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NONLINEAR CONTROL SYSTEM DESIGN METHODS 

Consider some of the control system design methods for plants with nonlinear 
dynamics. If the nonlinearity is weak relative to the size of the operating region, 
then the linear methods apply directly. Fixed-gain design may be feasible even for 
significant nonlinearities. It may be possible to find a single gain which provides 
adequate control of the linear models at several perturbation points. If the non- 
linearity is restricted to a sector, that fact may be used to obtain a fixed-gain 
controller, Otherwise, a gain may have to be associated with each perturbation point 
Pi' A gain schedule K(p(v)) is obtained by connecting the perturbation points by a 
function, say p(v), of the scheduling parameter v (i.e., speed). When the sche- 
duling parameter must be multidimensional, this approach is difficult; the objective 
of our research is to develop an easier procedure. 

i = f (x, u, 2) 

1. SMALL OPERATING REG’ION - LINEAR METHODS 

2. FIXED-GAIN DESIGN 

a. ONE GAIN FOR ALL {pi} 

b. ONE GAIN FOR SECTOR NONLINEARITIES 

3. GAIN SCHEDULING 

pi = p(Vi), K(P(v)), V = SCHEDULING PARAMETER 

4. NONLINEAR TRANSFORMATION OF STATE AND 
CONTROL 
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SIMPLIFICATION THROUGH COORDINATE CHANGE 

We attempt to simplify the design problem by simplifying the representation of 
the plant. Here is an example. The state equation is nonsingular, but a fixed-gain 
design is impossible. The nonsingular matrix E represents rotation in the plane 
of x through the angle I). The change of control coordinates from u to v results 
in a globally constant, linear system. Even an approximate cancellation of E could 
be quite helpful, since the resulting system may be nearly constant and the fixed- 
gain design may be applicable. 

xeR *, ucR *, EE7 = I 

i = E (J/(t)) u 

$=O--+i=u,i=Kox,STABLE 

lb =m h;= ‘U, Ii= -K,x, UNSTABLE 

NEW CONTROL COORDINATES: 

v = E(W) u vi= v, GLOBALLY 

APPROXIMATE TRANSFORMATION: 

v=E($)u-;= E (6$(t)) v FIXED GAIN MAY WORK 

331 



BRUNOVSKY CANONICAL FORM 

The first step in the design approach is to try to transform the given system into 
something more simple, i.e., ideally, a set of decoupled strings of integrators. This 
set is called the Brunovsky canonical form for controllable, constant, linear systems. 
The number of strings is given by the number of control axes m, and the number of 
integrators (dots in the figure) is given by a Kronecker index Ki. In general, 

CKi = n. Two examples are shown for the case of n = 12 and m = 4. According to 
linear theory, the set of Kronecker indexes is invariant under nonsingular transforma- 
tions and feedback. 

GIVEN i = Ax + Bu, xeR”, ueRm, (A, B) CONTROLLABLE 

CAN BE TRANSFORMED WITH 

y=Tx, v=Rx+Wu, (T, WI NONSINGULAR 

INTO m DECOUPLED STRINGS OF INTEGRATORS, LENGTH = KRONECKER INDEX 

EXAMPLE : n=l*, m=4 

v1 - * v1 - w 0 

v2 - l v2 - w l 

v3 - v3 - 0 

v4 - v4 -- 0 

KI = (4,4,2,2) KI = (3,3,3,3) 
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OUTLINE OF DESIGN PROCEDURE 

In principle, the design procedure is to transform the natural representation 
of the plant into the corresponding Brunovsky form, then design a control law 
v = g(y) for the canonical system, and finally pull the law back into the natural 
coordinates in terms of which law must be implemented. 

NATURAL COORDINATES CANONIC COORDINATES 

i=f(x,u) 4 
u = W(x, v) 

Y=T(x) 
) i=A,y+B,v 

u = W kg U (x))) 4 

KI = (4,4,4,2) 

v = cl(Y) 
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DEVELOPMENT OF THE DESIGN APPROACH 

Before this design approach becomes practical, several issues must be resolved. 

(1) When can a given system be transformed into a linear model, 
how does one construct the required transformation, and how 
feasible is it to implement the resulting algorithm on flight 
computers? 

(2) What is the structure of the complete control system that 
includes the linearization step? 

(3) How robust is the resulting design? 

(4) How can the constraints on control and state be enforced? 

These issues have been explored both theoretically and experimentally. The results 
are summarized in the following figures. 

1. TRANSFORMATION 

a. EXISTENCE 
b. COMPUTATION 
c. IMPLEMENTATION 

2. STRUCTURE OF COMPLETE CONTROL SYSTEM 

3. COMPLEXITY AND ACCURACY OF MODEL - ROBUSTNESS 
a. EXACT STATE SPACE 
b. TRUNCATED STATE SPACE 

4. ENFORCEMENT OF DESIGN CONSTRAINTS 

5. EXPERIMENTS 
a. FORTRAN 
b. REAL-TIME (FLIGHT COMPUTER, HYDRAULICS) 

SIMULATION 
C. FLIGHT 
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LIE BRACKETS 

The key theoretical result from the existence of linearizing transformations is 
the result of work by Krener (ref. l), Brockett (ref. 2), Jakubcyzk and Respondek 
(ref. 3), and Hunt and et al. (ref. 4). The necessary and sufficient conditions are 
best expressed in terms of lie brackets. A lie bracket (f, g) constructs a new vector 
field from the old ones f and gi A set is involutive if the brackets do not create 
new directions. 

VECTOR FIELDS f, g: R”+ R” 

LIE BRACKETS [f, 91 = $f-gg 

INVOLUTIVE SET 1 hl,..., hr) IF 
[hi, hjI E SPAN (hl, m m s , hr ) 
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CONDITIONS FOR LINEARIZABILITY 

1. It is necessary to find control coordinates which appear linearly in the state 
equation. For aircraft this means angular acceleration instead of ailerons, 
elevator, and rudder. 

2. The resulting system must have linear-like controllability. 

3. The fields (f, g,, g, - - 0, gm) must satisfy an involutivity condition. For 
example, let n = 6, m = 2, and the Kronecker index set KI = (3, 3). Then, the 
six vector fields must span the state space and the first four must be involutive 

1. ic=f(X,“)~ic=f(X)+~ gi(X)U* 

2. LINEAR - CONTROLLABLE 

3. INVOLUTIVE 

EXAMPLE: i=f(x) +q (xh,++g* (xhlq’ 

KI = (3,3) 

I 
INVOLUTIVE 
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STRUCTURE OF THE COMPLETE CONTROL SYSTEM 

The structure has the form of an exact model follower. The linearizing transfor- 
mation is done in the WT-map. Through this map the plant is seen as a set of 
decoupled strings of integrators. The same set is employed as the dynamics (A,, Bo> 
of the model servo, where the desired motion is defined by means of the input r* and 
the, in general, nonlinear control law. The control of modeling inaccuracies and other 
disturbances is accomplished by the regulator which operates on the error ey and 
outputs corrective control 6v. It may be noted that the regulator works into the 
simple canonical dynamics and, in effect, the gain scheduling is done automatically 
by the WT-map. 

r* 

I 1 LAW 

r --a------- 

iI h(e) 

MODEL SERVO REGULATOR WT-MAP Al RCRAFT 
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HELICOPTER EXPERIMENT 

The objective of this experiment is to investigate the effectiveness and 
realism of the design approach and to uncover potential problem areas. The current 
work is with the UHlH helicopter equipped with the VSTOIAND avionics system including 
the Sperry 1819B flight computer. The model used in the design is a rigid-body 
nonlinear force (fF), and moment (f") generation Process. Inertial coordinates 
(r, v) of position and velocity vectors, body attitude matrix C, and angular veloc- 
ity w form the state. The moment controls uM are the roll and pitch cyclic and 
the pedals. The collective is the power control up. 

STATE: 

r 
V 

X= 

0 

E X C R3 X R3 X SO(3) X R3 
C 

w 

CONTROL: 

U= dCR3XR 

STATE EQUATION: 

; =v 
. 
v = fF(x, u) 

c = S(0) c 

; = f”(x, u) 
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A CANONICAL MODEL FOR THE HELICOPTER 

The canonical model chosen is shown in the figure; There is a pair of strings, 
each four integrators long. This pair represents the two horizontal channels 
(TX, r 1. In addition, there is a two-integrator string for altitude h. 
fourthYs,tring is for the heading $. 

The 
The canonical controls are the second deriva- 

tives of horizontal acceleration, vertical acceleration, and yaw acceleration. The 
transformation is computed by means of two Newton-Raphson.trim..routines. First, the 
controls are computed and yield the given accelerations (wbc, h) at the given state. 
Then the attitude C is computed for the given horizontal acceleration. The 
Jacobian matrices needed by Newton-Raphson are computed numerically. 

CANONICAL MODEL 

. . . 
ax ax Vx TX 

ax - 
. . 
aY,, - & ;v 

. 
ii--d-oh 

KI = (4,4,2,2) 

TRANSFORMATION 

a. ON-LINE NEWTON-RAPHSON MOMENT TRIM 

fM (r,v, C, wb, u) = &bc 
h M 

f!j (r,v,C,wb,u)= tic I-- 

UC = (‘4 c, Wb, l i,, \;r,,& 

b. ON-LINE N-R FORCE TRIM 

f E (r,v,C,o,u,.,) = ah - t&e) = h F (LV,$,ah ,O.O) 
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SUMMARY - UHl EXPERIMENT 

The experin.ent has progressed to the point that the following observations can 
be made. 

(1) The implementation of the control scheme is practical. The 
complete code takes less than 22 msec on the Sperry 1819B 
flight computer 

(2) Both FORTRAN and real-time simulations (real flight computer 
and hydraulics) are consistent with theory. The tracking 
accuracy along the trajectory including hover, climb, descent 
and high-speed flight indicates that the UHl model routinely 
used for manned simulations is linearizable to a degree 
where a fixed-gain controller is possible. There is robust- 
ness with respect to weight, center of mass, moment of iner- 
tia, and force and moment models, but there is sensitivity 
to errors in wind estimates. The actuator dynamics (15 
rad/sec) may be commuted with the TW-map for regulator 
bandwidth below 2 radlsec 

(3) Further research is needed to develop rigorous methods for 
including high-frequency dynamics and explicit enforcement 
of control and state constraints 

1. 

2. 

3. 

IMPLEMENTATION IS PRACTICAL 
SAMPLING TIME = 50 msec 
NEW JACOBIANS FOR N - R TRIM EVERY 5TH SAMPLE 
COMPLETE CODE = 22 msec ON SPERRY 1819B 

FORTRAN AND MANNED SIMULATIONS ARE CONSISTENT WITH 
THEORY 

TRACKING ACCURACY IMPLIES LINEARIZABILITY 
ROBUSTNESS 
ACTUATOR DYNAMICS 

PROBLEM AREAS 
METHOD FOR INCLUDING SERVO DYNAMICS 
METHOD FOR EXPLICIT ENFORCEMENT OF CONSTRAINTS 
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