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HIGH PRESSURE OXYGEN TURSOPUMP
BEARING CAGE STABILITY ANALYSES

by

T. L. Merriman and J. W. Kannel 	 4

INTRODUCTION

Although the Space Shuttle has repeatedly had successful launches,

the life of the engine bearings remains below the overall program objectives.
	 -

Because the shuttle is a reusable spacecraft, the target life of the

turbopump bearings of the Space Shuttle main engine (SSME) has been raised

from a few hundred seconds for single-use rockets to 7.5 hours for the

shuttle application. In addition, the bearings are required to operate

at very high speeds and with poor lubrication conditions. The lubrication

must be derived from cryogenic hydrogen or oxygen and/or by transfer

from the cage material (PTFE).

A the high pressure oxygen turbopump (HPOTP) bearing on the

turbine end (No. 007955) failed recently in a test engine operating at

conditions which simulate the SSME requirements. The cause of this failure

is uncertain, but excessive ball wear and fracture of the cage was observed.
-

One of the major questions to be resolved is whether the bearing cage

failed under normal loading or whether dynamic cage instability caused

the cage failure from associated excessive loads.

Battelle has been assisting NASA in development of the SSME

bearings through a Task Order Agreement. The objective of this Task

was to evaluate whether the dynamic stability of the SSME HPOTP turbine-end

bearing cage is an important factor in the failures. This was accomplished

by analysis with the Battelle "BASDAP" bearing computer stability model.

The intent was to vary particular individual parameters over specified

ranges to determine the dynamic sensitivity of the cage to each parameter.
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SUMMARY AND CONCLUSIONS

Combinations of operating conditions and cage dimensions were

identified that can cause the cage of the HPOTP turbine-end bearings

to be unstable. For`iiermore, the high accelerations associated with

the instabilities can be expected to cause forces sufficient to fail

the cage (depending upon the actual strength of the cage under operating

conditions). The forces on the cage developed under normal (stable) operating

conditions were found to be tolerable. Therefore, maintaining stable

operation of the cage appears to be important in successful operation

of the HPOTP bearings.

Cage stability was found to be particularly sensitive to the

cage-race clearance, cage balance, and the lubricant film thickness between

the balls and races (as it affects the ball-race traction). 	 Cage-race

diametral clearances larger than 0.25 mm (0.01 in.) promote cage instabilities.

In contrast, cage stability was found to be insensitive to ball-pocket

clearance. Since small cage unba l ances were predicted to cause instabilities,

the cages should be carefully balanced to minimize instability problems.

Depletion of lubricant film thicknesses between the balls and races cause

cage instability problems by increasing the ball-race traction, which

underlines the importance of maintaining adequate lubrication for successful

long-term bearing life.

As a result of the study, several sensitive parameters affecting

bearing dynamics were clearly identified. Therefore, modifications to

the bearings to minimize the likelihood of cage instability should enhance

cage stability and associated bearing reliability.

RECOMMENDATIONS

Based on the analyses, the following specific recommendations

are made to minimize cage instability and its associated effects on bearing

degredation.
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1. Maintain the diametral cage-race clearance

at no more than 0.25 mm (0.010 in.). Current

specifications on the drawing of bearing 001955

for cage-race clearance are 0.38 mm (0.015 in.)

to 0.74 mm (0.029 in.). This tolerance should

be changed to reflect the 0.25 mm (0.010 in.)

maximum allowable recommendation.

2. The clearance between the balls and pockets

in the cage should be no less than 0.54 mm

(0.025 in.). The ball-pocket clearance does

not affect cage stability, but adequate clearance

is needed to avoid cage stresses from ball-speed

variations caused by combinations of axial

and radial loads. It is recommended that

the current drawing specification of 0.64 mm

(0.25 in.) to 0.89 mm (0.035 in.) for ball-pocket

clearance in the circumferential direction

be modified to be 2.3 mm 'k 0.090 in.) to 2.5 mm

(0.100 in.) to reflect this requirement.

3. Dynamically balance the cages to minimize

the effect of cage unbalance on stability.

4. Continue efforts to understand and promote

adequate lubrication of the ball-race interface.

This analysis has shown the importance of

lubrication to cage stability, and previous

Tasks have underscored the importance of

lubrication to ball and race longevity.

Long-term life of the HPOTP bearings depends

critically on developing and maintaining

lubricant films to separate the balls and

races.

5. Perform a more detailed analysis of the cage

stresses developed in operation. While the

BASDAP analyses provide data on the ball-cage
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forces, the actual stresses developed result

from a .,ombination of these forces with the

cage geometry and constraints by the outer

(guiding) race. The current study permitted

only an approximate consideration of these

stresses.

6. Schedule a review meeting to be attended

by NASA, Rocketdyne, and Battelle personnel

to review the implications of the findings

in this Task and determine what practical

steps can be taken to minimize potential

cage instability problems.

CAGE-STABILITY ANALYSES BACKGROUND

Ball-Race Interactions

An angular contact bearing contains three types of elements:

(1) Balls,

(2) Races (inner and outer), and

(3) Ball cage (retainer).

External loading in the bearing develops loads at the ball-race inter-

faces. These forces, along with race geometry, speed, and centrifugal

effects, produce the ball-race contact angles, ball-race contact pressures,

lubricant film thickness (between balls and race), and to some extent,

the spin and roll motions of the ball. The analysis of these ball-race

interactions was the basis for the classical A. B. Jones' theory(1

The Jones' approach involves first computing the spring rates

for the ball-race contact regions. Next, values for the radial and axial

deflections of the bearing are assumed. Using these assumed deflections

in conjunction with the spring rates, radial and axial loads are computed

and compared with the design bearing loads. The radial and axial deflec-

tions are adjusted (by a computer nesting procedure) to achieve the

*References are listed on page 32.
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correct loads for static conditions. Centrifugal force effects are determined

by adjusting the inner and outer race contact angles to achieve loading

equilibrium.

Cage Dynamics

Under design (static) conditions of most bearings, the cage

can be considered to have six degrees of freedom. The motion of the

cage is achieved as a result of the balls driving the cage or the cage

driving the balls. The stability conditions of the cage are a result

of the interactions during ball-cage impacts. As a result of this impact,

the kinetic energy of the cage is altered. For example, any slip of

the ball on the race at impact will reduce the energy of the cage. Also,

the friction coupling of the rolling ball to the cage during impact alters

the cage energy. Under some conditions, the energy of the cage will

continue to increase until an instability occurs. Under other conditions,

the cage will be quite stable. The purpose of the BASDAP model is to

sort out these stable or unstable conditions.

The BASDAP calculations are conducted in two steps:

Step 1. The quasi-dynamic stresses of the

type discussed under "Ball-Race

Interactions of the Bearing" are

computed.

Step 2. The cage dynamic motions are computed

using the ball-race forces and

traction constants as inputs.

This model is described in the

paper presented in Appendix B.

Cage motion is computed in terms of three velocity components

a, B, and o. a, 8, and o are described in Figure B-1. a represents

the angular rotation of the cage. Under perfect conditions, a would

be the same as the ball group velocity although normally some oscillations

relative to the group velocity occurs. In the plots (to be discussed),

a will be shown relative to the ball group. s represents the whirl velocity

of the cage center-of-mass relative to the geometric center of the bearing.
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a represents the cage radial velocity. Cage stability can be accessed

by analyzing plots of a (cage angle) as a function of time. If the frequency

of oscillation of a decreases with time, cage stability is implied. Conversely,

if the frequency of oscillation increases, the cage is unstable.

CAGE-STABILITY ANALYSIS

In the analyses, only one parameter was varied at a time.

The nominal bearing.parameters used. while any given parameter was varied,

are listed in Table 1. The ranges over which the parameters were varied

are listed in Table 2. Because of the very large number of possible

combinations, no attempt was made to perform a complete analysis of the

interactions of the variables.

In presenting the results, bar graphs were made to summarize

the effect of the particular variable of interest. The detailed computer-generated

plots of cage motion and cage velocity, on which the bar graphs were

based, are presented in Appendix A. In interpreting the bar graphs,

the followino definitions should be used.

Completely unstable - high frequency oscillation.

Marginally unstable - occasional oscillation build up.

Marginally stable - oscillations do not completely
decay, but the cage does not go into high frequency
oscillation.

Stable - frequency and amplitude of oscillation
decrease with time.

Cage-to-Outer-Race Clearance

C
The effect of cage-to-outer-race diametral clearance on cage

stability is presented in Figure 1, and the detailed computer graphs

C
are presented in Figure A-1. Stable operation is attained at clearances

of 0.25 mm (0.010 in.), marginal stability is predicted at 0.51 mm (0.020 in.),

ii

	

	 and unstabl y: cage operation is predicted for clearances of 0.16 mm (0.030 in.)

and greater. Therefore, the cage-race clearance should not exceed 0.25 mm

{	
(0.010 in.) for stable cage operation with the values of the parameters

{
given in Figure 1.
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TABLE 1. NOMINAL BEARING PARAMETERS FOR NASA BEARING 007955
(HPOTP, TURBINE END)

Parameter Units Nominal Value

Number of Balls -- 13

Ball	 Radius mm (inch) 6.35 (0.250)

Pitch Radius mm (inch) 40.51	 (1.595)

Design Contact Angle rad/degrees 0.36/20.5

Outer Race Curvature -- 0.53

Inner Race Curvature -- 0.53

Ball-Race Friction -- 0.13
Coefficient

Ball-Cage Friction -- 0.30
Coefficient

Axial Load N	 (lb) 4448 (1000)

Radial Load N	 (lb) 2669 (600)

Inner Race Speed rpm 31,000

fi	
Cage Mass

l

gm (lb-sec 2/in.) 29.78 (1.130 x 10-4)
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TABLE 2. BEARING PARAMETER RANGES FOR NASA BEARING

007955 (HPOTP, TURBINE END)

Parameter	 Range

Ball-Pocket Clearance 0.635 mm to 2.54 mm
(0.025 in. to 0.100 in.)

Cage to Outer Race Clearance 0.254 mm to 1.52 mm
(0.010 in. to 0.060 in.)

Ball to Ball-Pocket Friction 0.04 to 0.30

Cage to Outer Race Friction 0.04 to 0.30

Ball to Race Friction 0.08 to 0.22

Shaft Speed 25,000 rpm to 31,000 rpm

Bearing Loads (per bearing) 890 N to 4448 N
1000# Axial (200 lb to 1000 lb)

Bearing Film Thickness 2.54 x 10- 4 to 24.9 x 1^' 4 mm
(10 x 10- 6 to 98 x 10'	 in.)

Cage Weight 29.00 to 29.78 gram

Cage Unbalance 0 to 0.5 gram

r
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Stable

Marginally stable

Marginally unstable

Unstable

0.254 0508 0.762	 1.016	 1.270 1.524
(001) (0,02) (003) (004) (005) (006)

Cage — Race Clearance, mm (in.)

FI

Axial Load = 4448 N
Cage-Rac- Friction
Cage-Race Clearance
Speed = 31,000 rpm

GURE 1. CAGE STABILITY AS A FUNCTION
OF CAGE-RACE CLEARANCE

(1000 lb)	 Radial Load = 2669 (600 lb)

0.13	 Ball-Cage Friction	 0.30
Variable	 Ball-Cage Clearance 	 0.635 mm

(0.025 in.)
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Ball-Pocket Clearance

Figure 2 presents the effects of ball-cage diametral clearance

on cage stability. In general, increasing ball cage clearance does not

cause serious deteriorations of cage stability for a cage-race clearance

of 0.259 mm (0.010 in.). The computer graph in Figure A-2b does illustrate

that some cage wobbling may be occurring, which is a reflection of the

cage impacting the race guiding surface. Figure A-2c shows that a very

low frequency impact occurs, but it is unlikely that these motions represent

a stability problem.

Cage-to-Outer-Race Friction

Figure 3 shows the effect of cage-race friction coefficient

ranging from a very low value of 0.04 to a high of 0.30 (the maximum

value experimentally reported for Armalon sliding against 440 C stainless

steel in liquid nitrogen). An increasing coefficient of friction at

the cage-race interface should tend to stabilize the bearing as cage

and ball group energy is dissipated through the race land in the form

of heat, and this tendency was observed. The corresponding computer

plots are presented in Figure A-3.

Ball to Ball-Pocket Friction

Figure 4 shows the effect of the ball-cage friction coefficient

over the same range of 0.04 to 0.30. Increasing the coefficient of friction

at this interface would normally be expected to decrease bearing stability

as more energy is transferred to the cage. The plots, however, do not

show a strong effect of varying the ball-cage friction alone for this

bearing geometry.

Experimental data provided by the Marshall Space Flight Center

Materials Laboratory shows that as the cage wears the coefficients of

friction at the race and ball interfaces change preferentially with regard

to cage fiber orientation. The ball-cage interface wears perpendicular
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Stable

Marginally stable

Marginally unstable

Unstable

0.635	 1.588	 2.540
(0.025)	 (0063)	 (0100)

Ball—Cage Clearance, mm (in.)

FIGURE 2. CAGE STABILITY AS A FUNCTION

OF BALL-CAGE CLEARANCE

Axial Load = 4448 N (1000 lb)

Cage-Race Friction = 0.13

Cage-Race Clearance = 0.254 mm

(0.010 in.)

Radial Load = 2669 (600 lb)
Ball-Cage Friction = 0.30

Ball-Cage Clearance = Variable

Speed = 31,000 rpm
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ORIGINAL PALL `S
OF POOR QUALITY

Stable

Marginally stable

Marginally unstable

Unstable

004	 0.13	 0.30
Friction Coefficient

F

Axial Load = 4448 N

Cage-Race Friction

Cage-Race Clearance
(0.010 in.)

Speed = 31,000 rpm

IGURE 3. CAGE STABI'_ITY AS A FUNCION
OF CAGE-RACE FRICTION

(1000 lb)	 Radial Load = 2669 (600 lb)

= Variable	 Ball-Cage Friction = 0.30

= 0.254 mm	 Ball-Cage Clearance = 0.635 mm

(0.025 in.)
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Stable

Marginally stable

Marginally unstable

Unstable

004	 017	 0.30

Friction Coefficient

FIGURE 4. CAGE STABILITY AS A FUNCTION
OF BALL-CAGE FRICTION

Axial Load = 4448 N (1000 lb)	 Radial Load = 2669 (600 lb)

Cage-Race Friction = 0.1:3	 Ball-Cage Friction = Variable

Cage-Race Clearance = x.254 mm 	 Ball-Cage Clearance = 0.635

(0.010 in.)	 (0.025 in.)

Speed = 31,000 rpm

t
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to the lay of the cage fiber and the coefficient of friction tends to

increase to 0.30. The cage guiding surface wears parallel to the lay

of the cage fiber and the coefficient of friction tends to decrease slightly

to 0.13 at the higher loads. This combination of friction coefficients

was analyzed and is represented in Figure A-3b, which is a stable plot.
i

The experimental data from which these friction coefficients were taken	
S

is presented in Table 3. The worst combination of friction coefficients

would be	 high ball-cage (0.30) and a low cage-race value (0.04). Running

this combination produced a marginally stable cage, presented in Figure A-3a.

From these results, the coefficients of friction at the ball-cage and

race-cage interfaces do not have a strong influence on cage stability.

Cage Unbalance

Stability appeared to be sensitive to cage unbalance, as shown

in Figure 5 and in the computer plots in Figure A-5. Unstable operation

was predicted with unbalances of only 0.019 grams at the cage radius

of 41 mm (1.63 in.), or, 0.078 g-cm. At 13,400 rpm, this unbalance corresponds

to a force of 1.55 x 10 5 dynes (0.35 pounds), or 160 gf, which is approximately

5 times greater than the cage "weight" of 30 g (0.066 pounds). These

forces possibly contribute to initiating and maintaining instability

in the absence of other dominating effects.

The results suggest that the cages should be balanced if this

is not currently being done. Balancing equipment is available for detecting

at least 0.008 g-cm, or one tenth the unbalance used in the analyses

The studies did not include determining maximum allowable unbalances

for stability. However, the cage should be balanced as well as possible.
1

Qarlial i naei

The effect of radial load was deterflnne at load 890, 2669,

and 4448 N (200, 600, and 1000 pounds), shown in Figure 6 and in the

computer plots in Figure A-6. At 890 N (200 pounds) the amplitude of

oscillation appears to grow steadily, perhaps to the point of instability.
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'ERIMENTAL FRICTION COEFFICIENT FOR BEARING CAGE
SERIAL ON BEARING RACE MATERIAL AT LIQUID NITRO-

I TEMPERATURE

TEST MATERIAL

Pellet

Armalon Fiber Orientation

(1) Plies Parallel to Plate

(2) Plies Perpendicular to
Plate

Plate

Surface Finish = 50.8 x 10- 6 mm

(2 x 10- 6 in.

(a) 440C Stainless Steel

Pellet-Plate	 Lo d	 Static Friction	 DXna^mic Friction

Combination	 N/m2x106 (psi)	 Old	 New	 Old --dew

1-a 1.38 (200) 0.139 0.324 0.109 0.189

1-a 3.45 (500) 0.131 0.242 0.102 0.145

1-a 6.89 (1000) 0.140 0.177 0.102 0.125

2-a 1.38 (200) 0.135 0.254 0.109 0.169

2-a 3.45 (500) 0.214 0.389 0.160 0.311

2-a 6.-3 (1000) 0.243 0.344 0.167 0.300

,
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Stable

Marginally stable

Marginally unstable

Unstable

0019	 0.094	 0.169	 0500
Cage Unbalance, gm

FI

Axial Load = 4448 N
Cage-Race Friction

Cage-Race Clearance
(0.010 in.)

Speed = 31,000 rpm

GURE 5. CAGE STABILITY AS A FUNCTION
OF CAGE UNBALANCE

(1000 lb)	 Radial Load = 2669 (600 lb)
0.13	 Ball-Cage Friction - 0.30

= 0.254 mm	 Ball-Cage Clearance = 0.635 mm
(0.025 in.)

i
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Stable

Marginally stable

Marginally unstable

Unstable

890	 2669	 4448
(200)	 (600)	 (1000)

Radial Load, N (lb)

FIGURE 6. CAGE STABILITY AS A FUNCTION
OF RADIAL LOAD

Axial Load - 4448 N (1000 lb)
Cage-Race Friction = 0.13

Cage-Race Clearance 0.254 mm
(0.010 in.)

Speed = 31,000 rpm

Radial Load = Variable

Ball-Cage Friction = 0.30
Ball-Cage Clearance = 0.635 mm

(0.025 in.)
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With the radial load raised to 2669 N (600 pounds), the cage was stable.

However, at the higher radial load of 4448 N (1000 pounds), the cage

again became unstable. The reason for this intermediate range of stability

was not determined.

Cage Mass

Small changes in cage mass had little effect on the cage stability

from the nominal case, Figure 7, with the computer plots presented in

Figure A-7.

Shaft Speed
f

M
{

The effect of varying the shaft speed on cage stability was

t

studied from 25,000 to 31,000 rpm, Figure 8, with the computer plots }

in Figure A-8.	 These plots show that the bearing is only marginally

stable since small changes in speed cause a change in predicted stability,

which is qualitatively similar to experience.	 Quantitatively, the results

are somewhat counter to experience that shows bearing problems at higher ,=rE

speeds.	 However, it should be noted that bearing dynamics calculations

are based on single variable evaluations.	 In reality, many variables

change simultaneously. 	 The conclusion is that the bearing speed is near

the thresho'd of instability.

Transferred Lubricant Film Thickness

The film thicknesses used were assumed to be PTFE solid films

transferred presumably from the cage.	 The presence of ball-race lubricant •r

films influences stability by affecting the ball-race coefficient of

friction and therefore the ability for balls to skid on the race. 	 The

relationship between film thickness and coefficient of friction (traction)
`r^	 I

was obtained from other Battelle experiments on this topic.	 As would

be expected, the thicker films promote stability, Figure 9, with the

computer graphs in Figure A-9.	 Films 2.5 x 10- 3 mm (98 x 10- 6 in.)

40
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OF POOR QUA:_H I

Stable

Marginally stable

Marginally unstable

Unstable

2900	 29.78	 3060
Cage Mass, gm

FIGURE 1. CAGE STABILITY AS A FUNCTION
OF CAGE MASS

Axial Load = 4448 N (1000 lb)	 Radial Lcad = 2669 N (600 lb)
Cage-Race Friction = 0.13 	 Ball-Cage Friction 	 0.30
Cage-Race Clearance = 0.254 mm 	 Ball-Cage Clearance	 0.635 mm

(0.010 in.)	 (0.025 in.)
Speed = 31,000 rpm

t
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FIGURE 8. CAGE STABILITY AS A FUNCTION
OF SHAFT SPEED

Axial Load - 4448 N (1000 lb)
Cage-Race Friction = 0.13

Cage-Race Clearance = 0.254 mm
(0.010 in.)

Speed - Variable

Radial Load - 2669 N (600 lb)
Ball-Cage Friction 	 0.30
Ball-Cage Clearance 0.635 w

(0.025 in.)
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FIGURE 9. CAGE STABILITY AS A FUNCTION OF LUBRICANT
TRANSFER FILM EFFECTIVE THICKNESS

Axial Load = 4448 N (1000 lb)

Cage-Race Friction	 0.13

Cage-Race Clearance = 0.254 mm

(0.010 in.)
Speed = 31,000 rpm

Radial Load = 2669 N (600 lb)

Sall-Cage Friction	 0.30

Ball-Cage Clearance = 0.635 mm

(0.025 in.)
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thick prcduced a stable case, while thickness reductions of 50 percent	 t

and greater produced instability. This analysis did not consider possible

contributions of elastohydrodynainic films generated by the liquid oxygen.

A consideration of cage loading that may cause failures requires

a knowledge of the cage strengths to determine whether sufficient forces

are being developed at the bill-cage interfaces to exceed the ultimate

cage strength. Tensile stress data were provided on the cage material

by NASA for two fiber orientations over a range of temperatures, but

the relationship of the orientation to the actual cage was unclear. As

a simple check on whether the data translated into appropriate strengths

at room temperature, several sections were pulled to failure in the tensile

set-up shown in Figure 10. 	 Since the sides of the ball-pockets were

formed by	 9	 9 drilling holes into the cage, the sides of an individual pocket

are parallel and perpendicular to the minimum cross sectional area of

the cage.	 Pulling in the manner shown in Figure 10, therefore, introduces

bending stresses into the cage section that may not normally be seen

in service.	 Also, the loops were smaller than a ball in diameter, which

produced a stress concentration at the point of contact. 	 The results

from eight specimens at room temperature indicated a strength of

600 ± 22 N (135 ; 5 pounds).	 This results in a calculated stress of

40 N/mm2 (5700 psi), which includes the expected bending stresses from

the curved geometry.	 One additional experiment was conducted with 12.7 mm !

(0.5 in.) rods in adjacent ball pockets, which therefore included the -_

thin sections of two ball pockets in the tensile field. 	 A higher strength

of 800 N (180 pounds) was recorded in this test in spite of the higher

bending stresses produced.	 The calculated maximum stress was approximately

160 N/mm2 (23,000 psi).	 This value fails between the NASA-supplied ultimate-

tensile-strength data for "with fabric" and "through fabric" of 83 N/mm2

4is	 t



23
oRmwAL PAGE 18

OF POOR QUALM

FIGURE 10. ULTIMATE STRENGTH TEST OF CA

C^

4

,a

Bearing cag4



1*t
t

1
i
i
1
1
J
i

24

(12,000 psi) and 210 N/mm2 (30,000 psi), respectively. Therefore, for

the purposes of this study, the lower strength levels were assumed to

apply. At -196 C (-320 F), the tension and compression strength data

were:

Utlimate tensile stress = 270 N/mm2 (39,000 psi)

Ultimate force in pure tension = 6900 N (1600 pounds)

Ultimate compressive stress = 230 N/mm2 (33,000 psi)

I
Ultimate force in pure compression = 5900 N (1300 pounds)

Cage Stresses Under Normal Operating Conditions

The cage in a ball bearing maintains the ball spacing, which

would otherwise become non-uniform in service from a variety of operating

conditions and geometric imperfections. Examples include ball unloading,

ball diameter variations, and rapid speed changes. Therefore, the cage

must be capable of applying sufficient force to a ball to cause it to

skid on the races and thereby maintain its nominal location. The force

required is a function of the ball-race coefficient of friction and the

applied ball load. Varying the ball loading by varying the axial load

will therefore result in different maximum forces that must be applied

by the cage to .the balls.

The effect of varying the axial load and the ball-race coefficient

of friction on the maximum cage forces is presented in Figure 11 for

a bearing operating under normal conditions (stable cage). The maximum

cage forces increase, as expected, with coefficient of friction and axial

load. With an axial load of 4400 N (1000 pounds) and a coefficient

of friction of 0.22, the maximum ball-cage force was calculated to be

300 N (67 pounds). This force is well below the ultimate forces for

cage failure of 6900 N (1600 pounds) in tension and 5900 N (1300 pounds)

in compression. The cage could also withstand much higher axial forces

being applied to the bearing. An order-of-magnitude increase in axial

force would be required before the cage would become subject to failure.
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Cage Loads Under Abnormal Operating Conditions

Cage Loads as a Result of Instability

Conditions have been identified in the computer analyses under

which the cage might go unstable.	 Instability can cause high cage stresses

from the high accelerations and impacts which develop. 	 An estimate of

the acceleration needed to fail the cage can be made from the cage strength

for comparison with the accelerations predicted by the computer model,

Ig

F=ma

or,

a= F
M

where

a = acceleration of cage, mm/sec t (in./sec2)

F = ball-cage force, N (pounds)

m = cage mass, gm (lb-sec2/in.).

Taking the ultimate compressive force to fail the cage as 5900 N (1300 pounds)

and the cage mass of 30 gm (1.7 x 10- 4 lb-sec 2/in.), an acceleration

of 2 x 108 mm/sec 2 (8 x106 in./sec 2 ) is necessary for failure.	 From

the slope of the velocity, a, in the unstable plots of Appendix A, such

as Figure A-lc, the velocity is seen to change at least 4 x 10 4 deg/sec

in a quarter of a millisecond, producing accelerations of 10,000 g's.
<}

The instantaneous accelerations when the cage strikes the balls are even

higher.	 Therefore, the forces are of the magnitude needed to cause cage

failure.

A completely alternate estimation of the forces which arise

from cage instability was done after the work of Kingsbury 2 .	 Kingsbury

predicts the forces which arise from the cage whirling about the bearing

t
center.	 Once again, as in the BASDAP model, the driving force for the

instability is energy transferred to the cage from ball-cage interactions.

This method predicted a force of 5100 N (1200 pounds), which is also



21

Both of these methods predict forces which approach the strength

limits of the cage in pure compression. Adding the effects of cage bending,

because the forces will probably not produce pure compression, or the

summation of forces from several balls would result in instantaneous

forces exceeding the strength of the cage. Therefore, cage instability

is a likely cause of the cage failure observed.

Ball Speed Variation

There are several causes for non-uniform ball speeds within

a complement and for ball speed variations, including: uneven ball wear,

misalignme,. , cage instability, and a high ratio of radial to axial load.

Uneven ball wear causes balls to run at different speeds because of the

diameter variations. The HPOTP bearing relies upon either a transfer

film from the cage to race or a hydrodynamic film of liquid oxygen in

order to lubricate the ball-race interface. 3 An analysis of these mechanisms

is currently being conducted at Battelle under Task 112. Preliminary

results, both experimental and analytical, indicate very high ball wear

rates if the lubrication mechanisms fa1. If ball wear is not uniform

within the complement, the different resulting ball speeds must be accommodated

by ball-race slip.

Misalignment of either race will cause an elliptical path similar

to the effect of a high radial load. The effects of race misalignment

have been considered under a previous task  and, therefore, will not

be considered further in this report.

In the HPOTP bearing the combination of axial and radial loads

typically cause ball speed variations from contact angle variations around

the bearing as much as 14 degrees. As the balls pass over the positions

of higher contact angle, they are forced to run faster and so will move

forward in the ball pocket. As the balls move to lower contact angles

they slow down and lag in the pockets. This effect can cause a detrimental

summation of forces if all of the available clearances are consumed in

the process. Figure 12 is a plot of the ball excursions from the center

of the pocket for a typical case presented in accordance with methods
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FIGURE 12. BALL EXCURSIONS FROM POCKET CENTER FROM BALL SPEED VARIATION

Axial Load = 4448 N (1000 lb)
Cage-Ru^e Friction = 0.13

Cage-Race Clearance = 0.254 mm
(0.010 in.)

Radial Load = 2669 N (600 1F)
Ball-Cage Friction = 0.30

Ball-Cage Clearance	 0.635 mm

(0.025 in.)
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F
of Barish . The irregular curve shows each ball position as calculated

by the BASDAP computer program.

Figure 12 further illustra".es the role that cage-race clearance

and ball-pocket clearance play in generating ball-cage forces. The nearest-circle

approximation of the ball set is offset from the pocket center circle

by the distance H. This distance, 0.508 mm (0.020 in.), represents the

distance that the cage center would move to provide a "best fit" for

the ball locations. However, since the cage-race clearance should be

0.25 mm (0.01 in.) for best cage stability, the displacement from the

center can be only 0.13 mm (0.005 in.). The remainder of the distances

of the individual ball excursions must be accommodated by ball-pocket

clearances, represented by the distance G in Figure 12, to prevent ball-race

skidding. For the case in Figure 12, the ball-pocket clearance must

be 0.71 mm (0.028 in.) on either side of nominal or 1.42 mm (0.056 in.)

total. Since the case in Figure 12 is not an extreme example and since

ball-pocket clearance was not shown to affect stability, a ball-pocket

clearance of 2.5 mm (0.100 in.) is probably advisable.

It is seen that several balls in the upper left quadrant of

the graph lag enough, 0.318 mm (0.0125 in.), to be dragged by the cage.

In the lower quadrants, however, two balls lead enough to push the cage.

This situation-results in a cage hoop stress such as was described in

an earlier analysis at Battelle 6 . The stress caused by this bending,

however, is limited by the cage to outer race clearance. Calculations

from mechanics of materials? indicate that the force from the bending

stress caused by two balls at 180 degrees alternately pushing and dragging

will rise only slightly before the cage-race clearance 0.25 mm (0.010 in.)

will limit any further bending and resulting stress.

A worst case in compression loading might come from a sin

arrangement as shown in Figure 13, where the balls in two quandrani

are leading and in the other two quadrants are lagging. Neglectinc

at the outer race and summing the forces from six balls in compres

would produce a stress at point A of 70 N/mm2 (10,000 psi). Under

assumed compressive strength of 230 N/mm 2 (33,000 psi), the cage we

still not fail.

s
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Other more complex situations can be proposed by envisioning

various ball positions leading and lagging in a plot such as in Figure 12.

The calculation of the resulting stresses from complex forces and moments

in a composite material, restrained by the cage race clearances, was

beyond the scope of this task and therefore not considered.

CALCULATING UNITS

Since the bearing drawing and all input data provided by NASA

were in English units, all calculations were performed in English units.

Therefore, the SI units presented in this report were converted from

English units.

Also, all bearing geometries and clearances given are diametral,

unless specified otherwise.
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APPENDIX A

PLOTS OF CAGE POSITION - ALPHA
AND CAGE VELOCITY - ALPHADOT

AS A FUNCTION OF TT-Mr-
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FIGURE A-1.	 CAGE DYNAMICS AS A FUNCTION OF CAGE-RACE CLEARANCE

Axial Load = 4448 N (1000 lb)	 Radial Load = 2669 N (600 lb)
Cage-Race Friction 	 0.13	 Ball-Cage Friction = 0.30 	 A
Cage-Race Clearance	 Variable	 Ball-Cage Clearance to 0.635 mm
Speed = 31,000 rpm	 (0.025 in.)
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FIGURE A - 2.	 CAGE DYNAMICS AS A FUNCTION OF BALL-CAGE CLEARANCE

Axial Load = 4448 N (1000 lb) Radial Load = 2669 N (600 lb)
Cage-Race Friction	 0.13 Ball-Cage Friction	 0.30
Cage-Race Clearance	 0.254 mm Ball -Caae Clearance	 Variable
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Ĵ 4

<
7.400

l

F

-.100

{.{00 -•200

Y

L6.000
0.000	 2.000	 4.000	 9.000

-700
0•000	 10.000

TIME	 (MSEC)

c.	 Cage-race friction
coefficient = 0.30
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Axial Load = 4448 N (1000 lb) Radial Load - 2669 N (600 lb)

Cage-Race Friction = Variable Ball-Cage Friction = 0.30
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Speed = 31,000 rpm
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THE HIDDEN CAUSE OF BEARING FAILURE
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CAEJSE OF
BEARING FAILU"R"M
Bearing elements sometimes "rattle" in their cage,
producing destructive forces that quickly lead to
failure. This phenomenon—called cage
instability—takes place in a blur of motion that
masks the true source of trouble. Here's a new
method that pinpoints potentially unstable cages at
the design stage.

J. W. KANNEL
D. K. SNEDIKER
Battelle Columbus Laboratories
Columbus, Ohio
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Cage instatifiry can to dentified by the presence of a characteristic,
circumferential wear pattern on the inside of the rolling-element pocket A

failed bear , ng also contains considerable cage weardebris i n the ballorroller
track and on the bearing shoulders.

BEARING elements do not fit
snugly within their cage but are
mounted with a certain amount
of clearance. This "play" allows
the cage to bounce off the ele-
ments repeatedly. If conditions
are right, the collisions cause
large unstable oscillations in
the cage, leading to premature
bearing failure.

Unfortunately, the r Lotion of
a cage in a rolling element is
difficult to observe, so an unsta-
ble cage usually goes unde-
tected. Instead, failures from
cage instability are rationalized
and blamed on "likely" causes.
What's worse, design changes
made to correct these "prob-
lerns" usually aggravate insta-
bility.

C-op instability is a recog-
nized problem only in gyroscope
and critical aerospace bearings.
However, the conditions that
cause it are present in many
work-a-day bearings such as

those used in high-speed

machine-tool spindles and tex-
tile machines.

There are several ways to .
recognize cage instability.
Perhaps the most obvious sign
is an audible noise emitted by
the bearing (bearings with un-
stable cages are often called
squealers or groaners). How-
ever, most unstable cages do not
exhibit this obvious symptom,
and more subtle signs of insta-
bility must be sought. For in-
stance, an unstable cage
causes intermittent torque
transients and exhi`.,its a
characteristic circumferential
wear pattern inside the

•olling-element pocket.
Previously, cage instability

was difficult to analyze because
the dynamic motion of the cage
could not be modeled accu-
rately. This arti-le presents a
new analytical approach that
models cage motion and relates
the bearing design and operat-
ing conditions to potential cage
instability. Thus, a bearing de-
sign can be checked before it is



1 _ l	 1	 '.

R RD ± R, + Re cos /3

U = (OIR P)1R,2 — (R, cos p)^]

The upper signs refer to inner
race contact, the lower signs to
outer race contact.

At the element/cage inter-
face, the most important force is
the spring force between the
two parts. When the cage im-
pacts the element, the interface
deflects much like a spring
under dynamic load. This de-
flection can be represented by

the nonlinear spring equation
F = C's"	 (4)

Spring constant C, can be calcu-
lated from

0.49	 B, u. +5
C. _

A, + B, A.

1
X	 )	 (5)

C, + CP

For a steel bearing, variables
A„ B„ C,, and C„ are given by

A. = % (R a
-1 

— R,y-1)

B. = (2Re) -1	 (s)

Cp = 0.91E,
Cr = 4.1(10-12) m2/N

The magnitude ofspring force
F determines the rebound mo-
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put into service, or bearings
that fail consistently can be
studied to determine whether
cage instability is the underly-
ing cause of failure.

What Is Cage Instability?
According to conventional

theory, a bearing cage is an un-
cons,ra.ined, rigid rotor that ro-
tates circumferentially with the
rolling elements. Cage and
elements are separated by a
thin lubricant film and never
touch.

In truth, the cage does not be-
have this way. Rather, it Inter-
mittently impacts one and then
another of the rolling eleme its.
Under repeated impact, (.age
motion either damps out or in-
creases. When motion in-
creases, the cage becomes un-
stable.

Failure in a bearing depends
dpon the requirements of the
system. Cage instability causes
"failure" when its effects on
torque, cage life, and bearing
noise become unacceptable.

For examp;e, instability
causes intermittent torque fluc-
tuations in both low and high-
speed bearings. These fluctua-
tions are considered failure in
systems requiring smooth oper-
ation or accurate positioning.
Cage instability also generates
severe transient forces that can
cause high cage wear or frac-
ture, which eventually disable a
bearing. Finally, because an

unstable cage sometimes emits
noise, it can cause failure in sys-
tems requiring quiet operation.

Usually, an unstable bearing
leaves some tell-tale physical
marks. For instance, a bearing
with an unstable cage normally
contains a considerable amount
of cage wear debris in the ball or
roller track and on the bearing
shoulders. With nonmetallic
cages, instability shows up as a
polymer transfer film on the
rolling elements.

Failure often appears to be
caused by lubricant starvation

because the wear debris soaks
up oil, robbing the rolling ele-
ment of lubricant. However,
true lubricant starvation re-
sults from the rolling element
smearing over cage-pocket sur-
face pores thereby blocking the
lubricant feed path—little wear
debris is present.

Two Critical Interfaces
Before a dynamic analysis

can be performed on a bearing
cage, the forces at the rolling-
element/race interface and the
rollin j-element/cage interface
must be understood. These
forces control wl-ether or not
cage motion becom,^s unstable.

The interface between the
element and the race generally
represents a typical elastohy-
drodynamic (EHD) contact. Lu-
brication is dominated by the
hydrodynamic action of the lu-
bricant coupled with elastic
deformation of the bearing sur-
faces. As the iubricant enters
the interface region, it under-
goes considerable physical
change, the most significant
change being a large increase in
viscosity with increasing pres-
sure. This increase is described
by

'A = IN exp (7p)

The dominant force at the
element/race interface is the
tractive force between the ele-
ment and the race. The mag-
nitude of this force determines
tl:e lubricant film thickness and
controls whether the element
rolls or slips.

In determining tractive force
Fr, the shear stress in the

lubricant film must be found
first from

r=pAV/h

Then, the total traction at the
interface can be expressed as an
integral of the shear stress over
the contact area. The pressure
over the interface normally is
represented by a semiellipsoi-
dal (Hertzian) distribution,
therefore, tractive force can be

expressed as

Fr = C,A V	 (l)

where
3PLA

C, _ p•h(yp•)2

X 1(ypo — I)exp(yp.) _F 1] (2)

Equation 1 giv^-.s the force at
the element/race interface for
any condition of slip. In effect.,
the equation represents a clas-
sical dashpot model for a simple
lubricated interface.

'!^.+e -alculation of damping
coefficient Cµ requires a knowl-
adge of the lubricant pressure-
viscosity characteristics and
the EHD film thickness. Al-
though several equations are

used to calculate film thickness,
one commonly used is

pURO - M o.r2r
h = 630 [	 ]	 (3)

D•1.25

where

0

i
i
i
i
i
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Impacts Lead to Instability

Repeated impact bounces
cage back and forth
between elements.

d^J
Cage may also spin about
renter other than bearing
center

Elemecl

cage

—^	 1
V.

ELEMENT.CAGE INTERFACE.

Cage acts like a n,)nf
spring Spring fore(,

determines cage rib,.
velocity and, thus, wh
cage motion damps c
increases

MACHINE DESIGN
—48416j&.

^l
tion of the cage. Depending on
the rebound force, cage motion
may be either damped out or ac-
celerated.

For the stability calculations,
Equation 4 can be approxi-
mated more conveniently with
a linear form

F = C.,a

One way to estimate C,, is to
assume that the linear and non-
linear force equations yield the
same deflection at a charac-

teristic load. For example, at a
load of 5 N

C., = (5C,20
Performing similar calcula-
tions over a range of load values
yields similar relationships be-
tween C, and C,,.

ElemenVCage Impact
During impact between the

cage and a rolling element, a
force is exerted on the cage that
is p*nportional to the spring

rate of the interface (Equation
4) and to rolling-element slip.
page (Equation 1). This force
gives :he cage a linear velocity
normal to the element at the
point of impact. The interaction
between the element and the
cage can be expressed by the

fundamental motion equation

J ' Cry J i C.,d = 0
2C,

which applies for the duration
of impact. J

How the Trouble Starts
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Interface Forces Control Cage Motion
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-- Slan-up oscillations
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Defining restitution factor e,
as

a
e,. = exp ^ -	 (7)

where	 D
32C,l

MC.1

it can be shown that the re-
bound cage velucity u, is

V , = — e,v, for D,, > 1

v, = 0 for .), < 1

Thus, for low values of Da
(less that- 1), the cage will not

Stable Cage Is Well-Behaved

0171060	 0.0100
Time (sec)
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rebound from an impact but will
lose its forward momentum. On
the other hand, for values of D„
greater than 1, momentum can
increase because of the friction
at the element/race contact. In
other words, the cage not only
rebounds, it also accelerates
tangentially to the element sur-
face in the direction of rotation.

Large values ofD,,, therefore,
imply cage instability because
cage oscillations are acceler-

Unstable Cage Rattles About

Highly unstable
alter short time

2	 Ai .
u Mi

i ^i
2	

Energy input too'
4	 low to cause

instability

6

e'
0	 0 0020 0 0040 0.0060 0 0080

Time (sec)

ated. However, simply knowing
that D,, is large is not suffcient
evidence on which to judge the
stability of a cage. More infor-
mation about the impacts
needed because although the

cage rebounds, it is not known
whether the cage has more or
less energy than before the im-
pact.

The full dynamic behavior of
a cage requires extensive calcu-
lations that can be carried out
only on a computer. Actual
dynamic calculations trace the
cage position as a function of
time in a series of discrete time
steps. Calculation of the
momentum change of the cage
after an impact is based upon
the resitution factor and the
friction level at the element!
cage interface.

The effects of the restitution
factor have been fairly well
modeled. However, the effects of
friction are more difficult to
generalize in a simple equa-
tion. But a model using a simple
four-ball bearing configuration,
where the cage moves sequen-
tially from ball to ball, has
yielded a satisfactory relation-
ship between restitution factor
and friction. This relationship
is illustrated in the stability
plot and provides a convenient
criterion for predicting cage in-
stability.

To determine whether a cage
is unstable, first find the res-
titution factor e, and the coeffi-
cient of friction between the
rolling element and the cage.
Then, locate these values on the
stability plot. If the plotted
point falls below the line, the
cage is stable. However, if the
point falls above the line, the
cage is unstable.

Checking a Bearing
In general, to determine the

stability of a bearing cage, the
following parameters must be
known:

• Cage pocket radius, R,,,.
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Quick Check of Stability
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Restilut.nn Fac+o. e,

To check the srab lrtyofacage,firstdeterm nethecoeff,aentoth,cnonandthe
res lrruhon factor Then, plot these va lues on the graph if the ploced pOrct falls
below thc• bne, the cagr is stable

APRIL 7. 1977



A

OF POOR QUALITY
	

Pressure-Vise sity Properties for Typical Lubricants

'

at 651C	 at 95'C	 at 150 C
r	 w	 r	 M	 w	 r	 v	 w	 1'

Lubricant ( N - m/sees ) ( N-rWwcs ) ( ms/N x ]0 - 1• ) (N- m'sec') (N - rraecs ) (ms iN n 10- 10) (N-m'sec s ) (N- mscc rI Im r ' N x 10 10)

%At. 10	 0.011	 300 4.6	 0.0052 90 4.6
sir 30 0.011 180 5.9
MIL t.-23699	 0.012	 1.2 266	 0.0057 0.20 26.6

I Eater)
M11.t.7808	 0.0055	 0.22 27.1	 0.0031 0.09 27.1

(Eater) 

• Pitch radius, Rp.
• Rolling - element radius,

Ra.

• Contact angle, A.
• Rotational speed, fl.
• Maximum contact pres-

sure, p,,.
• Load per rolling element,

PL.

• Cage mass, M.
• Elastic modulus of cage

material, E,.
e Coefficient of friction be-

tween rolling element and
cage, f.

• Base vi: cosity of lubricant,
µ-

• Intercept viscosity, µ, .
is Pressure-viscosity expo-

nent, y.
Most of these parameters are
routinel y available; however,

i the last two parameters require
some data manipulation before
they can be determined.

Ì

	

	 I"hese parameters describe
the variations of viscosity with

i pressure based on the ideal EHD
model. To determine them, the
pressure'viscosity data of a lu-
bricant must be plotted. The
point where the plot crosses the
viscosity r.xis is the intercept
viscosit% A , and the slope of the
plot Lt this point is the
pressure-viscosity exponent y.

i

(Typical valuesofµ,A, and yfor
four lubricants are listed in the
table.)

I Once all the design parame-
ters are known, the following
variables must be calculated:

1. Elio film thickness, h
2. Damping coefficient, C,..
3. Spring constant, C,,.
4. Stability factor, D,,.
5. Restitution factor, e,.

If D„ is greater than 1, some

'I	 82

cage instability can be ex-
pected. However, if friction fac-
tor, f is small, the cage may still
operate in a stable mode. But
the higher the viscosity or fric-
tion and the smaller the film
thickness, the greater the ten-
dency for instability.

For example, consider a ma-
chine-tool-spindle bearing with
11 rolling elements and a
phenolic cage, operating at
4,000 rpm under an axial load of
500 N. The bearing is lubricated
with MILL-23699 oil at 65°C.
but the lubricant conditions are
not certain and could range
from 100% to 10% predicted
film. Determine if the cage is
stable.

The input parameters arP R,o
= 0.0041 m, R,, = 0.024 m, R„ =
0.004 m, R = 30°. p, = 1.19 (109)
N/m 2 , P, = 90.9 N'ball, M =

4.7 g, E, = 7.56(10') N'm 2 , µ =
0.012 N- rr/sec2 , A = 1.2 N-m/
sect , and y = 26.6(10- 10 ) m2/N.
Preliminary calculations give
U = 10 m/sec and  = 0.0033 m.

At 1001/( predicted film, lu-
bricant film thickness (fro to

Equation 3) is h = 0.16 µm.

Damping coefficient (Equation
2) is C^ = 8.97 N- sec/m. and
linearized sprinb, constant
(Equations 5 and 6) ib C., =
5.7(10 5 ) N/m. Finally, stability
factor (from Equation 8) is D„ =
0.96. Because D„ < 1, the bear-
ing cage is stable at 100rh pre-
dicted film thickness.

If, however, the lubricant
Film is only 10r,c of the predicted
film, then h = 0.016µm and D„
= 96. Thus, the cage could be
unstable depending on the rela-
tionship between the friction
factor and restitution factor.

	

0.002	 40	 4.6

	

0.0032	 45	 5.9

	

0.0024	 0.020	 :1.6

	

0.001 C5	 0.0085	 27.1

Friction factor for this condition
typically exceeds 0.20, and res-
titution factor is

a
e, = exp ( -

96

072

Plotting these values on the
stability graph indicates that
this cage has a stability prob-
lem at 10Q predicted film. iZ

Nomenclature

A„B., C., C,	 - Calculation co-	 is

C,	 = Sprtngc	 stan.of	 ill-

ing-ell	 t1	 in-

terface
C„	 - Lineanzed spring con-

stent

D,	 = Stability factor
E,	 - Elastic	 modulus	 of

cage material
e,	 = Restitution factor
F Spring farce between

rolling element and

case

Tractive fOroc
(= Coefficient of faction
h Elm film thickness

A!	 = Cage mass
P, Applied load per roll-

ing element

p = Pressure

p, Maximum Hertz eon.

tact pressure

R Relatne radii
R, = Rolling element radius
R„ Cage pocket radius'

R,	 = Bearing pitch radius

U = Sum	 velocity of roll-
ing contact

AV. - Slip veloalty

V,	 - Initial velooty o r cage
v,	 - Cage rebound velooty

- Bearing contact angle

y Pres,ure-viscosity	 co.

efricient
b	 = 1)eflrc,lon	 at	 roll.

ing-element cage	 in.
terface

µ = Lubricant viKusily

µ = Intercept vescoaty

r	 = Shear stress In lubri.
cant fi'm

(1 Rotational speed

MACHINE DESIGN
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