.2 USAGE OF WE "T STAT MENTS

Organize the program so that WRITE statements,
causing meaningful printouts at several points in
the program, can be inserted for checkout. These
are explained in detail in section 4.1.

2.8 GENERAL-PURPOSE SUBROUTINES

The priAary influence on the aesigL of a general-eurpose
suoroutine (i.e.,. a subroutine reasonably expectea to cue
used in two or more unrelated programs) shoula be
correct resuiis within the require d rangR of accurac .

Minimization of storage Ana execution time shoula be
considered next.

1

a

_. A

ORIGINAL PAGE It
OF POOR Q	 12

3. CODING
i

3.1 COMMENTS

3.1.1 GENERAL

bake your program self-explanatory by including
meaningful comments throughout. Since most
programs outlive their autuors' respoLsibiiity
for them, and because no computer is permanent,
your program will probably be modified accordiLy
to new machine software, or performance
requirements. If these comments are properly
prepared, they will provide sufficient
documentation for most routines and aide in
conversion and modifications.

The comments needed to document a subroutine tall
into the following classes:

• Routine header comments at the top ur the
routine

• Comments at various places in the code to
describe the logic flow in the routine.
Depending on the complexity of the program,
the miter of necessary comments varies, but 	 G
usualiv the ratio of comments to statements
should :he at least 1:5

• Special cL%ments in larye routines to
segment the code into logica.L blocks

The general structure of tae program or
subprogram is given in figure 3.

3.1.2 READER COMMENTS

identify the program or subprogram in a coai^ent
at the beginning of the listing. CommeLts should	 j
follow this card to provide a program abstract
answerinrt euch questions as: What does the
program do? It is confined to any particuidr	 i

application? Is it a special version? WL y Was
it Written, by whom, and when? It is derived
from or directly related to another program? Are
any relevant references publisued? See ziyure 4
for tue structure of these comments.

i

^i

f

..	 ^-....^._... Via,.._

►ei31 structure

ORIGINAL. PAGE 19
OF POOR QUALITY

13
900-T1 M_oht;i-111"((' I

header comments

C

i	 C
C

non - executable statements

C
C--------------------- ---
C

executable statements

CALL EXIT ON RETURN
C
C------------- --T------
C

format statements

C
C

END

_

ORIGINAL PAGE IN
O

R Q
uAL
"

F

14
***********************^*hEADER COMMLNTS ************************

C
C
C	 PnOGAAM NAME (or SUBPROGRAM NAME)
C

C	 The name of , iue program (or subprogram) should bt here
C
C	 LAST UPDATE: date-of the last major revision
C
C	 AUTdOR	 NASA MGNITOE
C
C	 Author's nave	 TecLaicai Monitor's name
C	 Co. Division	 NASA Division
C	 Company name	 NASA JOHNSON SPAL.6 LLN11h
C	 Jdte originated
C
C	 PURPOSE
C
C	 The purpose of the program should be detined here in
C	 several sentences. -----------------------------------
C --
C
C	 INPUT VARIABLES
C
C	 This section defines the variables 1NPU1 to the sub-
C	 program whose value the subprogram does not cadnge.
C	 This includes all variables passed by the calling
C	 routine to the,subprogran through both calli:.g arguments
C	 and COLMUN blocks. A sample format follows:
C:

C	 VARIABLE COMMON BLK	 DESCh1PiluX
C-------- ----------	 ------
C
C	 VARhL1	 bL.00K1	 DETERMINES HUW MANY HIES ---------
C------ ---------------------
C--------------------------
C	 XPUS	 NOUL	 YOSITICN OF Tht i :'ACTOR
C
C	 UUX 1,JT VARIABLES
C
C	 This section defines tht variables OUTPUT by the sup-
C	 routine to whose va.Lue the subroutine DOES NG1 USE uut
C	 DUES CHANGE. This includes variaules returned to the
C	 calling routine both in the calling arguments ana in
C	 CONdON . blocks. The roruat should be similar to that
C	 of the INPUT VARIABLES section.
C

Figure 4. - header comments

Figure 4. - Concluued

im Me& t ...`.. .̂--..

15
C	 INPUT/OUTPUT VARIABLES
C
C	 This section defines those 'variables wnlch are uses for
C	 BOTH INPUT AND OUTPUT, i.e., a.variable whose . value is
C	 INPUT to the subprogram AMD vhose va.Lue the subproylak
C	 CHANGES. The format should be similar to the i6PU1
C	 VARIABLES section.
C
C	 PROGRAM VARIABLES
C
C	 This section defines the primary variables teat are
C	 neither input nor output variables. Zhe format sLouin
C	 be similar to that of the INPUT VARIABLES section, except
C	 that a °COMdON BLK" column is not needed. Ail i:,ternai
C	 'ltlayl' should be defined here,' aua wtat each of tue
C	 various codes mean.
C
C	 SUBPROGRAMS REQUIRED
C
C	 This section briefly defines all sut-programs wuicu tue
C	 subject routine requires. A one or two sentence suouid
C	 De used to state the basic iuncti.o:, (purpose) of each
C	 subprogram. A sample format. follows:
C
C	 dATMUL - SUBROUTINE THAT PERIORMJ MAIhiX MUL11Pi.1CAT A.Uh
C
C	 ASSIGN - siESERAL PURPOSE SUbROUTIhk W hiLii ISSUES A
C	 COMMAND TO TSE OPERATING SYSIEM TO ioASG A
C	 SPECIFIC FILE
C
C	 REMARKS'
C
C	 aay special considerations, requirements, restrictions,
C	 etc., should be mentionea here
C
C*************************HEADER COMMENDS ********# **************

ORIGINAL
R QUAt.i^J'Y

OF	 16

3.1.3

3.1.4

3. 1.5

3.1.6

3.1.7

k oS RiA AM129i S

Program modification should be noted by the date
and number of modification (1, 2 0 3, ..) ana the
name of the programmer making it.

SUbROUXINR COMMENZS

For a subroutine, comments describing the calling
sequQnce should follow the identification
information. identify eacu argument as input,
input/output, or output; anti explain its purpose,
type, dimension, etc. The different values that
an indicator (such as an error code) cab assume
should be defined, for bot:4 input and output.
Also, all variables u6ed in common blocks should
be similarly identified.

DISTRIBUTION OF COMMENTS

Distribute comments describing and summarizing
the computation appropriately throughout the
listing. These should correspond in terminology
to the program block diagram. Clever, Dut
possibly obscure, coding should be exp.LaiLed IL
detail; for example, if the function J=2*1-i/3-1
is used in a loop, where I takes on the values 1
through 6, the following might be written:

C	 AS	 I = 1,2,3,4,5,6	 J = 1,3,4,6,8,5

ERROR RECOVERY

Explain error recovery procedures in commeLts.
This information is importaLt to those who
maintain or modify the program.

ARRAY DYMENSIONS

Explan in comments any reasoLs for peculiar array
dimensions; e.g., storage limitations or use oy
other routines.

3.1.8 pR:[DiT11G STY"

Use a conspicuous printing style for comments so
that they stand out from tae rest of the misting.
Separate comments from statements by cards that	 T
are blank except for the C in column 1 (altuouya 	 j

the listing looks cleaner without the C, some
compilers object to totally blank cards).
Comments are futher accenten if they are

I

it

	
a^

ORIGINAL PAGE 'S
OF POOR QUALITY

17

indented, starting in, say, column 15. Short but
important comments can be empaasiaed by inserting
a blank between each letter of each word, and
four blanks between words; for example,

C	 I N P U T	 E D I T 1 i G	 S B C T 1 0 N

Similarly, symbols that are separated from Words
by two blanks instead of one stand out better in
phrases. For example,

C	 N1TH RADIUS R AND WITH H,K FuR CBNTEh

hhen spacing comments and statements, consider
inclusion of the program listing in the program's
formal docume4t.

3. 1.9 PROGRAM MODULARIZATION C (11M& . TS

For program modularization, coaments suowzng the
program structure and flow-on a nigher level are
used to divide the program iLto segments. These
comments provide the mechanism to show the
structure of the logic.

3.2 I MALIZA_T.10 N

Do not expect main storage to be initialized at the
beginning of the execution.

Do not assume that a tape is properly positioned.
Rewind it before use and, unless it is a scratch tape,
unload it afterward.

3.3 SZATEMENT ORDERING AND NUMBERING

3.3.1 NON-EXECUTABLE

Place specification statemeuts (e.g., L1SEJiSluN,
C06MON) at the beginning or the program. Ine
symbol lists within type, vIRENSION, ana CGMl9Giu
are to be alphabetical. However variaLlas wLic4
functionally go together may be groupers, evaL
though they may not be alphabetical. iue symbol
lists are to be columnized and left justified.
This way they are easy to find and do Lot
interrupt following of the logic flow. Further,
some compilers object if these statemeuts are Lot
placed first. See figure 5.

µ^

ORIGINAL PAGE 0
OF POOR QUAL "

18

C
Program declaration statements

C
C

REAL	 MACd, ------------
IuiTAGLR	 X	 , Y ----------

atber type statements and IMPLICIT statements
C

DIMENSION Ad	 (100) , ANAME (50), -------•-------
1 	 VNA jE1 (30) , X	 (25) , -------------------
2
3

C
COMMON/COM 1	 / X	 (10) , AE(FAY (50) , --------------

1	 ARRAYI (300) , ---------------------------
1
CJAMON /COM2 / ------------------------------

Z, ------------------------------
C

EQUIVALENCE	 (AAA	 (1) , bBE	 (10)), (XX%XXX (^.,U) , YY	 (5w)
1	 ,	 (CCCCCC (20) , DDDDDD (1)) , -----------------------
1	 ,	 ------------------------, ----------------------

C
DATA

1
2

C
C--•-------------------
C

Figure 5. - Specification statements

E	 _	 -

..A. ate!

`I

ORIGINAL 'PAGE IS
OF POOR QUALITY	 19

The order of the specification statements shoula
ue in the following order:

TYPE
DIMENSION
COMMONs	
EQUIVALENCE
DATA
Statement functions

ftin:, size the use of TYPE statements, especially
TYPL REAL and TYPE INTtGER.

3.3.2 FoRmAY STATEMENTS

Place FORMAT statements where they are easy to
find. Group them all at tae end of tae prograa,
except those simple FORMAT statements used oy
only one 1/0 statement, which should be pidced
with that I/O statement. All kORMAT statement
numbers are to be five-digit numbers (krererauly
2XLXX and larger) and increase sequentially.

3.3.3 STATEMENT NUMBERING

Statement numbers are to increase sequeLtia.&ll
from physical beginning to physical end oz the
executable statements. This permits easy
following of transfers. Using separate dna
distrinct blocks of statement numbers (statement
numbers increase by 50, 100, 500 or 1000
depe"ding on amount of code in the block) in
different sections of the prDgram to emphasize
the structure, to have iarye enough gaps for
tuture modifications and expansions, aua prevent
accidental duplication. Statement numbers are to
be placed on CONTINUE statements only dna rigut
justified with column 5.

3.4 SPECIF CCA1JQ1 STATEMAFtiTSj* COMMON g1k&W

3.4.1 SEECIPYING VAicIAELE TYPE

Use only one type specification for a variaDle
name. When you must change the type
specifications of integer or real variables,
rename tnea in EQUIVALENCE statements, using
names beginning with 1 through N for intejers and
with other letters for other variables.

1

I
1

.j

The structure of each block of common storage, as
specified in COMMON and in any other relatea
specification statements (e.g., DlABBSIUM,
INTEGER, EQUIVALENCE) , should be the same for the
main program and all subroutines using it. All
COMMON should be labeled and in alphabetical
order, unless blank COMMON is necessary for
communication between ChAIN segments. Use
several blocks, rather than putting unrelated
data into the same block; this incurs no penalty
aid prevents the confusion of variables specified
but not used in a subroutine.

Thus the specification statements for each block
of COMMON can be reproduced exactly ana a coley
inserted into each subroutine using it. Foi
legibility, separate the blocks by blank C cards
and use comments to explain, the purpose of the
blocks, where necessary. Corresponding CunAuN
and DIMENSION statements should be ordered and
spaced-the same way.

3.5 VARIABLE NAMES

3.5.1 GENERAL

Unless awkward, use variabie names that are
meaningful in the context of the problem t.lfi:
program is to solve and that correspond to --
notation or terminology in the block diagram and
program document. This helps make the listing
self-explanatory and relates it to the block
diagram and document. For exa,aple, two arrays,
one of positive and the other of negative values,
that are denoted in the block diagram ana
documentation as

xz	 ,x2	 . •-. and.x i	 .x2	 ,...

should be given names like xPOS and XNE^,, rattier
than A and B.

OMM& PAGE 0	 21
Of POOR QUALITY

3.5.2 CONSTANTS

Use variable names for quantities that miytt be
expressed as constants. Examples of suca
quantities are the number of times a loop is to
be performed, the length of a vector, or au 1/6
device number. Set the values of these
quantities during iuitilization (in a DATA
statement if possible) ; thus they can be
redefined, if necessary, in one place at tae
beginning of the program. Accordingly, reLer to
I/O files or devices by integer variab.Les rather
than by constants. For example, instead or using
the constant 3 in several output statements, use
a variable such as IOUT that is initialized to 3.
Then, if the files or devices are reorganized,
the analyst can simply change the definition of
IOUT and need not look for all appearances of 3
in this context.

3.5.3 NAMING CONVENTION

In naming variables, use names begi"ing with I
through N for integer variables, and names
beginning with A through H and 0 througL Z for
other variables. This widely accepted convention
reduces confusion. Avoid using variable names
similar to FORTRAN verbs. Some compilers night
treat them as commands instead of variable names.

3.6 ARRkYS

3.6.1 COMBINING

Do not needlessly combine into one array unat
could be separate arrays with fewer_ di,aeusions.
Similarly do not needlessly forma singly-
dimensconed array iron what could be s^mpie
variables. The time and storage required Lot
index manipulation increases as the numi)er of
dimensions increases. When the only reasoL Lor
such combining is to make separate arrays or
simple variables adjacent, this can be
accomplished by an EQUIVALENCE statement tuat-
equates the arrays or simple variables to the
elements of an array into which they might nave
been combined.

,AIGIN& PAGE IS
OF POOR QUALITY	 `2

3.6.2 SUBSCRIPTS

Whenever referring to an element of an array,
include a subscript for each dimension. Although

A(1,1)=0.	 I^r .

can sometimes be expressed

F "	 A=O.

not all compilers will accept it, and it gray
confuse some programmers.

3.6.3 USAGE Iii SUBPROGRaMS

An array included in the calling sequence of a	 - _-
subroutine must appear in a DIM ENSION statement
in the subroutine. Possibly tae subroutine does
not use the array but passes it on to anotnex
subroutine. However, some compilers require that
the DIMENSION statement be included in this type
of subroutine to ensure that the array is passed
by name and not by value. also, the dimensioning
information makes visually apparent in the	 _.
program listing what are arrays and not simple
variables.

tom'
A useful convention for sin911 -dimensioned arrays	 ^-
is that the DIMENSION statement specify a ieugth
of 1 if the length of the array is variable (to
the subroutine), and the actual length it it is	 ==-
fixed. This conventioL also applies to tLe last
subscript of a auitiply -dimensioned array (the
other subscripts must agree exactly vita those in	 .
the calling program).

3.7 ARITHMETIC EXPRESSIONS AND STATEMENTS

3.7.1 UNAMBIGUOUS USAGE

Use parentheses to make arithmetic expressioLs
completely unambiguous. The expressioL A **o**C
is computed from right to lett by some compilers;
from left to right by others. Similarly, tae
expression I*J/K could mean I* (J/K) or (1*,u) /K,
and the expression A/B*C could mean C*A/B or
A/ (B*C) .

b
-	 - -	 ^"	 wig •	 ^..v s-_ ^..-_ ^ - !r ^, - - ^	 .

'---a

ORIGINAL PAGE 18
OF POOR QUALITY

23

Do not rely on the •arder of the evaluation witl.ia
a single arithmetic expression. For example,
instead of the statement Y=F1 (Y) +F2 (c) , where F1
and F2 are functions to betaken in that order
because one depends on the other, use two
statements; i.e., Y=Fi (Y) ioiloved by Y=I +F2 (X) .

3.7.2 TEST FOB IMPROPBS CObD1TIONS

When undefined operations are possible, such as
division by zero or taking the square root or a
negative argument, test in advance for iaprojer
conditions.

3.7.3 COMPOUND EXPRESSICNS

Replace compound expressions repeated in
arithmetic statesentts by single variables
previously set to the value3 of the expressions.
This not only simpiifies tue appearance of
expressions and statements, but also saves tise,
storage, and helps to debug the expression.
Although some compilers have an optimisation
feature, this is .a good practice to get into.
For example, in the statement:

Y = (k*B) /C + COS (k*B) /C - SIN (.5* (d*b) /C))

replace the expression (a*B)/C by the variaDle T;
i.e.,

T = (A*B) /C
I = T + COS(T-SIN(.5*T))

Siailarly, simplify expressions algebraically
before coding them. This apklies to constants as
veil as variables. For example, for the
circumference of a circle in inches, give:. the
radius in feet, write

C=24.0*PI*R, not C=2.0*PI*B*12.0

,_	 l

ORIGINAL. PAGE 19
OF POOR QUALITY	 24

3. 7.4 USAGE OF SORT

When practical, +use the square root function
instead of exponentiation or other more ditf icult
operations. Generally, the SQRT subprogram is
executed faster, is more accurate, and uses less
storage. Also it is more likely to be already iL
core than any other elementary function
generator. For example, use

	

SQRT (X)	 not	 X**0.5

	

X*SQRT(X)	 nf-t	 X**1.5
SQRT (SQRT (X)) not	 X**0.25

Further, where S = SIN(X), T = COS (2.0*X), ana
U=SIKH (X) , use

SQRT (1. -S*S)	 not	 COS (5)
SQRT (.5* (1.+T))	 not	 COS (.5*A(.GS (r))
SQRT (1.+U*U)	 not	 COSH (ASINH(U))

In general, replace complicated operations by
simpler operations when possible. For example,
to compare the distance between the points
(Xj, Yj) and (Xi, Yi) with a prescribea toierance
T. use

IF ((XI-XJ) **2+(YI-Y.J) **2-T *r) 51, N^., N3

rather than

IF (SQRT ((XI-XJ) **2+ (Yi-YJ) **2) -T) N 1, N2, N3

Given a set of N points whose coordinates are
stored consecutively in the singly-dimensioned
arrays X and Y, to find the distance betwEen the
origin and the point farthest from it, use

_	 D=O.

DO 100 I=I,N
D = AMAX (D, X (1) **2 +Y (I) **2)

100 CONTINUE
D = SQRT (D)

t.;. 01

W

ORIGINAL PAGE 19

	

OF POOR QUALITY
	

25

rather than

D = 0.
DO 100 1 = 10N
D = AMAX (D,SQRT (Y(1) **2+ (1) **2))

100 CONTINUE

The first method saves N-1 sa uare root
calculations.

3.7.5 PREFERRED CONSTRUCTIONS

To speed execution or to conserve storage, use
the following preferred constructions (most of
these apply to integer as well as to real
variables) :

To express a power of 10, use E notation, not
exponentiation. For example, the expression
20.5E6 causes the compiler to generate a
constant, but the expression 20.5*10. **b requires
a calculation during execution.

Mixed mode expressions and replacements are
wasteful, even when allowed by the compiler; use

A+2.0	 not	 A+2
and	 A=2.0 not	 A=2

Adtii tion is always taster than multiplicatiou; use

A+A	 riot	 2.0*A

In a loop, multiplication oy the reciprocal is
faster than division; use

DO 100 I=1,N	 not	 DO 100 1-1,N
A = 0.5*A	 A = A/2.0

	

100 CONTINUE	 100 CONT1bUE

For exponents that are whole numbers, use s.ixea-
point notation. A real exponent requires the
general approximation algorithm of exponentiation
whereas an integer exponent requires ouiy
repeated multiplication or a simpler
exponentiation algorithm. For exam ple, the

	

A**2 (or A*A)	 not	 A**2.0

W.

c .

r^
	 •yr •.

F_

..

ORIGINAL: PAGE tS

OF POOR QUALITY	 26

3.8 CONZROL STATEMENTS

3.8.1 CALCU_„1IA2 QNS 1N_1 LOOP

Minimize the calculations performed iu a loop,
and avoid unnecessary subscriptiag. For example,

DO 100 I = 1,N
Z (I) = U*V*% (I) ♦ Y (J)

100 CONTINUE

is not as efficient as

T = U*v
YJ = Y (J)
DO 100 I = 1,N
Z (I) = T*%(I) = YJ

100 CONTINUE

3.8.2 COMPUTED GO TU'S

The control variable of a computed GO lu
statement should_ be checked in advance it it is
read from input data, received through a ca"iug
sequence, or calculated from other than perzectly
coatrolled variables. Ali labels within computed
GO TO statement should be sequential in asceudiug
order if possible.

3.8.3 ASSIGN STATEMENTS

The ASSIGN statement and the assigned GU 10
statement will not be used. This will prohibit
jumps both forward and bacxward in the cone.
Transferring all over the routine makes it
difficult to follow the logic of the routine and
routine complexity grows with additions ana
changes during the checkout.

I	 .

LOA

1rt

ORIGINAL PAGE W
OF POOR QUALITY 	

27

3. b . 4 DO jAQQkS

Usually, the indexing parameter of a DO-loop has
a range of permissible positive values, ana zero
is an unlikely but possible value. Therefore,
check the indexing phrameters of DO-looks, and of
implicit DO-loops in READ slid WR1TE statements,
if there is any change of a zero value. For
example,

J = 0
DO 100 !=1,N
J = J+1

100 CONTINUE

N
gives the wrong value for J = Ei
when d = 0, whereas	 i=1

J = 0
IF (N.LE.0) GO TO 200
DO 100 I = 1, N
J = J + I

100 CONTINUE
200 ...

work for all values of N.

3.8.5 CALL STAIEdENTS---- ----------

Avoid literal arguments in LALL statezents. if a
suoroutine changes the value of an argument
passed as a literal constant, subsequent use of
that constant by the calling program is invalid.
For example, if the following occurred,

1

CALLING PROGRAM
	

SUbROUTiNE SUe (J)
a
•	 •

GALLING SUB (3)
	

J = 2	 •
•

•

I = 3	 •
	

RETURN •

every subsequent use of the literal constant 3 iu
the calling program will actually use a value of
2. In tue example 2, not 3, will be storea in i.

ORIGINAL PAGE
UOF POOR Q ALITY

3.9 j#LUTaUTPU T

3.9.1 ASCOID ZQRI%kT

When a widely used record tormat is approl.riate
or nearly so, do not invent a new one.

Minimize the number of formats for input data.
Geuerally, the fewer forms in which data Lust be
prepared, the less susceptible it is to error aLd
the less storage the program requires.

For example, many programs could use a siL94.e
iinput format, such as 7E10.0.	 Data could De

converted to fixed-point, if necessary, atter it
is read.	 This would make keypunching easier aLa -^
errors less-likely because all numeric input
could be puncaed with decimal points auQ, more ~`_
importantly, could be left justified in the
fields.	 Even when standardizing the input
increases the number of cards, the benefits or
convenience and fewer errors outweigh the cost of
additional cards and of processing them.

Avoid writing short records on tape. 	 kor a given r y
amount of data, the fewer the number or records,
the less likely are read/write errors, the
greater is the read/write speed, and tae swal.Ler --'
is the amount of tape used.	 Also, short records
can cause tape positioning problems. 	 Avoid tape
records of fewer than about 80 characters; they
are likely to cause read ,errors.

i

If only a few characters are to De written:,
repeat them enough times (or insert dummy
characters) to form a record of at least 80
characters. When the recora is subsequently
read, the READ statement would, of course, be the
same as if the redundant or aummy characters were
not there.

f

i8

r

ORIGINAL PAGE 19

OF POOR QUALITY

For example, instead of

WRITE (J,1) A,B,C,D

READ (J,1) A,B,C,D
•	 •	 •
•	 •	 u

use
WRITE (J,1) A,B,C, (D,I=1, 11)

READ (J,1j A,B,C,D

When writing multiple-file tapes, it is a good
practice to have an End-of-File (EpF) mark aster
each file, and two after tae last file in the
tape. ''bus, a programmer does not need to Know
how many files there are on the tape in order_ to
process the whole tape. Also, using this
convention, it is quite sisple to position the
tape to the desired file by skipping files.

3.9.2 PLACEEENT OF 1LO OkJRATIONS

Isolate input and output operations, except
perhaps for the permanent input and output files,
in subroutines. This allows Easier re.Locatiou of
scratch files from tape to disk, or modification
of a plotting tape for new plotting hardware,
software, or performance requirements.

3.9.3 DE AULT YALUES

On card or terminal input, it is a gooa practice
to have default values within the program for
some input variables. Thus, by leaving the zield
blank, the program automatically presets toe
variable to some commonly-used value.

oRiGINC^ QuAUn
OF	

30

I

This is a good convenience -for the user. For
example, blank start-stop times on an , input card
could mean to process all data by having the
program set the times to the smallest and largest
possible values; a blank multiplicative tilde bias
would cause the program to set the bias to 1.
Care must be exercised, however, when reaniuy
blank fields which will read in as negative zero
on numeric variables. Since zero - is a possible
data value, a further check for negative zero may
have to be made.

All input data read in on control cards suo ula be
printed out, just as it was read in but clearly
laoeled. This allows for quicK identification of
keypunch errors should the program error of-2 or
give the wrong results.

O922Us FOR!!

Output from production programs should De
oriented to the user. Clearly identify output as
to the name of the calculation, the name ai,d
number of the * program pro3ucing it, and the date.
Label printed output and, it the printout is
expected to end up on document paper, limit its
length and width to the dimensions of the
document. This eliminates the need for photo-
reduction. For example, a printout confined to a
rectangle about 7-1/2 inches wide Ly 10 inches
long could be trimmed and bound as 8-1 /i bI 11
Inca material. Number and date the pages of a
printout when the application calls ror it. For
the date, use an existing general-purpose
su:,ro utine .

ERROR MESSAGES

Provide for laoeled printout when errors o.cur to
explain the reasons for the errors. hake the
explanation meaningful to ti)E aser as well as to
the programmer. This frees the user ct tte
necessity of looking up the meanings (it eiroz
codes in separate documents. Tuese priu touts
also should explaia what counters, etc., are
crucial for .'ocating the source of ta ,a errors.
General-purpose subroutines should nct, of
course, write such aessages. All Error messages
produced by the program should be cleai,ly
identified as suc .a (e.g. °*** PROs XYZ Ehfi(ah")

3.9.4

3. 9.5

i

i

ORIGINAL PAGE 10
OF, POOR QUALITY

.s 1

3.9.6 1biTEU""ll QUA tM

Make available to.the uaFi an option for
obtaining selected iuterv, .mate output. Ar, ii put
e , de can. easily be used to indicate which
interned-ate results, if any, are desired.

3.9.7 C R .91"I GG

Explicitly control the reading of large uumaers
of cards. 'A control integer specifying the
number of cards in a set can easily be wrong due
to miscounting. it the integer is too biv, the
program may read to the end of the data and be
terminated; if it is too s quall, the next input
statement will read the wrong cards. One
alternative is to punch a flag in the last Cara
so the program can recognize it. For exaLple

N=0
100 CONTINUE

N=N+1
READ(5v110) (X (N,I) , I=1,7) ,K

110 FORMAT (7E10.0,I2)
IF (K. EQ. 0) GO TO 100

is preferable to

P.EAD (5,110) N, ((X (J,I) ,I = 1 ,7) ,J=1,N)
1-10 FORMAT (I10/(7E10.0))

and obviates manual card counting and the
associated error possibility.

Anotuer alternative, when a particular tield is
non-zero or. all cards in tue set, is to insert a
blank card behind the last card of the set dad
reau it as follows:

N=0
100 CONTINUE

'	 N=N+1
READ (5,110) (X (N,I) , I= i,7)

110 FORMAT (7E10.0)
IF (X (N,1) . NE. 0) GO TO 100
N=N-1

This way, a card need not be punched vita a =lay
that might later have to be removed when tue set
is enlarged.

owk

ORIGINAL PAGE 19	 32
OF POOR QUALITY

3.10 §QUUQUZjM

The term "subroutine" as used here means either
SUBROUTINE or FUNCTION SUHPROGRAd.

3. 10.1 CTU

Code a group of logically related :instructions as
a subroutine, rather than as in-liae coding if
it:
	 1

Is entered from several different places in the
program.

- is potentially of general-purpose value.

- Is less stable than other parts of tue program;
or

- Is simply of appropriate size to be a separate
wod ule.

Subroutines conc:.etely express the concept of
nodular programming.

3-10-2 CALLING ARG UUZ TITS

For ease of interpretation, group the argusents
of a calling sequence in this order: .	input,
input/output, output, error code.

- An input argument is one whose value tae
subroutine uses Dut does not change.

- An input-output aryument is one whose value the j
subroutine uses and subsequently chaLyes. i

- An output argument is one whose value toe ti
subroutine does not use nut does chanye.

- The error code argument is the means of
transmitting diagnostic information to toe
calling pro-gram, such as whether the subroutine
executed normally or abnormally; it is a special i
case of ar, ou•tput aryumeut. j

i

I

r	 a

ORIGINAL PAGE 19
OF POOR QUALITY

3.10.3 UU1 CODES

in error code returned by a subroutine should boa
zero for normal execution and a non-zero value
otherwise. The more specifically it can descriLe
to the calling program the natu_e of a
malfunction or improper condition in the input
data.

A general-purpose subroutine should not write
diagnostic messages or cause other input/output
operations unless that is its principal function.
Error codes should be returnedthrough the
calling sequence. The user of the subroutine
then is not restricted as to the words in,
pouition of, and storage for diagnostic messages.
FurLLer, he has a change to recover gracefully.

3.10. ,5 UTT U RN STATENE ITS

Use only one simple RETURN statement in a
general-purpose subroutine, and place it
physically as the last executable statement.
Gonaect other places where the logic flow
terminates to the RETURN statement by ii0 ZU
statements. This eases later insertion of
sta7:eaents that must be executed before any
return is made. Note that this method stili
leaves the various paths to termination. distinct
so that they can be treatea separately when
necessary.

3.10. 5 ARR11 ZS

It a subroutine uses a varialie-length or urge
fixed-length array for working storage, transmit
it to the subroutine through the calling
sequence. This way, the array is in tLe data
region of the calling program and can , sat.'.sty
otner needs for temporary storage. Also, it the
array varies in length from case to case iu a
single program, or from program to proyrdm, and
is not specified in the calling sequence, tae
array as def iced in the subroutine couia be
either short and sometimes iusutfic lent or Long
hna sometimes wasteful.

L.mit the output of a subroutine to prevent array
overflow in the calling program. when an output
array from a subroutine is of variable leuyth,
the maximum allowaole length must be commuLicated
to the subro ntine by an argument in the calling
sequence.

ORKANAL PAGF tW
OF PWR QUALITY

3.10.6 COMBOS BLOCKS

Use labeled COMMON for passing arguaents to or
from special-purpose subroutines whenever
o-)ssible.

subroutine must not change the value of an
input argument.

General- purpose subroutines should not use biazik
C06MUS storage. One that does limits the cailiug
program in its use of COMMUN. Two or more that
do are likely to nave incompatible requirements
t^r the sizes or names of blocks in COMMOb, which
ne_Yssitate awkward modifications when the
subroutines are used together.

ORIGINAL PAGE 18
OF POOR QUALITY

a5

4. CddCKOUT AIDS

4.1 I-SMABDIATE RESULTS

4.1.1 PROGRIA FLOW

Place WRITE statements in all major blocks of the
prograa and its subroutines when first coned, so
that the progress of a proyraa can be traced from
its printed output during debugging. Do not rely
on the ordinary (production) output. at least
have each special-purpose subroutine print its
Lame as soon as it is entered. It is also useful
to -rint the input variables to a subroutine just
betvre and the output variables dust after the
CALL statement. These statements shou.La prii.t a
clear indication of their position in toe
program, and any variables printed should De
laDeled.

In tracing the flow of a proyraa, integer control
variables are generally more helprul that are
floating-point data, although the f loatiu g-point
values may be needed to check the Luaericai
algoritha. So it is better iL^tially to coae
many simple WRITE's of integer varrables, sucu as
indices and counters, matrix dimensions, flags
and switches, error codes and computed GO TG
variables, t4aa a few aassive WRITE's of
floating-point arrays.

The WHITE statements used in debugging, aLa tiieir
associated FORMAT statements, nay Le identified
by a word such as TRACE or DEBUG in colu"s
73-80, so that they are easily resoved after
checkout. Alternatively, a C can simply be aaned
in column 1 so that the statements cal. be used
again if the program is modified.

z—

ORIGINAL PAM tg
OF POOR QUALITY

36

4. 1.2 DAIA STRUCTURES

Design data structures sensibly so they - can be
displayed either in damps or in labelea arm well
arranged printout. Such printing requires extra
coding initially, but this extra code can "e
included in an error handling subroutine that
provides easily read diagnostic i&toraatiot; erneu
and only voen needed. It also provides a
convenient checkout device in program
modification, for a CALL to this subroutine caL
be inserted both before and after tae uodliled
program section. This lessens the teea to invent
intermediate output statements or dump
procedures, which usually fair to include all the
portions of storage required to diaguo:ae tue
error.

4.1.3 VALIDITY OF RESULTS

For programs expected to rut a long time, provide
for frequent checks of the validity of results.
When the results sees invalid, and the error is
irrecoverable, execution suouid be teraivatea.

4.2 DESK CHECKING

4.2.1 GENERAL

Desk checking means manually scrutinizing program
logic and deck structure. mistakes in either cat,
cause an unsuccessful run, so a rex "uutes of
checking is worthwhile. G

i-

F^_

ii

ORIGtM PAGE 4
OF POOR QUALITY

37

4.2.2 PROGRM JOUC CHECK LIST

- is there a statement nuirer on the statement
iamediately folioving each arithmetic 11
statement and each of alp kinds of GO TG
statements?

- Are there statement numbers for the Exist iron
iF, GO TO, and CO statements?

- Do . parentheseE* balance? Start from the ief t
with 0 and adL 1 for each left parenthesis
encountered and subtract 1 for each rxgot
parenthesis. Tke. count shouln Lever Decome
negative. If parentheses balance, tae count
will end up at 0; however, this does Lot
necessarily indicate correct grouping.

- Does every sudscriptea variable appear izi a
specification statement?

- Does any DO-loop eLd vita at 1F statement, c
GO TO statement?

- Are all referenced FORMAT statements j.resent?

- is the field length correct for all Bolierith
fields?

- Are the number, order, and type or arguments
xL CALL statements correct?

4.2.3 DECK STRUCTURE CHECK LIST

- For Control cards: is tae tarn Lecessary, is
its positioL in the deck consistent Witt its
purpose, and is its format correct? Are aLy
control cards missing?

- Are ail necessary subroutine decks pIEsent?

- Are all necessary data cards preseLt, aLa noes
their order agree uitb what tte progrd.i exiects?

- is the deck properly ide"tiried vita Your Lawn
phone number, location, etc.?

I

i

I
J

38

4.3 CHECKOUT DATA	 s

4.3.1 GENERAL

When creating checkout data, remember that
anything that can be punched on a card, vritten
in a tape record, etc., will possibly be input to
your program sooner or later. A program is never
100 percent checked out, but you are responsible
for making checkout as complete as possible.
Therefore, prepare checkout aata that represent
production conditions, including both valid and
invalid data, to test diagnostics and recovery
features.	 r

Keep test decks ana records of test results up-
to-date. When new features are added to a
program insert representative checkout aata.
Whenever a program fails and is corrected,
include in the test deck tae type of data that
caused the failure.

When a program is revised or recospilea, check it
with the old test deck as well as the yew
checkout data, if the old aeck is still
applicable.'

4.3.2 VERIFICATION OF INPUT

Know your input. When practical, have checkout
data printed out completely in a readable roraat
before using it, so you can check it. (To list
out input cards, use an existing general-purpose
subroutine.) When the input to a program,
particularly a general-purpose routine, consists
of a large amount of.data, another routine to
check the data for consistency, rather tnau
printing it all out, could be helpful. Another
technique for handling a large amount o* aorta is
to write it in a scratch file and use do exlstiuq
general-urpose subroutine to transfer it to the

output file after execution.

I

MV
	 •

ORIGINAL PAGE t9

OF POOR QUALITY

4.4 DUMPS

4.4.1 GEN$nL

If trace printouts are systematically used, there
s,kould be only infrequent need for core dumps.
Since the latter are more expensive in comyuter
time and less useful as a debugging aia than
selective labeled printout, the only dump that
should always be provided for is a conditional
post-mortem of crucial regions of storage, sucL
as the data region of the main program, in case
of abnormal job termination. But, do not rely on
a post-mortem dump as a substitute for trace
printouts; they will tell only what the program
looked like after the crash, not necessarily way
it crashed.

39

4.4.2 CORE DUMPS

Generally core dumps are useful only to more
experienced programmers, most of whom will
maintain that they cannot work efficiently
without them. However, new programmers wi.ii not
have a good understanding of the computer's
workings until they are at least capable of
understanding dumps.

4.4.3 TECHNIQUE

The technique of using dumps is best lent to tue
judgment of the individual programmer, but there
are a few general principles:

- when a dump is positioned in a loop, De sure to
include the relevant control variables, such
as the indexing parameter of the loop.

- Wheu preparing a production run, always
provide for a full core dump in the event
of failure detected by the operating syste&;
this aids immensely in investigating operating
system and/or hardware malfunctions. A iu.Li
core dump in the event of failure detected Di
the program may or may not be appropriate.

- Carefully select the regions to be included iL
a dump; but, when in doubt, include too much
rather than too little.

R

ORIGINAL PAGE 13
OF POOR QUALITY	

40

4.4.4 1HSTAUCTION QUAkS

Another occasional need for a dump is to examine
instruction regions suspected of having been
improperly generated by the compiler or of naviug
been mutilated during execution. Since the
instruction region cannot be written out by hR11E
statements, a dump with mnemonics can be a great
help, to those who can interpret it, iu isolating
these errors.

4.5 STORAGE !SAPS

4.5.1 GENERALERAL

Get a storage map, which snows how the program
uses main storage, and use it in checkout. be
sure to watch for:

- Variable names that do not belong there, but
appear because of misspelling or other
mistakes.

- Arrays treated as functions because they are
not specified in DIMENSION statements.

Proper size of COMMON storage for all routines
using it.

Get a loading map, which snows how all of core is
allocated to make for easier interpretation of
dumps.

4.6 DIAGNOSTICS

When you discover an error in checking out a program, uo
not resubmit the program until you have checked the
diagnostic information of other errors. Often several
program errors can be detected from the diagnostics oz
one checkout run. Examine partial results and incorrect
results; even these can be helpful. For example, try to
ascertain why deviations frog expected or pre-calculated
results occurred.

4.7 PROGRAM TIM ING

To time a section of a program, use an existing general-
purpose timing subroutine when the section is entered
and when it exi':s.

..

y^.

1
i

^i

	GeneralDisclaimer.pdf
	0147A02.pdf
	0147A03.pdf
	0147A04.pdf
	0147A05.pdf
	0147A06.pdf
	0147A07.pdf
	0147A08.pdf
	0147A09.pdf
	0147A10.pdf
	0147A11.pdf
	0147A12.pdf
	0147A13.pdf
	0147A14.pdf
	0147B01.pdf
	0147B02.pdf
	0147B03.pdf
	0147B04.pdf
	0147B05.pdf
	0147B06.pdf
	0147B07.pdf
	0147B08.pdf
	0147B09.pdf
	0147B10.pdf
	0147B11.pdf
	0147B12.pdf
	0147B13.pdf
	0147B14.pdf
	0147C01.pdf
	0147C02.pdf
	0147C03.pdf
	0147C04.pdf
	0147C05.pdf
	0147C06.pdf
	0147C07.pdf
	0147C08.pdf
	0147C09.pdf
	0147C10.pdf
	0147C11.pdf
	0147C12.pdf
	0147C13.pdf
	0147C14.pdf
	0147D01.pdf
	0147D02.pdf
	0147D03.pdf
	0147D04.pdf
	0147D05.pdf
	0147D06.pdf
	0147D07.pdf

