Optimization Methods Applied to Hybrid Vehicle Design

John F. Donoghue and James H. Burghart
Department of Electrical Engineering
Cleveland State University

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
NTIS price codes 1
Printed copy: A09
Microfiche copy: A01

${ }^{1}$ Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issues of the following publications, which are generally available in most libraries: Energy Research Abstracts (ERA); Government Reports Announcements and Index (GRA and 1); Scientific and Technical Abstract Reports (STAR); and publication, NTIS-PR-360 available from NTIS at the above address. of hbid vehcle propusion systeme is demonetrated. optimization technafes were used to select values for three design parameters battery weicht, heat engine power rating and power gplit between the two on-board energy sources) suh that var tous meaures of vehcle per formance Gcaleition oost, life cycle cost and petroleum consumption were optimized. The apprach produced destens mich were otten sightigant improments ofer hybid desians already reported on in the literature. The pincipal condusions are as follous. First, it was found that the strategy ued to gplit the required power between the fwo on-board energy sources can have a sionificant effect on life chcle cost and petholeum कommption. Geond, the optimization program should be constucted so

ENTER:

Optimization Methods Applied to Hybrid Vehicle Design

John F. Donoghue and James H. Burghart
Department of Electrical Engineering
Cleveland State University
Cleveland, Ohio

June 1983

Prepared for
National Aeronautics and Space Administration Lewis Research Center
Cleveland, Ohio 44135
Under Grant NAG 3-84

for

U.S. DEPARTMENT OF ENERGY

Conservation and Renewable Energy
Office of Vehicle and Engine R\&D
Washington, D.C. 20545
Under Interagency Agreement DE-AIO1-77CS51044

TABLE OF CONTENTS

Page
1.0 SUMMARY. 1
2.0 INTRODUC'TION 4
2.1 Research Objectives 4
2.2 Previous Work 5
2.3 Major Tasks 6
2.4 Report Organization 7
3.0 VEHICLE DESCRIPTION AND OPERATION. 8
3.1 Propulsion System 8
3.2 Vehicle Operation and Ratio Selection 10
3.3 Power Split Strategy 11
4.0 VEHICLE DRIVING REQUIREMENTS 13
5.0 ENERGY AND COST CALCULATIONS 16
5.1 Yearly Electrical Energy Consumption. 16
5.2 Yearly Petroleum Consumption. 17
5.3 Life Cycle Cost Calculation 18
6.0 VEHICLE SIMULATION 22
6.1 General Computational Procedure and Trip Characteristics Design 22
6.2 Simulation Time Increment Selection 25
6.3 Power Overload 25
6.4 Other Features of the Simulation 28
7.0 OPTIMIZATION AS A DESIGN TECHNIQUE 30
Page
8.0 THE VEHICLE DESIGN PROBLEM AS AN OPTIMIZATION PROBLEM. 33
9.0 SELECTTON OF OPTIMIZATION METHOD 37
10.0 IMPLEMENTATION OF THE GRG PROGRAM FOR VEHICLE DESIGN PROBLEMS. 39
11.0 RESULTS AND DISCUSSIONS OF RESULTS 43
11.1 Vehicle Power Source Sizing for Minimum Life Cycle Cost. 43
11.2 Vehicle Power Source Sizing for Changing Petroleum Costs 46
11.3 Vehicle Power Source Sizing to Minimize Total Petroleum Consumption. 48
11.4 Power Split Optimization 52
11.4.1 Parameterized AiResearch Power Split Function. 54
11.4.2 Polynomial Power Split Function 55
11.5 Summary of Results 57
12.0 CONCLUSIONS 59
APPENDIX A - DICTIONARY OF VARIABLES 62
APPENDIX B - CALCULATION OF VEHICLE MASS 83
APPENDIX C - CALCULATION OF MANUFACTURING, MAINTENANCE AND REPAIR COSTS 86
APPENDIX D - CALCULATION OF ACQUISITION COST 90
APPENDIX E - VEHICLE SIMULATION 91
E. 1 Component Models 91
E. 2 Calculation of Power Required at the Axle During the Acceleration and Cruise Phases of the STC and During Highway Driving. 98
E. 3 Drive Train Power Calculations for Acceleration and Cruise Phases of STC and for Highway Driving. 99
E. 4 Calculation for Coasting Phase of the STC 103
E. 5 Calculation of Drive Train Power Regeneration During the Braking Phase of the STC 103
APPENDIX F - BATTERY MODEL 106
F. 1 Scaling the Battery Model 106
F. 2 Calculation of Battery Voltage and State of Charge During Discharge in Highway Driving and in the Acceleration and Cruise Phases of an STC 106
F. 3 Battery Charging at End of Trip 110
F. 4 Calculation of Bartery Voltage and State of Charge During Regeneration in the Braking Phase of an STC. 112
APPENDIX G - CVT RATIO SELECTION PROCEDURE 114
APPENDIX H - AIRESEARCH POWER SPLIT STRATEGY 121
APPENDIX I - COMPUTER PROGRAMS 122
REFERENCES 172

1.0 SUMMARY

The overall objective of this work was to demonstrate the use of optimization methods as an effective design tool in the design of hybrid vehicle propulsion systems.

Specifically, optimization techniques were used to select values for three design parameters (battery weight, heat engine power rating and a parameter through which the required wheel power at each time instant was split between the two on-board energy sources) such that various measures of vehicle performance were optimized. The performance measures considered were acquisition cost, life cycle cost, petroleum consumption, or various weighted combinations of these. For specific values of the design parameters, vehicle performance was determined using a vehicle simulation. The optimization was carried out by coupling the simulation to a sophisticated, nonlinear programming code (GRG2) and running the two in combination.

The optimization approach was successful in coming up with designs which were of ten significant improvements over hybrid designs already reported on in the literature. Furthermore, it was found that the strategy used to split the required wheel power between the two on-board energy sources can have a significant effect on life cycle cost and petroleum consumption. More importantly, however, the work showed that it is quite feasible to couple a complex optimization program to a vehicle simulation program for the purpose of propulsion system design. It was also found that the optimization program should be constructed so that performance measures and/or design variables can be easily changed; in the conduct of the research it was often desirable to compare, say, the minimum life cycle cost design to the minimum petroleum
consumption design.
Another area in which important results were obtained was in understanding the effect the vehicle simulation program design has on both the computer run time of the overall optimization program and on the ability of the optimization program to even arrive at a meaningful solution. First, it was found that the computer run time could be significantly reduced by proper design of the types of trips the vehicle takes in a one year period. Specifically, if a trip consists of a combination of test cycles (accelerate-cruise-coast-brake cycles) and highway driving, then it is important that all the test cycles precede the highway driving, and that the same number of cycles are at the front end of each trip, no matter how long the trip.

Second, it was found that care must be taken in designing the cost and constraint expressions which are being used in the optimization so that they are relatively smooth functions of the design variables. Otherwise, the function surfaces may be severly distorted and create many local minima which will prevent the program from even approaching the global minimum. This is particularly true with regard to how the battery replacement cost is handled.

Finally, it was found that proper handling of constraints on battery weight and heat engine rating is particularly important for the success of an optimization study. These design variables cannot be allowed to be reduced to the point where the combined on-board power cannot meet the power demanded at the wheels. It was found that the way in which this "overload" constraint is handled strongly influences whether an optimization run gets "hung-up" at a non-optimal solution or finds the constrained, global optimum.

The principal conclusion reached from this research is that optimization methods provide a practical tool for carrying out the design of the
propulsion system of a hybrid vehicle. Once the optimization program and the vehicle simulation are combined and operating, it is relatively easy to change objective functions and/or design variables so that designs based on different performance criteria (e.g. minimum life cycle cost design v.s. minimum petroleum consumption design) or different driving conditions, component characteristics or propulsion system configurations can be quickly carried out and compared. Use of optimization methods also force designers to make explicit their objective functions and constraints; thus designs carried out by different researchers are more readily and meaningfully compared.

This work has also lead to the conclusion that the way in which the demanded power at any instant of time is split between the two on-board power sources has a significant impact on vehicle cost and petroleum consumption. Although some preliminary results in this area are presented in this report, it would appear that future hybrid vehicle work should look at this question of power split on a more systematic basis.

2.0 INTRODUCTION

The energy crisis, dramatized by the oil embargo of 1973, has become one of the most serious long-term problems confronting the United States. In response to this crisis there has been a significant increase in the research and development of electric and hybrid vehicles in an attempt to reduce our dependence on foreign oil. The work discussed in this report is a part of that on-going effort.

2.1 RESEARCH OBJECTIVES

The primary objective of this work was to study the use of optimization methods for the design of propulsion systems for hybrid vehicles. The term hybrid vehicle as used in this report means a vehicle which contains a heat engine and gas tank as well as an electric motor and hatteries. The configuration used here was a parallel hybrid with a continuously variable transmission. Of particular interest in this work was determining the ease or difficulty with which a sophisticated, nonlinear programming algorithm could be coupled to a vehicle simulation program for purposes of optimally designing the vehicle propulsion system. The design variables were heat engine power rating, the weight of the on-board batteries, and a parameter through which the power required at the wheels at each time instant was split between the two on-board power sources. The study considered optimizing various vehicle performance measures to determine how different performance measures influenced the final propulsion system design. The performance measures used were acquisition cost, life cycle cost, and petroleum consumption.

2.2 PREVIOUS WORK

There have been no studies reported in the literature which attempt a vehicle propulsion system design using optimization methods. Two recent studies $[1,2]$ have looked at different aspects of the design of various types of hybrid vehicles. In each case, however, a final design is arrived at using a sound, but nevertheless ad hoc, selection process. Furthermore, the performance measure used to guide the selection is often not clearly stated, is modified or changed in the middle of a study, or is quite different from study to study. These factors combine to make it difficult to compare the results of one study to those of another. In contrast to this, use of optimization methods force standardization by requiring a designer to explicitly state the performance measure to be used, and to maintain the same measure in effect throughout the process of selecting final values for the design variables. Furthermore, with an optimization approach the selection process itself is standardized, and it also generally identifies the "best" values for the design variables so that the performance measure used is optimized (maximized or minimized, whichever is appropriate).

From the perspective of previous work on the problem of hybrid vehicle propulsion system design therefore, the work reported here represents the first time an attempt has been made to apply optimization methods to the design problem in order to come up with what may be considered the best or "optimal" design.

2.3 MAJOR TASKS

The conduct of the research fell naturally into a group of major tasks which are listed below:

1. Development of a vehicle simulation to be used to predict petroleum and electrical energy consumption as the vehicle is driven over the specified driving pattern. These consumptions provide a basis for computing overall performance measures such as life cycle cost.
2. Selection of a nonlinear programming algorithm (and associated program) which will be used to perform the optimization calculations.
3. Coupling the vehicle simulation program to the optimization program to allow optimal propulsion system designs to be carried out. In carrying out an optimal design calculation, the optimization program must run the simulation repeatedly. Consequently, a good deal of the work involved in coupling the two programs is in tailoring the vehicle simulation so that it runs efficiently, and so that vehicle performance is a smooth function of the design variables.
4. Translating various design goals into optimization problems. For each design goal this would include specifying (i) the system performance measure to be optimized, (ii) the design variables, and (iii) the proper constraints.
5. Generation and analysis of results using the combined optimization/vehicle simulation program.

In the sections which follow, each of the major task areas outlined above will be considered in depth.

2.4 REPORT ORGANIZATION

The report is organized as follows. Sections 3 through 6 present detailed information about the vehicle and its simulation. In particular, Sections 3 and 4 describe the vehicle and its propulsion system as well as the vehicle's basic method of operation along with the driving requirements it must meet over a ten year period. Section 5 details the way in which the various vehicle performance measures (life cycle cost, etc.) are calculated, while Section 6 describes the vehicle simulation.

The optimization design approach as it relates to hybrid vehicles is covered in Sections 7 through 9. Section 7 presents a general discussion of optimization methods which is useful background for subsequent sections. Section 8 deals with formulating hybrid vehicle design problems as optimization problems, while Section 9 describes some of the features of the actual optimization algorithm used in the study, as well as the reasons for its selection.

Section 10 discusses how the vehicle simulation program and optimization program were combined, and Section 11 presents and discusses particular vehicle design problems and the results obtained using the optimization approach; conclusions are presented in Section 12.

3.0 VEHICLE DESCRIPTION AND OPERATION

The vehicle selected to be studied in this research was essentially the same as the vehicle studied in [1]; it is a five-passenger sedan with a test mass of $2,049 \mathrm{~kg}$. The details of the vehicle weight calculations are given in Appendix B.

3.1 PROPULSION SYSTEM

The propulsion system is a parallel hybrid configuration as shown in Figure 3-1. The traction motor is a brushless, DC, permanent-magnet motor operating from a battery voltage of 168 V . The motor is rated at 20 kw and has a top speed of $14,000 \mathrm{rpm}$. The ouput of the motor is connected to the transmission input through a gear which provides a 3.5:1 reduction of the motor speed.

The heat engine is assumed to be a four cylinder engine. Since in the optimization work the kilowatt rating of the engine is a design parameter which is varied, no specific rating for the engine is given. However, in the optimization studies that were conducted, the heat engine would normally start out at a rating of 65 kw . The output of the heat engine is directly connected to the input of the transmission (no speed reduction).

The transmission is a continuously variable transmission (CVT) which provides a range of ratios (input/output) from a $0.3: 1$ overdrive to a 3.33:1 speed reduction. The output of the CVT feeds the differential through a $12: 1$ speed reducer. The differential is assumed to have a ratio of $1: 1$. Thus, if the traction motor was running at its maximum speed of $14,000 \mathrm{rpm}$, and the CVT ratio was $0.3: 1$, the differential input would have a speed of $1,111 \mathrm{rpm}$.

Figure 3-1. Propulsion System Configuration

The batteries are assumed to be lead-acid batteries with a system voltage of 168 V . In the optimization runs in which the battery weight was varied it was assumed that the system voltage remained the same and that a variation in battery weight meant the plate area of the battery cells was increased or decreased. A detailed description of the battery model used in the vehicle simulation is given in Appendix F.

Finally, it was assumed that a clutch existed between the heat engine and the CVT input to allow the heat engine to be decoupled from the system when it was not supplying power.

Section 6 and Appendix E (Vehicle Simulation) provide a detailed description of the simulation and the models used for all of the components in the propulsion system. Reference to that section and that appendix can give the reader a more thorough understanding of the components, their interrelationships, and how typical power consumption calculations were made.

3.2 VEHICLE OPERATION AND RATIO SELECTION

In order to avoid engine stalling, it was assumed that when the vehicle was starting from rest all power was supplied by the traction motor until the vehicle speed reached $4.82 \mathrm{~km} / \mathrm{hr}$ (3.0 mph).

Whenever the vehicle was to brake to slow down, it was assumed that regenerative braking was used to the extent possible. If the maximum power rating of a component limited the fraction of the avialable power which could be regenerated, then it was assumed that normal braking was used to dissipate the excess energy.

In the early stages of the work, the CVT ratio was selected such that as the vehicle speed changed, the traction motor always ran at its most
efficient operating speed. The disadvantage of this approach in the hybrid propulsion system studied is that the heat engine speed is also determined by the CVT ratio, and a ratio that operates the traction motor most efficiently often operates the heat engine very inefficiently. In fact, it was found that the traction motor efficiency is always in the 90% or above range independent of the ratio, whereas the heat engine efficiency can often be substantially improved by proper choice of the ratio. For this reason the CVT ratio was always selected to maximize the heat engine efficiency (except when the heat engine was not delivering any power). We note that a better approach might have been to base the ratio selection on the amount of power each source is delivering, as well as on the relative efficiency improvement possible from each source. A detailed description of the ratio selection procedure, along with the engine and traction motor data used, is given in Appendix G.

3.3 POWER SPLIT STRATEGY

In order to operate a hybrid propulsion system it is necessary to specify a strategy for splitting the required wheel power between the two power sources. The power split strategy must operate continuously, deciding at each instant of time how the total power is to be split. A realistic strategy generally is a function of vehicle velocity and acceleration, and battery state of charge.

An important part of this research was to use optimization methods to identify "optimal" strategies, or to select optimal values for parameters in a given strategy based on cormon sense. An example of a cormon-sense strategy which has been reported in the literature is the strategy proposed
by AiResearch [1]. The AiResearch (AR) strategy is often used in the work discussed in the following sections; for this reason it is described in detail in Appendix H .

4.0 VEHICLE DRIVING REQUIREMENTS

In order to compute petroleum or electrical energy consumption (important factors in themselves, but also imporant factors in computing life cycle cost) it is necessary to specify how the vehicle is to be driven over its ten year life. Table 4-1 lists the lengths of eight different trip types for the vehicle, as well as the number of times the vehicle takes each trip type in one year.

Some portion of every trip is composed of Special Test Cycle (STC) driving. The STC is shown in Figure $4-1$ and is a modified SAE J227A, D cycle; it contains a 14 second constant power acceleration period, followed by a 50 second, $72 \mathrm{~km} / \mathrm{hr}(45 \mathrm{mph}$) cruise period, a 10 second coast period, and a 9 second braking period. Referring to Table 4-1, trips 1, 2 and 3 (trips less than 80 km in length) are made up of just a sequence of STC's, while trips 4 through 8 are made up of a combination of STC's and highway driving. Fach of these latter trips consists of 28 STC 's followed by enough highway driving to reach the total trip length. Highway driving is constant speed driving at 90 $\mathrm{km} / \mathrm{hr}$ (56 mph).

The structuring of the longer trips to consist of a fixed number of S'TC's followed by varying lengths of highway driving had a big impact on reducing the computer run time of the overall vehicle simulation/optimization program. This is discussed in detail in Section 6 which deals with the vehicle simulation.

Table 4-1

Yearly Distribution of Trips

Trip Length		Number of Trips
	Mi	Per Year 10
30	6.2	130
50	18.6	85
80	31.1	57
130	49.7	54
160	80.8	12
500	99.4	7
800	311.0	3

Figure 4-1. Special Test Cycle

5.0 ENERGY AND OOST CALCULATIONS

This section details the methods used to calculate the yearly electrical energy consumption, yearly petroleum consumption and life cycle cost.

5.1 YEARLY ELECTRICAL ENERGY CONSUMPTION

The yearly electrical energy consumption calculation is based on first determining the total ampere-hours out of the battery for each of the trip types described in the previous section. The battery charging characteristic is then used to determine the energy required to replace those amp-hours (including a charging efficiency). Each of these results is multiplied by the number of such trips each year for each trip type, and the results then added to produce the total yearly electrical energy consumption. The details of the calculation are given below.

As explained in Section 6 on the vehicle simulation, it is necessary when calculating the electrical energy and petroleum consumptions for a particular trip to calculate the powers delivered by the battery and the heat engine at each time instant throughout the entire trip; it is not reliable, in general, to do it for just a few STC's and a segment of highway driving and then extrapolate the results for the entire trip. In the simulation, a small time step size is used and, for the electrical energy calculation, at each time increment in the trip the battery model is used to determine the battery voltage, current and state of charge for the power that must be delivered to the motor in that time increment (the calculation takes into account the chopper/inverter efficiency). In this way a total net amp-hours out of the battery for each trip type is determined: the total net amp-hours
out includes the effect of regenerating capacity back into the battery during the braking phase of each STC. This total net capacity removed, together with an assumed charging current of 25 amps , is used to determine an average charging voltage from the battery charging characteristic (Appendix F). The average charging voltage is then multiplied by the total net capacity removed to determine the total energy that must be restored to the battery to bring it to a fully charged condition. Finally, to determine the total wall-plug energy, the above total energy is divided by a charger efficiency factor. This calculation is done for each trip type. The total, yearly electrical energy consumed is finally calculated by multiplying the energy consumed for each trip type by the number of such trips per year, and then adding these results.

If we let $A H_{i}, i=1, \ldots, 8$, be the net amp-hours out of the battery for trip type i, V_{i} be average charging voltage to fully charge the battery after delivering $A H_{i}$ amp-hours, EFF be the charger efficiency, N_{i} be the number of trips of type i made in one year, then the total, yearly electrical energy consumed, $\mathrm{E}_{\mathrm{TOT}}$, in megajoules, is given as

$$
\begin{equation*}
E_{T O T}=\left(3600 / 10^{6}\right) \sum_{i=1}^{8}\left(N_{i} \mathrm{AH}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}} / \mathrm{EFF}\right) \tag{5-1}
\end{equation*}
$$

5.2 YEARLY PETROLEUM CONSUMPTIONS

As noted above, when calculating electrical energy and petroleum consumptions it is necessary to calculate the powers delivered hy the battery and heat engine at each time instant throughout the entire trip. In the simulation, the power delivered by the heat engine, the engine speed and the
torque at each time instant are determined. The heat engine map (Appendix E) is then used to determine the fuel flow rate into the heat engine; multiplying this flow rate by the simulation time increment gives the fuel consumed over that time increment.

The procedure used to calculate the total, yearly petroleum consumption parallels the one used for electrical energy consumption: the total petroleum consumed for each trip type is determined by adding the fuel consumed over each time increment in the trip, these are multiplied by the number of trips of each trip type made per year, and the results then summed to produce the total petroleum consumption per year.

5.3 LIFE CYCLE COST CALCULATION

The life cycle cost is the sum of the vehicle acquisition cost, the petroleum, electrical energy, maintenance and repair, and battery replacement costs over a ten year period, minus the salvage value of the battery, the vehicle body and the power train.

It is assumed that the costs of petroleum and electricity increase in a linear fashion from year one to year ten. The arrays containing this information are GASCST(I) and KWCST(I); the particular values used are given in Appendix A.

Life cycle cost is computed in 1976 dollars, and it is assumed that there is no inflation. The cost for a future year is discounted to a present value using a discount factor (DISCNT in Appendix A).

The salvage value of the vehicle body and power train is taken to be 10% of the marked-up manufacturing cost, i.e. 10% of the difference between the acquisition cost and the list price of the battery ($0.1 *$ (ACQCST-BTLIST), see

Appendix A for definitions of variables).
The years in which a battery replacement is required depend upon the battery weight and the way in which the battery and heat engine are used. In calculating battery life it was assumed that there were 840 deep discharges in the lifetime of a battery [1], where a deep discharge is defined to be a discharge to 20% state of charge or below. The calculation procedure was to determine how far the battery was discharged when the vehicle made each of the trips defined in Section 4 (this was determined during the simulation of the vehicle to determine petroleum and electrical energy consumptions). If the battery state of charge dropped to only, say, 40% at the end of a particular short trip, then that trip represented 75% of a deep discharge. In this way the total number of deep discharges of the battery per year was determined and used to calculate the number of years in the battery life. If the battery state of charge fell below 20% during the part of a trip in which STC driving was being performed, regeneration back into the battery and subsequent use of the battery until its state of charge again fell below 20% was allowed, but only one deep discharge was attributed to that trip. The battery replacement cost had a mark-up factor which was twice that used in calculating the initial cost of the battery. The expression used to determine the replacement cost is

$$
\begin{equation*}
\operatorname{BTCOS}^{\prime} T=\operatorname{BATCST}^{*}(1.0+2.0 * \text { BTMKUP }) \tag{5-2}
\end{equation*}
$$

where

$$
\begin{equation*}
\text { BATCST }=\text { BATCER } * \text { WGBATT } \tag{5-3}
\end{equation*}
$$

and where (see Appendix A) WGBATT, BATCER, BATCST, BTMKUP and BTCOST are battery weight, cost estimating ratio (CER), manufacturing cost, mark-up
factor and replacement cost, respectively. The way in which the battery replacement cost was used in calculating life cycle cost was influenced by the method used to handle battery salvage value. In particular, battery salvage value was taken to be the cost of the last battery replacement multiplied by the ratio of the number of years left in the battery (at the end of the ten year vehicle lifetime) to the number of years in the battery life. Furthermore, instead of adding the total battery replacement cost to the year in which the replacement took place, each replacement cost was evenly distributed over the ten years in the lifetime of the vehicle. Although this is not quite representative of what would actually take place, it was necessary in order to produce a life cycle cost expression for the optimization studies which was a relatively smooth function of battery replacement cost. Furthermore, if it is assumed that the vehicle owner meets the battery replacement cost by borrowing money which is paid back over several years, then the above approach begins to more closely approximate reality. Based on the above discussion, the battery replacement cost assigned to each year in the ten year lifetime of the vehicle is given by

$$
\begin{equation*}
\text { BATRYR }=\{[10.0 / \mathrm{BATLFE})-1.0] * \mathrm{BTCOST}\} / 10.0 \tag{5-4}
\end{equation*}
$$

where
BATLFE = DISLFE/DEEP
where BTCOST is as calculated above, and where BATRYR, BATIFE, DISLFE and DEEP are battery cost assigned to each year, battery lifetime, number of deep discharges in the battery lifetime, and the number of deep discharges per year, respectively.

Based on the discussion above, in Sections 5.1 and 5.2 and in Appendices C and D, the total yearly cost for operating the vehicle in year i is (see Appendix A for complete definitions of the variables)

$$
\begin{align*}
& \mathrm{VHCOST}_{i}= \mathrm{E}_{\mathrm{TOT}} * \mathrm{KWCST}_{\mathrm{i}} \\
&+\mathrm{P}_{\mathrm{TOT}} * \mathrm{GASCST}_{i}+\text { BATRYR } \tag{5-6}\\
&+ \text { MAINT }+ \text { REPAIR }
\end{align*}
$$

where $\mathrm{E}_{\mathrm{TOT}}$ and $\mathrm{P}_{\mathrm{TOT}}$ are the yearly electrical energy and petroleum consumed, respectively, KWCST_{i} and GASCST_{i} are the cost factors, and MAINT and REPAIR are the maintenance and repair costs, respectively. Letting the salvage value of the vehicle body and power train be (see above)

$$
\begin{equation*}
\text { SALVGE }=0.1^{*}(\text { ACQCST }- \text { BTLIST }) \tag{5-7}
\end{equation*}
$$

and the discount factor for year i be

$$
\begin{equation*}
D_{i}=\left(1.0+\text { DISCNT }^{(\mathrm{i}-1)}\right. \tag{5-8}
\end{equation*}
$$

where DISCNT is the discount rate, the life cycle cost is given as

$$
\operatorname{LCCOST}=\mathrm{ACQCST}+\sum_{i=1}^{10}\left(\operatorname{VHCOST}_{i} / \mathrm{D}_{\mathrm{i}}\right)-\left(\operatorname{SALVGE} / \mathrm{D}_{11}\right)
$$

In the optimization studies the vehicle simulation was used primarily to calculate the electrical energy and petroleum consumed by the vehicle in a one year period. Appendix E presents a detailed description of the modeling of the vehicle (the vehicle is described in general terms in Section 3) and of the way in which the petroleum and the electrical energy consumption was determined at each instant of time in the simulation interval. Section 5 describes the way in which these individual consumptions were used to calculate the yearly consumptions. The objective of this section is to discuss a number of features of the vehicle simulation effort (other than vehicle modeling) which were considered to have a significant impact on the simulation run time, on the outcome of optimization runs, or which represented particular features of vehicle operation which should be made explicit.
6.1 GENERAL COMPUTATIONAL PROCEDURE AND TRIP CHARACTERISTICS DESIGN

The purpose of this subsection is to describe the overall computational procedure used to calculate the fuel and energy consumptions for each trip in Table 4-1, and then to discuss how the structuring of these trips (STC and highway driving) can have a significant impact on simulation run time.

As discussed in Section 4, each trip to be simulated is either a sequence of just STC's or a combination of $28 \mathrm{STC}^{\prime}$ s followed by varying lengths of highway driving. Since in this study the power split was allowed to vary with battery state of charge and/or vehicle acceleration, the power supplied by either on-board energy source could vary significantly from one part of a trip to another, particularly on those trips which depleted the
battery. In the case of a depleted battery, the electrical energy supplied over the final STC would be zero, whereas that supplied over the first STC would be non-zero. Because of this, it was necessary to simulate the vehicle over the entire trip length for all trips: the fuel and energy consumption could not be calculated for one STC and a segment of highway driving, and then multiplied by appropriate factors to arrive at trip totals.

The calcuation procedure used is as follows. The longest all STC trip is 35 consecutive STC's. The simulation was therefore run for 35 consecutive STC's, and the "state" of the vehicle at the end of each STC was saved. By "state" is meant all the vehicle quantities necessary to resume the calculation from that point forward in time (petroleum consumed, battery amp-hours out and regenerated, state of charge, voltage, instantaneous and average currents, and whether the battery has discharged by the end of that STC). Knowing these quantities at the end of each STC, the fuel and energy consumption for trips consisting of just STC's (trips 1, 2, 3 in Table 4-1) can be calculated from simulating just the longest all-STC trip (trip 3).

To calculate the consumptions for trips involving highway driving, the simulation was initialized by the information saved at the end of the 28 th STC, and highway driving was begun (in this way the 28 STC's preceeding highway driving need not be resimulated). At each time step in highway driving a test was made to determine if the shortest STC and highway trip had been completed; if so, the consumptions for that trip were computed and highway driving resumed until the next trip in Table 4-1 was completed. In this way, consumptions for all trips consisting of STC's and highway driving can be calculated by simulating just the longest trip (trip 8, Table 4-1).

The above calculation procedure where fuel and energy consumptions for all highway trips can be calculated from the longest trip depends on all highway trips having all of their STC's in the front of the trip, and all having the same number of STC's up front. If either of these conditions is changed, it would become necessary to simulate each trip separately. This could represent a significant increase in simulation run time. For example, the time step size in simulating STC driving is 1 second, and that used in simulating highway driving is 60 seconds (see Section 6.2). Since each STC is 83 seconds long, and there are 35 STC's in the longest all-STC trip, the total number of drive train power calculations required for trips 1,2 and 3 in Table 4.1 is $(1 \times 83 \times 35)=2,905$. The longest highway trip is 759 km of highway driving, driven at $90 \mathrm{~km} / \mathrm{hr}$, or a highway driving time duration of 8.44 hrs . A 60 second simulation time step would therefore require $506 \mathrm{ad}-$ ditional power train calculations for all of the highway trips (trips 4 through 8), yielding a total of 3,411 calculations. If each highway trip had to be simulated separately (including the 28 STC's since they could be split differently between the beginning and end of each trip), the 28 STC's for the 5 highway trips would require a total of ($5 \times 28 \times 83$) $=2,324$ computations, and the highway parts of trips 4 through 8 would require $26,60,80,306$, and 506 computations, respectively. The total number of computations would therefore be $(26+60+80+306+506+2,324+2,905)=6,207$. Compared to the above total of 3,411 , it is seen that the number of drive train power computations has almost doubled. Since these computations are by far the major computational burden of the simulation, and since the computation time is large to begin with, it is important to design the driving pattern so that computational efficiencies can be achieved.

6.2 SIMULATION TIME INCREMENT SELECTION

Another important factor in determining the length of time it takes the simulation to run is the time step size used in STC and highway driving. Since in a typical optimization run the yearly fuel and energy consumptions are computed 30 to 50 times, the choice of the time step size has a significant effect on overall computer run time.

Separate time step sizes were used for STC driving and highway driving: since highway driving is at a constant velocity, it was felt that a larger step size could be used without missing significant changes in the vehicle state (e.g. battery state of charge).

The time step sizes were selected by trying various values and observing the effects on petroleum consumption, electrical energy consumption and life cycle cost. In particular, the time step sizes were increased until a meaningful change in any of the above three quantities was observed; the values selected were set just below the values that produced a change. The STC time step size used was one second, and the time step size for highway driving was 60 seconds.

6.3 POWER OVERLOAD

One of the most frequent optimization problems studied was to choose battery weight and heat engine rating to minimize life cycle cost. Without constraints on this problem the answer would be to set both design variables to zero. Of course, the vehicle would then not be able to meet the yearly driving requirements. In this research, the condition in which both power sources were reduced in size to the point where they could not supply the power required at the wheels was called power overload. This condition could
occur at any time in the yearly driving pattern, and it could occur for various combinations of heat engine rating and battery weight. The overload condition was handled in the optimization work by incorporating it as a constraint: combinations of battery weight and heat engine rating which produced overload were considered infeasible.

One method (which did not work) of handling this constraint was to set a flag if an overload condition occurred anywhere in the yearly driving patterns. This flag would indicate to the optimization scheme that the current choices for the design variables were infeasible, and new values would be tried. The problem with this method was that the constraint was a discontinuous (step) function of the design variables, and if it was violated the optimization method (GRG2) would attempt to find exactly where, in the current search direction (see Section 7), the constraint was just satisfied. This attempt (using Newton's Method for finding the roots of an equation) would fail and the optimization scheme could not determine a useful, new search direction to locate the optimimum.

In an attempt to visualize the shape of the constraint in the battery weight/heat engine rating plane, a series of simulation runs were made in the region of the constraint boundary (varying battery weight and heat engine rating for each run, and using the AiResearch power split (see Section 3.3 and Appendix H)). The result is shown in Figure 6-1 where it is seen that the constraint boundary is highly irregular. Even if the optimization method could find the boundary (for a particular search direction), once it began to move along the boundary it would get hung up at one of the many local minima.

Figure 6-1. Overload Constraint Boundary

The method finally adopted for handling the constraint was to approximate it with two smooth curves as shown in Figure 6-1. For these smooth constraint functions the optimization scheme can easily find the location of the constraint boundary in a given search direction, and it can also move easily along the constraint boundary in search of the optimum. If we let $x_{1}=$ battery weight (kg), and $\mathrm{x}_{2}=$ heat engine rating (kw), then the constraint equations are given as

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{HE}}>37.0-0.02564 \mathrm{~W}_{\mathrm{B}} & \left(\mathrm{~W}_{\mathrm{B}}<273\right) \\
\mathrm{P}_{\mathrm{HE}} \geqslant 77.23-0.2268 \mathrm{~W}_{\mathrm{B}}+1.982 \times 10^{-4} \mathrm{~W}_{\mathrm{B}}^{2} & \left(\mathrm{~W}_{\mathrm{B}}>273\right) \tag{6-2}
\end{array}
$$

The justification for using this approximate constraint boundary is that in any optimization study which chooses battery weight and heat engine rating to minimize life cycle cost, the objective is not necessarily to arrive at a design which just borders on overload. Having the small "cushion" above overload that use of the approximate constraint produces could be beneficial.

6.4 OTHER FEATURES OF THE SIMULATION

Several features of the simulation which should be mentioned are listed below.

First, since a clutch existed between the heat engine and the CVT, the heat engine could be decoupled from the drive train when it was not being used. Hence it was assumed that there was zero fuel consumption by the heat engine during idling.

A second feature was that no matter how the power split strategy split the CVT input power, the heat engine was not allowed to deliver any power if the vehicle velocity was below 3 mph . This came into play as the vehicle started from rest at the beginning of a STC.

A third feature (which is detailed in Appendix E) was that if either the battery or the heat engine could not deliver the power called for by the power split, the unmet power was assigned to the other power source and both the electrical and heat engine calculations were repeated.

7.0 OPTIMIZATION AS A DESIGN TECHNIQUE

It is now appropriate to consider optimization as a technique which can be used with the vehicle simulation previously described to obtain desired design results. It will become apparent in the discussion below that the role of optimization is that of systematically changing design parameters for use with the vehicle simulation until design objectives are met. Optimization techniques are based on a particular methodology and formalism which must be adapted to the design problem at hand. The purpose of this section is to define the terminology of optimization, briefly summarize the optimization problem mathematically, and discuss the general nature of solutions to such problems.

Each optimization problem has an objective function (or criterion function), $f(x)$, which is an algebraic function of the n components of the vector x, and which is to be minimized (or maximized). The objective function in a design problem provides a measure of the quality of the design such that its minimum value occurs for a value of x which represents the best design.

The components of x may be subject to upper and lower bounds,

$$
\begin{equation*}
\mathrm{x}_{\mathrm{r}_{\min }} \leqslant \mathrm{x}_{\mathrm{r}} \leqslant \mathrm{x}_{\mathrm{r}_{\max }} \tag{7-1}
\end{equation*}
$$

where, for a given variable x_{r}, one, neither or both of these bounds may be present. Variables of ten are given bounds for reasons of physical realizability; e.g., both battery weight and heat engine power rating must be positive, and the percentage of power delivered from one source must be between 0 and 100.

In addition to bounds which apply to the variables themselves, we must consider constraints, functions of these variables which also must be maintained within limits. An optimization problem might contain m constraints

$$
\begin{equation*}
g_{j_{\min }} \leqslant g_{j}(x) \leqslant g_{j_{\max }} \quad(j=1,2, \ldots, m) \tag{7-2}
\end{equation*}
$$

where one or both of the limiting values on a particular constraint $g_{j}(x)$ may apply. The designer uses such constraint functions to calculate design characteristics which must be kept within upper or lower limits. A vehicle designer, for example, might want to place a lower limit on accelerating ability, or an upper limit on acquisition cost.

Since the objective functions and constraint functions applicable to hybrid vehicle design are generally nonlinear functions of x, we have a nonlinear optimization problem. Converting the scalar variables in equations 7-1 and $7-2$ to vectors allows us to state the nonlinear optimization problem in a precise mathematical form:

$$
\min _{x} f(x)
$$

subject to

$$
\begin{equation*}
x_{\min } \leqslant x \leqslant x_{\max } \tag{7-3}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{\min } \leqslant g(x) \leqslant g_{\max } \tag{7-4}
\end{equation*}
$$

The notation $\min _{x} f(x)$ means that $f(x)$ is to be minimized with respect to x. Equations 7-3 and 7-4 are the vector versions of equations 7-1 and 7-2, respectively, and include all desired bounds and constraint relationships.

Nonlinear optimization problems such as the one stated above have been well known for some time, and many techniques have been developed for finding
their solutions. Since $f(x)$ and $g(x)$ are assumed to be nonlinear, the techniques for solution of the problem are called nonlinear programming algorithms. Many of these have been developed over the past 25 years to provide a means of obtaining digital computer solutions to these problems $[6,7,8,9]$ Some of these methods are discussed in Section 9.

Techniques for solution generally begin with an initial estimate, x_{0}, of the solution vector, which is feasible in that all bounds and constraints are satisfied, and proceed in an attempt to satisfy all of the necessary conditions for minimum $f(x)$ while maintaining x feasible. The process terminates when these conditions are met, or when no further progress is possible.

Each nonlinear programming method has its own set of assumptions regarding the mathematical properties of $f(x)$ and $g(x)$. Although there are small differences from method to method, it is usually necessary for both $f(x)$ and the elements of $g(x)$ to be continuous, differentiable functions of x, with continuous first partial derivatives with respect to the components of x. These restrictions have important implications on the specifications of the objective and constraint functions for a design problem, as well as the development of simulation programs for optimization.

8.0 THE VEHICLE DESIGN PROBLEM AS AN OPTIMIZATION PROBLEM

Having considered a general description of an optimization problem in Section 7, it is now possible to consider application of optimization methods to the design of the hybrid vehicle described earlier in this report. This involves formulating the vehicle design problem in terms of vehicle design parameters which will become the variables of the optimization problem, defining any bounds or constraint functions associated with these variables, and selecting an objective function which represents the designer's primary goal in a mathematical fashion. The key to successful formulation of a vehicle design problem as an optimization problem is in specifying all of the needed ingredients for the optimization problem (variables, objective function, bounds and constraints) in a way which meaningfully includes all important aspects of the design problem.

The primary design variables for the hybrid vehicle design problem discussed here are the two power-sizing parameters, heat engine power rating (in kilowatts) and battery weight (in kilograms). Additional design parameters are introduced later (see Section 11) as part of a decision rule which is used on an instantaneous basis to decide how much power is to be used from each of the two on-board power sources.

Lower bounds of at least zero must be specified for both the heat engine power and the battery weight. This is because the optimization method will consider all possible values of the design parameters, even those which are physically meaningless, unless such bounds are imposed. From a designer's point of view, a hybrid vehicle which has a very low heat engine power rating
or negligible battery weight is a single-power-source vehicle and not a hybrid vehicle; thus lower bounds were imposed to insure that the solution of the design problem by optimization produced a vehicle with both sources. The values of the lower bounds used in this study were 15 kw for the heat engine power rating and 60 kg for the battery weight.

Two primary objectives were considered in this study: life cycle cost (\$) and life cycle petroleum consumption (liters). Both of these can be calculated using the calculation precedure discussed in Section 5, and the vehicle simulation discussed in Section 6.

The principal constraint function used in this study is the power overload constraint discussed in Section 6. It was necessary to impose this constraint in order to ensure that the designs resulting from the use of optimization represent vehicles which can produce sufficient power to successfully complete all the specified driving regimes. Other constraint functions can also be used for particular design problens, using as a constraint a function which could be an objective function for another design; for example, the design might call for the hybrid vehicle which has the minimum life cycle cost subject to the constraint that its total petroleum consumption be less than some prespecified amount.

There are many vehicle design problems which may be stated and solved as optimization problems. Listed below are several sample optimization problems for hybrid vehicle design. These same problems were solved as part of this study and are discussed later in this report where results are presented. In the statement of these problems, $C_{L C}$ is the life cycle cost (in $\$$), V p is the total petroleum volume (in liters) used over a life cycle, P_{HE} is the heat engine power rating (in kilowatts), W_{B} is the battery weight (in kilograms)
and P_{O} is the power overload function ($\geqslant 0$ when no overload occurs).

Sample Design Optimization Problem No. 1
Choose P_{HE} and W_{B} to minimize $\quad \mathrm{C}_{\mathrm{LC}}\left(\mathrm{P}_{\mathrm{HE}}, \mathrm{W}_{\mathrm{B}}\right)$
subject to $\quad \mathrm{P}_{\mathrm{HE}}>\mathrm{P}_{\mathrm{HE}}^{\text {min }}$

$$
\begin{aligned}
& W_{B}>W_{B_{\text {min }}} \\
& P_{0}>0
\end{aligned}
$$

Sample Design Optimization Problem No. 2
Choose P_{HE} and W_{B} to minimize $\mathrm{V}_{\mathrm{p}}\left(\mathrm{P}_{\mathrm{HE}}, \mathrm{W}_{\mathrm{B}}\right)$
subject to $\quad \mathrm{P}_{\mathrm{HE}}>\mathrm{P}_{\mathrm{HE}}^{\text {min }}$
$W_{B}>W_{B_{\text {min }}}$
$P_{0} \geqslant 0$

Sample Design Optimization Problem No. 3
Choose P_{HE} and W_{B} to minimize $\mathrm{V}_{\mathrm{P}}\left(\mathrm{P}_{\mathrm{HE}}, \mathrm{W}_{\mathrm{B}}\right)$
subject to $\quad \mathrm{P}_{\mathrm{HE}}>\mathrm{P}_{\mathrm{HE}}$ min
$W_{B}>W_{B_{\text {min }}}$
$P_{0} \geqslant 0$
$C_{L C} \leqslant C_{L C_{\max }}$

These three problems are typical of many which were considered in this study. All three are essentially vehicle power-sizing problems, where it is
desired to find the proper values of the heat engine power rating and the battery weight. They vary according to their objective functions and, in problem No. 3, the imposition of an additional constraint besides the power overload constraint.

Other design problems considered later in this report involve constraining the total petroleum volume in the minimization of $C_{L C}$, examining the effect of petroleum pricing on design results, and parameterizing the power split decision rule. These problems are discussed with the results in Section 11.

9.0 SELECTION OF OPTIMIZATION METHOD

Several methods including variable metric and conjugate gradient methods $[6,7,8,9]$ are available for direct solution of nonlinear programming problems such as the type stated in Section 7 and applicable to the hybrid vehicle design problem. Indirect methods such as those based on the NewtonRaphson method are also available, but this class of methods was rejected because of the likelihood of divergence with a poor initial estimate of the solution. Most direct methods such as gradient and modified gradient method were originally developed for unconstrained optimization problems (no bounds or constraints) and must be modified to include constraints.

One proven method for successfully incorporating bounds and constraints into a direct search method was developed by Abadie and Carpentier [8]. The method, called the Generalized Reduced Gradient Method (GRG), uses linearized constraints, defines new variables which are normal to some of the constraints, and transforms the gradient to a new basis.

Lasdon and Waren, et. al. [10] have developed an extensively refined code (computer program) for general purpose implementation of the GRG optimization method. The code which is now called GRG2, has been successfully tried on test problems in competition with other nonlinear programming codes, and has consistently ranked high in the primary characteristics desired of such a code (accuracy, efficiency, reliability, and ease of use) [11, 12]. GRG2 easily incorporates bounds on the variables and a variety of constraints. It provides great flexibility which includes a choice of search method, a variety of stopping criteria, provisions for scaling of variables and constraint functions, and several options regarding the amount of detail
provided in the printed output.
The designer who wishes to use GRG2 for optimization results must provide [13]:

1. a subroutine which computes the objective function and all of the constraint functions, given the optimization variables.
2. a data file which includes an initial point for the search, upper and lower bounds on variables and constraints (as applicable), and names for all variables and functions.

The designer may provide:

1. a subroutine for computing derivatives for gradients (otherwise the program uses finite difference approximations)
2. a subroutine for reporting needed output information which is not directly related to the optimization calculations
3. a file containing scale factors for the variables and constraints, and control parameters which specify how the detailed operation of the optimization search is to be carried out (e.g., search direction method, stopping criteria, constraint tolerances)

After a vehicle design problem has been properly formulated as an optimization problem, it is a fairly straight-forward procedure to write the subroutines and determine the data files indicated above. The most difficult part of this task is in writing the subroutine which computes the objective and constraint functions from the design parameters, since this normally involves the entire vehicle simulation as well as the computation of various vehicle costs.

It was desired to combine the GRG2 optimization program with the hybrid vehicle simulation program in a way which would provide flexibility regarding specification of objective function, constraint functions, variables and bounds, so that a variety of hybrid vehicle design problems could be studied merely by changing a data file in the program.

This goal was accomplished by defining five functions of $P_{H E}$ and W_{B} which would suffice for the calculation of all possible objective and constraint functions which were anticipated at the time the computer program was written. These functions are:

1. life cycle cost (\$)
2. acquisition cost (\$)
3. total petroleum volume in life cycle (liters)
4. linear combination of above three functions
5. power overload function

The fourth function was included to provide a weighted sum of three objective functions for the designer who wishes to compromise and not select a single objective from among the first three functions listed.

As described in Section 6.3, the power overload function was developed by simulating the hybrid vehicle for various pairs of values of the parameters ($\mathrm{P}_{\mathrm{HE}}, \mathrm{W}_{\mathrm{B}}$) using a particular power split strategy developed by AiResearch Manufacturing Co. [1,5]. Regions where the hybrid vehicle was not able to meet the power demanded by the driving regime were identified and the power overload boundary was seen to be an irregular surface (Fig. 6-1)
which was not amenable to treatment by nonlinear programming techniques; these techniques normally require a smooth, differentiable function for each constraint. In order to meet this requirement in at least an approximate way, the overload constraint boundary function, $\mathrm{P}_{\mathrm{O}}\left(\mathrm{P}_{\mathrm{HE}}, \mathrm{W}_{\mathrm{B}}\right)$, was approximated by two polynomial functions as follows:

$$
\begin{array}{ll}
P_{\mathrm{HE}} \geqslant 37.0-0.02564 W_{\mathrm{B}} & \left(W_{\mathrm{B}}<273\right) \\
\mathrm{P}_{\mathrm{HE}} \geqslant 77.23-0.2268 W_{\mathrm{B}}+1.982 \times 10^{-4} W_{\mathrm{W}}^{2} & \left(W_{\mathrm{B}} \geqslant 273\right) \tag{6-2}
\end{array}
$$

These functions were used with GRG2 for determining solutions to optimization problems which included the power overload constraint.

For examination of the power flow or power split strategy problem, where we are trying to find the parameters of a decision rule which specifies how much power comes from each on-board power source at each instant of time, the GRG/simulation program was provided with three different ways to determine the power split between the heat engine and the electric propulsion system:

1. the AiResearch algorithm [1]
2. a polynomial function
3. a parameterized version of the AiResearch algorithm More detail on the particular functions involved will be provided in Section 11.

Further flexibility in the program was provided by defining a data file which could be used to specify which type of vehicle design problem was to be solved with a particular optimization run: (1) vehicle sizing, (2) power split optimization, or a combination of the two.

The overall organization of the vehicle design computer program involves an interaction between the GRG2 optimization program and the hybrid vehicle simulation program discussed in Section 6. The interconnection is illustrated in Figure $10-1$. The reader should note that the GRG2 program selects values of the parameter vector, x, for simulation in the Hybrid Vehicle Simulation Program, and receives the calculated values of the five functions (which may be the objective function or constraint functions) from it. GRG2 then systematically adjusts x in such a way as to minimize the objective function while satisfying bounds and constraints. The REPORT subroutine in GRG2 is used to calculate and print output information about the hybrid vehicle which is not essential to the GRG2 program.

The next section discusses particular problems which were attempted using this program, and the results which were obtained.

Figure 10-1 Interconnection of Optimization and Simulation Programs

11.0 RESULTS AND DISCUSSIONS OF RESULTS

Four different design problems were solved using the optimization approach discussed previously. Each of these problems is discussed in a separate subsection where the problem is defined and results are presented for that particular problem.

The two major problem areas considered were those of vehicle power source sizing and power split parameter optimization. The first three design problems deal with the sizing problem, including various design objectives and constraints, and the final design problem is concerned with optimizing the power split decision rule.

11.1 VEHICLE POWER SOURCE SIZING FOR MINIMUM LIFE CYCLE COST

The design objective here was to determine the proper power source sizing parameters, heat engine power (kw) and battery weight (kg), so that the life cycle cost of the hybrid vehicle is minimized and the final vehicle is able to meet all driving requirements as specified by the annual trip requirements and reflected in the vehicle simulation.

The optimization problem for this design problem is very similar to Sample Problem No. 1 in Section 8 of this report:

$$
\begin{array}{ll}
& \operatorname{Min} C_{\mathrm{LC}}\left(\mathrm{P}_{\mathrm{HE}}, \mathrm{~W}_{\mathrm{B}}\right) \\
\text { subject to } \quad & \mathrm{P}_{\mathrm{HE}}, \mathrm{~W}_{\mathrm{B}} \geqslant 15 \\
& \mathrm{~W}_{\mathrm{B}} \geqslant 60 \\
& \mathrm{P}_{\mathrm{O}}\left(\mathrm{P}_{\mathrm{HE}}, \mathrm{~W}_{\mathrm{B}}\right) \geqslant 0 \tag{11-4}
\end{array}
$$

and the AiResearch power split function which is specified in Appendix H.

Several initial estimates for the solution were tried, and all led to the same result:

$$
\begin{equation*}
\operatorname{Min}_{\mathrm{P}_{\mathrm{HE}}, \mathrm{~W}_{\mathrm{BC}}}\left(\mathrm{P}_{\mathrm{HE}}, W_{\mathrm{B}}\right)=\mathrm{C}_{\mathrm{LC}}(35.5,60.0)=\$ 17,100 \tag{11-5}
\end{equation*}
$$

This point is at the intersection of the overload constraint boundary and the lower bound for W_{B}. See Figure 11-1, which shows the optimization as it proceeded from the design parameters recommended by AiResearch [1], $\mathrm{P}_{\mathrm{HE}}=65 \mathrm{kw}$ and $W_{B}=386 \mathrm{~kg}$. Althought this point was reached in two iterations, it should be noted that each iteration included many evaluations of the objective function for the various pairs of ($\mathrm{P}_{\mathrm{HE}}, W_{\mathrm{B}}$) values which were being considered. During the first iteration, the search proceeded in the negative gradient direction until the overload constraint boundary was reached, using longer and longer steps until the boundary was encountered. During the second iteration, the search moved along the overload constraint boundary until the lower bound on W_{B} was reached; several intermediate points were used along the constraint before the iteration was completed. The overall result is a reduction in life cycle cost from $\$ 20,796$ to $\$ 17,100$.

It is not surprising that the optimal design in this case occurred on the overload constraint boundary, since any point above this boundary would correspond to higher value of P_{HE}, W_{B} or both, leading to a higher life cycle cost, and any point below this boundary, although yielding a lower life cycle cost, would correspond to a vehicle not able to meet the specified driving requirements. It is also not surprising that the optimal solution occurs at the minimum value of W_{B}, since the nominal petroleum pricing used for this problem (See Section 5.3) makes it desirable to use as little electric power

Figure 11-1 Power Source Sizing for Optimum Life Cycle Cost
(Petroleum Usage Unconstrained)
as possible if minimum life cycle cost is the objective.
A modified version of this problem was solved after including an additional constraint,

$$
\begin{equation*}
V_{p} \leqslant r V_{p}^{*} \tag{11-6}
\end{equation*}
$$

to the optimization problem specified in equations $11-1$ through 11-4. $\mathrm{V}_{\mathrm{p}}{ }^{*}$ is the petroleum volume, 9,814 liters, associated with the solution to the original optimization problem, and $r(0<r \leqslant 1)$ specifies a certain fraction of that amount. The purpose of this design problem was to investigate how the optimal power sizing parameters would change, and how the life cycle cost would increase in the case where less and less total petroleum volume is available for the life of the vehicle. This is a situation which could be quite realistic as world petroleum resources are depleted or when foreign supplies become unavailable.

The results for this modified problem are shown in Figure 11-2 for various values of r, from $r=1.0$ to $r=0.60$. The results show a steady increase of $C_{L C}$ as r is decreased, rising from $\$ 17,100$ at $r=1.0$ to $\$ 18,679$ at $r=0.60$. These results demonstrate the utility of a hybrid vehicle when petroleum supplies are strictly limited, and more reliance must be placed on the electrical propulsion system.

11.2 VEHICLE POWER SOURCE SIZING FOR CHANGING PETROLFUM COSTS

The design problem considered here is similar to that of the last section, where life cycle cost is to be minimized, but where the price of petroleum is varied and its effect on the results is observed. The price of petroleum was varied by introducing a gas factor, γ, which scales all of the

Figure 11-2 Power Source Sizing for Optimum Life Cycle Cost
(Petroleum Usage Constrained)
petroleum costs, $\gamma \geqslant 1.0$ (γ multiplies the array GASCST(I)).
The optimization problem for this design is:

$$
\begin{equation*}
\operatorname{Min}_{\mathrm{H}_{\mathrm{HO}}} \mathrm{C}_{\mathrm{LC}}\left(\mathrm{P}_{\mathrm{HE}}, \mathrm{~W}_{\mathrm{B}}, \gamma\right) \tag{11-7}
\end{equation*}
$$

subject to equations 11-2, 11-3 and 11-4. The AiResearch power split function (see Appendix H) is again used and the value of γ is held constant during the optimization, so that this problem represents a family of optimization problems, each corresponding to a fixed value of γ.

The several optimization problems all used the same starting point, P_{HE} $=65 \mathrm{kw}$ and $W_{B}=368 \mathrm{~kg}$. The results are shown in Figure $11-3$ for $\gamma=\{1.00$, $1.25,1.50,1.75,2.00,2.50,3.00,5.00\}$. All results are on the boundary of the overload constraint function, with higher values of γ yielding designs which rely more and more on the electrical propulsion system. The life cycle costs associated with these results are listed in Table 11-1. It is clear from these results that the nominal petroleum pricing ($\gamma=1.0$) which was used for much of this study is too low to justify a hybrid vehicle on the basis of life cycle cost; the optimization would yield $W_{B}=0$ if this were permitted. Higher gas factors, however, show designs which have a much greater reliance on the electrical propulsion system.

11.3 VEHICLE POWER SOURCE SIZING TO MINIMIZE TOTAL PETROLEUM CONSUMPTION

The design problem considered here differs from the problems discussed in the last two sections in that the design objective was to minimize the total volume of petroleum used over the expected life of the vehicle. The rationale for this objective was that very low availability of petroleum could

Figure 11-3 Power Source Sizing for Optimum Life Cycle Cost
(Various Petroleum Costs)

Table 11-1
Optimum Life Cycle Cost For Various Gas Factors

Gas Factor, γ	Optimum		
	$\mathrm{C}_{\text {LC }}$ (\$)	$\mathrm{P}_{\mathrm{HE}}(\mathrm{kw})$	$\mathrm{W}_{\mathrm{B}}(\mathrm{kg})$
1.00	17,100	35.46	60.00
1.25	18,112	35.46	60.00
1.50	19,123	35.46	60.00
1.75	19,956	33.98	117.86
2.00	21,046	25.98	309.96
2.50	22,334	25.97	310.10
3.00	23,495	23.34	336.74
5.00	27,926	16.46	428.40

make a hybrid vehicle whose petroleum consumption was minimal very attractive, even at a somewhat higher price. Thus this problem, at least in its initial formulation, did not take costs into account explicitly.

The design optimization problem here is:

$$
\begin{equation*}
\operatorname{Min}_{\mathrm{P}_{\mathrm{HE}}, \mathrm{~W}_{\mathrm{B}}} \mathrm{~V}_{\mathrm{p}}\left(\mathrm{P}_{\mathrm{HE}}, \mathrm{~W}_{\mathrm{B}}\right) \tag{11-8}
\end{equation*}
$$

subject to equations 11-2, 11-3 and 11-4, with the Airesearch power split function and $\gamma=1.0$.

The result for this problem involving no costs was a hybrid vehicle with $P_{\text {HE }}=15.0 \mathrm{kw}$, and $W_{B}=457 \mathrm{~kg}$. This design point is on the overload constraint boundary and sets the heat engine power at its lower limit, yielding total petroleum usage of 5,209 liters (compared to 9,814 when life cycle cost is minimized) and a life cycle cost of $\$ 19,337$ (compared to $\$ 17,100$ when life cycle cost is minimized). The results illustrate the trade off that occurs when the objective is low petroleum usage rather than minimum cost: the petroleum consumption decreases and the cost increases.

These results motivated another design optimization problem which was defined, starting with the problem above, by adding an additional constraint,

$$
\begin{equation*}
\mathrm{C}_{\mathrm{LC}}\left(\mathrm{P}_{\mathrm{HE}}, \mathrm{~W}_{\mathrm{B}}\right) \leqslant 18,000 \tag{11-9}
\end{equation*}
$$

This in effect asks for petroleum consumption which is superior to (lower than) that of the minimum-life-cycle-cost petroleum consumption, but which limits the cost increase. The result, as expected, was intermediate to the previous results for minimum life cycle cost and minimum petroleum consumption, with petroleum consumption of 7,2061 liters and a life cycle cost of
$\$ 17,963$. The design variables for this result were $\mathrm{P}_{\mathrm{HE}}=31.2 \mathrm{kw}$ and $\mathrm{w}_{\mathrm{B}}=$ 226 kg , a point on the overload constraint boundary.

The addition of this constraint illustrates the great flexibility of the optimization approach to hybrid vehicle design. It is easy for a designer to add such a constraint and repeat the optimization procedure in order to gain the desired result.

A summary of the results for the two problems discussed in this section as well as the minimum life cycle cost results are listed in Table 11-2.

Table 11-2
Summary of Optimization Results

Function Minimized	Constraint	$\mathrm{P}_{\mathrm{HE}}{ }^{(k w)}$	$W_{B}(\mathrm{~kg})$	$V_{p}(1)$	$\mathrm{C}_{\mathrm{LC}}(\$)$
C_{LC}	none	35.5	60	9,814	17,100
V_{p}	$C_{L C} \leqslant 18,000$	31.2	226	7,206	17,963
V_{p}	none	15.0	457	5,209	19,337

11.4 POWER SPLIT OPTIMIZATION

This section discusses some particular problems which are in a class which may be described as power flow strategy problems. The general problem could include any number of on-board power sources, including storage devices, and is directed toward specifying the direction and amount of power flow for each power source at each instant of time. The result of solving the problem is called the power flow strategy because it is to be expressed
as a set of strategy algorithms, or decision rules, dependent on some of the vehicle dynamic variables and internal variables, which permit calculation of each power flow as these variables change with time.

For the particular case of a hybrid vehicle considered here, with the two on-board power sources, the power flow strategy problem reduces to that of determining, at each instant of time, how much of the wheel power is supplied by the electric propulsion system, and how much by the heat engine. Battery charging during regeneration is handled as a separate consideration (see Appendix F). The power flow strategy then amounts to determining the power split between heat engine power and battery power, and so the problem was defined using a power split function, $s(t), 0 \leqslant s(t) \leqslant 1$, where the extremes correspond to all-petroleum $(s=0)$ and all-electric $(s=1)$ power.

It is important to recognize the infeasibility of finding $s(t)$ as the solution to an optimization problem. This would be possible only if we were to define a dynamic optimization problem with a prescribed vehicle driving regime (speed vs. time) for the entire life of the vehicle. This is unrealistic from two points of view: (1) the time interval involved would be so long that the computations could not be performed efficiently, and (2) it is not possible to predict the exact, second by second driving velocity of a vehicle realistically for the entire life of the vehicle, and for a substantial number of vehicles.

Thus the approach taken here was based on the parameterization of a strategy function or decision rule, with the power split strategy expressed in terms of variables likely to influence the ideal power split function, and using parameters whose values could be obtained using the same methodology and computer programs used to determine optimal vehicle sizing parameters.

This part of the project included two different approaches concerning the parameterization of the power split function, $s(t)$. The first involved the parameterization of the AiResearch power split function, and the second involved the use of polynominal functions to represent $s(t)$.

11.4.1 PARAMETERIZED AIRESEARCH POWER SPLIT FUNCTION

The power split function, previously discussed and used in the study by AiResearch Corporation [1] (also see Appendix H), contains several constants which could be treated as parameters. One of these, which was thought to be one of the most critical, is the value of the power split function during acceleration, s_{a}, which was given the value 0.3 in the AiResearch study. An optimization problem was formed with s_{a} as a parameter:

$$
\begin{array}{ll}
\text { Min } & \mathrm{C}_{\mathrm{LC}}\left(\mathrm{~s}_{\mathrm{a}}\right) \\
\text { subject to } & \mathrm{P}_{\mathrm{HE}}=65 \mathrm{kw} \\
& \mathrm{~W}_{\mathrm{B}}=386 \mathrm{~kg} \\
& 0 \leqslant \mathrm{~s}_{\mathrm{a}} \leqslant 1.0 \tag{11-13}
\end{array}
$$

and the remainder of the AiResearch power split algorithm. Equations 11-11 and 11-12 specify vehicle power sizing parameters which correspond to those of the AiResearch hybrid vehicle design; since this vehicle is easily able to meet the power demanded by the driving regime, it was not necessary to include the power overload function as a constraint for this problem.

This optimization problem was solved repeatedly for several values of the gas factor, γ, which was discussed in Section 11.2. Results, which are listed in Table 11-3, show that no electric power should be used during acceleration for the lowest values of the gas factor, and that the power split
rises to 0.264 with $\gamma=5.0$. The optimal life cycle costs rises correspondingly with the gas factor, as expected. These results show that the optimal distribution of power between the two sources is strongly dependent upon the petroleum price, and that a power split value of 0.3 could be justified only for a very large value of the gas factor.

Table 11-3
Optimal Power Split During Acceleration

Gas Factor, γ	Power Split, sa	Life Cycle Cost, $\mathrm{C}_{\mathrm{LC}}(\$)$
1.0	0.000	20,000
1.5	0.000	21,886
2.0	0.114	23,303
2.5	0.194	24,669
3.0	0.231	26,021
4.0	0.248	28,702
5.0	0.264	31,364

11.4.2 POLYNOMIAL POWER SPLIT FUNCTION

Another approach to expressing the power split function in parameterized form is to use a simple polynomial function of vehicle variables with parameters to be determined through optimization. This leads to a problem of constraining $s(t)$ to its specified range, $0 \leqslant s(t) \leqslant 1$, since any polynomial
function of vehicle variables is likely to exceed this range during at least part of the driving regime. This problem cannot be treated directly through constraints on $s(t)$ because that involves a dynamic optimization problem which is unrealistic in this application as discussed earlier.

The power split function was constrained through the use of limiting. Let $s_{p}(t)$ be the value of the power split polynomial function. Then

$$
s(t)=\left\{\begin{array}{l}
0, \quad s_{p}(t)<0 \tag{11-14}\\
s_{p}(t), \quad 0 \leqslant s_{p}(t) \leqslant 1 \\
1, \quad s_{p}(t)>1
\end{array}\right.
$$

The polynomial function chosen for investigation involved two key vehicle variables, battery state of charge, $c(t)$ and vehicle acceleration, $a(t)$. Several polynomial functions were tried starting with the linear polynomial

$$
\begin{equation*}
s_{p}(t)=\alpha_{0}+\alpha_{1} c(t)+\alpha_{2} a(t) \tag{11-15}
\end{equation*}
$$

and later including higher-degree polynomial functions.
The search procedures of GRG2 did not produce worthwhile results with this approach. Typically, the search started with an initial estimate of the a parameters and failed to improve the objective function in several iterations, finally stopping because of lack of progress at a point very close to the initial estimate. Our conclusion about this is that it was not due to any deficiency in GRG2, but was due to a fundamental problem with the approach, in particular the limiting process defined by equation (11-14). The limiting apparently led to erroneous values of the gradient so that the search directions determined by GRG2 were not effective. It seems as if the changes used for the parameters had little or no effect because the value of
$s_{p}(t)$ calculated from the polynomial such as that in equation (11-15) was promptly and frequently overridden by the limiting action as the vehicle simulation was carried out. Approaches like the one described in Section 11.4.1, where a proven and acceptable power split function was parameterized, seem much more promising. The main reason for this is that such an approach allows incorporation of bounds on the parameters themselves in a direct manner, rather than the indirect approach used in the limiting of the polynomial function.

11.5 SUMMARY OF RESULTS

This section has treated the application of an optimization technique based on nonlinear programming to the design of hybrid vehicles. Four different design problems were solved using the digital computer program which combined the optimization algorithm with the hybrid vehicle simulation.

The method was successfully applied to vehicle power source sizing problems for a variety of design goals and specifications. It was found that all solutions were on the power overload constraint boundary such that, in each case, any reduction in the battery weight or heat engine power rating would yield a vehicle which would not be able to meet the power demands of the specified driving regime.

Two methods were considered for parameterizing the power split function which specifies, at each instant of time, what fraction of the total power demand is supplied by the electric propulsion system, and what fraction by the heat engine. The parameterization of the AiResearch power split function was found to be much more successful than using a polynomial power split function with limiting.

The use of optimization as a systematic approach to a variety of hybrid vehicle design problems was shown by these results to be very effective.

12.0 CONCLUSIONS

This study has led to several conclusions regarding the effective use of an optimization technique for hybrid vehicle design.

Efficient and effective use of an optimization technique for hybrid vehicle design depends heavily on a vehicle simulation program which is designed for this purpose. One of the main necessary features of such a simulation is that it must permit continuous variation of the power plant sizing parameters, battery weight and heat engine power rating.

Another area demanding attention in such a simulation is the way the specified driving pattern, including standard test cycles and highway driving, are incorporated into the simulation; this has impact both on computer run time, which must be minimized, and on the ability to accurately simulate long trips involving a declining state of charge for the batteries, since this state of charge affects the power split. One cannot get accurate results by merely simulating one standard test cycle and extrapolating the results.

Attention must be paid to the simulation time step sizes used in the simulation. They must be small enough to provide sufficient accuracy in the calculation of vehicle variables and costs, while remaining as large as possible for the purpose of minimizing computer run time; this is particularly important when the simulation is used in optimization, since the optimization program must run the simulation program dozens of times during the completion of one design problem.

Since the main purpose of the simulation program is to calculate functions which are used as the objective or constraint functions for the
optimization program, the simulation program must be designed to produce these functions as smooth functions of the design parameters. Otherwise the optimization program is likely to calculate search directions which will not yield a successful result because of functional discontinuities, or the optimization is likely to stall at a false local minimum.

This research demonstrated that the handling of the power overload function is critical to obtaining successful results for power-sizing design problems. Design results for this problem are very likely to lie on the power overload constraint boundary, since the region above it represents increased life cycle cost and petroleum consumption, while the region below it represents a vehicle which will not be able to meet the power demand associated with the specified driving regime. The exact location of the power overload constraint boundary need not be determined; it is more important that this constraint be a smooth function so that the optimization program can work efficiently.

It is important to choose the optimization program and to carefully design the interface between the simulation program and the optimization program in order to provide considerable flexibility to the designer in the choice of the design objective, constraints and variables for a variety of design problems. This project demonstrated that this can be done successfully.

Standard procedures for improving the efficiency of the optimization program, including scaling of the design variables and functions, were used and were judged to be effective. Gradient calculations by finite differences required the use of double-precision arithmetic. These are points which the designer must keep in mind when developing optimization program applications.

The two methods of parameterizing the power split algorithm, which specifies how much electric power and heat engine power is used at any time, demonstrated the feasibility of this parameterization. The polynomial power split function which was limited in value did not produce useful results because the optimization program did not have a free hand in varying the power split function due to the limiting. The parameterization of the AiResearch algorithm was much more effective, and this general area of parameterizing an established algorithm is a promising area for future research. Optimization of the power split function, in particular, is a research area which should be pursued.

Optimization has been shown to be a useful tool for systematic design of hybrid vehicles. This research showed that it is possible to couple a sophisticated, general purpose optimization program to a complex hybrid vehicle simulation and produce a successful hybrid vehicle design using a reasonable amount of computer time.

frugram hurgor				
C				
l***				＊＊＊
C示薬 PR	PROGRAM HUFGF＝HYBRID UEHICLE HERFOR	mbatice evaluat	ION PROGNAH	
1家䊉				米棌
C				
C				
C＊＊＊＊				
口为为＊＊＊＊＊＊	＊${ }^{\text {W＊}}$			＊＊＊＊＊＊＊
CW\％	＊＊＊＊DICTIONARY UF VARIA	ABLE：		＊＊＊＊＊＊＊
C＊＊＊＊＊＊＊＊＊＊	稩中＊			＊＊
i				
C VARIfible	BLE DESCRIPTION	UNITS	SUURCE．	VALUE
C				
C				
C GACTL	ACTUAL CAFACITY WITHDRAWIS FRUM BatciRy	fimp－HOURS	CALC	
Γ				
C AmCUS	Mait of autrabe lharging vol fage	E VOLTS	CSH	Hive
L Ambistim	Lime）VS ACTIAL LAPALSTY REMOVED（FG？			
	a 35 atip Charge rates			
\％				
© ACCEL．	AUERAGE ACCLLERGTION OVER OHE	METENS PER	C，ALC，	
	DRCUSNG CHLLE TME［MCREHENT S	SECLJND Squareo		
i：				
c agacsi C	ACQUSITION COST OF VEHICLE	doll	CALC	＊＊＊＊＊＊＊
C．ACR	GRRAY UF CAPACITY REMOUED USED	Amp－HOURS	NASA	HiAUE
i	In Chicutaidns fly Aurragt	HET K［LOERAT	，	HAE
！	Charting vol tage．）			
C				
	（I）ARKAT UF ELECTRIC ENERGY，	MEGAJOMLS	CALC	繕米䊾䊾
L				
C	U0T Of THE BAIT，IN THE VARTOUS			
1.	RRIP： （rok permitag）			
i				
$\begin{aligned} & \mathrm{C} A E L E T H^{\prime}(\mathrm{I}) \\ & \mathrm{i} \end{aligned}$	（I）frlea of ellctric entrgi，	mebabucls	CALS	
C	OUC Of THE WATT，IN THE VARIOUS			
L	ficus（atar is［ntinus）			
C				
C AESPED（1）	（1）ASRay of ENGINE SPEEDS USED）IN	RAD／SEC	NASA	HAUE
\mathfrak{C}	Hi：MAF［NTERHULATID			
C				

C AHCHE C	AMP-HRS INTO GATTERY FROM HE CHARG ING	AKPP-HOURS	CALC	********
C				
C AHEKW(I)	Array containing he polwer	KILOWATTS	NASA	AHEKW(I)
B	RATING: (USED IN FIJEL RATE.			137.
C	Calculations)			256
C.				315.
C				1112.
C				
C Allolit	BATTERY AMP-HOURS OUT	AMP-HOURS	CALC	*******
C				
C ALLSTC	LENGTH OF LONGEST TRIP WHICH	1隹TERS	NASSA	50,001.0
1 '				
C	DRIVING)			
L'				
C AlP Has	WEIGHTING FARAMETER FOR LIFE	-	CSU	VARIES
C	cyole busi in objective function			
C				
C Al.phaz	WEIGHTING PARAmETER FOR FETROLEUM	-	LSU	VARIES
C	CIST IN OBJECTIUE FUNCTIUN			
C				
C ALPHAS	WEIGHTING PARAMETER FOR ACQUISITION	,	CSU	VARIES
L°	DUST IN IBSECTIVE FUNCTION			
C				
C AfETT(I)	ARRAY OF PETROLEUM USED IN	LITERS	CALC	*******
${ }^{\circ}$	TIE VARIUUS TRIP'S (FDN PRINTIUG)			
C				
C aregen	AMP-HUURS REGENERATED	AMP-HOURS	CALC.	*******
C				
C Aghater	CONSTANT USED TO CALC	DOLLARS PER	NASA	0.1984
$1:$	THE ASSEITMLY CIST	KILUGRAM		
c.				
C ASACST	VESICLE ASSEMBLY COST	DOLLARS	CALC	
C'				
C ATORG(C)	ARRAY UF TURQUES CORRESPONDING TO	M H	NASAM	HAUE
C	THE STAROARO $\%$ KU ENGINE USED SU			
C	COMPUTE THE SCALED ARRAY OF TORqUE			
ι^{4}	USEO FOR A DIFFERENT SIIED ENGIN:			
(: - ${ }^{\text {a }}$ (${ }^{\text {a }}$				
C batcer	CONSTANT USED to cal. culate.	dullars per	NGASA	1.87
©.		KILIJGRAM		
C				
C batcot	Maidufacturing cost of	DOLLARS	CALC.	*******
C	AATERESS			
C				
C batlefe	N0. UF YEARS IN BATTERY LIFE:	YEARG	CAlC	管****
C Batrel.	NO. Of battery replacemenis in	.	CALC	*******
C	VEHILLE L.IFE			
C				

C BATSAL C	Salvage value dif battery	LOLLARS	CALC	*******
C BENRGY l:	GATTERY ENERGY USED FOR THIS INCREMEAT IN TII: DRIUING CYLLE	JUULES	CALC	*******
¢				
$C \text { BET } T(I)$	grade angle array for comflete drivifl bicle	DEGREES	CSU/NASA	ALL 0.
i				
$\begin{aligned} & \mathrm{C} \text { 帐TA } \\ & \mathrm{C} \end{aligned}$	GRADE ANGLE AT THIS fOINT IH THE: DRIUING CYCLE	DEGREES	CALC	*******
C				
$\subset \mathrm{BSFC}$	CUNGTANT USED 10 CALC HIST EFTLIENT ENGINE SPEFD FOR	RAD/SEC	CSU/NASA	4.2
C	GIVEN PERCEIST OUTPUT OF HE	* RATED PGWER		
C				
$\mathrm{c} \text { e } \operatorname{lncost}$	COST OF BATTERY REPLACEMENT DURNSG VEHICLE LIFE	DOLLARS	CALC	
C				
$\begin{aligned} & C \text { BTLIST } \\ & \text { C: } \end{aligned}$	L.IST COUST OF BATTERIES	DOL.LARS	CAl.C	
```C DTMark C```	battery maintenance cost	DULLARS PER KILOMETER	CALC	*******
C Kilown				
$\mathrm{C} \text { BIMKUP }$	battery marikup factor   (a coms rant actween u and i)	-	NASA	0.3
C				
c cafcty [	CELL CAf'ACITY	AMP-HOURS	CALC	*******
C DApkg   '	CAPACITY OF A BAITERY CELL PER KILOGRGM	AM1-HOURS/KG	CALC	*******
C				
C CDA	DRAG CUEFFICIENT TIMES		NASAA	0.6
$\mathrm{r}^{1}$	vehicle frontal arta	SQUARED		
C				
C CHARGE(I) $L^{2}$	ARKAY WHICH SAVES AT THE END DIF EACH STC THE TUTAL GMP-hRS	AMP-HOURS	CALC	*******
C C cher	INTO THE Battery from he chargi			
E CIGCER C	congtant used to calculate cust in chargee	DULIARS PER   K cl. ubiram	NASA	5.89
C				
C CHGCST	cost of battery charger	DOLLARS	CALC	*******
C CHSEFF C	hattery charger efficiency	-	NASA	0.85
$\begin{aligned} & \text { C CIGRCA } \\ & \text { C } \end{aligned}$	congtant used in calclulating MABS DF CHAREE	$\begin{gathered} \text { KJGOGRAMS } \\ \text { PER UATT } \end{gathered}$	NASA	0.0
C				
CHGRKW	POWES RATING OF CHARGER	KILUWATTS	NGSA	14.5


C Culder	CONGTANT USED in CALCULATING  	KJIOGRAMS   PEOK!	NASA	0.71
C				
c. chicer	CONSTANT USEd to calcollate	DULLARS PER	NASA	14.00
5	CHOPPER IWUERTER COST	Kilogram		
1				
$\begin{aligned} & C \text { ditacor } \\ & \text { c } \end{aligned}$	COST Of CHOPPER INVERTER	DOLLARS	CALC	*******
$\mathrm{C}(\mathrm{H}) \mathrm{KW}$	rouger rating of chopper TNUERIER	KILOUÂt ${ }^{\text {a }}$	NASA	40.0
C				
C Chilmat	Chipler InUERTER MAINTENANCE	DOLLARS PER	Cille	*******
c	Cu:3T	KIl.OHEIER		
C				
C CHUUSE	If Equal to i, electricity cost	-	CSU	0.0
C	COMPUTED FROM ELECYK(I). IF EQUAL			
c	TO 0, ELED(D) REPLABES ELECYR(I)			
C				
C CLICLR	CUNSTANT USED to calculate	MULLARS PER	IVASA	0.0
C	THE COST OF CHE Clutcia	KCIOGRAM		
6				
C CITCST	COST OF CLUICH FOR UFHICLE	DOLLARS	CALC	********
C				
C. count	VARJalble uged in deterkining	-	Cfilc	*******
E	WHICIS YEARS EAIT. REMLACLTAENT			
C	COETS GRE ADDED			
C				
C Cis	Congtani in rolling	-	cialc	*******
C	plscotanit monce calcilation			
C				
C CuTCi	constant used to calculate	K1LOGRAMS	NASA	1.07
$\square$	cot miss	MER KILOWATT		
C. chtier camstant used To				
c. CUTEER	CONSTANT USED TO	Dillfirs fer	NASA	1.42
i.	baldulate sut cosi	KILugram		
$C$				
c. cutcst	cost of CUT	hollars	C.ALC	*******
C				
C EVTKH	foher kating of cut	kILOWATtS	NASA	90.0
C				
c cutman	CUT MAINIENANCE CUST	DULLARS PER	CALC	*******
$\underline{\square}$		kILUMETE:		
C				
C Ex(1)	ARRAY CONTAINING POUER SPLIT	MIXED	Call:	*******
$i$	DGRAAfEIERS			
C				
C DEEP	NG. OF Df.EF GISCHARGES OF	-	CALC	*******
C	martery diring vehrili life			
f:				
C ULLR	INCREMEN FOR DECREASING CUT	-	CSU	0.1


C	RAILO TU PREUEMT HOTGR FROM			
C	STALLING			
f.				
C JLISTC	FRaction of an stc uned	-	CALC	紜米****
$1 ;$	IN CURRENS TR If			*****
C				
$\begin{aligned} & \text { C DLLT } \\ & \text { C } \end{aligned}$	SImUlitun time step slze	SECONDS	CALC	********
$\begin{aligned} & \mathrm{C} \text { DCLTHW } \\ & \mathrm{C} \text { : } \end{aligned}$	SIMULATIOR TME INCREMENT FOR HIDHUAY DRIVIHG	SECONDS	CSU	60.0
C				
C DELV	VEHIELI VELUCSTY DECREASE PER	KILOMETERS	CALC	
0	IIME TNLAEMENT DUR [TU BREAKING	Prin SECOND		******
C	PHASE OF STC:			
C				
C. MAGRKN	POUER Rating of getr betueen	KLL.DWATTS	NASGA	90.0
1.	Mratercutial alio cut met also			
0	flatale			
i:				
C. IHEKW	WHEN RUNES $=$ E, THE GMOUANT HEKW	KILOWATTS	ARF	
c	IS ENREMENTED HOR NEXA CLOMP Call	Kilowars	An.	
(:	UHEN RUNZ2: 1 THE TOLERANCE GN HEKH			
¢				
C MIFCER	constant used to calculate	DULLARS PER	NGSA	2.42
L.	Dusis af a ormarential	k.l.ugrat	Nas	2.42
Q				
C DIFEGT	COST OF DIFFERENTIAL	dullats	CAL.C	********
6				
C HIFFCS	CONSTANT USED IN CALCULATINE	KILUGRAMS	NASA	0.66
$1:$	MAS'S OF DIFFERENICAL	PEHKW		
0				
C DIFFKN	POULER RATING (JF DIFFERENTIAL	KILOLATTS	NASA	90.0
C	( ALOU SLE PDRATE)	Kilowars	NASA	9.0
C				
C Disch( 1 )	ARRAY CONTAINING THE NUMBER	..	CAI.C	*******
1	i] Bhrieny orscharies per yede			
C	FOR THIS PARTICULAR TRIP TYPE			
For Thio meticular Trip Trie				
C DISCAG	BAITEEY DISCHARGE CORUE	VOLTS/CEL	HASA	HAVE
			NASA	HAV-
C				
C DISCHT	dollar imscount rate	-	NASA	0.02
C				0.a.
C DISEFF	FACTOR USED DUESNG DISEHARGE	-	CALE	******
C	FO CONUET DATHERY TERMSNAL			
C	ENERCY TO INTERNAL ENERGY			
C				
C DISAAC	IHE AMOUNT OF BATTERY DISCHARGE	-	Calle	*******
1	OURING ON: TRIP OF THIS			
C	FARTICULAR TRIF TYPE			


¢				
C dislfe	NO. OF DEEP DISHCHARGES IN	.	NASA	840.
L	baitrery Life			
c				
C DLTSTC	Simulaidon time step size	SECunds	CSU/KASA	1.0
:	FOR SIC DRIUNG			
C				
C DLGGAT	WHEN RINESI=1, OR a THE AMOUNT	KILOGRAMS	ARB	
c	hgeats dis duthemented fur hext			
c	gecmip ciall			
c				
C CbTOT	total battery energy usgd since	higajoules	CALC	*******
1.	STApt of trip			
C				
c eftoilis)	1 array hhich saves at the end	megajoules	calc	*******
C	Of Efich Sic thi tutal battery			
c	ENERGY USED SINCE THL START			
:	dof hle Stis			
C				
C EFFSKU,	CUT EFFICIENCY MAP	-	nasa	HAVE
C kafios	(A number between 0 ani) 1)			
c				
C Efrbc	COMBINED Battery charger eff.	-	NfSA	0.75
c	and bhtiery turnarduutd deff			
c				
¢ EFFMIRSPERCENT Motor efficiency hap		-	NASA	Have
C RGTED PUR, ( SHEED)				
c				
C. ELCC( 1$)$	array containing yall plug	MEGAJOULES	CALC	******
:	bletitrical mergy scomputed			
C	On mifl-hr basis) required to			
c	meer electrical entrgy			
C	CONSUMPTION FOR THIS PARTICULAR			
:	TRSP CYPE For uat year			
c				
C ELecstin	) array containing elecit cost	VILLARS	Cat.	******
:	Fin YiAR I			
a				
C ELECYR(1)	) array containing hall plug	hegajoules	Call C	*******
c	ELECTRSAL ENERGY (COMPUTED			
c	on fumer basis) keoured to			
${ }^{\text {a }}$	difer elietrical energy			
c	concumption for this particular			
C	Trip thre for one year			
c				
C ENELEC.	electrical enercy consumed	megntoules	cale:	*******
C	IN CUREF-NT TRIP (GASED ON POWER)			
c				
C ENRGY	ELECTRICAL ENERGY CONSUMED	michatileg	CALC	******


C	IN CUPREETT TRIP (BABE:D OH			
C	AMP-HES			
L				
$\subset F A$ [	VEHICLE ACCELERATION FORCE	NEWTONS	CALC	*******
[				
C ITHEKW(1)	) array containing penal ty/	-	NASA	1 FFHEKW(I)
1	CHPROUEMENT FGECORS FOR			11.09718
C	UFIRJOUS HE POUER RATINGS			21.05
1.	(USED IN FUEL RATE			31.
c.	CALCUIATIONS)			4.754545
[				
$\begin{aligned} & C \\ & c \end{aligned}$	GRADE FGRCE	REMTONS	CALC:	*******
$\mathrm{Cik}$	rolling resistance force	NEWTONS	CALC	
C rescle	FACYOR DFPENDEDT ON HEKG GNLY USED IN MAKING DCFEERENT GIZED	-	CALC:	*******
C	HE MAPG FRON A 75 KW Hf. MAp			
C				
C CURLT	HEAT ENGINE FUEL RATE.	LITERS PER SECORD	CALC	*******
Q				
[ G(I)	arkay containing weighted objective	E 3	CALC:	********
C	nto COMSTRAINT FUNCTIONS			
C ( ${ }^{\text {c }}$				
C GASCST (I)	) ARray comtaiming pfice of	DOLLARS	NASA	I GASCST( 1 )
$\square$	PETRULCim For each year	PER LITER		10.32
C				$2 \quad 0.35$
C				$3 \quad 0.38$
C				40.41
1 :				$5 \quad 0.44$
C				$6 \quad 0.47$
I				$7 \quad 0.50$
C				30.53
C				90.56
C.				$10 \quad 0.59$
$\because$				
$\begin{aligned} & 6 \\ & C \end{aligned}$	mercesat ton of gravity	METERS PER SECOND	CSU	9.807
$\square$		QUARED		
[				
Cinic		Kh. Digams fer	N的A	0.0
1	mfta ur bint	KSBUATT		
$\therefore$ ERCRE	congiant used to calculate.	hollars per		2.43
$\therefore$ I	mber me in beht	\% C6, beati		
E				
C Endcit 0	cost of grar hetweer	vombhas	CAlde	


Urraberimb ato cur				
i				
Q WFFPREEN		-	NAGA	Hate
Q mata,				
C Trem	COHGTAN HETHRN ZERO			
C	Ami 10 !			
C				
C: EnMCS	CGST If BEAR ECTUEEN ELCTRTC	DOt A A S	SALC	
	mofur moum			
C				
O HECi	CONGTGNT UEED IN CALCUL.tTING	KICRGRAMS PER	HGOA	1.8
		K4 SQumbo		
0				
U Hfa	Gunctat bsed in chl ctilating	Kucagkamis	NASA	2.84
1	MAB\% of Entide	P:R KW		
G				
C MECER	COMSTAET USED TO CALCUATE	Dulans ple	NASA	1.43
8 !	lient mader cosi	KSLUSRAT		
i:				
CHECOST	COST Of HIAT EMGINE	DOLLem	CALC	********
E				
C YRKW	POWE: Hatike uf heat engial	MILOWATTS	NASA	65.0
C				
C	RUN2T-2			
C ( ${ }^{\text {a }}$				
C. HEMATN	Heat endine maldemance cost	DULLARS PER	CALC	具束*****
C		KILUMETEP		
\%				
C HEMAP (	HEAT ENGINE MAP	LITERS PEE	HASA	hinve
1 TOROUE, SPEED		StCOND		
C.				
C Hutro (1)	frray which saves at thi end of	AMP -HOURS	CALC	
C	Coclf ST: MIE AMP HOJR:3 DUT OF THE			
C	battery since the start bit the ste			
6. HWYURL	Hobriday dilucity for vehtcle	MFTERS PER	Nasa	2.5 .0
c		S3COMD		
C				
C. 18000 D	hattery bischarge flag	-	CALC	
-	(EnUALS 1 heatis matfeny is ar or			
C	EELOW $80 \%$ IEPTH OF IISCHARGE)			
C (				
C IA M	AVERAGE BATTERY CURRENT SINCE	GIMPS:	Cfilc	*******
C	stint ut stc dr iurke			
-				
O: IBATT	BATTERY GITPUT CURRENT	AMPS	CALC	*******
C				
C L Hatax	battery max. Charging current	AMPG	NASA	200.0
C				
C HIMCD	OLD VAlue of bettery chrbent	AMPS	CALC	*******


C.				
C $1000(1)$	AREAY GIICH SAUES STATE UF	-	CALC:	
C	OEPTi Dr MSIMARSE Flat at			
C	ERD Of Each gle			
$\therefore$				
C LETF	batiery cell current <accoumt	AMPG	CALC	
$1{ }^{1}$	Fuld chance in cela restsitance			
C	due ro change in crill hasis)			
C				
(i) ITFMK	max valut of batiery effective	AIPS	CSU	700
C	CORHENT			
C				
C MLEC	electillal path dalc. flab equals	-	CALC:	********
$1:$	1 (F HECTRLCAL PATA CALG WAS MADE			
E	THIS LTEKATION)			
l:				
C IITLL	battery curnent needen to charge	AMPS	CAlc	*******
C	BATPERY fo SOL Of 2.0			
C				
C JFLLBK	COLINTS NUARER OF TIMES ARTUAL	-	CALC	*******
L				
6	DETERMINED EY SPLIT FIUNCTION			
C				
C IHECHG	battery changinig flat sequfl to 1	-	CALS:	*******
:				
c				
c. Itidy		.	CALC	*******
C	URIVING ON HIGHWAY RAlHER THANT STC)			
C 11046	Comiste lterations in atmemptikg ro	$\cdots$	CALC	********
r .	marcia chlobafate battery voltabe ro			
0	battery vil tage assumed in making			
c.	A HE PHARGING OF: THE DATMEY			
C	CAthemation			
I'				
C MITR	COUNTS ITEEATIONS IN AITENPTHEG	$\cdots$	Calc	*******
1	TO halicll calculateu batiery			
C	VOL TAGE TO BATtERY voltane assumed			
1 :				
C.	Calcuialion			
C				
f: IIREGN	Gounts ithrations in atlemplanc ro	.	CALC	*******
C	bifth Calmulated baticay voltage			
C	t0 battery voltage gegumed in making			
i:	A PGder reganepariok calculation.			
C				
C. 1 may	NUMBER SF POWER SPlit parameters	-	csu	* *******
[				
C INUCHE	HE CHARGENG INHIHIT (LAG	-	CSU	0
P	$(=1$ FIM NO HE CHARGING)			



1.	CYDLE COST, PETRULEUM COSi'			
C	AND ACQUISITION CAST			
[				
C. MindTC 1:	VEHICLE MAINTENANCE CWGT FOY butie vear	DULLARS	CALC	********
C				
C Mangkup C	DEALEE: MARKUP FACTON	-	CALC	********
$\begin{aligned} & \mathrm{c} \mathrm{AC} \\ & \mathrm{c} \end{aligned}$	Mass of a battery cell	RILUGRAMS	CALE	********
C HGitNB C	Mass de the battery cell lised In develofing fhe betifry	KILOGRAMS	NASA	9.83
C	DISEHARSE: CURUE:			
C				
$\begin{aligned} & \text { C BNFCST } \\ & \text { C } \end{aligned}$	manulacturing cost fur vehicle.	DOLLARS	Catc	*******
CH	total. Mass UF vehicle and PRIPUESSON SYSTEM	Kll.ugratis	CALC	********
C				
C MTGRKU !:	fouer rating of geaf between meectric muror and but (also	KILOWATTS	NASA	40.0
6	SEE PMGRIE)			
C C				
C. MTKGPK i;	ELECTRIC MOTOR PEAK KILOWATT RATANG (AL.SO SEE PMimAX)	KILOUATTS	NASA	40.0
$c$				
${ }_{C}^{C} \text { KIMAIN }$	ELECTEIC MGTOR MAINTENANCE COST	DOLLAES PER   KHOMETER	CALC	********
C				
C Mini:i	CONGTAMT USED IN CALCULATHNG  	KILOGRAMS   PGR K	NASA	0.6
C				
c mircer	CONSTANT USED TO Calleulate	WULARS PER	NASG	15.95
[ C ( ${ }^{\text {a }}$				
C bing	Cost of electric molote	DOLLARS	CALC	
C KTEKW $1:$	POUER RATIME OF ELECTRIC MOTOR ( MLSU Br: :AGRTD	KIL.OWATTS	NASGA	20.0
C				
C mirsto	AN ARRAY GPECIFYING MnXIMUM	RADLANS PER	NASA	HAVE
(c) (Ptinect)	) EFFICTENCY MOTOR SPEED FOR A	SECOND		
C	GIUEN GUSPUT POUER			
C				
C NLC	NUMBER OF SERIES CONNECTED	$\cdots$	NASA	84
1.	bitfery millis necescary 70			
C	REACH SYGEEH UOLTAGE			
$1:$				
C Nobe C	IIMENSIUN OF GRG ARRAY Z	$\cdots$	CSU	6900


C NCYCL c	fomber of stc cycles mbeaiy SIMOLAFED	-	Call	*******
¢				
c. matax	max mitike of Stc's in mik	-	NASA	35
C	Martucutar trip			
U				
C. Nimbu	GHEN RINRE = 2) THE No. OF	-	CSO	Vinkies
C	drement hiku vadues useb			
0				
C NUGTS	trumated vorue of stono	-	Catc	*******
c				
c C	Number of Vifitalie paramiters	-	CSU	VARIES
$\stackrel{1}{6}$	Fto tra			
\%				
C Whter		.	NAGA	28
'	Or eali mog peduthmi			
C	highual dajumg			
C				
C NTIMC	INTEGE INDICATING NHiter of	."	Call	*******
L				
c	cycle mikeady simulated			
$\bigcirc$				
C Mmip	Lumex inglating which trif ls	-	CALC	*******
1 :	Detms USEP			
0				
CNEREX	mikimum nutaer of trif 'ypes	-	NASA	8
¢				
6				
C. Pixle	Poumer requipen at axle	Whits	CALC	*******
-				
c Matix	hat teey maw charging poluer	Whtrs	NASA	33,600.
C Proun	batteny durut power	WAits	cale	********
c				
	heat enginf. poner used to	hatis	calc	******
$1:$	Charge natreries			
U				
c rat	Youer revimeg at cul infut	Whrts	CALC	*******
C				
(: P0 Pix	HAXIMUH Pumer atint of cot	Wants	NASA	$90,000$.
c ${ }^{\text {c }}$				
- mer	differnimal output pouer as a	percent	CAIC	********
!	percini ur differenial rated			
c	Pruck			
$!$				
c: pleate:	differental rated poler salso	Wents	NASA	$90,000$.
!:	Gre drmut			
c				
c pbrive	poner requrei at drive shaft	WATtS	CALC	*******


$\begin{aligned} & \text { CPELEC: } \\ & \text { !: } \end{aligned}$	electric poher requifed at neur ru cut	WATTS	CALC	
C				
C PLTSGT 1 ！	！ARRAY CONIAINING PETRGLEIM COBTG Fop YEAR I	UOLLARS	Came	＊＊＊＊＊＊＊＊
C				
C PETROL 1 ：	petrultam volume used IN CHRRENT IRIP	LITERS	CALC	＊＊＊＊＊＊＊＊
0				
C PETSTCSI	great which saves at the end OF EACl Sit Thi：rural perrolelah	LITERS	calc	＊＊＊＊＊＊＊＊
C	Villuat uged since the start of			
C	AL 3 W			
C				
C PETYR（I）	ARRAY HIICH CONTALNS THE YEARLY	LITERS	CALC．	＊＊＊＊＊＊＊
C	Pembueut conzumption for thes			
C	Particliak trip			
C				
C PGEAR	POLEE RIGUTRED AT INPUT 10 giar	WATTS	CAIC：	＊＊＊＊＊＊＊＊
¢	betueen doi and dirferential			
L				
C PGPCT	OUTPU1 PGWER OF gear hetueen	PERCENT	CALC	
1.	COT GND DIFERENTIAL AOA			
C	PERCENT OF GEFA＇RATED POWER			
C				
C Protile	RATED fower for gear betheen	WATTS	NASA	90,000
C	DUT ARD OtrFerential s see also			
0	OFGRK4）			
C				
C phe	HEAT ENGNE FOGER RETUTRED AT	WATTS	Cac	＊＊＊＊＊＊＊＊
0	snuut tu cyt			
C				
C mhemex	MAX OUTPUI FOUER OR HEAT ENGINE	WATTS	LALC：	＊＊＊＊＊＊＊
C				
C brabit	ESTIMATED OUTPUT POUER OF HE	WATTE	CAla	䋛粎米粎
：	GRED IN DETERGINCNG CUT RATIO			
C				
c Piloss	inverter muker loss	Wh7TS	CALC：	
C				
C ITN		WA115	CALE	＊＊＊＊＊＊＊＊＊
C	ITUERTEP			
C．				
C mment	MAX GITIUT POWER OF INEEREN	WAll 1 S	NASGf	$40,000$.
C				
C rabect	POWER AT OUTPUT OF GEAR BETWEEN	PERCENT	CALC	＊＊＊＊＊＊＊
C	murcr and lut an a rercent uf			
C	geak malld oujput fuatr			
C				
C．IMGRTE	RATED OUTPUT POWER FOE GEAR	WATTS	NASAS	40，000．
4				


C	SEE MTERK(A)			
C				
C PHOTOR C	ELECTRIC MOTOR OUTPUT PUNER	WATTS	CALC	********
C 1 HT	ESTIMATED UHTPUT POWER OF MOTOR	WATTS	CALC	*******
C	USED IH DETERKINING THE CUT RATIO			
C				
C Pritmax	ELECTRIC MOTOR MAX OUTPUT POWER	WATTS	NASA	40,000.
L	(ALSO SEE HPMAX AND MTKUPK)			
C				
C PMTPCT	MOTOR OUTPUI POWER AS A PERCENT	PERC:ENT	CALC	********
$\mathrm{L}^{+}$	UF RATED POHER ©USED FOR RATIO			
C	CALC)			
C				
C Pritrto	Rated finuer of hotor (see also	WATTS	NASA	20,000.
C	MTRKW			
C				
C POURLD	accummilation of sudaren values	WATTS	CALC	*******
!'	OF PSHORI	Solated		
C				
C PKEGEN	POWER AVAILABLE FOR REGENERATION	WATTS	CALC	*******
C	WHTER POAO 1.03'SES			
C				
C Proad	VEHICLE FIUER LOSS dUE 10 ROAD	WATTS	CALC	*******
C	LOSiES DURIRG GREAKING MiASE OF			
C	STC			
C.				
c esthori	DIFFERENCE GETUEEN DEMANDE.D POUER	WATTS	Calc	********
c				
C	SUPPIY			
C				
E PMRRT(C	rrent/kg) feukert curue:	AMP-HOURS/KG	NASA	Have
$C$				
C rabitt	VARIALLE USED TO PRINT URATT	volts	CALC	********
$1 \cdot$	ANO VBIHG			
C				
C HURSTF	TOTfl fouler available for	WHTTS	CALC	*******
C	REGY:NERAPION DUR IUG THIS TIME			
C	InCREMENT IN THE EREAKING			
E	PHASE Of SHE STL			
$\bigcirc$				
C RLUT	CUT RAIIO (OUTPUT SPEED	.	CAlC	
$1:$	DIULDED EY [tout gPeed)			
C				
C REOTM	Minimlim allowable cut ratio	-	NASA	0.6
c				
c. RCuTmix	max flluwhble cut ratio	-	NASA	3.4
C Limff	GEAR RAIJU Of DIf FERENTIAL (GXLE	.	NASAA	1.0
$8:$	SPEED OIUDEC BY SIGFT GPEED)			


C				
C REGEFF	REGE.NERAIIUE EFFIGIENCY	-	CALC	
C				
C RIGEN(I)	array which gaves al the end	AMP-HOURS	CALC	*******
C	I]F EACII STC THE AMP HOURS			
C	regenerated into the battery			
$L^{\prime}$	SITCE THE START OF GLL STC'S			
C				
C REGNIN C	MINIHUM PGUER WORTH REGENERATING	WATIS	NASA	1,000.
C RIPAlR	VEHICLE REPAIR COST FOR ONE YEAR	DOLLARS	CALC	********
1'				
C. KEPCHI	CHOPPER INUERTER REPAIR COST	DULLARS PER	CALC	********
C		KII.UMETER		
C				
C REPCUT	CUT REPAIR COST	DULLIARS PER	CALC	*******
C		KILOMETER		
C				
C REPMTR	ELECTRJC Mator repaik cost	VOLLARS PER	CALC	********
C		KILOHETER		
C				
C REPRHE c	heat maidine repair cast	DOLLARS PER   vILUMETEP	CALC	*******
		RILUMETER		
C				
C RGEAR	RATIO OF GEAR BETUEEN CUT	-	NASA	0.0833
C	AND DIFFERENTIAL CDRIVE SHAFT			
C	SPEED DIUIDED BY CUT OUTPUT SPEED			
C				
C RGRM	RatIo if gear between electric	$\cdots$	NASA	0.2857
し'	muror and lut scur InPui speed			
C	DIVIDED EY ELEC. MOIOR SPEED)			
E				
c. Rifio	AIR WEIGHY DENSITY	KILOGRAMS PER	CSU	1.22.5
C		CIUIC METER		
C				
C. RUNES	A VARImlice read Ik:		frb	
C	0 FOR 1 Gcomp Lall swith only a B	IJTtiARY SHEET PR	ItIED)	
C	1 FOR 1 GCOHP CALL (WITH B9 \% A 8	SUMTARY SHEET	PRINTE	
C	2 FOR Whking a lccoit giti WIH H	EKW		
C	ARID HGBATT AS THE AXIS			
1 1,	3 FOR MAKIN' PUWER SPLLI VS CURSU	HTION		
C	DATA			
C				
c RITRE	TIRE RADIUS	METERS	NASA	0.30
C				
C Sifilve	Salvagl value or vehicle	DOLLARS	CALC	*******
C ( ${ }^{\text {c }}$				
C Eiforge 1 )	) ARRAY Or SCALED TOKQUES	NM	CALC	*******
$L^{2}$	USED IH FUEL. RATE LALC			
C				



$\mathrm{C} \text { TIME }$	SIMULATICN TIME	SECONDS	CALC		*******
C ThOTOR $i$	GUTPUT TURque of ELECTRIC MOTOR	NEWTON METERS	CALC		*******
6					
C Tatbat	FIRST YFAR EQUJVALEST TITAL	DOLLARS	Calc:		*******
L	Barcery replacemedir cosir				
$C$	(SEE TOTILE)				
0					
C T01BS	Fildst year lquivalent hattery	DOLLARS	CALC:		********
C					
C	MONEY IWUESTED IN THL FIRST				
\%					
E	amount lit batteries holiod be				
$C$	SULD FOf IN THE TEATH YEAR?				
I:					
C TGIELE	FIRST YEAR EQUIVALENT TUYAL	dullars	CALC		䊉*****
1.	ELEC RREAAL ENERGY COSTS, OBTAIMED				
C	MY COmPlITING THE SUA OF THE FIRST				
C	Y:AR EQUTATENT YEARLY CJSTS,				
C	FOR ALL TEN YEARS, WHCH				
L	GRE AMOHSTS, WHCH IF THVESTED IN				
©	THE FIKGT YEAR AT A FIMED INTEREST				
L'	RATE, Y YLLO IHE COST OF ELELTRICAI.				
C	ENERGY FOR THE GIVEN YEAR				
$1{ }^{2}$					
C Tinpet	FIRSt year edulualent lohal	DUR LARS	CALC		*******
C	PEPROLETH COST USES DURTNG				
C	LIfE GYCLE (BEE TOTELE)				
6					
c. Tilisal	FIRST YEAR EQUIVALENT VEHICLE	dullars	CAl.C		*******
C	SALUAGE VALUE (SEE TOTES)				
C					
C IRIPLIM ${ }^{\text {a }}$	GUKAY WHICH COMIAINS THE	METERS	NASA	1	TRIPLN(I)
1.	LengTh of ghl fhi. regutato			1	10,000.0
0	TRI'S			2	30,000.
C				3	50,000.
c				4	80,000.
C				$\square$	130,000
i				6	160, 1000.
C				7	500,000.
C				\%	000,000.
C					
( M M3.foct	Ambay containing number df Each	-	NOAGFi	1	TRIPNOSI)
$:$	UF SHE LHDUTDIAL TRIP:S PER YEAR			1	130
[				:	85
C				3	57
C				$\dot{4}$	54
C				5	12
C				6	7




C WGCIIGR C	HASS OF THE GATIERY CHARGER	KILIGRAMS	CALC	*******
$\begin{aligned} & \text { C WGCHI } \\ & \text { C } \end{aligned}$	Mass of the chopfer inverter	KILOGRAMS	CALC.	*******
$\begin{aligned} & C W G L T \\ & C \end{aligned}$	Mess of Clijch	KILIGRAMS	NASA	0.0
$\begin{aligned} & \text { C HGCUT } \\ & \text { i } \end{aligned}$	MASS OF THE CUT	KILOGRAMS	CALC	*******
$\begin{aligned} & \text { C WGDIFF } \\ & \text { C } \end{aligned}$	MASS UF THE: DIFFERENTIAL	KILUGRAMS	CALC	*******
C. WIGEAR L	ANGULAK SPEED AT JNPUT TO GEAR DETWEEN BUT AND DTFFERENTAL	RADIANS PER SECOND	CALC	*******
C				
C WEENG C	MASS Of THE ENGINE	KILOGRAMS	CALC.	*******
C WGEXTR ©	Mass of Extrá compongnts in vehicle prupusion systeh	KILUGRAMS	NASA	0.0
C				
C WGGRDF C	MASS OF THE GEAR BETWIEN THE OTHERENIIAL ANID THE CUT	KILUGRAMS	CALC	*******
C				
C NGERM i;	MASS Of THE GEAR EETUEEN THE ELLECTRIC MDTOR AND SIE CUT	KILOGRAMS	CALC	*******
C				
$\begin{aligned} & \text { C WGWOIR } \\ & \text { C } \end{aligned}$	HASS OF THE ELECTRIC MOTOR	KILUGRAMS	CALC	*******
C HEORTE.	RATED OUTPUT SPEED FOK GE.AR betwen cot amo differential	RADIANS PER SECOND	NASA	116. 35
6				
C WPCT L	output sfeed of geaf between CUT AND OIFFERENTIAL AS A	PERCENT	CALC	********
C	PERCENT Of RATED OUIPUT SPEED			
C				
C WHE	heat enkike mogular speed	RADIANS PER SECOND	CALC	*******
C				
C HIEFF	MOST EFFICIENT ENGINE SPEED	KADIANS PER	CALC	*******
C	FGR A SPECIFIED POWER DUTPUT	SECOHD		
C				
C WHEHN C	KIN ENGINE SPEED	KAD/SEC	CSU/NASA	104.72
C Whiorte C	RATED OUTPUT gPEED FOR GEAR berween rurur and cut	RADIANS PER SECONO	NASA	419.0
C				
$\begin{aligned} & \text { C WNOTOR } \\ & \text { C } \end{aligned}$	ELECYRIC MOTOR ANGULAR SPEED	RADIANS PER SECDND	CALC	********
C				
$\begin{aligned} & \text { C WMT } \\ & \text { C } \end{aligned}$	motor sfeed computed IN RGTIO SUBRUMTHE	RADIANS PER SECOND	CAL.C	********
C				


$\begin{aligned} & \text { c UMTRMXX } \\ & \text { c } \end{aligned}$	max Speed of motor	Rad PER SEC	csu	1,675.5
C WH'	fower train weight	kilograms	CALC	*******
c				
C Wric	MAXIMUK DESIISN PAYLOAD	kILOGRAMS	NGSA	415.0
U'	For vehicle			
c				
C wrrop	mass of vehicle propulsion	kilograms	CALC	*******
c	SYSTEM			
C				
C WS	hass of structure and	killograms	Calc	*******
C	Chassls for vehicle			
C				
C Wicer	CONSTANT USEd to calcllate	dOLLARS PER	NASA	3.00
E	the cust uf the siruiture and	Kilugram		
C	CHASSIS FOR THE VEHICLE			
c				
C Wicost	cost of gtructure and	DOLLARS	CAl.C	*******
c	CHAGSI:S FOR VEHICLE			
c				
C. $\mathrm{HI}_{1}$	TQTAL MASS Of VEHICLE AMD	kilugrams	calc	*******
c	PRIPULSTUN SYSTEM			
c				
C WTL.	test paylaad for vehicle	kilugrams	NASA	207.0
c				
c $\chi^{\prime} x$	array of parameters	MIXED	Câlc	*******
c	OPTIMJTED BY GRG			
C				
C 7	querall gikg large maik array	-	CALC	*******
c				
stop				
END				
END				

This appendix details the method used to calculate the vehicle mass. The variable names used below correspond to the names used in the dictionary in Appendix $A$ and also in the computer program. To obtain actual values used for any constants, refer to Appendix A. The overall vehicle mass formula is the same as that used in [1, 2]. The component mass formulas and the values for constants used in those formulas substantially agree with those found in $[1,5]$. In the following, all masses are in kg .

Total Mass Calculation
If we let

$$
\begin{aligned}
\text { WCONST } & =\text { constant term in the total mass formula } \\
\text { WF } & =\text { fixed mass of the vehicle }(510 \mathrm{~kg}) \\
\text { WPL } & =\text { design payload }(415 \mathrm{~kg}) \\
\text { WPROP } & =\text { mass of propulsion system } \\
W T & =\text { total mass of vehicle } \\
\text { WTL } & =\text { test payload }(207 \mathrm{~kg})
\end{aligned}
$$

then

$$
\begin{equation*}
\text { WCONST }=\text { WTL }+\frac{0.23(\text { WPL })+\text { WF }}{0.77} \tag{B-1}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { WT }=\text { WCONST }+\frac{\text { WPROP }}{0.77} \tag{B-2}
\end{equation*}
$$

The mass of the propulsion system, WPROP, i.s calculated below.

## Propulsion System Mass Calculation

We let (where the masses are in kg , and the component power ratings are in kw ):
WGBATT = battery mass
WGBATT = battery mass
WGCHGR = battery charger mass
WGCHGR = battery charger mass
WGCLT $=$ clutch mass
WGCLT $=$ clutch mass
WGCVT $=$ CVT Mass
WGCVT $=$ CVT Mass
WGMOTR $=$ traction motor mass
WGMOTR $=$ traction motor mass
WGGRDF $=$ mass of gear between
WGGRDF $=$ mass of gear between
differential and CVT
differential and CVT
MTRKW $=$ power rating of traction
MTRKW $=$ power rating of traction
motor
motor
CHIKW $=$ power rating of chopper/
CHIKW $=$ power rating of chopper/
inverter
inverter
WGCHI $=$ chopper/inverter mass
WGCHI $=$ chopper/inverter mass
WGDIFF $=$ differential mass
WGDIFF $=$ differential mass

The quantities CVTC1, HEC2, MTRC1, CHIC1, DIFFC1, GRC1, CHGRC1 are all constants used below in the mass formulas; their values are given in Appendix A.

Using the quantities defined above, the component masses and the propulsion system mass are given by

$$
\begin{align*}
\text { WGCVT } & =\text { CVTC1*CVTKW }  \tag{B-3}\\
\text { WGENG } & =\text { HEC2*HEKW }  \tag{B-4}\\
\text { WGMOTR } & =\text { MTRC1*MTRKW }  \tag{B-5}\\
\text { WGCHI } & =\text { CHIC1*CHIKW }  \tag{B-6}\\
\text { WGDIFF } & =\text { DIFFC1*DIFFKW }  \tag{B-7}\\
\text { WGGRM } & =\text { GRC1*MTGRKW }  \tag{B-8}\\
\text { WGGRDF } & =\text { GRC1*DFGRKW }  \tag{B-9}\\
\text { WGCHGR } & =\text { CHGRC1*CHGRKW } \tag{B-10}
\end{align*}
$$

and

$$
\begin{gather*}
\text { WPROP = WGCVT + WGENG + WGMOTR + WGCHI + WGDIFF + WGGRM } \\
 \tag{B-11}\\
+ \text { WGGRDF + WGCHGR + WGBATT + WGCLT }
\end{gather*}
$$

In addition, the curb mass, WCURB, and the power train mass, WP, are given by

$$
\begin{equation*}
\text { WCURB }=\text { WT }- \text { WTL } \tag{B-12}
\end{equation*}
$$

and

$$
\begin{equation*}
W P=W P R O P-W G B A T T \tag{B-13}
\end{equation*}
$$

$$
\begin{aligned}
\text { APPENDIX } \mathrm{C}- & \mathrm{CALCULATION} \mathrm{OF} \mathrm{MANUFACTURING,} \\
& \text { MAINTENANCE, AND REPAIR COSTS }
\end{aligned}
$$

This appendix details the methods used to calculate the vehicle manufacturing, maintenance and repair costs. The variable names used below correspond to the names used in the dictionary in Appendix A and also in the computer program. To obtain actual values used for any of the constants, refer to Appendix A. The formulas and values for the constants used in these calculations are taken from [1, 4]. The component masses used below are calculated in Appendix B.

## Manufacturing Costs

We let (where the masses are in kg )

$\mathrm{WF}=$ vehicle fixed mass	WGENG = engine mass
WGCVT = CVT mass	WGCHGR = battery charger mass
WGCHI = chopper/inverter mass	$\text { WGGRM }=\underset{\text { CVT }}{\text { mass }} \text { of gear between motor \& }$
WGDIFF = mass of differential	$\begin{aligned} \text { WGGRDF }= & \text { mass of gear between } \\ & \text { differential and CVT } \end{aligned}$
$W S=\underset{\text { mass }}{\operatorname{structure}}$ and chassis	WGMOTR $=$ mass of motor
WCURB = curb mass	WGCLT $=$ mass of clutch

In addition, HECER, CVTCER, CHGCER, CHICER, GRCER, DIFCER, WFCER, WSCER, MTRCER, CLTCER and ASMCER are the various component cost estimating ratios (CER's) in $\$ / \mathrm{kg}$. The component costs are then calculated as

$$
\begin{align*}
& \text { HECOST }=\text { HECER*WGENG }  \tag{C-1}\\
& \text { CVTCST }=\text { CVTCER } * \text { WGCVT }  \tag{C-2}\\
& \text { CHGCST }=\text { CHGCER } * \text { WGCHGR }  \tag{C-3}\\
& \text { CHICST }=\text { CHICER } * \text { WGCHI } \tag{C-4}
\end{align*}
$$

$$
\begin{align*}
\text { GRMCST } & =\text { GRCER*WGGRM } \\
\text { GRDCST } & =\text { GRCER*WGGRDF } \\
\text { DIFCST } & =\text { DIFCER*WGDIFF } \\
\text { WFCOST } & =\text { WFCER } * W F \\
\text { WS } & =0.3 *(\text { WPL }+ \text { WPROP }+ \text { WF })  \tag{C-9}\\
\text { WSCOST } & =\text { WSCER*WS }  \tag{C-10}\\
\text { MTRCST } & =\text { MTRCER*WGMOTR }  \tag{C-11}\\
\text { CLTCST } & =\text { CLTCER*WGCLT }  \tag{C-12}\\
\text { ASMCST } & =\text { ASMCER*WCURB } \tag{C-13}
\end{align*}
$$

The manufacturing cost is then the sum of these twelve component costs. Note that the battery cost is handled separately and is not included in the manufacturing cost (it is included in the calculation of acquisition cost in Section 5). Note also that the above manufacturing cost includes (in addition to the component costs) an assembly cost (ASMCST), a structure/chassis cost ( wSOOST ), and a fixed wight cost (wFCOST).

## Maintenance Costs

It is assumed that maintenance is performed on the heat engine, motor, battery and chopper/inverter. HEMAIN, MTMAIN, BTMAIN, CVTMAN and CHIMAN are component maintenance costs ( $\$ / \mathrm{km}$ ), HEKW and MTKWPK are component power ratings (kw), BTLIST, BATCST and BTMKUP are battery list price, battery cost and battery markup factor, respectively, WGBATT and WGCHI are the weights of the battery and the chopper/inverter (kg), respectively, and BATCER and KMPRYR are the battery CER and the kilometers driven per year, respectively. With these definitions, the total yearly maintenance cost, MAINT, in dollars, is given as

$$
\begin{equation*}
\text { MAINT }=\text { KMPRYR*(HEMAIN }+ \text { MTMAIN + BTMAIN + CVTMAN + CHIMAN }) \tag{C-14}
\end{equation*}
$$

where

$$
\begin{align*}
& \text { HEMAIN }=[0.18+0.005 *(\text { HEKW } / 0.746)] / 160.93  \tag{C-15}\\
& \text { MTMAIN }=[0.06+0.002 *(\text { MTKWPK } / 0.746)] / 160.93  \tag{C-16}\\
& \text { BATCST }=\text { BATCER } * \text { WGBATT }  \tag{C-17}\\
& \text { BTLIST }=\text { BATCST } *(1.0+\text { BTMKUP })  \tag{C-18}\\
& \text { BTMAIN }=(0.004 * \text { BTLIST }) / 160.93  \tag{C-19}\\
& \text { CVTMAN }=0.063 / 160.93  \tag{C-20}\\
& \text { CHIMAN }=[(36.83 / 2.0) * \text { SQRT }(\text { WGCHI })] /(10.0 * \text { KMPRYR }) \tag{C-21}
\end{align*}
$$

Most of the above expressions are taken from [4]. However, the chopper/inverter maintenance cost is taken from [1], but with the modification that half of the cost is assigned to maintenance and half to repair.

## Repair Costs

It is assumed that repair is performed on the heat engine, motor, chopper/inverter and CVT. The yearly repair cost, REPAIR, in dollars, is given as

$$
\begin{equation*}
\text { REPAIR }=\text { KMPRYR* (REPRHE + REPMTR + REPCVT + REPCHI }) \tag{C-22}
\end{equation*}
$$

where REPRHE, REPMTR, REPCVT and REPCHI are the component repair costs ( $\$ / \mathrm{km}$ ) calculated from (HEKW, MTKWPK, WGCHI and KMPRYR are all defined above)

$$
\begin{align*}
& \text { REPRHE }=[0.28+0.008 *(\text { HEKW } / 0.746)] / 160.93  \tag{C-23}\\
& \text { REPMTR }=[0.09+0.002 *(\text { MTKWPK } / 0.746)] / 160.93 \tag{C-24}
\end{align*}
$$

REPCVT $=\left[0.05+0.0013^{*}(\right.$ MTKWPK $\left./ 0.746)\right] / 160.93$
REPCHI $=[(36.83 / 2.0) * S Q R T($ WGCHI $)] /(10.0 * K M P R Y R)$
(C-26)

The acquisition cost is a combination of the manufacturing cost of the vehicle drive train and body and the cost of the batteries. The vehicle acquisition cost, ACQCST, in dollars, is given as

$$
\begin{equation*}
\text { ACQCST }=\text { MARKUP } * M N F C S T+B A T C S T *(1.0+B T M K U P) \tag{D-1}
\end{equation*}
$$

where MARKUP is the manufacturing cost markup factor, MNFCST is the manufacturing cost (calculated in Appendix C), BATCST is the battery cost, and BTMKUP is the battery markup factor. BATCST and MARKUP are calculated from (the ex-pression for MARKUP is taken from [4])

$$
\begin{align*}
& \text { BATCST }=\text { BATCER } * \text { WGBATT }  \tag{D-2}\\
& \text { MARKUP }=\left(29.176 * 10^{-5}\right) * \text { MNFCST }+1.40833 \tag{D-3}
\end{align*}
$$

and where WGBATT is the battery weight, and BATCER is the battery cost estimating ratio (CER).

For each choice of the design variables (battery weight, heat engine rating and power split strategy) it is necessary to simulate the vehicle as it is driven over the specified yearly driving requirements (Section 4) in order to calculate yearly electrical energy and petroleum consumptions, the number of deep discharges of the battery per year, and whether at any point in any of the trips the on-board energy is insufficient to meet the power required at the wheels. This appendix gives the details of how that simulation was carried out. It includes a description of how each component in the power train was modeled as well as a description of the overall computational procedure used to determine the power required from each of the on-board energy sources at each instant of time in driving an STC or in highway driving. Reference should be made to Section 3.1 and Figure 3-1 for a description and diagram of the overall propulsion system and how the various components described below are interconnected.

## E. 1 COMPONENT MODELS

In this part of the appendix we describe the methods used to model each of the components in the drive train. It should be noted that this is a simulation of the steady state rather than the dynamic behavior of the vehicle: the component models are therefore steady state rather than dynamic models.

Battery Model: Of all the component models, the battery model is the most complex. Because of this complexity it is described in depth in its own appendix, Appendix F.

Heat Engine Model: The heat engine model used was a heat engine map [1] which plotted fuel flow rate (liters/sec) against engine speed (rad/sec) for a given engine torque (Nm). The map consisted of a set of such curves
for different torques as shown in Figure E-1. The map was used to determine fuel flow rate corresponding to a known engine output torque and speed. The maps were stored as arrays, and double variable linear interpolation was used. The actual maps used in this study were the same as those used in [1], but with an added degree of complexity. In this study the heat engine rating was continually changed in a smooth fashion as the optimization algorithm searched for the optimum. Consequently, maps for any rating between a maximum and minimum rating had to be easily generated to carry out the optimization. From interpolation studies using the three maps given in [1] for ratings of $56 \mathrm{kw}, 75 \mathrm{kw}$ and 112 kw , it was found that the other maps could be generated from the 75 kw map by leaving the engine speed axis alone, and multiplying the fuel flow rate ordinate and the torque corresponding to each curve by a factor equal to the rating of the engine whose map is sought divided by 75. Thus, at the beginning of each simulation run, the map array for the given heat engine used for that simulation run would be generated and stored. Then at each simulation time increment, that array would be used with a double variable linear interpolation scheme to determine the fuel flow rate during that time increment.

Chopper/Inverter: The characteristic of the chopper/inverter that required modeling for the instantaneous power calculations was the power loss in the device. The model used was the same as that used in $[1,2]$ and is given as

$$
\begin{equation*}
\text { PILOSS }=3.0 *(\text { PINV } / V B A T T T)+0.035 * \text { PINV } \tag{E-1}
\end{equation*}
$$

where PINV and VBATM are the chopper/inverter output power and battery voltage, respectively. The ratio (PINV/VBATT) is an estimate of the current


Figure E-1 Heat Engine Map
being drawn from the battery.
Electric Motor: The traction motor was a brushless, DC, permanentmagnet motor operating from a battery voltage of 168 V . It was rated at 20 kw and had a top speed of $14,000 \mathrm{rpm}$. The model for the motor was taken from [1] and is an efficiency map with motor efficiency plotted against percent rated output power (see PMTRTD and PMTPCT in dictionary) for a given motor speed. The map is shown in Figure E-2. However, in using the map it must be recognized that there is a stall-out speed for each percent rated output power: for the given output power the motor cannot be run below this speed without stalling. The stall-out map is used in selecting the CVT ratio; the stall-out map actually used for this motor is given in Appendix $G$ where the ratio selection is discussed.

Continuously Variable Transmission (CVT): The CVT provides a range of ratios (input speed/output speed) which vary continuously from a $0.3: 1$ overdrive to a 3.33:1 speed reduction. The CVT model [1] is an efficiency map as shown in Figure E-3 where efficiency is plotted against output power for a given ratio.

Gears and Differential: The differential (with a speed ratio of $1: 1$ ) and the gears between the electric motor and the CVT input (providing a speed reduction from motor to CVT of $3.5: 1$ ) and between the CVT output and the differential input (providing a speed reduction of $12: 1$ from CVT to differential) were all modeled by the same efficiency map shown in Figure E-4 where gear efficiency is plotted against percent rated output power for a given percent rated input speed. The rated powers and speeds for the different gears are PDRATE, WDORTE, PMGRTE, WMORTE, PGRATE and WGORTE, and are found in the dictionary in Appendix A.


Figure E-2. Electric Motor Efficiency Map


Figure E-3. CVT Efficiency Map


Figure E-4 Gear Efficiency Map

## E. 2 CALCULATION OF POWER REQUIRED AT THE AXILE DURING THE ACCELERATION AND CRUISE PHASES OF THE STC AND DURING HIGHWAY DRIVING

The power required at the axle is determined by summing the forces acting on the vehicle and multiplying this by the average velocity over the present simulation time increment. In particular, if the simulation time increment is $\Delta$ and current time is $t$, then the average velocity over the current simulation time interval is

$$
\begin{equation*}
v_{a}=(1 / 2)[v(t)+v(t+\Delta)] \tag{E-2}
\end{equation*}
$$

where $v(t)$ is the vehicle velocity at time $t$. The required acceleration over this time interval is

$$
\begin{equation*}
a(t)=[v(t+\Delta)-v(t)] / \Delta \tag{E-3}
\end{equation*}
$$

If $F_{D}, F_{R}, F_{A}$ and $F_{G}$ are the drag force, rolling resistance force, acceleration force and grade angle force, respectively, then

$$
\begin{align*}
& F_{D}=C_{d} A \rho\left(V_{a}^{2} / 2\right)  \tag{E-4}\\
& F_{R}=C_{R}^{M} T_{\mathrm{T}}  \tag{E-5}\\
& C_{R}=\left[10.0+0.01 V_{a}+\left(8 \times 10^{-5}\right) \mathrm{V}_{\mathrm{a}}^{2}\right] \times 10^{-3}  \tag{E-6}\\
& F_{A}=(1.1) M_{T} V_{a}  \tag{E-7}\\
& F_{G}=M_{T} g \sin (\beta) \tag{E-8}
\end{align*}
$$

where all the forces are in newtons, $g$ is the acceleration of gravity, MT is the vehicle mass $(\mathrm{kg}), \beta$ is the grade angle at the current simulation time, $C_{d} A$ is the aerodynamic drag coefficient multiplied by the vehicle frontal area $\left(C_{d} A=0.6 \mathrm{~m}^{2}\right)$ and $\rho$ is the air weight density $\left(\rho=1.225 \mathrm{~kg} / \mathrm{m}^{3}\right)$. The factor of 1.1 in the expression for $F_{A}$ takes into account accelerating the rotating inertias in the vehicle drive train. The power required at the axle at the current time is therefore given as

$$
\begin{equation*}
P_{A}=\left(F_{D}+F_{R}+F_{A}+F_{G}\right) V_{a} \tag{E-9}
\end{equation*}
$$

The axle torque and speed, $\mathrm{T}_{\mathrm{A}}$ and $\mathrm{W}_{\mathrm{A}}$, are obtained from

$$
\begin{align*}
& W_{\mathrm{A}}=\mathrm{V}_{\mathrm{a}} / \mathrm{R}_{\mathrm{T}}  \tag{E-10}\\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{P}_{\mathrm{A}} / \mathrm{W}_{\mathrm{A}} \tag{E-11}
\end{align*}
$$

where $\mathrm{R}_{\mathrm{T}}$ is the tire radius.

## E. 3 DRIVE TRAIN POWER CALCULATIONS FOR ACCELERATION AND CRUISE PHASES OF STC AND FOR HIGHWAY DRIVING

At each time step in the simulation a calculation is made to determine the petroleum and electrical energy consumed in that time step. This is done by moving the power required at the axle (see Section E.2) back through each component in the drive train. In the following discussion reference should be made to the component models given in Section E.1. It should be noted that the maps used in the calculations consist of data arrays, and a double variable or single variable linear interpolation routine (whichever is appropriate) is used to locate points not in the arrays.

Knowing the power, speed and torque at the axle, the differential efficiency map and ratio is used to determine the power, speed and torque at the input to the differential. The same exact calculation is then made to determine the power, speed and torque at the input to the gear between the CVT and the differential. At this point in the power train calculation the CVT ratio is determined so that the heat engine is run at its most efficient speed for the heat engine's current power level (this method of ratio selection is discussed in detail in Appendix G). Once the CVT ratio is known, along with the CVT output power, speed and torque, the CVT efficiency map and ratio can be used to determine the power, speed and torque at the input to the CVT. This CVT input power is then split between the heat engine and the electric motor
and batteries using the power split strategy currently in force in the simulation; no matter what power split strategy is in use, the outcome is an allocation of a fraction of the total CVT input power to the heat engine and the remainder to the motor and batteries. There is a maximum allowable heat engine power, and the simulation off loads any excess to the electrical leg if the power split calls for more than the heat engine can deliver.

Once the heat engine output power and speed are known (the heat engine is directly connected to the CVT input so that its speed is the same as the CVT input speed), the heat engine output torque can be calculated (power/speed) and used in conjunction with the speed to determine the fuel flow rate from the heat engine map. This fuel flow rate is then multiplied by the simulation time step size to determine the fuel consumption for the present simulation time increment. The computation of the total yearly fuel consumption using these fuel increments is discussed in Section 5.

The electrical leg computation proceeds by first calculating the power, torque and speed at the input to the gear between the motor and CVT by using the gear output power (from the power split) and speed in conjunction with the gear map and the known gear ratio. The motor input power can then be calculated using this output power and speed and the motor efficiency map. This establishes the power which must be supplied by the chopper/inverter.

The loss in the chopper/inverter is modeled by an equation requiring the chopper/inverter output power, which is known, and the battery current, which is not known at this point in the calculation. However, it is reasonable to assume that (i) if the simulation time step is small, the battery voltage does not change significantly from one simulation time step to the next, and (ii) the losses in the chopper/inverter are small. Under these assumptions,
the battery current for the present time increment (for use in the chopper/inverter loss equation) can be estimated by dividing the battery voltage at the last simulation increment into the present chopper/inverter output power and using this result in the chopper/inverter loss equation. This procedure allows calculation of the required battery output power.

To calculate the battery voltage, current and state of charge requires use of the battery model and an iterative procedure. An iteration procedure is required because the present battery current is not known, yet this current is required in order to use the battery model to calculate battery voltage and state of charge. At this point in the calculation, the only battery quantities which are known are the battery present output power, and the battery current, voltage and state of charge which existed at the last simulation time increment. The iterative procedure used to arrive at present values for these last three quantities is to guess at the present battery voltage (using the value from the last simulation time step; at start-up the battery is fully charged and the first value is the system voltage) and divide this into the known output power to obtain an estimate of the battery current. Knowing the ouput current, the battery model (Appendix F) is used to calculate a battery state of charge and voltage. This new battery voltage is then compared to the assumed value: if it differs by less than a specified limit (VDELT in Appendix A) the calculation is completed; if the difference is greater, the new voltage is assumed to be the battery voltage, a new current is computed and the process is repeated. An upper limit on the number of such iterations was used, but the process always converged in three or less iterations.

At this point the drive train power calculation is complete and the sim-
ulation moves to the next time interval. However, there are a number of special features in the drive train power calculation related to limiting which should be mentioned.

First, there are limits on the heat engine power and the electrical energy available at any instant of time in the simulation. If the power required at the CVT input is split in such a way that either the electrical leg or the heat engine leg cannot meet the demand, a calculation is made to determine the maximum power available from the limiting leg, this is moved through any components between the source and the CVT input, and the other leg's demand is increased by the appropriate amount (with the other leg's power calculation redone if necessary). If a situation arises in which both power sources together cannot meet the total demand, the vehicle is considered to be overloaded. The topic of overload is discussed in detail in Section 6.

In the battery calculation it is important to make sure the battery current does not exceed a maximum value (this limit must be scaled each time the battery mass is changed). As described above, the battery current is computed by dividing the battery voltage into the battery output power. If this current turns out to be excessive (at low battery voltages) when the battery calculation is finished, the available power from the battery must be estimated (by multiplying the maximum allowable current by the battery voltage just calculated), the battery calculation redone, this new battery output power moved through the electrical leg components to the CVT input, and the difference between the total power and the available electrical power made up by increasing the heat engine required power and redoing the heat engine leg computation.

## E. 4 CALCULATIONS FOR COASTING PHASE OF THE STC

In the coasting phase of the STC the vehicle simply coasts for ten seconds (see Section 4). The coasting phase always begins at the same cruise velocity of $72 \mathrm{~km} / \mathrm{hr}$, but the velocity the vehicle has at the end of the coast period (and hence the amount of energy available for regeneration) depends upon the battery weight and heat engine rating (the rating determines the engine weight); consequently the coast phase final velocity changes during a simulation run and the coast period must be simulated for each STC.

The velocity at the end of the coast phase was computed as follows. For each time step in the coast phase the current values for the drag, rolling resistance and grade forces (using the vehicle velocity at the beginning of the time step) were computed (see Section E.2). Adding these, dividing by the vehicle mass and multiplying by the time step size (DELT) yielded the decrease in vehicle velocity over the current simulation step. This was repeated for each time step in the coast phase to determine the vehicle velocity at the end of the coast phase.

## E. 5 CALCULATION OF DRIVE TRAIN POWER REGENERATION DURING THE BRAKING PHASE OF THE STC

In regenerating power back into the battery it was assumed that if the power available at any time fell below some minimum (REGMIN), regeneration would stop and the vehicle would come to rest through normal braking. Also, if in the drive train calculation the regenerated power at the input to any component exceeded that component's maximum rating, the power passed on was assumed to be equal to that maximum, and the difference was assumed to be dissipated by normal braking.

The first step in the calculation in each simulation time increment is to determine the regenerative power available at the axle for that time increment. Knowing the velocity at the start of the braking phase, and the length of time allowed for braking, the velocity decrease and the average velocity for each simulation time step can be determined. The velocity decrease over the time step is used to calculate the decrease in kinetic energy the vehicle must undergo in that time step; dividing this by the time step yields the vehicle total power reduction over that time interval. The average velocity is used to compute the drag, rolling resistance and grade forces, and these are then added and multiplied by the average velocity to obtain the power lost to the road in the time interval. The difference between these two powers is the power available for regeneration. The calculation then proceeds in a manner similar to that used in the drive train power calculation during acceleration and cruise (Section E.3): the power is moved through each component (differential, gear, CVT, gear, motor, and chopper/inverter), but with the difference that the component efficiencies multiply the output power to obtain the input power, rather than divide it as was the case earlier. When the battery is finally reached, the battery input power is known, but the current and voltage are not known. An iterative scheme is therefore again needed which guesses a battery voltage, uses that to calculate a battery current, and then uses this current with the battery charging model to calculate a battery voltage and state of charge. If the assumed and calculated voltages do not agree, the calculated value is used as a new starting point and the process repeated. This scheme was also found to converge rapidly (less than three iterations). Care must be taken to check that
battery input power and current do not exceed maximums (which change with changing battery mass).

The model used for the battery is based on the model described in [3]. The batteries are assumed to be lead-acid batteries with a system voltage of 168 volts, a cell voltage of 2.0 volts and 84 cells connected in series.

## F. 1 SCALING THE BATTERY MODEL

In the optimization studies the battery mass is continually changed. This change is interpreted as a change in the mass of each cell; the number of cells in the battery is assumed to be constant at 84 . To handle this situation, all of the battery maps (discussed in the next subsection) were scaled (where necessary) so that they represented a battery comprised of onekilogram cells. Calculations were therefore carried out on a per kilogram basis, and the results then scaled back up to the actual mass of each cell. The actual mass of each cell is equal to the total battery mass divided by 84. The way in which the maps were scaled should be clear from the discussions in the following subsections.

## F. 2 CALCULATION OF BATTERY VOLTAGE AND STATE OF CHARGE DURING DISCHARGE IN HIGHWAY DRIVING AND IN THE ACCELERATION AND CRUISE PHASES OF AN STIC

Using the battery model given in [3], the battery voltage and state of charge at any time instant in the simulation are calculated as follows. First, the average current since the start of the trip (assuming a fully charged battery at the start of the trip) is calculated as

$$
\begin{equation*}
I_{A}=(1 / T) \int_{0}^{T} i(t) d t \tag{F-1}
\end{equation*}
$$

where $T$ is the length of time into the trip, and $i(t)$ is the current at any time $t \varepsilon[O, T]$. In the simulation, $I_{A}$ was actually computed by dividing the ampere-hours (amp-hrs) out of the battery by T (ignoring regeneration). The current out of each cell (and out of the battery since the cells are in series) on a per kilogram basis is $\left(I_{A} / M_{c}\right)$, where $M_{c}$ is the mass of a cell, i.e. $M_{C}=M_{B} / N_{C}$ where $M_{B}$ is the battery mass and $N_{c}$ the number of cells. This average battery output current per cell kilogram is then used in conjunction with the scaled Peukert curve, Figure F-1, to determine the capacity per kilogram (amp-hrs/kilogram), $\mathrm{AH}_{1}$, available from each cell in the battery (and hence the capacity per kilogram available from the battery) if the battery is discharged at a current equal to the average current per kilogram computed above. The total capacity from a battery with cells of mass $M_{c}$ is then $\mathrm{AH}_{2}=\mathrm{M}_{\mathrm{C}} \mathrm{AH}_{1}$. Next, the net amp-hours out of the battery since the start of the trip is computed as

$$
\begin{equation*}
\mathrm{AH}_{3}=\mathrm{TI}_{\mathrm{A}}-\mathrm{AH}_{\mathrm{R}} \tag{F-2}
\end{equation*}
$$

where $T$ and $I_{A}$ are as defined above, and $\mathrm{AH}_{\mathrm{R}}$ is the total amp-hrs regenerated into the battery (since the start of the trip) during the braking phases of the STC's. The battery state of charge, SOC, at the current time is, then,

$$
\begin{equation*}
\mathrm{SOC}=1-\left(\mathrm{AH}_{3} / \mathrm{AH}_{2}\right) \tag{F-3}
\end{equation*}
$$

The battery voltage is obtained from the battery discharge characteristic shown in Figure F-2. This discharge characteristic gives cell voltage as a function of both state of charge and cell current for a cell of a given


Figure F-1. Scaled Peukert Curve


Figure F-2 Battery Discharge Characteristic
mass. Since the batteries are not used if the SOC drops below 0.2 , the cell voltage is assumed constant below this SOC. If the mass of the cell changes, the internal resistance will change (increasing cell mass is interpreted to mean more plate area, hence a smaller interval resistance). This is handled by multiplying the battery current by $\left(M_{S T N D} / M_{C}\right)$ where $M_{C}$ is the cell mass and MSTND is the mass of the standard cell (taken to be 9.83 kg ) used in generating the discharge curve in Figure F-2. This scaled current is then used with the state of charge to enter the discharge characteristic and determine the cell voltage. Finally, the battery voltage is obtained by multiplying the cell voltage by the number of cells in the battery.

## F. 3 BATTERY CHARGING AT END OF TRIP

This section presents the details of the calculations involved in determining the wall plug electrical energy required to charge the battery to a fully charged condition after a trip is completed. Calculations for regeneration back into the battery during the breaking phase of an STC is covered in Section F.4. At the end of a trip the net amp-hours out of the battery is known; net amp-hours is the difference between total amp-hours out and amphours put back from regeneration during the braking phases of STC's driven in the trip. If $A H_{N}$ is this net amp-hours out, then the amp-hours delivered per kilogram for a cell is $\mathrm{AH}_{N} / \mathrm{M}_{\mathrm{C}}$, where $\mathrm{M}_{\mathrm{C}}$ is the mass of a cell. Assuming a charging current of 25 amps , the charging characteristic for a cell (on a per kilogram basis) shown in Figure F-3 can be entered at $A H_{N} / M_{C}$ and an average charging voltage for a cell can be determined; multiplying this by the number of cells gives an average charging voltage for the battery. In the actual simulation, an additional map (AACV in Appendix A) was generated from the


Figure F-3. Battery Cell Charging Characteristic
charge characteristic which gave the average charging voltage (for a charging current of 25 amps ) as a function of $\mathrm{AH}_{N} / \mathrm{M}$. Multiplying this average battery charging voltage by the net amp-hours out determines the electrical energy needed from the charger to recharge the battery. Finally, dividing this energy figure by the charger efficiency yields the total wall plug energy required to recharge the batteries.

## F. 4 CALCULATION OF BATTERY VOLTAGE AND STATE OF CHARGE DURING REGENERATION IN THE BRAKING PHASE OF AN STC

Appendix E covers the details of the calculation procedure used to determine how much of the vehicle power at the wheels available for regeneration during the braking phase of an STC actually arrives at the battery terminals at each time increment in the simulation (taking into account efficiencies and maximum power levels of the drive train components). This section explains how that power alters the battery voltage and state of charge. As explained in Appendix E, at each time step in the simulation the regenerated power calculation determines a regenerated power at the battery terminals (PBOUT) and a battery current (IEFF). The current and power to be regenerated must be limited by the maximum current and power that the battery can handle, and these limits must be scaled each time the battery mass is changed by the ratio of the present battery mass to a standard battery mass. At this point in the regeneration calculation, the calculation of the battery SOC is carried out; this calculation is exactly the same as described in Section F.2, with the exception that the most recent current increment in the calculation of $\mathrm{I}_{\mathrm{A}}$ is negative (current is now into the battery) or, if amp-hours are used to calculate $I_{A}$, the regenerated amp-hrs are increased for the most
recent simulation increment, the net amp-hours out of the battery is computed ( total out minus regenerated) and $I_{A}$ calculated from these net amp-hrs out. The battery voltage is calculated from the charge characteristic given in Figure F-3. Specifically, the net amp-hours used in calculating $I_{A}$ above is divided by the cell mass to determine the net amp-hrs per kilogram for a battery cell. Then, using both the effective battery current (IEFF) mentioned above and this cell net amp-hrs per kilogram in conjunction with the battery charge characteristic in Figure F-3, a cell charging voltage is determined. Multiplying this by the number of cells in the battery yields a battery voltage for the present simulation time increment. In the actual battery calculation an iteration scheme is required because the current (IEFF) is not really known a priori to allow determination of the battery voltage from the charging characteristic (see Appendix E for a description of this iterative precedure).

## APPENDIX G - CVT RATIO SELECTION PROCEDURE

In this study the CVT ratio was selected (at each time step in the simulation) such that the heat engine was operated at its most efficient speed. The reason for employing this approach rather than the approach used in [1] in which the ratio was selected to operate the traction motor at its most efficient speed was that the traction motor efficiency was always in the range of $90 \%$ or above (Appendix E) whereas the heat engine efficiency could be substantially improved by proper choice of the ratio.

The most efficient heat engine speed for a given engine output power was determined from the Brake Specific Fuel Consumption (BSFC) map for a 75 kw engine shown in Figure G-1. Each characteristic on the map is engine BSFC (in grams/sec of petroleum flow rate per megawatt of output power) as a function of engine output power (in percent of rated power) with engine speed held constant. For example, if the engine speed is held constant at 104.7 $\mathrm{rad} / \mathrm{sec}$, the BSFC decreases as the engine output power increases from zero to $25 \%$ of rated output power (more power output from the engine requires a higher engine speed; the characteristic essentially stops at $25 \%$ of rated power). Also, for a given output power, the speed corresponding to the characteristic with the lowest BSFC represents the most efficient operating speed since for that output power that particular speed produces the lowest fuel flow rate. For example, for output powers below $30 \%$, the most fuel efficient engine speed is $104.7 \mathrm{rad} / \mathrm{sec}$; at $50 \%$ it is $209.4 \mathrm{rad} / \mathrm{sec}$; at $75 \%$ it is $314.12 \mathrm{rad} /-$ sec ; at $100 \%$ it is $418.9 \mathrm{rad} / \mathrm{sec}$. For intermediate output powers linear interpolation was used to determine the most fuel efficient speed for each heat engine output power. The result is shown in Figure G-2.

At each time increment in the simulation the CVT output power is calculated (Appendix E). To continue the drive train power calculation and


Figure G-1 Brake Specific Fuel Consumption (BSFC) Map
for a 75 Kilowatt Engine


Figure G-2 Most Fuel-Efficient Engine Speed vs. Engine Output Power
determine the CVT input power, the CVT ratio must be known in order to determine the CVT efficiency. However, selecting the ratio to run the engine at its most fuel efficient speed requires knowledge of the engine output power. Since this is not known, the calculation procedure estimates it with the value which existed at the previous simulation time increment. Since the drive train power and power split are not changing rapidly from one time increment to the next, the heat engine output power should not change much either. Consequently, the calculation procedure is as follows: after the CVT output power is calculated, the previous heat engine output power and Figure G-2 are used to determine the best engine speed; this speed and the CVT output speed determine a CVT ratio (which is checked and limited to upper and lower bounds as appropriate). Knowing the CVT ratio, the CVT input power can be calculated and split between the heat engine and traction motor, and the calculation proceeds as described in Appendix E.

Modifications to the above approach occur under scveral conditions. First, if in the previous iteration the heat engine power was zero, the ratio is selected to run the traction motor at its most efficient speed. The map used for this purpose is shown in Figure G-3. This handles the case where the power split calls for all of the CVT input power to be met by the traction motor. Second, each time the ratio is selected to run the engine most efficiently, a check must be made to make sure this ratio doesn't call for a traction motor speed which, at the present traction motor output power level, would cause the motor to stall. The stall out curve is shown in Figure G-4: for a given percent rated output power the curve yields the minimum motor speed to avoid stalling the motor. If the selected ratio would result in motor stall, the ratio is decremented by small steps until the stall-out con-


Figure G-3. CVT Ratio for Most Efficient Electric Motor Speed


Figure G-4. Traction Motor Stall-Out Curve
dition no longer exists. Finally, if the ratio selected to run the engine most efficiently calls for a motor speed which is excessive, then the ratio is changed to run the motor at its mazimum speed.

A copy of the ratio selection program is given in Appendix I.

Since the AiResearch power split strategy [1] was used in parts of this study it is wothihile including it here for reference. A listing of the program is given in Appendix 1. The decision of how much of the CVT input power to assign $1: 0$ the heat engine and how much to the traction motor depends on the battery state of charge and whether or not the vehicle is accelerating. If the acceloration is zero, the state of charge above $20 \%$, and the vehicle is not in a hill. elinb (CVT input power is $\leqslant 20 \mathrm{kw}$ ), the power split is $100 \%$ electric. If the vehicle is in a hill climb, the split is $30 \%$ electric, $70 \%$ heat engine. Tf the acceleration is zero but the battery state of charge is below $20 \%$ (independent of hill climb), the split is $100 \%$ heat engine.

If the vehicle is accelerating (independent of whether the battery is above or below $20 \%$ state of charge), the split is $30 \%$ electric and $70 \%$ heat engine. However, this split is modified if the CVT input power exceeds $80 \%$ of the maximum rating of the heat engine: in this latter case the heat engine nower is ser th the GVT innut power or its maximum rating, whichever is smaller, and the remaining required power is delivered by the traction motor.

TTN4:L
C ADDING THE D OPTION WILL PRINTOUT data (LCCOST, POURLD, SOCL) TO
C FILE AB FOR RUMLI=3 (VALUES DUFR A SPELIFIED RANGE OF HEKS GND
C WGBATT). THE TWO WIIITE STATEMENTS FOLLOWING STATEMENT $\neq 109$ MUST
C ALGU BE COMMENTED (C).
PROGRAM HUPOP (3,100)
C hybrid vehicle performance optimization prugrafa
 C

C THIS MAIN PROGRAM READS IN INITIAL VALUES, SETS UP THE DRIUING CYCLE
C ARRAYS (VELOCSTY AND GRADE GNGLE), SCALEG THE GRGZ VARIABLES, AND
C CALLS THE OPTIMIZATION PROGRAM.
C

LOGICAL SOURLO, SNOTE, SMOOTH
REAL KMPRYR
INTEGER RUN:S
COMTON RUNEI
COMHON/ALPHA/ALPHA1, ALPHAC, ALPHA3 COMMOH/CC/COA, RDIFF,RGEAR, RGRII, RTIRE
COMAON/KAP/DISCHG(101,6), EFFHTR $(81,7)$, $\operatorname{HEHAP}(6,6)$,
\&SREFF (101, 11), VCHG(13,12), ATORQ(6), AESPED (6), ARATIO(10)
COMMON/OHISC/LHOOSE,SMOOTH
COMMON/SCALE/SFX(17), SFG(20), WN
COMMON/STC/V(93i), BET(83i), TRIPLH(8), TRIPNO(8)
COMKON/TIMEC/OLTSTC, OELTHW, TACLEL, TCOAGT, TBRAKE, TSTOQ, TCYCLE
COMMON/VARY/ WTL, INOCHG
COMMON/YEARC/PETYR(15), ELECYR(15), ELEC(15), DISCH(15)
COMHON GF
DIMENSION $\mathrm{G}(20), \mathrm{XX}(17)$, AVELA(15)
DIKENSION IBUF(73)
DLMENSION HE(3), LINEO(161), LINES(16i)
DATA HEKW/65. $/$, WGBATT/386. $/, ~ X X(3) / 7 /, X X(4) / 0.1, X X(5) / 0.1$
DATA AUELA $/ 0.3 .2777,5.8611,7.9166,9.9722,11.333,12.583,13.722$,
614.805,15.777,16.75,17.639,18.5,19. $333,20.111 /$

CALL LGBUF (IBUF,98)
C
C READING INITIAL VALUES OF OFTIMIZATION PARAMETERS
1 READ ( $5, *$ ) NH, (XX(I), $I=3, N N)$, HEKW, WGBATT, DHEKW, DWGRAT, NHEKW, सWGBAT
2 READ ( $5, *$ ) DLTSTC, DELTHW, HTL, CHOOSE, INOCHE , RUN21, GF
3 READ $(5,7)$ SMOUTH
7 FORMATELS)
WRITE $(6,2000) \times X(3), X X(4), X X(5)$
2000 FURTAGTS
8' CONSTANT TERH IN POWER SFLIT FUNCTION=', FB.3,/
$8^{\prime}$ TERM USED TO WEIGHT ADCELERATION=', FB.3,i
$8^{\prime}$ TERM USED TO WEIGHT STATE OF CHARGE:=, FE.4)
WRTTE 6,2005$)$ HEKU, WGBATT
2005 FORMAT(/)
t' $^{\prime} \quad$ HEK $=\prime, 53.4,1$

```
 &' HGBATT=',F8.4,/)
 IF(SMOOTH) WR(TE(6,2006)
 2006 FORMAT(' SHOOTH=TRUE')
 IF(.NOT.SMOOTH) WRITE(6,2007)
 2007 FORMAT(' SMOOTH=FALSE')
 WRITE(6,200B) GF
 200日 FORMAT(//' GAS FACTOR (GF)=',F7.3,//)
 WRITE(G,2U10) DLTSTC,DELTHA,CHOOSE
 20.0 FORMATS
 8' STC TIME INCREMENT (DLTSTC)=',F8.2,/
 &' HIGIWAY TIHE INLREMENT (DELTHW)=`,F8.1,/
 *'(CHOOSE=0 FOR ELECST COMPUTATIONS BASED ON',
 &'ELEL(D) & EHRGY) CHOOSE=',F2.0)
 XX(1)=HEKW
 XX(2)=\GBATT
 G SCALING OF OPTIMIZATION PARAMETERS
 DO 10 [=1,NN
 10 XX(I)=XX(I)/SFX(I)
 C SET UP SAE DRIVING CYCLE:
 IMAX=IFIX(TACCEL/DL.TSTC)+i
 IDFL=1
 IF(DLTSTC.CT.1.) IDEL=DLTSTC
 DO 20 I=1,It4&
 C FIND DRIUING CYCLE VEL. AND STORE IN U(I)
 T=FLOAT(I-1)*DLTSTE
 TMNN=INT(T)
 TMAX= TMIN+FLOAET(IDEL.)
 IHOT= INT(TMAX)+1-IDEL
 ITOP=IHOT+ IDEL
 JF(ITOP.LE.15) GOTO 20
 IrUP}=1
 160T=15-1DEL
 TMAX=14.
 YHIN=TMAX-FLOAT(IDEL)
 20 V(D)=((T-TMIN)*AUELA(ITOP)+(TMAX-T)*AVELA(IKOT))/<TKAX-TMIN)
 K=I-1
 IHAX=K+IFIX(CTEUAGT-TACCEL)/DLTSTC)+1
 n0 30 I=K, IMAX
30 U(I)=20.
C 00 40I=1,ImAX
C T=DLTSTC*FLOAT(I-1)
 L40 WRITE(1,2030) f,V(i)
 2030 FORNAT('T=',F5.2,3X,'V(I)=',F9.5)
 IMAX= [FIX(TSTOP/DLTSTC) +1.
 DO 50 I=1,IMAX
 50 [a:T(I)=0.
C CALL GRG(Z,NCORE)
 IRUNES=RDNEI+1.
 6010(101,151,202,303,404,505), IRUN21
 101 LaLL CCOMP(G,XX)
```

WRITE(8,2040)
2040 FORHAT' HEKW WGBATT LCCOST POURLD SOCL ') WRTRE( 8,2050$) X X(1), X X(2), G(1), G(5), G(13)$
2050 FORHAT(FG. $4,1 \times, F 9.3,1(1 X, F 9.2), 1 X, G 11.4,1 X, F 9.7,1 X, F 9.1)$ if (SHOOTH) WRITE $(0,106)$
IF (.NOT.SHOOTH) WRITE(8,107)
106 FORHAT(' IMUOTH=TRUE')
107 FORMAT(' SHMOH=FALSE') HRITE $(3,883)$ G(2)
883 FORMAT(/,' TOIPET=',F9.3) Brop fil

```
C----..------
```

C-

151 CALL GCOMP (G,XX) STOP 151
C-
$C=:=:=:=:=$
C UDH = 1 hhen overload region lics below current hekw ouerload threshold
Q durve (Gearch for first admisimle run, then get curve
C $=-1$ When overload region lies above current hekw overload threshold
© Curve (SEARLH FOR FIR's OVERLOAD, then get curve)
C UDU $=1$ UHEN WGGATT INCREASES IN THE SEARCH
C - 1 WHEN WGBaTf dECREASES IN THE SEARCH
C sourld = true to search for an overload after wgbatt has been changed
L gnutc = true to search for a mew juerload threshold curve
202 THGBAT=WGBATT+DUGBAT*FLOAT(NWGBAT-1) bugbar=wgarts WRITE $(8,2060)$
cubo Format' hekw wGbatt lccost pourld socl') $1004=1$ UDH=-1
SNOTC= . FALSE.
SiJURLD $=$.FALSE
D0 $190 k=1,5$
I $=1$
60 continue
WRTf( 1,2060 )
WIITE (9,2060)
C
C SLARCH FOR NEXT OVERLOAD AT WGBATT=300
IF(K.E日.i) BOTO 70
$J=k-2$
1F(J/2*2.EQ.J) UIH=-UBH
If (K.GE.3) UDMA--UDW
WG:ATT=300.
KR=11E(3)
SNOTC= TRUE.
SOVRLD=. FALSE:
IF(K/2*2.EQ.K) COTO 70
GRuTC=. False.

```
 607090
 C
 C SEARCH FOR FIRST NEW OUERLOAD CUNVE WITH CONSTANT STEP GIZE
 70 KU=KR-DELLKUNOH
 G010 150
 00 IF(G(5).LE.U.) 60T0 70
 SNOH=.FALSE.
C
C INCREMENT HATTERY HEIGHT & TEST IF ITS OUT OF RANGE
 90 XX(2)=HGBATT +OWGBAT*FLUAT(I-1)*UDU
 IF (XX(2).LE.THGBAT) GOTO 100
 I=N4GBaT
 GUTO 180
 100 IF(XX(2).GL. GWGBAT) GOTO 110
 I=NEGBAT
 G170 180
 110 IF(SNOTC.OR.K.NE.i) GOTO 150
 IF(I.NE.1) GOTO 130
 SOURLD=.FALSE.
 DELX=:'.
 UDH=1
 XR=15
 6:170 140
C
C. GEARCH FOR OUERLOGDS & DOURLE SIEP SIZE WITH FAILURE
 120 (F(GYS).LF:0.)G0T0 130
 GOURLD=.FALSE.
 GOT0 160
L
C DOUBLE STEP SIZE
 130 Dt:LX=DELK*:S
 XR:=XR-DELX*UDH
 SUURLU= TROF:.
 G0T0 150
 140 CTNTINUE
 150 XX(1)=XR
 CALL GCOIP (G,XX)
 #NITE(1,2070) XX(1),XX(2),G(1),G(5)
 GRITE(9,2070) XX(1),XX(2),G(1),G(5)
 20%0 FONMAT(F9.3,1X,F9.3,1(1X,F9.2),1X,G11.4,1X,F9.7,1X,F9.1)
 IF(SOURI.D) GOTO 120
 If (SNOTC) 60YO }3
 IF(G(5).LE.0..AND.DELX.LE.DHEKW) GOTO 170
 IF(G(5).Gr.0.) GllOT 160
 DELX=AINT(DELX*S.)/10.
 IF(DELX.LE.O.) DELX=DHEKW/2.
 XR=XL+DELXXUJDH
 guTO 140
 160 XL=XR
 XR=XR+DELX*UDH
```

goro 150
170 continue
WRITE（8，2070）$X X(1), \mathrm{XX}(2), G(1), G(5), G(13)$
$\operatorname{If}(X X(2) . E Q .100$.$) HE（1）=X X(1)$
If $(x X(2) . E Q .200) H E.(2)=X X(j)$
（F（XX（2）．EQ． 300.$) \mathrm{HE}(3)=X X(1)$
$130 \quad 1=1+1$
IF（I．LE．NWGHAT）G0 T0 60
170 CONTINUE
ST0p 202
C：ニッ＝ロ＝ニ＝
C：t＋t＋it＋
303 CONTINU：
D WRIIE（8，2090）
DEO90 FORMATS＇HEKW WEBATT LCCOST POVRLD SOCL＇）
DO $108 \mathrm{I}=1$ ， NH ：KW
$\therefore X(1)=H E K W-D H E K W F L O A T(I-1)$
$001075=1$ ，NAGQAT
$X \times(2)=$ WGDAITHDGBATKFLOAT $(J \cdots 1)$
CALL GCOHP $(B, X X)$
D WRITE（8， 3000$) X \times(1), X X(2), G(1), G(5), G(13)$

WRITE $(8,3003) \times X(1), X X(2), G(2), G(1)$
3003 FDRGAT（r9．3，5（5X，F7．3））
$\mathrm{C} \quad \operatorname{LINEO}(J)=\{\mathrm{H}$ ．
C IF（G（5）．GT．0．）BIHEU（J）＝1HE
$\mathrm{C} \quad \operatorname{IF}(G(2) . G T .1072.) \operatorname{LINEO}(J)=1 \mathrm{He}$
C $\operatorname{LItES}(J)=1 / 11^{1}$
$\mathrm{C} \quad \operatorname{IF}(G(13) . L 1.2) \operatorname{LINES}(J)=j . H+$
107 CONTHUE：
C WIITES POVRLD GR1D．COMMENT IF USING D OPTION（DATA PRINTOUT）．
C LRIT：（ 8,3005 ）（LITED（J），$J=1$, NWGBAT）
C WRITES SOCL GRID．COMMENT IF USING D OPTION（DATA PRINTOUT）．
li WRITE（9，3005）（LINES（S）， $5=1$, ，WGGBAT）
C WRITE $(9,3005)$（L．INEO（J）， $5=1$, NWGBAT）

108 CONTINUE
1：WRITE（6，3：0）
320 fORMATS＇FILE AÓ COMTAING THE POURLD GRID：＇${ }^{\prime}$
$a^{\prime}{ }^{\prime} \quad$ FUR NO OUERLOAD（POURLD．LE．D）＇，$f$


t，＇＂WhEN ELECTRIC POWER IS AUAILABLE DURING ACCELERATION＇，＇

STOP 303
Cht＋it＋4

404 U0 $409 \quad[=1,21$
$X X(3)=.45 *(0) T(I \cdots 1)$
409 CALL GCOMP（G，XX）

## C******

ceqeere
505 CONTINUE
DO $510 \quad \mathrm{I}=1,481$
XX(2) $=$ WGBATT+1. O*FLUGT (I-1)
If (XX(2).LE.273.) XX(1)=37.0-0.02564*XX(2)
IF(XX(2).Gr.273.) XX(1)=77.2334-0.2267736*XX(2)
$8+1.9819 E-04 * \times X(2) * \times X(2)$
CALL GCOHP ( $G, X X$ )
URITE ( 8,520$) X X(1), X X(2), G(1), G(7), G(8), G(9)$
52U FURIMAT(F9.4,5(3X,F7.4))
510 CONTINUE
sTop 5u's
ceeapete
END
END

TW4, L
SURROUTINE GCOHP ( $G, X_{X}$ )
 L
C THIS EVALUATEG THE CONSTPAINT AND OBJECTIVE FUNCTIONS FOR GRG2 GIVEN THE
l. IHE GRD2 PARAMETER's, WHICH ARE PIJUER RATING OF THE HEAT ENGINE, BATTERY

C GEIGHT, AND THE POLHER SPLIT PARANETERS.
C

HEAL. MI, MNFCGT, KMPRYR, MTKGPK, LCCOST, MAINTC, LINCOK
DIMENSION $G(20), X X(17)$
IWTEGER RURELI
COMMON RUNZ:
COMMON GF
COMHON/ALPHA/ALPHA1, ALPHAZ, ALPHA3
COMMON/KOTOR/KTKWPK
COMMON/RSPLT/ACCEL,SOC, PCUT, LX(15), VAUE, PHEKAX, PHE, PELEC
COMKON/SCALE/SFX(19), BFG(20), NH
COMMON/YEARC/PETYR(15),ELECYR(15), ELEC(15), DISCH(15)
CIMMOA BTCOST, BATRYR, BATLFE
DIHENSION ELECST(10), PETCST(10)
DATA KIAPRYR/16U00.I, WP/20./
C
C THIS prograk tâkes values for the ic engine size, battery weight
C afto power splif fumction paraiteters, and compures the values of
C THE OBJECTIVE AND CONSTRAINT FUNCTIONS
-
UIEK $K=X X(1) * S F X(1)$
GGBATI $=\times \times(2)$ 䉼F $\times(2)$
IMAX=NN-2
DU $111^{\circ} \mathrm{I}=1, \mathrm{MAX}$
$115 \quad \mathrm{CX}(\mathrm{I})=\mathrm{XX}(\mathrm{I}+2) * S F \mathrm{X}(\mathrm{I}+2)$
C CX IS UECTOR OF UNSCALED POWER FLOM PARAMETERG
CALL WGHT (HEKH, WGBATT, WT, MT, WGCHI, HP)
CALL MFCGT (WGBATT, WECHI, FMFC:ST)
(:ALL AQCST MMFFCST, HGBATT, BATCST, ACQCST)
LALL MAINT(HEKW, HTKWPK, BATCS T, KMPRYR, WP, UGCHL, BTLIST, MACNTC)
(:ALL REPAR (HEKH, MTKUPK, WF, WGCHI, KMPRYR, REFAIR)
C TRAUL USES POWER FLOW PARAMEIERS
CALL TRAUL (HEKH, HGRATT, MT, PETYR, ELECYR, ELEC, DISCH, POURLD, PETVIO, $\$ \operatorname{SOCL}, \mathrm{BGPCUT})$
IF (RUN21.LE. 1) HRITE (6, 425) MT, WGEATT, WP, MNFCST, ACQCST, HAINTC, SREPAIR, 1 IEKH, 11 URRLD

$8^{\prime} \quad$ TOTAL MASB (MT) $={ }^{\prime}{ }^{\prime}$ F9.3, 1
$\&^{\prime} \quad$ BATTERY HASS (WGBATT) $=$ ', F9.3,
$*^{\prime}$ HOWER TRAIN WEIGHT (WP) $={ }^{\prime}$,Fq.3, $/$
$\epsilon^{\prime} \quad$ MANUFACTURING COST (MNFCST) $=1$, F9.3, 1
\& ACQUISITION COST (ACQCST) $=, \ldots 77.3,1$
t' YEARLY MAINTENANCE COST (MAINTC) $={ }^{\prime}$,F9.3,'/

```
 A' YEORLY REYAIK DIST (REPGIR) =',FV.3,/
 t' HE POWER KATING (HE:KW)=',FB. 3,'
 &'SUM UF POWER OVERLOGO SQUARED (PGURLD)=',FG.S)
 CALL LIFE\PETYR,ELECYR,ELEC,DISCH,BTLIST,ACQCST,MAINTC, REPAIR,
 &BATCST, LCLOST,PETCST,ELELST, ROTPET)
C
C MY CONUENTION IS TO gEParate gIUEN aND RETURNED UALUES bY A blank
L. AND TU COMMUNICATE LALC: VALUES BY ARGUMENT LIST GND MAPS BY LOMHON
C gtatements
C
 LINCOM=ALFHAI*LCCOST+ALPHAD*TOTPET+ALPHAS*ACQCST
 G(1)=L.CCUST*SFG(1)
 G(2)=TOTPET*SFG(2)
 G(3)=ACUCST*SFG(.5)
 G(4)=LINCOM*SFG(4)
 G(5)=POURLOWGFG(3)
 (C(7)= BlCOST
 G(8)=&AFRYR
 G(9)=BATLFE
 G(13)=50Cl
 G(14)=BGPCVT
 RETURN
 HETURN
```

TJEROUTINE TRAUL (HEKG, WGBATT:MT, PETYR, ELECYR, ELEC, DISCH, POURLD, सPETVU, $30 \mathrm{CL}, \mathrm{BGPCOT}$

## 

C
(: THIS SITULATES BOTH STC AND HIGHWAY DRIVING FOR THE UEHICLE.
C IT Calculafes the ygarly fuel conguip tioti, elecrricity usage, and
C. the number of deep discharges of the battery.

C

LOGICAL SMIDOTH
INTEGER RUR2S
REAL IHTEQ, LHTNG
REAL MT, IAVE, IBATT, IUESTC, KMPRYR, IBTAAX, IEFFMX, IBTOLD
REAL KWCOT, LENGTI, MS, MTGRKH, MTKWEK, HC, NE, SEFF, MCSTWD
DIMENSION PETYR(15), ELECYR(15), ELEC(15), DISCH(15)
OITENSTOM EAKUHR(15), AEKHA(15), AEK'AP(15)
DIHENSION AHEKW(4), FFHEKU(4), SATURQ(6)
COHMON ROAES
COMKON/CC/CDA, RDIFF, RGEAR, RGRH, RTIRE
COMWON/LHARG/AACU(B), ACR (B)
COMMON/EFCUY/AFCUT(8), ARCUT(7), EFF $(8,7)$
COMMOH/LIMIT/ HRRIPX, ITERMX
COHMON/MAP /DISCHG(101,6), EFFKTR (81, 7 ), HEMAP $(6,6)$,
GBREFF(101, 11), VLAL (13, 12), AFORU(6), AESPED(6), ARATIOC(10)
COMMON/OMISC/CHOOSE, SMOOTH
COMMON/PHY/GRAV, RHIO
COMMON/PRTKT/APETT(15), AELETA(15),AELETP(15)
COMMON/RRATO/NTIHE, WGEAR, RCUT, MMOTOR, RMTRTD, PGEAR
(:OMMON/RSPL.T/ACCEL, SOC, PCUT, CX(15), VAVE, PHEMAX, PHE, PELEC
LOMMON/STC/U(831), BET(83i), TRIPLN(a), TRIPNO(a)
COMMOA/TIMEC/DLTSTC, DELTHN, TACCEL, TCOAST, TRRAKE, TSTOP, TCYCLE
COMMON/TR TP/CHARGE(36), EBTOTL(.56), HOUT (36), IDOO(36),
FIUESTC (36), PETSTC (36), SOCSTLC(36), REGEN(36)
COMMOTVUAPY/WTL, ROCHLS
DATA AHEKH/37.,56.,75.,112./
DARA FFHEKW/5.04713,1.05, 1., 0.75454\%/
IATA ALLSTC/50001./, HWYVEL/25.0/, STCOIS/4450.0/, CHGEFF/0.05/
OATA NL/84./, HDONTE/116.35/, UEDRTE/116.35/, GMORTE/417./
DATA NGTCFR/28/, FCUTMX/90000./, NCYLHX/35/
DATA PDRATE/90000. / P INOMX/40000./
DATA PGRATE/90000./, PHGRTE/40000.1, REGMIN/1000./
DATA PMTKAK/40000./, SODHAX/.3/, VCELL/2.05i
DATA VDELT/i./, MCSTND/7.ة3/, PBMAX/33600./, IBMAAX/200./
UAIA EFFECZ. $75 \%$, IEFFHK $\% 00 . \%$
c calculate the mass of a battery cell
ML= WGQATT/N:
C INITIALIZE VARIABLES
I3000D $=0$
AHOUT=0.
AREGEN=0.

SOC=1.0
SUCL=1.U
SGPCUT=0.
POURLD $=1$
1 NOELE $=0$
IHWY=0
ISWTCH=0
WTIME=1
UBCHG=200.
VIJLTOT=0.
AHCHG=0.
IOURLD=0
3 FLL $B K=0$
EOROT=11.
UBATT=NC*VCELL
C SET TIME, TIME STEP AND CYCLE COUNTER FOR DRIVING A SEQUENCE OF STC'S
「IME=0.
HCYCLE=1
DELT $=$ DLTSTC
PHEMAX $=1000$. सHEKW
FRSCLE $=$ HEKH/75, *SUINT (FFHEKH, HEKH, AHEKW, 4)
$01] 5 I=1,6$
5 SATORG(I)=ATORQ(I)*(HEXW/75.)




C CALC. aUERAGE VELOCITY AND ACCELERATION OVER CURRENT TIME STEP
$10 \quad V I=V(H T I M E+1)$
$V_{2}=U(N T I M E)$
UAUE $=(U 1+V 2) / 2$.
$A C C E L=(V 1-12) / D E L T$
BETG $\mathrm{C}=\mathrm{BET}$ (NTIME)
C CALC DRAG faRCE OF VEHICLE
20 FD=CDA*RHU*VAVE*UAVE/2.
C CALC ROLLING RESISTANCE FORCE $C R=(10 .+0.01 * V A V F=50.00003 * U G V($ WVAVE $) / 1000$
FR:CRKMT*GRAU
(: INTISALITE HIJGER SUITCH FLAG:
ISUTCH=0
$\therefore$ CALI'. GRADE FORCE
FGR=HT*GRAU*SIN(BETA)
C Dalculate vehicle acceleration force
\& $A=1$. 1*MT*ACCEL.
C CALC. PONER REG•D AT GXIE
PAXLE $=(F D)+R+F G R+F A) * U A U E$
$C$ CALC. AXLE SPEED ARD TORQUE
WAXLE=VAVE/RTIRE
IAKLE = PAXLE/WAXIE
C CALC. DIFFERENTIAL INPUT SPEED, TORQUE, POWEM

```
 WDRIVL=WGXLE/ROIFF
 PDPCT=(PAXLE/PDRATE)*100.
 WDPGT={WAXIE/WDORTE)*I00
 PDRIVE=PAXLE/INTEQ(GREFF,PDFCT,WDPCT,100.,100.,
 81.,-1.,10.,-10.,101,11)
 TDRIVE=PDRIVE/WIIRIVE
 C calc. torque, speed, poher at input to gear betueen cut and differential
 WIEHR=WDR.IVE/RGEAR
 PGPCT=(PDRIVE/PGRATE)*IOD.
 WGPCT={WDR TVE/WGORTE)*100.
 PGEAR=PDRIVE/INTEQSGREFF,PGPCT,UGPCT,100.,100.,
 11.,-1.,10.,-10.,101,11)
 TGEAR=PGEAR/HGEAR
 C determine cut ratgo (rcui)
 call ratio
C calc. torgue, speed, foler at cut input
 PCUT={PGT:AR)/(INTNQ(EFF,(PGEAR/1000.),RCUT,100.,3.4,
 &&PCUT,ARCUT,8,7))
 fF(PCUT.GT. BCPCUS) BCPCUT=PCU:
 HCUT=UGEAR/RCUT
 TCUT=PCUT/WCUT
 C deterhine poher split (result is phe and pelec)
 LALL SPLIT
 C IS USE OF bATTERIES PROHIbItEd
 fF(fNOELE.NE.1) GOTO 33
 PELEC=0.
 PML=PCuT
 C Is electriC poher negligifle
 33 [F(PELEC.LT.50.) GUTO 31
C IS BATTERY 80% DISCHARGED
 If(SOC.GE.0.2) G0 To 32
31 PHE=PHE+PELEC
 IF(PELEC.GT.0.) IFLLBK=IFLLEK+i
 PElec=0.
 PMOTOR=0.
 PINU=O.
 PBOUT=0.
 IBATT=|.
 1Elec=0
 GU f0 80
 32 IT(SOC.GE.SOCHAX) GOTO 30
 IF(IHECHG.NE.1) GOTO 30
 G0T0 31.
 c calc. input quantities tu gear between motur amd cut
 30 SELEM=1
 HHOTOR=WCUT/RGRN
 PMGPC = (PELEC/PHGR TE)*IOO.
 WHGPCT=:WCUT/WHORTE)*100.
 iMOTOR=PELEC/INTEQ(GREFF,PMGPCT, WMGPCT,100.,100.,
 ii.,-1.,10.,-10.,101,15)
```

1FGI=PELEC/PMOTOR TMUROR=PMOTOR/WMORUR
c dues hotor dutput pouer exceed peak IF (PMOTOR LE PMTHAX) GOTO 50
c: SET MOTIIR POWER at MaX PAOTOR=FKTMAX
C CALC. NEW MOTOR TORGUE THUTOR=PMOTOR/WMOTUR
c calc. new electric poher at cut infut
40 PMEPCT=(PMOTOM/PMCRTE)*10U PELEC=PMOIOR*INTEQ(GREFF, PMGPCT, WMGPCT, 100.,100., 41.,-1.,10.,-10.,101,111

EFG! -PELEC/PMOTUR J LLLEK=IFLLBK +1
( set engine power to meet total keq'd power PHE=PCUT-PELEC
C CALC MOTOR INPUT (INUERTER OUTPUTI) POWER
SO PMTPCT=(PMOTUR/PMTRTD)*100. PINU=PMOTOR/INTEOSEFFMTR, PHTPCT, HMOTOR, 200., 1466., 42. $5,-2.5,146.61,439.82,31,71$ EFHS=PMOTOR/PINU
a doeg inverfer gurpur poher exceed max If(PINU.LE.PINUMX) GOTO 55
C SET cNuERTER pober at kaX and compute new hotor output rower PINU=P INUKX PMIPCT=(PINU/PMTRTD)*100.
 tre. $5,-2.5,546.61,439.82,81,7)$ ERKI=PMOTOR/PINU
c compute new electric power at cut input :/GCPC $=(P M O T O R / P M G R T E) * 100$
 81., $-1,10,-10 ., 101,10$

C COMPUTE NEL HEAT ENGINE FOWER PIIL=PCUT-PELEC IILLBK=IFLLBK +1
C Calc inverter locises and inpul foufr using old value of battery voltage,
C and resef fieration counier
55 PILOSS=3.0*(PINU/VBATT) +0.035 FP INV Pbout=pinv+p ClODS [ITER=0

L LalcUlate bartery current using hattery voltage from lasf feration
45. IBATI=PEOUT/VBATT
¿ save uld value of baftery voltage UBTULD=VBATT pubiti=ubatit IBIOLD=IBATT

C LALC BAT TERY AMH +hR: OUT AHOUT=AHOUT+(1BATT*DELT/3600.)
B IS THS HIGIWAY DRIUING
IF (IHHY.NE.1.) GOTO 57
C CALL AUERABL BAFI CGRRENT FOR STC AND HTGHWAY DRIUING IAUE $=(3600$. WHOUT $) /(T I . H E+I) E L T)$ G1) 50
C CALC AVERAGE BATT CURRENT SINLE GTART OF STC DRIUING

C FIND CELL CAPACITY PER KILOGEAK
50 LAPKG=OURT(SAVE/KC)
C CALC AHIT-HES PER CELL CAPCTY=CAPKGXHE
C CAIC ACTUAL CAFACITY GITHDRAWN AND STATE OF CHARGE GACTL=AIOUT-AREGEN-ABCHG SUC=1.-(AACTL/CAPCTY) IF SOML LI SOCL AND. ACCEL NE: O.) SOCL $=S 0 C$
C CHANGE CELL CURRENT TO ACCOUNT FDR CHANGE IN CELL RESISTANCE IEFF=[BATT曻 (HCGTND/MC)
C Calc batiery voltage from discharge curve
 8.101,6)

C dues calculated batiery vol tage equal batt voltage assumed at start of calc If (aBSavbart-Ubrold , GT. VDELT) GOTO 59 (i(1)0 71
C HAVE: WE ITERATED THE MAX NO. OF TIMES
5y SF(IITER.GE. ITERMX) GOTO 60
C EESET AMP-HRS OUT OF BATT. AND INCREMENT IIERAIION COUNTER

IITER=IITER +1 GOTO 41
c set baitery voltages and currentg to old values
GU VEATT= YBTULD IBATT=IBTOLD (EFF=IBATT* (MCS THD/AC)
C was the feftective battery current aboue its max
71 IF(IEFF LE. IFFFKX) GOTO 70
C COHPUTE HATTERY CURRENT CORRESPONDING TO MAX EFFECTIUE CURRENT

C COMPUTE NEW batteky output power PBUUT=IAATTKUAGTI
C ESTIMATE NEL INUERTER OUTPUT HOWER

© ESTIMATE MOTIJR OUTPUT POWER AND ELECTRIC POWER AT CUT IWUUT
 IHOTOR=PINU*INTEOLEFFMTR, PMTPCT, HMOTOR, 200., 1466., AL. $5.3,-2.5,146.61,434.42,31, \%$

 $41 .,-1 ., 10 ., \cdots 10 ., 101,11)$

IFLLBK = IFLLEK +1
C CALC NEW HE POWER
PHE: $=$ PCUT PELEC
C IF GATT IS DISCHARGED SET $90 \%$ DOD FLAG
70 IF(GOC.LT.0.2) I80DOD $=1$
C CALC. BATT. ENERGY USAGE FOR THIS INCREMENT
BCTRGY=(PBOUT*DELT)/1.E+06
C CALC BATT INTERNAL VOLTAGE AND ENERGY HEIGHTING FACTOR
UINT=NL*INTEQ(DISCIG, SOL, 0., i., IEFFHX $, 01,-.01,100 .,-100 ., 101,6$ )

1) SEFF=UINT/UBATT

C CAIC. TOTAL GATT ENERGY USAGE SINCE START OF TRIP EBTOT=EBTOT+BENRGYYISFFT

c IS HE CHARGING INHIDITED
80 IF(INOCHG.EQ.1) GOTO 101
C IS BATT OSSCHARGED IF (SOC.LT.O. 2 ) GO TO 90
C [S batt presently being charged IF(IHECHG.NE. 1) GOTO 101
C IS BAIT BELOW HAX CHARGINL LEVEL IF( $\$ 0 C . L T$. SOCMAX) GOTO 90
C STOP CHARGING IIECHG=0
GOTU 101
C IS THIS HIGHWAY DRIUING
90 IF (IHAY-1) 102,103,103
$\therefore$ IRHIBIT ALL FURTHER UBE OF BATTERIES
103 INOELE=1 GOH1 105
C IS THIS THE CRUISE PHASE OF THE STC 102 IF(TIME.LT. TCOAST. AND. TIME.GE. TACCEL) GOTD 105
101 PCHG=0. GOTO 140
L Str-batt CHARGING FLAG
105 IHECHG=1
i: IS PONER SPLIT being changed
IF (PELEC .GT. U.) IFLLDK = IFLLBK +1
C SET HE POWER TO TUTAL
PHE $=$ PIEEPELEC
PBOUT=0.
PLLEC=0.
PMUTOR=0 .
$P I N V=0$.
C has electric pouer been charged to hatt this iteration IF (IELEL. NF. 1) GORO 106
C RESET RATTERY QUANTITIES AHOIST=AHOUT-(IBATTKDELT/3600.) 1 $\mathrm{HTOT}=E B T(17-$ BENKGY*DISEFF

IBATT: $=0$.
(: Calc charging poner
106 PCHG=PHEHAK-PHE IF(PCHG .GL. O.) GO TO 100

- $16=0$.
$60 T 0140$
C CALC POWER SUPPLIED TO ELECTRIC MOTOR
100 WMCPCT=(WCUT/HKIDRTE)*100.
PMGPCF= (PLHG/PMGRTE)*100.
PHOTOR=PCHC* $1 N T E Q U G R E F F, F M G P C T, W K C P C T, 100 ., 100 ., ~$
81.,-1.,10.,-10.,101,11)
(: IS THE CHARGING f'OWER GREATER THAN THE MAX MOTOR POWER
İ (PMOPGR. LF. PM TKAX) BOTU 110
C SET POGER AT MAX AND CORRECT POLAER CHARGED TO HE
PMOTOR $=P$ ITHAX
- MGSCT=(FMOTOR/PMGRTE)*100.

ITHG=PMTMAX/INTEQ(GREFF, PHGPCT, GMGPCT, 100.,100.,
i1., -1., 10., -10., 101,11)
C CALC POWER FROK GENERATOR TO INUERTER
110 GKITOR= HCUT/RGRK
('ATPCT=(PMOTOR/PMTRTD)*100.
PINU=PHOTUR*TNTEQLEFFMR, PHTPCT, WMOTOR,200., 1466.,
42.5,-2.5,146.61,439.82, 81,7)

C IS INUERTER POHER TOU GREAT
H(PINU.LE.PINUMK) GOTO 120
C BET :OWER AT MAX AND CORRECT POWER CHARGED TO HE:
PINV=PINUHX
PATPCT $=$ (PINU/PMTRTD)*100.
PCHO二PINW/ (INTEGSEFFKTR,PHTPCT, HKUTOR,200.,1466.,
*2.5,-2.5,146.61,439.82,81,7)
t WINTEQ(GREFF, PMGPCT, WMGPCT,100.,100.,1.,-1.,10.,-10.,101,11))
¿ IMITIALIZE: ITERATION FLfG
1.20 IICHG=0

EF MIOP INU/PMOTOR


c calchate batt inubt power ato cuphent
$123 \mathrm{PBOUI}=-\mathrm{PI} \mathrm{KW}+3.0 *($ PINU/VBCHG) $\div 0.035 * P$ INU
[BATT= $\mathrm{HBOUT} /$ VBCHG
PUBATT=UBCHG
L IS chargimg puler tuo great
IF(PBHAX* (MC/MCSTND) +PFOUT. GE. O.) GOTO 121
(: SET Charging fower at max and cal.g nev bati current PBOUT=-PAHAX* (HC/KESTND)
IBATT=PBOUT/VBCHG
C [S CHARGING CURRENT TOU LARGE
S'1 IF (IBMAX.IBAT1. GE.0.) GOTO 122
L set baff corrent at max and recalculate charging pound
IBATT $=-$ IbtiAX

C Save old value of batiery vultage
12 Z VBrOLO＝VLCA $1 ;$
C CALC．CHARGING AMP－hRS AND ACTUAL AMP－HRS
AHCHG＝AHCHG－（ILATT＊DELT／36OD．）
AACH：＝AHOUT－AHCHG－AREGEN
C CALC AVER BATY CURRENT FOR SIC AND HIGHWAY DRIVING

IAVE $=3600$. ＊AHOUT／（TIME＋DELT）
細O 130
－CALC AVER hatt current since start of gTC driving

C calculate state of charge and battery voltage during charging
130 CAPKG＝PUKRT（IAVE／MLC）


IETF＝－IBAIT苏（MCSTRD／MC）
UKCHG＝NC：INTEOSVCHG，（AACYL／MC），IEFF，15．，300．，1．，0．，25．，0．，13，12）
HLGEFF＝NCXINTEORDSCHG，SOC，0．，1．，IEFFMX，．01，－．01，100．，－104．， ：101，6） 8／UBCHE
C DUES CALC VOLTAGE EOUAL VOLTAGE ASSUMED IF（ABS（UBCHG－UBTOLD）．LE．VDELT）GO 10133

IF（IICHG．EE．IIERHX） 6010134
C SNLHETENT ITERATION COUNGER GND RESET CHARGCNB AMA－HRG INTO BATT
IICHG＝IICHG＋1
AICHG＝AHCHGO（IBATI＊DELT／3600．）
（6） 10 1：23
C set battery villtage to old value
1.34 UBCHG＝URTOLD

C LIMIT SOC TO MAX
（33 IF SSOC．GT．1．0） $\mathrm{SOC}=1$ ．
C Stop charging if battery has reached max charging level
1J1 IF（SULS．GE．SOLMAX）IHELHE＝0
f：calc total batt energy used so far of this trip or from start of stc＇s

C JNCREASE REQ＇D HE POWER TO INCLUDE CHARGING POWER
PHEPMETPCHS
C 16 HE POWER TOU LARGE
140 ［F（PHE．LE．PHEMAX）GOTO 160
C IS EATT DISCHARGED
fr BOC．BE． 1.2 ）GOTO 141
IOURLD $=$ IOURLD 1
PSHERT FPDT－PHEMAKーPELE：
IF（HSHORT）136，136，137
136 URITE 7,1072$)$ PSHORT
10\％FURMAT（＂AN ERROR HAS OCCURED IN COMPUTING THE＂， f＂SUA OF THE SOUARED POWER OUERLOAD（POURLD＝＂，F9．2，＂）＂）
coro 160

## 137 <br> POURLD＝POURLD＋PSHORTFPSHORT

billo 160
\＆have we attenfted to sulth hore：pouer to electric motor
IA1 IF（1GETCH．NE．i）GOTO 142
IOURLD＝10URLUH1
（PGHORT＝PCUT－PHEMAX－PELEC
IF（PSHORT） $136,136,137$
：3El GUICH FLAG
14：JSWTLH＝1
C：DIO WE USE ELECTRIC POUER IN THIS INCREMENT
IF（PELEC．LL：U．）COTO 150
C reser anip hours out of batt
ARIUUFFHATIT－（IRATHOELT／3600．）
LGTOTEBTOT－bERRGYDISEFF
C SHCTEH EXLESS POWER TO ELELTRIL MOTIP
is PHE＝FHEMAX
PEIC＝：CUT－PHE
1fLLBK＝LHLLB +1
601030
C falc he toroue，sfeed，fuel flow nate
16）$H H E=W C U T$
TIE＝PHE／WIIE
FLELET＝INTNOCHEMAF，THE，WHE，PHENAX／200．， 440.0, SATORQ，AESPED 6,6$)$
？WFISCLE
BGFCL＝FUELRT／PHE＊4178722．i



TIME＝TIME DEETT
NTITE＝NTME＋I
じ
C HIGHEAY PRIMTOUT
IF（IA．E日．IA／57＊57．AND．RUREI．EQ．1）ERIYE（8，401）
$I A=1 A+1$
401 FURMAT（＇1＇；＇PICYCLE TIME VAVE WDRYE WGEAR WCUT＇，
$\therefore$＇WIE THE WHOTOR IAGE IBODUD IFLIBK［OURLD：，
is ISUTCH IITER IHECHG IICHG IIREGN＇）
 GWHER，THE，HMOTOR，
SIAUE，180DOD，IF LLEF，IOURLD，ISUTCH，IITER，IHECHG，IICHG，IIREGN ＇6000 Filnmar $14,2 X, F d .0,1 X, F 3.2,1 X, F 3.3,1 X, F d .2,1 X, F Q .3,1 X, F B .3,1 X$, 4FE． $2,1 X,+8.2,1 X, F 8.3,1 X, 6(18,1 X)$

40＇．FUKMAT＇＇i＇，＇NCYCLE TIAE PAXLE PDRIUE PGEAK PCUT，＇
＊＇RCV PHE PCAB PEEG PMOTOR PINU $\quad$ ，
F＇PBOUT IBATT UBGTT SUC PROAD FREGEN，

$I E=I B+1$
If（RUNZI．EG． 1$)$ WRITE $(9,5010)$ NCYCLE，TIME，PAXLE，PDRIUE，PGEAR， WHCUT，HCUT，PHE，MEAG，

```
 &PELEC, PHOTOR,PINU, PROUT, IBAIT, PUBATY,SOC, PROAD, PREGEN,
 &BSFCL,FUELRT,EFMS
 5010 FORMAT(I4,2X,F8.0,1X,F8.1,1X,FB.1,1X,F8.1,1X,F8.1,1X,FB. 3,1X,
 &'d.1,1X,F8.2,1X,F8.1,1X,FB.1,1X,FB.2, 1X,F8.2,1X,F8.2,1X,
 8F8.2,{X,F8.4,{X,F8.2,1X,F8.2,1X,F9.4,1X,F10.8,1X,F7.6)
C
C IS THIS HIGHWAY DRIUING
 If(II#Y.EQ.1) GUTO 170
C has the 'COAST' fhase of the stc been reached
 [F(TI隹-TCOAST) 10,130,130
```



```
 170 COJNTINUE
C
 IT(TIME-TRIPTH) 20,300,300
```




```
C SET HEGT ENISNE: CHARGING POUEN TO ZERO
 5.00 PCHG=0.
 IITER=0
 11CHG=0
 PVBATT=NC&INTEQ(DISCHG,SOC,0.,1.,IEFFKX,.01,-.01,100.,-100.,
 :101,6)
C calc current velocity
 VELU=V(NTIME)
C CALC VEHICLE DRAG FORCE
 19| FO=C0&*RH1*UELO*UELO/2.
C CALG ROLliNG RESIGTANCE FORCE:
 FR=M「*IRRUU*(10.+0.01*VELU+U.10008*VELO*VEL1)/1000.
C cálc grade furce
 BETA=BET(NTIME)
 FGR=MT*GRAU*SIN(BETA)
```



```
 UNEXT=VELU-(DELT*(FGR+FD+FR)/MT)
 C CALC AVERAGE: CIURRENS AND UEIGCI IY
 HAUE=(3600.*AHOUT)/\TMME+FIOAT(NCYCLE-1)*TSTOP)
 VAVE= = '`*(UELO +UNEXT)
C zerO all drive train powers, etc
 PAXI.E=U.
 PDRIUE=0.
 PGEGR=0
 PCVI=1.
 PELEO=1)
 Pl位:0.
 PMOTOR=0
 rINU=0.
 PCLUSS=U.
 JBATT=0.
 PBulUT=0.
 1HE=0
```

C CALC DRIVE SHAFI SPEEDS

## WHE=0

WDRIVE=VAVE/(RTIRE*RDIFF)
WCEAR = WDR CUE/RGEAR
WCUT=UGEAR/RCUT
whuror= WCUT/RGNIf
c increment time

NITME NTIME + 1
FUELR $=0$.
C $\ddagger$
IF(IA.EQ.IA/S7*57.AN) RUNEI EQ.1) HRITE (8,401)
$1 A=1 \cdot+1$
IF (RUN21.EQ.1) WRITE (6,5000) NCYCLE, TIME, VAUE, WDRIVE, HGEAR, SWCUT, WHE, THE, WMOTGR,
\$IAUE, I80DOD, IFLLBK, IOURLD, ISHTCH, IITER, IHECHG, IICHG, IIREGN IF(IB.EQ.IB/57*57.AND.RUN21.EQ.1) WRITE(9,402)
$1 \mathrm{H}=1 \mathrm{~B}+1$
If RRUNZ1.EU.1) WRITE(9,5010) NCYCLE, TIME,PAXLE,PDRIVE,PGEAR, apCur, RCUT, ple, pCiti,
\&PELEC, PMOTOR, PINU, PBOUT, IHATT, PUBATT, SOC, PROAD, PREGEN, SESFCi, FIJELRT, EFMi
じ $\ddagger$
C save velocity
V(NTIHE)=WNEXT
C has the braking part of the sic been reached IF (TIME. GE. TRRAKE) GOTO 195
C initiflize veluctity for next that increment VELD=UNEXT
COHO 190
$\qquad$

C.

195 DELU=(UNEXT*DELT)/(TSTOP-TBRAKE)
 200 US $=$ V(NTIME)
$V 2=V 1-D E L U$
$V A V E=(V i+V Z) / 2$.
C CALC POWER LUST DUE TO ROAD LOSSES FOR THIS INCREMENT
$F O=C D A * R H O * V A V E W A V E / 2$.

BETA= BE (NTIHE)
FGR=FITKGRAU*SIM(BEIA)
$P R O A D=(F G R+F R+F D) * U G U E$
© CAlC THE PDUER DUE TO VEHICLE ENERGY CHANGE
PWR3TP=(Mr*1.1/2.)* ( (V1*V1) - (V2*U2) )/DELT
C CalC pouer availagle for regeneration PREGEN=TURSTP .PRUAA
C IS REGEN POWER ABOUE MIN

```
 IF(PREGGH-REGMN) 230,230,231
 G SIT REGENERATED PGGERS 10 ZERO
 i30 PAKL%=0
 PDRIVE=0
 PGEAR=0.
 PCVT=0.
 P利访:=0
 FINU=0.
 P11055=0.
 PBIUTT=0.
 PHE=0.
 1 BATT=0.
 PECEC=1.
 GOTO 235
 B. IS BATTERY FULLY CHARGEU
 231 LF(SOC.GE.1.0) GOT0 230
 C Call axLE spEED AND TOROUE
 WANLE=VAVE/RTIRE.
 TAXLE=PREGEN/HGXLE
 PAXLE=PREGEM
C LALC. DRIVE SHAFT TORQUE, SPEED, POWER
 WDRJH=WAXIE/RDIF
 PDPCT=(PREGE.N/PDRATE.)*100.
 HDPLT=(WAKLE/WOUPTE)W100.
```



```
 F1.,-1.,10.:-1U.,105,11)
 TDRIUE=PDRIVE/GDRIVE
 C CALS DUANTITIE:S AT OHFT'I SCDE MA COI
 HGEAR=WDRIUC/RGEAR
 HGPRT=(PDRLUE/PGRGTE)*100
 WGPCT=\HDRIVE/WGORTE)*100.
 PGEAR=FORIVI:WNSEQ(GREFF,PGCT,WGPCT,10U.,100.,
 *s.,-1.,10.,-10.,101,11)
 GLER=pGEAR/WGEMH
&: Cal.C CUT RATIO
 PHE=0.
 GALl RATIU
C calc quantities on engine side gF cut
 WUUT=H'EAR/RDUT
 PCVT=(PGEGR)秃(INTNQ(EFF,(PGEAR/1000.),RCUT,100.,3.4,
 &APCUT,ARCVT,8,7))
 TCUT=PCUT/WCUT
 C LIMIT CUT ROWER fO MAX
 If (FCUT.GI.PCUTHX) PCUI=FCUTHX
 PGLEC=PCVT
C calc pOWER at mutor side of motor gear reducer
 WMOTOR=WCOT/RGRH
 FHGPCT={PGUT/PHGRTE)*100.
 WHBPCT=(UCUT/UG1RTE)*100.
 HHITUR=PCUT*INTEQSGREFF,PMGPC:T,WKGPCT,100.,100.,
```

```
 &1., 1.,10.,-10.,101,11)
 IMOTOR=PMOTOR/WNOTOR
C If regeneration poler is greater thal max motor power set power at max
 IF (PHOTOR.GF.PMTMAX) PMOTIH=PMTMAX
C calc pOWER from generator to inverter
 PMTPCM=(9MOFON/PHTRTD)*100.
 PINV=PKOTOR*
 &INTEQ(EFFMTR,FMTPCT,GMOTOR,E00.,1466.,2.5,-2.5,146.61,439.82,81,7)
C INIMIAL.IZE ITERGTION COUNTER
 IIREGN=0
C IF INUERTER POWER IS TOO GREAT SET POWER AT max
 HF(PINV.GT PINVGX) PINV=PINUAX
 IFML=PINU/FMOTOR
L CALC maftery lapor pumers ard) chmREN:
```





```
 245 PBOUT=-P[NU+3.0*(PINU/VALHG)*T.035*P IHU
 IBATT=PBOUT/VGCHG
 PUBATT=VGCHG
C IS chARGING POWER TOO LARGE
 IF(PBHAX*(ML/MCSTND) +PBOUT.GE.0.) GOTU 23%
C SET POHER AT MAX AND RECALCUIAIE BATT CURRENT
 PGOUT=-P BMAX*(MC/MCSTND)
 1HATT=PBOUT/UECHG
 C IG CIARGINI; CINRENT TOI] LARIGL
 E39 IF(IBMAX+IBATT.GE.0.) GOTO 2AS
```



```
 IBATT=-1BMAXX
 PBOUT= LBATT*UBCDIG
C Save uld valut of: batt volitage
 241 VBTOLU=प8CHG
C GALC GATT AHF-HRS OUT AND AVER BATT CURRENT SINCE GTART OF STC'S
 AREBEN=AREGEN-(IGATTHDEL T/3601)
 AACTL = AKOUT - AKEGEN-AHCHG
 IAVE= 3600. WGHOUT)/(IME+FLOAT(NCYCIE-f)*TGTOO)
C Cal.C gTate OF ChaRGE akd batTERY vOLTAGE DURING REGENERATION
 EAPCTY=MC*PUKRT(IAVE/MC)
 SUC=1.0-(ANCTL/CAPCTY)
 IEFF=--IEfITT*(MCSTND/ML)
 WICHG=NC,MNTEN(VCHG, (AACTL/MC),IEFF,15.,300.,1.,0.,25.,0.,13,12)
```



```
 *101,6)
 W/UBCliG
C DOE.S calc bamery voltage egual agsumed vol.tage
 (F(ABS(VBCHG-UBTIJLD).LE. UDELT) GOTO 243
```



```
 IF (IREGN.GE. ITERHX) GOTO 244
C INCREMENT ITERATYON COUNTER AND RESET A-H TNTO DATT
 IIREGN= IIREGN+1
```

```
 AREGEN=AREGEN+(IBATT*DELT/3600.)
 GOTO 245
C set batt vultage to old value
 244 VBCFIG=VBTOLD
 C LIMIT SOC TO MAX
 243 IF(SOL.LE.1.0) GOTO 242
 SOC=1.0
C CalC. battery cidrrent reguired to fully charge gattery
 AREGEN=AREGF:N+(SBATT*DELT/.3600.)
 If ILL=3600./DELT*(AHOUT-AREGEN-AHCHG)
 IBAIT=-IFILL
 AREGEN=AREGEN-(IHATTT*DELT/3600.)
 AACTL=AHOUI-AREGEN-AHCHG
 JEFF=-IBATT*(MCSTND/FC)
 UBCHG=NC*INTEQ(UCHG, (AACTL/MC),IEFF,15.,300.,1.,0.,25.,0.,13,12)
 REGEFF=NC*INTFG(DISCHG,SOC,0.,1.,IEFFKX,.01,-.01,100.,-100.,
 &(01,6)
 &NBCHI;
 PBOUT=VBCHG*IBATT
 PUBATT=VBCHG
C SET TUTAL ENERGY OUT OF BATTERY TO ZERO
 EBrOr=0.
 G0 T0 235
 242 CONTINUL
C CALC TOTAL BATT ENERGY USED ON THIS TRIP OR FROK START OF STC'S
 EBTOT=EBTOT+((PBOUT*DELT)/1.F+U6)*REGEFF
C INCREMENT TIME
 235 TIME=TIHE+DELT
 NTIME=NTIME+1
C$
 If (IA.EQ.IA/S7*57.AND.RUN2.1.EQ.i) WRITE(8,401)
 IA= LA+1
 IF(RUN2Z.EQ.1) WRITE(B,5000) NCYCLE,TIHE,YAUE,HDRIVE,WGEAR,
 SHCUT, HHE, THE,WHOTOR,
 AIAUE,IOODOD,IFLLBK,IOURLD,ISHTCH, IITER,IHECHG,IICHG,IIREGN
 IF(IB.EQ.IB/57*57.AND.RUNII.EU.1) WRITE(9,40?)
 | b=1B+1
 IF(RUN21.EG.1) WRITE(9,5010) NCYCLE,TIME,FAXLE,PDRIVE,PGEAR,
 &PCUS,RCUT,PHE,PCHG,
 &PELEC, PHOTOR, IINU, PGOUT, IGATT, PUBATT, SOC, PRUAD, PREGEN,
 &BSFLi,FIJELRT, EFMI
C:
C have de reached the stGp phase of the stc
 IF(rIME.GE.TSrIf) GOrO 236
 U(NTIME) = U2
 G0 TO 200
C CALC AVER CURRENT FOR ALL STC'S
 23% IAVE=(AHOUT*SKOU.)/(FIOAT (NCYCLE)*TSTOF)
C at end OF THIS STC, SAVE: batT gOC, AVERAGE CURRENT, PETROLEUM vOLUNE,
 C FLEGTR[CAL ENFRGY, AMP-HRS DUT: AMP-HR'S REGEN ANO BATT. STATE-
```

```
C ALL SINCE START UF STC'S
 IDOD\NCYCLE)=180DOD
 IVESTC(NCYCLE)=IAVE
 HOUT(NCYCLE)=AHDUT
 REGEN(NCYCLE)=AREGEN
 EATOTL (NCYCLE)=EBTOT
 PETSTC(NCYCLE)=VOLTOT
 SOCSTL(NCYCLE:)=3OC
 CHARGE(NCYCLE)=AHCHG
Ci
 16=I6+1
 IF"(I6/NCYLHXWNCYLHX.EO.I6.AND.RUN21.LE.1) GRITE(6,404)
 &(I,EBf!TL(I),HOUT(I),COUD(I), IUESTC(I),PETGTC(C),REGEN(I),
 SSUCSTC(I),CHARGE(I),I=1, HCYCLE)
 404 FORMGT('',/IX,' [','5X,'ERGUTL(I)',4X,'HOUT(I)',4X,'TDOD(I)',
 84X,'IUEST(I)',3X,'PETSTC(1)',3X,'REGEN(I)',2X,'SOCSTC(I)',3X,
 &'CHARGE(I)',
 84(2X,F9.5)/))
C#
C IS THIS THE END OF THE STC WHICH PRECEEDS ALL HIGHWAY DRIUING?
 IF (NCYCLE-NSTCFR) 238,237,338
C SAVE PRESENT VALUE OF BATTERY vOLTAGE
237 UHWBTT=UBATT
C INITIALIZE POHER REGENERATION VARIABLES
 238 PREGEN=0.
 PROAD=0.
 I[REGM=0
C HAVE WE GONE THE MAX NO OF STC'S
 IF(NCYCLE-HCYL.HX) 240,250,250
C INCREHENT CYCLE COUNTER AND INITIALIZE TIME
240 NCYCLE=NDYCLEH1
 TIME=0.
 NTIME=1
 GOTO 10
 C inItIalize trip consunption variagles
 ;50 PETMOL=0.
 IHWY=0
 EN:LEC=0.
 NTRIP=1
 C DETERMINE LENGTH OF CURRENT TRIH
 260 LFNGTH= TRIPLN(NIRIP)
 C IS TRIP ALL STC'S
 IF(LENGTH.GT.ALLSTC) GOTO 2%0
 C CALC TUMBER OF STC'S IN TRIP
 STCNO=LENTGTH/STCDIS
 NOSTC=STCNO
 DELSTC=STCNO-FLOAT(RUSTC)
 C. BGLI; AHH-HRS FOR THIS TRIP
 AACTLI=HOUT(NOSTC)-REGEN(NOGTC)-CHARGE(NOSTC)
 AACTL?=HOUT(NOSTCH1)-REGEN(NOSTC+1)-CHARSESNUSTC+O)
```

AACTL. $=A A C T L 1+(A A C Y L Z-A A C T L 1) * D E L S T C$
$\triangle$ CALC PEROL CUNBUMPISON FOR THIS TRIA
 APETT (ATRI' ${ }^{\prime}$ ) $=$ PE TKOL
[ CAlC ELEC ENERGY CONSUMTION FOR THIS TRIF USING POLER AND USING AMP-HRS
 fil: E ETP (NTRIf)=ERELEC


C
C
\& DETERMINE NO GF SUCH TRIPS/YEAR TRIPYR=TRIPNOUNTRIR)
C determine yearly petrol and eitct consumf tion for this trip

[lICYR(NTRIP)=TRIFYR*ENELEC:

C WAS THE BATT DISCHARGED SUAETIME DURING THIS TRIP

DISFAC=1
Gurb 267
265 WISFAC=(i. $-\operatorname{SOCSTC}(N O G T C)) / 0.6$

$26 \%$ JISCH (HIRIP) = ISGFAC*TRIPYR
© IS THIS THE LAGT TREP TYPL:
270 IF (NTRIP. GE MRJPX) GOTG 271
WTHP=NTRIPT.
(i] 10260
© determine wall plug energy reqd to meet elect. Energy consumption
271 D0 230 $[=1$, NTRE号.
ELEC(I)=ELEC(I)/CHGEFF
AELETA(D)=AELETA(I)/CIGEFF
ALLE1T (I) $=$ ALLETP (I)/EFFEC
200 FLEYR(D)=ELECYR(D)/EFFBC
IF (RUNZ $1 . \operatorname{LE} .1)$ WRITE $(6,126)$


 Di) $6579 \quad I=1,6$

6579 IF (RUN21.LE.1) WRITE(6,408) I, DISCH(I), FETYR(1), ELECYR(I),

4041 FInMAT $(1 X, 12,5 X, 59.4,2 X, F 9.4,3 X, F 9.4,6 X, 59.4,3 X, F 6.0,4 X, F 9.0,16 X$, $\left.\operatorname{m}_{1}, 1 \mathrm{X}, F 10.4,2 X, F 10.4,2 X, F 10.4\right)$

$\operatorname{BOH} A=0$.
EAKHY=0.
$\because U M P=1$.
PI.TVY=0.
PETV=0.
D0 35341 1=1,8

```
 EAKHIR(i)={LFC(1)/3.6
 ALKKHA(I)=AELETA(1)/3.6
 HERiP(D)=AELETP(I)/3.6
 PETU=F'ETU+APETT(J)
 PETUY=PETMY+PETYR(I)
 SUmA=SUMATAEKHA(I)
 BUNP=SUMP +AEKIM(I)
83341 EAKHY=EAKHY+E:GKWHH?(I)
 IF(RUNC1. IE . 4) BOTO .323
 JF(CX(1).NL 0.) GOTO 33244
 GR[TE(7,3346)
 |/ (RUNEI.E0.4) WRITE(8,3346)
 IF(RUN21.EU.4) WRITE(7,3346)
 WRITE(10,3546)
 3'346 FORMAT(2X,'PG',10K,'1',11X,'2',IIX,'3',11X,'4',11X,'5',11X,
```



```
33244 CUMTINUE
```



```
 WRITE(3,3432) CX(1), (APETT(I), [=1,3), PE:TV
 WRITE(9,343:) EX(1), (AEKHP (1),I=1,8), SLMP
 W\TTE(10,3435) CX(1), (E゙AKWIR(1), [=1,3), EAKHY
 34s2 FORMAT\1X,F4.2,1X,a(F11.5,1X,),F11.5)
 32% COHMINLGE
```




```
 3431 TORMAT('IONRLD=',IS,2X,'PGVRLD=',G13.7,2X,'TOMAL PETROLEUN',
 &'VOLUME PEP YEAR (PE(VY)=',F7.E' LITERS/YEAR',5X,
 *''TOTAL ELECIRIC ENERGY CORGUNITION PER YEAK (E.AKHY)=',F9.'厶;
```



```
 PETUSO:PETUY*IO
 NE. TJM
C gale time IT takes to make ThIS Trif
```



```
G IS THIS THE FIRST TRIP REQUIRINS GIGHSAY DRIVING
 IP(IHWY.NE.B) BHOU 20
C INITIALIZE BATT HODEL AND FUEL CONGIMPTIONS
E VBAIT=OMUBOI
 AHOUT-HOUT (NGTCFR)
 I:SDOD= = DUO(N:STEFR)
 JAVE=IVESTC(NGTCFR)
 *OL rOT=PETSTE(NGIC*Q)
 [KMDl=ERTOTL(NGTCFR)
 FREGEN=REGON(NSTCRR)
 AHCHG=CHARGE (NGTCFR)
C SET URLOLITY, ALCELERATJON AND GGGIDE FOR HIGHWAY DRIVING
 UAVE:-HIGYVEL
 ACCEL=0.
 BETA=1).
C INITIALIZE TIME TO START OF HIGHWAY DRIUING
 T(ME:&LUAT (NGTLFR)& F'SOH
```

```
C yHITIALIZE gATTERY HDDEL QUANIITIES FOR START OF HIGHWAY DRIVING
 LARCTY=14C*PUKRT (IAUE/HC)
 GACTL=AHOUT-AREGEN-AHCHG
 SOC=1.0-〈AACSL/CAPCTY\
C SET HIGHWAY FLAG; TO HIGHWAY DRIVING CONDITION
 \HWY=1
C SLT HUY DRIVING IIME INCREMENT
 DEI.T=DELLHG
 601020
C CALC yEARLY PETROL CONSUHPTYON FOR THIS TRIP YyPE
30日 ROLPYR=1RIP孫(NT:IP)
 PETYR(NTRIP)=TRIPYR*UOLTOI
 PE:TR1]L=VOLTOT
 APETT(NTRIP)=PETROL
C LALC YEARLY ELEG: ENERGY CONSUMPTION FOR THIS TRIP TYPE
```



```
 ENELEC=EBTOT
 GELETMOUTROM=GNELEC
 ELEC(NTRIP)=1RIPYR*NC*AACIL.*3.6E-03*SUINT(AACU,AACTL/MC,ACR,a)
 GMRGY=ELEC(NTPLH)/RRIPYR
 ARLEIA(NTHLF)=TNRGY
G SET DLSCHG FACTGM TO FULE DISGGG IF BATT WAS DISCHARGED DURING THIS TRIP
 IF(180DOD.NE.1) FOCO 310
 DISFAC=1.
 61003:0
C CALC DIGCHG FACTUR
 31) OSSAC=(1,-5(L)/0.3
C EACE:O OF YEGREY DISCHARGES FOR THIS TRIP TYPE
```



```
 6070 270
 1:N0
 1/10
```

subrounde matlo

## 

$1:$
C THE DCTERASNES AATIO OF THE CONTINUOUSLY UREIGELE TRANGMISSION FASED ON L TH: LABT VALUR UR TIE GEAN PUWER. AT VEHICLE START UP TIHE THE VALUE
C IS SET TO A HINIMUN OF . 3. THE RATYO VALUE IS LIKITFD TO PREVENT

C

REAL HRRSDD(S), ARRP (S), AWMT(6), STALL(6)
COKMON/CC/CDA, RDIFF, RGEAR,KGRH,RTIRE

CUMMON/RSPLT/AELEL, GOC, PCUT, CX (15), VAVE, PHEMAX, PHE, PELEC
DAFA RLUTAX/3.4/,RCUTVN/U.3/, WHTRKX/1675.5/, DELR/0.1/
DATA ESFC/4.2/, WHEMN/104.72/
0\&TA MTRSPD/536. $431,877.646,1172.06,1319.4 \%, 1466.08 /$
DATA AWHT/0.,586.431,879.646, 1172.86, 1319.47,1466.08/
DATA STALL/0.,50.,75.44,107.57,129.74,200.7
DATA APFPP/19.4,36.7,64.3,75.5,101./
L $[S$ VEHECLE JUST GFARTING UT
LF (NTIME.NE. 1) GO TO 10
$C$ SET RATIU AT MIHIMUM
RCUT=RCUTHN
REIURH
C Whis HE POUER USED IN THE LAST ITERATION
10 IF (PHE.GF.O.) GU TO 20
C PLCK RATIO TO MAXIMIZE HOTOR EFF PMT=PGEAR/(0.73* 0.98 )
C COMFUTE MOTOR POUER IN PERCENT OF RATED POHER PMTUCI $=(1$ MF/PMTR TD) * 100.
RCUT=WGEAR / (SULNT (MTRSPD, PMTPCT, APRP, F) *RGRH)
1: LIM[T RATII SO KOTOR SPEEO IS NOT EXLESSIVE WWT=WGEAR/ (RCUT WRGRK)
IF (GMT.LE. WHTRMX) BO TO 40
GMT = WHTTRNX
RCUT=HGEAR / (GNTKRGRA)
$G 0$ Ti] 40
C ESTIMATE A HE OUTPUT POUER FOR IHIS ITERATION
20 PHEOT=(HHE/ (HHFHELEC)) * (PGEAR/O. 33 )
C CALC MOST EFFICIENT HE SPEED
WHEFF=BSHE* (PHEST/PHETAX) O 100
IF (WHEFF.LT. WHETIN) WHEFF=WIEHN
C LAL RATIU
RCUT = WGEAK/GHEFF
C CAL MOTOR SPEED
WMT = GGEAR / (REUT*RGRM)
I CALC REQUIREO MOTUR PDUER AT TIIS SPEED
PMT=(PGEAR/0.93) -PHEST
PMPPCT=(PNT/PMFRTD) WIDU.
C CAN HOTOR DELIUER THIS POWER AT THIS GPEED
(: DECREASE RATIO TO INCREASE MOTOE SPEEDRLUF=RCUT-DrI:?WMT=WGCAR / (RCUTRRGRM)I: REOC.Gr. RCOHN GU ru su
C IS RATIO AKOUE UFFER LIMLT
43 (FERCURGI.RCUMX) RCUERCURAXIF (RCUT LT RCUTMN) RCUT=RCUTARRE TURN
(.1.1)
BN

```
FTN4,L
 SUEROUTINE SPITT
```



```
i:
〔; THIS DETERMINES THE FOWER SPLIT BETWEFN THE HEAT ENGINE GND THE
```



```
C OF CHARGE OF THE RATTERY.
C
Cx***
```



```
C PG =0 WHEN ONLY HEGT ENGINE UGFD
C P'S:=1 WHON DKLY BATITRIES ISEU
 DATA UMINHE/A. З4/'
I [S VEHICLE UELOCITY bELIW FIN
 IF(UAUE-UMINHE) 10,10,20
 10 1%%%
 6070 30
20 PG=CX(1)+CX(2)*ACCEL+CX(3)*SOC
 if(1'0.G%.1.) PS=1.
 JF(PG.LT.O.) PS=0.
30 PEIEC:PCUT紹S
 PHE=PCOT*(1.0-PS)
 RETIJRN
 ON
 ENO
```

FTR4:L
GUBROUTINE SPLIT
i.C This líicrinines the foutr sflit betheen the heat engine and the
B) ELEETRIC MOTOR. IT IS A FIJRCTION OF Thi: ADCELERATION ANO THE STATE
C Of CHARGE DF THE BATTERY. (AIRESEARCH POWER SPIIT)

C


C PS =O WHEN ONLY HEAT ENGINE USED
C $p \mathrm{~S}=1$ WIEN ONLY BATTKRIES USED
DATA UMINHE/1.34/
C IG VEHICLE VELOCITY BELDU MINIf (VAVE-UMIHHEX) $50,10,20$
10 P3:- 0
GOTO 80
20 IF (ACCEL.NE.O.) GOTO 40
IF (SOC.LE. .2) GIJTO 70
C IS THIS A HILL CLIMB
IF(PEUT.GE.20000.) GOTO 3
$P S=1$.
6010 30
$30 \quad \mathrm{PS}=.3$
9050 80
C IS REQUIRED PUGER TOU LARGE
40 TH(PCUT.GE. . 3 WPHEMAX) GOTO ..... 50
$P S=3$
130T0 80
50 PHE=PCUT
IF (PHE.LE. PHENAK) GOTO 60
PHE-PH:TKAY
PELEC=PCUT-FHEMAX
PS=PELEC/PCUT
RETURN
60 PHEEPCNT
PELEC=1
PS:0.
RETURN
70 PS=
80 PELEC=PCOTRPS
PHE=PCUT*(1.0-P: $)$
RETURN
END)
END

## REAL FUNCTION PUKRT(IAVE)

 C
C calcilates caracily per kilogram of battery fased on the average
C DURRENT PER KILOGRAM OUT OF SHE batrery. IT IS LIMITED TO A
C HINIMUM OF 0.5.
C

REAL IAVE
JF(IAVE.LT.10.173) GOTO 10
PIKRI=22. 38811 - 3.796948 *ALUG(IAVE)
IF(PUKRT.LT. .5) PUKRT=. 5
RETURN
10 PUKRT=16.9888亿-. 3808714 GIAVE RETURH
EN0

```
 FIUNCTIUN SUINT(ARRAYY,X,XARRAY,IDIM)
```



```
C
C sinGle variable interpolation subroutine. siacing betheen data
 C POINTE OF THE INDEPENUENT VARIABLF NEED NOT BE EOUAL.
C
C\`***
 UIIENGION ARRAY(IDIH), XARRAY(IDIM)
 IDK1=IDIK-1
 DO5 IMAX=2,IDM1
 |(X.LE.XARRAY(IMAX)) GO TO 7
 5 cONTINUE
7 IMIN=IMAX-1
 {VINT=((X-XARRAY(IMIN))*ARRAY(IMAX)+
 &(XARRAY(IMAX)-X)*ARRAY(IMIN))/(XARRAY(IMAX)-XARRAY(IMINS)
 REIURN
 IHD
 ENO
```

HTAL FUNCTIOR INTNO(AREAY, YK, YY, XTOP, YTOP, XARRAY, YARRAY, IDIM, JDIM)


## C.

C DUURLE VARIABLE INTERFOLATION SUBROUTINE. BOTH UARIABLES NEED NOT


## C.


C THES LINEAR INTERPOLAIIDH MUSI TAKE INTO ALCOUS VALUES OF X AND Y LYING
C AbOVE: AND belol the maximuk and minimuk values in the array
OIMENSIUN XARRAY(IDSA , YARRAY (SOIM), ARRAY (IOIK, JDIK)
$X-X X$
$Y=Y Y$
$J F(X . G T . X T O P) X=X T O P$
IF (Y.GY Y YOP ) $Y=Y$ TOP
$C$ FIND INDICES ON $X$ ARRAY
COM $1=[D I M-1$
DO 5 IMAX $=2$, IDM1
(F (X.LE. XARRAY (IMAX)) GU TO \%
5 CONTINUE
$7 \quad$ IMIJ $=$ IMAK-1
C FIND THE INDICES OF THE values in the yarfay which gracket the
C ACTUAL Y UALUE
JDKI=JDIM-i
DU 15 JKAX=2, JDHi.
If (Y. LE. Yarray (JMAX)) GO TO 17
15 COHTINUE
17 JMIN=JMAX-1
C interpolate to find the array values corresponding to the
C BNADKETING X VALUEG AND THE ACIUAL Y VALUE:
ALOUY = ( $(X$ - YARRRAY(ININ $)$ ) *ARRGY (IMAX, JMIN $)+$
\& (XARRAY(IMAX)-X) *ARRAY(LBIN, JMIN))/(XARRAY (IMAX)-XARRAY(IMIN))
AHIGHY=( $(X-X A R R A Y(I M I N))$ *ARRAY (IMAX, JMAX) +

C INTERPOLATE bETWEEN THE AbOVI. GRRAY values to find the array value
L CURRESPORDING TIJ THE ACTUAL Y VALUE
INTNQ $=($ (Y-YARRAY (JHIK) ) *AHICHY+(YARRAY (JMAX)-Y)*ALOWY)/
\& (YARRAY (JMAK) -YARRAY (JIMN) )
RETURN
EN(1)
(.ND

```
 HLAL FINCTION INTEQ(ARRAY,YY, YY XTOP, YTGP:
```




```
 C
C duugle variamle imterfolation gueroutine. both variables must have
 L EUUAL SHACSNG brTMEEN THE OATA POIHIS.
C
C**
 DIMESSION ARRAY(IDIM,TDIM)
C
 X=XX
 Y=YY
 IF(X.GT.XIOF) X=XTOP
 FF(Y.GT.YTOP) Y=YrUP
 C X-FLOATSI)*XCON1+XCONZ
 C Y=FLOATSI)*YCONLTYEON:
C
C FIND THE TNOICE OF THE X value which beacketS the actual x value
 THIN= (X-XCONL)/X:ONS
 IF(IMIN.LT.I) IMIN=1
 IF(IMEN,GE.TDIM) IMIN=IOMF-1
 1HAK=[MIN+1
 XMIN=FLOAT(IHIN)SXCOMI +XCONL
 XR1AX=XHINH+XCONI
 C FIND THE INDICE OF THE Y VALUE GHICH BRACKETS THE ACTUAL Y VALUE
 SMC及=(Y--YCON2)/YCON1
 JF(JMIN.LT.i) JMIN-1
```



```
 JMOX=JMIN+1
 YMIN=FLOAT(JNIT)*YCONj+YCONE
 YMAK=YBITHYYCON1
 c INTERPOLATE TO FIHD THE GKRay YaluE CORRESPONDING TO THE BRACKETING
 C }x\mathrm{ valuES givd tile actual X valides
 ALOLY=((X-XHIN)*AURAY(INAAX, JHIN)+
 *(XHAX-X) *&RRAY(!H(N,JMLN))/(XHAX XHIN)
 AHIGHY=((X-XMIN)*ARRAY(IMAX,JHAX)+
```



```
 C IMTERPOLATE TU FINU THE ARRAY VALLUE CORRESPONDING TO THE ACTUAL
 C Y VAL.JE
 INTEG=((Y-YHIN)*AHIGHY+(YMAX-Y)*ALOWY)/(YHAX-YHIN)
 RETURT
 E:N:
 ENO
```

:UBROUTIHE WGHTCHEKW,WGEATT, WT, MT, WGCHI, WP)

C
c THIS CAl.CULATES THE TOTAL MÁSS AND CURB HASS UF THE VEHICLE.
C

KEAL MS, KTRLS , MTRKH, KTGRKG
I RTEGER RUN2i
COMMON RUNZI
COHAON/KILOG/WGENG, WGCUT, WGCHGR, WGGRH, WGGRDF
\&, WEDIFF, WF , WPL , WRROF, HS, WGMOTR, WECLT, WCURB
COMMON/UARY/WTL, INOCHG
DATA CUTCS/1.07/, CUTKW/90.0/, HEC\{ $/ 0.0 /$, HECZ/2.84/
DAFA MTRCL/0.6/, HTRKW/20.0/, CHIC1/0.71/, CHIKW/40.0/
DATA HGEXTR/0.O/
DATA DIFFCi/0.66/, DIFFKW/90.0/, GRCI/0.3/, MTGRKW/40.0/
DATA DFGRKW/90.0/, CHBRCI/0.0/, CHGRKW/14. $3 /$
C COHPUTE CONSTAMY IERN IN VEHICLE WEIGHT FORMULA
C (FROK MTI, APPENDLXB)
UCONST $=((0.23 * W P L+W F) / 0.77)+W T L$
C CALL. HROPIJLSIUN SYST. COMPONENT WELGHSS
C CUT

C IUE
WGEMG: (HECI*HEKW+HECZ) *HEKW
C MOTOR
WGMOTR=HIRE:SHTRKK
C CHOPPCR/INV.
WGCHI =CHIC1菓CHIKH
C DIFFI'L
WGDIFF=DIFFC1\%DIFFKH
(i GEAR BETWEEN MOTOR AND CUT
WGGRM=GRCI *TITGRKW
C GEAR BLTUEEN DIFF $\&$ CUT
WGGRDF=GRC1*DFGRKH
C Litarger
WGCHGR=CHCRCI*CHCRKG
C Calculate rropilsion systela weibhi
WPROP =WGENG + WGCUT+ HGHOTR + WGCHI + GGDIFF + WGGRH + WGGRDF + WGCHGR $\therefore+$ WGFEXR + WGBATT HELCL
c calculate vehicle total weight
WTFWCONST + WPKOP/O.77
C calculate vehicle rotal hass
$\mathrm{MF}=\mathrm{H} \mathrm{T}$
C calculate curb mass of vehicle
WCURB=WT-WIL
C CALC. POUER TKAIN WEIGHT
WP=(WPROP-WGBATT)
$A=W G C U T+W G G G R+W G G R D F+U G D I F F$
IF (RUNZ $2 . L E .1)$ GRITE (G,2001) WCURB, WF, WGBATT, HGCHGR, WGCHI, WGCLT,

```
 & WGCUT, WGOIFF,WGENG, WGEXTR, WGGRDF, HGGRH, WGHOIR, WP, WFL, WPNOP,
 GUT,WTL,A
2001 FORMAT(/'************* VEHICLE MASSES ************',/
 #", CURB KASS OF VEHICLE: (LLURB)=',F9.3,/
 &' FIXED VEHICLE MASS (WF)=, F9.3,'/
 '' BATTERY WEIGHT (WGBATI)=',F7.3,/
 *' (HARGER MASS (WGCHGR)=',F9.3,/
 H' CHUPIER [NUERTER MASS (HGCHI)=',F9.3,/
 *' CLUTCH MASS (WGCLT)=',F9.3,/
 CUT NASSS (WILCUT)=',F7.3,/
 DIFFE:RENTIAL MASS (WGDIFF)=`,F9.3,/
 ENGINE MAGS (WBENG)=',F7.S,/
 &'EXTRA VEHICLE PROPULSION COMPONENT MASS (UGEXTR)=',F9.3,/
 &'MAGS OF GEAR DETWEEN CUT & DIFFERENTIAL (WGGNDF)=','F7.3,/
 &' MASS OF GEAR BETWEEN MOTOR & CUT (WGGRK)=',FQ.3,/
 &' ELECCRIC MOTOR MASS (WGMOTR)=',FY.3,/
 POMER TRAIN MASS (GP)=',F9.3,/
 MAXIMUM PAYLUAD MAGBS (HPL)=',F7.3,/
 PROPULSION SYSTEM MASS (WPROP)=`,F9.3,/
 TUTAL HAG:3(WT)=',F9.3,/
 IEST PAYLOAD MASS (HTL)=',F9.3,/
 &'WGCUT+NGGGRM+WGGRDF+WGDSFF=',/
 &' TRANSMISSION & DRIUE TRAIN WEIGHT=',F9.3)
 RETURN
 IND
 ENO
```

SURROUTINE MTCST:GGBATT, WGCHI HNFCST)

C
G ThIS DETERMINES THE MANUFACTUFING COST UF THE UEHICLE AS A FUNCTION
B DF THE VARLOUS MGSSES.
C

REAL MNECST, MTRLER, MTRCST
INTEGER RUNE:
COMMON RUN: 1
COMMON/KILOG/WGENG, WGCUT, WGCHGR, WGGRM, WGGRDF
क, WGOIFF, WT , WIL , WPROP , WS, WGMOTR, WGCLI, WCORB
DATA HECER/1.43/: CUTCER/i.43/, CHECER/5.89/
DAIA CHELH/14.6/, GREER/2.43/, DIHEER/2.42/, WFCER/3.13/
DATA HSCER/S./, MTRCER/15.95\%:CLTCER/0.0/
DATA GOTLER $0.1 \% 6 \$$
C calculates hanufacturing costg for propulsion system componehts
C
HECOST=HECER *UGENG
CUTCST=CUTLER*WGCUT
CHGCST=CHCLER*UGCHGR
CHICST=CHICER程CLII
GRMCST=GRCER*WGGRM
GRDCS $=$ GRCER *WGOND
HICGT=DIFCER*WGDIFF
UFCOST= UFCER *UF
WG: $0.3 *(W P L+W T R O P+W F)$
WBMOT = WSCER WWS
HIRTST-MTRCERWUGHOTR
CLTCSI=LLTCER*UCCLT
ASHCST=AGMCER*WCURB
C Calcilare roral marvificturing cosi $A=C U I C S T+G R N C S T+G R D C S T+D I F C S T+C L T C S T$

$\therefore$ ADFCST+WFCOST+USCOST+MTRCST+CLTCST+ASMCSI

1900 FORHATS
$t_{x}^{\prime} \quad$ STRUCTURE \& CHASSIS MASS (WS)=', F9.3)

\& DIFCST, GRDCST, GRHCST, HECOST, MWCST, MTRCST, WFCOST, WSCOST, A



$\AA^{\prime}$ CHOPPER INUERTER COST (CHICST) $=$ ', F9.3, 1

CUT COST (CUTCST) $=$, Fq .3 , $/$

1) IFFERENTIAL CUST (DIFCST)=',F7.3,/
$\$^{\prime}$ GEAR BETUEEN DIFF \& CUT COST (GRDCST) $={ }^{\prime}$,F9.3./
a' $^{\prime \prime}$ GEAR DE [WEEN MIJTOR \& CUI COST (GRMCST) $=$ ', $57.3,1$
*' HEAT ENGINE COST (HECOST)=',F9.3,/

:UBROUTINE MAINT(HEKH, MTKWPK, BATCST, KMPRYR, WP, WGCHI, BTLIST, MAINTC)

## 

C
c this calculates the yearly maidtenance cost of the vehicle as a function
C DF HEAT ENLINE, BATTERY, AND VEHICLE MASNTENANCE, AND ANNJAL DRIJING
C DISTANCE.
C

REML KWLST, MTKWPK, KMPRYR, MAINTC, MTMAIM
INTEGER RUNEI
COHMOH RUNEI
COKMON/BATT/BTHKUP
COMMON/COST/BA'LST(10), KWCST(10)
C calculate component maintenance costs ( $\$ / \mathrm{Km}$ )

HTKAIN=(0.06+0.002w(MTKGPK/0.7463)/160.93

BTKAIN $=0.0004 *$ BTLIST $/ 160.93$
CUTMAN $=0.063 / 160.93$
C (AR-H P. 78) 1/2 MAINTAKENCE 1/2 REPAIR
CHIMAH=((36.83/2)*SQRT(NGCHI))/(10. *KMPRYK)
C Calculate maintenance cost for one year
HACNTL= (HEHAIN+MTKAIN+BTMAIHCUTHAN+CHIMAN) WK MPRYR
JF(RIIN2i.LE. 1) WRITE 6,2020 ) BTLIST
2U20 FDRMAT(' LIST COST UF BATTERIES (BILIST)=' ${ }_{2}$ F7.3)
IF (RUNZi.LE..j) URITE $(6,2030)$ BTMAIN, CUTMAN, CHIMAN, HEMAIN, :MAINTC,HTHAIH
2050 FORMAT (/'************* MAINTENANCE COSTS FULLOH ***************',

$4^{\prime}$ CUT HAINTENANCE COST PER KILUMETER (CUTMAN)=’,F9.8, 1

*' HEAT ENGINE HAINTENANCE COST PER KILOAETER (HEMAIN)=’, F9.8, $/$ $8^{\prime}$ TOTAL HÁINTEKANCE COST (MAINTC)=',F7.3,1
4' ELECTRIC HOTOR MAIMTENANCE COST PER KILOMETER (MTMAIK)=; ;9.8)
RETURH
END
ENO

GURPOUTINE RE:PAR (HEKW, MTKWPK, WP, WGCHI, KMPRYR, REPAIR)

## 

 CC ilis calculates the yearly vehicle repair cost as a function of the C INTHDPAFED REPALH COGT: FOR TIEE HEAT ENGINE, MOTOR, CUT, POWER TRAIN, C GND CHOPPEK INUERTER.
L'

REAL KHPRYR, MTKWPK
dNTEGER RUNE1
DOMMON RUNZI
REPRHE $=(0.28+0.008 *(H E K H / 0.746)) / 160.93$
REPMOR $=(0.09+0.002 *(4 T K W P K / 0.746)) / 160.43$
REPCUT $=(0.05+0.0013 *($ MTKWPK $/ 0.746) / 1160.93$
REPCHI=( $36.35 / 2) * S R$.$R ( (W G C H I)) /(10$. *KHPRYK)
C Calculate yearly repair cost
REPALR = (REPRIE +REPMTR +REPCUT+REPCHI) WKAPRYR
IT (RUN21.LE. 1) WRITE(6,20C(1) REPAIR, REPCHI, REFCUT, REPHTR, REPRHE
 ${ }^{\prime \prime}$ TOTAL REPAIR COST (REFAIR) $={ }^{\prime}$, F9.3, ${ }^{\prime}$ S'BHOPPER INUERTER REPAIR COST PER KILOMETER (REPCHI)=",F9. 3 , / i. CUT REPAIR COST PER KILOMETER (REPCUT)=', F9. B, $^{\prime}$,

\&' HE REPAIR COST PER KILOMETER (REPRHE)=' ${ }^{\prime}$ F9.8)
REIURN
CND
ERU

SUSROUTINE AQCSTEANFCST, GGBATT, BATCST, ACOCST)

## 

 CC. THIS DETERMINES THE ACOUISITION COST OF THE VEHICLE AS A FUNCTION OF THE

[

REAL MARKUP, MINFCST
INTEGER RUNZ:
COMMON RUNZI
CIOHMUN/BATT/BTKKUP
DATA BGTCER/1.87/
© BALCMATE THE MARKUP FACTUR MARKUP $=(29.176 E-5)$ WHNFCST +1.40833
$\therefore$ Ladmulate battery cout DATCST= BATCER*WGRATT
C LALCULATE ACOUSOUTON CUST (COST TO CONBIUER ) ACOCST = KARKUF WMAFCST+BATCST* (1. + BTKKUR )

i01 PORMAT:
G'MANUFACTURING COST OF BATTERIES (BATCST)=',F9.3.,

RETURN
ENI:
END

F1 $\mathrm{HA}, \mathrm{L}$
SURROUTJNE LIFELPETYR, ELECYR, ELEC, DISCH, ETLIST, ACQCST, MAINTC,

 C
C this calculateg the life cycle cost of the vertcle based on ten yeaks L USAGE II I;' A rUNCTION OI: THE ACQUISITIUN, MAIHTENAKCE, REPAIR,
© GATTERY, FUEL, AND ELECTRICITY COSTS OVER THAT PERIOD.
C

LOGITAL SMOOTH
LEAL KWCST, MAINTC, LCCOST
I A TEGER RUN2:
COMMON RUHET
COHMON GP:
Clamon/BATT/BTmkup
COMHON/COST/CASCST(10), KWD:3T(10)
CUMMON/LIMIT/NTRIPX, ITERMK
COMKON/OM工SC/LHOOSE, SMOOTH
COHMOON BTCOST, BATRYR, BATLFE DIHENGION PETYR(15), ELECYR(15), ELEC(15), DISCH(15),
tapeTcsT(i0), ELECST(10)
DIMENSION UHCOSTSIO)
DATA DISCHT/0.02/,DISLFE/B40./
$\therefore$ balc perrol hid elec costs: inirlalize year fnoex and tutal costs DO 5 IYEAR $=1,10$
PCTCST(IYEAR)=11.
5 ELECST (IYEAR) $=0$.
Di] 10 [YEAN $=1,10$
DO 10 JTRIP $=1$, NTRIPX
¿ ADD CUSTS FOR FHIS TRS' TO TOTAL COST:

10 ELECST(IYEAR)=ELECST(IYEAR)+(LHOUSEWELECYR (JTRIP) +

* (1.-CHODSE) *ELEE(JTRIP) ) KKUCST(IYEAR)

C CALE NU. DF DEEF DISCHARGES OF BATT. DURING ONE YEAR $D E E P=0$.
DO 20 JTRIP $=1$, NTRIPX
a6 DEEP $=D E E H+D S C H(J T R I F)$
C Calc no. of years in batt life
BATLEEDISLIETDEEP
C calc batt replacement cost
BrCOST: BATCST*(1. +2. $\mathrm{KETHK}(J P)$
C calc rotal. vehicle cost for ore year

ioteat =0.
EATRYR=(( (10./LGTLFE)-1.)*GTCOST)/20.
Du 40 IYEAR- 1,10
WHCOST(IYEAR): PETCST(IYEAR)+HAINTC+ELECST (IYEAR) +REPAIR
If (. NOI. SituOFI) 607035
UHCOST (IYEAR) $=$ UHCOST (IYEAR) + BATRYR

```
 TOTBAT=TOTBAI'&BGTRYR/(DISCNT+1.)**(IYE:AR-1)
 60 70 40
 C IS THIS A YEAR FOR BATT REPLACEMENT
 3\vdots IF(FLOAT\IYEAR).LE. LOUNT*BATLFE) GUTO IU
 C GDD IN BATT REPLACEHENT COST
 VICISS (IYEAR)=UHLOS T(IYEAR) +0.7*BTCOST
 TOTBAT=TOTBAT+BTCOST/((DISCNT+1.)**(IYEAR-1))
 COUNT=CDUNTT+i.
 40 continue
 C Calc vEHICLE AND POWER TRAIN AND batT SALUAGE valuE
 SALVGE=0.1*(ACQCST-BPLIGT)
 HATSAL=0.5*BTLIST*(COUNT-(10./BATLFE))
 IF`SMUOTH) BATBAL=0.
 C calci life cycle cost
 ICCOST=0.
 TOTPET=0.
 DU 50 IYEAR=i,10
 TOTPET=TOTPET+PETCST(IYEAR)/((DISCNT+1.)**(IYEAR-1))
 50 LCCOST=LCCOST+UHCOST(IYEAR)/((DISCNT+1.)**(IYEAR-1))
C subtract salvage values
 LCCOST=LCCOST-(SAL.VGE+BATSAL.)/((DISCNT+1.)**10)
 C ADO IN AQUISITION COGT
 LCCOST=LCCOST+ACQCST
 IF(RUN21.LE.1) WRITE(6,13i) BATLFE,BATSAL,LCCOST,BTCOST,SALVGE
 131 FORMATK
 &' BATTERY LIFE (BATLFE) =',F9.3,/
 *' BATTERY SALVAGE VALIE (BATSAL) =',Fg.3,/
 * LIFE EYCLE COST (LCCOST) =',F9.3,/
 a' BATTERY REILACETENT COST (BTCIST) =',FF%.3,/
 %' Sal.vage value (SalvGE) =',f7.3)
 IF(RUN21.LE.{)
 &4RTTE(6,404) (I,PETCST(I), ELECST(I), UHCOST(I), I=1,10)
404 FURMAR','/IX,'YEAR',SX,'PETROLEUM COST', 3X,
 *'ELECTRICITY COST',3X,'VEHICLE COST',/
 &' I',10x,'PIOTCST(I)',80,'ELECST(I)',3X,'VHCOST(I)',
 &/10{1X,I2,2X,3(8X,F7.5)/1)
 RETURN
 EN(D
 END
```

```
 BLOCK DATA
```



```
C
C BLOCK DATA
C
```



```
 L.0G[CAL SMOJTH
 RE.AL KHCST, HTKGPK,IUESTC
 COMTOH/ALPHA/GLPHAL, ALPHAR, ALPHA3
 COMMON/FATT/ETMKUP
 COMIOH/CC/COH,ROIFF,RGEAR,RGRM,RTIRE:
 COHMON/COST/GASCST(10), KLCST (10)
 COMMON/EFCUS/AOCUT(B),ARLUT(%),EFF(3,%)
 CORMON/KILOG/WGENG, WGCUT, WGCHGR, WGGRM, WGGRDF
 &,WGDIFF,WF,WPL, WPRUF,WS,WGHOTR,WGCLT,WCLRB
 COMMON/LIHLT/NTRIPX,ITERMX
```



```
 GGREFF(101,11), VEHG(13,12), ATORO(6),AESPED(6),ARATIO(10)
 COMmW/OHISL/CLIOSE,SHOOTH
 COMMON/KOTOK/MTK'HPK
 COMmOH/PHY/GR&\, RHU
 COB'TON/PRINT/APETT(15),AELETA(15),AELETP(15)
 COMGOH/RRATU/NTME,WGEAR,RCUR,PMUTOR,PMTR TD,PGEAP
 C.OMMON/RSPL.T/ACCEL,SOC, PCUT,CX(1S), WAVE,PHEFAMX, PHE,PELEC
 COMHN/SLALE/SFX(17),SFG(20), NN
```



```
 COHOUN/CHARE/ARLU(3), ACR(B)
 COHMON/TIMEC/DLTSTC,DELTH'LS, TACCEL, TCOAST,TBRAKE, TSTOP,TCYCLE
```



```
 i)VESTC(36), PETSTC(36), SOCSTC:(36), REGEN(36)
 CDOMON/VARY/ WTL, SHOCHG
 COHMON/YEARC/PETYR(15),ELECYR(15), ELEC(15),DISCH(15)
C
C. AliHfI
 DATA A!PHA1/1./, ALPHAR/0./, ALPHA3/0./
C BATT
 DATA BTMKUF/.3/
1. CL
 DATA CDA/.6/, RDIFF/1./, RGEAR/.08333333/, RGRM/0.2857/
 Dmifi R[IRE/.3/
C cosi
 DATA GASCST/0.32,0.35,0.38,0.41,0.44,0.4%,0.5,0.53,0.56,0.59/
 DATA KLCST/.0111,.01%3,.0137, .0153, .016%,.0181, .0194,
 8.0208, .02ec, .0a36/
&KILOL
 DATA WT/510./, WGCLT/0./, W'L/415./
C LIMIT
 DATA IIERMX/S/, NTRIPX/E/
C HOTON
 DATA HTKHTK/40./
```

c onfis:
data choose./a./smooth/ true./
CPHY
DATA GRAU/G. $207 /$, RHO/1.225
a RRATU
diala pmTRID/evoou./
© SGALE
DATA SFX/20*1./, NN/5/

C 3 L
Duth RET/830\%0./
DÂff TRIPLH/10000.,30000.,50000.,80000.,130000., 260000 .,
8joubu0, 840000./
DAİA TEIPNO/130., 85.,57.,54.,12.,7.,3.,1.7
C EEST
DAlA AACU/E. $265,2.2225,2.1975,2.1827,2.1 \% 02,2.1607,2.1544,2.1455 /$
DATA HER/A. $1.017,2.0 .34,3.452,4.069,5.0166,6.104,7.121 /$
C rimee

DATA IACCEL/A4.0/, ICOAST/64.0/, TBRAKE/74.0/, TSTOP/83./
dafa crcele/006./
C VA:Y
DATA WTL/EO7./, INOCHG/4/
©
Díta DISCHC/i. $30,1.30,1.36,5.30,1.30,1.30,1.30,1.30$, $51.3000,1.5010,1.3030,1.3004,1.3004,1.3000,1.3000,1.30100$, $\therefore 1.3000,1.3060,1.3000,1.3060 .1 .3000,1.6800,1.7400,1.7570$,
 $6.6490,1.8565,1.8640,1.8715,1.8790,1.8045,1.8900,1.8955$, 61. $2014,1.9348,1.9445,1.7123,1.9160,1.9197,1.7235,1.9272$, $41.9310,1.9349,1.9368,1.9426,1.9465,1.8504,1.9542,1.9581$, $81.7510,1.7645,1.9670,1.7695,1.9720,1.9745,1.9770,1.9795$, $81.9820,1.9845,1.9870,1.9895,1.9920,1.9741,1.9964,1.9986$,
 t2.0178, 2.0197,2.6217,2.0236,2.0255,2.0274, 2. 0293,2.0313, $62.03 .32,2,0351,2.0374,2.0 .502,2.0394,2.0406,2.3413,2.04311$,
$62.0442,2.0454$, c. $0466,2.0478,2.0490$,
$41.3000,1.3000,1.3600,1.3040,1.3000,1.3000,1.3000,1.3000$,
$8: 3000,1.3000,1.3000,1.3000,1.3000,1.3000,1.3000,1.3000$,
$\$ 1.3000,1.5000,1.3070,1.3000,1.3000,1.3200,1.6520,1.60 \%$, $41.7170,1.7420,5.7570,1.7685,1.7600,1.7683,1.7965,1.8047$,
 $15.6536,1.8565,1.8600,1.8635,1.8670,1.8705,1.8740,1.8775$, ti. $640,1.8834,1.843,1.3631,1.395,1.372 \%, 1.3953,1.876$, $81.9000,1.9040,1.9040,1.9060,1.9080,1.9100,1.9120,1.9140$, ai. $1101,1.91 \pm 0,1.7200,1.722 \mathrm{v}, 1.9240,1.9260,1.9280,1.930 \mathrm{~J}$, $41.9320,1.9340,1.9360,1.9386,1.9400,1.9420,1.9440,1.9453$, $81.9465,1.9470,1.9490,1.9503,1.9515,1.9528,1.7540,1.755^{\prime}$, $81.9565,1.9578,1.9590,1.9548,1.9606,1.9614,1.9622,1.9630$, a1. $96.38,1.7646,1.7654,1.9662,1.7670$,
$1.3000,1.3000,1.3000,1.3600,1.3060,1.3060,1.3000,1.3000$, $44.3001,1.3001,1.3000,1.3060,1.3000,1.3004,1.3000,1.3000 ;$ $31.3000,1.3000,1.3600,1.3606,1.3000,1.4660,1.5530,1.6080$, a1. $6504,1.6610,1.6750,1.6854,4.6960,1.7023,1.7070,1.7155:$ $61.7226,1.7273,1.7325,1.737,1.7430,1.7473,1.7515,1.7557$, 81.7604; $1764,1.7650 ; 1.7675,1.7700,1724,1.750,1.77 \%$, $8.7800,1.7825,1.7850,1.7875,1.7960,1.7965,1.7956,1.7975$,
 क1 $1.8140,1.8150,1.0175,1.8193,1.9210,1.3229,1.8248,1.8267$, 41. $846,1.8505,1.854,1.8545,1.8302,1.3381,1.8400,1.8406$, $81.8417,1.8425,1.8433,1.8442,1.8450,1.8458,1.8467,1.8475$,
 $61.8560,1.8570,1.8580,1.8596,1.6600$,
$81.3030,1.3003,1.3030,1.3000,1.3000,1.3000,2.3000,1.3000$, $81.3000,1.3006,1.3000,1.3600,1.3000,1.3000,1.3000,1.3000$, $\$ 1.3040,1.3013,1.3001,2.3001,1.3000,1.4130,1.4603,1.4831$; 01.5636,1.5210,1.5370,1.5485,1.5601,1.5698,1.5795, 2.5893, 41. $270 \mathrm{~d}, 1.6154,1.6114,1.6171,1.6230,1.6277,1.6325,1.63 \% \mathrm{C}$ 6.1.6420,1.6463,1.6505,1.6547,1.6576,1.6633,1.6675,1.6718,
 B.7006,1.706,1.7052,1.7077,1.7103,1.7127,1.7155,1.7101, 61. $247,1.7233,1.7253,1.7204,1.7314,1.7536,17342,1.7358$, $61.7374,1.7340,5.7406,1.7426,1.7430,1.7454,1.7470,1.7480$, $\therefore 1.7490,1.7500,1.7510,1.7520,1.750,1.7540,1.7550,1.75601$, 41.7570,1.7560,1.7596,1.7596,1.7606,1.7614,1.7622,1.7630, 51.7630, 1.7646, $2.7654,1.7662,1.7671$,
$6.3000,1.3060,1.3000,1.3060,1.3000,1.3000,1.3000,1.3000$, $\$ 1.3001,1.3000,1.3000,1.3001,1.3000,1.3001,1.3000,1.3000$, $69.3006,1.3006,1.3600,1.3000,1.3000,1.3670,1.4000,1.4180$, 61.4351, $1.4530,1.1660,1.4765,1.4370,1.4935,1.50100,1.5065$, $6.5130,1.5186,1.5230,1.5280,1.5330,1.5380,5.5430,1.5480$, 4. $5331,1.591,1.5612,1.5444,1.5695,1.5736,1.573,1.5819$, , $1.5666,1.5894,1.5927,1.5461,1.5995,1.6029,1.6062,1.6096$, in $1.6130,1.6154,1.6176,1.6242,5.6227,1.6251,1.6275,1.6274$, 81.6323,1.6347,1.6372,1.6376,1.6420,1.6445,1.6470,1.6495,
 $81.6702,1.6716,1.6733,1.6747,1.6765,1.6781,1.6797,1.6813$, \$1.6043,16044,1.6361,1.6873,1.6496,1.6714,1.69.32,1.6750; $85.6768,1.6986,1.7064,1.7022,1.7040$, 11. $3000,1.3000,1.3000,1.3030,1.3000,1.3000,1.3000,1.3000$, $63.3000,1.3006,1.3000,1.3000,1.3000,1.3000,1.3000,1.3000$, \&1. $3000,1.3010,1.3000,1.3030,1.3000,1.3160,1.5310,1.3430$, $81.3540,1.3666,1.3720,1.3610,1.3910,1.3965,1.4030,1.4195$,
 $6,4530,1.4565,1.4600,1.4635,1.4670,1.4705,1.4740,1.4775$, 41. $4310,1.483,1.4363,1.4876,1.4925,1.4754,1.4733,1.5011$, $6.5040,1.5064,1.5068,1.5112,1.5137,1.5161,1.5185,1.5209$; \&1.5433.1.5254, 1.5272, 1.5306, 1.5330, 1.5354, 1. $3370,1.5402$; $61.5426,1.5450,1.54 / 4,1.5496,1.5522,1.5546,1.5570,1.5591$, A1. $3614,1.563 .5,1.5653,1.5674,1.5695,1.5716,1.57 .37,1.5753$,
$\$ 1.5778,1.5799,1.5820,1.5845,1.5870,1.5875,1.5920,1.5945$, $41.5470,1.5775,1.6020,1.604 \%, 1.6070 /$
DAIA ATORO/C., 19. ,47., 94., 140., 178./
DATA AESMED/U. $204.439,261.794,314.159,366.517,418.879 /$ DATA EFFM1R/0., .8094,.91,.9175,.9250,.9280,.9310,.9315,.9320, $4.7275, .9270, .7240, .9210, .9175, .9140, .9935, .9030, .8980$, $8.8930, .8860, .8790, .8720, .8650, .8580, .8510, .8442, .8375$, 4. $3304, .5240, .8170, .8100, .8033, .7960, .7890, .7820, .7750$, $6.7680, .7610, .7540, .7470,7400, .7332, .7265, .7198, .7130$, $4.7060, .6990, .6720, .6350, .6780, .6710, .6640, .6570, .6500$, $4.6430, .6360, .6290, .6222, .6155, .6087, .6020, .5450, .5880$, $4.5310, .5740, .5670, .5610, .5250, .5460, .5390, .5320, .5250$, $6.5180, .5112, .5045, .4977, .4910, .4840, .4770, .4700, .4630$, d
$\{0.000, .7761, .8870, .8983, .90 \% 5, .9158, .9220, .9253, .9285$, $8.7293, .9300, .7275, .9290, .7275, .7260, .7230, .7200, .917 \mathrm{3}$,
$8.9145, .9108, .9670, .9026, .8983, .8939, .8895, .8646, .8798$,
$8.0747, .8703, .13445, .8959, .2543, .3490, .8438, .8385, .833 i$,
$8.8280, .8227, .8175, .8123, .8070, .8020, .7970, .7920, .7870$, $4.7317, .7765^{\prime}, .7713, .7661, .7637, .7555, .75142, .7450, .7394$,
$6.7345, .7292, .7240, .7189, .7138, .7086, .7035, .6982, .6930$,
8.6877, $6825, .6774, .6723, .6671, .6820, .6568, .6515, .6463$,
$4.6410,6359,6308, .6256, .6215, .6152, .6100, .6048, .5995$, $t$
$40.600, .7428, .8640, .8790, .8940, .9035, .9130, .9190, .9250$, $4.7290, .7330, .7354, .7370, .9375, .7380, .9375, .7370, .7365$; t. $9360, .9355, .9350, .9333, .9315, .9298, .9260, .9250, .9220$, 6.7170,.9160,.9125,.7090,.9055,.9020,.8955,.8950,.8915; $8.6660, .8845, .8810, .8775, .8740, .8707, .8675, .8642, .8610$,友. $35 / 5, .8540, .8505, .3470, .3435, .8400, .8365, .8330, .8295$, $4.8260, .8225, .8190, .8155, .810^{6} 6, .8685, .8150, .8615, .7980$, $4.7445, .7910, .7374, .7845, .7815, .7780, .7745, .7710, .7675$, \&.7640,.7645,.7570,.7535,.7500,.7465,.7430,.7375,.7360, 1
$30.060, .6862, .8165, .8400, .8635, .8765, .8895, .8986, .9065$, 8.7135,.7195,.7231,.7265,.9208,.7310,.9323,.7335,.934, 5, $8.9350, .9350, .9350, .9344, .9330, .9331, .9325, .9309, .9293$, $4.92 / 6, .7263, .9240, .7220, .9200, .7130, .9156, .7133, .9109$, $4.9085, .9056, .9028, .8999, .8970, .8943, .8915, .8038, .0860$, $8.38 .30, .1800, .8770, .8140, .8707, .8676, .8646, .1655, .8585$; 6. $8555, .8525, .8495, .8464, .8433, .8401, .8370, .8340, .8310$; $4.820, .8<30, .8210, .8170, .8160, .8130, .8100, .3070, .8040$, $t \times .8010, .7979, .7948, .7916, .7895, .7855, .7823, .7795, .7765$, 8
$80.000, .6275, .7690, .8010, .8330, .8445, .8660, .8770, .8880$, म, $3970, .7060, .7110, .9100, .7200, .7240, .7270, .9300, .73215$, i. $9340, .9345, .7350, .9355, .7360, .9365, .9375, .9368, .9365$, $4.7362, .7360, .9355, .9350, .9545, .7340, .7328, .7515, .9302$, $4.9290, .9268, .9245, .9222, .9200, .9178, .9155, .9132, .9110$, 4.7045, $7060, .7035, .9010, .8933, .8955, .6928, .5900, .8875$,
$4.8850, .8025, .8800, .8773, .8 / 45, .8718, .8690, .8665, .8640$,
 $8.8380, .8353, .8325, .8298, .8276, .8245, .8220, .8195, .8170$, is
$80.000, .6275, .7690, .8010, .8330, .8495, .8660, .8755, .8850$, 4.3720, $5790, .9035, .90131, .9115, .7150, .9180, .9210, .9225$, $8.9240, .9255, .9270, .9280, .9290, .9300, .9310, .9310, .9310$, $8.7310, .9510, .7310, .7510, .9310, .7310, .7505, .7300, .7295$, $\$ .9296, .9282, .9275, .9267, .9260, .9247, .9235, .7222, .9210$, $1.9197, .9185, .1175, .7161, .7148, .7135, .7122, .9110, .9075$, $t .9080, .7065, .9050, .9035, .9020, .9005, .8990, .8975, .8960$, $8.8945, .8730, .8917, .373^{5}, .3672, .3880, .6365, .3450, .8835$,
$\$ .8820, .8805, .8770, .8775, .8760, .8745, .8730, .8715, .8700$, 4
$80.000, .4946, .6520, .7055, .7590, .7845, .8100, .8245, .8390$, $6.3530, .3673, .8745, .3820, .6670, .3760, .7010, .7060, .7095$,
$\% .9136, .7160, .7190, .9210, .9230, .9250, .9270, .9280, .9290$,
$8.7301, .7310, .9315, .7320, .7325, .9330, .9332, .9335, .7338$,
$8.7340, .9343, .9345, .9347, .9350, .9347, .9345, .9342, .9340$,
$8.9352, .9325, .9317, .9310, .4302, .7295, .9287, .9260, .9267$,
$4.7255, .9242, .9230, .9217, .9205, .9192, .9180, .9162, .9145$,
t.9127,.7110,.7073,.9070,.9050,.9030,.9010,.3790,.8770,
$4.8950, .8927, .6905, .8882, .8060, .8835, .8810, .8785, .87601$ DAFA ARCUT/0.,23.85,4.42,9.32,60., 80., $90 ., 100.1$
IAIA ARCUT/. $333,667,5,1 ., 1.49,2 ., 2.5 /$
DATA LFF/0. . $7144, .931, .944, .945, .937, .924, .918$,
$811, .904, .911, .923, .922, .919, .914, .905$,
40, , $704, .71 \%, .923, .431, .725, .921, .711$,
$60 ., 904, .92, .932, .931, .925, .921, .911$,
$80 ., .934, .727, .94, .939, .937, .954, .727$,
36. $.904, .931, .944, .945, .944, .942, .939$,
$80 ., 914, .733, .949, .447, .949, .947, .7491$
DAIA GREFF/ $9, .948, .9667, .976, .9815, .9827, .984 \mathrm{C}^{\circ}, .9851, .9857, .9861$,
\&.796'5, .7367,.7068,.9870,.9372,.9875,.9374, .7876,.787\%,.7377,
$4.9860, .9881, .9821, .9882, .9892, .9883, .7683, .9884, .9884, .9885$,
4. $7865, .7885, .7836, .7886, .9367, .7887, .7388, .7868, .7889, .9384$,
$\$ .9090, .9890, .9890, .9890, .9890, .9890, .9870, .9890, .9890, .9890$,
$6.769, .7891, .9890, .7890, .7890, .7890, .9390, .7890, .9890, .9891$,
$6.9090, .9890, .9890, .9390, .9870, .9890, .9890, .9890, .9890, .9890$,在.7670,.7840,.7390,.7390,.7870,.7870,.7390,.7370,.9370,.9890,
$6.7890, .9890, .9890, .9890, .9890, .9890, .9890, .9390, .9890, .9890$,
$4.7870, .7390, .7040, .7890, .7890, .7890, .9390, .9370, .9890, .7890$;
3. 98900 ,
$4.9000, .9325, .9502, .9640, .9757, .9783, .9803, .9814, .9822, .9828$,
$4.7334, .9838, .7344^{2}, .784{ }^{\prime} 2, .9343, .7851, .9353, .7356, .9356, .7861$, t. $9862, .9863, .9664, .9866, .9867, .9868, .9869, .9870, .9871, .9872$, $8.7375, .5474, .7374, .7475, .7376, .9376, .7377, .7870, .7879, .9881$, i, $7681, .9881, .9861, .9881, .7881, .9822, .9882, .9882, .9882, .9802$, $4.7383, .9383, .9385, .7833, .9263, .9883, .9884, .9864, .7884, .7204$, $4.9885, .9865, .9065, .9895, .9805, .9885, .9865, .9806, .9886, .9886$,
$8.7646, .7306, .9306, .7386, .93166, .7086, .9306, .9886, .7836, .7386$, 6. $9886, .9886, .9886, .9886, .9866, .9886, .9886, .9886, .9886, .9886$, $\therefore .7306, .7286, .9386 ; .7336, .7836, .9386, .936^{\circ}, .9385, .9385, .9883^{\circ} ;$ 6. 9605 ,
$6.9000, .9170, .9337, .95110, .9700, .9735, .9764, .9777, .9787, .9795$,
 $4.9843, .9845, .9847, .9847, .9854, .9854, .9855, .9057, .9858, .90160$, 4. $7361, .9860^{\circ}, .7363, .9464, .7365, .7066, .7867, .7368, .9669, .7871$, 3. $9871, .9871, .9672, .9872, .9073, .9873, .9873, .9874, .9874, .9875$, $4.7375, .7675, .73 \%, .9876, .9877, .7377, .767 \%, .7873, .9370, .737 \%$, $\therefore .9879, .987 \%, .9080, .9880, .9880, .7881, .9881, .9881, .9881, .9882$,
 $4.9882, .7882, .9802, .9882, .9882, .9882, .9882, .9862, .9862, .9882$,
 $\therefore .9860$,
$8.9606, .9085, .920, .9364, .9543, .9622, .9684, .9713, .9732, .9745$, 4. $9757, .766, .7774, .7782, .9769, .9745, .7302, .9407, .7812, .931 \%$; $8.921, .9224, .9027, .9830, .9633, .9836, .9438, .7040, .9841, .9843$, \&. $7645,7846,7343,7447,7651, .9632, .7853, .7354, .7555, .9856$, \&.965\%,.9858,.9858,.9859,.9866, .9860, .7861,.9862, . $9866, .9863$, 4.7364, $7864, .7865, .7865, .9866, .7867, .7867, .7868, .9868, .9869$, $6.9670, .9871, .9670, .9871, .9871, .9872, .9772, .9873, .9875, .9874$; 6. $93 \% 4, .7874, .7874, .743^{\prime} 3, .7575,7375, .7375, .9375, .9876, .9876$, $4.9676, .9876, .9676, .9876, .9876, .9876, .9876, .9876, .9876, .9876$, \& $7877, .9377, .9877, .7377, .7377, .9377, .73 \%, .7377, .9877, .9877$, 4.9877,
$8.9000, .9000, .9120, .9227, .9386, .9504, .9604, .9649, .9677, .9694$, $\dot{x}_{1} .9711, .772, .7733, .9744, .9753, .7762, .9771, .9777,9786, .779 \%$ $8.9801, .9204, .9067, .9811, .9614, .9818, .9920, .9922, .9825, .9027$,
 $r_{2} .9843, .9844, .9645, .7846, .9847, .9848, .9846, .9349, .9850, .9851$, $4.7351 .9353, .7354, .7354, .9355, .9856, .9457, .7558, .7853, .735 \%$, $8.9860, .9861, .9861, .9862, .9862, .9863, .9864, .9864, .9885, .9865$,
\&. $9866, .7066, .986 \%, .7467, .7868, .9068, .9868, .9367, .7867, .7871$, $8.9870, .9870, .9870, .9871, .9870, .9871, .9871, .9871, .9871, .9071$, +. $7871, .71771, .7871, .9872, .7872, .7872, .7872, .7872, .9873, .9873$, 3.9673,
$6.9000, .9000, .9060, .9169, .9313, .9423, .9525, .9579, .9615, .9639$, $4.9662, .9677, .9691, .9705, .9716, .9727, .9733, .77413, .9756, .9764$, $6.9771, .9776, .9786, .9784, .9788, .9793, .9796, .7798, .9201, .9004$, \& . $78017, .7819, .9612, .9314, .9317, .7317, .9821, .9823, .7825, .9026$, $8.9828, .9829, .9831, .9832, .9833, .9834, .9836, .9837, .7838, .9839$, $1.9041, .7642, .7843, .7844, .9345, .9446, .9847, .7343, .7047, .9850$, $8.9851, .9854, .9853, .9853, .9854, .9855, .9855, .7856, .985 \%, .9057$, $1.9838, .7653, .7354, .9859, .9861, .9860, .9860, .9861, .9861, .7862$, \%.9862, $.9862, .9863, .9863, .9864, .9864, .9864, .9865, .9865, .9866$, ;. $9366, .9366, .9366, .9366, .7866, .986 \%, .9367, .9867, .7867, .9867$, i. 9867 ,
$8.9000, .9000, .9010, .9100, .9240, .9342, .9445, .9508, .9554, .9584$, 4. $9614, .76 .51, .7647, .9666, .9679, .9672, .7705, .7716, .9725, .9734$,
$4.9743, .9746, .7753, .9758, .9763, .9768, .9771, .9774, .9777, .9781$, $6.9704, .976 \%, .7770, .7773, .9797, .9800, .9802, .7105, .9608, .9810$, $8.9013, .9815, .9016, .9818, .7019, .9221, .9823, .7824, .9826, .9827$, $4.782 y, .983 i, .9832, .9833, .9835, .9836, .9837, .7837, .9840, .7843^{2}$, $8.9643, .9844, .9844, .9845, .9846, .9847, .904 \%, .9846, .9849, .9849$,寺. $9850, .7550, .7651, .7851, .7852, .7852, .7852, .7853, .7853, .9854$, $8.9654, .9855, .9855, .9856, .9857, .9857, .9858, .9859, .9060, .9860$, s. $9361, .7861, .7361, .7361, .7361, .9861, .7861, .9861, .7861, .7861$, 6. 7061 ,
$6.9000, .9001, .9060, .9060, .9133, .9255, .9330, .9404, .9461, .9503$, $4.7545, .7569, .7584, .9617, .7634, .7651, .9661, .7681, .9672, .7705$, $6.9714, .9721, .9727, .9733, .7739, .9745, .9750, .9755, .9759, .9764$, \%.7768, $.7772, .7775, .7779, .7782, .9786, .9789, .9791, .7794, .7797$, $4.9800, .9801, .9603, .9804, .9606, .9807, .9808, .9810, .9811, .9213$, $4.7814, .9315, .7816, .7317, .9418, .7820, .7321, .7822, .9823, .9824$, $6.9825, .9826, .9827, .9828, .7829, .9831, .9832, .9833, .9834, .9835$, $1.9836, .7337, .7837, .7330, .9837, .7839,9840, .7341, .7042, .9842$, i. $9843, .9844, .9844, .9845, .9846, .9847, .9847, .7848, .9849, .9849$, $4.7850, .7850, .7851, .7851, .7692, .9852, .9852, .9353, .7853, .9854$, s. 9654 ,
t. $9000, .9000, .9006, .9000, .9000, .9094, .9216, .9314, .9385, .9425$, $8.9464, .9492, .7517, .9546, .7563, .7581, .7577, .9616, .9632, .7648$, $4.9664, .9674, .9613, .9693, .9703, .9712, .9719, .9725, .9731, .9737$, $8.9743, .9747, .9751, .9755, .9763, .9764, .9767, .9770, .7775, .9776$, $7.9779, .9761, .9784, .9766, .9799, .9791, .9793, .9796, .9798, .9801$, \&.7813, $.9812, .7806, .9837, .7837, .9811, .9312, .9814, .7815, .981 \%$, $4.9616, .9819,9821, .7821, .9922, .9823, .9825, .9826, .9827, .9828$, *. $9829, .7624, .7831, .9833, .7831, .7932, .7332, .7833, .7333, .9033$, 7. $9834, .9835, .9635, .9836, .9636, .9837, .9837, .9837, .9836, .9835$, $\times .7837, .9839, .9840, .7341, .9841, .9841, .7841, .9342, .9842, .9843$, 3. 9643 ,
t. $9000, .9000, .9000, .9000, .9060, .9000, .9107, .9207, .9284, .9339$,
$8.9375, .7429, .7462, .9494, .9517, .9539, .9561, .7591, .7578, .7616$,
$8.9633, .9643, .9652, .9662, .7672, .9681, .9686, .9694, .9701, .9767$;
$4.9714, .7717, .7724, .9727, .9734, .77 .97, .9742, .7746, .7751, .9755^{\prime}$
$8.9757, .9760, .9762, .9765, .9760, .9771, .7773, .9776, .9779, .9781 ;$
$4.7714, .9786, .7783, .9797, .9791, .9793, .9795, .7797, .9798, .9800$,
$8.9602, .9003, .9805, .9806, .9906, .9809, .9810, .9812, .9813, .9015$,
\&.7816, $781 \%, .7818, .7819, .7821, .7021, .7821, .9322, .7823, .7824$,
$8.9825, .9825, .9826, .9826, .9827, .9227, .9827, .9828, .9828, .9829$,
$8.7629, .7831, .7831, .9331, .9432, .9433, .7833, .7834, .7835, .9835$,
4. 9636 ,
$12.9000, .9060, .9000, .9000, .9600, .9000, .9000, .9072, .9150, .9210$, \&.7271, $9314, .9356, .9397, .9427, .9457, .7487, .7512, .7533, .7554$, $6.9575, .9569, .9603, .961 \%, .9631, .9645, .9653, .9662, .9670, .9670$, $4.7686, .9692,7697, .9703, .7708, .7714, .9717, .9721, .9725, .7726$; 3. $.9732, .9735, .9738, .9741, .9744, .9746, .9749, .9752, .9755, .9758$, 4. $4161, .7765, .7766, .7767, .9771, .7775, .7776, .7777, .9731, .7735$, 6. $9786, .9787, .9789, .9790, .9742, .9793, .9794, .9796, .9797, .9799$, $4.7010, .9801, .7302, .9893, .7804, .7806, .9307, .9010, .9804, .7814$,

```
8.9811,.9812,.9813,.9814,.9815,.9816,.9817,.9818,.9819,.9820,
 B.7621,.7821,.9822,.7622, .9825, .9823, .7823,.7924,.7024, .9824,
&.4825/
 DATA HEMAP/0.,0.,0.,0.,0.,0.,
 80.,9.714E-04,1.371E-03,2.171E-03,3.15E-03,3.943E-03,
600.,1.2E-03,1.714E-03,2.686E-03,3.966E-03,5.038E-03,
 80.,1.486E-03,2.05%E-0.5,3.26%E-03,4.871E-03,6.16E-03,
60.,1.714E-03,2.366E-03,3.911E-03,5.829E-03,7.275E-03,
 80.,1.929E-03,2.686E-03,4.714E-03,6.957E-05,8.873E-03/
 DATA VCHG/2.180,2.154,2.134,2.121,2.114,2.104,
 82.093,2.084,2.07%,2.069,2.057,2.04',2.030,
82.188,2.171,2.156,2.144,2.134,2.128,
$2.114,2.107,2.494,2.089,2.079,2.067,2.054,
82.256,2.225,2.204,2.189,2.17%,2.171,
62.164,2.152,2.142,2.152,2.122,2.112,2.101,
1'C.324,2.279,2.251,2.234,2.224,2.214,
82.202,2.194,2.165,2.175,2.165,2.153,2.148,
46.421,2.365,2.323,2.295,2.27%,2.260,
82.246,2.236,2.226,2.217,2.207,2.235,2.198,
82.519,2.452,2.394,2.356,2.327,2.306,
82.294,2.278,2.267,2.257,2.244,2.251,2.247,
62.617,2.53%,2.464,2.416,2.379,2.352,
82.335,2.320,2.306,2.301,2.293,2.297,2.29%,
8%.715,2.626,2.538,2.477,2.431,2.397,
62.374,2.362,2.347,2.343,2.343,2.344,2.346,
6'.788,2.719,2.645,2.582,2.545,2.480,
82.450,2.424,2.415,2.407,2.401,2.408,2.411,
82.861,2.612,4.753,2.648,2.619,2.563,
42.572,2.476,2.462,2.474,2.471,2.472,2.475,
82.910,2.873,2.623,2.762,2.677,2.643,
*2.594,2.56%,2.544,2.526,2.51%,2.512,2.515,
42.959,2.934,2.072,2.837,2.775,2.722,
42.675,2.634,2.605,2.578,2.563,2.553,2.554/
 ENO
 EN0
```


## REFERENCES

1. Norrup, L. V. and A. T. Lintz, Advanced Propulsion Systems for Hybrid Vehicles, AiResearch Manufacturing Co. of California, Report No. AiResearch 79-16430 (DOE/NASA/0091-80/1, NASA CR-159771), January 1980.
2. Bhate, S., H. Chen and G. Dochat, Advanced Propulsion System Concept for Hybrid Vehicles, Mechanical Technology, Inc., Report No. MTI 80TR25 (DOE/NASA/0092-80/1, NASA CR-159772), December 1980.
3. Bozek, J. M., An Averaging Battery Model for a Lead-Acid Battery Operating in an Electric Car, NASA Lewis Research Center, Report No. DOE/NASA/ 1044-79/5, NASA TM-79321, December 1979.
4. Schwartz, H. J. and A. L. Gordan, Impact of Propulsion System R\&D on Electric Vehicle Performance and Cost, NASA Lewis Research Center, Report No. DOE/NASA/1044-9, NASA TM-81548, May 1980.
5. Raynard, A. E. and F. E. Forbes, Advanced Electric Propulsion System Concept for Electric Vehicles, AiResearch Manufacturing Co. of California, Report No. AiResearch 79-16182 (DOE/NASA/0081-79/1, NASA CR159651), August 1979.
6. Fletcher, R., "A New Approach to Variable Metric Algorithms", Computer Journal, Vol. 13, 1970, pp 317-322.
7. Fletcher, R., "An Ideal Penalty Function for Constrained Optimization, Journal of the Institute of Mathematical Applications", Vol. 15, 1975, 319-342.
8. Abadie, J. and J. Carpentier, "Generalization of the Wolfe Reduced Gradient Method to the Case of Nonlinear Constraints", in Optimization, R. Fletcher, Editor, Academic Press, New York, 1969, pp 37-47.
9. Powell, M. J. D., "A New Algorithm for Unconstrained Optimization", in Nonlinear Programming, O. L. Mangasarian and K. Ritter, Editors, Academic Press, New York, 1970.
10. Lasdon, L. S., Waren, A. D., Jain, A. and M. Ratner, "Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming", ACM Transactions on Mathematical Science, Vol. 4, No. 1, March 1978, pp 34-50.
11. Schittkowski, K., Nonlinear Programming Codes - Information, Tests, Performance, Internal Report, Institute for Angewandte Mathematik und Statistik, Universitat Wurzburg, AmHubland, D-87, Wurzburg, West Germany, 1980.
12. Sarma, P.V.L.M. and G. V. Reklaitis, "Optimization of a Complex Chemical Process Using an Equation Oriented Model", presented at loth International Symposium on Mathematical Programming, Montreal, Aug. 1979.
13. Lasdon, L., Waren, A.D. and M. W. Ratner, GRG User's Guide, Department of Computer and Information Science, Cleveland State University, Cleveland, Ohio, October 1978.

1. Report No. NASA CR-168292	3. Recipient's Catalog No.
4. Title and Subtitle   Optimization Methods Applied to Hybrid Vehicle Design	5. Report Date   June 1983   6. Performing Organization Code $778-36-06$
7. Author(s)   John F. Donoghue and James H. Burghart	8. Performing Organization Report No.
9. Performing Organization Name and Address   Department of Electrical Engineering Cleveland State University   Cleveland, Ohio	11. Contract or Grant No.   NAG 3-84   13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address   U.S. Department of Energy   Office of Vehicle and Engine R\&D Washington, D.C. 20545	Contractor Report   14. Sponsoring Agency Gode Report No. DOE/NASA/0084-1

Final report. Prepared under Interagency Agreement DE-AI01-77CS51044. Project Manager, Raymond F. Beach, Space Power Technology Division, NASA Lewis Research Center, Cleveland, Ohio 44135.

## 16. Abstract

This work demonstrates the use of optimization methods as an effective design tool in the design of hybrid vehicle propulsion systems. Optimization techniques were used to select values for three design parameters (battery weight, heat engine power rating and power split between the two on-board energy sources) such that various measures of vehicle performance (acquisition cost, life cycle cost and petroleum consumption) were optimized. The approach produced designs which were often significant improvements over hybrid designs already reported on in the literature. The principal conclusions are as follows. First, it was found that the strategy used to split the required power between the two on-board energy sources can have a significant effect on life cycle cost and petroleum consumption. Second, the optimization program should be constructed so that performance measures and design variables can be easily changed. Third, the vehicle simulation program has a significant effect on the computer run time of the overall optimization program; run time can be significantly reduced by proper design of the types of trips the vehicle takes in a one year period. Fourth, care must be taken in designing the cost and constraint expressions which are used in the optimization so that they are relatively smooth functions of the design variables. Fifth, proper handling of constraints on battery weight and heat engine rating, variables which must be large enough to meet power demands, is particularly important for the success of an optimization study. Finally, the principal conclusion is that optimization methods provide a practical tool for carrying out the design of a hybrid vehicle propulsion systems.
17. Key Words (Suggested by Author(s))
18. Distribution Statement

Optimization
Hybrid vehicles
Electric vehicles
Unclassified - unlimited
STAR Category 85
DOE Category UC-96
19. Security Classif. (of this report)

21. No. of pages	22. Price
180	A09

Unclassified
20. Security Classif. (of this page)

Unclassified

