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HIGH PRESSURE OXYGEN TURBOPUMP
BEARING CAGE STABILITY ANALYSES

by
T. L. Merriman and J. W. Kannel

INTRODUCTION

Although the Space Shuttle has repeatedly had successful launches,

the life of the engine bearings remains below the overall program objectives.

Because the shuttle is a reusable spacecraft, the target 1ife of the
turbopump bearings of the Space Shuttle main engine (SSME) has been raised
from a few hundred seconds for single-use rockets to 7.5 hours for the
shuttle application. In addition, the bearings are required to operate

at very high speeds and with poor lubrication conditions. The lubrication
must be derived from cryogenic hydrogen or oxygen and/or by transfer

from the cage material (PTFE).

A the high pressure oxygen turbopump (HPOTP) bearing on the
turbine end (No. 007955) failed recently in a test engine operating at
conditions which simulate the SSME requirements. The cause of this failure
is uncertain, but excessive ball wear and fracture of the cage was observed.
One of the major questions to be resolved is whether the bearing cage
failed under normal loading or whether dynamic cage instability caused
the cage failure from associated excessive loads.

Battelle has been assisting NASA in development of the SSME
bearings through a Task Order Agreement. The objective of this Task
was to evaluate whether the dynamic stability of the SSME HPOTP turbine-end
bearing cage is an important factor in the failures. This was accomplished
by analysis with the Battelle "BASDAP" bearing computer stability model.
The intent was to vary particular individual parameters over specified
ranges to determine the dynamic sensitivity of the cage to each parameter.
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SUMMARY AND CONCLUSIONS

Combinations of operating conditions and cage dimensions were
identified that can cause the cage of the HPOTP turbine-end bearings
to be unstable. Furinermore, the high accelerations associated with
the instabilities can be expected to cause forces sufficient to fail
the cage (depending upon the actual strength of the cage under operating
conditions). The forces on the cage developed under normal (stable) operating
conditions were fourid to be tolerable. Therefore, maintaining stable
operation of the cage appears to be important in successful operation
of the HPOTP bearings.

Cage stability was found to be particularly sensitive to the
cage-race clearance, cage balance, and the lubricant film thickness between
the balls and races (as it affects the ball-race traction). Cage-race
diametral clearances larger than 0.25 mm (0.01 in.) promote cage instabilities.
In contrast, cage stability was found to be insensitive to ball-pocket
clearance. Since small cage unbalances were predicted to cause instabilities,
the cages should be carefully balanced to minimize instability problems.
Depletion of lubricant film thicknesses between the balls and races cause
cage instability problems by increasing the ball-race traction, which
underlines the importance of maintaining adequate lubrication for successful
long-term bearing life.

As a result of the study, several sensitive parameters affecting
bearing dynamics were clearly identified. Therefore, modifications to
the bearings to minimize the 1ikelihood of cage instability should enhance
cage stability and associated bearing reliability.

RECOMMENDATIONS

Based on the analyses, the following specific recommendations
are made to minimize cage instability and its associated effects on bearing
degredation.
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Maintain the diametral cage-race clearance

at no more than 0.25 mm (0.010 in.). Current
specifications on the drawing of bearing 007955
for cage-race clearance are 0.38 mm (0.015 in.)
to 0.74 mm (0.029 in.). This tolerance should
be changed to reflect the 0.25 mm (0.010 in.)
maximum allowable recommendation.

The clearance between the balls and pockets

in the cage should be no less than 0.54 mm
(0.025 in.). The ball-pocket clearance does
not affect cage stability, but adequate clearance
is needed to avoid cage stresses from ball-speed
variations caused by combinations of axial

and radial loads. It is recommended that

the current drawing specification of 0.64 mm
(0.25 in.) to 0.89 mm (0.035 in.) for ball-pocket
clearance in the circumferential direction

be modified to be 2.3 mm {0.090 in.) to 2.5 mm
(0.100 in.) to reflect this requirement.
Dynamically balance the cages to minimize

the effect of cage unbalance on stability.
Continue efforts to understand and promote
adequate lubrication of the ball-race interface.
This analysis has shown the importance of
lubrication to cage stability, and previous
Tasks have underscored the importance of
lubrication to ball and race longevity.
Long-term 1ife of the HPOTP bearings depends
critically on developing and maintaining
lubricant films to separate the balls and

races.

Perform a more detailed analysis of the cage
stresses developed in operation. While the
BASDAP analyses provide data on the ball-cage
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forces, the actual stresses developed result
from a .ombination of these forces with the
cage geometry and constraints by the outer
(quiding) race. The current study permitted
only an approximate consideration of these
stresses.

6. Schedule a review meeting to be attended
by NASA, Rocketdyne, and Battelle personnel
to review the implications of the findings
in this Task and determine what practical
steps can be taken to minimize potential
cage instability problems.

CAGE-STABILITY ANALYSES BACKGROUND

Ball-Race Interactions

An angular contact bearing contains three types of elements:

(1) Balls,

(2) Races (inner and outer), and

(3) Ball cage (retainer).
External loading in the bearing develops loads at the ball-race inter-
faces. These forces, along with race geometry, speed, and centrifugal
effects, produce the ball-race contact angles, ball-race contact pressures,
lubricant film thickness (between balls and race), and to some extent,
the spin and roll motions of the ball. The analysis of these ball-race
interactions was the basis for the classical A. B. Jones' theory(l)*.

The Jones' approach involves first computing the spring rates
for the ball-race contact regions. Next, values for the radial and axial
deflections of the bearing are assumed. Using these assumed deflections
in conjunction with the spring rates, radial and axial loads are computed
and compared with the design bearing loads. The radial and axial deflec-
tions are adjusted (by a computer nesting procedure) to achieve the

*References are 1isted on page 32.
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correct loads for static conditions. Centrifugal force effects are determined

by adjusting the inner and outer race contact angles to achieve loading
equilibrium.

Cage Dynamics

Under design (static) conditions of most bearings, the cage
can be considered to have six degrees of freedom. The motion of the
cage {s achieved as a result of the balls driving the cage or the cage
driving the balls. The stability conditions of the cage are a result
of the interactions during bali-cage impacts. As a result of this impact,
the kinetic energy of the cage is altered. For example, any slip of
the ball on the race at impact will reduce the energy of the cage. Also,
the friction coupling of the rolling ball to the cage during impact alters
the cage energy. Under some conditions, the energy of the cage will
continue to increase until an instability occurs. Under other conditions,
the cage will be quite stable. The purpose of the BASDAP model is to
sort out these stable or unstable conditions.
The BASDAP calculations are conducted in two steps:
Step 1. The quasi-dynamic stresses of the
type discussed under "Ball-Race
Interactions of the Bearing” are
computed.
Step 2. The cage dynamic motions are computed
using the ball-race forces and
traction constants as inputs.
This model is described in the
paper presented in Appendix B.
Cage motion 1s computed in terms of three velocity components
a, B, and p. a, B, and p are described in Figure B-1. a represents
the angular rotation of the cage. Under perfect conditions, a would
be the same as the ball group velocity although normally some oscillations
relative to the group velocity occurs. In the plots (to be discussed),

a will be shown relative to the ball group. & represents the whirl velocity

of the cage center-of-mass relative to the geometric center of the bearing.
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6

p represents the cage radial velocity. Cage stability can be accessed

by analyzing plots of a (cage angle) as a function of time. If the frequency
of oscillation of a decreases with time, cage stability is implied. Conversely,
if the frequency of oscillation increases, the cage is unstable.

CAGE-STABILITY ANALYSIS

In the analyses, only one parameter was varied at a time.
The nominal bearing.parameters used, while any given parameter was varied,
are listed in Table 1. The ranges over which the parameters were varied
are listed in Table 2. Because of the very large number of possible
combinations, no attempt was made to perform a complete analysis of the
interactions of the variables.

In presenting the results, bar graphs were made to summarize

the effect of the particular variatle of interast. The detailed computer-generated

plots of cage motion and cage veiocity, on which the bar graphs were
based, are presented in Appendix A. In interpreting the bar graphs,
the following definitions should be used.
Completely unstable - high frequency oscillation.
Marginaily unstable - occasional oscillation build up.

Marginally stable - oscillations do not completely
decay, but the cage does not go into high frequency
oscillation.

Stable - frequency and amplitude of oscillation
decrease with time.

Cage-to-Quter-Race Clearance

The effect of cage-to-outer-race diametral clearance on cage
stability is presenied in Figure 1, and the detailed computer graphs
are presented in Figure A-1. Stable operation is attained at clearances
of 0.25 mm (0.010 in.), marginal stability is predicted at 0.51 mm (0.020 in.),
and unstabiz cage operation is predicted for clearances of 0.76 mm (0.030 in.)
and greater. Therefore, the cage-race clearance should not exceed 0.25 mm
(0.010 in.) for stable cage operation with the values of the parameters
given in Figure 1.
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TABLE 1. NOMINAL BEARING PARAMETERS FOR NASA BEARING 007955
(HPOTP, TURBINE END)

Parameter Units Nominal Value
Number of Balls -- 13
Ball Radius mm (inch) 6.35 (0.250)
Pitch Radius mm (inch) 40.51 (1.595)
Design Contact Angle rad/degrees 0.36/20.5
Quter Race Curvature -- 0.53
Inner Race Curvature -- 0.53
Ball-Race Friction -- 0.13
Coefficient
Ball-Cage Friction - 0.30
Coefficient
Axial Load N (1b) 4448 (1000)
Radial Load N (1b) 2669 (600)
Inner Race Speed rpm 31,000

Cage Mass

gr (1b-sec?/in.)

29.78 (1.730 x 10-4)
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TABLE 2. BEARING PARAMETER RANGES FOR NASA BEARING
007955 (HPOTP, TURBINE END)

Parameter

Range

Ball-Pocket Clearance
Cage to Outer Race Clearance

Ball to Ball-Pocket Friction
Cage to Quter Race Friction
Ball to Race Friction

Shaft Speed

Bearing Loads (per bearing)
1000# Axial

Bearing Film Thickness

Cage Weight
Cage Unbalance

0.635 mm to 2.54 mm
(0.025 in. to 0.100 in.)

0.254 mm to 1.52 mm
(0.010 in. to 0.060 in.)

0.04 to 0.30

0.04 to 0.30

0.08 to 0.22
25,900 rpm to 31,000 rpm

890 N to 4448 N
(200 1b to 1000 1b)

2.54 x 1o~4 to 24.9 x %?
(10 x 10-6 to 98 x 10-6 in. )

29.00 to 29.78 gram
0 to 0.5 gram

B B
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Stable

Marginally stable

Marginally unstable

Unstable
0254 Q508 0762 106 1270 1524
00 (002) (003) (004) (005) (006)
Cage-Race Clearance, mm (in.)
FIGURE 1. CAGE STABILITY AS A FUNCTION

OF CAGE-RACE CLEARANCE

Axial Load = 4448 N (1000 1b)
Cage-Rac. Friction = 0.13
Cage-Race Clearance = Variable
Speed = 31,000 rpm

Radial Load = 2669 (600 1b)

Ball-Cage Friction = 0.30

Ball-Cage Clearance = 0.635 mm
(0.025 in.)
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Ball-Pocket Clearance

Figure 2 presents the effects of ball-cage diametral clearance
on cage stability. In general, increasing ball cage clearance does not
cause serious deteriorations of cage stability for a cage-race clearance
of 0.259 mm (0.010 in.). The computer graph in Figure A-2b does illustrate
that some cage wobbling may be occurring, which is a reflection of the
cage impacting the race guiding surface. Figure A-2c shows that a very
low frequency impact occurs, but it is unlikely that these motions represent
a stability problem.

Cage-to-Quter-Race Friction

Figure 3 shows the effect of cage-race friction coefficient
ranging from a very low value of 0.04 to a high of 0.30 (the maximum
value experimentally reported for Armalon sliding against 440 C stainless
steel 1n liquid nitrogen). An increasing coefficient of friction at
the cage-race interface should tend to stabilize the bearing as cage
and ball group energy is dissipated through the race land in the form
of heat, and this tendency was observed. The corresponding computer
plots are presented in Figure A-3.

Ball to Ball-Pocket Friction

Figure 4 shows the effect of the ball-cage friction coefficient
over the same range of 0.04 to 0.30. Increasing the coefficient of friction
at this interface would normally be expected to decrease bearing stability
as more energy is transferred to the cage. The plots, however, do not
show a strong effect of varying the ball-cage friction alone for this
bearing geometry.

Experimental data provided by the Marshall Space Flight Center
Materials Laboratory shows that as the cage wears the coefficients of
friction at the race and ball interfaces change preferentially with regard
to cage fiber orientation. The ball-cage interface wears perpendicular
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Stable |—
Marginally stable F—
Marginally unstable |—

Unstable }—

0.635 1588 2540
(0025) (0063) (0100)

Ball-Cage Clearance, mm (in.)

FIGURE 2. CAGE STABILITY AS A FUNCTION
OF BALL-CAGE CLEARANCE

Axial Load = 4448 N (1000 1b) Radial Load = 2669 (600 1b)
Cage-Race Friction = 0.13 Ball-Cage Friction = 0.30
Cage-Race Clearance = 0.254 mm Ball-Cage Clearance = Variable

(0.010 in.) Speed = 31,000 rpm
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Stable

Marginally stdble
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004 0]K) 030
Friction Coefficient

FIGURE 3. CAGE STABILITY AS A FUNCION
OF CAGE-RACE FRICTION

Axial Load = 4448 N (1000 1b) Radial Load = 2669 (600 1b)

Cage-Race Friction = Variable Ball-Cage Friction = 0.30

Cage-Race Clearance = 0.254 mm Ball-Cage Clearance = 0.635 mm
(0.010 in.) (0.025 in.)

Speed = 31,000 rpm
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Stable |—
Marginally stable —

Marginally unstable -
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004 o7 030
Friction Coefficient

FIGURE 4. CAGE STABILITY AS A FUNCTION
OF BALL-CAGE FRICTION

Axial Load = 4448 N (10C0 1b) Radial Load = 2669 (600 1b)

Cage-Race Friction = 0.13 Ball-Cage Friction = Variable

Cage-Race Clearance = N.254 mm Ball-Cage Clearance = 0.635
(0.010 in.; (0.025 in.)

Speed = 31,000 rpm
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to the lay of the cage fiber and the coefficient of friction tends to
increase to 0.30. The cage guiding surface wears parallel to the lay

of the cage fiber and the coefficient of friction tends to decrease slightly
to 1.13 at the higher loads. This combination of friction coefficients

was analyzed and is represented in Figure A-3b, which is a stable plot.

The experimental data from which these friction coefficients were taken

is presented in Table 3. The worst combination of friction coefficients
would be : high ball-cage (0.30) and a low cage-race value (0.04). Running
this combination produced a marginally stable cage, presented in Figure A-3a.
From these results, the coefficients of friction at the ball-cage and
race-cage interfaces do not have a strong influence on cage stability.

Cage Unbalance

Stability appeared to be sensitive to cage unbalance, as shown
in Figure 5 and in the computer plots in Figure A-5. Unstable operation
was predicted with unbalances of only 0.019 grams at the cage radius
of 41 mm (1.63 in.), or, 0.078 g-cm. At 13,400 rpm, this unbalance corresponds
to a force of 1.55 x 105 dynes (0.35 pounds), or 160 g¢, which is approximately
5 times greater than the cage "weight" of 30 g (0.066 pounds). These
forces possibly contribute to initiating and maintaining instability
in the absence of other dominating effects.

The results suggest that the cages should be balanced if this
is not currently being done. Balancing equipment is available for detecting :
at least 0.008 g-cm, or one tenth the unbalance used in the analyses ?
The studies did not include determining maximum allowable unbalances '
for stability. However, the cage should be balanced as well as possible.

SO RIS W TRREY S S MMMW T R
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- W

Radial Load

The effect of radial load was determines: at load 890, 2669, i
and 4448 N (200, 600, and 1000 pounds), shown in Figure 6 and in the
computer plots in Figure A-6. At 890 N (200 pounds) the amplitude of
oscillation appears to grow steadily, perhaps to the point of instability.
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TABLE 3. EXPERIMENTAL FRICTION COEFFICIENT FOR BEARING CAGE
MATERIAL ON BEARING RACE MATERIAL AT LIQUID NITRO-
GEN TEMPERATURE

TEST MATERIAL

Pellet

Plate

Armalon Fibe} Orientation

(1) Plies Parallel to Plate

Surface Finish = 50.8 x 10-6 mm

(2 x 10°6 in.)

(a) 440C Stainless Steel

(2) Plies Perpendicular to
Plate @

Pellet-Plate Load Static Friction Dynamic Friction

Combination  N/m2x100 (psi) OTd New 0Td New
l-a 1.38 (200) 0.139 0.324 0.109 0.189
1-a 3.45 (500) 0.131 0.242 0.102 0.145
1-a 6.89 (1000) 0.140 0.177 0.102 0.125
2-a 1.38 (200) 0.135 0.254 0.109 0.169
2-a 3.45 (500) 0.214 0.389 0.160 0.311
2-a 6.53 (1000) 0.243 0.344 0.167 0.300
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Stable |

Marginally stable }—

Marginally unstable

Unstable

0019 0094 0169 0500
Coge Unbalance, gm

FIGURE 5. CAGE STABILITY AS A FUNCTION
OF CAGE UNBALANCE

Axial Load = 4448 N (1000 1b) Radial Load = 2669 (600 1b)

Cage-Race Friction = 0.13 Ball-Cage Friction = 0.30

Cage-Race Clearance = 0.254 mm Ball-Cage Clearance = 0.635 mm
(0.010 in.) (0.025 in.)

Speed = 31,000 rpm
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OF POOR QUALITY

Stable —

Marginally stable |—

Marginally unstable

Unstable

890 2669 4448
(200) (600) (1000)

Radial Load, N(Ib)

FIGURE 6. CAGE STABILITY AS A FUNCTION
OF RADIAL LOAD

Axial Load = 4448 N (1000 1b) Radial Load = Variable

Cage-Race Friction = 0.13 Ball-Cage Friction = 0.30

Cage-Race Clearance = 0.254 mm Ball-Cage Clearance = 0.635 mm
(0.010 in.) (0.025 in.)

Speed = 31,000 rpm
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With the radial load raised to 2669 N (600 pounds), the cage was stable.
However, at the higher radial load of 4448 N (1000 pounds), the cage

again became unstable. The reason for this intermediate range of stability
was not determined.

Cage Mass

Small changes in cage mass had little effect on the cage stability
from the nominal case, Figure 7, with the computer plots presented in
Figure A-7.

Shaft Speed

The effect of varying the shaft speed on cage stability was
studied from 25,000 to 31,000 rpm, Figure 8, with the computer plots
in Figure A-8. These plots show that the bearing is only marginally
stable since small changes in speed cause a change in predicted stability,
which is qualitatively similar to experience. Quantitatively, the results
are somewhat counter to experience that shows bearing problems at higher
speeds. However, it should be noted that bearing dynamics calculations
are based on single variable evaluations. In reality, many variables
change simultaﬁeously. The conclusion is that the bearing speed is near
the thresho’d of instability.

Transferred Lubricant Film Thickness

The film thicknesses used were assumed to be PTFE solid films
transferred presumably from the cage. The presence of ball-race lubricant
films influences stability by affecting the ball-race coefficient of
friction and therefore the ability for balls to skid on the race. The
relationship between film thickness and ccefficient of friction (traction)
was obtained from other Battelle experiments on this topic. As would
be expected, the thicker films promote stability, Figure 9, with the
computer graphs in Figure A-9. Films 2.5 x 10-3 mm (98 x 10-6 1in.)
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Stable —

Marginally stable }—

Marginally unstable |—

Unstable }—

2900 2978 3060

Cage Mass, gm
FIGURE 7. CAGE STABILITY AS A FUNCTION
OF CAGE MASS
Axial Load = 4448 N (1000 1b) Radial Lcad = 2669 N (600 1b)
Cage-Race Friction = 0.13 Ball-Cage Friction = 0.30
Cage-Race Clearance = 0.254 mm Ball-Cage Clearance = 0.635 mm
(0.010 in.) (0.025 in.)

Speed = 31,000 rpm



20

ORIGINAL FAOE i€
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Stable

Marginally stable

Marginally unstable

Unstable

25000 27000 29000 3,000
Shaft Speed, rpm

FIGURE 8. CAGE STABILITY AS A FUNCTION
OF SHAFT SPEED

Axial Load = 4448 N (1000 1b) Radial Load = 2669 N (600 1b)

Cage-Race Friction = 0.13 Ball-Cage Friction = 0.30

Cage-Race Clearance = 0.254 mm Ball-Cage Clearance = 0.635 mm
(0.010 in.) (0.025 in.)

Speed = Variable
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thick precduced a stable case, while thickness reductions of 50 percent
and greater produced instability. This analysis did not consider possible
contributions of elastohydrodynamic films generated by the 1iquid oxygen.

CAGE LOADING ANALYSIS

Cage Strength

A consideration of cage loading that may cause failures requires
a knowledge of the cage strengths to determine whether sufficient forces
are being developed at the b2ll-cage interfaces to excerd the ultimate
cage strength. Tensile stress data were provided on the cage material
by NASA for two fiber orientations over a range of temperatures, but
the relationship of the orientation to the actual cage was unclear. As
2 simple check on whether the data translated into appropriate strengths
at room temperature, several sections were pulled to failure in the tensile
set-up shown in Figure 10. Since the sides of the ball-pockets were
formed by drilling holes into the cage, the sides of an individual pocket
are parallel and perpendicular to the minimum cross sectional area of
the cage. Pulling in the manner shown in Figure 10, therefore, introduces
bending stresses into the cage section that may not normally be seen
in service. Also, the loops were smaller than a ball in diameter, which
produced a stress concentration at the point of contact. The results
from eight specimens at room temperature indicated a strength of
600 + 22 N (135 + 5 pounds). This results in a calculated stress of
40 N/mm2 (5700 psi), which includes the expected bending stresses from
the curved geometry. One additional experiment was conducted with 12.7 mm
(0.5 in.) rods in adjacent ball pockets, which therefore included the
thin sections of two ball pockets in the tensile field. A higher strength
of 800 N (180 pounds) was recorded in this test in spite of the higher
bending stresses produced. The calculated maximum stress was approximately
160 N/mm2 (23,000 psi). This value falls between the NASA-supplied ultimate-
tensile-strength data for “with fabric* and “through fabric* of 83 N/mm2
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(12,000 psi) and 210 N/mm2 (30,000 psi), respectively. Therefore, for
the purposes of this stuay, the lower strength levels were assumed to
apply. At -196 C (-320 F), the tension and compression strength data
were:

Utlimate tensile stress = 270 N/mmZ (39,000 psi)

Ultimate force in pure tension = 6900 N (1600 pounds)

Ultimate compressive stress = 230 N/mmZ (33,000 psi)

Ultimate force in pure compression = 5900 N (1300 pounds)

Cage Stresses Under Normal Operating Conditions

The cage in a ball bearing maintains the ball spacing, which
would otherwise become non-uniform in service from a variety of operating
conditions and geometric imperfections. Examples include ball unloading,
ball diameter variations, and rapid speed changes. Therefore, the cage
must be capable of applying sufficient force to a ball to cause it to
skid on the races and thereby maintain its nominal location. The force
required is a function of the ball-race coefficient of friction and the
applied ball load. Varying the ball loading by varying the axial load
will therefore result in different maximum forces that must be applied
by the cage to the balls.

The effect of varying the axial load and the ball-race coefficient
of friction on the maximum cage forces is presented in Figure 11 for
a bearing operating under normal conditions (stable cage). The maximum
cage forces increase, as expected, with coefficient of friction and axial
load. With an axial load of 4400 N (1000 pounds) and a coefficient
of friction of 0.22, the maximum ball-cage force was calculated to be
300 N (67 pounds). This force is well below the ultimate forces for
cage failure of 6900 N (1600 pounds) in tension and 5900 N (1300 pounds)
in compression. The cage could also withstand much higher axial forces
being applied to the bearing. An order-of-magnitude increase in axial
force would be required before the cage would become subject to failure.



Maximum Cage Force, N (Ib)

445(100)

25

OR’G!N&L F A=
OF POOR QU ry

300(90)
356 (80) |

31 (70) |~
267(60) -
222(50)

178(40)

Axial Load

0 1500 Ib
O 1000 b
A 500 1b

133 (30
89 (20)
4400%
008 0.0 0.2 0l4 ole 0.8 0.20 0.22
Ball-Race Friction Coefficient
FIGURE 11. MAXIMUM BALL-CAGE FORCES CAUSED BY BALL-RACE

Radial Load =
Cage-Race Fric

FRICTION UNDER STABLE OPERATING CONDITIONS

2669 N (600 1b)
tion = 0.13

Cage-Race Clearance = 0.254 mm

(0.010 in.)

Speed = 31,000 rpm

Ball-Cage Friction = 0.30

Ball-Cage Clearance = 0.635 mm
(0.025 in.)



26

Cage Loads Under Abnormal Operating Conditions

Cage Loads as a Result of Instability

Conditions have been identified in the computer analyses under
which the cage might go unstable. Instability can cause high cage stresses
from the high accelerations and impacts which develop. An estimate of
the acceleration needed to fail the cage can be made from the cage strength
for comparison with the accelerations predicted by the computer model,

ng

F=ma >
or,
- £
M s
where

acceleration of cage, mm/sec? (in./sec2)
ball-cage force, N (pounds)
cage mass, gm (1b-sec2/in.).

m

Taking the ultimate compressive force to fail the cage as 5900 N (1300 pounds)

and the cage mass of 30 gm (1.7 x 104 1b-sec?/in.), an acceleration

of 2 x 108 mm/sec? (8 x106 1n./sec2) is necessary for failure. From

the slope of the velocity, a, in the unstable plots of Appendix A, such
as Figure A-lc, the velocity is seen to change at least 4 x 104 deg/sec
in a quarter of a millisecond, producing accelerations of 10,000 g's.
The instantaneous accelerations when the cage strikes the balls are even
higher. Therefore, the forces are of the magnitude needed to cause cage
failure.

A completely alternate estimation of the forces which arise
from cage instability was done after the work of Kingsburyz. Kingsbury
predicts the forces which arise from the cage whirling about the bearing
center. Once again, as in the BASDAP model, the driving force for the
instability is energy transferred to the cage from ball-cage interactions.
This method predicted a force of 5100 N (1200 pounds), which is also
comparable to the cage strength.
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Both of these methods predict forces which approach the strength
limits of the cage in pure compression. Adding the effects of cage bending,
because the forces will probably not produce pure compression, or the
summation of forces from several balls would result in instantaneous
forces exceeding the strength of the cage. Therefore, cage instability
is a likely cause of the cage failure observed.

Ball Speed Variation

There are several causes for non-uniform ball speeds within
a complerent and for ball speed variations, including: uneven ball wear,
misalignme.t, cage instability, and a high ratio of radial to axial load.
Uneven ball wear causes balls to run at different speeds because of the
diameter variations. The HPOTP bearing relies upon either a transfer
film from the cage to race or a hydrodynamic film of liquid oxygen in
order to lubricate the ball-race interface.3 An analysis of these mechanisms
is currently being conducted at Battelle under Task 112. Preliminary
results, both experimental and analytical, indicate very high ball wear
rates if the lubrication mechanisms fa:1. If ball wear is not uniform

within the complement, the different resulting ball speeds must be accommodated

by ball-race slip.

Misalignment of either race will cause an elliptical path similar
to the effect of a high radial load. The effects of race misalignment
have been considered under a previous task4 and, therefore, will not
be considered further in this report.

In the HPOTP bearing the combination of axial and radial loads
typically cause ball speed variations from contact angle variations around
the bearing as much as 14 degrees. As the balls pass over the positions
of higher contact angle, they are forced to run faster and so will move
forward in the ball pocket. As the balls move to lower contact angles
they slow down and lag in the pockets. This effect can cause a detrimental
summation of forces if all of the available clearances are consumed in
the process. Figure 12 is a plot of the ball excursions from the center
of the pocket for a typical case presented in accordance with methods

I RPN o S

RESERPNPY W CAEN

B R 0 T T UL SR . S




pait

Qb r"rj
2 oF POOR QuRtt!
Radial
load

-005

H=0020"
Pocket centefy

Nearest circle to
ball position

¢

G=0025"

//
Sy
Ball variation from

pocket center
G=0025"

FIGURE 12. BALL EXCURSIONS FROM POCKET CENTER FROM BALL SPEED VARIATION

Axial Load = 4448 N (1000 1b) Radial Load = 2669 N (600 1b)
Cage-Kc~e Friction = 0.13 Ball-Cage Friction = 0.30
Cage-Race Clearance = 0.254 mm Ball-Cage Clearance = 0,635 mm

(0.010 in.) (0.025 in.)

3
L

Y M

A T R T R T T

T RN



29

of Barishﬁ. The irregular curve shows each ball position as calculated
by the BASDAP computer program.

Figure 12 further illustra‘es the role that cage-race clearance
and ball-pocket clearance play in generating ball-cage forces. The nearest-circle
approximation of the ball set is uffset from the pocket center circle
by the distance H. This distance, 0.508 mm (0.020 in.), represents the
distance that the cage center would move to provide a "best fit" for
the ball locations. However, since the cage-race clearance should be
0.25 mm (0.01 in.) for best cage stability, the displacement from the
center can be only 0.13 mm (0.005 in.). The remainder of the distances
of the individual ball excursions must be accommodated by ball-pocket
clearances, represented by the distance G in Figure 12, to prevent ball-race
skidding. For the case in Figure 12, the ball-pocket clearance must
be 0.71 mm (0.028 in.) on either side of nominal or 1.42 mm (0.056 in.)
total. Since the case in Figure 12 is not an extreme example and since
ball-pocket clearance was not shown to affect stability, a ball-pocket
clearance of 2.5 mm (0.100 in.) is probably advisable.

It is seen that several balls in the upper left quadrant of
the graph lag enough, 0.318 mm (0.0125 in.), to be dragged by the cage.

In the lower quadrants, however, two balls lead enough to push the cage.
This situation results in a cage hoop stress such as was described in

an earlier analysis at Battelles. The stress caused by this bending,
however, is limited by the cage to outer race clearance. Calculations
from mechanics of materials7 indicate that the force from the bending
stress caused by two balls at 180 degrees alternately pushing and dragging
will rise only slightly before the cage-race clearance 0.25 mm (0.010 in.)
will 1imit any further bending and resulting stress.

A worst case in compression loading might come from a simple
arrangement as shown in Figure 13, where the balls in two quandrants
are leading and in the other two quadrants are lagging. Neglecting friction
at the outer race and summing the forces from six balls in compression
would produce a stress at point A of 70 N/mm2 (10,000 psi). Under the
assumed compressive strength of 230 N/mm2 (33,000 psi), the cage would
still not fail.
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Other more complex situations can be proposed by envisioning

various ball positions leading and lagging in a plot such as in Figure 12.

The calculation of the resulting stresses from complex forces and moments
in a composite material, restrained by the cage race clearances, was
beyond the scope of this task and therefore not considered.

CALCULATING UNITS

Since the bearing drawing and all input data provided by NASA
were in English units, all calculations were performe& in English units.
Therefore, the SI units presented in this report were converted from
English units.

Also, all bearing geometries and clearances given are diametral,
unless specified otherwise.
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APPENDIX B

THE HIDDEN CAUSE OF BEARING FAILURE




THE HIDDEN &' it
CAUSE OF
BEARING FAILURE

Bearing elements sometimes “rattle” in their cage,
producing destructive forces that quickly lead to
failure. This phenomenon—called cage
instability—takes place in a blur of motion that
masks the true source of trouble. Here's a new
method that pinpoints potentially unstable cages at
the design stage.

J. W. KANNEL

D. K. SNEDIKER

Battelle Columbus Laboratories
Columbus, Ohio

Cage instability can be identified by the presence of a characteristic,
circumferential wear pattern on the inside of the rolling-element pocket. A
failed bearing also contains considerable cage wear debris inthe ball or roller
track and on the bearing shoulders.

BEARING elements do not fit
snugly within their cage but are
mounted with a certain amount
of clearance. This "play” allows
the cage to bounce off the ele-
ments repeatedly. If conditions
are right, the collisions cause
large unstable oscillations in
the cage, leading to premature
bearing failure.

Unfortunately, the riotion of
a cage in a rolling element is
difficult to observe, so an unsta-
ble cage usually goes unde-
tected. Instead, failures from
cage instability are rationalized
and blamed on “likely” causes.
What's worse, design changes
made to correct these “prob-
lems” usually aggravate insta-
bility.

Cage instability is a recog-
nized problem only in gyroscope
and critical aerospace bearings.
However, the conditions that
cause it are present in many
work-a-day bearings such as
those used in high-speed
machine-tool spindles and tex-
tile machines.

There are several ways to
recognize cage instability.
Perhaps the most obvious sign
is an audible noise emitted by
the bearing (bearings with un-
stable cages are often called
squealers or groaners). How-
ever, most unstable cages do not
exhibit this obvious symptom,
and more subtle signs of insta-
bility must be sought. For in-
stance, an unstable cage
causes intermittent torque
transients and exhilits a
characteristic circumferential
wear pattern inside the
‘olling-element pocket.

Previously, cage instability
was difficult to analyze because
the dynamic motion of the cage
could not be modeled accu-
rately. This article presents a
new analytical approach that
models cage motion and relates
the bearing design and operat-
ing conditions to potential cage
instability. Thus, a bearing de-
sign can be checked before it is

rFor free copy of this article circle 3002J




put into service, or bearings
that fail consistently can be
studied to determine whether
cage instability is the underly-
ing cause of failure.

What Is Cage Instability?

According to conventional

theory, a bearing cage is an un-
cons'rained, rigid rotor that ro-
tates circumferentially with the
rolling elements. Cage and
elements are separated by a
thin lubricant film and never
touch.
- In truth, the cage does not be-
have this way. Rather, it inter-
mittently impacts one and then
another of the rolling eleme 1ts.
Under repeated impact, cage
motion either damps out or in-
creases. When motion in-
creases, the cage becomes un-
stable.

Failure in a bearing depends
dpon the requirements of the
system. Cage instability causes
“failure” when its effects on
torque, cage life, and bearing
noise become unacceptable.

For exampie, instability
causes intermittent torque fluc-
tuations in both low and high-
speed bearings. These flurtua-
tions are considered failure in
systems requiring smooth oper-
ation or accurate positioning.
Cage instability also generates
severe transient forces that can
cause high cage wear or frac-
ture, which eventually disable a
bearing. Finally, because an
unstable cage sometimes emits
noise, it can cause failure in sys-
tems requiring quiet operation.

Usually, an unstable bearing
leaves some tell-tale physical
marks. For instance, a bearing
with an unstable cage normally
contains a considerable amount
of cage wear debris in the ball or
roller track and on the bearing
shoulders. With nonmetallic
cages, instability shows up as a
polymer transfer film on the
rolling elements.

Failure often appears to be
caused by lubricant starvation
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because the wear debris soaks
up oil, robbing the rolling ele-
ment of lubricant. However,
true lubricant starvation re-
sults from the rolling element
smearing over cage-pocket sur-
face pores thereby blocking the

lubricant feed path—little wear

debris is present.

Two Critical Interfaces

Before a dynamic analysis
can be performed on a bearing
cage, the forces at the rolling-
element/race interface and the
rolling-element/cage interface
must be understood. These
forces control whether or not
cage motion becomes unstable.

The interface between the
element and the race generally
represents a typical elastohy-
drodynamic (EHD) contact. Lu-
brication is dominated by the
hydrodynamic action of the lu-
bricant coupled with elastic
deformation of the bearing sur-
faces. As the iubricant enters
the interface region, it under-
goes considerable physical
change, the most significant
change being a large increase in
viscosity with increasing pres-
sure. This increase is described
by

a= mexp (YP)

The dominant force at the
element/race interface is the
tractive force between the ele-
ment and the race. The mag-
nitude of this force determines
the lubricant film thickness and
controls whether the element
rolls or slips. !

In determining tractive force
F;, the shear stress in the
lubricant film must be found
first from

r=pAV/h

Then, the total traction at the
interface can be expressed as an
integral of the shear stress over
the contact area. The pressure
over the interface normally is
represented by a semiellipsoi-
dal (Hertzian) distribution,
therefore, tractive force can be

expressed as
Fr=C,AV W
where

3Py
C,= ——— -
Poh (YP,)?
X [(ypo — 1)exp(yp,) + 1) (2)

Equation 1 gives the force at
the element/race interface for
any condition of slip. In effect,
the equation represents a clas-
sical dashpot model for a simple
lubricated interface.

The calculation of damping
coefficient Cy, requires a knowl-
edge of the lubricant pressure-
viscosity characteristics and
the EHD film thickness. Al-
though several equations are
used to calculate film thickness,
one commonly used is

WURO.378 70.721
h = 630 [— ] 3)
p.l.”
where
1 1 1
it ST i S Vet
R Ry Ryx=Rpcosp

U = (Q/Rp)[Ry® — (Rp cos B)?)

The upper signs refer to inner
race contact, the lower signs to
outer race contact.

At the element/cage inter-
face, the most important force is
the spring force between the
two parts. When the cage im-
pacts the element, the interface
deflects much like a spring
under dynamic load. This de-
flection can be represented by
the nonlinear spring equation

F=Cs¥v2 4)
Spring constant C, can be calcu-
lated from

o = 0.49 (2._)044

VA, + B, ‘A,
1
o) @

For a steel bearing, variables
A,, B,, C,, and C, are given by
A, = K (Rpg? = R
B, = (2Rp)"? (6)
C, = 0.9/E,
Cy = 4.1(10-12) m/N
The magnitude of spring force
F determines the rebound mo-
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tion of the cage. Depending on
the rebound force, cage motion
may be either damped out or ac-
celerated. ~

For the stability calculations,
Equation 4 can be approxi-
mated more conveniently with
a linear form

F=C,8

One way to estimate C,, is to
assume that the linear and non-
linear force equations yield the
same deflection at a charac-

teristic load. For example, at a
load of 5 N

Cu = (5C,)%
Performing similar calcula-
tions over a range of load values
yields similar relationships be-
tween C, and C,,.

Element/Cage Impact

During impact between the
cage and a rolling element, a
force is exerted on the cage that

rate of the interface (Equation
4) and to rolling-element slip-
page (Equation 1). This force
gives the cage a linear velocity
normal to the element at the
point of impact. The interaction
between the element and the
cage can be expressed by the
fundamental motion equation
Fo i cu=0
2C,

which applies for the duration
of impact.

is proportional to the spring

How the Trouble Starts
Elements Hit the Cage
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Coqu Osciliation Angle ()

Defining restitution factor e,

as
e~ = exp ( - ol ) ()
where VD, = 1
32C,? »
' Mc,

it can be shown that the re-
- bound cage velocity v, is
vV, = —evforD, > 1
v, =0forw, <1
Thus, for low values of D,
(less thar. 1), the cage will not
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rebound from an impact but will
lose its forward momentum. On
the other hand, for values of D,
greater than 1, momentum can
increase because of the friction
at the element/race contact. In
other words, the cage not only
rebounds, it also accelerates
tangentially to the element sur-
face in the direction of rotation.

Large values of D, , therefore,
imply cage instability because
cage oscillations are acceler-

610 Stable Cage Is Well-Behaved Unstable Cage Rattles About
‘ 08} Highly unstable
0.0sl- Smooth running after short ime
after start-up 0.6
\ | Soe
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Tocheckthe stability of acage, lirst determine the coefficient of Iriction and the
restitution factor Then, plot these values on the graph If the plotted poinit falls
below the line, the cage 1s slable
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ated. However, simply knowing
that D, is large is not sufficient
evidence on which to judge the
stability of a cage. More infor-
mation about the impact is
needed because although the
cage rebounds, it is not known
whether the cage has more or
less energy than before the im-
pact.

The full dynamic behavior of
a cage requires extensive calcu-
lations that can be carried out
only on a computer. Actual
dynamic calculations trace the
cage position as a function of
time in a series of discrete time
steps. Calculation of the
momentum change of the cage
after an impact is based upon
the resitution factor and the
friction level at the element/
cage interface.

The effects of the restitutica
factor have been fairly well
modeled. However, the effects of
friction are more difficult to
generalize in a simple equa-
tion. But a model using a simple
four-ball bearing configuration,
where the cage moves sequen-
tially from ball to ball, has
yielded a satisfactory relation-
ship between restitution factor
and friction. This relationship
is illustrated in the stability
plot and provides a convenient
criterion for predicting cage in-
stability.

To determine whether a cage
is unstable, first find the res-
titution factor e. and the coeffi-
cient of friction between the
rolling element and the cage.
Then, locate these values on the
stability plot. If the plotted
point falls below the line, the
cage is stable. However, if the
point falls above the line, the
cage is unstable.

Checking a Bearing

In general, to determine the
stability of a bearing cage, the
following parameters must be
known:

e Cage pocket radius, R,,.

d1
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Pressure-Visc' sity Properties for Typical Lubricants

at 65°C

at 95°C

I3 M Y M ] Y M b g
Lubricant (N-m/sec?) (N-m/sec?) (m?¥/N x 10-!°) (N-m/sec?) (N-m/sec?) (m*/N x 10-'%) (N-m/sec?) (N-m scc?) (m¥/N x 10°'*)

SAE 10 0.011 300

SAE 30 —_— —_—

MILL-23699 0.012 12
(Ester)

MIL-L-7808 0.0055 0.22
(Ester)

27.1

46 0.0052 90 46
_ 0.011 180 5.9
266 0.0057 0.20 26.6

0.0031 0.09 271

at 150C
M
0.002 40 4.6
0.0032 45 59
0.0024 0.020 200

0.00185 0.0085 27.1

¢ Pitch radius, R,.

¢ Rolling-element radius,
R,.

e Contact angle, 8.

¢ Rotational speed, Q.

e Maximum contact pres-
sure, p,.

e Load per rolling element,
PL.

o Cage mass, M.

e Elastic modulus of cage
material, E,.

e Coefficient of friction be-
tween rolling element and
cage, f.

e Base viscosity of lubricant,
M.
e Intercept viscosity, u,.

e Pressure-viscosity expo-
nent, y.

Most of these parameters are
routinely available; however,
the last two parameters require
some data manipulation before
they can be determined.

These parameters describe
the variations of viscosity with
pressure based on the ideal EHD
model. To determine them, the
pressure/viscosity data of a lu-
bricant must be plotted. The
point where the plot crosses the
viscosity ~xis is the intercept
viscosity u,, and the slope of the
plot ct this point iz the
pre-sure-viscosity exponent 7.
(Typical values of u, i, and y for
four lubricants are listed in the
table.)

Once all the design parame-
ters are known, the following
variables must be calculated:

1. EHD film thickness, A

2. Damping coefficient, C..

3. Spring constant, C,.

4. Stability factor, D,.

5. Restitution factor, e, .

If D, is greater than 1, some
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cage instability can be ex-
pected. However, if friction fac-
tor,fis small, the cage may still
operate in a stable mode. But
the higher the viscosity or fric-
tion and the smaller the film
thickness, the greater the ten-
dency for instability.

For example, consider a ma-
chine-tool-spindle bearing with
11 rolling elements and a
phenolic cage, operating at
4,000 rpm under an axial load of
500 N. The bearing is lubricated
with MIL-L-23699 oil at 65°C.
but the lubricant conditions are
not certain and could range
from 100% to 10% predicted
film. Determine if the cage is
stable.

The input parameters are R,
= 0.0041m,R, =0.024 m,R, =
0.004 m,B8 = 30°,p, = 1.19 (10%)
N/m?, P, = 90.9 N/all, M =
4.7g,E, = 7.56(10%) N/m?, u=
0.012 N-m/sec?, u, = 1.2 N-m/
sec?, and y = 26.6(10'°) m%N.
Preliminary calculations give
U =10m/secandR = 0.0033 m.

At 100% predicted film, lu-
bricant film thickness (frcm
Equation 3) is A = 0.16 um.
Damping coefficient (Equation
2) is C. = 8.97 N-sec/m, and
linearized sprin,; constant
(Equations 5 and 6) 15 C,, =
5.7(20%) N/m. Finally, stability
factor (from Equation 8)isD, =
0.96. Because D, < 1, the bear-
ing cage is stable at 100% pre-
dicted film thickness.

If, however, the lubricant
film is only 10% of the predicted
film, then h = 0.016um and D,
= 96. Thus, the cage could be
unstable depending on the rela-
tionship between the friction
factor and restitution factor.

Friction factor for this condition
typically exceeds 0.20, and res-
titution factor is

=)

¢,=QXD( o

= 092
Plotting these values on the
stability graph indicates that
this cage has a stability prob-
lem at 10% predicted film. 2

Nomenclature

A, B, C, C, = Calculation con >ts
C, = Springe stan.of ll-

ing-el¢ t/r=  in-
terface

C, = Linearized spring con-
stent

D, = Stability facter

E, - Elastic modulus of
cage material

= Restitution factor

Spring force between

rolling element and

cage -

Tractive foree

CoefTicient of friction

EHD film thickness

Cage mass

Applied load per roll-

ing element

Pressure

Maximum Hertz con-

tact pressure

Relative radii

Rolling element radius

Cage pocket radius’

Beering pitch radius

Sum velocity of roll-

ing contact

Slip velocity

Initial velocity of cage

Cage rebound velocity

Bearing contact angle

Pressure-viscosity co-

eflicient

& = Defleciion at roll.
ing-element/cage in-
terface

= Lubricant viscosity

= Intercept viscosity

= Shear stress in lubri-
cant fiim

f1 = Rotational speed
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