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SUMMARY

This lecture summarizes V/STOL aircraft developed in the United States and describes concepts considered

for future applications. The discussion is limited to non-helicopter types of vehicles. In particular, past

V/STOL aircraft will be reviewed, and some lessons learned from a selected number of concepts will be high-

lighted. The only current concept described is the AV-8B, which was developed by modifications to the British

Harrier. Configurations recently proposed for the future subsonic, multimission aircraft and the future super-

sonic fighter/attack aircraft will be described. Emphasis in the lecture will be on these supersonic concepts.

1. INTRODUCTION

In the history of aviation development, visions of vertical-takeoff and landing (VTOL) flight preceded

visions of fixed-wing operation. Leonardo da Vinci proposed a lift fan VTOL version in 1483- an idea that

would have to wait some 475 years to become reality. Even as the conventional aircraft's appearance and

successful development was paced by the requirement for a relatively lightweight power plant, the development

of the VTOL concept obviously needed a major breakthrough in the ratio of engine power to weight. VTOL capa-

bility has been achieved in the helicopter, but the additional desire for high-speed flight and maneuverability

resulted in a continued search for other approaches. The surge to achieve VTOL operation occurred soon after

World War II (WW II) when large thrust-to-weight jet and turboprop engines became available. Particularly in

the United States, a vast proliferation of VTOL concepts were designed and tested in the period following

WW II.

There were many reasons for the failure of some of these concepts to become operational, including a lack

of a requirement for VTOL operation, in addition to a need for further technological development. Although a

sharp cutback in VTOL flight articles occurred in the U.S. in the late '60s, studies have continued by the

Department of Defense (DOD) to weigh the cost effectiveness of various VTOL designs and to consider the impact

of the related aeronautical and propulsion disciplines that have improved over the years.

The intent of this lecture paper is to briefly review (in chronological order) some of the past VTOL con-

cepts in the United States (non-rotorcraft) and to summarize the lessons learned, either good or bad. Hope-

fully, some of these lessons learned will influence present and future concepts developed in the U.S. The

prospect of accomplishing this will be left for the reader to ponder, as the paper continues with a description

of the present (AV-8B) and proposed concepts.

2. PAST CONCEPTS

Although only a small measure of operational utility has resulted from the large number of VTOL concepts

developed and tested in the post-WW II period, valuable information was obtained from these programs which can

help guide the design of future vehicles. In contrast to the European approach, which used jet-lift exclu-

sively for the vertical thrust mechanism, a wide variety of lifting principles were examined in the U.S. In

part this was due to the differing mission requirements specified by the Air Force, Army, and Navy, and also

due to a "flight research" attitude which prevailed on the DOD/NASA ad hoc advisory committees. For this

paper, only those vehicles which achieved some form of flight evaluation are discussed; unfortunately, this
results in the exclusion of some interesting concepts such as the XFV-12A. The material presented herein is

taken from Refs. 1 and 2, which give additional details on the aircraft presented here as well as a description

of additional concepts.

2.1 Tail Sitters

In the late 1940s, a U.S. Navy program to permit VTOL operation from small ship platforms spawned several

tail-sitter designs; i.e., the vertical attitude takeoff and landing (VATOL) aircraft concepts. Two were

turboprops, the Lockheed XFV-I (Fig. 1) and the Convair XFY-1 (Fig. 2), and the other the jet-powered Ryan X-13.
Of the turboprop types, the Convair XFY-1 achieved a more complete VTOL operational evaluation; the Lockheed

XFV-1 highly tapered, straight-wlng design made the transition to vertical flight only at altitude, using a

jury-rigged, landing-gear cradle for conventional takeoff and landings.

The Convair XFY-I, which had a delta wing planform and was powered by an Allison YT40A-14 turboprop, made

its first vertical flight in August 1954; six transitions to conventional flight were successfully completed

before testing was curtailed because of engine and gear-box reliability problems.

In retrospect, the XFY-1 and the other VATOL concepts had some serious fundamental limitations which were

not fully appreciated in the early years of VTOL aircraft testing. Foremost among the deficiencies was the

lack of STOL operational capability which could improve the poor payload and range capabilities of these air-

craft. The benefits to be gained from STOL capability were not recognized during the early development of

these VTOL concepts. Although dispensing with a conventional landing gear improved the empty weight fraction

for these VATOL aircraft, some form of gear was required on the vertical and horizontal tail surfaces. Not

only were these landing gears limited to relatively low allowable sink rates, but as can be appreciated from

the photograph of the Lockheed XFV-1 (Fig. 1), tip-over tendencies were a constant worry in gusty air and on

uneven ground, particularly with the propellers turning. Another problem was the pilot skill required to

operate these tail-sitter designs in landing approach and touchdown because of (1) the unusual spatial orien-

tation where the pilot looked over his shoulder and down, (2) the sensitivity to atmospheric turbulence, and

(3) reduced control power near touchdown. The precision of flightpath control offered by these concepts was,



needlessto say,lessthandesired.In addition,hoveringovera givenspotandtouchingdownpreciselywas
extremelydifficult.

Althoughverticaltakeoffend transition to conventional flight was easily carried out, the transition

from conventional flight to landing approach utilized by the Convair XFY°I was somewhat unorthodox in that a

zoom climb was made to achieve a vertical attitude for the descent and to reduce airspeed (altitude gain of
about 3,000 ft).

The only jet VATOL, the Ryan X°13 Vertijet, which first flow in May 1956 (Fig. 3), was more successful,

completing over 120 flights. It used a high-wing, delta planform and was powered by a Rolls-Royce Avon turbo-

jet. In part because of the concern for operating the turbojet engine close to the ground, the X-13 was flown

from an elevated position on a vertical platform. Although it had deficiencies similar to those of the

Convair XFY-1 from the standpoint of the lack of STOL capability for increased payload and range, as well as

some limitations in precise flightpath control in approach and hookup, the aircraft satisfactorily demon-

strated the potential for VATOL operation from a portable landing pad. These tests were carried out in spite

of an undesirably large positive dihedral effect (particularly at high angles of attack), and heavy buffet in

transitioning from conventional to low-speed flight as the wing operated through the stall angle-of-attack

range.

On the positive side, no hot-gas ingestion or aerodynamic suck-down were evident and the high-speed per-

formance potential was not compromised by the VTOL features of these designs.

2.2 Bell Air Test Vehicle and X-14 Aircraft

The Bell Air Test Vehicle (ATV) (Fig. 4) was a proof-of-concept vehicle and the first jet VTOL aircraft
to fly in the United States (1953). Using a high wing with a "T" tail layout, and powered by two Fairchild

J-44 turbojet engines and a separate Poulouste compressor for reaction-control jets, the ATV was flown from a

platform to reduce exhaust ingestion effects. Although it never made the transition to conventional flight, it
effectively demonstrated that this VTOL design could indeed be flown at low airspeeds using a simple reaction

control system with no stabilization augmentation system (SAS). As a result, work proceeded on the design

and development of the Bell X°14 vehicle, which had a much broader flight envelope.

The X-14 (Fig. 5) used Beech Bonanza wings, engine bleed air nozzles at the aircraft extremities for

hover control, and Bristol Siddeley Viper turbojet engines with cascade thrust diverters. It first hovered

in February 1957 and transitioned in May 1958. This configuration clearly demonstrated the detrimental effects

of engine gyroscopic cross-coupling, aerodynamic suck-down, and hot-gas ingestion in hover operations. No

STOL performance potential (favorable lift-induced flow)'was possible with the type of cascade thrust-

deflection system used. Partially vectored thrust caused undesirable random flow which seriously affected

precision of low-speed flightpath control. Because of this, the thrust could not be rapidly vectored from

forward acceleration to a partial vectored position for STO operation, as is done for the Harrier.

It is of interest to note that in spite of a long, successful, trouble-free, flight operational history

(over 25 yr), the cascade-vector principle used on the X-14 has not been used in any subsequent U.S. VTOL

designs; however, the Russian experimental YAK-36 ("Free-hand") used a similar VTOL principle.

2.3 Bell XV-3 Tilt Rotor

The XV-3 tilt-rotor aircraft (Fig. 6) transitioned in December 1958, with a two-bladed rotor system. It

was powered by a single piston engine in the fuselage. It had a positive aerodynamic ground effect, but

could not hover out of ground effect. The XV-3, tested extensively at NASA Ames Research Center, disclosed

that the design had good STOL performance capability by virtue of favorable induced flow effects, rapid tran-

sition with only small trim changes, and a wide speed and angle-of-attack corridor.

Maximum speed was limited by a pitch and yaw dynamic instability associated with destabilizing side forces

on the rotor blade which was forward of the center of gravity. This was aggravated as blade angle was

increased for high-speed operation. This instability could have been reduced by stability augmentation or a
larger tail volume or both.

In general, the performance and handling qualities of the XV-3 were favorable enough to warrant proceed-

ing to a more advanced (higher-performance) tilt-rotor vehicle (the XV-15, discussed later).

2.4 Ryan VZ3-RY Deflected Slipstream

The VZ3-RY (Fig. 7) was one of the more successful fixed-wing designs employing the deflected slipstream

principle for high lift. Powered by a Lycoming T-53-L-1 turboshaft engine, it first flew in December 1958,

with large (40% chord) double-slotted flaps and a hot-exhaust nozzle for pitch and yaw control. The VZ3-RY

clearly demonstrated good STOL performance; however, hover capability was limited by ineffective turning of
the slipstream, recirculation, and random flow disturbances in ground effect (IGE). Improvements in low-speed

capability were obtained during tests at NASA Ames Research Center by installing a full-span leading-edge slat.

Although this lift improvement allowed hovering out-of-ground-effect (OGE), slipstream recirculation precluded

making a true VTOL vehicle of this design. In addition, transition with this concept required precise pilot

techniques because of static pitch instability at high CL, very large pitch trim changes with flap deflection

and engine power changes, and poor flightpath control in steep approaches as power was reduced to descend.

2.5 Boeing-Vertol VZ-2 Tilt Wing

The VZ-2 (Fig. 8) high-wing, "T" tail configuration first flew in August 1957, with the first transition

in July 1958. It was powered by a Lycoming YT53-L-1 turboshaft engine with cross-shafting between the two

propellers. The VZ-2 successfully demonstrated the good STOL performance potential of the tilt-wing concept.

Because of low pitch-control power and no SAS to aid the low inherent pitch damping, hover operations had to be

restricted to calm air conditions. Tests at NASA Langley Research Center disclosed the need to provide good

wing leading-edge stall protection during deceleration or descent when power was reduced. Transition to



wing-supportedflight imposednolimitations,lendingconfidenceto proceedto high-performancetilt-wing
designs.
2.6 DoakVZ-4DuctedFan

TheVZ-4(Fig.9), a low-wingconventionalplanform,first flewin February1958,poweredbyaLycoming
YT53turboshaftenginewithcross-shaftingto tilting ductsat eachwingtip. Thisconfigurationsuffered
fromlowinherentcontrolpoweraboutall axes,sensitivityto ground-effectdisturbances,largesideforces
associatedwiththelargeducts,andalarge(positive)dihedraleffectwhichrestrictedoperationto calm-air
conditionsandnocrosswinds.NolargeSTOLperformancegainwasevidentwiththisdesign.Transitionto
conventionalflight couldbemaderapidly(17sec);however,largenose-uptrimchangesrequiredcarefulspeed
andduct-angleprogramming.Thedecelerationand/ordescentcorridorwasrestrictedbyduct-lipstall as
powerwasreduced.Althoughthisaircraftwaslimitedin low-speedandhovercapability,it indicatedthe
feasibilityaswellastheinherentproblemsof thetilt-ductconceptwhichhelpedtheX-22designwhich
followedandis describedlater.
2.7 LockheedXV-4AAugmentorConcept

TheXV-4A(Hummingbird)(Fig.10)madeits first conventionalflight in July1962andfirst transition
in November1963.TheXV-4Awasa7,200-Ib,two-seat,twin-engine(JT-12turbojet)vehiclewhichusedthe
engineexhaustdirectedintoanaugmentorjet ejectorsystemcontainedin thefuselageto provideincreased
verticallift. Jet(bleed-air)reactionnozzlesonthreeaxeswereusedfor hovercontrol.Goodlow-and
high-speedperformancepotentialexistedforthis concept(estimated530mph),becausetheverticallift capa-
bility wascompletelyenclosedin thefuselageandfull enginethrustwasavailablefor conventionalflight.
STOLperformancewaspoor,however,becauseof thelargeramdragassociatedwithturningtheairflowthrough
theaugmentationsystemandthelackof favorableflowoverthewinginducedbytheaugmentorexhaustto
increaselift. Hoverperformancewascompromisedbyinadequateaugmentorefficiency,aerodynamicsuck-down
(approximately5%),andhot-gasingestion.Theaircrafttrimpositionin hoverwasnose-up,whichincreased
thepossibilityof hot-gasingestionasforwardspeedwasincreased.Flowmixingin theaugmentorreducedgas
temperaturefrom1,200°Fat theengineexit to 300°Fat theaugmentorexit. Animportantlessonwaslearned
duringtransitionattemptsin whicha strongpitch-upwasencounteredat 60knots.Anunusualoperational
procedurewasusedto getthroughthiscritical speedrange;enginepowerwasreducedwhenthepitch-up
occurredandthenaddedastheaircraftwasin thedynamicprocessof pitchingdown.Thisprocedurewastoo
difficult andtheaircraft(andpilot)werelostduringtransitionin June1964.
2.8 RyanXV-5AandXV-5BFan-in-Wing

TheRyanXV-5VTOLdesign(Fig.11)wasa9,200-Ibtwin-engine,tri-fan, turbojet-poweredresearchair-
craft; it hoveredin June1964andfirst transitionedin November1964.Twofansin thewingsandathird in
theforwardfuselagefor pitchcontrolprovidedverticallift. Thisvehiclehadmanysuccessfulflights
becauseof extensivegroundandfull-scalewind-tunneltestprogramsthatpinpointedpotentialproblemareas
beforeflight. Thelift-fan conceptprovedto berelativelyfreeof mechanicalproblems.Amoderatedihedral
effectandlowroll-controlpowerlimitedcrosswindoperationto 12-15knots.Althoughpositiveaerodynamic
lift wasinherentin this design(favorablefountaineffect),hot-gasingestionfromtheexhaustof thetip-
turbinefandrivedegradedlift-off thrustbyasmuchas15%until awheelheightof 10ft wasattained.
Operationaltechniquestominimizegroundeffectsincludedlifting off ina slightlynose-highattitude,
keepingthetail to thewind,andgainingheightasrapidlyaspossible.ForseveralreasonsSTOLperformance
wasextremelypoor:(1) largeramdragof thethreefans,(2) lowhorizontalaccelerationbecauseof limited
turningof exhaustflow(maximumfan-thrustanglewas45°),and(3) lowthrust-vectorrotationrate. The
transitioncorridorwasmarginallyadequatebecauseof limitedforwardthrustandtheneedto abruptlyincrease
angleof attack(about12°) to gainaerodynamiclift whenthewingfandoorswereclosed.Becauseof a
strongnose-upforcewithwingfanstart-up,a largereductionin angleof attackwasrequiredbyelevator
input. This,togetherwithfanoverspeedtendencies,increasedconversiondifficulties. Low-speedstall char-
acteristicsincludedapotentialdeep-stallproblem.NASAtestsof theXV-5Bdisclosedflightpathcontrol
problemsduringsteep(upto 20°) deceleratingapproachesincludingthefollowing:(1)powermanagementwas
compromisedbydualheight-controlmethods(lift spoilageorenginespeed)(pilot preferso_neleverfor power
management),and(2)therewasaneedto minimizeaerodynamiclift becauselongitudinalstaticstability
changedadverselyasspeeddecreased.

Thisconfigurationhaslimitedhigh-speedpotentialbecauseof therelativelythickwingsectionneeded
to housethelift fansandvectoringhardware.

Severallessonswerelearnedfromoperationaldemonstrationsof theXV-5A.Onedemonstrationinvolveda
largepitchtrimchangein convertingfromconventionalflight. Theaircraftwasobservedto pitchdown
abruptlyfromlevelflight (about45°) duringtransitionto powered-liftflight. (Thepilot ejectedjust
beforegroundcontactbutwaskilled.) Theaccidentwasattributedto inadvertentselectionof full nose-down
stabilizerpositionat toohighanairspeed.Anotherconcernof thisdesignwasthesusceptibilityof the
fansto foreignobjectdamagewhenthevehiclehoveredneartheground.
2.9 Ling-Tempco-VoughtXC-142Tilt Wing

TheXC-142tilt-wing(Fig.12)usedfourT64-GE-1engineswithcross-shaftingto fourpropellersanda
tail propellerfor pitchcontrol.Thefirst conventionalflightwasmadein September1964,thefirst hover
in December1964,andtransitionin January1965.Hoverof theXC-142wassatisfactorywithnoadverseflow
upsets,and precise spot positioning was good. This configuration produced no adverse lateral-directional
characteristics in sideward flight to 25 knots. In slow forward flight, a long-period (20-sec) oscillation

was apparent which could lead to an uncontrollable pitch-up. On one occasion full-forward stick did not

arrest the pitch-up, whereupon the pilot reduced engine power, the nose fell through, and the aircraft was

extensively damaged in a hard landing. STOL performance was not as good as predicted, and low-speed con-

trollability was compromised IGE by several factors, including (I) severe recirculation of propeller slip-

stream for wing-tilt angles in the range 40 ° to 80 ° (speed range 30 to 60 knots), producing large-amplitude

lateral-directional upsets; (2) weak positive, neutral, and negative static longitudinal stability with speed
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changes; and (3) low directional control power. The transition corridor was satisfactory, with ample

acceleration/deceleration capabilities. Higher drag inherent in the configuration geometry resulted in poor
cruise performance.

Many successful demonstration flights were made with the XC-142, some directed at commercial applications;
however, the complexity of the design and the deficiencies noted would have made FAA certification difficult.

A failure of the drive shaft to the tail propeller (pitch control) in low-speed flight caused a fatal crash

which curtailed further development.

2.10 Curtiss Wright X-19A Tilt Prop

The six-passenger X-19A aircraft (Fig. 13) had twin intershafted engines, a tandem high wing, and four

tilting, large-chord propellers. These were designed to develop large radial (lift) forces in conventional

flight, thereby reducing wing-area requirements and subsequent drag. The first hover flight was made in
November 1963. Transition tests progressed to about 120 knots, but the aircraft never completed transition.

Poor mechanical control system characteristics, not peculiar to the concept, severely penalized low-speed oper-
ation and made precision hover impossible. Upsets caused by random-flow IGE further increased pilot workload

in hover. A positive ground effect was observed up to wheel heights of 4 to 5 ft. Low downwash velocities and

lack of hot-gas ingestion were favorable features of this design. Control and height coupling was a problem,

in part because of sluggish height-control response (engine rpm was varied instead of collective prop pitch).
A pilot induced oscillation (PIO} tendency in height control was encountered as a result of these character-

istics which were not concept-inherent. A moderately favorable STOL performance could be expected with this

configuration as well as good cruise performance because of the clean (low-drag) design. One prototype crashed
because of a fatigue failure of a gearbox mounting. This caused the left rear propeller to separate from the

aircraft during transition tests. This exemplified an inherent deficiency of this VTOL (lift) arrangement:
to safely transmit power to the extremities of the planform, very strong (and fatigue-resistant) structures

must be incorporated with an obvious weight penalty.

2.11 Bell X-22A Ducted Fan

This tandem-wing ducted-fan/propeller X-22A aircraft (Fig. 14) was powered by four GE T-58 turboshaft

engines in the rear fuselage interconnected to the ducted fans such that in the event of an engine failure the

remaining engines would drive all four fans. The first hover flight took place in March 1966, and transition

was completed in June 1967. Hover operation OGE in no wind was rated excellent, with no perceptible hot-gas

ingestion. A 12% positive thrust increase was generated IGE by the favorable fountain. Airframe shaking and

buffeting occurred at wheel heights up to about 15 ft, and cross-wind effects were quite noticeable because of

large side forces generated by the ducts. Vertical cross-wind landings required an excessive bank angle to

avoid lateral drift. STOL performance was rated good by virtue of the increased duct-lifting forces. High-

speed performance was limited by inherent high drag associated with the four large ducts. Transition to con-

ventional flight could be made easily because of a wide transition corridor; however, inherent damping was

low. Deceleration and descent at low engine powers caused undesirable duct "buzz" as a result of flow separa-

tion on the lower duct lips. Vortex generators appreciably improved this flow-separation problem.

2.12 Bell XV-15 Advanced Tilt Rotor

The Bell XV-15 research aircraft (Fig. 15), a modern version of the XV-3, is powered by two Lycoming

LTC IK-4K engines rated at 1800 shaft hp each. This aircraft first hovered in May 1977. Two interconnected

25-ft-diameter three-bladed rotors are used with a blade twist of 45° from root to tip. Hover characteristics

are similar to those of other tandem-rotor helicopter configurations in that wind direction changes rotor

span-loading, affecting hover precision. The concept has a large hover envelope (30 knots sideward and

30 knots rearward) with no handling-qualities limitations. There is an unsteadiness when hovering close to

the ground which disappears above a wheel height of 6-12 ft. Transition to conventional flight is easily

accomplished with this concept because of a wide speed corridor, a large reduction in power required for level

flight, and good (0.4 g) acceleration capability. Trim changes are small, and stability and damping are ade-

quate to minimize unwanted flightpath excursions.

In conventional flight, a unique aircraft longitudinal response (which has been called "chugging") occurs

in gusty air; it is attributed to gust-induced angle-of-attack changes on the propeller blade. No undesirable

limits in stability or damping (which restricted high-speed flight in the XV-3 aircraft) have appeared to

speeds of 300 mph. Stalling behavior in conventional flight is mild, with ample warning and no roll-off. In

the event of an engine failure, the aircraft can be either landed at low speeds with the propellers windmilling

or brought to a hover-type landing in an autorotative mode. One-engine-out hover performance is not possible

with the power currently available. Reconversion characteristics permit slow or fast decelerations with

adequate descent rates and a wide speed corridor. A variable tilt rate for the rotors would appear to enhance

operational flexibility.

This design shows the best potential for combining good hover performance with reasonable cruise effi-

ciency. It remains to be seen if the relatively complex propulsive system can achieve a low-cost maintenance
record and high reliability.

2.13 Lessons Learned

An overview of the development of a wide variety of V/STOL concepts has served to identify several prob]em

areas which, when considered collectively, make it easier to understand why no fixed-wing commercial V/STOL

design exists today, and why only one type has achieved military operational status.

Foremost among the reasons for lack of acceptance were poor handling qualities, some unexpected and some

ignored in the design stage. Deficiencies in handling qualities were serious enough to cause the loss of
several aircraft and pilots. The dominating factors were the inadequate control power to trim out the moments

associated with power-induced effects, ground-effect disturbances, and changes in power, flap setting and
speed. Flightpath control in landing approach was less than desired, particularly for the VATOLs and tilt-

wing vehicles with power reduced for steep descents.



Theneedfor somedegreeof SASfor all lift conceptsin hoverandlow-speedflight wasapparentfor
safelycarryingoutevensimpleoperationaltasks,particularlyin turbulence.Formanytypes,VFRoperation
wasmarginalandIFRcapabilityimpossiblebecauseof lowinherentstabilityanddamping.

Marginalperformancerestrictedoperationalevaluationsfor manyV/STOLconcepts.Somevehiclesexhibited
marginalperformancein transitionto conventionalflight. Theneedfor goodSTOLperformance,avirtuenot
sharedbymanyof thevehicles,wasnotappreciatedat theonset.V/STOLaircraftthateffectivelyutilize
propulsion-inducedflowto augmentaerodynamiclift havethebestchanceto betrulycompetitive.Severalof
theaircraftlackedgoodlow-andhigh-speedcompatibilityin thatthefeaturesthatprovidedVTOLcapability
severelycompromisedhigh-speedperformance.

Mostof theaircraftsufferedin severalwaysfromgroundeffects.Reingestionof engineexhaustlowered
takeoffthrust,andexhaustfloweffectsresultedinaerodynamicsuck-downfor mostjet-poweredconcepts.
Grounderosionwasamajorprob3emfor all turbojetoperations.Noisefromtheturbojetengineswasamajor
deficiencyfor com_rcialoperation.Recirculationof thepropellerslipstreamresultedin performancedegra-
dationandstabilityandcontrolproblemsfor tilt-wingtypes.Thesignificanceof theseground-effectprob-
lemswasnotappreciatedat theaircraftdesignstageandthereis acontinuedneedfor betterprediction
techniques.

3. PRESENTCONCEPT
TheonlyV/STOLfighteraircraftcurrentlyin servicein theUnitedStates(MarineCorps)is theAV-8A

HarrierdevelopedbyBritishAerospace.Thisaircraftis describedin anotherlecturein thisseries,soit
will notreceiveattentionhere.Rather,thehigher-performanceAV-8BHarrierII, developedbyMcDonnell
Douglasandthemajorsubcontractor,BritishAerospace,will bereviewed.Sincetheconceptis wellknown,the
discussionwill bebrief, focusingprimarilyonthedifferencesbetweentheAV-8AandAV-SB.Atpresent,four
full-scaledevelopmentAV-8Baircraftareflying,andproductionis underwayfor thefirst squadronof AV-8Bs,
scheduledto beoperationalby1985.

Figures16and17showtheAV-8Baircraftin hover.Threeviewsaregivenin Fig.18. Thepropulsion
systemis asingle21,500-1b-thrust,Rolls-RoycePegasus11turbofanenginewithfourrotatingexhaustnozzles.
Theserotatingnozzlesdirectthrustverticallyfor VTOLorat intermediateanglesfor STOLoperation.In
cruiseflight, thrustis directedto therear,andthrustvectoringcanbeusedto improvemaneuverability
throughouttheflightenvelope.AircraftattitudecontrolduringV/STOLandhoveris accomplishedbyreaction
controlslocatedat thewingtips, thenose,andthetail. Acanonis availablefor air-to-groundor air-to-
air attack.Sevenstorestationsareavailablefor avarietyof bombs,flarelaunchers,rocketpods,AIM-9
missiles,guidedweapons,and/orexternalfuel.

Anumberof changesweremadeto theAV-8Adesignto developtheAV-8BHarrier11. Thesearesummarized
in Fig.19togetherwithadrawingshowingtheinteriorarrangementof theaircraft. Anumberof advanced
technologieshavebeenincorporatedintotheAV-8B,andthesearesummarizedin Fig.20. Ofnoteis thenew
winghavingasupercriticalairfoil for improvedlift andcruisecharacteristics,plusgreaterfuel capacity.
Graphite-epoxy/compositematerialsareusedforthewing,ailerons,flaps,horizontalstabilator,rudder,and
outriggerfairings. Redesignedinletsandfuselage-mountedlift-improvementdevicesenablegreaterlift for
verticalandshorttakeoffandfor moreefficientcruise.Araisedcockpithasbeenincorporatedto improve
visibility. Apositive-circulation,inboardflap is usedto increaseSTOLcapabilityandawingrootleading-
edgeextensionto improvemaneuverability.

4. FUTURECONCEPTS
ThepastandpresentV/STOLaircraftwhichhavebeendescribedarecharacterizedbyactualhardware.As

for thefutureconcepts,thedescriptionswill bebasedonextensivestudiesconductedbytheU.S.Government
andindustry.Insomecases,theconceptsdescribedareseveralyearsoldandmanynotnecessarilyrepresent
thecurrentthinkingof theorganizationinvolved.However,theconceptsrepresentthepossibleapplications
of variouspropulsivelift systemsandarethereforeappropriateto includein this paper.

Twoclassesof futurevehicleswill beconsidered.Thefirst is thesubsonic,multimissionaircraft,some-
timesreferredto as"TypeA,"buthereinreferredto asthemedium-speedconcept.Thesecondis thesupersonic
fighter/attackaircraftwithtwinor singlecruiseengines.Thefighteraircraftwill begiventhemajor
attentionin thepaper.
4.1 Medium-SpeedConcepts

Duringthepastseveralyears,thesubsonic,multimissionV/STOLaircrafthasreceivedconsiderableatten-
tion in theUnitedStates,primarilyasaresultof theNavy'sdesireto developaversatileaircraftto per-
formanumberof criticalmissionsfromeitherlargeorsmallsurfacevessels.ThesemissionsincludeASW,
AEW,COD,Tanker,SAR,MarineAssault,andMissileer.Morerecently,aV/STOLaircraftof this typeis of
interestto performotherspecializedmissions,suchasrapiddeploymentof forcesandheavylift logistic
transport.

NumerousV/STOLaircraftconceptsto fulfill theseroleshavebeenstudiedbytheU.S.Governmentand
industry.Theseconceptshaveincludedanumberof approachesto thepropulsivelift system.Theconcepts
describedarenotall-inclusive,butareintendedto serveasexamplesof theapplicationof thevariouspro-
pulsivelift approaches.It shouldbenotedthattheconceptsdescribedrepresentthethinkingof thecontrac-
tor involvedat thetimeof thestudyandmaynot,in all cases,bethecurrentlypreferredconcept.
4.1.1Boeing

In therecentpast,Boeingstudiedseveralapproachesto themedium-speedconcept.Twoof theseare
brieflydescribedhere.
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One concept features two tilting nacelles and a forward lift fan. An artist's rendering of this concept

is shown in Fig. 21. The two tilt-fan engines, with a pressure ratio of approximately 1.3, are used for both

hover and cruise flight. The nose-mounted lift fan is used for hover and transition only. The tilt engines

and nose fan are interconnected _y a mechanical system. Pitch and roll control in hover are provided by

differential collective fan blade pitch, and yaw control is provided by movable vanes in the fan efflux.

Another concept studied by Boeing features a blown flap system, (Fig. 2_). Two fixed-fan engines (pres-

sure ratio of about 1.15) are mounted on the wings. The exhaust is directed below the wing, and in hover is

directed downward by triple slotted trailing edge flaps. Also in hover half of the fan exhaust is directed

downward in front of the wing through "chin" nozzle ports (Fig. 22). In hover, roll control is achieved by

differential fan blade pitch, pitch control by angular change in the trailing-edge flaps and the chin exhaust

vanes, and yaw control by differential motion of the flaps and vanes.

4.1.2 General Dynamics

A medium-speed concept studied by General Dynamics, Fort Worth Division, features a powered lift system

referred to as ABLE (Advanced Blown Lift Enhancement). The heart of this system is a "lifting nacelle" inte-

grated into the wing that vectors the thrust of turbofan engines by using a series of movable flaps to make up

the nozzle as illustrated in Fig. 23. One flap forms the upper surface of the two-dimensional nozzle, and two

flaps form the lower surface. The upper flap has two slots. The upper forward slot forms the high-aspect-

ratio nozzle for the turbine engine exhaust, and the upper aft slot is a boundary layer control slot. The

intent is to energize the external boundary layer and thus maintain attached airflow over the "lifting

nacelles" to produce significant gains in STOL and transition performance and in aircraft controllability in

these modes of flight. In forward flight, the flaps are arranged as shown on the left in Fig. 23, and in

transition flight the flaps are deflected into intermediate positions as in the center of the figure. In
hover flight (right in Fig. 23) the lower aft flap becomes a part of the aft wall of a vertical-thrust nozzle.

The lower forward flap becomes the forward wall of the nozzle and provides a generous radius of the inside of

the turn to reduce separation.

This propulsive lift system has been used in a configuration (A-311) illustrated by the model in Fig. 24.

A three-view sketch is shown in Fig. 25, and the means of providing folding capability for a Navy configura-

tion is illustrated in Fig. 26. Reference 3 gives a more complete description of this concept.

Four turbofan engines are used in the lifting nacelles of configuration A-311. The fans are cross-shafted

together using bevel gears in the fan nose bullets for engine-out considerations. Two load compressors are
mounted between the inboard engines and the fuselage and are driven directly from the cross shaft. These

compressors provide co_ressed air to the pitch trim/control system in the aft fuselage. This compressed air
drives two air turbines which in turn drive two fans. The fan exhaust passes through dual nozzles which can

be aimed up or down using a movable deflection system. Roll control in hover is achieved by biasing the
thrust of the main engines either left or right through the cross shaft. Yaw control in hover is achieved by

differentially deflecting the main engine nozzle flaps fore and aft on opposite sides of the aircraft.

4.1.3 Grumman

A medium-speed concept studied extensively by Grumman features a tilt-nacelle arrangement for propulsive

lift. This concept (Design 698) is shown in Fig. 27, which depicts the various modes of flight from hover, to

transition, to cruise. In this concept, all V/STOL related equipment have been located within the engine
nacelles. Some of the features of the concept are noted in Fig. 28. Grumman has been working on the 698

concept since about 1976, and they have accumulated over 6000 hr in wind tunnels and on simulators.

References 4-15 describe these study and test activities.

Design 698 is a twin tilt-nacelle configuration controlled in vertical flight through horizontal and ver-
tical vanes located in the turbofan exhaust flow, supported by booms attached to each nacelle. In conventional

flight, control is provided by spoilers, an all-movable horizontal stabilizer, and a rudder. The large-scale

model of the 698 undergoing tests at NASA Ames uses two General Electric TF34-100 turbofan engines, which are

proposed also for the demonstrator aircraft.

As shown in Fig. 29, the control vane assembly behind each engine rotates with the nacelle and thereby
maintains its position in the engine's exhaust flow. Each vane assembly consists of one horizontal vane

crossed by a pair of vertical vanes. The horizontal vane of each assembly is outfitted with a 30% chord

antibalancing flap that is geared to move in opposition to the vane's deflection with a 1:1 ratio. The verti-

cal vanes are positioned to remain clear of the hottest region of the engine exhaust flow.

During vertical flight, the pitch of Design 698 is controlled by symmetrical deflection of the horizontal
vanes on the two control vane assemblies. Yaw is controlled by differential deflection of the two horizontal

vanes as depicted in Fig. 30. Deflection of the vertical vanes and differential operation of variable inlet

guide vanes in front of the two engines work together to provide roll control (Fig. 31). Differential opera-

tion of the variable inlet guide vanes amounts to differential thrust control of the two engines. Collective

variation of thrust is used to control height during vertical flight.

4.1.4 Lockheed

Lockheed has conducted studies of medium-speed V/STOL concepts for the past several years (Refs. 16-20).

In their current approach, a split-fan, fixed-nacelle concept is employed for propulsive lift and aircraft

control/trim during vertical/transition operation. This propulsion concept is shown schematically in Figs. 32

and 33, and is described in detail in Ref. 17. The nacelle internal arrangement is shown in Fig. 32, and an

example of the control concept is illustrated in Fig. 33. A cross duct and associated nacelle plenums provide

cross-flow capability from one nacelle to the other. Figure 32 shows twin engines installed in nacelles below

and integral with the wing. Each nacelle has two exhaust nozzles, a thrust-vectoring nozzle located aft of the

aircraft center of gravity and a fixed-position nozzle located forward of the aircraft center of gravity, each

having variable exit area. Airflow to the forward nozzles is supplied from a plenum located circumferentially
around the fan duct aft of the fan exit.



Duringgroundaccelerationandcruiseoperation,theentireenginefanandcoreflowsaremixedand
exhaustedhorizontallythroughtheaft nozzle.Duringverticaloperationtheenginecoreair andaportion
of thefanair exhaustsverticallythroughtheaft nozzle.Theremainderof thefanair is exhaustedthrough
theforwardnozzle.Themodulatedsplit of fanair betweentheforeandaft nozzlesis thatrequiredto
maintainpitchtrim.

Duringverticalflight, pitchcontrolcanbeprovidedbythenacelleforeandaft nozzlesorbyusing
fanbleedair fromthecrossducttoanaft fuselage-mountednozzle(Fig.33). Yawcontrolis providedby
differentialvectoringof thenacelleaft thrustdeflectors.Inadditionto theseexamples,Lockheedhas
studiedanumberof optionsfor controlof thesplit-fanconceptduringverticalflight (Ref.17). These
optionsincludenacellefanair transfer,fanbleedreactioncontrol,compressorbleedreactioncontrol,and
combinationsof these.Thesystemselectedwill dependto alargedegreeontherange/payloadmixfor the
missionunderconsideration.

Lockheedhasdevelopedanumberof configurationsfeaturingthesplit-fanpropulsive-liftconcept.These
configurationsareeithertwin-or four-enginedesigns.Onafour-engineconfiguration,sufficientcrossflow
canbeprovidedduringanenginefailureto maintainadequatelift, trim,andcontrolfor asafevertical
landingat reducedgrossweight.Onatwin-enginedesign,thecrossflowshouldallowawings-levelattitude
for crewejectionduringasingle-enginefailure. Figure34showsthreeviewsof atwin-enginedesignusing
FI01engineswithcross-ductcoupling.Asimilarbutsomewhatsmalleraircrafthasbeenconfiguredusingtwo
TF34engines.Threeviewsof afour-enginedesignusingTF34enginesis shownin Fig.35. Intheirstudies,
Lockheedconductedanassessmentof cross-shaftingversuscross-ductingasameansof couplingmultiengine
concepts.Thecross-ductingapproachresultedin anappreciablyhigherusefulloadcapability(Ref.16).
4.1.5McDonnellDouglas

Overthepast10yr orso,theMcDonnellAircraftCompany(MCAIR)hasconductedstudiesof medium-speed
V/STOLutility aircraft. Candidateconceptsincludedgasandmechanicallycoupledlift-fan aircraft. Anumber
of theseconceptswerewind-tunnel-tested.Parallelto thislift-fan activity,MCAIRconductedtheAV-8B
programandgainedvaluableexperiencein thedesignof vectoredthrustconcepts.Thisexperiencewasrecently
(1980)appliedto thedesignof anothermedium-speedconceptfeaturinga"two-poster"propulsivelift system.
All of theseconceptsarebrieflydescribedin thefollowingparagraphs.

Thefirst concept,proposedin 1973for Navyconsideration,wasagas-drivenaircraft(Model260)utiliz-
ingathree-fan,lift pluslift/cruisepropulsionsystem.Figure36is anartist's renderingof theMCAIR
gas-drivenversionof the260design.Thepropulsionandvertical-flight-controlsystemareillustratedin
Fig.37. In thissystem,pitchandroll controlareaccomplishedviaenergytransferbetweenthefanassem-
blies,andyawcontrolis achievedthroughdifferentialthrustvectoring.Thrustvectoringof thelift/cruise
enginesis providedbymeansof aMCAIR-developedvented"D"nozzle(Ref.21). Figure38illustratesthe
characteristicsof thisnozzlein boththecruiseandVTOLmodes.Thenozzleconsistsof movabledeflector
hoodsandasplit yawvane/closuredoorassemblyattachedtoa singlesupportbeamcentrallylocatedonthe
bottomof thenozzlestructure.In thecruisemode,theyawvanedoorsareclosedto formaflat bottomduct
anda"D"shapedexitarea(Fig.38). Fortransitionto verticalflight, theclosuredoorsareeachrotated
90° to formasinglesplit-yawvane.Longitudinalthrustvectoringis thenaccomplishedbyrotationof the
deflectorhoodelements.Lateralvectoringis obtainedbydeflectionof thesplit-yawvane.

The"D"nozzleutilizesaconceptreferredtoas"venting."Thisis accomplishedbyremovingtheinside
wallof theelbowturnof aconventionaldeflectornozzledesign,whichhasbeenshownto improvethe90° vec-
toringperformance(Ref.22). Theperformancecharacteristicsof the"D"ventednozzlewasdemonstratedin a
NASAAmes/MCAIRtestprogram(1981)usingaTF34engine.Theresultsarediscussedin Refs.22and23.

In1977MCAIRproposedamechanicallydrivenversionof theModel260to theNavy.Thisconceptis shown
in Fig.39. Thebaselineaircraftfeaturedalowwing,threeengines,andamechanicallydriventhree-fan
arrangement.Thispropulsionandvertical-flight-controlconceptis illustratedin Fig.40. Thethirdengine,
mountedforwardof theverticalfin, is usedonlyduringV/STOLoperation.All jet-borneaircraftcontrolis
providedbydifferentialoperationanddeflectionof thepropulsionsystem,eliminatingtheneedfor aseparate
reaction-controlsystem.All threefansandturboshaftenginesareidentical,minimizingdevelopmentandmain-
tenancecosts.Lift/cruisethrustfromeachof thedirect-drive,wing-mountedfan/engineassembliesis pro-
videdviathe"D"ventednozzle.

In 1980MCAIRinitiateddefinitionof atwin-enginevectored-thrustconceptwithasimplerpropulsion
systemthanthethree-fanModel260concept.Thisconceptis designatedModel276andis depictedbythe
artist's renderingin Fig.41anddiscussedin Ref.24. TheModel276is ahighwingdesignwithtwoshoulder
mountedhighby-passturbofanengines.Asshownin Fig.42,attitudecontrolin powered-liftflight is pro-
videdbyanengine-bleedreaction-controlsystemin pitch,differentialthrustmodulationin roll, anddiffer-
entialthrustvectoringin yaw.Powertransferbetweenenginesbymeansof crossshaftingpermitsawiderange
of thrustmodulationfor roll control,includingengine-outbalancecapability.Atechnologydemonstratorof
thisconceptusingtwo"D"ventednozzlesandTF34engineshasbeendefined.Missionperformancecharacteris-
tics of theModel276aircraftarediscussedin Ref.24.
4.1.6Rockwell

Duringthestudiesof "TypeA"aircraft,oneof theconceptsdevelopedbyRockwellis adesignthat
employslift-augmentingejectorsfor thepropulsivelift system.Theejectorsarelocatedspanwisein thewir_g
asshownin theartist's conceptin Fig.43. Thisfigureshowsthefull-spanejectorsopenin thehoveroper-
atingmode.Theejectorsarepoweredduringverticalflight bytheflowfromthetwoturbofanpropulsion
systemsat thewingroots. IntegratingtheejectorsintothewingasRockwellhasdonein thisconceptpro-
videsgoodtransitionandSTOLperformance,sincetheexhaustflowsfromtheejectorsactasajet flapto
increasethecirculationlift of thewing.

Rockwellhasconsideredtwovariationsin thepropulsionsystemfor thisconcept.Dependingonthedesign
requirements,eachnacellecontainseithera singlecorewithafanor twocoreenginesdrivingasinglefan.



Thelatterpropulsionarrangementallowsthelossof acoreenginewithoutlossof theaircraft. Thisis
basedonthephilosophythatthemajorportionof enginefailuresarecorerelatedratherthanassociatedwith
thefan.

Figure44givesthreeviewsof theRockwellejector-in-wingconcept.Aninterestingfeatureof the
designis thetwinboomswhichsupporttheverticaltails, thehorizontaltail, andtheaft reactioncontrol
system(RCS)pitchpipes.Alsovisiblein thefigurearethetwinductsfor thetwocoreenginesin each
nacellelocatedbelowthefaninlet.

Forpitchcontrolduringhover,Rockwellusesforwardandaft pitchpipes.Rollcontrolcanbeprovided
bywing-tipRCSorbydifferentiallift fromtheejectors.Yawcontrolis achievedbydirectingtheflowfrom
oneejectoraft andtheotherforward.Duringup-and-awayflight, aileron-typecontrolsareused,asare
ruddersontheverticaltails andanelevatoronthehorizontaltail.
4.1.7 Vought

Forthepastseveralyears,Voughthasstudiedamedium-speedconcept(V-530)thatfeaturesatandem-fan
propulsionsystem(Refs.25and26). Figure45is anartist's renderingof anearlyV-530configurationwhich
emergedfromstudiesin supportof theNavy's"TypeA"subsonicmultimissionV/STOLnotionalrequirements.
Theaircraftis ahighwingmonoplanewithmoderate-aspect-ratiowingandwinglets,andwithtwoshoulder-
mountedenginenacelles.TheV/STOLpropulsionsystemis essentiallyself-containedin thetwonacelles.
Eachnacellecontainsacoreengine,twofixed-pitchfanswithvariable-inletguidevanes,andassociated
inletsandnozzles.

Figure46illustratesthetandem-fanpropulsionconcept.Twofansonacommonshaftarelocatedaheadof,
andaredirectlydrivenby,aturboshaftengine.Smallfandiametersresultingfromtheuseof twofansin
eachnacellepermitdirectdrivebythecoreenginewithnoreductiongearbetweenengineandfans. Also,the
tandemplacementof theserelativelysmallfansresultsin asmallernacellediameterandthereforereduced
drag.Eachfanhasits owninlet andnozzle,andflowthroughthetwofansis maintainedseparatelyat all
times.Theforwardinlet suppliesair to thefrontfan,whichhasanozzlethatcanbevectoredfromaverti-
calpositionfor hover,to anintermediatepositionfor transition,andto anaft positionfor cruise
(Fig.46). Theupperinlet feedsboththeaft fanandthecoreengine(whichis superchargedbytheaft fan).
Thecoreandaft fanflowsaremixedanddischargedthroughtheaft nozzle.Thisnozzleis alsovectorable
for VTOLandup-and-awayflight.

Figure47illustratesthepropulsionsystemarrangementin thetwonacellesandthecrossshaftingbetween
thetwonacelles.Acommonfansizeis usedin all fourfanapplications.Poweris transferredfromthegas
turbinein onenacellethroughthecrossshaftto thefansin theoppositenacelleto maintainthrustsymmetry
duringsingle-engineoperationor to provideasymmetricthrustfor lateralcontrolduringhover.Variable-
inlet guidevanesoneachfanprovidethrustmodulationfor pitchandroll control(Fig.48). Differential
deflectionof theleft andrightnacellenozzlesprovidesyawcontrol.

Theforwardtwo-dimensionalnozzleusesa two-piecedeflectorfor vectoringthrust(Fig.46). Variation
of nozzleareaincruiseis achievedwitha smallflapmountedonthenacellesurface.Theaft two-dimensional
nozzlevectorsmixedflowfromthecoreengineandaft fan. Thenozzledeflectoris hingedalongthelower
portionof thenacelleandrotatesdownwardfor verticalflight. Arotatinglowerflapis usedto achievethe
nozzleareasrequiredfor cruise.

Voughthasconductedanumberof testsof thetandem-fanconfigurationandpropulsionsystemcomponents
overthepastseveralyears.Thesehaveincludeda seriesof inlet testswithNASALewisResearchCenter,
frontandrearnozzletests,poweredmodelteststoevaluategroundeffects,andlow-speedwind-tunneltests.
References25-33describesomeof theseactivities.
4.2 SupersonicFighterConcepts

TheV/STOLandshorttakeoffandverticallanding(STOVL)fighterconceptsdescribedin this sectionwere
developedin tworesearchprogramsjointlysponsoredbyNASAAmesResearchCenter,theNavy,andtheindustry.
TheNavyorganizationsthatparticipatedweretheDavidTaylorNavalShipResearchandDevelopmentCenterand
theNavalAir SystemsCommand.Thefirst researchprogramconsideredtwin-cruise-engineconceptsandthe
secondconsideredsingle-cruise-enginedesigns.Althoughmanyconceptshavebeenproposedovertheyears,it
is felt thatthoseconsideredin thesetwoprogramsrepresentareasonablecrosssectionof thecurrent
thinkingin theUnitedStates.

Thekeyingredientin theresearchprogramswasacontractedeffortwiththefollowingobjectives:
1. Identifyandanalyzeawidevarietyof high-performanceV/STOLconceptsthathavepotentialutility to

fulfill theNavyfighter/attackrole.
2. Estimatetheaerodynamiccharacteristicsof theconfigurationsandassesstheaerodynamicuncertain-

ties requiringadditionalresearch.
3. Defineawind-tunnelprogram,includingmodeldesignandconstruction,to exploretheseuncertainties

andprovideaninitial high-qualityaerodynamicdatabasefor Navy,NASA,andindustryuse.
Theinformationobtainedin thefirst of theseobjectiveswill beemphasizedin thispaper.

Thestatementof workfor thiscontractorstudywasjointlypreparedbytheNavyandNASAAmestoempha-
sizeaerodynamictechnologydevelopmentofV/STOLfighter/attackaircraft. Theseguidelineswerenotintended
necessarilyto reflectspecificfuturenavalaircraftperformanceoroperationalrequirements.Rather,the
intentwasto providea limitedsetof guidelinessufficientto allowthecontractorsto performaconceptual
aircraftanalysisbasedupontheirdefinitionof amissionandpayload.Thefollowingis a briefdescription
of theguidelinesfurnishedin thestatementof work:



i. Theconceptualaircraftanalysisis for ahigh-performanceV/STOLconceptwithpotentialto fulfill
theNavy'sfighter/attackroleafter1995.

2. Theaircraftshallhavesupersonicdashcapabilitywitha sustainedMachnumbercapabilityof at
least1.6.

3. TheaircraftshallbeoperationalfromlandandfromshipssmallerthanCVswithoutcatapultsand
arrestinggear.Goodshorttakeoff(STO)capabilityis arequirement.

4. Toassurehighmaneuverperformance,theaircraftshallhaveasustainedloadfactor(NZs)of at
least6.2at Machnumber0.6,at analtitudeof 3048m(10,000ft) andat 88%VTOLgrossweight.

5. Theaircraftshallhaveaspecificexcesspowerat 1G(PSIG)of 274m/sec(900ft/sec)atMachnum-
ber0.9,at analtitudeof 3048m(10,000ft) andat 88%VTOLgrossweight.

6. Thefollowingaircraftweightsareto beusedasaguide:
Twinengine:VTOLgrossweight=9072to 15,876kg(20,000to 35,000Ib); STOsea-basedgross

weight=VTOLgrossweightplusapproximately5,436kg(10,000Ib).
Singleengine:VTOLgrossweight= 6,800 to 13,000 kg (15,000 to 30,000 Ib); STO sea-based gross

weight = VTOL gross weight plus approximately 3,630 to 4,540 kg (8,000 to 10,000 Ib).

The following sections describe the twin- and single-engine fighter concepts studied in the contract
efforts. The concepts will be described under headings relating to the contractor involved.

4.2.1 Twin-Engine Concepts

Four contractors proposed twin-engine designs that are described in this section. The contractors were:

General Dynamics, Fort Worth Division, Fort Worth, Texas; Grumman Aerospace Corporation, Bethpage, New York;

Northrop Corporation, Aircraft Group, Hawthorne, California; and Vought Corporation, Dallas, Texas.

Three horizontal-attitude takeoff and landing (HATOL) and two VATOL concepts are described. Northrop

proposed two concepts, a HATOL and a VATOL design.

Typical mission profiles used by the contractors for aircraft sizing are outlined in Fig. 49. These are
only examples as the contractors had some variations in such things as payload, combat time, and best cruise

altitude and velocity (BCAV). All concepts are single-place aircraft with two cruise engines. Each configura-

tion is briefly described in the following sections, and a complete description of the concepts and the wind-

tunnel test activities is given in Refs. 34-50.

4.2.1.1 General Dynamics

The configuration proposed by General Dynamics (Refs. 34 and 35) is a wing-canard HATOL concept that has

Alperin jet-diffuser ejectors as its vertical lift system. The design also features a vectored-engine-over

(VEO) wing-integrated airframe/propulsion system to achieve good transonic maneuvering and STOL performance.

In this design, the full engine flow is directed over the wing aft surface to augment the aerodynamic lift

through a jet flap effect. At low speeds, this is combined with spanwise blowing, which utilizes a portion of

the engine exhaust at high angles of attack to produce leading-edge vortex augmentation. Figure 50 shows
three views of the concept, and Fig. 51 presents isometric sketches of the configuration, showing the four

ejector-diffuser bays closed for up-and-away forward flight and open for vertical flight.

Two Pratt and Whitney augmented-turbofan study engines are used. The ejector diffusers are located

between the fuselage and nacelles in the thick root section of the wings (Fig. 51). For vertical takeoff and

landing, the engine flow is diverted to the four ejector bays, where it is injected in both primary and
diffuser nozzles. Pitch control during vertical flight is accomplished by thrust modulation of the forward

and aft ejectors; yaw control is achieved by vectoring the ejector flow. Wing-tip reaction controls are used

for roll control. The ejector-diffuser nozzles and doors fold into the wing, nacelle, and fuselage to form a

smooth configuration for up-and-away flight (Fig. 51). An augmentation ratio of 1.70 (defined as the ratio of

total lift to isentropic thrust of the engines) is predicted for this concept at liftoff. A major advantage

of the ejector-diffuser lift system, of course, is its relatively cool footprint, which could be an important

factor for shipboard operation.

The VEO-wing feature has been studied by General Dynamics both in-house and under several Air Force con-
tracts. The engine flow exits above the wing surface (Fig. 50) through a two-dimensional convergent-divergent

exhaust nozzle operating in conjunction with the wing flap to provide vectored thrust for pitch control during

transition, improved STOL performance, and maneuver enhancement.

The configuration has a high-mounted variable-incidence canard, a low-mounted wing with trailing-edge

elevons/flaperons, and a single all-movable vertical tail. The air-induction system features two axisymmetric

inlets with aerodynamically operated blow-in doors for adequate flow during takeoff/landing and low-speed

flight.

For this study, General Dynamics sized the aircraft to a deck launch intercept (DLI) mission similar to

that in Fig. 49. The weapons consist of two advanced short-range air-to-air missiles, two advanced medium-

range air-to-air missiles, and one 30-mm gun with 300 rounds of ammunition. To perform this mission and meet

the statement-of-work maneuver guidelines, the aircraft has a VTO gross weight of 15,870 kg (34,987 Ib), a

length of 16.3 m (53.3 ft), and a wing-span of 11.4 m (37.3 ft). Some of the more important vehicle character-

istics are summarized in Table 1.
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Toserveasacomparativedesign,GeneralDynamicsconductedaparallelin-housedesignstudyof the
presentconceptwithaGeneralElectricremoteaugmentedlift system(RALS)insteadof theejector-diffuser
verticallift system.In thePJ_LS propulsion system, the fan air is collected and routed forward to a

burner/nozzle arrangement to provide propulsive lift. Figure 52 is a schematic of the RALS propulsion con-

cept. The General Dynamic RALS _oncept, shown in Fig. 53, uses the same wing/canard arrangement, the same

spanwise blowing feature, and the same podded engines, except that the nacelles are mere closely spaced than

on the ejector-diffuser configuration. The VEO-wing nozzle in this case has provision for full 90° thrust

deflection for vertical flight. A vectorable, two-burner, forward lift system is employed which uses fan air

from the variable-cycle engines. Sized to the same mission and payload, the PJ_LS concept has a VTO gross

weight of 14,810 kg (32,650 Ib), or approximately 1,043 kg (2,300 Ib) less than the ejector configuration.

4.2.1.2 Grumman

The second HATOL configuration is a lift plus lift/cruise concept proposed by Grumman (Refs. 34 and 36).

The configuration, shown in Figs. 54 and 55, is a wing-canard design that employs a General Electric RALS.

Grumman _w)dified an earlier V/STOL fighter design (Model 623) by incorporating a canard and a now wing to meet

the maneuver requirements in the present statement of work. Two General Electric variable-cycle augmented-

turbofan study engines are used with General Electric augmented deflector exhaust nozzles (ADEN) (Fig. 56).
The RALS forward lift element is a dual burner/nozzle design. To minimize the size of this forward lift

system, the ADEN nozzles are mounted at the wing trailing edge as far forward on the configuration as possible.

The ADEN nozzles not only provide vertical lift for takeoff and landing, but also have in-flight thrust
vectoring to enhance maneuvering (Fig. 56).

As shown in Fig. 54, the configuration features a high-mounted, variable-incidence canard with leading

and trailing edge flaps, an advanced variable-camber wing with leading and trailing edge devices, and twin

vertical tails. The canard has 5 ° of dihedral, and the wing has 10 ° of anhedral. The air induction system

consists of side-mounted, fixed-geometry inlets with top-mounted blow-in doors for increased airflow during
takeoff/landing and low-speed operation.

In conventional flight, longitudinal control is provided by the incidence of the canard augmented at low
speed and high angle of attack by the canard flaps; roll control is provided by asymmetric deflection of the

wing trailing edge devices; and directional control is provided by the rudder surfaces. In hover flight,

pitch control is provided by flow shifting between the forward and aft nozzles; wing tip reaction controls are

used for roll control; and differential lift/cruise nozzle deflections are used for yaw control.

The configuration has been sized to a deck launched intercept (DLI) mission similar to that shown in

Fig. 49. The weapons are two AIM-7 missiles, two AIM-9 missiles, and one internally mounted 20-mm gun and

ammunition. To perform this mission with a vertical takeoff and to meet the statement-of-work maneuver _uide-

lines, the configuration has a VTO gross weight of 17,112 kg (37,726 Ib). The length is 17.3 m (56.5 ft) and
the wingspan is 11.5 m (37.8 ft). Some of the other configuration characteristics are summarized in Table 2.

4.2.1.3 Northrop (HATOL)

The third HATOL concept is a lift plus lift/cruise design by Northrop (Refs. 34 and 37). This design is
one of two proposed by Northrop. Three views of the concept are shown in Fig. 57; an artist rendering of the

aircraft is given in Fig. 58. Northrop is using a General Electric RJ_LSconcept in this design with two

variable-cycle turbofan engines, ADEN nozzles, and a single forward augmentor lift system with a gimbaled

nozzle. The engine has a miniafterburner (IO00°F temperature rise) to provide additional thrust during combat.

This augmentation is not used for vertical takeoff or landing.

The configuration is a wing-canard design with two vertical tails mounted on twin afterbodies, as shown

in Fig. 57. The clipped delta wing has variable camber, using automatically phased leading and trailing edge

flaps. The canard is high mounted and all-movable. Side-mounted, two-dimensional inlets are used with topside

auxiliary inlet doors for takeoff. The two ADEN nozzles are mounted side by side on the aft fuselage center-

line between two wing-mounted afterbodies. These bodies have been shaped and located to provide: (1) a favor-
able area distribution, (2) twin surfaces for additional lift augmentation from flow entrained by the deflected

ADEN nozzles during takeoff, (3) favorable flow on the upper and lower wing surfaces, and (4) space for landing

gear, avionics and fuel storage, which in turn provides a means to adjust the center of gravity.

During takeoff and hover, pitch control is provided by thrust modulation of the forward and aft nozzles;
roll control by wing-tip reaction controls. Yaw control is derived from lateral deflection of the forward

nozzle. For conventional flight, the wing trailing edge elevons are used for pitch and roll control and pitch

stabilization. The all-movable vertical tails provide directional control and stabilization. The leading edge

flaps and canard surface are scheduled as a function of angle of attack and speed for optimum aerodynamic
performance. Thrust vectoring and combined canard/thrust deflection are used for maneuver enhancement.

For this study, a VTO gross weight of 13,608 kg (30,000 Ib) has been selected by Northrop as representa-

tive of a 1995 VSTOL aircraft designed to perform the Navy fighter/attack mission similar to that of the F-18.

To assist in configuration development during the study, an arbitrary fighter escort mission has been used.

To meet the statement of work maneuver requirements with a VTOL gross weight of 13,608 kg (30,000 Ib), the

aircraft (Fig. 57) has a wingspan of 9.9 m (32.6 ft) and a length of 16.0 m (52.5 ft). Some of the configura-
tion characteristics are summarized in Table 3.

When resized to perform a 926-km (500-n. mi.) fighter escort mission, the configuration has a VTO gross

weight of 14,424 kg (31,800 Ib) and a VTO wing loading of 2.87 kN/m 2 (60 Ib/ft2).

4.2.1.4 Northrop (VATOL)

The second concept studied by Northrop (Refs. 34 and 38) in the present effort is a VATOL concept shown in

Fig. 59 and as an artist's rendering in Fig. 60. The configuration is a tailless design that features a wing
leading edge extension (LEX) to maintain lift to high angles of attack. Top-mounted inlets are used to provide
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alowradarcrosssectionaswellasto freethelowersurfacefor efficientweapon/landinggearintegration
andto easematingwiththealightinggantry.

BothNorthropconceptshaveacommonwingwithleadingandtrailingedgeflapsautomaticallyprogrammed
to providevariablecamberfor optimumaerodynamicperformance.

In thisVATOLconcept,twinPrattandWhitneyvariable-geometry,nonafterburningturbojetenginesareused
withgimbaledaxisymmetricnozzleslocatedaft closeto theaircraftcenterline.Thetop-mountedair induction
systemhasfixedgeometry,two-dimensionalinletswithtopsideauxiliaryinlet doorsfor low-speedoperation.

Controlin theverticaltakeoffandlandingmodeis providedbythegimbalednozzles,whichcanbe
deflected±30° in pitchand±15° inyaw.Wing-tip-mountedreactioncontrolsprovideprimaryroll control;
antisymmetricpitchdeflectionof thenozzlescanbeusedfor auxiliaryroll control.In conventionalflight,
pitchandroll controlis providedbythetrailingedgeelevons,anddirectionalcontrolandstabilizationare
providedbytheall-movableverticaltail. Thrustvectoringin combinationwiththetrailingedgeflapsis
usedfor maneuverenhancement.

Theconfigurationhasconventionallandinggearfor overloadtakeoffandlandingin thehorizontalatti-
tude.Acapturinghookmechanismis integratedwiththenosegearto engagethelaunch-and-retrievalplatform
for VATOLoperations.

Severalmeanshavebeenexploredto provideamorefavorablepilot orientationduringtakeoffandlanding.
Thesemeanshaveincludedarotatingseatsimilarto theX-13concept,anarticulatingcapsule,andasystem
for hingingtheentireaircraftnose.Thepresentdesignemploysa tilting cockpitmodule.

Forthisstudy,aVTOgrossweightof 13,608kg(30,000Ib) hasbeenselectedbyNorthropasrepresenta-
tiveof a1995VSTOLaircraftdesignedto performtheNavyfighter/attackmissionsimilarto thatof theF-18.
Toassistin configurationdevelopmentduringthestudy,anarbitraryfighterescortmissionhasbeenused.To
meetthestatement-of-workmaneuverrequirementswithaVTOgrossweightof 13,608kg(30,000Ib), theaircraft
hasawingspanof 9.9m(32.6ft) andalengthof 15.8m(51.7ft). Someof theconfigurationcharacteristics
aresummarizedin Table4.

Whenresizedto performa926-km(500-n.mi.)fighterescortmission,theconfigurationhasaVTOgross
weightof 10,523kg(23,200Ib)andaVTOwingloadingof 2.73kN/m2 (57 Ib/ft2).

4.2.1.5 Vought

The final configuration is a VATOL concept proposed by Vought (Refs. 34 and 39). As shown in Figure 61,

the design features a fixed, close-coupled, high-mounted canard with trailing edge flaps, a midwing of low

aspect ratio, and a single vertical tail with a rudder. The wing has trailing edge flaps that are optimally

phased to operate throughout the flight envelope in unison with the canard flap to implement longitudinal and

lateral commands. Full-span leading edge flaps are automatically phased to maintain optimal camber for high

maneuver performance. Split-flap speedbrakes are located at the inboard wing trailing edge.

Side-mounted, two-dimensional, fixed geometry inlets (Fig. 61) supply air to two Pratt and Whitney

advanced technology, mixed flow, augmented turbofan engines. Blow-in doors are provided for low-speed opera-
tion. Axisymmetric convergent-divergent nozzles are mounted side by side in the aft fuselage. These nozzles

can be gimbaled ±15 ° in pitch and yaw to provide control during takeoff/landing, hover, transition, and

in-flight maneuvering. A reaction-control system in the wing tips provides roll control for vertical takeoff

and landing.

Conventional tricycle landing gear is used for short takeoff (STO) and conventional takeoff and landing

(CTOL) operation as well as to facilitate deck handling. A capture mechanism is integrated with the nose

landing gear to engage the landing platform grate for vertical attitude takeoff and landing. A tilting-seat

arrangement is employed to provide the pilot with a comfortable position in the VATOL mode of flight as well

as with a conventional seat position for cruise.

The aircraft has been sized to a DLI mission similar to that of Figure 49. The armament consists of two

AIM-7 missiles, two AIM-9 missiles, and one 20-mm gun with 400 rounds of ammunition. To perform this mission

with a vertical takeoff and to meet the statement-of-work maneuver requirements, the configuration weighs

10,603 kg (23,375 Ib) and has a wing span of 8.7 m (28.5 ft) and a length of 13.8 m (45.3 ft). Some of the

configuration characteristics are summarized in Table 5. Figure 62 shows the Vought VATOL concept operating
in the STO overload condition of 15,139 kg (33,375 Ib).

4.2.2 Single-Engine Concepts

Four contractors proposed designs that are described in this section. The contractors are: General

Dynamics, Fort Worth Division, Fort Worth, Texas; McDonnell Douglas Corporation, St. Louis, Missouri; Rockwell

International, Columbus, Ohio; and Vought Corporation, Dallas, Texas. The concepts are all single-place air-

craft with a single cruise engine. Each concept is briefly described in the following sections, and a complete

description is given in Refs. 51-60.

4.2.2.1 General Dynamics

The General Dynamics (GD) slngle-engine fighter concept (Refs. 51-53) combines both vectored thrust and a

thrust-augmenting ejector for vertical flight. This propulsive lift system is combined with a delta wing and
a tailless design (Configuration E7). The E7 hover configuration is shown in Fig. 63, and the cruise flight

mode is depicted in Fig. 64.

The guidelines for the development of this configuration were, first, that it be based on an existing

engine or, at most, on a near-term derivative. Second, the aircraft must be capable of STOVL, rather than pure

VTOL flight. Observations of AV-8A operations indicate that the Harrier rarely takes off vertically for a
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militarymission;theoverloadcapabilityprovidedbyashortdeckorgroundrunis usedmostoften. For
navaluse,however,theverticallandingprovidessuchsignificantadvantagesindeckcycletimesthatits
retentionis highlydesirable.Finally,theaircraftmustbecapableof ameaningfulnavalmission.The
lattersetsthemaximumhovergrossweightrequirement:(1)5%reservefuel, (2) fuelfor20minof sealevel
loiter, and(3)retentionof expensiveweapons(e.g.,AIM-7,AIM-9).

Anejectorconceptwasselectedasthepropulsivelift systemfor theGDconfiguration.Theejector
systemhasadvantagesbeyondprovidingthrustaugmentation;for example,it is significantthattheejector
exhaustis relativelycoolandthatits velocityis low. AlthoughburnersystemssuchastheRALSarecapable
of equallygoodaugmentation,andalthoughlift enginesareprobablythemostcompactsystemsavailable,the
environmentalandinlet ingestionproblemsassociatedwiththehotandhigh-velocityexhaustsof thesesystems
aresignificant.Anejectorsystempartiallyavoidstheseproblems.

Thepropulsivelift systemthatappearedattractivewastheejectorsystemdevelopedbydeHavillandof
CanadaworkingwithAmesResearchCenter(Refs.54-57).Thisejectorsystemhasmorevolumethanashort-
diffusertype,suchastheAlperinejector,butit hasasubstantialanddependableaugmentationratiothat
hasbeenmeasuredona large-scale,engine-drivenmodelat Ames.

However,all ejectorsystemspresentsomedifficulties,onebeingtheramdragof theentrainedair at
forwardspeeds.Thedatafromtheoriginalejectormodeltestedin theAmes40-by80-FootWindTunnelsug-
gestedthatanaircraftusingtheejectorwouldbemarginalin transitioningfromejector-bornetowing-borne
flight. Althoughit wasdemonstratedthatthiscouldbeovercomebyvectoringtheejectornozzlesaft, an
operationalaircraftwouldrequirecontrollablevectoranglesthatin turnwouldrequirecomplexactuation
systems.Onewayto avoidthisproblemis to ductonlypartof theengineflowto theejectorandto exhaust
theremainderto asingle,vectorablenozzle.Byusingfanair to powertheejector,theductweightsare
lowered,becauseof thecoolerflow,andtheinlet thermalreingestionbecomesmodest.

In theGDstudy,threeaircraftwereconsidered,aflight demonstratorandtwooperationalaircraft(a
thresholdandagoalaircraft). Theflight demonstratorwouldbebuilt aroundanexistingengineoravery
near-termderivative.Theprimarypurposeof thedemonstratorwouldbeto investigatetheVLandSTOendsof
theflight regimes,andthereforeafterburnerswouldnotbeincluded.However,thedemonstratorhasbeen
constrainedto possessthesameairframeastheoperationalaircraftsothatonlyextrapolationsrequiredfrom
theflightdemonstratorarepropulsional.In thedemonstrator,reaction-control-systempoweris providedby
anauxiliarypowerunit (APU).Thethresholdoperationalaircraftis definedasonewhoseenginethrustmay
beassumedto bedevelopedin thenormalcourseof enginegrowthduringthenext15yr or so,butwhichwill
requiretechnologicaladvancesprimarilyin theareaof reactioncontrolpowerprovidedbytheengine.The
goaloperationalaircraftrequiresamoreadvancedenginein orderto providesignificantlyenhancedhover
thrust. Againit is emphasizedthatall threeairframesareidentical.

Configuration. In the GD design, fan air is collected in an annular plenum aft of the engine fan stages

and is released into a duct that runs along the top of the fuselage (Fig. 65). This air can flow either into

an aft nozzle or into the forward ejector nozzles. The ducts are provided with valving to regulate the flow

rate of fan air to the ejectors and to an aft nozzle. An afterburner is placed in the duct forward of the aft

nozzle. The engine core flow exhausts through a separate, two-dimensional vectorable nozzle (Fig. 65). An

afterburner can be located in the core flow duct also. For vertical flight, the core flow is vectored down-

ward, and all fan flow is ducted to the ejectors. For up-and-away flight, the core flow is vectored aft, the

ejector doors are closed, and the fan flow exhausts through its aft nozzle. The afterburners are used as

required for acceleration and supersonic flight. For STO operations, the core flow is partially vectored and

the fan flow is split between the ejector and its aft nozzle as required for balance and acceleration. The

three modes of operation of the propulsion system are illustrated in Fig. 66.

Three views of the E7 configuration are shown in Fig. 67, and a dimensional summary is given in Table 6.

The forward fuselage, cockpit and canopy, and vertical tail are geometrically identical to those of the F-16A.

The wing has an aspect ratio of 1.67 and a leading edge sweep of 60° . The main landing gear is located in the

wing; the nose wheel is located in the forward, underside of the inlet. The aircraft is designed to a limit

load factor of 7 5 (11.35 ultimate), and approximately a 35% composite material usage is assumed. The avionics
weights are estimated on the basis of functional equivalence to that of the F-18.

Propulsion System. Although the demonstrator aircraft in the study uses a General Electric FIOI/DFE

engine, GD has evaluated other engines, including FIO0 and Pegasus derivatives as part of another study for

NASA Ames Research Center. A two-dimensional vectorable nozzle is used for the core flow and an axisymmetric

nozzle is used for the fan flow during up-and-away flight. The inlet system has a modified F-16 conformal

shape with a normal shock at supersonic speeds. Both the fan stream and core stream are equipped with after-

burning capability in the operational aircraft.

The ejectors are of the Ames/de Havilland type, with a diffuser area ratio of 1.6 and throat-area-to-

primary-nozzle-area ratio of 25.0. The ejector bays are located longitudinally in the wing root area. In

static tests at Ames Research Center, the de Havilland ejector system demonstrated an augmentation ratio

of 1.725 (Refs. 54-57). This was degraded to 1.63 for the present studies because of design compromises likely

in an actual aircraft. Figure 63 shows the ejector in the open position for hover.

Mission Performance. The primary mission for which the E7 is sized is the naval escort mission (Type

Spec. 169) shown in Fig. 68, with the interdiction mission secondary. These missions have been modified to

specify a 122-m (400-ft), zero-wind, zero-sink takeoff with vertical landing. The payload consists of two

AMRAAM plus two AIM-9L missiles. No gun is used. A summary weight statement of the operational aircraft is

given in Table 7.

Point performance parameters are shown in the first column of Table 8 for the goal operational aircraft.

The second column shows the performance calculated at 60% of full fuel weight in accordance with TS 169. The

E7 configuration meets or exceeds all performance thresholds. The radius for the escort mission is 402 km

(217 n. mi.) greater than that required by the specification, and is a direct result of sizing to meet the

interdiction mission with internal fuel. The performance values given in the third column are calculated at



13

88%VTOLgrossweight.Theyhavenomeaningin amilitarysense,butareincludedto provideameasureof
performancefor comparisonwithNASAguidelinesshownin thelastcolumn.
4.2.2.2McDonnellDouglas

TheconceptstudiedbyMcDonnellDouglas(MCAIR)is acanard/wingdesignwithswivelingnozzlesforward
andaft of theaircraftcenterof gravity.Thefour-posterconfiguration,MCAIRModel279-3,is shownin
Figs.69and70;Fig.69depictstheverticalflight configuration,andthecruiseflight modeis shownin
Fig.70. References51and58givedetailsof thisconcept.

Configuration. Model 279-3 features a close-coupled canard and side-mounted half-axisymmetric inlets to
provide air to a single engine with modulated fan-stream augmentation. Four swiveling nozzles provide thrust

vectoring capability for vertical flight as well as for in-flight maneuvering. Fan air flows through the

forward nozzles and the engine core flow exits through the aft nozzles. Modulation of the fan stream and

engine speed provides the capability of trimming center of gravity travel associated with fuel burnoff and

store loading. This modulation can also provide a portion of the pitch maneuvering control or can be used as

a backup system. The location of the aft nozzles near the wing trailing edge offers the potential of enhanced

circulation, translating into increased maneuverability and STOL performance. Thrust vectoring can increase
the sustained load factor of Model 279-3 by 0.2 g and the instantaneous load factor by 2.0 g's at 0.6 Mach

number at an altitude of 3,048 m (10,000 ft).

As shown in Fig. 69, the main landing gear of Model 279-3 are located fore and aft on the fuselage in a

bicycle fashion with outriggers in pods on the wing.

Three views of the MCAIR concept are shown in Fig. 71, and a dimensional summary is given in Table 9.

The wing has an aspect ratio of 3.0, a leading-edge sweep of 45 ° , and 9° of anhedral. The close-coupled

canard is mounted high on the inlet sides and has 0 ° of dihedral, a leading-edge sweep of 50 °, and an aspect
ratio of 3.0. The exposed area of the canard is 20% of the wing reference area. The single vertical tail is

mounted on the aft fuselage.

The configuration has a vertical takeoff wing loading of 3.34 kN/m 2 (69.7 Ib/ft2) and a tropical-day,
vertical-takeoff, thrust-to-weight ratio of 1.15 with full fan-stream burning.

Aerodynamic Surfaces. Pitch control is provided by the all-movable, close-coupled horizontal canard;

roll control by the differential ailerons; and directional control by the rudder. The wing leading and

trailing edge flaps and also the canard are deflected as a function of angle of attack and Mach number to
maximize maneuvering capability. The leading edge flaps also are used supersonically as decamber flaps to

reduce drag. The trailing edge flaps, which are plain flaps at small deflections, become single slotted flaps

at large deflections, for high-lift operation. These flaps, which are close to the aft nozzle, increase the
STOL lift. The location of the forward nozzle under the wing, rather than at the leading edge, also improves

lift during STOL.

The wing planform selection is based on a compromise between subsonic and supersonic performance. Sub-

sonic emphasis is on high sustained maneuverability requiring low drag due to lift. Supersonic emphasis is on

lower-lift-coefficient maneuvering conditions during which the minimum drag coefficient CDo is equally impor-

tant. The wing airfoil camber increases outboard on the wing. There is no twist at the wing-fuselage junc-

ture, but there is leading-edge-down twist at the wing tip.

Control System. The Model 279-3 has a digital fly-by-wire control system, which is necessary to augment
the subsonic longitudinal instability. This active control system also makes possible (1) engine/fan-stream

augmentation/reaction-control-system integration, (2) augmented thrust-vectoring control, and (3) coupled

flight/propulsion control.

A three-axis reaction control system (RCS), operating on engine bleed air, provides control moments inde-

pendent of dynamic pressure. During VTOL operation it provides the complete maneuvering control. The pitch

RCS is located in the aft fuselage and the forward lower mold line of the inlet, just forward of the nose gear.
The lateral RCS thrusts both up and down in opposite wing tips. The directional RCS, thrusting laterally in

either direction, is located in the aft tip of the fuselage.

During VTOL operation the thrust center is positioned by varying the engine speed and the fan-stream

augmentation, using the flight controller. Decreasing the forward nozzle thrust moves the thrust center aft,
with the level of thrust maintained by increasing the engine speed. This provides the static trim during

VTOL; transient control is provided by the pitch RCS.

Additional control is provided by the engine nozzle thrust-vectoring control (TVC). The fore and aft

nozzles are symmetrically deflected a small amount for rapid load-factor changes, with rapid turns plus

deceleration followed by acceleration. Differential deflection of the fore and aft nozzles is used for STOL

control to augment the canard deflection in controlling the high-lift flap pitching moment.

Propulsion System. A single, advanced Pratt and Whitney thrust-vectoring engine (STF 561-C2) with fan-

stream augmentation serves as the propulsion system. It has a twin-spool turbofan gas generator utilizing a

two-stage fan and a five-stage low-aspect-ratio high-through-flow axial compressor with a single-stage, high-

pressure turbine and a two-stage, low-pressure turbine. The bypass ratio is 1.16, the overall pressure ratio
is 25.0, and the fan pressure ratio is 3.50. Table 10 gives additional propulsion system characteristics.

The forward, side-mounted nozzles incorporate fan-stream burning augmentors. There is no engine-core

augmentation associated with the aft nozzles. The half-axisymmetric, side-mounted inlets have fixed 16.5°

half-conical spikes.

Structure. Composites are used extensively in the Model 279-3. The structural weight consists of 41%

graphite epoxy, 21% aluminum, 13% titanium, 8% steel, and 17% other materials. Graphite epoxy is distributed

as follows: wing 50%, canard 52%, vertical tail 65%, fuselage 46%, and the engine section 55%.
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Mission Performance. MCAIR sized the configuration to the vertical-takeoff, supersonic, DLI mission

defined in Fig. 72. Weapons and ammunition are retained throughout the mission. To accomplish this mission

and remain within the guideline vertical takeoff gross weight of 13,606 kg (30,000 Ib), the aircraft has a

mission radius of 191 km (103 n.'mi.) and a vertical takeoff gross weight of 13,535 kg (29,840 Ib). With full

internal fuel [gross weight = 14,161 kg (31,220 Ib)] and a rolling takeoff of less than 15 m (50 ft), the

radius of the DLI mission is increased to 296 km (160 n. mi.) A weight summary for the vertical takeoff

supersonic DLI mission is given in Table 11.

Performance of the Model 279-3 and NASA guideline performance are shown in Table 12. As indicated, all

performance requirements are met or exceeded.

The STO characteristics of the Model 279-3 with full internal fuel have been determined by MCAIR for both
a flat deck and a 12 ° ski jump. For a 122-m (400-ft) flat-deck run'with zero wind over the deck, the

Model 279-3 has an STO gross weight of 18,960 kg (41,800 Ib) as shown in Table 12. With this same takeoff

run, the STO weight is increased 17%, to 22,135 kg (48,800 Ib) using the ski jump.

4.2.2.3 Rockwell International

The single-engine V/STOL fighter concept studied by Rockwell (Refs. 51 and 59), employs thrust-augmenting

ejectors for the vertical lift system. This propulsive lift concept is used in two tailless designs by

Rockwell. The baseline configuration has a double-delta wing planform. The alternative configuration has a

straight leading edge, clipped delta wing. The baseline design will be described first.

Baseline Confiquration. The baseline configuration is a tailless design with a double-delta clipped wing,
a top-mounted inlet system, fore and aft thrust-augmenting ejectors, and twin vertical tails mounted on the

aft fuselage (Fig. 73).

Rockwell selected the ejector concept for the propulsive lift system because of its low velocity and low-

temperature footprint compared with that of a direct-lift, deflected-thrust, or RALS concept. In the Rockwell

system, all of the mixed gas efflux (intermediate power) is diverted to the lifting system for vertical flight.

The lifting system is composed of fore and aft rectangular thrust-augmenting ejectors with end plates arranged

in a spanwise direction in each wing panel (Fig. 73). Each ejector unit consists of a pair of opposing Coanda

flaps with end plates and a fully deflectable centerbody (0° to 90°). Engine air is injected along the

shoulder of each flap and through the centerbody. The centerbody stows to form the upper mold line of the

wing and the forward Coanda flap retracts to form the lower mold line. For cruise flight, the thrust diverter

(upstream of the afterburner) is opened, allowing the engine efflux to flow through the conventional nozzle.

The sketches in Fig. 74 show the operation of the ejector system in various flight modes.

The long-chord, low-aspect-ratio wing contains the fore and aft ejectors in an aerodynamically thin sur-

face. Together with the highly swept leading edges, this delta shape should provide low wave drag. The highly

swept leading edges should also allow moderate leading edge radii to provide leading edge suction at subsonic

and supersonic speeds. Wing-trailing-edge elevons combined with moderate airframe instability provide increas-

ing camber to trim increasing lift. The long wing chord also shields the top inlet from body crossflow.

Three views of the baseline configuration are shown in Fig. 75, and lifting surface dimensional parameters

are given in Table 13. The wing has an aspect ratio of 1.83 and the leading edge sweeps are 48.1 ° inboard and
64.1 ° outboard. The wing thickness-to-chord ratio varies from about 0.037 inboard to 0.034 outboard. Twin

vertical tails with a leading edge sweep of 53.1 ° are mounted on the aft fuselage.

As shown in Fig. 75, the landing gear is a bicycle arrangement with the main fore and aft gear in the

fuselage. Outrigger gear are stowed in the end plates for the aft ejector.

The baseline configuration has a wing loading of about 2.11 kN/m 2 (44 Ib/ft 2) at vertical takeoff gross

weight. For this same weight, the maximum afterburning thrust-to-weight ratio is 1.41 (uninstalled, sea-level-
static, standard day).

Control. Control in the vertical flight mode is provided by differentially varying the fore and aft and

left and right ejector lift magnitude and direction. The ejector lift magnitude is reduced by moving the

trailing edges of the Coanda flaps closer together. This system is supplemented by a pitch-reaction-control

system for rapid pitch-control inputs.

Control and stability augmentation in conventional flight are provided by wing-trailing-edge elevons and

rudders. The control power and airframe instability are designed to permit operation at angles of attack from

0 to 90°. Additional control power and further reduced trim drag can be provided by an all-movable canard on

the lower shoulder of the forward fuselage.

Forward flight is achieved by retracting all flaps in a conventional manner. Control during the transi-

tion from vertical to conventional flight is accomplished by gradually changing from thrust-magnitude and

direction control to elevon-type control (i.e., both Coanda flaps in an augmentor segment move in the same

direction) as the augmentor flaps are retracted through 60° deflection. The yaw control reverts from a differ-

ential aft augmentor thrust-vector control to differential thrust-magnitude control, and finally to rudder
control.

Propulsion System. A single, advanced Pratt and Whitney augmented turbofan parametric engine serves as

the propulsion system. The bypass ratio is 0.54, the overall pressure ratio is 30.0, and the fan pressure

ratio is 3.60. Tab]e 14 gives additional engine characteristics.

The intermediate-power-to-vertical-takeoff gross weight ratio is 0.86. The ejector system augments the

engine intermediate-power gross isentropic thrust about 50% for vertical takeoff and landing.
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Thetop-mountedinlet systemhasasimplefixed-rampandis designedfor operationto amaximumspeedof
Mach2.0. Anauxiliaryinlet is providedto supplyadditionalair to theenginefor verticaltakeoffand
landingandfor conversionflight operations.

Structure.Thewingstructurefeaturesa largecentraltorqueboxplusa"backporch."Thebackporch
is thesurfacebetweentheaft augmentorandtheflap (Fig.75). Thecentraltorqueboxandbackporchact
in differentialbendingto provideastrong,stiff supportfor thewingouterpanel.Compositesareused
throughoutto minimizeweight.Theaugmentorductsutilizetitaniumaluminides,or fiber-or filament-
reinforcedtitaniumcompositesto accommodatethe642°C(1188°F)mixedgastemperature.

Mission Performance. The baseline aircraft was sized for a 278-km (150-n. mi.) radius vertical-takeoff,

DLI mission and for 556-km (300-n. mi.) radius short-takeoff DLI mission. The DLI mission is defined in

Fig. 76. Two AIAAM missiles are carried on the VTO mission and four are carried on the STO mission. No gun

is carried, and the missiles are excluded from the performance calculations. In order to meet these missions

and the guideline performance, the VTO gross weight is 10,866 kg (24,000 Ib), and the STO gross weight is

13,336 kg (29,400 Ib). Short takeoff distance is less than 122 m (400 ft). At 88% of the VTO gross weight,
the aircraft has a sustained load factor of 6.9 g at Mach 0.6 at an altitude of 3,048 m (10,000 ft). At

Mach 0.9 at an altitude of 3,048 m (10,000 ft) the PszG is 357 m/sec (1,170 ft/sec). The maximum speed

capability is in excess of M = 2.0. These performance characteristics are compared with the study guidelines

in Table 15. A summary of the baseline configuration weights is given in Table 16.

Alternative Configuration. The alternative configuration has a straight leading edge, clipped delta wing,

with the same top-mounted inlet, but with the forward augmentor oriented in a chordwise, rather than spanwise,

direction (Fig. 77). This configuration provides the same conventional flight benefits as the baseline con-

figuration and possesses the same key features. The major differences are the flexibility available for wing

planform design, the larger central wing structural torque box, and the increased capability for overload

external-store stations on the wing.

The aft spanwise augmentor is identical in concept and is very similar in size and shape to the baseline

configuration. The forward chordwise augmentor uses the side of the fuselage for its inboard Coanda flap and

a movable outboard Coanda flap to provide thrust-magnitude control and to fair out the wing root lower mold

line in conventional flight. A series of spanwise-oriented centerbodies swivel from 90° in vertical flight to

0° (stowed) in conventional flight as the aircraft transitions. In conventional flight the stowed center-

bodies form the upper mold line of the wing root.

Three views of the aircraft are shown in Fig. 78. Key lifting-surface dimensional parameters are pre-
sented in Table 17. The alternative wing has a straight leading edge of 60 ° sweep and a constant thickness-to-

chord ratio of 0.038. The aspect ratio and wing reference area are essentially equal to those of the baseline

configuration; the vertical tails are identical in both configurations.

The alternative configuration engine, avionics, weapons, and performance characteristics are essentially

the same as those of the baseline configuration. A weight summary of the alternative configuration is given

in Table 18.

4.2.2.4 Vought

The Vought single-engine V/STOL fighter, TF120, is a wing/canard design featuring Vought's series-flow,

tandem-fan propulsion concept. The tandem fan is a dual-mode, variable-cycle engine which will be described

later. Figure 79 shows an early version of the configuration and Fig. 80 is a later version in which the

canard has been mounted on the wing strakes. References 51 and 60 give details of this concept.

Configuration. Figure 81 shows three views of the Vought TF120 concept. The TF120 is a canard/delta-wing

configuration featuring extensive wing-body blending in both planform and cross section. Canard control sur-
faces are located on the wing strakes. Small booms extend aft from the wing to support twin outboard vertical

fins and ventrals. Both the fins and ventrals are canted inboard and both are all-movable surfaces. Two

small, variable-incidence control fins mounted on the lower corners of the inlets pivot from vertical to hori-

zontal depending on the flight regime.

The side-mounted inlets provide airflow to a single turbofan engine. A nozzle similar to the General

Electric ADEN is mounted aft and vectors the thrust from 0° to greater than go°. The landing gear is a con-

ventional tricycle design. The main wheels fold inboard and slightly forward into the blended-body section at

approximately the intersection of the strake and wing leading edge. The nose wheel retracts forward into the

nose just ahead of the cockpit.

Four AMRAAM missiles are mounted on the lower blended fuselage inboard of the wing root. A 20-mm Gatling

gun and 400-round ammunition drum are also located in the blended wing root area on the left side of the

aircraft.

Table 19 gives a summary of the geometry of the various aircraft surfaces. The wing has an aspect ratio

of 2.24, a leading-edge sweep of 50 °, and a thickness-to-chord ratio of 0.06 at the root and 0.05 at the tip.

The canard has a leading-edge sweep of 55° and a dihedral of 10°. The total canard exposed area is about 12%

of the theoretical wing area. The twin vertical tails have a leading edge sweep of 45 °. Ventral fins on the

forward, lower inlet surface have a total exposed area that is about 2% that of the wing theoretical area.

Based on the maximum vertical takeoff gross weight, the TF120 has a vertical takeoff wing loading of

3.47 kN/m 2 (72.4 Ib/ft 2) and a vertical thrust-to-weight ratio of 1.16. For this same gross weight and the

maximum augmented thrust for the high-speed flight mode (series flow), the thrust-to-weight ratio is 1.73.

Control. The TF120 is a control-configured vehicle with movable surfaces that can be optimally phased

throughout the operating envelope. In addition to providing direct lift and direct side force, this system

can cope with battle damage or random failures with fewer channels of redundancy than usually postulated for

fly-by-wire systems because of the multiplicity of controls.
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Theventralfinsbelowtheinletsareunitcontrolsurfaceswithtwoaxesof travel. Inadditionto
pivotingto generatenormalforces,thesesurfacescanbeadjustedto anydihedralanglebetween-15° to -75°.
Inthedownpositiontheyhelpgeneratedirectsideforcesandaidin directionalcontrol.At supersonic
speedstheyfoldoutto reducetherearwardshift in aerodynamiccenterandaugmentlongitudinalandlateral
control.Ata-45° settingthefinscanbeusedastwo-axiscontrolsfor gustalleviationandprecisiontarget
tracking.Theaft verticalfinsandventralfinsaremechanicallyindependent,all-movingcontrols.There-
fore,atotalof sixcontrolsurfacesareavailableto generatesideforces.Thefourventralsprovidecon-
trol effectivenessintothepost-stallregimeto enhancecombatagility.

Forcecontrolsavailablefor longitudinalandlateralcontrolarewing-trailing-edgeflaps(elevons),
canards,andtheinlet ventralfins. Atrailingedgeflapattachedto theADENprovideslongitudinaltrimand
high-speed,thrust-vectoringcapability.

Withthecontrolsurfacegroupunderintegratedsoftwarecontrol,it is possibleto compensateforwide-
rangingflight conditions,controlnonlinearities,andcomponentfailuresto achieveahighlevelof system
performance.However,a high-qualityaerodynamicdatabasewill berequiredto realizethis potential.

Duringverticaltakeoffandlandingandduringhoverflight, theseries-flowtandem-fanconceptachieves
longitudinalcontrolbydifferentialmodulationof theforeandaft thrust. Thisis accomplishedusingvari-
ableinlet guidevanes(VIGV)for boththeforwardandaft fans. VIGVthrustmodulationdeliversrapidpitch-
attituderesponse.Vanesinbothexhauststreamsprovideyawcontrolin hover.Rollcontrolis accomplished
byademandbleed-reactionjet system.Aroll-controlvalveandanupwardandadownwardejectorarelocated
in eachwingtip. Theflowto thereaction-controljets is ductedthroughpipingin thewingleadingedges.

Propulsion System. The propulsion system for the TF120 is the series-flow, tandem-fan, variable-cycle

engine. The system is composed of shaft-coupled forward and aft fan units driven by a turbofan engine, as
shown in Fig. 82. Both fans have VIGV for thrust modulation in the parallel-flow mode (vertical operation)

and for fan-matching in the series-flow mode (high-speed operation). The flow-diverter valve, a moderate

temperature burner for the forward fan, the forward fan ventral nozzle, and the rear fan inlet are located
between the two fan units.

In high-speed flight, the propulsion cycle is a conventional afterburning turbofan. For vertical opera-

tion, the front fan flow is separated from the aft-fan/core-engine flow by simultaneously closing the duct

splitter valve and opening the front fan exhaust nozzle and aft fan inlet. A unique "venetian blind" splitter

valve acts as a variable-porosity wall to minimize flow distortion during mode transition.

The forward fan uses low-temperature duct burning during vertical operation. The VIGVs provide the rapid

and precise thrust modulation needed for hover control.

The side inlets are fixed-geometry, vertical-ramp, bifurcated duct design with blow-in doors for improved

VTO performance. The aft vertical mode inlet is a flush design located on the upper fuselage.

The forward nozzle is a parallel-flow, tandem-fan V/STOL nozzle; it has a low-temperature burner incor-

porated into the system to augment thrust during VTO. An ADEN-type nozzle is used to vector the aft flow

stream. Full afterburning of the aft flow stream is possible anywhere in the flight envelope, but is not
required in the hover mode. The exhaust footprint is comparable to that of the Harrier.

Table 20 gives the tandem-fan baseline cycle characteristics for both the parallel-flow mode (vertical
operation) and the series-flow mode (high-speed operation). In the vertical-flight mode, the thrust split is

67% fore and 33% aft. The fan pressure ratios in the VTOL mode are 2.2 fore and 1.75 aft, and in the series-

flow (high-speed) mode the ratio is 3.44. The overall pressure ratio is 17.5 in the VTOL mode and 25.2 in

the high-speed mode.

Mission Performance. Vought determined the performance of the TF120 on three hypothetical design

missions: A supersonic intercept (SI), a fighter escort (FE), and an interdiction (INX) (Fig. 83). The first

two are vertical takeoff missions and the third requires a short takeoff. The payload for the SI mission is

four AMRAAMs and a 20-mm gun. The payload for the FE mission (which requires the two 370-gal fuel tanks) is

four AMRAAMs, two short-range missiles, and a gun. On the INX mission, which requires two 370-gal fuel tanks,

the payload is two short-range missiles and four bombs. On all three missions, all missiles and ammunition
are retained. The results of the mission studies are summarized in Table 21. The SI radius is 370 km

(200 n. mi.) for a Mach 1.6 dash. Increasing the dash speed to Mach 2.0 reduces the radius to 258 km

(139 n. mi.). With external fuel and an STO weight of 15,720 kg (34,664 Ib), the interdiction mission radius

is 960 km (519 n. mi.). Table 22 gives a weight summary for the SI mission.

A summary comparing the TF120 performance to the NASA guidelines is given in Table 23, which shows per-

formance for maximum afterburning power setting as well as the maximum Mach number and altitude for inter-

mediate power setting. At Mach 0.6 at an altitude of 3,048 m (10,000 ft), the TF120 has a sustained load

factor of 6.62. The aircraft has a PSI G of 526 m/sec (1725 ft/sec) at Mach 0.9 and an altitude of 3,048 m

(10,000 ft). The TF120 has a maximum Mach number of 2.4 at maximum power and also has supersonic capability

(M = 1.42) at intermediate power.

5. CONCLUDING REMARKS

This lecture has summarized V/STOL concepts in the United States, including some from the past and some

that may come in the future. Of the multitude of concepts that were studied in the past, only about 15 or so

that reached some form of flight evaluation have been described. Nearly all of these concepts suffered from

some weaknesses or problems. These problems included such things as (i) poor handling qualities, (2) the lack

of a SAS for hover and low-speed flight, (3) marginal aircraft performance envelopes which restricted opera-

tional evaluations, (4) little or no STO capability, (5) low payload/range performance, (6) compromised high-

speed performance due to features that provide VTOL capability, and (7) reingestion of hot gases. The lessons
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learnedfromthesepastconceptsneednotberepeated,asthepasteffortshaveprovidedavaluabledatabase
for presentandfuturedesigns.

Designchangesto asuccessfulV/STOLaircraft,theBritishAV-8AHarrier,haveresultedin animproved
concept,theAV-8BHarrierII. Thisis theonlycurrentconceptconsideredin thepaper.Anumberof sub-
sonic,multimissionconceptsproposedbyU.S.industryindicatethattherearestill manyapproachesto
V/STOLthathavenotbeenflight-demonstrated.Amajorportionof thepaperhasbeendevotedto thefuture
V/STOLfighter,whichalsohasnotbeenflight-testedin theU.S.Anumberof differentpropulsivelift con-
ceptsproposedfor thesefighterdesignshavebeendescribedalongwiththeconfigurationgeometry,control
concepts,andthemissionperformance.Manyof theseconceptsappearto havebenefitedfromthelessonsof
earliereffortsandhavereasonablerange/payload,controlpower,andSTOLoverloadcapability.In onecase,
athirdgenerationof asuccessfulconcept,theHarrier,is underconsiderationasasupersonicV/STOLfighter.
Fromthis chronologywemightsaythattheconceptof V/STOLaircrafthassurvivedits "birthpains"andis
aboutto enterthegrowthstage.
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TABLEI. GENERALDYNAMICSHATOLCONFIGURATIONCHARACTERISTICS

Wing
Area
Aspectratio
Taperratio
Rootchord
Tipchord
t/c (root/tip)
Leading-edgesweep

Canard
Area(exposed)
Aspectratio
Taperratio
Rootchord
Tipchord
t/c (root/tip)
Leading-edgesweep

Verticaltail
Area
Aspectratio
Taperratio
Rootchord
Tipchord
t/c (root/tip)
Leading-edgesweep

35.7m(384ft 2)
3.62

0.19

5.28 m (17.31 ft)

1.00 m (3.29 ft)

0.04/0.04
40°

7.14 m (76.9 ft2)

2.16

0.37

2.65 m (8.71 ft)

0.98 m (3.22 ft)

0.05/0.03
45 °

4.41 m2 (47.5 ft2)

1.27
0.43

2.61 m (8.55 ft)

1.12 m (3.68 ft)

0.053/0.04
47.5 °

Weight summary (DLI mission)

kg Ib

Structure 5138 (11327)

Propulsion 3876 (8545)

Fixed equipment 1601 (3530)

Payload 865 ( 1907)

Fuel 4390 (9678)

VTO gross weight 15870 (34987)

General (DLI mission)

W/S (VTO gross weight

4.36 kN/m 2 (911b/ft 2)

T/W (SLS, uninstalled, max A/B)

1.30

TABLE 2. GRUMMAN HATOL CONFIGURATION CHARACTERISTICS

Weight summary (DLI mission)

Wing

Area

Aspect ratio

Taper ratio
Root chord

Tip chord

t/c (root/tip)

Leading-edge sweep

Canard

Area (exposed)

Aspect ratio

Taper ratio
Root chord

Tip chord

t/c (root/tip)

Leading-edge sweep

Vertical tail (per panel)

Area

Aspect ratio

Taper ratio
Root chord

Tip chord

t/c (root/tip)

Leading-edge sweep

35.3 m (380 ft2)
3.75

0.30

4.72 m (15.5 ft)

1.41 m (4.64 ft)

0.06/0.06
35°

7.90 m2 (85 ft2)
1.56

0.37

2.32 m (7.61 ft)
0.86 m (2.82 ft)

0.06/0.06
37.5 °

3.90 m 2 (42 ft2)
1.37

0.37

2.48 m (8.13 ft)

0.91 m (3.00 ft)

0.05/0.05
47.5 °

kg Ib

Structure 5047 (11126)

Propulsion 3617 (7974)

Fixed equipment 2339 (5156)

Payload 1204 (2654)

Fuel 4906

VTO gross weight 17113 (37726)

General (DLI mission)

W/S (VTO gross weight)

4.74 kN/m 2 (99 ]b/ft2)

T/W (SLS, uninstalled, max A/B)

1.47
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Wing
Area
Aspectratio
TaperratioRootchord
Tipchord
t/c (root/tip)
Leading-edgesweep

Canard
Area(exposed)
Aspectratio
Taperratio
Rootchord
Tipchord
t/c (root/tip)
Leading-edgesweep

46.5m(500ft 2)
2.12
O.18

7.92m(26.0ft)
1.43m(4.68ft)

O.04/0.04
50°

4.23 m2 (45.5 ft2)

I.53

0.27

2.62 m (8.58 ft)

0.71 m (2.33 ft)

0.04/0.04

60 °

Vertical tail (per panel)

Area

Aspect ratio

Taper ratio
Root chord

Tip chord

t/c (root/tip)

Leading-edge sweep

2.42 m2 (26.0 ft2)
1.31

0.31

2.08 m (6.83 ft)

0.63 m (2.08 ft)

O.04/0.04
42.5 °

General (DLI mission)

VTO gross weight

13,608 kg (30,000 Ib)

W/S (VTO gross weight_
2.87 kN/m" (60 Ib/ft _)

T/W (SLS, installed, intermediate power)
1.20

TABLE 4. NORTHROP VATOL CONFIGURATION CHARACTERISTICS

General (DLI mission)Wing

Area

Aspect ratio
Taper ratio
Root chord

Tip chord

t/c (root/tip)

Leading-edge sweep

Vertical tail

Area

Aspect ratio

Taper ratio
Root chord

Tip chord
t/c (root/tip)

Leading-edge sweep

46.5 m2 (500 fts)
2.12

0.18

7.92 m (26.0 ft)

1.43 rn (4.68 ft)

O. 04/0. O4

50°

2.51 ms (27.0 ft2)
1.10

0.34

2.26 m (7.42 ft)
0.76 m (2.50 ft)

O.04/0.04

50°

VTO gross weight

13,608 kg (30,000 Ib)

W/S (VTO gross weight}
2.87 kN/m _ (60 Ib/ft 2)

T/W (SLS, uninstalled, intermediate power)
1.29

TABLE 5. VOUGHT VATOL CONFIGURATION CHARACTERISTICS

Weight summary (DLI mission)Wing

Area

Aspect ratio

Taper ratio
Root chord

Tip chord
t/c (root/tip)

Leading-edge sweep

Canard

Area (exposed)

Aspect ratio

Taper ratio
Root chord

Tip chord

t/c (root/tip)

Leading-edge sweep

Vertical tail

Area

Aspect ratio

Taper ratio
Root chord

Tip chord
t/c (root/tip)

Leading-edge sweep

32.9 m2 (354 ft _)
2.30
0.15

6.61 m (21.7 ft)

0.99 m (3.25 ft)

0.05/0.05
50 °

4.89 m s (52.6 ft2)

0.80

0.25

2.80 m (9.17 ft)

0.70 m (2.29 ft)

0.0510.04
60 °

5.57 m2 (60.0 fts)

1.00

0.30

3.63 m (11.92 ft)
1.09 m (3.58 ft)

0.05/0.04
53°

kg Ib

General (DLI mission)

W/S (VTO gross weight}
3.16 kN/m _ (66 Ib/ft 2)

T/W (SLS, uninstalled, max A/B)

1.45

Structure 2328 (5133)

Propulsion 1985 (4375)
Fixed equipment 1461 ( 3221)

Payload 1101 (2427)

Fuel 3728

VTO gross weight 10603 (23375)
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TABLE6. GENERALDYNAMICSE7CONFIGURATIONDIMENSIONALDATA

Parameter Wing Verticaltail
Referencearea,m2 (ft2) 58.58(630.6) 5.09(54.8)
Aspectratio 1.665 1.294
Taperratio 0.115 0.437
Span,m(ft) 9.88(32.40) 2.57(8.42)
Rootchord,m(ft) 10.64(34.90) 2.77(9.10)
Tipchord,m(ft) 1.22(4.00) 1.21(3.96)
MAC,m(ft) 7.18(23.56)
Leading-edgesweep,deg 60 47.5
Trailing-edgesweep,deg -10
t/c root 0.04 0.053
t/c tip 0.04 0.030
Airfoil NACA64A004 Biconvex

TABLE7. GENERALDYNAMICSE7
CONFIGURATIONWEIGHTSUMMARY

Item Weight,kg(Ib)
Structure 3848(B494)
Propulsion 2573(5672)
SystemsandEquipment 1813(3996)
Weightempty 8239(18162)
Operationalweight 8612(18986)
Payload* 449( 990)
Zerofuelweight 9061(19976)
Fuel 5578(12297)
Takeoffgrossweight 14640(32273)
*TwoAIM-9LandtwoAMR_u_M.

TABLE8. GENERALDYNN(ICSCONFIGURATIONE7POINTPERFORMANCE
Note1 Note2 Note3

Pointperformanceweight 11461(25267)12402(27341)8722(19228)
Escortmission

Fuel,kg(Ib) 4380(9657) 5568(12275)
TOGW,kg(Ib) 13667(30130)14629(32251)
Radius,km(NM) 741(400) 1143(617)

Interdictionmission
Fuel,kg(Ib) 5568(12275)
TOGW,kg(Ib) 16112(35522)
Radius,km(NM) 1020(551)

MaximumMach
35KFT,maximumthrust 1.73 1.73 1.73
10KFT,int. thrust 1.02 1.02 1.02

Turnloadfactor
M0.60,10KFT 6.9
M0.65,10KFT 5.5 5.3 7.6

PS@1g, M0.9,10KFT,m/sec(ft/sec) 237(777) 228(747) 323(1059)
Notes:(1)Pt.perf.@60%escortfuelweight.

(2)Pt.perf.@60%full fuelweight.
(3)Pt.perf.@88%VTOLweight.



TABLE9. MCAIRCONFIGURATIONDIMENSIONALDATA
Canard

Parameter Wing (exposed) Verticaltail
6.00(65.0)
1.2
0.35
2.69(8.83)
2.69(105.98)
3.32 (130.84)

1.16 (45.80)

2.42 (95.14)

45
0

Reference area, m 2 (ft _) 39.80 (428.4) 7.95 (85.6)

Aspect ratio 3.0 3.0

Taper ratio 0.25 0.25
Span, m (ft) 10.92 (35.84) 4.88 (16.02)

Semispan, m (in.) 5.46 (215.00) 2.44 (96.14)

Root chord, m (in.) 5.83 (229.44) 2.61 (102.59)

Tip chord, m (in.) 1.46 (57.36) 0.65 (25.64)

Mean aero. chord, m (in.) 4.08 (160.52) 1.82 (71.81)

Leading-edge sweep, deg 45 50

Incidence, deg 0 at fuselage 0

Dihedral, deg -9 0

Twist, deg -4 at tip 0
Airfoil, root 64AXO6MOD 64A005 64A005

Airfoil, tip 64AX00MOO 64A003 64A003

TABLE 10. MCAIR CONFIGURATION PROPULSION SYSTEM CHARACTERISTICS

Engine: P&WA STF-561-C2

FN total: 152,638 N (34,316 Ib) installed (FN VTO at 90°F, T/W = 1.15)

Thrust split: fwd 61%, aft 39%

Inlet: Fixed half conical spike, 16.5 o cone

AC = 1.13 m 2 (12.17 ft2)

BPR = 1.16, FPR = 3.50, OPR = 25.0

Maximum air flow: 167 kg/sec (369 Ib/sec)

CE-TMAX : 1760°C (3200°F), TpCBvTO = 1866oc (3390°F)

TpCBIcaj(= 1949°C (35400F) at M = 2.0 and 7,620 m (25,000 ft)

TABLE 11. MCAIR CONFIGURATION WEIGHT

SUIO4ARY

Item Weight, kg (Ib)

Structure 4351 (9592)

Propulsion 2003 ( 4415)

Fixed equipment 2186 (4820)

Weight empty 8540 (18827)

Operating weight empty 8985 (19808)

Payload* 665 (1466)

VTO usable fuel 3885 (8566)
STO usable fuel 4513 (9950)

VTO gross weight* 13535 (29840)

STO gross weight* 14161 (31220)

*Includes two AMRAAI( and two AIM-9

missiles and 25-mm gun with 400 rounds
of ammunition.

23



24
TABLE12. MCAIRCONFIGURATIONPERFORMANCESUMMARY

Item NASAguideline Model279-3
Sustainedloadfactorat Mach0.6,

3,048m(10,000ft), 88%VTOGW
PSIGat Mach0.9,3,048m(10,000ft),

88%VTOGW,m/sec(ft/sec)
DLImissionradius,VTOGW= 13,535kg

(29,840Ib), km(n.mi.)
SustainedMachnumber
STOsea-basedgrossweight,kg(Ib)

6.2 6.2

274(900) 317(1,040)

--- 191(103)

1.6 2.0

17,164-18,071 16,960"

(37,840-39,840) (41,800)*

Note: Two AMR#AM, two AIM-g, and 25-mm gun with 400 rounds of

ammunition.

*Flat deck run of 122 m (400 ft) at O-knot wind over deck (WOD) or

61 m (200 ft) at 20-knots WOD.

TABLE 13. ROCKWELL BASELINE CONFIGURATION
DIMENSIONAL DATA

Wing (total)

Area, m_ (ft 2) 50.26 (541.0)

Aspect ratio 1.8

Span, m (ft) 9.60 (31.5)

Root chord, m (ft) 8.36 (27.43)

Tip chord, m (ft) 0.98 (3.2)

MAC, m (ft) 6.14 (20.13)

Leading-edge sweep, inboard, deg 48.0

Leading-edge sweep, outboard, deg 64.0
Airfoil 65-005 MOD

t/c, inboard 0.038

t/c, outboard 0.034

Vertical (per panel)

Area, m 2 (ft 2) 3.40 (36.7)

Aspect ratio 1.41
Root chord, m (ft) 2.35 (7.68)

Tip chord, m (ft) 0.78 (2.55)

Taper ratio 0.33

Leading-edge sweep, deg 41.6
MAC, m (ft) 1.69 (5.54)

Span, m (ft) 2.20 (7.2)

Cant angle, deg 30
Airfoil NASA 65-00

TABLE 14. ROCKWELL CONFIGURATION ENGINE CHARACTERISTICS

Thrust (sea level, standard day, uninstalled)

Max A/B, N (]b)

Intermediate, N (Ib)

Bypass ratio (BPR)

Fan pressure ratio (FPR)

Overall pressure ratio (OPR)

Combustor exit temperature, °C (°F)

150,699 (33,880)

91,629 (20,600)
0.51

3.6

30.0

1,538 (2,800)



TABLE15. ROCKWELLBASELINECONFIGURATIONPERFORMANCESUMMARY
RockwellNASA baseline

Item guidelineconfiguration

Sustainedloadfactorat Mach0.6, 6.2 6.3
3,048m(10,000ft), 88%VTOGW

PSzGat Mach0.9,3,048m(10,000ft), 274(900) 357(1,170)
B8%VTOGW,m/sec(ft/sec)

DLImissionradius,VTOGW=10,886kg --- 278(150)
(24,000Ib), km(n.mi.)

SustainedMachnunV_er 1.6 1.9
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TABLE16. ROCKWELLBASELINE
CONFIGURATIONWEIGHTSUMMARY

Item Weight,kg(Ib)
Structure 4143(9133)
Propulsion 2437(5373)
Fixedequipment 1462(3223)
Weightempty 8042(17729)
Operatingweightempty 8248(18184)
Payload 544(1200)
Fuel 2559 (5641)

VTO gross weight 11351 (25025)

TABLE 17. ROCKWELL ALTERNATIVE

CONFIGURATION DIMENSIONAL DATA

Wing (total)

Area, m2 (ft2) 50.96 (548.5)

Aspect ratio 1.809

Span, m (ft) 9.60 (31.5)

Root chord, m (ft) 9.46 (31.03)

Tip chord, m (ft) 1.16 (3.79)

Taper ratio 0.122

MAC, m (ft) 6.39 (20.96)

Leading-edge sweep, deg 60
Airfoil 65-005 MOD

t/c, inboard 0.038
t/c, outboard 0.034

Vertical (per panel)

Area, m 2 (ft 2) 3.40 (36.7)

Aspect ratio 1.41

Root chord, m (ft) 2.35 (7.68)
Tip chord, m (ft) 0.78 (2.55)

Taper ratio 0.33

Leading-edge sweep 41.6

MAC, m (ft) 1.69 (5.54)

Span, m (ft) 2.20 (7.2)

Cant angle, deg 30
Airfoil NASA 65-00
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TABLE18. ROCKWELLALTERNATIVECONFIG-

URATIONWEIGHTSUMMARY
Item Weight,kg(Ib)

Structure 3916(8633)
Propulsion 2475(5456)
Fixedequipment 1454(3206)
Weightempty 7845(17295)
Operatingweightempty 8052(17750)
Payload 544(1200)
Fuel 2427 (5350)

VTO gross weight 11023 (24300)

TABLE 19. VOUGHT CONFIGURATION DIMENSIONAL DATA

Canard Vertical fin Aft ventral Forward ventral
Wing (total) (each) (each) (each) (each)

Area, m2 (ft 2)

Aspect ratio

Taper ratio

Span, m (ft)

Root chord, m (ft)

Tip chord, m (ft)

Mean geometric chord, m (ft)

Leading edge sweep, deg

t/c, root/tip

Airfoil, root/tip
Dihedral, deg

Fin cant, deg
Definition

32.52 (350.0) 1.93 (20.8) 2.43 (26.2) 0.79 (8.5) 0.33 (3.6)
2.24 1.20 1.30 0.58 1.12

0.15 0.28 0.35 0.0 0.30

8.53 (28.00) 1.52 (5.00) 1.77 (5.84) 0.67 (2.21) 0.61 (2.00)
6.63 (21.74) 1.98 (6.51) 2.03 (6.65) 2.03 (6.67) 0.84 (2.75)

0.99 (3.26) 0.55 (1.82) 0.71 (2.33) 0.0 (0.0) 0.25 (0.83)

4.50 (14.78) 1.40 (4.60) 1.47 (4.84) 1.55 (5.10) 0.59 (1.97)
50.0 55.0 45.0 45.0 45.0

0.06/0.05 0.04 0.04 0.03 0.04

65AOO6/65AO05 65A004 65A004 65A003 65A004
0 10 ....... 15 to -75

...... 15 15 ---

Idealized Root chord From wing From wing Exposed
no strake or at strake reference reference area

trailing-edge plane plane
extension

TABLE 20. VOUGHT TANDEM-FAN BASELINE CYCLE CHARACTERISTICS

Parallel flow Series flow

(VTOL) (high speed)

Fan pressure ratio

Bypass ratio

Compressor PR
Overall PR

Combustor temperature, °C (°F)

Exhaust temperature, °C (°F)

Thrust, augmented, N (Ib)

SFC, augmented

Thrust, unaugmented, N (Ib)
SFC

Corrected airflow, kg/sec (Ib/sec)

Core corrected airflow, kg/sec (Ib/sec)

Actual airflow, kg/sec (Ib/sec)

Core actual airflow, kg/sec (Ib/sec)

2.2/1.75 3.44

3.43 1.00

10.0 7.33

17.5 25.2

1,538 (2,800) 1,479 (2,695)

510/510 (950/950) 1,871 (3,400)

130,264 (29,286) 195,023 (43,845)
0.977 2.024

111,200 (25,000) 117,810 (26,486)
0.541 0.665

196/115 (433/254) 196 (433)

44 (97) 35 (78)

181/106 (400/234) 187 (412)

65 (143) 93 (206)

TABLE 21. VOUGHT TF120 MISSION CAPABILITY

Plus two

Parameter Internal fuel 370-gal tanks

VTO weight, kg (Ib)

STO weight, kg (Ib)

Fuel, kg (Ib)

Supersonic intercept radius
M = 1.6, 15240 m (50000 ft), km (n. mi.)

M = 2.0, 18288 m (60000 ft), km (n. mi.)

Fighter escort radius, n. mi.
Interdiction radius, n. mi.

11312 (24940)

3846 (8480)

371 (200)
258(139)

1003 (541)

15723 (34664)

6129 (13512)

1553 (838)

962 (519)



TABLE22. VOUGHTTF120WEIGHTSUMMARY
Item Weight,kg(Ib)

Structure 2442(5384)
Propulsion 2553(5629)
Fixedequipment 1469( 3240)
Weightempty 6464(14253)
Operatingweightempty 6711(14798)
Payload* 754(1662)
Usablefuel 3846 (8480)

VTO gross weight 11310 (24940)

*Four AMRAAM and 20-mm gun with
400 rounds of ammunition.

TABLE 23. VOUGHT TF120 PERFORMANCE SUMMARY

NASA

Item guideline

Vought TF120

Max A/B Intermedi ate

Sustained load factor at Mach 0.6, 6.2 6.62

3,048 m (10,000 ft), 88% VTOGW

PSIG at Mach 0.9, 3,048 m (10,000 ft), 274 (900) 526 (1,725)

88% VTOGW, m/sec (ft/sec)

Acceleration from M = 0.8 to M = 1.6 --- 34

at 10,973 m (36,000 ft), sec

Maximum Mach number at 10,973 m 1.6 2.40

(36,000 ft)

Ceiling, m (ft) --- 20,379 (66,860)

1.42

16,331 (53,580)

27



28

Figurei. LockheedXFV-I. Figure2. ConvairXFY-1Pogo.

Figure3. RyanX-13Vertijet. Figure4. BellAirTestVehicle(ATV).
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Figure5. BellX-14.

Figure7. RyanVZ3-RY.

Figure6. BellXV-3Tilt Rotor.

Figure8. Boeing-VertolVZ-2.

Figure9. DoakVZ-4DuctedFan. Figure10. LockheedXV-4AH_dmmingbird.
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Figure 11, Ryan XV-5B. Figure 12. LTV XC-142 Tilt Wing.

Figure 13. Curtiss Wright X-19A Tilt Prop. Figure 14. Bell X-22A Ducted Fan.

Figure 15. Bell XV-15 Tilt Rotor,
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Figure 16. AV-8B Harrier 11,

m. _

Figure 17. AV-SB Harrier II.

9.2m_(30.3 ft)/

Figure 18.

3.6 m

(11.6 ft)

(46.3 ft)

AV-SB Harrier 11.



32

Figure19. Changesto theAV-8AtodeveloptheAV-SBHarrierII.

RAISED COCKPIT

• IMPROVED VISIBILITY
• COMPOSITE STRUCTURE

• REDUCED WEIGHT (56 LB)

ANGLE RATE
BOMBING SYSTEM

SUPERCRITICAL AIRFOIL

• REDUCED TRANSONIC DRAG
• IMPROVED MANEUVERING

LEADING EDGE ROOT
EXTENSIONS (LERX)

• INCREASED

MANEUVER-

ABILITY

POSITIVE CIRCULATION FLAP

• INCREASED STOL CAPABILITY (6,717 LB)

COMPOSITE RUDDER

AND HORIZONTAL TAIL

• REDUCED WEIGHT

(50 LB}

INTAKE

• INCREASED RECOVERY (1%)
• BETTER CRUISE EFFICIENCY
• MORE VTO THRUST (600 LB)

LIFT IMPROVEMENT
DEVICES

• VTO LIFT INCREASED

(1,200 LB)

Figure 20. Advanced technologies incorporated into the AV-8B.



Figure 21.

concept.

Boeing tilt-nacelle medium-speed Figure 22.

33

Boeing blown-flap medium-speed concept.

HORIZONTAL FLIGHT

TRANSITION & STOL

HOVER & VTOL

Figure 23. General Dynamics ABLE medium-speed

propulsive-lift concept.

16.7 m(54.8 _)

i
6.6m

__ 14.3 m ___(47.0 ft)

Figure 25. Three views of the General Dynamics

medium-speed concept.

Figure 24.

7 :

General Dynamics medium-speed concept.

Figure 26. Folding capability of the General

Dynamics medium-speed concept.

2
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Figure27. Grummantilt-nacellemedium-speed
concept(Design698).

NACELLE PIVOT LINE

BACKUP CROSS-SHAFT

ARRAYS IN - _-_ \ _'_"_. FOLDEDW,NG N

STRAKES FOR NACELLES NO HI-LIFT

POSITIVE WITH CONTROL DEVICES

GROUND EFFECT VANES

Figure 28. Features of Grumman Design 698.

BL 0

CARRY THROUGH {"-'_ :"[ VANE SUPPORT

STRUCTURE _/ I ' BOOM

TF-34-GE-100 HORIZONTAL

TURBOFAN VANE AND FLAP

TOP VIEW

NACELLE PIVOT

VERTICAL

BULLET & _ VANE

suPPORT_ _l

VANES_

SIDE VIEW

Figure 29. Design 698 tilting nacelle.

: _IILH v

=r_ t IC RM
LHV DHV

YAWING DHV
MOMENT

1
Z-AXIS

Figure 30. Differential horizontal vane deflection

for yaw.

ROLLING

MOMENT

LABLE

DVV DVV

Figure 31. Vertical vane deflection and
differential thrust for roll.



CROSS DUCT/PLENUM

_AREA FWD NOZZLE

't r_ v/7_, . M IXE_D_-F_LOW

Figure 32. Lockheed split-fan propulsive-lift

concept.

ROLLCONTROL

LATERAL FLOW

DISTRIBUTION VIA

VARIABLE NOZZLE

AREA AND

CROSS-DUCT

DIFFERENTIAL

THRUST VECTORING ____2_

_CONTROL

Figure 33. Lockheed split-fan hover-control
concept.

35

F,___ 18.3 m(59.9 ft)--_

Figure 34. Lockheed twin engine, split-fan,
medium-speed concept.

_____._ 16.5 m
(54.0 ft) "_

6.2 m

(20.2 ft)

_p__.__ 15.2 m
(49.8 _)--_

Figure 35. Lockheed four engine, split-fan,

medium-speed concept.

Figure 36. MCAIR gas-driven fan Model 260 medium-
speed concept.

-
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_ ENERGY_ .TRAN_ _|

& DIFFERENTIALLY

_ORED THRU_

ENERG _
TRANSFER YAWl=_ TRANSFER

PITCH

Figure 37. Gas-driven Model 260 propulsion/control

system.

CRUISE
"D'" SHAPED

. CRUISE EXIT

AREA

"HINGED YAW VANE

CLOSURE DOORS

(CLOSED POSITION)

VTOL ROTATING

VENTING LIP
SPLIT YAW

VANE

Figure 38. Vented "D" nozzle characteristics.

LIFT/CRUISE
REMOTE

VECTORING
GEARBOX

OVERRUNNING_OZZL i

CLUTCHES _ v \
REMOTEENGINE --_._w,,,_\ GENERATOR \

CROSS SHAFT f_ "_/_'N OS E FAN \

_''_'_. = A = =_ v LIFT/CRUISE/ / _ \PTO
(BOTH_: .... O,A._OX/ i _:T_s,

GUIDEVANES OVERRUNNING
CLUTCH

Figure 40. Mechanically driven Model 260

propulsion/control system.

i_;_¸¸¸_¸ i

Figure 41. MCAIR vectored-thrust Model 276

medium-speed concept.

!

TR ANSF E R-/"_ _

Figure 39. MCAIR mechanically driven three-fan Figure 42. Vectored-thrust Model 276 propulsion/

Model 260 medium-speed concept, control system,



Figure 43.

concept.

Rockwell ejector-in-wing medium-speed

37

Figure 44. Three views of Rockwell ejector-in-wing
medium-speed concept.

Figure 45.

(V-530).

Vought tandem-fan medium-speed concept

4-POSTER

_. ARRANGEMENT

Figure 46. Vought tandem-fan propulsion concept.

VARIABLE INLET GUIOE VANES

FAN GEAR BOX FAN ENGINE

OVERRUNNING CLUTCH

i

NOZZLE

Figure 47, Vought tandem-fan drive system

arrangement.

Z
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PITCH ROLL YAW

FAN THRUST MODULATION

OF

FWD AND AFT FANS

Figure 48.

FAN THRUST MODULATION

OF

LEFT AND RIGHT FANS

DIFFERENTIAL DEFLECTION

OF
LEFT AND RIGHT NOZZLES

Vought tandem-fan hover-control concepts.

DECK LAUNCH

INTERCEPT

(DLI)

FIGHTER ESCORT

SURFACE STRIKE

2 min A/8M= 1.0

VL_J 278km I 3048m(10,000 ft)

!.VTO (150 n. mi.)

2 min A/BM-1.6

12192 m

VL_"VTO RADIUS _ (40,000 ft)

BCAV 5 rain INT

V.__L__ 6096M'0"Sm(20,000 ft)

STO I" "1 6096 m L--

r(20,000 ft)

_.7m

54 ft)

11.4 m
(37.3 ft)-_-_ J' 16.3m I

(53.3 ft) ,

Figure 49. Example mission profiles for twin-

engine VSTOL fighter/attack aircraft.
Figure 50. General Dynamics HATOL ejector-diffuser
concept,

f

\ i"

REMOTE

AUGMENTOR VTOL BUCKET

_ _STOWED MODE

I !   'TR,MTAB

\
REMOTE VTOL BUCKET

GIMBALLING DEFLECTED MODE
NOZZLE

Figure 51. Ejector-diffuser bays open and closed Figure 52, Remote Augmented Lift System (RALS),
on the General Dynamics concept.
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__zic__ 3.5 m

,-==Z'-.. i (11.5ft)

I __l ° o I --L-(?io;,, ,,,m j
[ (48.8 ft) "-I

Figure 53. General Dynamics HATOL RALS concept. Figure 54. Grumman HATOL concept.

!-

Figure 55. Grumman MATOL concept.

SECONDARY FLAP

PRIMARY FLAP /

/ DEFLECTOR

I __...._ _" (STOWED)

VENTRAL FLAP

TRANSITION

SECTION

Figure 56. Schematic of ADEN.

__ 9.9m ._=J

(32.6 ft)

m _7,: -

4.1m

(13.6 ft)

I_ 16.0 m "=II- (62.5 ft)

Figure 57. Northrop HATOL concept. Figure 58.

concept.

Artist rendering of the Northrop HATOL

!:

Z
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9.9m __
(32.6_)

Figure 59.

_4.0 m

(13.3 ft)

___ 15.8 m(51.7 ft)--_

Northrop VATOL concept. Figure 60.

concept.

Artist rendering of the Northrop VATOL

8.7m(28,5 ft) --i

Figure 61.

4.3 m

(14.2 ft)

145.3 ft)

Vought VAT_L concept. Figure 62. Artist rendering of the Vought VATOL

concept in a STOVL configuration.

\

\

Figure 63. General Dynamics E7 configuration in
hover flight,

Figure 64. General Dynamics E7 configuration in
cruise flight



FAN AIR DUCT

SHUTTLE VALVE /

 _c2
TO EJECTORS i

TH ROTTLING

VALVE

_, TO FANAIR AFT

r.... NOZZLE
I
/

t  TOVECTORABLEINLET AIR _ / L....=J__CORE NOZZLE

............ TJ
FAN AIR COLLECTOR

Figure 65. General Dynamics E7 configuration
propulsive system schematic.

FAN AIR CORE AIR

TO EJECTORS THROUGH

ADEN NOZZLE

(a) Hover configuration.

_IAL FAN

PARTIAL FAN _ AIR T_ AFT

AIR TO EJECTORS CORE AIR NOZZLES
VECTORED

(b) ST0 and transition configuration.

FANA,R,
CORE AiR, AFTE RBURNED

AFTERBURNED AS REQUIRED

AS REQUIRED

(c) Up-and-away configuration.

Figure 66. Three modes of operation of E7

propulsion system.
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5.18m

(17.0 ft)

_ 9,88 rn 15.06 m(49,42 ft)

Figure 67. General Dynamics E7 configuration.

15,000

E
u'lO, O00
Q

m

5000

50,000 [

40,0001

ft 30'0001

2O.0O0 I

lO.OOOi

o

M.88 OPT CRUISE

I
• M=0.9 .

IRT CLIMB • 3048 m (10,000 ft)'_
ID

100 200 300 400
n.mi,

I I i I

200 400 600 800

COMBAT RADIUS, km

Figure 68. Naval escort mission u_ed in the

General Dynamics studies.

Figure 69. MCAIR configuration in hover flight,
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Figure 70. MCAIR configuration in cruise flight.

1092m--H
(35.84 ft)

Figure 71.

5.29 m

(17.34 ft)

I_ 17.07 m ._1
i- (56.00 ft) I

MCAIR 279-3 configuration.

® ®

RADIUS >I

STORE LOADING: (2) SRM + (2) AMRAAM

(_ WARM-UP, VTO, ACCELERATION

(_ CLIMB

® DASH

® COMBAT

(_) DECELERATE-CLIMB

_) CRUISE

(_ DESCENT

(_) LANDING ALLOWANCE
LOITER

LANDING

RESERVE

2 rain, IRT; 0.5 min MAXIMUM POWER

TO DASH CONDITION: MAXIMUM POWER

MACH 1.6 @ 12,192 m (40,000 ft)

2 min, MAXIMUM POWER AT DASH CONDITION

TO BCAV

BCAV

TO SEA LEVEL

NO FUEL OR DISTANCE CREDIT

10 min, AT SEA LEVEL, MINIMUM FUEL

45 r,ec AT LANDING POWER

5% TOTAL FUEL

SERVICE TOLERANCE

5% FUEL FLOW

Figure 72. Vertical-takeoff supersonic deck-launched intercept (DLI) mission used in the MCAIR studies.



Figure 73. Rockwell baseline configuration in

cruise flight.

CRUISE

SITION/STOL

Figure 74. Rockwell configuration in various

flight modes.

_J 158Sm__ 
(31-50ft) - I k -(52"00ft) -I

4.36 m

(14.30 ft)

T

MISSION PROFILE

7 6

)(
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1. WARMUP TAKEOFF AND ACCEL. TO CLIMB

SPEED 4 rain IDLE PLUS 1.25 rain INTERMEDIATE

2. CLIMB TO 12,192 m (40,000 ft) MAX A/B

3. ACCEL. TO 1.6 MACH NUMBER @ 12,192 m

(40,000 It)

4. CLIMB @ 1.6 MACH TO 15,240 m (50,000 ft)

5. CRUISE @ 1.6 MACH @ 15,240 m (50,000 ft)

6, COMBAT 2 rain @ 1.6 MACH @ MAX A/B

7. CRUISE BACK TO BASE @ BEST CRUISE ALTITUDE

AND VELOCITY (BCAV)

8, LANDING RESERVE (5% INITIAL FUEL + 10 min

LOITER AT SEA LEVEL)

Figure 76. Deck-launched intercept (E)L,I) mission

used in the Rockwell studies.

Figure 77. Rockwell alternative configuration in

cruise flight.

J
/

_'- . j 4.36m

(14.30 ft)

Figure 75. Rockwell baseline configuration. Figure 78. Rockwell alternative configuration.
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Figure 79. Early Vought configuration in cruise

flight.
Figure 80. Vought configuration in cruise flight.

3.56 m
(11.67 ft)

(28.00 ft) (46.00 ft)

Figure 81. Vought configuration.

SERIES FLOW MODE - HIGH SPEED

o

PARALLEL FLOW MODE - V/STOL

Figure 82. Schematic of Vought tandem-fan concept.
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Figure 83. Vought notional design missions.
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