
8 4 ° * " 4 8 5

NASA Technical Memorandum 85751

ENTROPY CONDITION SATISFYING APPROXIMATIONS FOR
THE FULL POTENTIAL EQUATIONS OF TRANSONIC FLOW

STANLEY OSHER, WOODROW WHITLOW, JR,
AND MOHAMED HAFEZ

JANUARY 1984

NASA
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665
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THE FULL POTENTIAL EQUATIONS OF TRANSONIC FLOW

Stanley Osher, Woodrow Whitlow, Jr. and Mohamed Hafez

Abstract. We shall present a new class of conservative

difference approximations for the steady full potential

equation. They are, in generalj easier to program than

the usual density biasing algorithms, and in fact, differ

only slightly from them. We prove rigorously that these

new schemes satisfy a new discrete "entropy inequality",

which rules out expansion shocks, and that they have sharp,

steady, discrete shocks. A key tool in our analysis is

the construction of anew "entropy inequality" for the full

potential equation itself. We conclude by presenting

results of some numerical experiments using our new

schemes.

1. Introduction. The full potential equation is a common model for
o»*w«jrx*NWN*ii>vsw*0r*,M«̂ vx«x«x»w

describing supersonic and subsonic flow close to the speed of sound.

The flow is assumed to be that of a perfect gas, and the assumptions of

irrotationallty and constant entropy are made. The resulting equation

is a single nonlinear partial differential equation of second order,

which changes type from hyperbolic to elliptic, as the flow goes from

supersonic to subsonic. Flows with a supersonic component generally

have solutions with shocks, so the conservation form of the equation

is important.



This formulation, (FP), is one of three conservative formulations

used for inviscid transonic flows. The other two are transonic small-

disturbance equation, (TSD), and Euler equation, (EU), which is

the exact inviscid formulation. The FP formulation i.s the most

efficient of the three in terms of accuracy-to-cost ratio for a wide

range of inviscid transonic flow applications for real geometries. TSD

is valid for thin wings at free stream Mach numbers near unity, and EU,

while the least restrictive, involves the most complicated system of

equations.

During the last few years, many numerical calculations using FP

have been presented, e.g. [19], tl1*-], [1?], and [6]. The object of

our present investigation is twofold. First, we wish to put the theory

of nonlinear difference approximations to FP on a sound theoretical

basis, via an "entropy condition", as described below. Second, we

introduce a new class of entropy condition satisfying approximations,

which are, in general, no more complicated to program than the usual

density biasing algorithms, and in fact, differ only slightly from

them. These new algorithms, besides having a solid (nonlinear) mathe-

matical basis, also seem to outperform the existing algorithms numeri-

cally.

In 1980, Engquist and Osher [8] introduced entropy condition

satisfying approximations for TSD. They constructed a scheme, which

is a simple modification of the commonly used Murman algorithm, [21],

and proved that their scheme satisfied an entropy inequality for TSD.

Murman's algorithm was earlier shown to violate the entropy condition,

[18], and to have stable expansion shock solutions [8], [28]. In



[13], Goorjian and Van Buskirk incorporated the E-0 scheme into an

existing TSD code, using only minor coding modifications to change

from the standard Murman algorithm. For steady flows, the convergence

is more robust and about 35$ faster. For unsteady flows, the

allowable time step is around 30 times larger.

The steady profiles for both methods are very similar, except

that nonlinear instabilities were triggered using Murman1s scheme for

a blunt airfoil, while the E.G. method converged with no problems.

For unsteady flows, the new method allowed time steps at least

on order of magnitude larger, but, perhaps more importantly, one case

illustrated the following phenomenon.

The Murman scheme can trigger transient numerical instabilities;

although these instabilities will not cause calculations to diverge,

they will cause large errors in the pressure profiles. Many users

of these codes, such as aeroelasticians, are particularly interested

in integrated quantities such as the unsteady aerodynamic loads.

These users could be unaware of these large errors, unless they

monitored, in addition, the calculation of the pressure coefficients.

Additional experiments were performed using the E.O. algorithm

for TSD by Edwards, et al,[7l- There, they were able to calculate

large amplitude motion and large angles of attack. Thus, transonic

flutter solutions, which could previously, not even be calculated

using existing production codes, were obtained, and found to be

quite accurate.

A great deal of nonlinear analysis has recently been used to

analyze and construct conservation form approximations to



hyperbolic systems of conservation laws, e.g. [23], [16], [21*], [25],

and [2?]. Several successful "high resolution" schemes for EU

have been constructed, and complex flows with strong shocks have

teen computed.: [U], [16], [2], and [23]. This type of analysis is

not directly applicable to FP, for reasons described in Section II.

The format of our paper is as follows. Section II is purely

analytic, i.e., non-numerical. There, after a preliminary descrip-

tion of the properties of FP, we discuss the concept of the entropy

condition, and construct a new entropy condition for FP. This

inequality is enforced across a shock for FP if and only if the usual

criterion of Mach number decreasing across a shock is valid: Theorem

(2.1). We also explain why these new ideas are needed, i.e. lack of

strict hyperbolicity for the unsteady FP. In Section III we con-

struct difference approximations for FP based on the concept of E

schemes, introduced in [22] for scalar conservation laws . We show

rigorously that these schemes admit only physically correct limit sol-

utions to FP (Theorem (3.1)). In Section IV, we give examples of our

new class of approximations involving the E.G. scheme, Godunov's scheme

[11], and general fixes of Murman's scheme [28]. The concept of

flux biasing is presented, and shown to be simpler computationally

tfcan the usual density biasing, as well as having the same trunca-

tion error. This section is the most important for our more applied

readers, because the algorithms are presented there. Section V

contains the proof of Theorem (3-1) by obtaining a discrete version:

inequality (5-3)- Finally, Section VI gives the results of numeri-

cal experiments showing the worth of the algorithm, based on E.O.,



in body fitted coordinates. We shall call this version the

Hafez-Osher, or H-0. algorithm in a parallel work, [15], where more

numerical evidence is given, and in future work on this subject.

Some earlier attempts have been made to extend the ideas of [8]

from TSD to FP. See Goorjian, et al. [12], and Boerstoel [1].

Indeed, Boerstoel used flux biasing to construct an algorithm for

FP in general coordinate systems, formally extending E.G. from

TSD to FP.



^̂  We consider

the differential equation:

(2.1) (pu) + (pv) = 0
x y

where the density, p > 0, is defined through Bernoulli's law.

<2'2> + - ^77 * I •

Here: _ L2 . ,2 _ _r~~t 2

2
a= M

CO

are the absolute speed and sound speed, respectively.

The constants

y « 1.4 , ^ > 0

are given.

The flow is potential, which means there exists a scalar function

*, with

u = *
(2.3)

v = *y
and

(2-4) uy = vx

even across discontinuities

(2.1) -(2.4) yields a hyperbolic or elliptic equation, depend-

ing upon the Mach number
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M - .a

We have

M > 1 «** supersonic flow <==» hyperbolic

M < 1 «*=> subsonic flow «=> elliptic .

It turns out that

(2.5) M>1 4=» q > q* = a*

with the sonic value

We wish to solve (2.1) -(2.4) by obtaining it as the steady

(time independent) solution to an unsteady hyperbolic system of

conservation laws, endowed with a convex entropy, in the sense of

Lax [20]. This entropy is not to be confused with the true,

physical, entropy of gas dynamics, and will be described below.

Such a system can be written as:

(2.6) wt + f(w)x + g(w)y = 0

where

m rp

w = (w1, •. • ,vd) , f = (f-̂ w),... ,fd(w))

T
g = (g-L(w),...,gd(w)) .

The Jacobian matrices

A ='



are such that any nontrivial real linear combination of A and B

has real eigenvalues and a complete set of eigenvectors.

Many of the equations of physics of this type are endowed with

an additional convex conservation law. This means that there

usually exists a scalar, convex, function V(w), which, for smooth

solutions w, of (2.6) satisfies

(2.7) Vt + Fx + Gy = 0 .

V is called the entropy, and F, G are the associated entropy

fluxes .

For a list of physical equations and corresponding entropies,

see [53-

Nonsmooth weak solutions of (2.6) are not unique. We require,

in addition, that they be the limit, as 6 i 0, of solutions to the

regularized equation:

(2.8) w* + f(we)x + g(w
e)y = e(ŵ  + Wyy) .

Lax has shown, [20], that a necessary condition for this to be

true is that the entropy inequality (in the sense of distributions).

(2.9) Vt + Fx + Gy < 0 ,

be satisfied.

We now assume that A has distinct eigenvalues:

with associated right eigenvectors r. (w) , . . . ,r (w)



A characteristic k-field is called genuinely nonlinear if

(2.H)

for all w.

Suppose the weak solution to (2.10) is piecewise continuous with a
T T5

point of discontinuity. We denote by w , w , the values on the left and

right sides of the discontinuity, respectively. Such a point of dis-

continuity is a k-shock if both

(a) The Rankine-Hugoniot relation:

(2.12) s(wL-wR) = ftwVfU*) ,

for s the speed of propagation of the shock, holds; and

(b) there are exactly k - 1 of the characteristic speeds

\(w ) < s» an{i m-k speeds ŷ(w ) > s.

(2.13) (wL) < s <

This is the (geometric) shock condition for systems. Lax [20]

showed for genuinely nonlinear characteristic fields, that, for

weak k-shocks, the shock condition is equivalent to the entropy

inequality, which in this case becomes:

(2.U) s(v(wL; -V(wR)) - F(wL) 4- F(wR) < 0 .

We shall use this apparatus to solve (2.1) -(2.̂ ). A first

attempt might be tc consider the unsteady full potential equation:



(2.15) p + (pu) + (pv) = 0
t x y

together with the unsteady Bernoulli equation:

(2.16)

Taking the space gradient of (2.16) leads us to a system of

three conservation laws

(2.17)

/p \
u

v

+
i y

' pu ^

- (u2 + 2) + &2

2 ' 'y — 1

0
\ /

-

/ Pv \

0

1 2 2 a 2

i 2 "V ~ 1 j

=

/ 0

0

, 0
k

Unfortunately, this system,is not strictly hyperbolic. The eigen-

values of the matrix

A + B ,

2 2
for £,TJ real, with £ + T = 1> are 0, and tl + a, for

When fl = a, or vl = -a, the resulting matrix is not diagonal!zable.

This means, computationally,that any numerical vorticity which develops,

will necessarily generate a numerical instability. This causes prob-

lems for numerical methods based on this approach [3l •

Instead, we consider the following system, motivated, by [29] •

10



(2.18)
-Pt = (pq cos 6)x + (pq sin 8)

8t = -(q sin 6)x + (q cos 6)

where -TT< 6 < TT is defined through

(2.19)

u = q cos 9

v = q sin 6

and p = p(q) is defined through Bernoulli's law, (2.2).

(2.20)

with

(2.21)

p - 1-

Thus -p is an increasing function of q, and vice versa.

If we write (2.18) as

(2.22)

with

then

EW + AW + BW = 0
t x y

W = 9

a

0

-A =
Pl1'! o ))cos e ~P<1 sin e

- sin 6 -q cos 6

11



-B =

/ 2\
p( l - -^5 sin 9

\ * 1

cos Q

pq cos 6

-q sin 9

If ve then multiply (2.20) by the diagonal matrix

o i

the resulting system is symmetric hyperbolic. This matrix is the

Hessian of the convex function:

P(q)

with

Using the results of Friedrichs and Lax, [10], we can then show

that system (2.18) admits another conservation law:

^T V(q,8) + A (q(9 sin 9 + cos 9) / f* 1• U. pr̂ i
\ Q

ds jpq cos e

(2.23)

+ £ U(-e cos 9 + sin 9) - [ / r̂|yj ds ) pq sin 6) = 0

Here 0 < q < g3)ax> is an arbitrary constant, and

12



(2.210 V(q,9) = i . . , o. . j_ pi.,.

q

To apply the above theory, we need V to be convex as a function

of -p and 6. This requires the inequality

r
Jpq 5q J P(S)S

2 2 'p q

which is always valid.

Next, we consider plane wave solutions to our system (2.18), of

the form (for fixed <p between -TT and ir)

(2.26) w = f(x cos cp + y sin 9 - st) .

The resulting matrix

E" (A cos q> + B sin 9)

has distinct eigenvalues

x- . L(6.cp)(i i+ L NTNT/

Suppose we have a steady solution to (2.18) having a discontinuity

at x cos <p + y sin cp = 0.

13



Denote by ((qT,GT), (q̂ .Ĝ )), the left and right constant statesL L K K

and let

\ = qL COs(9L •*>

VL = qL cos(9L -cp)

and similarly for u_, VR.

The Jump conditions becomes

(2.28)

VL ' VR • V

We are seeking steady, weak, shock solutions , locally of the

form (2.26), so we consider points where an eigenvalue A- or A+

vanishes. At such points, since:

\\.= a2(M2 cos2(9 -<p) - 1) ,

we must have:

1M -~
, -

|cos(e-cp)| -

We must check genuine nonlinearity of the field corresponding to

this vanishing eigenvalue, A.

The quadratic equation satisfied by each root is

~ +A[( l -2b£) cos(e-cp)]+q(M2 cos2(0 - cp) - 1) =0

Differentiating with respect to q and 0 at this point yields!

14



gC O S(e-9) ^M2
 cos(e.9)[2M'

(2M2 - 1) (2M2-i)

2qM sin(e-cp)

We must check to be sure that

is not orthogonal to the null eigenvector of

=,-1-E [A cos 6 + B sin 9] «

a_
q

-sin(6 -

^cos(6-9) -a. sin(8-9)

-q cos(0-9)

at this point.

We may take this eigenvector to be

[q cos(e-cp), -sin(9-9)]T = rT

A simple calculation yields

Thus, the Lax k-shock condition is valid here. This means

that (2.28) is valid, and that

15



V) > o >

If Sĵ , Sĵ  > 0, then it is X_ which is the relevant eigenvalue,

and we have from (2.27), (2.29) '

Thus, we have, in this case:

(2.30) (a) ^ > 1

Since

changes sign for positive u iff u = a, there exists exactly one posi-

tive root uL, of (2.28) and it satisfies

(2.30) (b) o < < i .
R

The criteria (2-30) (a) , (b) are the usual physically correct ones

for shocks satisfying (2.1)-(2.4).

If vL>vL < 0, then, it is A which is relevant, and we have

from (2.27), (2.29) :

I-
We arrive at, as above:

16



(2.31) (a) 0 < - -^ < 1

(b)
~R

which is,again,the usual physical restriction.

We have thus proven:

THEOREM 2.1. Solutions of (2.1) -(2.4), having weak shocks,

satisfy the inequality;

/ / pq .. \
(2.32) ^- [q(e sin 9 + cos e) - [ / -T̂ Vr ds)

r t T f \ I I O l f i l S i

f ( p^- \ \
q(-9 cos 6 + sin 9) -j I ,\ ds ) pq sin 0) < 0

\ of H \ ** / °

iff the shocks are physically correct in the sense of (2.30), (2.31).

17



^ NOW we

shall construct difference approximations to (2.1), (2.1*0, whose limit

solutions satisfy inequality (2.32). Thus these limits have only

physically correct shocks. A wide class of these schemes will be con-

structed. They can be programmed using only simple (and simplifying)

changes from existing codes which use density biasing-. Ours will use

flux biasing. In addition to satisfying the entropy conditions, the

schemes will also have monotone, sharp, discrete shocks, as explained

in Section IV below.

We set up a grid

x. =

j,k = 0, + 1, + 2,

and seek a grid function:

Let

«., -*

Ax

define the forward and backward difference operators, with S ,5 ,

defined analogously.

We also define the operations:

18



A+ = max(A,0)

A~ = min(A,0) .

On the grid, we let the absolute speed "be defined through

(3-2) q = ( 8x*)+ - Co*/)')2 + ((8y« )+ - (6y

We then use (2.2) to define p,a, and M. on the grid.

Next we consider a numerical flux which is a Llpschitz continuous

function of two variables :

which is consistent with the function -pq, i.e

(3-3) h(q,q) = -P(q)q

and which satisfies the inequality:

<0

for all q between

Such numerical fluxes are building blocks for "E" schemes, and

were introduced by the first author in [23] . They include monotone

schemes as special cases. In our context, h(q..,q0) corresponds to

a monotone scheme if it is nonincreasing in its first argument, non-

decreasing in its second. In the next section we give examples of

these concepts, together with comparisons to density biasing

19



algorithms. If h is a monotone flux, then for q between q^ and

(3-5)
-Hsgn(q-q0)[h(q,q0) -h(q,q)] < 0;

hence h, is an £ flux.

For any such flux, our algorithm approximating (2.1)-(2.U) is;

(3-6)

0 = 6

(6 «)

(V)'

We need two minor technical assumptions, before stating our

main theorem.

Assumption (3-1): As Ax,AY - 0? 5
X* is always of one sign in

p «-
a given region ft c: R , and 8 4 is always of one (perhaps

Jr

different) sign in this same region.

20



Assumption (3.2); The oscillation

SX 5X*I + suP|Ay 8y &y*l + BUP(AX + ^y)(l6
x
 8y*D

is sufficiently small, as Ax - 0, &y -* 0 in fl, (i.e. discrete shocks

are weak).

Given these two assumptions, we can now state

THEOREM 3.1: Suppose {*1k} is a solution to (3-6), and *.k,
«- *-
8 4 , and 8 $ converge boundedly a.e. in ft. to *,* , andx JK —~~" y J.K - - ~™~ x

* respectively. Then, in n, 4 is a weak solution of (2.1)-(2.10,
Of

which satisfies the entropy inequality (2-31).

21



In this section we

shall give examples of schemes of the type (3-6), where the function

h is an E flux. We shall compare these flux biasing algorithms,

with the density biasing methods of [6], [Hi-], and [1?].

Example (l): The Engquist-Osher scheme (E-0) .

In order to construct this algorithm here, we note that:

^ (-pq) = -P(l- 2 ) >° > if f M > !
8* '

2\
= -p( 1- X* j< 0 , iff M < 1

a '
However,

M > !<==» q > q = a
\/

2

and

= P* =

We define the function

(pq) =0 if q < q* <=* M < 1

(pq) = pq-p*q* if q > q* <=* M > 1

Filially, we set:

It is easy to see that this flux is monotone. In this case our

scheme becomes :

22



0 = 6 [pq-Ax 8 (pq)J

[pq+Ax 6 (Pq)jl

r<s
LL &y(pq),1

+ 8
(6 «)

[Pq 6y(pq) J

In the subsonic case this scheme is merely conventional central

differencing (and is second order accurate, modulo a simple change

in the definition of p). However, we bias the mass flux pq,

rather than p, to achieve our upwinding. We also obtain a simpler

algorithm in the supersonic region, as will be shown below

Example (2): Godunov's scheme [11].

The precise definition, [23], is

(lf.5) -h max p(q)q if q , < q,
"-1- 3

in p(q)q

It is enlightening to discuss the physics behind this. The

flux is constructed by solving the Riemann initial value problem:

(1*.6) -Pt -(pq) = 0

23



for t > 0, with initial data:

q(x,0) = q, , . if x<0 ,

q(x,0) = qjk if x > 0 .

One obtains the unique, physically correct (entropy condition satis-

fying) solution, which is of the form q(x/t). One then evaluates

p(q)q at x/t = 0.

Then

Now

) -JlL̂  (-p(q)q) =
d(-p)

Thus, -pq is convex as a function of -p

This yields a simplification of (4.5)

(4-9) "' - '

unless

q*

We then compute the shock speed

P3kqjk"pj-l,kqj-l,k
Pjk"pj-l,k

24



and define, in this case:

,. ,0x .G, n x p3kq3k+P3-l.k>Vl,k 1 * l / f t 0 ^
(4.12) -h (qjk,q ) = -^ - 2— - + 2 K 1 . ( p jk~ p;J-l,k>

|J~2'*1

if s. i
J • »

Inserting this into (3.6) gives as the correpsonding approximation

to the full potential equation.

An equivalent formulation giving us Godunov's flux in all cases

is

n

(4.13) -h (q.^jq. T v.) = the expression in (4.12) ,
JK J-J.,K

unless

in which case
. G/ • \ * *

Godunov's is the ultimate E scheme (see [23]). However the

Engquist-Osher scheme is simpler to program, and has C flux func

tions, while Godunov's flux has a jump discontinuity in derivative

at sonic shock points.

25



Formula (̂ .12) is precisely the algorithm for Murmaris conserva-

tive upwind scheme, devised in [21], for the small disturbance

2
equation, with -pq replaced by N r

g * p + kp, k a positive

constant. This method does not yield on E scheme, and admits

stable expansion shocks. Transonic small disturbance calculations

using E-0, [13] and later Godunov's method [12], were found to be

much more robust and reliable than those using Murman's algorithm.

Many other fixes for Murman's algorithm have been recently

devised e.g. [16], [28]. They are typically of this type: Define

h as in (̂ .12) unless q. , .< q* < q.v, i.e. at a sonic rare-J-J-,K JX

faction. The flux will generate on E scheme if one defines, in

this case, h to satisfy:

Many other possible E schemes exist. However, each method we

have described here has the following properties :

(a) The scheme is fully one sided, i.e.

if

(b) One dimensional steady discrete shocks are exact except for

one transition point for any of the above mentioned E schemes,

except for E-0, which has two transition points. The extra point

follows because of E.O.'s smoother flux function — see [9] •

26



This means if *(x,y) = «(x), with, say u = <PX > 0, defining

a steady shock

u = u , for x < 0

T>

u = u , for x > 0

with M > 1 >MR, then for all the above methods except E.O., we

have as discrete solutions to (3.6):

ud L
= u >

.u",

d <o

d >o

For E.G., we have

T T3

u > \IQ > u , UQ otherwise arbitrary

s uL , j < 0

Uj H U , d > 1

L * R
u ̂ ^^^ >ui>u

with

+ plul s

See [9] for analysis of this, and for sane results in two dimensions.

We also conjecture here that two dimensional supersonic-subsonic

discrete shocks are monotone, and exact, except for a finite number

of grid points, for any of the FP algorithms mentioned above.

Thus, we have the desirable properties of programming simplicity,

sharp discrete shocks, dissipation of expansion shocks, and, with

27



E.O., smoothness of flux functions. This last property helps in

accelerating iterative methods to convergence [15]«

Density biasing algorithms for E.G. have been in use for some

time, e.g. [6], [Ik]t [1?]. We now compare the x differencing

in the algorithms of [6], [Ik], [1?], with that of (k.k). Using E.O.,

we have (if 6 4> > 0 for all relevant points):

Density Biasing;

with

M2

for EL. some representation of the local Mach number.
jK

E.O. Flux Biasing:

»- -»

V3

Taylor's theorem shows the equivalence of p and P up to terms
-» p

of order (AX 6 q., ) . If centered differences are used in the defini-
X JK.

tion of v in q.,,, they both yield the identical subsonic second
J-^

order accurate differencing. In supersonic regions, the algorithms

are quite different.

28



Density Biasing;

r

i

fca**(i ̂
. V I V/

p

1

— »
6 $
x

E.O. Flux Biasing;

We again emphasize that our simpler formula differs from the

density biasing one as follows

It is perhaps amusing to show this in detail. Dropping the j,k

and ~ dependence, we have:

P + • p = p + 4f AXQ
x M \c / X

0(AX)

= P - 0(Ax)

while
pq

q(x + Ax) = P -

= P . £

*j

Thus the two expressions agree up to O(AX) .

29



' We sha^L Prove a discrete version of

inequality (2.32). Let the four terms in (3.6) be defined by:

[I] + [II] + [III] + [IV]

By assumption (3.!), one of the first two, and one of the last two,

terms is zero.

Define, in the non-vanishing terms,

6 * 8 *
cos 91 = —2- , sin 6111 =

I 8x* IV Vcos 6 = -=— , sin e"-* = -J-

In all cases, we can uniquely define the relevant © , 6 ,9 ,

IVor 6 . For example, if the region fl is such that

8 $ > 0 > 8
x y

then

91 = 0IV = cos
<1

where, in this case,

/T*- 7£ 7+q = V(8 «) + (8
y

In general we let:

(5-2) XU - i U>

= 0 if ^ < 0

30



We shall derive the following discrete inequality

. _ rq i ( V) ,6 [6 $ + / -r-ir- ds — - - h(q., ,q, . J +
xl x I J p(s)s / q ^jk J-l,k'

/

J_ "ljk-plT^
\ 5

+ X(cos

(5-3)

6 [S $ + [ / /\r y J. P(S)S
\ i

The Lebesgue dominated convergence theorem will then give us (2.32).

Moreover, the Lax-Wendroff theorem [30] implies that the limit is a weak

solution of (2.1), (2A).

We prove (5-3) by multiplying (2.6) by /q i \ ds and adding

it to the expression on the left in (3-3) . <1

We first consider
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fq 1
1 "pT? s x

(B $)+
N ' + 5

(6

§£(<f\ 4

ds
p(s)s

(5.10 8 +

,q) + p(s)s)

<q 6
- * x q

h)\
- = qX(cos 91) 6 (cos 61) ,

/

('since h is an E flux).

Now we add:

x(cos e)

to the above, arriving at
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q X(COB 6I)[& cos 91 + (sin G1)* 61]+ X(cos 9I)e1 6 [q sin 91]

(5-5)

T /cos(Ax8 0 ) -1\
B e1! I -2 )1 \ AX ;

X(cos e^Xein 01) I ^ 61 -
\ X

X(cos eI)9I 8 [q sin 01]

sin(Ax8

Ax

< X(cos 61) 91 6 [q sin 61] ,

if j AX 8 611 is sufficiently small.

Next, we consider

f1 1

1 ̂

ds
q

(5-6)

AY

X(sin e^*) 8 (sin
Jf

(again using the fact that h is an E flux).

We now add:

-X(sin
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to the above, arriving at:

( 5-7) q X(sin em)(6v sin Q111 - COB 9111 b 9111)
y y

- X (sin e111) 8111 Sy(q cose
111)

cos

q(X sin 6111)) cosCe111) 6y e
m111

x(Sin e
m) e111 K(q COB em)

< - X(sin 6Ii:i)ei:i:i6 (q cos 6111) ,

111if I Ay Bv 9"1"1"1"! is sufficiently small .-

Third, we consider:

<5-8) r wdfi
P LJ_ p(s)s

*)'
ds

q



(6X I)' «-
+ — 6 qx

i rq jk ^ x } i
AX J q k p(s)s

*)'
ds (h(q. , v,q.J + P(S)S)

< qJk(l-X(cos 9-)) 5x

(vising the fact that h is an E flux) .

I '
We now add

(l-X(cos 0 )) 5 (q sin 9 e<.i fc)

to (2.8), arriving at

(l-X(eos eII))q(!" (cos 911) + sin 011 & 611)] -f (1 -x(cos 9II))9II(& (q sin 911))

(l-cos(Ax6 911)) L „ sin(Axb 911)

(5-9)

+ (l-X(cos 911)) e11? (q sin 9I:t)< (l-X(cos 911)) 911 Mq sin 911) ,
x ™~ *

if |&x6 911 j is small enough.
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Finally, we consider:

(5.10)

rq i1 ^ ds 6s y

• q

*)
IV9 ) ) (sin 6 ) ,

(for the usual E flux reason).

We now add

to (5.10) arriving at:

(5.11)

(l-X(sin eIV))q[t

*IV)) *. cos

6 ) y 9 ] - ( l - (q cos 9IV)

= -q|sine
9IV))

-(l-X(sin

+(l.x(sineIV))cose
9IV

- 6 8
y

iv

y(q cos eIV) < -(l.x(sin(0IVV6y(q cos 6IV),

if I Ay 8 0IV| is small enough.
tf
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Adding (5-5), (5-7), (5-9), (5-11) gives us (5-3) if we can prove

(5.12) X(cos 9I)eI 6 (q sin 91) -X(sin eIII)9111 6~ (q cos 9111)
X jr

+ (l-X(cos 6II)e11 6 (q sin 911) - (l-x(sin eIV))9IV 6v(q cos 9
IV)=0

x j

We show this by considering four cases:

(1) cos 91 > 0, sin 9111 > 0 .

This implies that 91 = 9111 and

q sin 91 = S $ , q cos 9111 = 6 $y ^

(2) cos 91 > 0, sin 9IV < 0 .

I IV
This implies that Q =9 ani

I ~* IV *"q sin 9 = 8 $, q cos 9 = 6 $y • *

(3) cos 911 < 0, sin 9111 > 0 .

This implies 911 = 9111 and

TTT •* TT *"
q cos Q = 6 $, q sin 9 A = 6 $x y

cos 911 < 0, sin 9IV < 0 .

II TV
This implies Q = & and

TV ~* II "*
q cos Q = 6 $, q sin Q = 6x y

In all cases, equation (5-12) is now easily verified.
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In the previews

sections, we considered the scheme approximating (2.1) -(2. 4) in

Cartesian coordinates . Real computations involve body-fitted and in

general, non-orthogonal coordinates. Fortunately, our schemes trans-

form quite simply under such coordinate changes, even in three space

dimensions .

Given a change of variables, we proceed as follows: Let

n(x,y,z),

The potential equation becomes :

For simplicity of exposition, we define

U - Ur V = U2, W =

x = xl5 y = x2, z = x^

§ = X_

Here:
3

U = £ a * , i = 1,2,3

with

3 ox. dX̂ . i = 1,2,3

' j = 1,2,3
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p . U

*1,3=1

a(x., x , xj r ax
J = i ^ 2_ = det <

We proceed nxunerically as follows:

Approximate

3
+ S (8V 0 a..(6v 4)

This defines q, p, and a on the grid .

Let q*, p and (pq) be as before. Then the basic space differ

encing for a given E flux is

,, ,s a (PV(6-1} v—
3

,3=1
Jq

Jq

The Xp and X_ differencing is analogous
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If we use the E»0 flux, we have

£ ( f )
>

/ 3 •uv)+
Jq (pq)

1=1

The

Jq

and X» differencing is analogous

We first perform a simple test calculation by solving the one

dimensional FP in two cases. First we input boundary conditions

which should produce a valid compression shock, and take an initial

guess which has to move to the correct steady state. We use Newton's

method directly and get convergence in 39 iterations, as shown in

Figure 1 (b) .

In Figure 1 (c) we input a stable expansion shock, elim-

inate the expansion shock , and converge to the correct steady state

in 21 iterations, again using Newton's method.

In Figure 2 we solve FP in two dimensions for an NACA 0012

airfoil for free stream M = .85. We plot the converged C at the
P

upper surface. Here we used Cartesian coordinates and our new

switches in the x direction only.

Figure 3 shows the convergence history in this case.

In Figure 4 we show the results for an NACA 0012 at M = .8 using

generalized coordinates and the switches in the streamwise direction only.

Figure 5 gives the convergence history in this case.
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Next we consider a 10$ parabolic arc, with M = .85 and input

an exact solution to reverse flow, i.e. replace x by -x in the

true steady solution. This nonphysical solution evolves according

to our algorithm using the switching in the x direction with

Cartesian coordinates . The correct steady state emerged, see

Figures 6, and 7> with Figure 8 giving the convergence history.

Finally, we took the NACA 0012 airfoil, with M = 1.2, using

our switching in the x direction with Cartesian coordinates. The

C upper surface pressure plot gives the crisp fishtail shock, seen

in Figure 9-
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Figure 1 (a). Typical one-dimensional flow.
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Figure 1 (b). Calculation of one-dimensional compression shock. 
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Figure 1 (c). Elimination of one-dimensional expansion shock.
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Figure 2. Pressure distribution on an NACA. 0012 at M = 0.85 and 0 degrees
angle of attack.
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Figure 6. Reverse flow input for a 10 percent thick parabolic arc airfoil
at M = 0.85 and 0 degrees angle of attack.
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Figure 7. Calculated pressure distribution on a 10 percent thick parabolic
arc airfoil at M = 0.85 and 0 degrees angle of attack.
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Figure 8. Convergence history for a 10 percent thick parabolic arc airfoil
at M = 0.85 and 0 degrees angle of attack.
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