
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

•r

NASA CONTRACTOR REPORT 166574

(SASH-CE- 166574) CDC TO CM FOSTRkH
CONVERSION HANUAL II Informatics, Inc., Palo

Alto, ':alif. j 22 p HC 1102/Hf A01 	 CSCL 09B

1184-22243

Unc la s
G3/61 13018

CDC to CRAY FORTRAN
Conversion Manual

Charlotte McGary
Donna Diebert

I-I,

111
^	 r^

^ _w

CONTRACT NAS2-11555

October, 1983

4

^.-f r^ • - .fir /^ A^ ^.	 : T • .4	 W^^^- --_

CDC to CRAY FORTRAN
Conversion Manual
TN-83-7104-802-1

Charlotte McGary
Donna Diebert
Informatics General Corporation
1121 San Antonio Road
Palo Alto, CA 94303

Prepared for
Ames Research Center under

CONTRACT NAS2-1155 5

October, 1983

' 1.

Section 0	 SCOPE

Section 1	 GENERAL FORTRAN DIFFERENCES BETWEEN
THE CDC 7600 AND THE CRAY

Section 2	 SPECIFIC FORTRAN DIFFERENCES
2.1 INTRINSIC FUNCTIONS
2.2 PROGRAM UNITS

2.2.1 PROGRAM statement
2.2.2 Statement Functions

2.3 ARRAYS
2.3.1 Dimension Declarators
2.3.2 Type Declaration - Adjustable Arrays
2.3.3 Array Usage

2.4 LEVEL and MOVLEV Statements
2.5 ENTRY Statement
2.6 DO LOOPS

Section 3	 INPUT/OUTPUT
3.1 UTILITIES
3.2 FORMAT SPECIFICATIONS

Section 4	 SYSTEM UTILITIES

Section 5	 MASS STORAGE UTILITIES

Section 6	 CONVERSION HAZARDS
6.1 SUBROUTINES - AGREEMENT IN NUMBER OF ARGUMENTS

APPENDIX A	 DIFFERENCES IN CDC AND CRAY DEFAULT FILE
NOMENCLATURE

Paa ee

1

2

5
6
6
7
8
8
9

10
10
10
11

13
13
14

15

17

18
18

19

SCOPE
0.0 SCOPE

This document is intended to be an aid in converting source code
from FORTRAN IV Extended as used on the CDC 7600 under the SCOPE
operating system to FORTRAN 77 as used on the CRAY-1S/CRAY-XKP
under COS. Although there are many similarities between CDC and
CRAY FORTRAN, there are several differences which can cause sig-
nificant problems for the user who is not experienced in the use
of both. This document discusses many important differences
between these two versions of FORTRAN, and gives examples con-
cerning their usage on both computers.

The author would like to acknowledge the following people who
contributed to this document: Donna Dlebert, Dave Saunders, and
Gary Villere, all with Informatics General Corporation.

This work was performed under contract number NAS2-11555, Ames
Research Center, by Informatica General Corporation.

1

y, .

't	 f

Section 1
GENERAL FORTRAN DIFFERENCES BETWEEN

THE CDC 7600 AND THE CRAY
1.0 GENERAL FORTRAN DIFFERENCES BETWEEN THE CDC 7600 AND THE CRAY

While there are many similarities between CDC and CRAY FORTRAN,
there are significant differences due to the fact that the CDC 7600
uses FORTRAN IV Extended and the CRAY uses FORTRAN 77. This section
will deal with some basic differences between the two.

Diagrams of the general ordering of statements in CDC and CRAY pro-
gram units are shown in figures 1-1 and 1-2, respectively.

CDC	 CRAY

60-bit words

10 characters per word (max)

Variable names: 1-7 letters

Maximum of 3 dimensions for an
array

Max. array si-e - 131,071 words

64-bit words

8 characters per word (max)

Variable names: 1-8 letters
(ANSI FORTRAN standard provides
for a maximum of 6 letters)

Maximum of 7 dimensions for an
array

Max. array size - 4,194,304 words

RANGE OF CONSTANTS:

59	 59
Integer: -(2 - 1)<-I<-2 - 1

18 decimal digits

-293	 322
Real: 10	 <-IRI<-10

14 decimal digits of
precision

-293	 322
Complex: 10	 <-IC	 1<-10

real

Hollerith data

No block IF structure is
available

Only one IMPLICIT statement
allowed per program unit

RANGE OF CONSTANTS:

	

63	 63
Integer: -2 <-I<2

19 decimal digits

	

-2466	 2466
Real: 10	 0JR100

14 decimal digits of
precision

Complex:
-2466	 2466

10	 <-IC	 1,1C<10
	real	 imag

Hollerith data supported but
CHARACTER data preferred

Block IF structure is available

No limit imposed on the number of
IMPLICIT statements allowed per
program unit

2

w

c

Ea
al

O
L
CL

V
0
V

0

c

h
s+
C
11
E
u
A

w
N

Al-

0
L

v
L
0

uL
rn

lip

a a a

C Of c

E
w E

v .+ w a
«, a op
O J
J W c

> O q
• W ^1
X J 7
W U U
.J c ^)

X A W O
I c O'

UE J c c
v A

s
^ z z E

v °
Cie

i + o}c
a N F- q H

•^ x s^ z
W N W

W
Q Im
p d W

Y W zV J W
I O m J

^w m .+ O >
c ^ C p ••

, Od N J W c
++ - ++ Q 6
A i W A W F^ ^ Ew

.Zr
w OC Z N Ch h O ^+ O +,

• .. E A

< w n
-^ Cie U t7 W Q a
Ix (OD ^"^ W '^ Z i^ O
W J a Z

N d
_

p W
O i ^

..^

O .. OM Q x
^- o.	 s

z	
i V v

LA. a
w

`ca
^ ^ E

D vf.7
O
CK

I
I

In_ a

a

F C
Q oz E

a,

11

o ,+
M A

a

3

Nor P.

i
t

c
a

EA
L
M
0
L
d
sa
K
U

a
C

J ^

c
o'
E
V
v
A
N

w
O

L
V
L
O

N
i

dL
7
Om

LL

i

c4
0

0
J E +^a v
v .+ c n
M O ^1

J O

ft > c AW Q O ++

C9 c c

a A
W

c ' U Ix v

E c u

x^ f W «+ E
A J O 41 W

IL d 41

" v++ o
Q c U v N

v ••
Q E N
o 0 z z

.+ o --
Y A ^+ oC
U a^ N H
O " •-1 2
J U w
co

N

Lu

L U d W

O J W Z c
CL J W " al

W f co -i !- v E
N

^+ O > w 0 41
F- D J E A

cO O x v
C• J W Q A
m Q z .1 c
T W 91 z
N Q L W

OM
L OC N
O W
•-^ U W

U H ►+
Z z O
m .+
v_ "z v
F 01 f Q Q^

C T O Q 4!
V V U D

41
CL "

"

F- C

F- C w 0

L A	 O J
W IL b

v
n

4

i
'r

Ii
Section 2

SPECIFIC FORTRAN DIFFERENCES

2.0 SPECIFIC FORTRAN DIFFERENCES

This section discusses CDC and CRAY differences in the usage of
Intrinsic functions, program units, arrays, LEVEL and MOVLEV
statements, ENTRY statements, and DO loops.	 ii
2.1 INTRINSIC FUNCTIONS	 i
Most of the standard intrinsic functions are identical on both the
CDC and the CRAY. The following functions are the exception.

No. Notes/ No. Notes/
CDC Arg. Limitations CRAY Arg. Limitations

SHIFT 2 O<-Arg <•60 SHIFT 2 None
2

Arg	 <0 SHIFTL 2 Zero filled
2

(0<: JArg 1<=60 for No equivalent
2 right shift is

both conditions) available.

MASK 1 0<-Arg<-60 MASK 1 0<-Arg<-63
(Left justified) (Left justified)

64<-Arg<=128
(Right justified)

LOCF 1 None LOC 1 None

RANF 1 None RANF 0 None

RANGET 1 None RANGET 0 None

This is a utility subprogram rather than an intrinsic function.
It is included here because it corresponds to an intrinsic fuo,tion.

5
i

f

2.2 PROGRAM UNITS

2.2.1 PROGRAM statement

Although the PROGRAM statement used on the CDC 7600 may be used on
the CRAY, the parameters specified after the program name are
Ignored on the CRAY. The following examples show two CDC uses of
the PROGRAM statement and the CRAY equivalent for each.

Example 2-1. Associate INPUT and OUTPUT with logical unit numbers
5 and 6, respectively.

CDC usage: PROGRAM XAMPLI(INPUT,OUTPUT,TAPE5-INPUT,TAPE6-OUTPUT)

CRAY usage: PROGRAM XAMPLI

or

PROGRAM XAMPLI(INPUT,OUTPUT,TAPE5-INPUT,TAPE6-OUTPUT)

(Normally the user would assign filenames to logical
unit numbers in the CCL. However, the CRAY has been
set up at AMES to automatically assign logical unit
numbers 5 and 6 to $IN and $OUT, respectively.)

Example 2-2. Associate the local file MYFILE with logical unit
number 1, which will be used as an input file to
the program.

CDC usage: Place the followin6 command in the JCL before the
program is execute -16

ATTACH,MYFILE,MYFILE,ID-XXX,CY-1.

The FORTRAN PROGRAM statement will be as follows:

PROGRAM XAMPL2(INPUT,OUTPUT,TAPE1-MYFILE)

CRAY usage: Place the following commands in the CCL before the
program is executed.

ACCESS,DN-MYFILE,PDN-NYFILE,ID-XXX,ED-1.
ASSIGN,DN-MYFILE,A-FT01.

The FORTRAN PROGRAM statement will follow the same
format as in example 2-1.

PROGRAM XAMPL2
or

PROGRAM XAMPL2(INPUT,OUTPUT,TAPE1-MYFILE)

6

^I

2.2.2 Statement Functions

The STATEMENT FUNCTION is used in basically the some manner and
subject to most of the same restrictions on both the CDC 7600 and
the CRAY. However, two important differences have been noted and
are described below.

STATEMENT FUNCTION NAMES AND EXPRESSIONS

CDC usage	 CRAY usage
---------	 ----------

STATEMENT FUNCTION NAMES AND	 STATEMENT FUNCTION NAMES AND
EXPRESSIONS MUST BE OF THE SAME	 EXPRESSIONS CAN BE OF DIF-
TYPE.	 FERENT TYPES.
If a statement function is declared Since a statement function
as one type function but is defined name and expression can dif -
with a parameter of a different 	 fer in type, an error occurs
type, conversion is automatically	 if the function is referenced
performed when the function is 	 with a different type varia-
evaluated. Therefore, the function ble than that with which it
may be referenced with a different 	 was defined. Therefore, the
tyre of variable than that with 	 function and variable with
which it was defined.	 which it is referenced must

agree in type.

Example 2-3s.	 Example 2-3b.

A statement function is declared 	 A statement function is
as INTEGER:	 declared as INTEGER:	 !

INTEGER FCN	 INTEGER FCN

Statement Function Definition:

FCN(R) - R + I * 2

Statement Function Reference:

NUMBER - FCN(N) + 1

Statement Function Definition:

FCN(J) - J + I * 2

Statement Function Reference:

NUMBER - FCN(N) + 1

7	 jl

STATEMENT FUNCTION DEFINITIONS

CDC usage	 CRAY wage

A statement function definition may A statement function defini-
reference another statement function tion my reference another
even if that function has not pre- 	 statement function only if
viously been defined.	 the statement function being

referenced has been previous-
ly been defined.

Example 2-4a.	 Example 2-4b.

Statement Function Definitions:	 Statement Function Definitions:

MYFCNI(I) • I * MYFCN2(I)	 MYFCN2 (I) - I + 1
MYFCN2 (I) - I + 1	 MYFCNI (I) - I * MYFCN2(I)

2.3 ARRAYS

2.3.1 Dimension Declarstors

ACTUAL ARRAYS:

On the CDC 7600, the value of a subscript (expressed as a constant)
may never be zero or negative. On the CRAY, however, subscripts
are allowed to be either zero or negative. Hence, the lower and
upper bounds of an array may be expressed in the DIMENSION state-
ment on the CRAY (omission of the lower bound causes the default
of I to be used). Examples follow.

Example 2•-5. Set the variable B equal to the third element of the
six-element array A.

CDC usage
	

CRAY usage

^a

DIMENSION A(6)
	

DIMENSION A(6)

B - A(3)
	

B - A(3)

or

DIMENSION A(1:6)

B - A(3)

or

DIMENSION A(-2:3)

B - A%0)

8

F

ADJUSTABLE ARRAYS:

Although the CDC 7600 does not allow an array subscript to be
zero, the compiler does allow the value of zero to be passed to
a subroutine as the dimension declarator of an adjustable array.
However, if this array is than used in any calculations within
that subroutine, an execution error will occur.

On the CRAY, the dimension declarator(s) must be defined such that
the adjustable array will have at least one element in it.

The following example gives a situation on the CDC as discussed
above, and the changes necessary to modify that situation to work
on the CRAY.

CDC usage

Example 2-6a.

In calling program:

CALL SUB1(A,0,0)

In subroutine SUB1:

SUBROUTINE SUB1 (A,N,M)

DIMENSION M(N)

CRAY usage

Example 2-6b.

In calling program:

CALL SUB1(A,1,0)

In subroutine SUB1:

SUBROUTINE SUBi(A,N,M)

DIMENSION M(N)

2.3.2 Type Declaration - Adjustable Arrays

The CDC 7600 compiler allows a formal parameter used as the dimen-
sion declarator of an adjustable array to be typed AFTER it is used
to dimension the array. This causes a fatal error on the CRAY,
however, since the CRAY requires that the type declaration statement
for this variable occur BEFORE it is used to dimension the adjust-
able array. The following example illustrates this difference.

Example 2-7a.	 Example 2-7b.

CDC usage
	

CRAY usage

SUBROUTINE MYSUB(A,R,M)
	

SUBOUTINE MYSUB(A,R,M)
DIMENSION M(R)
	

INTEGER R
INTEGER K
	

DIMENSION M(R)

9

::lilt r^ - ^E^ • w ... ;'Po -;

2.3.3 Array Usage

References to multidimensional arrays may not be shortened on the
CRAY as allowed on the CDC 7600.

Example 2-8a.

CDC usage
Y^NN-

DIMENSION ARRAY(2,4)
DO 10 1-1,8
ARRAY (I) - 0.0

10 CONTINUE

Example 2-8b.

CRAY usage

DIMENSION ARRAY(294)
DO 10 I-1,8
ARRAY(I,1) - 0.0

10 CONTINUE

2.4 LEVEL and MOVLEV Statements

The LEM and MOVLEV statements associate variables with Large Core
Memory (LCM) on the CDC 7600. There are no equivalent statements ou
the CRAY, nor are any necessary due to the relatively large amount
of memory available on the CRAY. All LEVEL statements should be
deleted from CDC programs when converting to the CRAY. The MOVLEV
statements may be retained on the CRAY if a dummy MOVLEV routine
which just copies N words from one array to another is added to the
program.

2.5 ENTRY Statement

Differences in CDC and CRAY usage of entry points are discussed
below.

CDC usage	 CRAY usage

No argument list (assumes	 In Subroutine Subprograms:
the same calling sequence) 	 Argument list is optional.

Arguments need not agree with
those specified in FUNC`rION,
SUBROUTINE, or other ENTRY
statements in the same sub-
program.

10

Now
+^^. ^ . - ter► ^ ^. s ^	 •r	 .._,._-..

Function entry names must
agree in type with the name
appearing in the FUNCTION
statement of the subprogram
In which the ENTRY statement
occurs.

In Function Subprograms:
Argument list is required,
even if it is null, e.g.

ENTRY NAME()

Function entry names may differ
in type from the name appearing
in the FUNCTION statement of the
subprogram in which the ENTRY
statement occurs.

2.6 DO LOOPS

A DO LOOP on both the CDC 7600 and the CRAY takes on the following
form:

DO on i-m ,m ,m
1 2 3

where	 an - terminal statement number
m - initial value
1

m - terminal value
2

m - optional increment value (default - 1)
3

Differences between the CDC and CRAY usage of these parameters are
discussed below.

CDC usage
	

CRAY usage

i must be the name of an	 i any be the name of an integer,
integer variable with a	 real, or double precision vari-
positive, non-zero value. 	 able.

m ,m ,m must each be the
1 2 3 name of an integer

variable with a
positive, non-zero
value such thAt

17

m +m , m +m <- Z - I
1	 3	 2	 3

m ,m ,m may be the names of in-
1 2 3 teger, real, or double

precision variables.

If m ,m and m are integers,
1 l	 3

then m ,m ,m and (m - m + m)
1 2 3	 2	 1	 3

23

must be <- 1 2 - tj

11	 ^

MW

If necessary, s ,a , and/or a
1 2	 3

are converted to the same type
variable as 1.

n ,a , and a any be positive or
1 2	 3

negative.

a say not be zero.
3

If a > a	 the loop is ex-
1 2 ecuted at least

once.

If a > a and a > 0 or
1	 2	 3

a < a and m < 0, then
1	 2	 3

the loop is not executed
unless the ON-T parameter
was specified on the CFT
control statement.

This is a significant difference between the CDC and the CRAY
treatment of DO LOOPS as it can cause values computed in a CDC
program to differ from those output by its CRAY counterpart.
In order to obtain the saw. results from both programs, it is
often necessary to force the CRAY to execute each DO LOOP at
least once as on the CDC 7600. This can be done by compiling
the program with the ON-T parameter as mentioned above.

12

1-P

t

Section 3

INPUT/OUTPUT

3.0 INPUT/OUTPUT

3.1 Utilities

Use of the following I/O utilities on the CDC and the CRAY are
compared.

CDC	 CRAY

UNIT(lun)	 UNIT(lun)

returns:	 returns:

-2.0 record partly read
-1. transfer successful 	 -1.0 transfer successful
+00 EOF encountered	 0.0 EOF or EOD encountered
+1. Parity error encountered	 +1.0 Parity error encountered

+2.0 Unit error encountered

(Applies only to buffered input /output operations. "lun" is the
logical unit number assigned to the file being accessed.)

EOF(lun)	 EOF(lun)

returns:	 returns*

0. no EOF encountered 	 -1.0 EOD encountered
non-zero EOF encountered 	 +1.0 EOF encountered

0.0 otherwise

("lun" is the logical unit number assigned to the file being
accessed. Use of the END-i= and ERR 	 parameters on the
READ statement are recommended instead of this utility.)

NW-LENGTH (lun)	 NW-LENGTH(lun)

returns:	 returns:

Number of words transferred 	 Number of words transferred
(NW) in previous BUFFER IN or 	 (NW) to or from unit "lun".
READMS call to the file desig-
nated by logical unit number	 If an EOF or EOD is read
"lun".	 from logical unit number

"lun" a zero is returned.

(Applies only to buffered input /output operations.)

13
	

t

	 H

^i

1 a

3.2 Format Specifications

Following are brief descriptions of differences between CDC and CRAY
usage of several format specifications.

CDC usage	 CRAY usage

Cu.d v >- d + 6
	

Or.d w > d + 4

Ow Input field may contain
	

Or Input field may contain a
a maximum of 20 octal digits. 	 maximum of 22 octal digits.

* and - edit descriptors
	

* and - edit descriptors not
allowed.	 allowed.

' edit descriptor is not allowed. 	 • edit descriptor allowed.

nR descriptor can be used for
	

nH can only be used for output.
Input and output.

-n% allowed.	 -a% not allowed.

n(/) repeats / n times. 	 n/ repeats / n times.

Tn is the only tab specification
	

TLn and TRn are available in
available.	 addition to 110.

BN and BZ editing are not
	

BN and BZ editing available.
available.

S, SP, and SS editing are not
	

S, SP, and SS editing available.
available.

V editing available.	 V editing not available.

• edit descriptor available.

	

	 edit descriptor is not avail-
able. (However, a function
subroutine which provides
some of the features of this
descriptor is available from
Gary Villere of Informatics
General Corp. upon request.)

14

Section 4

SYSTEM UTILITIES

4.0 SYSTEM UTILITIES

Differences between the CDC and CRAY versions of the following
system utilities are compared.

CDC	 CRAY

CALL DATE(idate)

idate is returned as
lOHbmm/dd/yyb, where b
denotes a blank

CALL JDATE(idate)

idate is returned as
5Ryyddd

CALL DATE(idate)

idate is returned as
SHam:dd:yy

CALL JDATE(idate)

idate is returned as
5Hyyddd

CALL SECOND(cputim)	 CALL SECOND(cputim)
cputim is returned as a real	 cputim is returned as a real
number accurate to two decimal	 number
places

CALL TIME(itime)

itime is returned as
109bhh.m.ss.b, where b
denotes a blank

CALL SYSTEM(ierrno,msg)

ierrno - error number
msg - execution time errror

message issued by user

(Hollerith constant)

CALL REMARK(msg)

msg • message issued by user
to be placed in dayfile
(Hollerith constant <-

9 10-character words)

CALL CLOCK(itime)

itime is returned as
W m:hh:ss

CALL ABORT(msg)

sag - execution time error

message issued by user
(Hollerith constant <a

9 8-character words)

CALL REMARK(msg)

nag - message issued by user
to be placed in logfile
(Hollerith constant <-

8 8-character words)

15

i

q

f	 ^

M-MEM(3HSCM) or N-MM(39LCM)

M is returned as the current
field length

COS 1.11 Version:

INTEGER WC,T,DEL
DATA WC,T,M,L,DEL /5*0/
CALL MEMORY(WC,T,M,L,DEL)

WC is returned as the
current field length

COS 1.17 Version:

INTEGER WC
CALL MEMORY('CURFL',WC)

WC is returned as the
current field length

M-RBQMEM(3HSCM,MRBQ) or

CALL RBQMEM(3BSCM,MRBQ)
or

M-REQMEM(3HLCM,MRBQ) or

CALL RBQMEM(3HLCM,MRBQ)

MREQ - total field length
requested by the user

M is returned as the new
field length received

COS 1.11 Version:

INTEGER WC,T,DEL
DATA M,L,DEL /3*0/
T 1
WC total field length

desired
CALL MEMORY(WC,T,M,L,DEL)

L will be set if the job has
received the maximum amount
of memory allowed;

An error will occur if more
memory is requested than is
allowed.

COS 1.12 Version:

MISGER WC
WC - total field length

desired
CALL MEMORY('FL',WC)

This utility is only available from AMESLIB on the CDC 7600. It
is accessed by the following statements on the JCL:

ACCESS,A,AMESLIB,ID-AMESLIB.
LIBRARY,A,*.

For a further discription of this utility, see "Computational
Division User's Bulletin No. 214" available from the Central
Computational Division Document Center.

16

1	 •

Section 5

MASS STORAGE UTILITIES

5.0 MASS STORAGE UTILITIES

The mass storage INPUT/OUTPUT utilities discussed in this section
are OPENKS, CLOSMS, REARMS, WRITMS, and STINDX. On the CDC 7600,
these utilities are supplied by the system. On the CRAY, however,
these utilities must be accessed through AMESLIB as follows:

ACCESS,DN-READMS,PDN•READNS,ID•AMESLIB.
LDR, LIB-READMS.

Here the default dataset name of $BID is used, so the DN keyword
Is not specified. If the user specifies a dataset name different
than $BLD using the B keyword on the CFT control statement, then
he must specify that dataset name on the LDR statement using the
DN keyword (LDR,DN-datsset,LIB-READNS.).

Basically, these routines are used in the same manner on both
machines. However, two notable differences have been found in
the usage of OPENMS. Discussions on these differences follow.

CDC
	

CRAY
	

i

OPENMS allows the user to use
a two-dimensional array for the
defining the Master Index. It
also allows the user to directly
specify asstarting location for
this array in the call to OPENMS.

Example 5-1.

COMMON /INDEX/ INDEX(2,3),N

CALL OPENMS(LUN,INDEX(1,N),
LENGTH,IT)

where LUN, LENGTH, and IT are
previously defined.

OPENMS does not allow the master
Index array to be two-dimensional,
nor does it allow a starting
location to be directly specified
in the call to OPENMS.

Ea ,mple 5-2. For example 5-1 to
wor ► on the CRAY do the following:

COMMON /INDEX/ INDX1(2),INDX2(2),
INDX3(2),N

IF (N.DQ.1) CALL OPENMS(LUN,INDX1,
LENGTH,IT)

IF (N.EQ.2) CALL OPENMS(LUN,INDX2,
LENGTH,IT)

IF (N.EQ.3) CALL OPENMS(LUN,INDX3,
LENGTH,IT)

where LUN, LENGTH, and IT are
previously defined.

17

i
i

Section 6
CONVERSION HAZARDS

6.0 CONVERSION HAZARDS

6.1 Subroutines - Agreement in Number of Arguments

On the CDC 7600, if a user passes too many arguments to a subrou-
tine the extra arguments are ignored. This is because the compiler
reserves address space in the CALLING program for the table con-
taining the addresses of those arguments.

On the CRAY, however, the compiler reserves the space for the argu-
ment address table in the routine being CALLED. Therefore, the
amount of space reserved is only enough for the number of formal
parameters specified in the subroutine declaration. It is the
CALLING routine, however, which fills up this table at execution
time. Thus, if a routine is called with too many arguments, the
addresses of the extra arguments will overwrite the lower portion
of the routine immediately PRECEDING the CALLED subroutine. This
type of error is very difficult to trace as it often causes a
section of code totally unrelated to the called subroutine to fail
at execution time.

i
i

all.	 j

18

Tr^.h
t

APPENDIX A

DIFFERENCES IN CDC AND CRAY

DEFAULT FILE NOMENCLATURE

CDC	 CRAY

JCL filenames:

INPUT $IN

OUTPUT $OUT

OLDPL $PL

NEWPL $NPL

COMPILE $CPL

LGO $BLD

VAX <eor>,<eof> separators:

UEOF.	 /EOF

%ZEOF	 /EOF

19

	GeneralDisclaimer.pdf
	0136A02.pdf
	0136A03.pdf
	0136A04.pdf
	0136A05.pdf
	0136A06.pdf
	0136A07.pdf
	0136A08.pdf
	0136A09.pdf
	0136A10.pdf
	0136A11.pdf
	0136A12.pdf
	0136A13.pdf
	0136A14.pdf
	0136B01.pdf
	0136B02.pdf
	0136B03.pdf
	0136B04.pdf
	0136B05.pdf
	0136B06.pdf
	0136B07.pdf
	0136B08.pdf
	0136B09.pdf

