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ABSTRACT 

A unified method is presented for deriving the influence 
functions of moving singularities which determine the field 

quantities in aerodynamics and aeroacoustics. The moving 
singularities comprise volume and surface distributions having 
arbitrary orientations in space and to the trajectory. Hence 

one generally valid formula for the influence functions which 
reveal some universal relationships and remarkable properties in 

the diSturbance fields. The derivations used are completely con­

sistent with the physical processes in the proP?gation field, 

such that the treatment renders new descriptions for some stan­
dard concepts. The treatment is uniformly valid for subsonic 
and supersonic Mach numbers . ..... 
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Definitions 

Geometrical Quantities 

r" 

r* 
" 

Vo 

x, y, z 

~o 

e 
0' 

"9" 
0 

Xs 

Surface area or occupation surface 

Radial distance of a disturbance source of a field 
point laterally to a reference axis in the x direction 

Radial distance of a field point from the trajectory 
of a disturbance source (ho = hv) 

Length of a singularity element 

Distance between the source-sink elements of a 
dipole 

Tn±ckness of a singularity element normal to 10 

Location of the field point, the disturbance source 
and the emission point 

Radial distance between the field point and the 
momentary position of the disturbance source at 
time to 

Radiation radius or emission radius in spherically 
symmetrical disturbance waves 

Effective emission radius when including the ex­
tension factor of source elements 

A control volume or occupation volume 

Cartesian coordinates 

Spatial parameter of compatibility in the 
kinematics of the disturbance propagation 

Angle of inclination of the ro line in relation to 

the trajectory of the singularities or the field 
point in the PoPP" plane, 

Angle of emission in relation to the trajectory 
of the singularities or the field point in the 
PoPP" plane 

Angle of emission in relation to the orientation 
of direction of the emission line or source-sink 
axis 

Angle of inclination of a source element to the 
x axis 
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u' . , v' ; 

Vs 

VE 

V 

B 

0 

E 

r, y 

K 

1C
0 

A* 

II 

P 

Poo 

!J.p 

OV' crr.' 
a 
R 

a a* D' D 
~ 

<P 

Wv 

w' 

'1J 

Components of the velocities of disturbance in 
the medium 

Velocity of the disturbance source relative to 
the medium 

Velocity of the field point relative to the 
medium 

Total velocity of the medium in the disturbance 
field 

Mach number parameter I[ ~1 - Ma§ 'J 
Delta function for determination of the allocation 
between disturbance source, emission point and 
field point 

Angle of aberration between optical and acoustic 
pGBition of the disturbance [eo - 8 ] 

source 
Basic function and unit disturbance quantity for 
the Green theorem in a disturbance field of 
moving disturbance sources, equation (4.7) 

Relationship of specific heat [cp/cv ] 

Temporal compatibility parameter in the kinematics 
of the disturbance propagation 

Relationship between nonsteady and quasi-steady 
disturbance quantities 

Mach angle 

Local density of the medium in the disturbance 
field 

Density in a resting or undisturbed medium 

Density disturbance in a disturbance field [p -Poo ] 

Correlation factors as a result of effective 
extension of source elements in emission 

Correlation factor as a result of effective 
shift in souce-sink elements in emission 

Doppler factor in moving disturbance sources 
and a resting or moving field pOint 

Disturbance potential in the medium 

Circular frequency in the nonsteady disturbance 
sources 

v 
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~S 

1JJo 

Angle of inclination of a ~ource-sink axis to 
the x axis 

Angle of inclination of the PoPP v plane to the 
x-y plane 

Angle of inclination of the radial hS line to 
the disturbance source in relation to the x-y 
plane 

Angle of inclination of the radial ho line to the 

field point in relation to the x-hX plane [1JJs -1JJo ] 

Aerodynamic and Aeroacoustic Quantities 

a 

a oo 

F. 
1 

G .. 
1J 

k 

MaS 

MaE 

MaE 

p 

Poo 

~p 

qoo 

Q 

-s 

S 

t 

to' tv 

Local velocity of Sound 

Velocity of sound in a medium at rest -
Disturbance force per unit of volume [kg/m 2sec2 ] 

Impulse transport parameter per unit of area 
[kg/m • sec 2 ] 

Wave number [w/a oo = 2TI/A] 

Mach number of the moving disturbance source 
[Vs/a oo ] 

Mach number of the moving receiver field point 
[VE/aoo ] 

Mach number component of the moving receiver 
field pOint in the P-Po-Pv plane 

Static pressure in the disturbance field 

Static pressure in the medium at rest 

Pressure disturbance [p - p ] 
00 

nominal dynamic pressure (reference quantity) \ [~ p.,Ma§) 

Source intensity per unit of volume [kg/m3 • sec] 

Dimensionless density disturbance or pressure 
disturbance, equation (2.13) 

Singularity intensity of an element of volume, 
equation (4.9) 

time 

momentary time of signal impact at the field point 
and retarded time of the emission of the disturbance 
signals 

iv 
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Indices 

o 

i' j 

Circular frequency of the aisturbance signals at 
a resting or moving field point 

Disturbance function, equations (2.4) and (2.10) 
[1/sec] or [11m2] 

For designation of the momentary time and 
orientation between disturbance source and 
field point 

For designation of the emission quantities for 
the impacting disturbance waves at the field 
point 

Index of direction for x, y, a (i;j = 1;2;3) 

Emission positions (~= 1 for MaS <1 and ~= 1;2 
for MaS >1) 
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1. Introduction 

I. Newton [1], J.B. Biot [2] and P.S. Laplace [3] were con­

cerned with the theore~tical calculation of sound propagation 

in homogeneous media at rest with the derivation in [2] and [3] 

completely in agreement with the physical process. The first 

formulation of the wave equation as well as the solution for the 

one-dimensional case was carried out by J.L. d'Alembert [4]. 

The wave equation was then applied extensively to propagation 

processes and vibration problems of various types. The solution 

of the radiation field with spherical symmetry in the case of 

sources fixed in space resulted from the contribution of S.D. 

Poisson [5]. The fundamental work carried out by A. Cauchy [6], 
H. v. Helmho~' [7] and G. Kirchhoff [8] on radiation fields with 

sources fixed in space of a general type are of considerable sig­

nificance. Solutions for the two-dimensional or cylinder­

symmetrical wave equations may be derived according to the method 

of T. Levi-Civita [9], H. Lamb [10] and J. Hadamard [11] from the 

case of spherical symmetry. In the standard texts of acoustics 
by Lord Rayleigh [12] and in hydrodynamics of H. Lamb [13], 

detailled and fundamental considerations are found on the dis­
turbance propagation of disturbance sources of different types 

fixed in space. 

The wave propagation of moving light sources was first 

studied by C. Doppler [14] and the space-time relationships in 

the disturbance propagation of moving singularities are termed 

Doppler kinematics after him. The strict mathematical treatment 
of the general Doppler principle was reported in the physics of 

W. Voigt [15]. The transformation indicated by Voigt contains 

two free constants with a suitable determination leading directly 
to the Lorentz transformation. The actual derivation according 
to H.A. Lorentz [16], or according to H. Poincare [17] was pro­

duced later within the framework of electromagnetic wave propaga­
tion of moving sources. After the introduction of the theory of 
relativity for moving systems, the derivation of the Lorentz 

* Numbers in the margin indicate pagination in the foreign text. 
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'" / -. transformation was presented in a mor~ simple and understandable 

manner, see the discussions by A. Einstein [18], H. Minkowski [19] 

as well as M. Planck [20]. Further discussions on this subject /10 

are found in the texts by A. Sommerfeld [21] as well as in the 

report on this topic by H. KUssner [22]. 

The disturbance propagation of moving singularities repre­

sents a fundamental subject in aerodynamics and in aeroacoustics. 
In contrast to the disturbance field in aeroacoustics with the 

disturbance quantities fundamentally dependent on time, there are 
non-stationary and stationary disturbance fields in aeordynamics. 

The latter represent a special case, since the disturbance fields 

or the field points accompany the moving reference system of sin­
gulari ties ami- the quanti ties of s'ingulari ties themselves are not 

dependent on time. This manner of consideration is applied in 

stationary aerodymanics of moving bodies and is therefore identi­

cal when a reference system of solid bodies and relative flow is 

employed as a basis for observations. The first reports on this 

subject, considering the effect the Mach number in stationary 

subsonic areodynamics were written by O. Janzen.[23], Lord Ray­
leigh [24], H. Glauert [25], L. Prandtl [26] and [27], Th. v. 

Karman [28], while the first fundamental reports on the area 

of stationary supersonic aerodynamics were presented by J. Ackeret 

[29], Th. v. Karman and N.B. Moore [30] and L. Prandtl [31]. 

A natural expansion of the subject then comprised the non­
stationary aerodynamics of moving bodies. The first fundamental 
reports on this subject were written by H. KUssner [32], C. 
Possio [33] and I.E. Garrick [34] and [35]. 

Although the standard theory of acoustics was developed 
and expanded very early, the problems of aeroacoustics, especially 

the calculation of sound propagation from moving sources, was 
attacked much later. A simple observation and physical explana­
tion of sound propagation of moving sources was reported by L. 

Prandtl [36]. Several important reports on this subject were 
written by H. Hanl [37], N. Rott [38]. H. Billing [39] and 

H.L. Oestreicher [40]. By converting the general Navier-Stokes 
equation into the standard wave equation for quadrupolar 

2 



~/ 
l , radiation sources fixed in space, the sound propagation of tur­

bulent air streams was formulated by M.H. Lighthill [41J. The 

solution was subsequently applied to the case of moving radia- III 

tion. Further contributions on sound fields of moving sources 

were provided by I.E. Garrick and C.A. Watkins [42J, H.L~ Oestrei-

cher [43J and M.V. Lowson [44J. Some fundamental observations 
on energy density and energy flow in a sound field may be found 

in reports by N. Rott [38J, M.J. Lighthill [41J, D.I. Blokhint­

sev [45J and H.S. Ribner [46]. 

When the standard methods for treating linearized field 

equations in aerodynamics or wave equations in aeroacoustics 

are considered, mainly integral methods are employed with the' 

application oY-integral transformation or the Green theorem 
with a suitable basic function. Formal mathematicaltransforma­

tions analogous to the Prandtl-Glauert transformation are always 

included in the wave equation of moving sources or in the field 

equ~on with the Mach number terms in order to reconvert the 

equations to the known standard form. Therefore, no conclusions 
are obtained on the physical facts, resulting from the motion 
of the disturbance sources. Especially in aerodynamics, the 

effect of the Mach number is considered an effect of compressi­

bility in the sense of a pushing together of the medium. In 

the aeroacoustics of moving disturbance sources, however, ex­

tensive analyses of the kinematics of disturbance fields have 

been carried out, as in the reports on the subject by N. Rott 

[38J and I.E. Garrick [34J and [35J. Several further conclu­
sions in this respect are provided in the reportsby H.L. 

Oestreicher [40J and M.J. Lighthill [41J. On the basis of the 

fact that the standard methods of solution were employed in 

these reports, there was no necessity for deriving the corre­
lation functions o~ moving singularities in a general sense. 

Several fundamental observations on the origin of the correla­

tion functions resulting from disturbance source motion were 
presented in two reports by A. Das [47] and [48J. 

In the present report, further relationships are defined 

from the basic equations on disturbance propagation and the 

3 
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\ resulting correlation functions from the movement of the dis­

turbance sources are demonstrated physically. Through the in-

troduction of the delta function in the disturbance elements, 112 

the spatial and temporal relationships may be separated carefully 
in the derivation of the correlation functions. The presenta-

tion of the correlation functions has been generalized extensively 
by including surface occupations of singularitites in a random 

orientation in space in addition to the elementary volumes. The 

treatment and equations given apply equally to subsonic and 

supersonic velocities of the disturbance sources. The derived 
universal relationships and the resulting harmonic basic orders 

supply extensive information on this subject. Accordingly, 
several standard interpretations of aerodynamic processes in 

the disturban~ field are provided in novel descriptions. 

Some fundamentals of acoustics or aeroacoustics are provided 

in the texts by P.M. Morse and K.U. Ingard [49] as well as by 

M.E. Goldstein [50]. 

2. Basic Equations and Kinematics of the Disturbance Fields of 
Moving Singularities 

In order to determine the disturbance dimensions of moving 

disturbance sources or those fixed in space, two conservation 

theorems are applied, specifically the continuity equation and 

the impulse equation, i.e. the general Bernoulli equation. By 
eliminating the quantity P through the isentropic relationship 

between pressure, density and velocity of sound, the complete 
fundamental equation of the disturbance field is obtained, 

appearing in the form of the wave equation. 

2.1. Wave Equation in Spatially Fixed and in Moving Disturbance 
Sources in a Medium at Rest 

The standard wave equation is applied to spatially fixed 

singularities in a medium at rest having infinite dimensions: 

1(2.1) 

4 



- , 
where ¢ is the disturbance potential,. ~ 2 is the Laplace operator, 

n a disturbance function and 0 the Dirac-delta function with 

respect to space and time. 

In the case of moving singularities with the velocity Vs 

relative to the medium, the following wave equation results in 

the accompanying coordinate system, designated as the wave 

equation of moving sources. 

(2.2) "2 1 0 2 ." 
y 'f - -

a 2 Ot 2 
,1(t) 6rx .- x - V.(t - t)1 

- v~ 01 ~ 0 v J 

with i = 1, 2 and 3 for the three-axis directions and Vi for the 
components of velocity in these directions. Furthermore, D/Dt 
represents th~substantial derivations. The position of the 
emission point P (x ,y , z ) of a disturbance wave with v v v v 
spherical symmetry and a radius r is clearly defined with v 
respect to the momentary position Po(so' Yo' zo) with the delta 
function. It is demonstrated with this delta function that the 

path has a random orientation in space, i.e. to the three coor­
dinate directions. Therefore, the operator assumes the following 

form for the substantial derivation: 

(2.3) 02 [a ~ ] 2 
ot 2 = at + V· v 

with V = Vs + r~., where v. = [ ¢ , ¢ , ¢ ] representing the dis-
1 1 x Y z 

turbance velocities in the medium. The disturbance function n(t) 

in equation (2.1) and equation (2.2) may be produced as a result 
of the source, dipolar or quadrupolar effect and therefore- has 

the expression 

The local velocity of sound a in equations (2.1) and (2.2) has, 
with isentropic conditions, the relationship 

\ 12.5) 

5 
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.. 

wi th ~P = P - Poo as density disturbance. It follows from the pre-

diction of a small disturbance that: 

\ (2.6) 

When the x axis of the coordinate system is positioned in 

the resulting path of the disturbance source relative to the 

medium and when the relationships according to equations (2.3) 

and (2.6) are introduced into equation (2.2), the linearized 

equation of the disturbance potential in a moving reference 

system is obtained after cancelling the members of higher order: 

where 

r 
flo(t-t- 2 )6[x-x -Nar 

o v a~ v 0 S v' 

It als-o applies that 
(2.7b) 

with r 
net) = n o(t -t - 2) 

o v a"" 

Y I zJ I 

While equation (2.1) with the operator D/Dt in accordance 

with equation (2.3) supplies the complete potential equation of 

the disturbance field, the linearized equation (2.7) with the 

operator Do/Dt is often employed in aerodynamics and aeroacoustics. 

When another coordinate representation such as cylinder-polar 

coordinates, spherical-polar coordinates, etc. is introduced for 
the moving reference system, maintaining the x direction, only 

the expression appropriate for the Laplace operator is altered 

in equation (2.7). 

In order to represent the equation of the disturbance field 

of moving sources in reference systems with fixed medium, the 

Galilei transformation is employed. As presented in Fig. 1, it 

6 
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applies that: 

(2.8) y= y z Z; t t. 

Equation (2.7) therefore assumes the following form: 

(2.9) 

While the left-hand sides of equation (2.1) for spatially 

fixed disturbance sources and of equation (2.9) for moving dis­

turbance sources have an identical form and are based on the pro­

pagation of the disturbance waves in spherical symmetry as a re­

sult of the compressibility of the medium, the right-hand side -of the equation (2.9) includes the kinematic relationships, pro-

viding the effect of Mach number in the solution. Therefore, 

the effect of the Mach number in the linearized theory for moving 

disturbance sources is a purely kinematic effect. 

When the relationship between the disturbance potential ~ 

and the density or pressure disturbance s is linear, wave equations 

also result for the disturbance dimensions in the field from 

equation (2.7) or equation (2.9) • These are 

02s r 
v 2s _..L ~ = n* o (to- t -~) o [x - x - Masr v ' y, zJ a';' Ot 2 v a"" v 0 

(2. 10) 

or v2s 1 r 
- - s = n* o(to - t -~) .I [x - x - Ma r z]-a;' tt v a", v 0 S v' y, 

w 
In this case, 0* = -= 0 

a;' 
applies with a dimension of [11m 2 ]. 

2.2. The Density and Pressure Disturbance in a Disturbance Field 
of Moving Disturbance Sources 

The density and pressure disturbances, produced at a field 

point at rest in the medium can be derived from the general 

7 



Bernoulli equation. The Bernoulli equation in a moving coordinate 

system is expressed as: 

~ V2 a2 . 
at + 2" + K=T 

The following relationship exists for the pressure distur- 116 

bance in the medium: 

2" (2.12) [:J ~ 1. 

Utilizing the relationship according to equation (2.11) for 

a/aoo a common expression for density and pressure disturbance 

results from equation (2.12). 

In moving reference systems it applies that 

\ (2.13). 
5 = ~ = ~ = _ 1- [~ + v alP + (7'1') 2] 

P Kp 2 at S ax 2 
CIO 00 a

co 

or in a resting reference system in the medium: 

\ (2.14) [ aop + ~] 
at 2 

with ( V~)2 = u,2 + v,2 + w,2. This square term proves negligible 

in many cases. 

2.3. Kinematics of Disturbance Propagation in Moving Disturbance 
Sources 

When a disturbance source moves in a resting homogeneous 

medium of infinite dimensions with the velocity Vs ' the distur­
bance propagation of spherical symmetry proceeds from the indi­

vidual emision points. When a field point P(to ) is hit by a 

disturbance source at time to with the source located at the 

momentary position P (t ), the emission P (t ) of the wave on o 0 v v 
the path at a radial distance r = a (to - t ) from the field v co v 
point and at a distance x - x = MaSr = VS(t - t ) back from v 0 v 0 v 

8 



from Po(to ) (compare Fig. 2). The elapsed time tv of the emission 

is designated in co~parison to the momentary time to as retarded 

time. 

When the relative position of the disturbance source Po(to ) 

and of a field pOint P(to ) are described at time to by ro and eo' 

simple kinematic relationships for locating the emission position 

Pv (tv) result for the impacting disturbance wave at the field 

pOint through rv ' ev or Xv and for determination of the emission 

time tv The above-described kinematics of the disturbance field 

as presented in Fig. 2 is completely included in the following 

basic equations. 

(2.15)- (1 - Ma 2) r2 - 2r MaS cos,!). r - r2 S v 0 0 v 0 o 

(2.16) r cos"" - MaS r - r cos,!). v v· v 0 0 
o . 

The following expressions result as solution for the radia­

tion quantities: 

r 
(2.17) ~ 

ro 

(2.18) cos'l5"V\I 

(2.19) XV\I 

(2.20) tV\I 

It applies: \I = 

\I = 1;2 

1 
{Mas cos "0+ 

(_1)\1+1 ~1-Ma2 
1-Ma2 . S 

S 

( 1 - Ma 2) 
S 

MaS + 
. VI \1+1 MaS cos 0+(-1) 

for" MaS < 1 

fOIl l MaS> 1 • 

cos "'0 

~1 - Ma~ 

sin2~} 

i 

sin2t9-
0 

It can be seen that all emission quantities determined in 

a dimensionless form according to equation (2.17) and (2.18) 

depend only on MaS and eo. Therefore, universal diagrams may 

9 



be prepared for all field points in space, as presented in Fig. 3. 

The kinematic relationships in disturbance propagation accor­

ding to Fig. 2 produce several general relationships between the 

quantities r o ' 6
0 

and rv ' 6v ' While the field quantities in 
aerodynamics are generally described around the momentary source 

position Po by means of ro 

tion is generally employed 

and 6
0

, in aeroacoustics a representa­

around the emission position P by v 
means of rv 
apply: 

(2.21) -

In this case, the following relationships 

(-1) 1J+1 ( 
r v IJ 1- Mas cos '" ) 

VIJ 

= r cos "'" o 0 

= r sin"", 
o 0 

r v ,,(1 + Mas
2 - 2 Mas cos"", )1/2 = r 

. ~ VIJ 0 

sin E: = Mas sin "'0' 

Furthermore, the following expression is obtained from 

equation (2.19) for MaS >1 with ~ = 1 and 2: 

(2.22) x - X 
V2 VI 

ro 
~1 - Ma2 sin2 "" I S 0 

Ma 2 - 1 
S 

The relationship always applies for the propagation of 

disturbance waves in spherical symmetry: 

.~ \ (2.23) (x - x ) 2 + (y - y ) 2 + (z _ Z )2 - a 2 (t _ t ) 2 = O. 
v v v 00 v 

Equation (2.23) remains invariant in the transition from a 

reference system at rest to a moving one, as well as in the coor­
dinate transformation from physical space in the Lorentz space. 

When a source element is shifted from the disturbance center 

Po(xo ' Yo' zo) along or across the path line, a corresponding 
shift of the emission point occurs according to the relationships 

in equations (2.17) to (2.21) under the condition that the 
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disturbance signals reach the field point at time to. The fol­

lowing relationships in the differential form have proven very 

useful. 

In the shift of a disturbance source along the path line, 
the following relationships result: 

ax v 
ax ( 1 - Mas cos "" ) 0 

v 

ahv 
0 ax 

0 

(2.24) 

ar cos "" v v 
axo ( 1 - Mas cos "") -
a", sin .". 

r v v 
v ax ( 1 - Mas cos "") 0 

When a shift dhS of the disturbance source is undertaken in 

a random direction ~S in the space across the path line with the 

field pOint located at P(x, ho' ~o), the relationship applies: 

(2.25) 

with 
(2.26) 

=: cos IjI 

h • 
v 

In the shift of a disturbance source across the path line, 
the following expressions therefore apply: 

(2.27) 

ax 
v 

ahs 

ar 
v 

ahs 

Mas sin ""v cos 1/1 

(1 - Mas cos ~ ) 

cos IjI 

sin ""v cos IjI 

(1 - Mas cos "'v 
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(2.27) 
(cos ~v - MaS) cos ~ 

(1 - Mas cos """ ) 

The relationships according to equations (2.24) and (2.27) 

are used later for determining the correlation functions. 

3. Derivation of the Correlation Functions in Disturbance Fields 
of Moving Singularities 

In order to determine the disturbance quantities at a field 

point at time to' the radiation radius rv of the impacting dis­
turbance wave is required, of course, the strength n(t v ) of 

the disturban~ source at the retarded time tv of the emission 
and all the correlation functions, resulting from the motion of 
the disturbance source. As discussed in detail in [471, the 

correlation functions are derived from three physical observa­

tions: 

a) the effective extension of source elements in emission, 

with the disturbance signals simultaneously reaching 

the field point at time to. Tpe effective extension 

results in a longitudinal or transverse direction, 

therefore producing a volume expansion. 

b) the effective shift of source-sink elements in emission 

with the disturbance signals simultaneously reaching the 

field point at time to. 

c) the standard Doppler effect as a result of the altera­

tion in wave passage duration dto through the field 
point in comparison to the duration dt v of the emission 

of the disturbance signals. 

All these correlation functions may be derived directly from 
the basic equations, (2.17) to (2.27). 

The following designations are introduced for the corre­
lation functions: 

12 

120 



The Spatial Correlation Functions 

dn 
v 

a =-N dn 
o 

correlation factor as a result of effective extension 

of the emission elements in a longitudinal direction 

coinciding with the Mach number component Mae = 

MaS cos XS· 

correlation factor as a result of effective extension 

of the emission elements in a transverse direction 

coinciding with the normal components of the Mach 

number, Man = MaS sin Xs. 

correlation factor as a result of effective extension 

of the volume elements of the disturbance sources in -
emission. 

correlation factor as a result of effective shifting 

in the source-sink elements during emission. 

(drvo = drv at MaS = 0). 

The Temporal Correlation Functions 

Doppler factor in medium-fixed field point 

Doppler factor in moving field point. 

These correlation factors are now derived for source elements 

with random orientation in space and to the path line. 

3.1. The Spatial Correlation Functions as a Result of Effective 
Extension and Shifting of Source Elements in Emission 

The Correlation Function a L 

When the disturbance effect of a moving elementary source 

path dlo is observed in space with random slanted position Xs 

13 
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to the path line, a correlated emission path dl v results accor­

ding to the kinematic relationships of section 2. This extension 

in length occurs in the direction Mae = MaS cos XS. The process 
described is illustrated in Fig. 4. The effective emission path 

is obtained by combining the effective partial elements ¢lv' 
with disturbance signals reaching the field point P simultaneously 

at time to. It then follows 

\ (Jon dl 
v 

err-o 

Through utilization of the partial derivations according to 

the relationships in section 2, the following exact equations for 
the correlation functions a L result. It then applies that 

I. (3.2) dd1l
ov 

1 + tiae cos ""ve 
a L . 1 - Ma cos "" I S v 

\(JO" 
dl 

v err-o 1 - Ma* cos..,.* . 
e v 

where Mae = Mas cos Xs and Ma~ = Mac/cos(X S - Xv) representing 
the Mach number components along dl v and dl~. 

The Correlation Function aN 

When a moving source element exhibits a random orientation 

in space or to the path line, an altered transverse extension 

dnv of the emission element is obtained in comparison to the 

actual width dno from the same observation as in the previou~ 

section. This fact is illustrated in Fig. 4. It follows from 

the kinematic relationships in this figure: 

(3.4) a = N 

dn 
v 

dno 1 - Man cos "'vn '. 

with Man - MaS sin XS ' representing the Mach number component 
in the direction normal to dl o and forming 9vn the emission angle 

between Nan and rv 
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The Correlation Function 0v 

When a moving element of volume of disturbance sources is 

observed with random orientation in space and to the path line, 
the effective emission volume dvv results with disturbance signals 

reaching the field point P simultaneously at time to' On the 

basis of the fact that the element is not extended normally to 

the direction of motion MaS' the alteration in volume consists 
of the longitudinal and transverse extension as already described. 

It therefore follows that 

I 
i (3 .5) " = v 

and may apply~hat 

(3.6) "v 

From the relation 

dv 
v 

dv
o 

-
dl dn v v 
dl • dn 

o 0 

{
1 + Mae cos""'ve } 

1 - Mas cos ~v 1 - Man cos ""vn 

I (3 ~ 7~ . MaS cos ""v Ma cos.". + Ma cos.". 
e ve n vn 

it follows for the effective volume extension of a moving source 
element with random orientation in space: 

(3.8) "v 

The type of or1g1n of the correlation function 0v is illus­
trated in Fig. 5 for various orientations of an element of volume. 

This results in 

"v = "L = 1 " = for )(s = 0 1 - Mas cos't N 

(3.9) "V = "L • "N 11 

1 - Has cos "" 
for: o<xs<~ 

v 

"v = "N = fori 1r 
1 - Mas cos .". "L Xs = "2 • 

v 
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It is noteworthy that the volume expansion and therefore crv 124 
in the present three cases has the identical value. 

The Correlation Function cr R 

When a shift is undertaken from the amount dmo of the source 

element at Po in the direction ~S to the path line, a shift re­

sults at the emission point Pv for the source-sink components 

with signals simultaneously reaching the field point at time to. 

This situation is illustrated in Fig. 6. 

In a similar procedure to that in the previous section, the 

difference in emission radii of source-sink elements, following 

a path at a distance dmo ' can easily be determined at a field 
point P. It applies that: 

(3.10) 

By employing the partial derivations according to the rela­

tionships in section 2, the exact expression is obtained: 

(3.11) 
dr cos -3. 
drn v = ___ ---.:...v __ 

o 1 - MaS 'cos ~ . v 

where ev represents the angle of inclination between rv and dmo 
at the emission point Pv and exemplifies the following relation­
ship. 

\ (3.12) cos ~ 
v 

When the actual source-sink arrang~ment at Po is applied as 

spatially-fixed system at the emission point P v ,the difference 
results there in the radiation radii of these elements to the 

field point P at 

16 

dr 
v 

dIn (P) 
o Ma =0 

S 
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The correlation fUnction aR follows from equations (3.11) /25 

and (3.13) and supplies the generally valid expression: 

(3.14) 

Idr /dm I v 0 
Mas=O 

dr 
v 

dr 
vo 1 - Mas cos ""v 

The expression aR a~cording to equation (3.14) represents a 

universal formula and is applied for elements of volume as well 

as for surface occupation of singularities. 

3.2. The Temporal Correlation Functions Resulting from the Altera­
tion in Wave Passage Duration at the Field Point in Comparison 
to the Emission Duration of Disturbance Signals 

In the diSturbance propagation of moving disturbance sources, 

the wave passage duration dto generally differs from the emission 

duration dt of the disturbance signals by a field point. There-

" fore, a temporal extension effect dt" /dto' the so-called Doppler 
effect, arises, defined in the case of med~um-fixed field points 

by aD and in the moving field point by aBo While the correlation 
factor aD also determined the field dimensions in the medium, a5 
is employed for frequency determination of the received signals 

at the moving field points. This situation is illustrated is 

Fig. 7. The derivation of equation (2.20) for to results in 
the universal expression: 

dt 
v 

dto 

(3.15) 

r 
+-.£ 

a~ 

cos"" + (_1)1'+-1 
o 

Ma~ sin 2 ""0 I I. 
2 ~l-Ma~ sin2""o 

The temporal alteration of ro and 9
0 

is given by: 

1 ar 
0 

a 
~ 

at 
0 

(3.16) 

ro a", 
0 

a 
~ ato 

(Mas sin ~o + MaE sin ~o) • 
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In this case MaE is the component.of the field pOint Mach 

number relative to the medium in the PoPP
v 

plane and 8
0 

is the 

angle between the vector MaE and ro in the same plane. In the 

case of a medium-fixed field pOint, MaE = O. 

The Correlation Function 

From equations (3.15) and (3.16) the result for the Doppler 

factor at a medium-fixed field point: 

(3.17) (1"0 
.1 

1-Ma2 
S 

1 + (-1) ~+1 

The relationships according to equation (2.21) result in: 

(3.18) 00 = (-1) ~+1 
( 1 - MaS cos "\,11) 

with ~ =1 for Ma
s

< 1 

~ =1;2 
for Mas> 1 

The Correlation Function 

In a moving disturbance source and moving field point with 

a finite value of MaE' the universal Doppler factor oB' results, 
decisive for the frequency determination of disturbance signals 
at the field point. According to equations (3.15) and (3.16) it 
applies that: 

(3.19) 

(Ma cos"" + Mil cos;;: ) Ma
s
2 MaEsin~ sin (-' + ~) 

+( _1)11+1 S 0 E 0 11+1 v v _ (-1) . 0 0 0, 

(l-Ma~) Jl.-Ma~Sirf,,)ol (l-Ma~) "1-Ma~sin2~o i 
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where MaE and 6
0 

are explained in F1g. 2. It is often practi­

cal to rewrite the Doppler factor 05 in the expression of 6v and 
e

v 
For this purpose, the relationships according to equation 

(2.21) are employed as well as the following relationships: 

(3.20) 

r 0 cos "'0 

~ + "" o 0 

[r vcos:;;:v - Masr v cos (""v + ~)] 
II 

The conversion of the expression of afi according to equation 
(3.19) to the reference dimensions at the emission point supplies: 

a; =1--'1 '--
- Ma 2 

S 

+ 
1 - Ma§ 

(3.21) 

Mas (cos ""v- Mas) + MaE {cos ""v - Mas cos (""v+'\.)} 
+ 

(1 - Ma§) (1 - Mas cos ""v ) 

Ma~ MaE sin "'v v v sin ( "" + :J:) J 
(1 - Ma~) 

wi thll =1 

and. 'LJ =1;2 

(1 - MaS cos "'v ) 
II 

for 

fO.r Mas> 1. 

When MaE = 0 is placed in this equation, then afi converts 
into the expression of aD according to equation (3.19). The 
general expression of the Doppler factor aD according to equa­
tions (3.19) and (3.21) includes all simple cases of the moving 
field points or receivers, occurring in literature. A repre­
sentation of the results according to equation (3.18) for sub­
sonic and supersonic Mach numbers of the disturbance source· is 
carried out in Fig. 8. It is noteworthy that the Doppler factor 

a D for 6
v 

= 0 assumes the maximum value at MaS = 0 and always 
becomes smaller with decreasing or increasing Mach numbers of the 
disturbance source, as the figure on the right demonstrates. 
While the Doppler factor constantly remains at 1 in the case of 
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8
V 

= rr/2, a continuous decrease in the aD values is recorded 

for 8v =rr with increasing Mach number. 

3.3. Universal Representation of the Correlation Functions and 
Several Special Characteristics~ in Disturbance Propagation 

The spatial and temporal correlation functions, arising as 
the result of the disturbance source motion, may be compiled in 
a universal representation for random field points in space. When 

the correlation functions aV' aR and aD for random medium-fixed 
field points in space are plotted as a function of MaS cos8v ' 

. a universal curve results, consisting of two hyperbolic branches 

valid for a Mach numbers and all field pOints. This is explained 

in Fig. 9. The appropriate range of validity of the curve is -extended by the value a= 1 for MaS = 0 with increasing Mach 
number, as can be seen from this illustration; In the case of 

MaS> 1, the range extends beyond the line MaS cos 8v = 1, re­
presenting the pOint of contact of the wave having spherical 

symmetry with the Mach cone. When a wave having spherical 
symmetry is observed during propagation around an emission point 

Pv ' the correlation factors a in this wave remain at the same 
value for each 8v = const. 

When the correlation factor aV is combined with the radia­
tion radius rv ,a further concept is created in the form of 
the actual radiation radius according to the definition r* = v 
rv/aV' It then follows according to equation (3.8): 

(3.22) r* 
v r v (1 - Mas cos ""v) • 

The alternate expression then obtained according to the 
relationship in equation (2.21) 

(3.23) 
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A universal curve, i.e. an ellipse, is then obtained for all 
Mach numbers and for field points in the entire space, as is illus­

trated in Fig. 10. The range of validity of this curve increases 

with Mach number, achieving the limit value rJ = 0 for MaS ~ 1 

at MaS sin 
Fig. 10, as 
constant on 
i.e. for 8 

8 = 1. An important characteristic can be seen in 
o 

the quanti ties r" /r 0' 8" and rJ /r 0 always remain 
a radial line of the momentary source position Po' 

o 
= constant. It therefore follows that the impacting 

disturbance waves always have the same correlation functions 

at field points on this line. 

The radiation process in an evenly moving source path of 

infinite length and random inclination to the path line is illus--trated in Fig. 11. In this case, a field point P is observed on 

the same plane as the source path when the disturbance signals 
impact there at time to. The emission points of this signal can 
easily be determined according to equation (2.17) or equation 

(2.19). Since the position of the source path at time to is known, 
the position and shape of the emission line L may be completely 

defined from the guideline relationships. It applies that 

(3.24) r 
v 

x - x 
v 0 

r 
v 

Masrv 
1 

Mas . 

This equation supplies a hyperbola for MaS < 1, a parabola 

for MaS = 1 and an ellipse for MaS> 1, where the field point is 
correlated as focus of these curves. For random field points 

in space, corresponding L" lines are obtained, the envelops of 
these base curves. The base curves are altered with respect to /30 
position and extension with the slanted position of the source 
path to the path line by assuming a symmetrical course around the 
slanted x 1 axis. The methods for solving the disturbance fields 
in standard area dynamics are essentially supported on this 

characteristic, by basing the solutions on the Mach number com-

ponent Man = MaS sin X of the source path. As is clearly demon-
strated in Fig. 11, this procedure is an infraction of physics 
at Mas ~ 1, since a portion of the disturbance sources situated 
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outside of the actual Mach cone is considered effective. The 

situation can easily be seen in Fig. 11. Therefore, it is clear 

that the division of the motion Mach number MaS into the normal 

and tangential components Man and Mae' as is undertaken in 
standard aerodynamics, is a completely artificial method to 

achieve a solution. The actual sweepback effect of a slanted 
source path can be represented as follows. 

In moving sources paths of infinite length, the actual 

extension of the emission elements in the longitudinal direction 
dl has no additional effect, since the entire length is already o . 
occupied by the sources. In contrast, the actual extension of 

the emission elements in the transverse direction is completely 
effective and-4s included entirely by the correlation function 

cr N. This situation is in complete agreement with the physical 

processes in the disturbance field as shown in Fig. 4 and supplies 
the true basis for the sweepback effect. 

A further noteworthy process in disturbance propagation of 

moving source paths in the case of supersonic Mach numbers is 
demonstrated in Fig. 12. In this case, it is shown that the 
disturbance waves impacting at the field point P in each case 

at times to1 and to2 originate at the emission lines LV1 and Lv2 . 
It is remarkable that the entire· effect of the disturbance signals 

remains constant at the field point for all times to' since the 
radiation process with r , cr and L always supplies the same v v 
amount for the surface integrals of the 1/r* curves. It can be 
demonstrated that the conditions remain in all field points in 

space behind the source path, specifically under the influence 

of the above-described dynamic processes and continuous expan- 131 

sion of the emission lines. 

When a source path of finite length moves in a longitudinal 

direction with the source elements situated along the path line 
Xs = 0, as is the case in axis-symmetrical disturbance fields, 
several remarkable phenomena occur in the propagation process 

along the path line. When a field pOint on the path line of the 
source path with Xs = 0 is observed, the effect of Mach number 
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disappears there with the effective emassion radius rJ. The rea­

son for this lies in the fact that in the appropriate 8
0 

= 0 or 

TI of the extension factor crv of a source element and the dimension­

less emission radius rv1ro of the disturbance wave at the field 

point assume identical values as is demonstrated in Fig. 13. Al­

though both quantities crv and r v are subject to the entire 

effect of Mach number, the total effect is cancelled at r~ with 

the result that r~ is identical to roo It applies according to 
equations (2.21) and (3.t3): 

(3.25) 

Therefore it follows that: 

-
(3.26) r* 

v 

for "'0 o , 11 • 

for oJ-0 o 0:)d 11 • 

This situation supplies the physical basis for the theory 
of thin bodies, postulated in literature by other means. 

When three-dimensional singularity occupations of any type 

are located in smooth motion in space, all singularities with r* = v 
constant may be combined for determining the disturbance quantities 

at a field point at time to. The momentary position of these sin­
gularities in relation to the field point are described by rand 

o 
8

0
, necessarily fulfilling the relationships according to equa-

tion (3.23). It follows that: 

(3.27) r = o 

r* 
v 

In the case of rJ = const. and MaS = const., ro describes 132 

surfaces or shells for the following form according to this 
equation: 

a rotational ellipsoid 

a vertical plane 

for Mas < 1 

for MaS = 1 

a rotational hyperboloid for MaS> 1, 

where the x axis forms a symmetrical axis through the field point. 
These functional characteristics supply the basis, designated in 
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literature as surface rule. Several e~amples of this are calcu­

lated for three Mach numbers from equation (3.27) and illustrated 
in Fig. 14. 

In aerodynamics and aeroacoustics, problems in surrounding 
flow or radiation are often simulated with the surface occupa­

tion of singularities. When the correlation functions are deter­

mined for this purpose as a result of the motion of the surface 

elements, the singularity elements must be considered as elements 

of volume of thin shells, because physical line occupation or 
surface occupation of the thickness of zero cannot be realized. 
The extension effects in emission are supplied by the correla­
tion function 0v according to equation (3.9). According to this 
it applies tha-t: 

1(3028) a 
V 

a • a = 
L N 1 - MaS cos "t 

The analysis of this expression with the aid of equation (3.9) 
supplies some important new knowledge. 

While a pure surface extension of the disturbance elements at 

Xs = 0 is recorded with 0v = 0L and oN = 1, an alteration in flow 
amount or source density results at Xs = rr/2 through the emission 

surface dlv = dlo ' because 0L = 1 remains. This situation is 
caused by the fact that no surface extension occurs in the ele­
ment but only a transverse extension through 0v = oN. In the 
case of 0 ~ Xs < rr/2, both effects occur together with emission. 
This situation is demonstrated in Fig. 5. According to the 

above-described physical process, the following relationships 
result for moving surface elements in a random orientation to 
the path line: 

\ 
\(3 0 29) 

i 

\ 

dF 
v 

According to equation (3~28) it also applies that: 

(3030) S dF v v 
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Further fundamental analyses of ~he disturbance fields may 

be undertaken with the derived kinematic relationships and cor­

relation functions, and many standard interpretations may be 

formulated in accordance with the facts in a new representation. 

4. Solution of the Wave Equation and Derivation of the Field 
Quantities in Moving Singularities 

The propagation processes of spatially fixed and moving 
disturbance sources in a medium at rest of infinite extension 
may be considered in the same manner as medium-fixed or moving 

reference system. The medium always serves as a carrier for 
the wave system with the disturbance centers and field points, 
and therefore the wave image, remaining identical in both systems. -The linearized wave equation in the moving reference system has 
the general expression: 

(4.1) 
1 D~" ---

In the medium-fixed reference system, the wave equation 
assumes the following form: 

\ (4.2) 

The delta functions in these equations include the temporal 
and spatial kinematic relationships in a universal form, since 

they apply both to spatially fixed and to moving disturbance 
sources. The designations introduced in this represent the 
following relationships: 

(4.3) 

. 
to = Xv - Xo - Mas rv 

r 
v 

- aGO • 

In spatially fixed disturbance sources, Mas = 0, while the 
motion Mach number of the singularity is n in moving disturbance 

sources MaS. The expression for ~ 0 is identical in both cases. 
As already described in section 2.1, the equations (4.2) and (4.3) . 
can be converted to one another through the application of the 
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Galilei transformation. The delta functions in both equations 

remain invariant in this process. 

In order to solve the wave equation of moving disturbance 

sources, generally integral methods are applied, utilizing in­

tegral transformations or through the application of the Green 

formula with a suitable base function. In both these methods, 

first the field equation is converted into the standard form. 

For this purpose a mathematical transformation analogous to the 

Prandtl-Glauert transformation or a Lorentz transformation is 

employed. In these transformed spaces, the equivalent radiation 

radii assume the same dimensions,' identical to ~* in equation 

(3.23). In standard aerodynamics, this situation is attributed 

to the effect-Qf compressibility. 

In the following section, the integral method in the actual 

physical space is employed for solving the wave equation of 

moving disturbance sources, specifically in such a manner that 

the correlation functions are included appropriately in the 

Green function, i.e. in the base function. 

4.1. Solution for the Wave Equation According to the Expanded 
Green Theorem 

In order to treat the wave equation in the case of moving 

singularities, the two expression according to equations (4.1) 

and (4.3) can be equally applied. For the subsequent suitable /35 

steps,the equation is employed here in a medium-fixed reference 

system. It states: 

1 (4 .4) fl 6(; ) 6(~ ). o 0 

In comparison to the wave equation of spatially fixed sin­

gularities, two important characteristics must be underlined 
here, included in the solution. The motion of the disturbance 

source produces a shift in disturbance centers and causes a 

spatial extension effect of the emission elements with the 

singularities n. These two effects, determining the disturbance 
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potential at the field point, are always completely included in 

e and (Mas' r ,8 ). 

" " 
The disturbance potential ~ (t) dependent on time at the 

field pOint may be constructed by means of a Fourier series from 

a number of harmonic functions with the form 

\ (4.5) 'f (t) 
-iwt 

'f e o 

In order to solve the wave equation by means of the Green 

theorem, a basic function is now introduced such that it satisfies 
the wave equation for harmonic disturbance functions and includes 

the spatial correlation created at the emission center. The base 

function is e~ressed as 

II (4.6) r (P) 

wi th k = w /a (Xl' r" as radiation radius of the disturbance wave 
at the field point. Furthermore, 0v according to equation (3.8) 

represents the extension function of the correlated emission 

element at the disturbance center. While the correlation func­

tion ° V(MaS ' 8,,) is not dependent on r" and If, this assumes a 
fixed value corresponding to equation (3.8) for an infinitesimal 

surface element of the disturbance wave at field point P ('r" ' 8" ) , 

because the actual emission element for the disturbance wave at 

the field point is completely defined. Therefore, the basic func­

tion fulfills the Helmholtz equation in the following form: 

(4.7) 
y OCK ) 0 (~ ) o 0 

with Y as a unified disturbance function. When the same proce- /36 
dure is applied as according to Helmholtz [7] and Kirchhoff [8] 
and the delta function ~ (EO) is introduced into the distur-

bance quantities in an integral form in the application of the 

Green theorem, the solution of the disturbance potention results 

in the following form: 
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'P (P) 

(4.8) 

+ 

where 1.I signifies the number of positions on the path line, ful­

filling the condition EO = 0 and no representing the surface 
normal value for Fo. It follows from section 2 that 1.I = 1 for 

MaS ~ 1 and ~= 1 and 2 for MaS> 1. In spatially fixed dis­

turbance sources with MaS = 0, aV = 1 and, as a result, 
equation (4.8) is converted to the solution according to Helmholtz 

[7] and Kirchhoff [8]. The wave equation of moving disturbance 

sources may also be solved in an elegant manner by the introduc­
tion of the Lorentz transformation. This subject will be treated 
in more detail elsewhere. 

The first integral in equation (4.8) includes the amount of 

the element of volume of singularities with the strength n (t), 

while the second integral represents the amount resulting from 

the source and dipolar occupation on the surface Fo. 

4.2. Determination of the Disturbance Potential in Moving 
Singularities of Various Types 

The solution of the wave equation of moving disturbance 

sources with their general form according to equation (4.8) 
includes the disturbance function n(t) in the volume integral, 
where these may represent a source, dipolar or quadrupolar sin­
gularity according to equation (2.4). The dipolar and quadru­
polar singularities may in turn assume various arrangements in 
space or in relation to the path line. 

When the three disturbance functions in equation (2.4) are /37 
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considered harmonic functions, where Qb' Fo and Go form the maxi­
mum amplitude of the disturbance dimensions, the following inte­

gr~l quantities are introduced in the volume integral: 
I 

(source) 

(4.9) 
vo 

51 - 1 J F dv 0 wvP", o 0 -
0 (dipole) 

v 
0 

52 - 1 f Goij dv 
wvP", 

;: T 
0 0 (quadrupole) 

v 
0 

A general solution of the volume integral in equation (4.8) 

is obtained b¥-the application of partial integration resulting 
in a unified expression of the following form: 

(4.10) 

'P(P) = L 
\I 

(-1) 11+1 51+rn 
Ii'if 

1/(1 - Mas 'cos"," ), , \'11 

where the following combinations result for the disturbance 

functions: 

Sources: 1 = m = 0 

Dipole: 1 = 1, m = 0 ; 1 = 0, m = 1 

Quadrupole: 1 = 2, m = 0; 1 = 1, m = 1; 1 = 0, m = 2. 

The surface integrals in equation (4.8) may be calculated 
analytically or numerically according to the singularity occu­
pation with the surface being divided in the latter case into 
individual elements. The determination of the induced effect 

of these surface elements at the field point may be carried out 

such that the integral expressions are first described in the /38 
form of contour integrals along the edges of the surface elements. 
The desired field dimensions result from this. 
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4.3. Determination of the Density and ~ressure Disturbances 
in the Disturbance Field 

The field quantities with respect to density and pressure 

disturbances can be calculated with a unified formula according 

to equation (2.14). It applies in a medium-fixed reference 

system that: 

(4.11) s(P) = ~ 
p .. 

where the functional relationship of ¢ = ¢ (Ma S' r v' e v, tv) 
is included in the derivation of ¢ for to' 

s can be carried out in a few steps, if the 

The determination of 

appropriate delta 

function 0 (~.ol is introduced in integral form in the derivation 

according to equation (4.11). It then applies that: 

\ 
e::::) = ~ = ~ = 

P"" "P"" 

After carrying out the derivation for to and after partial 

integration of the delta function, it follows in the moving re­

ference system that: 

(4.13) 5 (P) 1 [~ + v ~ + (V'I)2] 

or a'; ato s axo 2 

(4.'4) 
"0=0 

s (P) = _ -'- (~ atv) [~ ar \I a., a~\I] 
_ + ev;)'l-+ Vs ax- + aT a'; at ato A 

ar ax v \I o \I 0 
"0=0 I: =0 0 

The derivations achieved when fulfilling the kinematic re­

lationships·~o = 0 and £0 = 0 were already derived in sections 
2 and 3. The field quantities are clearly described there and 

the resulting terms reproduced as near field and distant field 

portions. Exact relationships between instationary, quasi­

stationary and stationary field quantities may be prepared from 

these figures. 
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In a moving source volume, the fo~lowing density and pressure /39 
disturbances occur in the disturbance field: 

Near Field Term 

Distant Field Term 

_ 1 "'" 1J+1 iw set ) 
sF = 4iI L..J (-1) v VIJ 

a 2 r 
IJ ~ v 

~ -, -1 ---M-as""':""'c-o-s --Ul-/ f . 

Equations (4.15) and (4.16) produce the instationary dis-.-
turbance quantities in the field. The disturbance quantities 

sN and sF on the unit spherical surface around Xo and Xv are 

illustrated in Fig. 17. When Ma S « 1, these quations convert 

into the quasi-stationary forms by replacing the expressions in 

parentheses by 1. The relationship of the instationary to the 

quasi-stationary disturbance quantities produces 

(4.16) .l.* 
N 

( 1 - Ma 2 Sin2~)% (near field r 
nd 5 0 

.. - + 
-a •• "/ (distantfi-eld) - , 1 - ~las c~s ,;. ,~ 

These factors are reproduced for various Mach numbers and 

all field points in space in Fig. 18. They supply some interes­

ting conclusions with respect to the effect of Mach number and 

field point orientations with the field points located on beams 

with constants e or e . 
o v 

In the temporal, constant source intensity, stationary 

fields result with accompanying reference system by setting S = 
So = const. in equation (4.15). It can be seen that the distant 

field portion of the field quantities disappears in this case, 

because the quantity wv = 0 is the equation for sF. When a 
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moving disturbance source is observed in an incompressible medium, 

it is practical to replace the quantity SN by the coefficient of 

pressure cpo It then applies that 

(4.18) 2 --s 
M 2 N as 

2u I 

Vs 

In the case of instationary disturbance fields, the deter­

mination of the signal frequency at the resting or moving field 

pOint is carried out such that the emission and reception of a 

defined number of waves is taken into consideration. It is 

necessary that 

\(4.19) ._ 

Subsequently 

\(4.20) 

w dt o 0 

~ 

w dt* E 0 

~ 

w dt v v 
~ 

and 

const. 

The temporal extension functions a D and a 5 are already known 

from equations (3.18) and (3.19). 

5. Summary 

First all the correlation functions resulting from the motion 

of Singularities are derived in a generally valid form, using the 

kinematics of disturbance propagation from moving disturbance 

sources by permitting random orientation in space, i.e. to the 

path line, for the source elements. It follows that the resulting 

correlation functions have spatial and temporal extension effects 

in the emission of the disturbance signals. 

The correlation effects may be obtained in a universal 

representation for a random number of field points in space and 

for all Mach numbers in individual diagrams. All physical processes 

in the disturbance field are factually included by the the present 

manner of observation and several standard interpretations are 

presented in a new manner. Thereafter, the actual situations 
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on the effect of Mach number, sweepback effect and effect of 

thinness of moving disturbance volumes and disturbance surfaces 

are formulated on a new basis. The solution of the wave equa­

tion is then described on a physical basis and the field 

quantities produced from this in a general form. The present 

unified treatment applies as well to aerodynamics and aero­

acoustics as it does for subsonic and supersonic Mach numbers . 

. -
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Fig. 1: Wave Propagation of a Disturbance Source with Smooth Motion, 
Represented in a Medium-Fixed Reference System with the Same 
Motion, Related to One Another Through the Galilei Transformation. 

Key: a. Reference System with same motion. 
b. Medium-Fixed Reference System 



Fig. 2: Kinematic Relationships in the Disturbance Pro­
pagation of Moving Disturbance Sources in a 
Homogeneous Medium at Rest with Infinite Dimen­
sions. 
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Fig. 3: Universa~'Relationships for Determination of Radiation 
Qua~t.i-t"ies rv and 8v of Dis turbance Signals, Hitting a 
Moving Disturbance Source at Varying Mach Numbers MaS 

at the Field Points P(ro ' 8
0

) at Time to' 
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dlV 

°L = d10 

dnv 
C1N = dna 

Fig. 4: Production of the Spatial Correlation Functions 
a L and aN as a Result of the Actual Longitudinal 

or Transverse Extension of the Emission Elements 
with all Disturbance Signals Reaching Field Point 
P Simultaneously at Time to. 

(aL = dlvldl o ; aN = dnvldno ) 
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Fig. 5: 
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Production of the Spatial Correlation Functions a 
as a Result of the Acttlal Volume Expansion of V 
the Emission Elements in the Case of Various 
Orientations of the Disturbance source in Space 
or to the Path Line (au. = aL aN)· 
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Fig. 6: Production of the Spatial Correlation Function oR 
as a Result of the Actual Shift in Emission 
Points of Moving Source-Sink Elements of a Dipole, 
with the Disturbance Signals Reaching Field Point 
P Simultaneously at Time to 

(OR = dr /dr ) . v va 
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Fig. 7: Production of the Doppler Factor aD and a~ as a 

Result of the Change in Wave Passage Duration dto 
through a resting or moving Field Point in 
Comparison to Duration dt v of the Emission of 
Disturbance Signals. 
(aD' a~ = dtvldt o ). 
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Fig. 8: The Doppl~r Factor a D in the Propagation of Spherically 
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Symmetrical Waves from Moving Disturbance Sources in a 
Homogeneous Medium at Rest. 
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Fig. 9: A Universal Representation of the Correlation 
Functions aV' aR and aD in the Propagation of 
Spherically Symmetrical Disturbance Waves from 
Moving Singularities. 
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Fig. 10: Universal Representation of the Actual Emission 
Radii r~/ro for Random Field Points in Space 

with Subsonic and Supersonic Mach Numbers of the 
Disturbance Sources. 
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Fig. 11: Radiation Processes of Moving Source Lines of 
Infinite Length with Various Mach Numbers and 
Various Orientations to the Path Line with the 
Disturbance Signals from the Lv lines Reaching 
the Field Point P(x,O,O) Simultaneously at 
time to. 
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Fig. 12: Radiation Processes from a Moving Source Line in the Case 
of Supersonic Mach Numbers and Correlated Emission Lines LV1 
and LV? with Disturbance Signals reaching Field Point P at 
Times t01 and to2 and always producing Constant Field 
Quantities for x ~ xo. 
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Fig. 13: Radiation Processes of Moving Source Elements in 
Field Points on the Orbit and the Physical Pheno­
mena, Leading to the Exact Cancellation of the 
Effect of Mach Number in the Field Quantities 
(F v = rv Ir 0 = a V) . 
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Fig. 14: 
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Surfaces in Space with Constant Values of r* at 
v. 

Subsonic, Sonic and Supersonic Velocities of the 
Disturbance Sources with the Axis x of Symmetry 
Through the Field Point P. 
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oo, ______________ ~~~~~~------------~ 

Fig. 15: Near Field Protions of the Disturbance Potential 
on a Unit Sphere with ro = 1 around So with 
Various Mach Numbers of a Moving Source and a 
Moving Dipole. 

(¢& = ~NIS or ¢N/D cos~). 
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Fig. 16: 
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Distant Field Portion of the Disturbance Potential 
in the Disturbance Waves with rv= 1 around ~v at 
Various Mach Numbers of a Moving Source and a 
Moving Dipole. 

(¢~ = 4>F/S or 4>F/w)5Cos1jJ). 
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Fig. 17: Near Field and Distant Field Portions of the 
Disturbance Quantities on a Unit Sphere with 

r = 1 around ~o or with r = 1 around ~ 
o v 

with Various Mach Numbers of a Moving Source. 

(3& = SN/WVS or 3~ = SF/W~ Dcos~ ). 

/63 



'> 

t 1,2 .--,--

Mas =0,3 
./l~ /~ 

10' --~ 
0.1 

J 00 200 60 0 1000 1400 180 0 

20- ~~ 

t 1,5 

;t~ 10 F ~ 

05 
60 0 . 100° I 00 200 140° 1800 

lY'v-'" 

Fig. 18: The Ratio of the Nonsteady to the Quasi-Steady Field Quantities 
in the Near Field and Distant Field Portions of a Moving 
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