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ABSTRACT

The X-ray spectra of broad line active galactic nuclei of all types (Seyfert
I's, NELG's, Breadline radio galaxies) are well fit by a power law in the

.5-100 keV band of mean energy slope a = .68+.15. There is, as yet, no strong

evidence for time variability of this slope in a given object. The

constraints that this places on simple models of the central energy source are
discussed. BL Lac objects have quite different X-ray spectral properties and

show pronounced X-ray spectral variability.

On time scales longer than I?, hours most radio quiet AGN do not show

strong, Al/I > .5, variability. The probability of variability of these AGN

seems to be inversely related to their luminosity. However characteristic

timescales for variability have not been measured for many objects. This

general lack of variability may imply that most AGN are well below the
Eddington limit. Radio bright AGN tend to be more variable than radio quiet

AGN on long, T > 6 month, timescales.

Talk given at Texas Meeting on Relativistic Astrophysics, Austin, Texas, 1982
and IAU/COSPAR Meeting on High Energy Astrophysics and Cosmology, Rojen,
Bulgaria.



INTRODUCTION

It is currently popular to believe that the X-rays from active galactic nuclei

are produced in or near the physical region where the energy in these objects

is released (see Rees, Begelman and Blandford 1981 for a recent discussion).

If this is true, study of the X-ray emission from AGN2 is a direct probe of

the "infernal machine".

The data presented in this talk .are primarily from spectroscopic experiments

on the HEAO-1 and HEAO-2 (Einstein Observatory) X-ray astronomy satellites.

These experiments covered the energy range from 2-100 keV (HEAO-1) and .5-4.5

keV (HEAO-2) and were capable of high accuracy spectroscopic and "photometric"

measurements. The energy resolution in the 2-100 keV band is roughly 16% or

1.1 keV at 6 keV and in the .5-4.5 keV it is 160 eV or 8% at 2 keV. Both

satellites had relatively short lifetimes--HEAO-l lived 17 months (Aug 1977 -

Jan 1979) and HEAO-2 lived 30 months (Nov 1978 - May 1981).

The collecting areas of these X-ray "telescopes" are rather small by radio or

optical standards. HEAO-1 was equivalent to a 6.3" telescope and HEAO-2 to

only a 3" telescope. However the high quantum efficiency (>50%) of X-ray

detectors helps to offset some of the difficulties. It is also useful to

remember that the X-ray flux from AGN is, in general, quite low. The weakest

sources discussed here have a 2-10 keV flux of - 1 x 10"^ photons/cm2sec which

is equivalent to a 22 magnitude object in the optical. (So to give the

optical analog to X-ray spectroscopy try to imagine doing the optical spectrum

of a 22 mag quasar with a 6" telescope!) (Of course the X-ray photons

have » 1000 times as much energy so if we were comparing energy instead of

photon flux the equivalent magnitude would be - 15 mag, still quite low).

2In this paper the term active galactic nucleus (AGN) refers to the total
assembly of objects whose nucleus emits "non-thermal" radiation. That is, the
term AGN includes quasars, BL Lac objects, Sey'fert I's, breadline radio
galaxies, etc. It is not clear, at present, if Seyfert II's or narrow line
radio galaxies are members.



THE X-RAY CONTINUA

A. Broad Line AGN

1. Energetics

The energy contained in the X-ray band (for the purposes of this discussion

.5-100 keV, the range over which we have data) is roughly the same as that in

most other well observed bands (optical, IR, UV). This is a consequence of

the well known fact that, broadly speaking, the electromagnetic spectra of AGN

follow a v~ power law over at least 8 de'cades in frequency (Worrall et al.

1981). In somewhat more detail the IR-UV "power law" continua of AGN can be
-1 ?well modeled by a v *" power law (Malkan and Sargent 1982; Wu, Boggess and

Gull 1983; Glass 1983; Glass, Moorwood and Eichendorf 1982) while the X-ray

continua are well modeled by a v power law (Rothschild et al. 1983;

Mushotzky 1980; this paper). Thus a composite continuum spectrum in the

observable energy ranges is F = A v" + B v ergs/cm^ sec Hz. The total

observed range of the ratio log (A/B) is from 7.5 to 11 (Zamorani et al. 1981;

Reichert et al. 1982). The width of the distribution of the ratio of optical

(912-10,000 A) to X-ray (.5 - 100 keV) luminosity, LQp/Lx, is from .1 to 25.

"Radio loud" AGN tend to have a smaller expectation value <Lop/Lx> - .6 while

"radio quiet" objects have <LQD/LX> - 2.

If the X-ray spectrum for most objects continues out to - 1 MeV (Baity et al.

1981) then the X-ray luminosity is increased by a factor of - 2.5 and <Lop/Lx>

decreases to - .25 for radio loud objects. If the "non-thermal" power law

continues down to - 10p, without flattening, then L is also increased by a

factor of 2.5. Therefore the observed continua have roughly the same energy

in all the observed wavelength bands except the radio (since the radio-optical

spectral slope is flatter than 0.9 the radio, 106 - 1013 Hz, has less energy

than the optical). If there is a major "missing" luminosity it must be in

the y-ray or extreme U-V bands. Present -y-ray upper limits are not sensitive

enough (except for 3C 273) to constrain the y-ray luminosity.



2. Spectral Form

The X-ray spectrum of almost all broad line AGN (Figure 1) (Seyfert I's,

quasars, broad line radio galaxies) can be well described (Figure 2) by a

power law in the .5-100 keV band of a - .65 ± .15 modified by t'ne effects of

cold material in the line of sight. This spectral form appears

quasi-universal, independent of luminosity (at least in the range from

LY - 1042-5 to 1046 ergs/sec in the 2-10 keV band), and independent of optical
J\

type or radio property for nearby, z < .1, objects.

In Table I I give the X-ray spectral index for broad line AGN from HEAO-1 A2

(2-40 keV band), HEAO-1 A4 (15-100 keV) and, for high luminosity sources (Lx >

1043.5 ergs/sec), the Einstein SSS data (.5-4.5 keV) (Petre et al. 1984).

Simple power law models (modified by the effect of absorbing material in the
9

line of sight) almost always give a good (reduced x" < 1-3) fit to the data.
For roughly half the sample (Mushotzky 1982) analysis of the HEAO-1 A2 data

strongly prefers a power law fit to the data over other simple spectral forms
such as optically thin isothermal bremsstrahlung. Within the limits of the

present data the spectral index fit to individual sources is the same in all 3

energy bands and there is no evidence for curvature or change of form with
energy. I therefore conclude that this simple, one parameter model, that fits
the data from more than 30 sources over a factor of 200 in energy, is probably

the "correct" model.

In addition to having a simple spectral form the X-ray spectra from AGN have a

very narrow range in spectral index. If we fit a Gaussian to the distribution

of spectral indicies (Figure 2) we find "a = 0.7+.19. For the smaller sample

of 13 objects for which the statistical uncertainty 6a < .15, a" = .65 + .17.
Thus the intrinsic width of the distribution function is very narrow,

with a dispersion probably less than .1. In some sense then the X-ray

spectrum of broad line AGN is a well defined signature of these objects.
•

While the available data are rather sparse it seems as if this spectral index

in the 2-40 keV band does not change when the 2-10 keV flux changes (however

there is evidence (Baity et al. 1983) that there has been a spectral change at

E > 60 keV in NGC 4151 and perhaps in the 1-10 keV range in 3C 120 (Halpern



1982) during flux variability). There is no correlation of X-ray spectral

index with luminosity (at least in the range 1042'5 < LX
2~10 < 1045'5

ergs/sec); nor with optical type (e.g. Seyfert I with a" = .68+.21, broad line

radio galaxy (BLRG) «"= .80+.14 or narrow emission line galaxy (NELG) oT =

.74+.13); nor with the presence or absence or radio (v < l(r" Hz) emission

(that is the radio bright objects 30120,111,382, 390.3, Cen-A, and 3C273 have

the same mean spectral index as the "radio quiet" Seyfert I 's); nor with the

X-ray to optical luminosity ratio.

As a general conclusion, then, the X-ray spectral form of "broad!ine" AGN is

an extremely stable feature independent of every other external, visible

characteristic of the objects. It is thus quite surprising that BL Lac type

objects (see sec I IB) have a quite different and variable X-ray spectral form.

3. Simple Theoretical Models

Many workers have noted that under several quite reasonable scenarios of the

energy generation mechanism in active galaxies, the X-rays are created in the

same region as the bulk of the energy. Models of the X-ray emitting region

(see Lightman 1982 for a review) have tended to concentrate on either

thermal-Compton emission from an accretion disk around a black hole (or its

equivalent) or on synchrotron self-Compton emission from relativistic

particles. This section of the review concentrates on the constraints that

the X-ray spectrum can place on these simple models.

In Figure 3 we show the predicted power law spectral indices from the

non-relativistic and ultra-relativistic thermal-Compton models. In these

models low energy photons, presumably from cool regions of the accretion disk,

are scattered up to the X-ray energy range by Compton interactions with hot

thermal electrons. We see that, for the non-relativistic models, if the

temperature is > 70 keV (as seems likely from the observations (Rothschild et

al. 1983)) then the models are well constrained; the optical depth to Compton

scattering must be between 1 and 2 and the electron temperature must be less

than 280 keV to reproduce the observed mean power law slope. This model

predicts that there should be a rollover in the X-ray spectrum at roughly

E - kT which, someday, might be observable. In these models (see Shapiro,



Lightman and Eardley, SLE, 1976) the ratio of Comptonized luminosity to soft

photon luminosity is A = Le/l_s - (ê -l) (see Fig. 1 of SLE for more detail)
o 2

where kT* = kT/mecS T is the optical depth and y = 4 kT* max (T,T ). To fit

the AGN spectra, 0.5 < y < 8, so that the amplification, A, is greater than

5. Thus these models predict that there should be more luminosity in the

X-ray band than in the softer energy bands. Since the bolometric luminosity

of AGN, LBol, is 2-100 times that of the X-ray luminosity, LX, these models

cannot, simply, account for the major part of the observed luminosity however

well they account for the X-ray spectrum. This is a problem with all

thermal-Compton models (e.g. Takahara 1982; Guilbert and Fabian 1982). The

relativistic models require T < .1, in order that the temperature not be

extraordinarily well specified. [However, as Araki and Lightman (1983) point

out, equilibrium plasmas at kT > 511 keV are unlikely to exist in AGN because

the maximum luminosity of such a plasma is less than 10̂ '5 erg/sec if the

objects have a scale size less than 1015 cm (.4 light day).] Also since the
2

Comptonized bremsstrahlung luminosity is proportional to T (Lightman 1982)
such a low T plasma is less luminous than the non-relativistic case. Thus in
these models the X-ray luminosity can be of the same order as the bolometric
luminosity. Takahara (1982) has shown that for T •«• 0.1, A can be as small as

1.1 but is a sensitive function of parameters and can be much larger (up
to - 100 in Takahara's models).

If the X-ray emission is produced by the synchrotron self-Compton process

(Jones, O'Dell and Stein 1974) then the slope of the X-ray spectrum a is
directly related to the spectrum of the relativistic electrons s by 2a + 1 =
s. Also it is predicted that the slope of the Comptonized photons (X-rays)

should be the same as the synchrotron (radio-millimeter) photons. As
Rothschild et al. (1983) point out, and as is illustrated in Figure 4, there

is a remarkable uniformity in the distribution of a amongst a wide variety of
astrophysical radio sources. This implies that for the cosmic ray electrons

in the disk of spiral galaxies, in the cores of radio quasars, in double radio

sources etc. that <s> - 2.3 ± .30 and thus one predicts <a> - .65 ± .15. This
value and its intrinsic spread are extremely similar, within measurement
error, to the X-ray spectra of broad line AGN. If the mean and variance of
two quantities are the same it is highly likely that these quantities are the

same. I thus consider this homology a strong argument for the origin of the



X-nay flux as Compton scattering off a relativistic electron population of

spectral index 2.3.

This model also predicts that the X-ray spectrum should steepen at an
p

energy E^ - y ED where Eg is the observed spectral steepening energy in the

far IR and y is the relativistic factor for the electrons. For "typical"

sources (Jones, O'Dell and Stein 1974) y - 100-1000 and EB >• .1-.01 eV so one
predicts E' - 1-10 MeV, consistent with observations of the X and y-ray

background (Kazanas and Protheroe 1983). If the particles are more or less

continously injected then the slope of the optical-UV spectrum should

be a' - a +1/2 or a' - 1.2 as is consistent with most available data (Glass

1982; Malkan and Sargent 1982).

Of course this model does not specify the origin of the electron distribution
or the energy. If this lies in shock acceleration (Ellison 1982; Blandford

and Ostriker 1979) then the Mach number of the shock M is related -to the

spectral index of the particles s by s = 2(M2+1)/(M2-1), if the gas is

adiabatic. For s = 2.4, M » 3.2. The lower limit on s - 2.1 from the

distribution of a (a - .7±.15, a > .55) would indicate M < 6.

A further prediction of this model is that the sources must be, relatively
speaking, large. If sources were too small they would rapidly lose energy via

Compton scattering. Roughly speaking, the physical source size R should be

related in a linear fashion to luminosity. Thus more luminous sources should

be larger. For example, for L - 1044 erg/sec, R should be - 10-100 light
days, much larger than black hole accretion disk models would predict (see

Kazanas and Protheroe 1983).

B. BL Lac Objects and "Jets"

As implied in the previous section the X-ray spectrum of BL Lac objects is
quite different from that of the broad line AGN's . It is quite interesting
that the radio-optical selection criteria (no lines vs. broad lines, polarized
vs. unpolarized, etc) should have a definite effect on the X-ray spectrum.



1. Energetics

The total electromagnetic spectrum of a BL Lac object does not look much

different from that of other AGN (Urry and Mushotzky 1982; Maraschi, Tanzi and

Tarenghi 1983). However because of the frequencies at which the various bends

in the spectrum occur and the ratio of soft to hard X-rays (see next section)

most of the energy in BL Lacs probably lies in the soft X-ray-extreme

ultra-violet band. In general BL Lacs have a high ratio, compared to Seyfert

galaxies, of 1 keV to optical flux but there is a large range (Schwartz and Ku

1983).

2. Spectrum

The X-ray spectrum of BL Lac objects (see Worrall et al. 1981) is

characterized by its variability. In general the spectrum can be described by

two components. The low energy component, which is always present, is
considerably steeper than that in Seyfert I's, a > 1.0. While the data can
usually be well fit over a narrow energy range by a power law, the index can

vary (contrary to the situation in Seyfert I's) from observation to

observation. Also, quite often, (Urry and Mushotzky 1982; Urry et al. 1981)
the ultraviolet and soft X-ray spectral indices are similar and the data is

consistent with a constant (or slightly steepening spectral form) power law

from the UV to soft X-ray. However there are exceptions such as MK180 (Mufson

et al. 1982) where the X-ray emission lies above an extension of the UV

continuum or PKS0735+178 (Bregman et al. 1983) where the X-rays lie

considerably below an extension of the UV power law.

The high energy component, which is not always present (Mushotzky et al.
1979), is usually quite flat, a < 0.7. However the narrow bandwidth over

which it is observed (usually 4-15 keV) makes accurate determination of its

slope difficult (Urry and Mushotzky 1982). Also for this reason it is

difficult to estimate the amount of energy in the flat component. Because of
the lack of data about the flat component (it is usually visible only above

the bandpass of the Einstein imaging telecope), its range in spectral slope

and flux is quite uncertain.



The variability of the X-ray spectral form can be represented in two simple

ways, 1) A change in the slope of the low energy component in the soft X-ray

and 2) a change in the ratio of the hard to soft component. For example in

MK421 the effective soft X-ray spectral index has changed from a ** 1.1
to a - 2.9 (Mushotzky et al. 1979) while in 3C 66 it changed from 1.1

to a > 2.5 (Maccagni, Maccacaro and Tarenghi 1983). During the same "event"

in MK 421 the hard component decreased in intensity by at least a factor of

10.

3. X-Ray "Spectra" of Jets

The detection of X-ray emission from jets in M87 (Schreier et al. 1982) and

Cen-A (Feigelson et al. 1981) allows one to compare the radio-X-ray optical

properties of these objects with that of BL Lac objects. The spectrum of Knot

A in the M87 jet (Schreier et al.) is very similar to the spectrum of

PKS0548-322. In M87 the radio-optical spectral index aRQ = .55, the IR

index airi - 0.8, optical index an - 1.7 and the X-ray optical index anv = 1.4
IK U — UA

while in 0548-322 the values are CXRQ. - .4, o^ - .8, aQX - 1.2.

Unfortunately, at present, this is the only jet for which a detailed

comparison can be made. It thus seems that the observed electromagnetic
spectrum of the jet1 in M87 is similar to that of at least some BL Lac

objects. However it is also similar to that of radio bnght QSO's. There is

as yet no good idea of how (or if) it correlates with other continuum

components.

4. Theoretical Models

As reviewed in Urry (1983) there are strong arguments in favor of attributing

the total electromagnetic spectrum of BL Lacs to the presence of a
relativistic jet at a small angle to our line of sight. While we will not go

into detail here we can summarize the result by stating that in this

interpretation the radio-optical radiation is due to optically "thick"

synchrotron emission from a jet, the optical -UV-soft X-ray from optically thin

synchrotron emission (with the effects of losses included) and the hard X-ray

tail due to inverse Compton emission (Konigl 1981).
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TIME VARIABILITY

Another major constraint on the nature of the central energy source is the

nature of its time variability. If a major fraction of the observed

luminosity varies on a timescale AT (AT = (cUnL/dt)~ ) then a size scale

R ^ Ac AT can be set for the size of the emission region. Here A depends on

geometry and dynamics but if relativistic effects do not dominate A is less

than ^ 3 (Jones, O'Dell and Stein 1974).

Black hole models predict, roughly, that AT - 10 GM/c - 50 Mg sec where Mg is

the mass of the central object in units of 10° MQ. Since Mg is expected to be

in the range 0.1-1000, (if the objects emit at - 0.1 the Eddington limit),

one might expect characteristic timescales from minutes to ^ 1/2 day if the
X-rays are directly associated with the black hole. The dynamical or thermal

time scale for an accretion disk can be considerably longer and may, in fact,

be the dominant time scale in the system. Such time scales are seen in the

galactic black hole candidate Cyg X-l. This object shows short, AT - 10~3

sec, variability which using the above formula would be expected from a 10 MQ
black hole. However most of the power in its variability occurs at longer

timescales AT - 1 sec. Scaling this longer time scale to the 10° - 10^ MQ
objects expected in AGN would give observed variability in the 1-1000 day
range.

A. Long Time Scales

The HEAO-1 satellite scanned the entire sky 2 1/2 times with an average

exposure length of - 4 days per source. This data allows us to look for

variability on 1/2 - 1 1/2 year timescale for all the sources detected by

HEAO-1. For the brighter sources (> 6 x 10"11 erg/cm2 in the 2-10 keV band)
it is also possible to look for variability on 1/2-4 day time scale.

Of the 28 Seyfert I galaxies detected by HEAO-1, only 6 showed significant
variability. That is, for only six sources was there flux inconsistent with a

constant at the 93% confidence level (1.8o). If we raise the required

significance level to 96% confidence (e.g. expect 1 out of 28 to be variable

by chance) there are 5 variable sources. The strong sources would have had to
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vary by > 30% and the weaker sources by > 50% to be detected as variable by

this criteria. We thus conclude that for Seyfert I galaxies-variability by >

50% on timescales from 1/2 to 1 1/2 years is uncommon.

The average luminosity of the variable sources, log T - 43.16 ± .47 ergs/sec,
A

is - .2 of that of the non-variable sources log U ^ 43.91. If one includes
A

the narrow emission line galaxies (Mushotzky 1982) whose X-ray luminosities

are similar to that of low luminosity Seyfert I's one constructs Figure 5. In
this figure one can see that the probability of variability of radio-faint
emission line galaxies seems to be inversely related to their X-ray
luminosity, at least on these long time scales. A similar result can be

derived from the Ariel 5 data.of Marshall, Warwick and Pounds (1981). The
situation for radio bright objects is quite different. Most of the radio
bright AGN detected by HEAO-1 are variable. A similar result was"obtained by

Halpern (1982). Of the 13-objects in his sample more luminous than 1044

erg/sec, the 6 which are radio bright were variable, while only 2 of the 7
radio quiet sources varied. Thus, at a given X-ray luminosity, radio bright
sources tend, on long time scales, to be more variable than radio quiet ones.

B. Intermediate Time Scales

There were 13 Seyfert I's bright enough in the HEAO-1 data to look for day to
day X-ray variability. With the exception of NGC 6814 and NGC 4151 none of

the sources showed variability > 60% on timescales from 1-4 days with most of
the upper limits indicating < 30% variability. We thus conclude that
intermediate term variability, 1-4 days is a rare occurence in the X-ray flux

from Seyfert I galaxies. For the narrow emission line galaxies there were 5

of 17 observations that indicated variability. The amplitude of variability
in all but one of these was •< 50% and the timescales were > 2 days. In this
sample of Seyfert I's and NELG's the only objects that showed evidence for

variability on < 4 day timescales were low luminosity objects. We therefore
conclude from this relatively sparse data that large amplitude, Al/I > .5,
variability on time scales from 1-4 days is also rare.
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C. Short Time Scales

The HEAO-1 pointed data (Tennant et al. 1981; Tennant and Mushotzky (TM) 1983)

has excellent sensitivity, Al/I ̂ .1 or better, to variability on timescales
from 5-30,000 seconds. As shown by TM in a sample of 54 observations of 38

objects only one object showed variability on timescales less than three

hours. Three objects, NGC 3227, NGC 4151 and MCG 5-23-16, showed evidence for

variability consistent with a time scale of - 1 day. Thus rapid X-ray

variability is also unusual in AGN. (For a more extensive discussion of these

data see TM 1983).

This is not to say that such rapid variability is unknown. There are at least

two well documented cases of large amplitude, Al/I > .5, short
timescale, T < 3 hours, variability known, NGC 6814 (Tennant et al. 1981) and

NGC 4051 (Marshall et al. 1983). These observations are very tantilizing.

Why do these objects show the "expected" short term variability while none of
the others do? We note that NGC 4051 and NGC 6814 are among the least
luminous of all AGN. However we shall leave interpretation of this result for

future theoretical speculation.

D. Summary

Contrary to most recent discussions (e.g. Pounds 1979) the HEAO-1 data show

that large amplitude Al/I > .5 variability of the X-ray flux from AGN is rare

on all time scales from seconds to years. For a few objects (e.g. NGC 4151)

the characteristic time scale is - 1 day (but even for NGC 4151 there were

only two "1-day flares" in 29 days of observation). It is possible (e.g.

MX 509) that quite a few objects may vary on a timescale of weeks but much

better data is needed (TM 1983).

It is unclear what constraints the non-detection of variability place on

theoretical models. However it is clear that whatever the model it must not
be very similar to those that successfully produce the short time scale

variability in Cyg X-l.
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One obvious model (cf. TM 1983) would be one in which the X-rays come from a

large volume e.g. R > 1 lightday (2 x 10^ cm), which is a requirement of most

synchrotron self Compton (SSC) models. If one insists that the production of

X-rays be associated with a massive blackhole then one is led to the

conclusion that Mg^ > lo" MQ. Since for most of these objects the total

luminosity is less than 1(T" ergs/sec one can infer that these objects emit

less than 10~3 of the Eddington luminosity. Such sub-Eddington accretion is

consistent with stable flow (Krolik and London 1983). I find it interesting

that, with the exception of NGC 6814, both the X-ray spectral and temporal

behavior is consistent with SSC models. However consistency is not proof and

clearly more detailed observations are necessary as well as models with more

predictive power.
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FIGURE CAPTIONS

Figure la - The HEAO-1 2-40 keV spectra of 10 Seyfert I's. The LX value is

the 2-10 keV X-ray luminosity.

Figure lb - The HEAO-1 2-40 keV spectra of 4 broad line radio galaxies.

Figure 2 - The spectral index distribution of emission line active galaxies.

Figure 3 - A plot of energy index, a, versus T* = KT/mc^ for a variety of
optical depths, T. The dashed lines are for non-relativistic
models, the solid line for relativistic models (Pozdnyakov, Sobol
and Sunyaev 1976).

Figure 4 - Spectral index distributions for a variety of objects (see
Rothschild et al. 1983 for references).

Figure 5 - Time variability on a 6 month scale vs. L .



TABLE I: X-RAY SPECTRAL PARAMETERS FOR BROAD LINE ACTIVE GALAXIES

22

NAME

NH(xlO")

log(2-10) HEAO-1 HEAO-2

POSITION TYPE Lx(keV)

Spectral Index

HEAO-1 HEAO-2 HEAO-1

2-40 keV 0.7-4 keV 20-100 keV Notes

MK 335

MK 590

NGC 931

MCG8-11-11

NGC 3227

NGC 3783

NGC 4151

NGC 4593

1C 4329A

MK 279

MK 464

NGC 5548

ES0141-G55

NGC 6814

0003+19 Seyl

0212-010 "

0225+311

0551+464

1020+201

1136-375

1208+397

1237-08

1346-301

1352+696

1353+338

1415+254

1917-588

1940-104

43.5

43.6

43.3

43.9

41.9

43.2

42.68

43.1

43.67

43.7

44.3

43.67

44.2

42.7

< 1.1

< 1.8

6-5-e!o """
2.7̂ 1'g <.56

5.0±4.0 —

2.9+1.6 —

- 10 P.C.

< 4.5

< 1.8 .53+. 11

< 0.9

<0.9

<1.2 <.76

<.32

3.2+1.6 —

n 7fl •"
°'78-.18

°*63-'.28

1.25+.37

°-93-:i8
°-51-*.24

0.59+.17

0.50±.02

°-67-:53

°-88-:l9
0.39+;}?

0.68+.11

0.88±.15

0.42+.33

— ---

—

—

•76-i35

— —
.93+1.1

.53±.07

8+.2

.41±.28

—
.26̂  .71 + . 17

1.4̂ -J .69±.92

.49+. 49

2

2

2,3

2,3

3

3

3

3

2



MK 509

NGC 7213

NGC 7469

MCG-2-58-22

NGC 526a

NGC 2110

NGC 2992

MCG-5-23-16

NGC 5506

NGC 7582

3C111

3C120

3C382

3C390.3

Cen-A

3C273

2041-109

2206-474

2300+086

2302-090

0121-353

0549-075

0943-140

0945-310

1410-030

2315-426

0415+379

0430+052

1833+327

1845+797

1322-928

1226+023

" 44.3

11 42.6

11 43.8

" 44.7

NELG 43.65

" 43.16

" 43.18

" 43.34

" 43.0

" 42.6

BLRG 44.7

11 44.41

11 44.87

44.4

Radio 42.6 ' •
Gal
QSO 45.8

<0.54 <.4

<1.2 —

<0.55 <.18

<0.90 <.24

<4.3
7-4-l:4 —
1.61.9 —

l'7 0̂.7 —
4-9-i!6 —
— —

<1.1 <2.4

<1.6 <.3
4-9 7

2.7_2*g <.39

<4.9

-13

<.45 <.ll

0.63±.10

n fiR+-30
°'65-.20

n 7fi+'25
°'78-.20

0 55+'10' -.04

0.52̂ °
0.801.15

0.791.10

0.84±.17

0.751.15

-.691.15

n QD+U>yU-.13
4- ?"}n -J2 'U>/ -.05
+ 3?°-93-:28

0 65+-50U'bt>-.25

0.62+.04

0.41+.02

•93.*45 -471.26

— —

.881.3

.531.25

— —

— —

— —
.991.43

— —

— —
0 0+1'°U'U-.40

+ 3
°-4I 10 -40±-34

+ 7o.i •'
~ • o

.401.37

0.631.04

.45̂ '̂  0.671.14

3

2

3

2

2

2,3

3

2

1,3

2

2,3

2,3

NOTES: 1 Possibly variable spectrum
2 Flux is variable (from HEAO-1 data only) on 6 month time scale
3 Power law significantly better fit than thermal bremsstrahlung

, P.C. = partially covered
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