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Surnmary

Maximum likelihood estimation of parameters in linear struc- J

tural relationships under normality assumptions requires knowledge ¢
of one or more of the model parameters i1f no replication is avail-
able. The most common assumption added to the model definition is

that the ratio of the error variances of the response and predictor

variates is known. This article investigates the use of asymptotic

formulae for variances and mean squared errors as a function of ?

sample size and the assumed value for the error variance ratio.

Some key words: Errors in variables; Identifiability; Regression

1. Introduction 3

Linear structural relationships are linear mode¢ls between two

stochastic variates (Y,X) in which both variates are measured with
error. Let Yi = o + BXi and define observable variates ;
xj, = xi + U.i yi = Yi + Vi, i = l,z,...,n. (1-1) V\)

Assume further that independently XNN(ux,ci), umN(O,di), and va(O,qf), L

A= i

N
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Under these model assumptions it is well known that in the absence
of replicatlon no consistent estimafors of « and B exist because the
model lacks identifiability (e.g., Madqpsky 1959), Geary (1942)
ghowed that when (u,v) are jointly normally distributed, if X
possisges a finite cumulant of order greater than two then B is
identifiable in the joint distributior of (x,y); thus, nonnormal
distributions for X generally allow consistent estimation of 8.
Reiersol (1950) strengthened this result by proving that if (i) u
and v are independently distributed or (ii) (u,v) is bivariate
normal, nonnormality of X is a necessary and sufficient condition
for identifiability of B. Reiersol's results are summarized in
Table 1. Note egpecially that o is identifiable (and estimable)
when 8 is identifiable; consequently, the focus of this article is

on the estimation of the slope parameter B.

[Insert Table 1]

The identifiability conditions displayed in Table 1 pertain
to linear structural models in which none of'the'model parameters
are known. Kendall and Stuart (1977,4Chapteg 29) detail various
solutions to the likelihood equations when one or more of the
variances in model (1.l) are known. Of important theoretical
interest is the assumption that A = 03/0&, the ratio of error
variances, is known. Under this assumption the joint distribution

of (y,x) 1s identifiable and the likelihood equations have a unique

R et e P A WA 370 1 A el "
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soluticr fox B3

" 2 1/2 2 .2

B : s(A) + 6(sxy)[s (A) + A1, s(k)-(sy Asx)/(25xy) (1.2)
where 8y, s Y
respectively, and G(sxy)-sign(sxy). This solution is consistent

i, and s__ are the sample variances and covariance,

and asymptotically normal and all estimators of the model variances
are assured to be nonnegative. While this estimator is commonly used
to estimate the slope parameter, few theoretical or simulation studies
have been conducted to evaluate the adequacy pf asymptotic variance
formulae for finite sample sizes or the sensitivity of estimator (1.2)
to erroneous selection of the varilance ratio A.

In this article both of the above topies are investigated.
Section 2 contains asymptotic variance and mean squared error formulae
for estimator (L.2) for both correct and incorrect choices ~f A.
Section 3 pregents the results of a simulation study in which the
sample size and the assumed value of A are varied for several model
configurations. Replication of observations is discussed in Section

4 and concluding remarks are made in Section 5.

2. Asymptotic Properties

Asynptotically (i.e., replacing sample moments by their para-
meter values),
28/3% = =Bt/ (B2 (2.1)
where t = ci/qé is a "noise-to-signal ratio" for the observabls pre-

dictor variable x. The rate of change of B with respect to A is

thus seen to depend on the true values of B, A, and t. Figure 1



ORIGINAL PAGE 19’
OF POOR QUALITY,

illustrates the general features of equation (2.1)¢ g 18 relatlvely
insensitive to the true value of A for large values of A and small
values of t. Together these two conditions imply that ai, the error
variance for the ohservable variate x, is small. In other words,
under the conditions for which the linear structural model (1.1) is
usually proposed (i.e.,, t moderate to large or A small to moderatit=-
each implying that oﬁ is nonnegligible), the estimator (1.2) can be
very sensitive to the true value of A.

[Insert Figure 1)

A similur perspective on the sensitivity of (1,2) to the value
of A is sbtained by assuming A is stochastic rather than constant.
Lindley and El-Sayyad (1968) suggest assuming a uniform (k-l,k) prior
for A if rhe two measurement errors are believed to be of the same
magnitude. Alternative proposals might include N(k,ai) or Chisquare(k)
priors. Using statistical differentials (e.g., Serfling 1980) one
can approximate the expectation of (2 1) using a three~term Taylor
series expansion of aé/ax. The approximate expectations are,
respectively,

~28e[(28% + 1 + kDT kB2 ee% + k + kH I (2.2)
-8e18% + 07+ o2(8% + 173 (2.3)
e[ + 107t + 282 + )7 (2.4)
Graphs of equations (2.2) to (2.4) as a function of k are variants
of Figure 1, all resulting in the same general conclusion: the
slope estimator (1.2) is relatively insensi:ive to the true value

of A only when t is close to zero and k is large.

SN, e
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The slope eatimator (1.2) is asymptotically unblased when the

error variance ratio is known, Agaln applylng the method of statis-
tical differentials, tle asymptotic variance of (L1.2) (ignoring terms
of O(nnz)) is
o ree? + e + A%y, (2.5)
which reduces to equation (9) of Robertson (1974) when A = 1. TFor
comparative purposes, the asymptotic mean squared error for tbe least
squares estimator (sxy/si) of the slope parameter under the assumptions
accompanying model (1.1) is (c.f., Richardson and Wu 1970, equations
(2.24) and (2.25))
Bt + )@+ )2+ ahae@ + )7L, (2.6)
Note that the least squares estimator is the maximum likelihood esti-
mator when 05 = 0, in which case (2.6) reduces to ci/(nci).
The foregoing expressions enable one to assess the sensitivity
of the linear structural estimator (1.2) to the true value of the
ratio of error variances. In application it is also of interest to
examine the sensitivity of (1.2) to an erroneous choice of A, When
A is incorrectly specified, (1.2) is no longer asymptotically unbiased.
Ignoring terms of O(n—z), the asymptotic expectation and variance of

(1.2) using ar. assumed value A* for the ratio of error variances are,

respectively,
A 2 1/2
E(B) = gA(A*) + G[gA(A*)][gA(A*) + A%] (2.7)
var (8) = n T (%) 2138762 (A=a%) 2(324a%) 2 (B2H) A E2 )] (2.8)

where g, (Ak) = [(BZ—A*)cif(A—A*)oi]/[Zsoi] and §(g, (%) ]=signlg, (¥)].

When A% = X, bias(8) = 0 and equation (2.8) reduces to (2.5).




Figures 2 and 3 compare the asymptotic mean squared errors of

the structural nodel esgtimator (1.2) with the least squares esti-

mator, the latter mean squared error calculated from equation (2.6).

In Figure 2 the t~ue variance ratio 2 is assumed known and B, oi,

and 03 are fixed at 3, 5, and 10, respectively. Unless ) is extremely

small, corresponding to relatively small error in the response vari-

able, the structural model estimator has a smaller asymptotic mean
squared error than least squares, with the improvement offered by
the structural model estimator increasing with the sample size and
decreasing with A.

[Insert Figure 2]

If A* iz chosen incorrectly, Figure 3 demonstrates that the
benefits of using structural model estimators over least squares
diminishes as A* differs from A. TFor this figure the model para-
meters are set at (B, o;, A) = (3, 5, 6). Both Figures 2 and 3
are illustrative of a general conclusion which can be drawn from
a comparison of the asymptotic mean squared errors: A* must be in
relative proximity to the true value A for the structural model

estimator to be a substantial improvement over least squares.,

[Insert Figure 3]

3. Simulation Results

In each of Tables 2 to 5, i000 replications of samples of size
n were generated from model (1.l) with normal variates generated by

I.M.S.L. subroutine GGNML on a C,D.C., 6600 computer. Table 2 compares
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the average g calculated using equation (1.2) with the true value of
B. In this table B, oi, and oi are fixed at 3; 5, and 5, respectively,
so that varying ai the results are only a function of A and n. For
samples of size 50 and 100 the maximum relative error in estimating
B usiag the correct value of A% is 4%, Incorrectly choosing A¥* larger
than the true variance ratio results in underestimation of B whereas
too small a selection of A% results in overestimaiion of B,

[Insert Table 2]

Estimated and asymptotic mean squared errors are compared in
Table 3. Estimated mean squared errors are computed from the usual
formula,

mse = £(8-8)2/1000 ,

and asymptoti¢ mean squared errors are obtained from equation (2.5)
(recall that E is asymptotically unbiased when A is known) using the
true values of B, A, and t. The ratios in Table 3 corresponding to
correct assumed values of A% indicate that use of asymptotic formulae
for moments of ntructural model estimators cannot be recommended for
samples of size 100 or less, Even when A* is chosen correctly and
the true model parameters are inserted in the asymptotic‘formulae,
samples of size 100 result in errors of 15-30% between sample mean

squared errors and those calculated from equation (2.5).
[Insert Table 3]

Tables 4 and 5 display ratios of sample and asymptotic mean

squared errors for samples of size 200 for a variety of values of

e e e g A won i §
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Bs A, and t. When A% is chosen correctly the vatios are wuch
closer to 1.0 in these tables than in Table 3, If a relative
error of approximately 107 or less is acceptable, samples of silze
200 could be considered minimally acceptable for a wide range of
model parameters.

[Insert Tables 4 and 5]

Tables 3 to 5 also demonstrate that A* must be selscted near
its true value for the asymptotic variance formula (2.5) to provide
a3 reasonabl~ assessment of the variability of §. When B is small
it is especially undesirable to choose values of A* which are less
than the true ones. The deleterious effects of erroneous se .:cticn

of A% decrease with larger values of B and smaller valuas of t.

' 4. Replication

Replication of observations for one or more specific values of
X allows consistent estimation of B when A is unknown. Dorff and
Gurland (1961) investigate four analysis of variance estimators of B

in functional equation models (the Xi are assumed to be unknown

constant’s) when one or more of the X, are replicated. On the basis

i

of asymptotic mean squared error comparisons when an equal number of
replications is available for each Xi, they prefer an estimator
similar to equation (1.2) in which the following estimator of A
is inserted in place of the true value:

A= w [w

yy' xx

n r — g B T ( - .2
=L I (y,.,~y, )/ 2 I (x,.-x ),

(4.1)
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where ¢ replicates for both x and y are availlable {or each of the

n X, Under the structural model assumptions (l.l) this estimatox

of B is consistent and has ngymptotic variance equal to
n(a2n)+ann? (8%-0) 2(8%0) "2 + 4ane2 (820 Prn/ (x-1)1  (4.2)

where m = t/rn. Equation (4.2) corresponds to varA(bA) of Dorff

and Gurland (1961).

Barnett (1970) derives the maximum likelihood estimator of B
for functional models. Dolby (1976) derives maximum likelihood
estimators of B for an "ultrastructural" model which includes the
structural and functional models as special cases, When an equal
number of replicates are available for each Xi’ he shows that the
maximum likelihood estimator of B is again of the form (1.2) with
the following estimator of A:

A =( )/ (s ~8 ) (4.3)

syy Xy xy Yy xx" Xy xy Wax
where Syy = rZ(?l'Jy..) , ete, The two estimators of A, equatilons
(4.1) and (4.3), are asymptotically equivalent since plim(wxy) =
therefore, the asymptotic variance of 8 using (4.3) to estimate A
is given by equation (4.2). Although the maximum likelihood esti~
mator and the analysis of variance estimator are asymptotically
equivalent, the latter estimator.might be preferable with small
sample sizes since A estimated by (4.3) can be negative (see Dolby
(1976)).

Tables 6 and 7 compare empirical and asymptotic properties of
the analysis of variance structural model estimétor based on

equation (4.1). The summary statistics displayed in these tables




ORIGINAL PAGE 19
OF POOR QUALITY 10

are computed from 1000 simulated experiments with (B,c§,0§)~(3,5,5)
and r = 2 and 5 replicates. The analysls of variance estimator pro=~
duces satisfactory agreement {relative avror less than 1l0%) between
the average estimate of B and its true value for sample sizes as
small as n = 20 with r = 2 replicates. Agreement hetween the empirical
and asymptotic mean squared errors again requires a sample size of at
least n = 200 (total sample size N = nr) for an empirical relative
error of approximately 1l0% or less.

[Ingert Tablés 6 and 7]

Erroneous use of least squares when the predictor variable is
measured with error is especlally unwarranted when A can be esti-~
mated with replicated observations, Figure 4 illustrates that esti-
mator {1.2) using equation (4.1l) for i substantially improves esti-
mator accuracy over least squares, even for small sample sizes. The
model parameters used in the construction of this figure are the same
as those used in Figure 2. Maximum likelihood estimation of B using
equation (4.3) results in simulation results comparable to Tables 6
and 7 and mean squared error improvement over least squares equal to
that displayed in Figure 4. .

[Insert Figure 4]

5. Discussion

The results presented in Sections 3 and 4 are only a portion
of a larger study in which simulations and asymptotic comparisons

were conducted for a wide range of model parameters. The tables
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and figures are Lllustrative of the overall resultn. in géneral
the effective use of asymptotic properties of the structural egtie
mator (1.2) requires a large sample size and accurate selection of
the variance ratio A when the variance ratio cannot be estimated
from replicated observations. Correct selection of A and a large
sample size also assures a smaller mean squaxed error than least
squares unless the variance ratio is very small. Incorrect selecw
tion of A, especlally the selection of too small a value, compro-
mises the effectiveness of the structural model estimator relative
to least squares. Replication of observations for one or more
specific values of X is an effectiy® alternative to least squares
when all model parametars are unknown provided that the total sample
size is sufficiently large.

The investigations reported in this paper assume that the true
predictor variable is normally distributed. If X is nonnormal all
model parameters, including A, are usually estimable. Unfortunately
the derivation of maximum likelihood estimators 1s theoretically
intractable for many important distributions; e.g., XvBeta(a,b)
and (u,v) normally distributed . Although moment estimators of B
are available, they are not unique and are often inefficient.
Alternatives to moment estimators are currently under investigation

and will be reported in the near future.
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Table 1, TIdentifiabiliiy conditilons for linear structnral, models

(a) Identifiability of B

(1) X is nonnormally distwibuted and either u and v are
independent or (u,v) is bivariate normal

(41) X is normally distributed and the distribution of neither
u nor v is divisible by a normal distribution

(b) B is identifiable

(1) o is identifiable

(11) 1f u and v are independent and the characteristic functions
of u, v, and X are continuous, all other model parameters are
identifiable

(111) 4f (u,v) is normally distributed, all other model parameters
are identifiable 1iff

(1) the distribution of X (and Y) is not divisible by a
normal distribution, and

(2) either u=0 or v=0




Assumed A
0.5 1.0 1.5 2.0 4,0 6.0 8.0 10.0

0.2

Ratio of simulated and asymptotic expectations of structural model slope estimator

Table 2.
True A
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