
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

57; 122

C/ -//-2-)

9-:

r

U'

SOFTWARE ENGINEERING LABORATORY SEL-83.008
	

SEL-83.008

4	 11
(4AsA- 2 M-85 44 5)	 FFOCEEDINGS CF THE EIGHTH 	 N84-2313"

ANNUAL SOFTWARE ENGINEERING WCFKSHOF (NASA) 	 THIRU

326 p HC A15/M10 A31	 CSCL 39B	 N84-2314
Unclas

G3/61 19376

PROCEEDINGS OF THE
EIGHTH ANNUAL SO FTWARE

ENuINEERING WORKSHOP

NOVEMBER 1983

^r

N115/1_
National Aeronautics and
Spa • :e Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

I

JJ

7

x	 i

FOREWORD

The Software Engineering Laboratory (SEL) is;an_organization

sponsored. by the National Aeronautics and Space Administra-

tion Goddard Space Flight Center (NASA/GSFC) and created for

the purpose of investigating the effectiveness of software

engi-neering technologies when applied to the development of

applicationa software. The SEL was created in 1977 and has

three rimar' or aninational members-

r

^P

it

:i

P	 y	 g

NASA/GSFC (Systems Development and Analysis Branch)
r

The University of Maryland	 (Computer Sciences Department)_ E

Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software de- r'

velopment process in the GSFC environment; 	 (2)	 to measure

the effect of various methodologies, tools, and models on

this process; and (3)	 to identify and then to apply success- j

ful development practices.	 The activities, findings, and

recommendations of the SEL are recorded in the Software En-

gineering Laboratory Series, a continuing series of reports,' k
that includes this document.

}

Single copies of this document can be obtained by writing to

r

Frank E. McGarry
Code 582.1

NASA/GSFC
Greenbelt,, Maryland	 20771 '!

1

i

f

a

V

T

9

t

	 EIGHTH ANNUAL. SOFTWARE ENGINEERING WORKSHOP

ABOUT THE WORKSHOP

i;
^r.

The E_ghth Annual Software Engineering Workshop was held on November 3,
1983 at NASA/Goddard Space Flight Center in Greenbelt, MD. 	 Once again,'
the attendance approached 250 persons representing	 5	 universities,	 23
agencies of the federal government and	 44	 private companies.

g

d
The four major topics of discussion included: 	 1.	 The NASA Software
Engineering Laboratory, 2. 	 Software Testing,	 3. Human Factors in ;~
Software Engineering and 4.	 Software Quality Assessment. 	 As inthe past
years, there were 12 position papers ` presented (3 for each topic)
followed by questions and very heavy participation by the general
audience.

;i

fl

The workshop is organized by the Software Engineering Laboratory (SEL), Fj
whose members represent the NASA/GSFC, University of Maryland, and
Computer Sciences Corporation (CSC). 	 The meeting has been an annual
event for the past 8 years (1976 to 1983), and there are plans to
continue this event as long as it is felt they are productive.

This record of the meeting is generated by the SEL and is printed and d

4
distributed by the Goddard Space Flight Center. 	 All persons who are
registered on the mail list of the SEL receive a copy at no charge.

Additional information about the workshop or about the SEL may 	 be
obtained by contacting;

A:* Frank E. McGarry
N,='lA/GSFC

`i z
Cole 582 K

Greenbelt, MD	 20771
µ''

301-344-6846

l

t 	 ;

^	
1

t,

i

m

9

AGENDA

EIGHTH ANNUAL SOFTWARE ENGINEERING WORKSHOP
NASA/GODDARD SPACE FLIGHT CENTER

BUILDING 3 AUDITORIUM
NOVEMBER 30, 1983

z

8:00 a.m. Registration — ` Sign In'

•

Coffee Donuts
fi

8:45 a.m. INTRODUCTORY REMARKS J. J. Quann, Deputy Director tl

r` (NASA/GSFC)
t

a

9:00 a.m. Session No. 1 Topic: Current Research in the Software r

Engineering Laboratory (SEL)
r:

Discussant: F. E. McGarry (NASA/GSFC) 3

c "Evaluating Software Engineering
} Technologies in the SEL' , D. Card (CSC)

"Dynamic Metrics for Software
t. Management" V. Basili (University of MD)
u

"Characteristics of a Rapid
r Prototyping Experiment" M. Zelkowitz (University of MD)
v

10:30 a.m. BREAK

". 11:00 a.m. Session No. 2 Topic: Testing Software F'
s,

Discussant; J. Page (CSC)

"Structural Coverage of
z Functional Testing" J. Ramsey (University of MD) -'

"A Methodology for Detecting
Errors" A. Goel (Syracuse University)

"Testing and Error Analysis of ^!!
a Real-Time Controller" C. Savolaine (Bell Labs) 1

12:30 p.m. LUNCH a

w -	 ,

µ

IF
1

A

y..

Aftw-,01
Ai

1:30 p.m. Session No. 3 Topic: Human Factors

Discussant: V. Basili (University of MD)

"Transfonnations of Software
Design and Code May Lead to
Reduced Errors" E. Connelly (PMA, Inc.)

"You Can Observe a Lot by Just
Watching How Designers Design" E. Soloway (Yale) i

"Evaluating Multiple Coordinated 4
Windows for Programmer
Workstations" C. Grantham (University of MD) ''I

3:00 p.m. BREAK t
i

3:30 p.m. Session No. 4 Topic: Quality Assessment
r

Discussant: W. Agresti (CSC)

"Cleanroom Certification
Model" P. Currit (IBM) ^I

"Projecting Manpower to
►

Attain Quality" K. Rone (IBM)

"An Approach to Software 1
Baseline Generation" J. Romeu (IITRI) i

5:00 p.m. ADJOURN st

a

1
{{
1

q 1

t

INTRODUCTORY REMARKS

John J. Quann, Deputy Director, Goddard Space Flight. Center

(GSFC),_made the opening remarks at GSFC's Eighth Annual

Software Engineering Workshop. He stressed the importance

of Software Engineering Laboratory (SEL) activities to GSFC`
and pointed out the effect of this work on the Spacelab
project and its relevance to future projects such as the

Space Telescope and Space Station._

The Space Station, for example, will require all NASA 'cen-

ters to work together in a disciplined manner. NASA will be

studying the results of SEL research to identify strategies

for the design, implementation, testing, and interfacing of
t

the software system. Mr. Quann also emphasized the impor-

tance of conferences, such as this one, as opportunities for	 x;

the exchange of ideas among managers, developers, and acad-
emicians. This is the route to excellence in the field of

software engineering.

.f
}

{c	 `

1

T. Babst	 t

CSC
I of 18

^^ i^_,,^^	
* '	

. $

	

..-tee	 ..	 _ _	 -R-._^_...-	 .,..	
3.	 •	 ^`-	 _ ..	 -^.-	 _. 'y

^ 4 '

SESSION 1 - CURRENT RESEARCH IN THE SOFTWARE
it

tl^

Frank McGarry--"The Software Engineering Laboratory"

Frank McGarry of GSFC summarized the efforts of the Software

Engineering Laboratory over the past year. 	 Mr. McGarry ex- ^.

plained that the SEL is a consortium that also includes

Computer Sciences Corporation and the University of Maryland.

The SEL has concentrated its efforts in four major areas of
x

software engineering research: 	 software reliability and

testing,	 technology evaluation, software measures, and soft-

ware development management.

Man	 ex e^riments haveMany 	 p	 e been performed by the SEL on produc- }

tion projects to evaluate software development technologies

and to test software engineering theories.	 The results of

some of these activities are being presented at this work-

shop.	 One of the principal areas of future activities will #.

be the development of a software management environment to

K
e

provide managers with the tools necessary to monitor and
y

control the software development process.

r
w

itt

r L

.
T^

l
a

i

m

T. Babst

M
CSC

2of18
=

rA

is
i

Dave Card (Computer Sciences Corporation)--"Evaluating
Software Engineering Technologies in the SEL"

Mr. Card's presentation described the results of a study

that measured the effects of some software engineering prac-

tices, tools, and techniques on productivity and reliability

in a production environment. The study was based on a

sample of22 similar software systems selected from the SEL

data base. Eight widely used and accepted technologies were

evaluated. quality assurance, software tools, documenta-

tion, code reading, top-down development, chief programmer

team, structured coding, and design time. A statistical

technique was employed to compensate for the effects of non

technological factors such as program- mer effectiveness and

computer use.	 -
i

The study concluded that none of the individual technologies

evaluated had a significant effect on productivity during

development; however, reliability was increased signifi-

cantly by quality assurance, documentation, and code read-

ing. A 30-percent improvement was achieved with these

technologies, and other benefits may also be obtained. In

particular, a reduction of maintenance costs seems probable.

In response to questions and comments from the audience,

Mr. Card clarified the following points; 	 -

•	 All systems studied passed their acceptance tests;,

_ thus th_e quality of each was at least "good."

•	 The measure of programmer effectiveness used was a

weighted measure of years of experience.

•	 Productivity was measured during development. That

is, it is based on the cost to deliver the system i
to the customer. Subsequent maintenance costs are

not included.

T. Babst
CSC
3of18

Victor Basili (University of Maryland)--"Dynamic Metrics for
Software Management"

Dr. Basili's presentation described several efforts related

to the development of a general methodology fo r monitoring

software development for the early detection of problems. A

pilot study, tool implementation, and extension activities

were discussed.

The approach of the pilot study was to develop a series of

baselines for critical measures. The actual values realized

by a project under development can be compared with the base -

lines to detect significant deviations. A set of explana -

tions was defined for each type of deviation, and the

'methodology provided a mechanism for ratingthe probability

of these explanations. In the pilot study, data from eight

projects formed the baseline, and one other project was com-

pared with them.

Dr. Basili indicated that future plans include extending the

methodology to include additional measures and developing a_

knowledge-based system incorporating this methodology. The

system will be developed using KMS (a software system used	 f

in constructing knowledge-based systems) at t he University

of Maryland. Dr. Basili stressed that this system is not

intended to replace a manager's expert_ judgment but rather

to support it with a formal tool.

In response to questions and comments from the audience,

Dr. Basili clarified the following points;

0	 Measurement can be extended to the whole life

cycle, and this option is under study'.
c

•	 The baselines are defined at discrete points corre-

spondi ng to specific percents of work completed.

In practice, it is difficult to determine the per-

"cent completion of a project under development.

T. Babsf
CSC
4 of 18

._	 .!^:= R^/^ tea,.._ r •-a`-L--'^_:..

r+

The best way to do this can be determined only by

studying the environment in which the methodology

is to be applied.

•	 Rate of change can be used as an indicator but is

not in the current methodology.

_	 •	 Programmers in this environment do not appear to be
.

	

	 r
changing their behavior to match the metrics.

•	 The KMS knowledge-based system may be transport-

able, but that is not an important consideration

now.

w 1

Y_
p	 a

1

{
u

ri

r,.

g,

a:	 _t

uY —

f

A	
'

T. Babst
CSC
5of18

ILL

Marvin Zelkowitz	 (University of P4aryland)--"Characteristics {
;k of a Rapid Prototyping Experiment" a

Dr. Zelkowitz discussed the issues of prototyping in the t

^. context of an actual prototype recently developed for GSFC.

This prototype, the Flight Dynamics Analysis System (FDAS),

is currently under evaluation.
i

FDAS is intended to provide an integrated software develop-

ment environment for spacecraft attitude, orbit, and mission

j	 analysis research.	 It consists of a management system and a f{

library of application software.	 The application software

.° was implemented in an extended version of FORTRAN that pro-

vides data abstraction and generalized input/output

capabilities.

Dr. Zelkowitz provided three definitions of a prototype: 	 a -j

"quick and dirty" throwaway, a partial implementation, and

first build.	 Some portions of a quick and dirty prototype

may be reused later in the final system. 	 A prototype need

not be cheap to be cost-effective if it enables the full
{

system to be implemented less expensively and with greater

reliability than it would have been without the prototype.

In response to questions and comments 'from the audience,

Dr. Zelkowitz clarified the following points

•	 The goal of FDAS was not to save code, although
I

much will probably be reused.- i,

•	 Forty-eight percent of the development effort was 1

spent in implementation. 	 This phase includes cod-

ing,and unit testing activities.

•	 The'full FDAS system may be implemented in a lan-

guage other than FORTRAN,

•	 FDAS is in the public domain and willprobably be

made available through COSMIC when it is completed.

T. BabstCSC
6of18

O `

ESSION 2 - TESTING SOFTWARE

Tim Ramsey (University of Mar Yland)- "Structural Coverage of
Functional Testing'

Mr. Ramsey described the initial results of an evaluation of

the effectiveness of functional testing by examining struc-

tural coverage metrics.	 A FORTRAN program consisting of

68 subroutines was instrumented to produce structural cover-

age measures when _executed.	 Then, structural coverage data

; were collected by performing 	 (functional)	 acceptance tests. S

These results were compared with data from operational use

of the program.

' Mr. Ramsey reported that although the acceptance tests and al

^ operational use largely cowered the same software, 	 there

s were significant differences. 	 Also, about one-third of the

"_. code was never executed. 	 However, this procedure does have y

the potential for providing a numerical measure of the ef-

fectiveness of	 (functional)	 acceptance tests.

" A much larger piece of software is now in the process of
n

being instrumented and tested in this manner.	 More concrete

-' results should be derived from this additional data.

LL- In response to the questions and comments from the audience,

L# Mr. Ramsey clarified the following points

•	 Conclusions cannot be made at this time about

4 whether 'larger or smaller modules are more fully F

^'- exercised or about _the_nature of the `untested code.

• The tests performed were derived from the func-

tional requirements of the program, not from knowl-

edge of the code.

T. Babst

CSC
7of18

MRL.

r^
x"{

I

i

1

i

r

Amrit Goel (Syracuse University)--"A Methodology for
Detecting Errors"

Dr. Goel described a mathematical approach to selecting

software tests. No testing strategy can detect all errors;

however, Error Specific Tests (ESTs) can be devised to iso-

late those types of errors important to the tester.

In this approach, test requirements are formulated in alge-

braic notation. Tests are determined from the requirements

specification and its functional decomposition. Next, tests

specific to each type of error targeted by the user are de-

veloped and enumerated in a test plan. This process of de-

fining functional requirements and structural parts may also

provide insight to software complexity

'r In response to questions and comments from the audience,

Dr. Goel clarified the following points:

A • The methodology discussed has not been tested on

actual software developmentp	 problems. s

• Optimization of the test plan is necessary to avoid

redundant tests.
f

r
• Automation is essential because of the complexity

s
r

and comprehensiveness of the resulting test plan.

• This method of testing is different from programi

proofs-, although the notation is similar.k:

f

a

e)

f

f

T. Ba"bst

CSC

8of18

Q101

Cathy Savolaine (Bell Laboratories) --"Testing and Error
Analysis of a Real-Time Controller" t,

Ms. Savolaine reported the results of an error analysis

based on data collected from the development and testing of

a real-time communications controller system. 	 The system

studied was the Satellite Network Scheduler 	 (SNS), which

controls ground stations as part of a reservation system for

picturephone conferencing. 	 Testing for each release was

performed by an individual not involved in the development
a

of that release.	 The number of errors per module was corre-

lated with module size and cyclomatic complexity. 	 Errors f

were classified in three groups: 	 omission, commission, and

requirements.	 Half of the errors detected before delivery

were errors of omission.	 In contrast, half of the errors

'	
a

found during operational usage were errors of commission.
i

a Ms. Savolaine concluded from these results that complex

modules should be avoided, more code inspections should be

performed, and developers should look harder for commission'

errors because these were the principal type found by the
i

user.

° In response to questions and comments, Ms. Savolaine clari-

fied the following points:

•	 Records were kept of the numbers oferrors found

during code inspection, but the data are not

readily available.

•	 The development cost of an automated test package

was included in the SNS development budget.

•	 Errors of commission were not further categorized,
^• but this can be done.

V

F
N	 .

T. Babst
CSC

9of18

43°_s^.^'	
.

•	 It is not known at this time why fatal errors

seemed to cluster in the simpler modules.

s +i

' Ed Connelly (PMA)--"Transformation of Software Design and
' Code May Lead to Reduced Errors"
zf

t Mr. Connelly described a series of experiments conducted to

s determine how well people can use examples to specify logic.

In this study, individuals were asked to devise solution !	 ^!

algorithms to various problems	 (specifically, scheduling and

_. allocation problems). 1

initially
The

P	 y 9	

o

accountants,

	

d later
K

to programmers.	 The solutionalgorithmswerefed to an r

ductive processor.	 Feedback from the processor helped to

systematize the subjects' thinking.	 The solution algorithms

t were compared with FORTRAN programs, and both were tested

for correctness. y	
)
a

Based on the results of these experiments, Mr. Connelly con-

cluded that performance is correlated with the number of

languages and operating systems the programmer is familiar i

with.	 He also indicated that the examples had fewer errors

of commiss i on than 'FORTRAN code developed for the same
problem.

In response to questions and comments from the audience,

Mr. Connelly clarified the following points

•	 The dependent variable in the analysis was perform-

ance -(i.e..,	 the number of incorrect inputs recog-

j

nized by the program).
_	 ME.

nf

T. Babst s	 ,
CSC

v

11 of 18

\^/NINE
. r

Elliot Soloway. (Yale University) " you Can Observe a Lot by
Just Watching" (How Designers Design)

Dr. Soloway described some observations made during a study

of the work habits of novice and experienced software de-

signers. The experts had 8 or more years of experience; the

novices had 2 years or less; all were familiarwith telecom-
munications system software.

Each individual was given the same vague set of specifica-

tions for an electronic mail system and was asked to develop

a design. The design process was recorded on videotape. An

interviewer prompted the designers to describe what steps

they were taking.	 The experts approached the problem sys-

tematically in a top-down fashion.	 They kept detailed notes t
of assumptions, constraints, and expectations. 	 In contrast,

the novices immediately began working on the problem at a

very detailed level.

One conclusion drawn by Dr. Soloway was that an effective M

design tool should provide a capability for keeping track of

notes of the type made by the experts. 	 Most such tools de-

veloped in the past have focused on what the designer should

be doing rather than on facilitating what he/she actually

does.

In response to questions and comments from the audience,

Dr. Soloway clarified the following_ points:' I

•	 The expert designers were very individualistic-,

•	 The experts seemed to have some familiarity with ^.

the problem.	 It would be interesting to test them
in other circumstances. ;.

40	 The experts were clearly designers, whereas theP-	 Y	 9

novices could have been programmers who were asked

to design.

T. Babst
CSC
12 of 18

Y _`

^.rt^..p,^'Al.+w!6ePr .•-vm.^..._'..^,.._.... 	
..	 ^.	 __-. +Y	

_.	 ^	 ...	 _..._	 T^	 «..... _.... _........-	 _	 1	 '_.,.. ^s^':..^^_^M"Y.^^.'!!'^'-

1

•	 The experts continued to "back up" if questions
r

remained unanswered. It would be interesting to 	 a

see and measure where this backup occurs.

+, F: *, ,

tt

t,

Charles Grantham (University of Maryland)--"Evaluating
Multiple Coordinated Windows for Programming
Workstations"

Dr. Grantham described the results of some recent research

on the design of a multiple-screen programmer workstation.

*. Two such workstation designs are under evaluation.	 One sta-

tion consists of three separate screens; the other consists

of one screen with four windows.	 The information on each

screen or window is coordinated with the 'others. 	 The appro-

priate information to be displayed on each window was deter- t

mined by observing the behavior of programmers while K^

testing, debugging, and modifying software. 	 The module

specification,	 structure chart, and source listing are dis-

played under both configurations.	 The four-window configu-

ration has an additional user-defined area. 	 Ultimately, a

better workstation designs should improve the software de-
s

velopment process by maximizing the number of tools that are

available to the programmer at one time. s-
Y

In response to questions and comments from the audience,

Dr.	 Shneiderman and Dr. Grantham clarified the following
w

y
points:

x

•	 Many multiple-screen systems do exist, but most are

passive displays that do not have coordinated'

screen action.	 This study addresses dynamic screen
L

coordination.

Software maintenance will be facilitated by using

multiple screens in this manner, because additional

details about the module being maintained will be

r available.

r T, Babst
CSC

14 of 18

a
_^...... ^ .;SAC

xY 77 _

^F

•	 The importance of left/right orientation should be

► considered when selecting and arranging display

- contents,

. •	 The layout of information in different screens or

windows was essentially fixed (not dynamically con-
!I

E trolled by the user).
•

r

t

{

{

i

ik

7

S

t
-	 Y

A

f

¢' r

t
:,	 s

Y

T, Babst
CSC
15 of 18

Y

r

"WOV

SESSION 4 - QUALITY ASSESSMENT

Al Currit (IBM Corporation)- "Cleanroom Certification Model"'
- ^	 a1

Mr. Currit described the software reliability model used for

software certification in the "cleanroom" development ap-

proach. The cleanroom is a rigorous methodology that sepa-

rates developers from all testing activities. It replaces

unit and integration testing with rigorous code inspections.

fr

	

	 Although it is difficult to produce software with zero de-

fects, it is hoped that this approach will produce code with
r

a very low probability of failure.

Certification of the developed code is dependent on its

achieving a specified mean time to failure (MTTF) during

testing.	 MTTF is an appropriate measure because it is unam-

biguous and relates to the customer's needs. 	 The certifica-

tion model predicts MTTF based on failure data collected

during testing.	 It shows good agreement with published data.

Although mathematically similar to some popular reliability

models, it is simpler than most.	 This MTTF model seems to

be an effective tool for determining when software is ready

for delivery.

In response to questions and comments from the audience, Y'

Mr. Currit clarified the following points:

•	 MTTF is measured in terms of usage months rather

r than CPU execution time.

•	 The cleanroom concept replaces unit testing with t

statistical testing.	 Test data are-used to calcu- !
I^

N- late MTTF.'

>"` - •	 Under the cleanroom system, programmers arekept

away from the computer as much as possible. 	 They j

4 only get clean compiles of their code and are not

6=,
able to debug programs on the computer.

4

T. Babst

CSC
-

__16of18
_. ;

j^

Ff

+Ff

i

itr

I

{

,t

rl

Kyle Rone (IBM Corpo ration)-- "Projecting Manpower To Attain
Quality"

Mr. Rone described the derivation of a model to predict the

manpower required to insert new technology into a system.

This model will also aid in defining the distribution of

manpower needed to achieve maximum quality.

The development environment studied generates software in

rem t	 r'	 f	 1	 Th	 1 f th'	 -inc	 en s, as a se ies o	 re eases.	 a goa	 o_	 is re

search effort is to create a model that matches this _strat-

egy.	 Increasing the manpower at the beginning of a project

and moving more quality analysis toward the front-seems to

facilitate the early detection of errors. 	 Mr. Rone believes

that by following this plan, maintenance cost's for the sys-

tem studied, which annually are now approximately 25 percent
P

of the development cost, will be reduced to around 15 or

20 percent.

In response to questions and comments from the audience, f	 ,^

Mr. Rone clarified the following points

s	 Maintenance includes the effort required'to fix

errors documented on discrepancy reports. 	 It does

not include the effort spent to complete change i
requests. Y

S

Y

i

x

t

x'

S;

n{
J

,t
t

Jorge Romeu (ITT Research Institute)--"An Approach to
Software Baseline Generation"

Dr. Romeu discussed the initial, results of an ongoing re-
search effort to define baselines for the management of

software development.. A baseline was defined to be an esti-

mate of the usual value of any characteristic of a software

system.

The analysis was based on data collected by the Software

Engineering Laboratory. Correlations were calculated be-

tween effort and other software characteristics, and de-

scriptive statistics were generated. The ultimate goal of

this research is to develop guidelines for estimating costs

and performance characteristics for software development

based on historical data. The baseline_ approach is widely

applicable and easily implemented.

t,

>i

I

L:' t
I	

t

FW84 23138

PANEL #1 g

CURRENT RESEARCH IN THE SOFTWARE i

ENGINEERING LABORATORY (SEL)

_
r

t

t
t

t

V D. Card, Computer Sciences Corporation
V. Bgsili, University of Maryland

r M. 7.elkowitz, University of Maryland

S

t7

1

F

.=	 y

.^

r	

.^ql

I

^V

S

^!

Ti

11 ^
t	 !J

ti

^I

j!.

INTRODUCTION

The basic goal of software engineering is to produce the

best possible software at the lowest passible cost. Many

practices, tools, and techniques (collectively referred to

as technologies) have been developed that purport to help do

this, some of which have become widely accepted in thesoft-

ware industry. However, few of these technologies have been

effectively evaluated experimentally (Reference 1). This is

due in large part to an insufficient understanding of the

software development process, a lack of recognized standards

for measurement, and the prohibitive cost of large-scale

controlled experiments. The analysis described in this

paper addresses some of these issues. The specific objec-

tives of this study were to

•	 Measure technology use in a production environment

•	 Develop a model for evaluating software engineering

technologies

s	 Evaluate the effects on productivit •17 and reliabil-

ity of some specific technologies

Eight widely used technologies were selected for study, as

identified in Table 1. The extent of general use shown in 	 }

Table l is the percent _of'-respondents reporting having suc-

cessfully applied these technologies in a survey by Beck and 	
i

Perkins (Reference 2)

The data analyzed in this study was collected by the Soft-

ware Engineering Laboratory (,SEL). The SEL has collected

data from more than 45 projects during the past 6 years

(Reference 3). Table 2 shows some of the characteristics of
these projects. Although a controlled experiment was not

performed for this study, a carefully matched sample was

selected for analysis from the SEL data base. The sample	 r'

D. Card
CSC
2of17

j

TABLE 1. TECHNOLOGY INDICES

SEL — GENERALS—
INDEX MEDIAN (%1 USE l%)

aa`
QUALITY ASSURANCE2 49 49

TOOL USE2 49 NA

DOCUMENTATION2 , 82 "78

STRUCTURED CODE 70 59

CODE READ 20 44

TOP—DOWN DEVELOPMENT 60 60

CHIEF PROGRAMMER 85 46

DESIGN TIME 32 NA

W'n FROM SURVEY BY BECK ft PERKINS.o

2COMPOSITE OF SEVERAL ITEMS.

1

r

TABLE 2. 'ENVIRONMENT STUDIED
M

TYPE OF	 SCIENTIFIC, GROUND-BASED, INTERACTIVE GRAPHIC,
SOFTWARE:	 MODERATE RELIABILITY AND RESPONSE REQUIREMENTS

LANGUAGES: 85% FORTRAN, 15% ASSEMBLER MACROS

MACHINES:	 IBM S/360 AND 4341, BATCH WITH TSO

PROJECT CHARACTERISTICS:	 AVERAGE	 HIGH	 LOW

t DURATION (MONTHS)	 15.6	 20.5	 12.9

' EFFORT (STAFF-YEARS)	 8.0	 11.5	 2.4

SIZE .11000 LOC)
f DEVELOPED	 57.0	 111.3	 21.5

DELIVERED	 -	 62.0	 112.0	 32.8

• STAFF (FULL-TIME EQUIV.)-`
^ AVERAGE	 5.4	 6.0	 1.9

PEAK	 10.0	 13.9	 3.8
INDIVIDUALS	 14	 17	 7

APPLICATION EXPERIENCE
MANAGERS	 5.8	 6.5	 5.0
TECHNICAL STAFF	 4.0	 5.0	 2.9

OVERALL EXPERIENCE
MANAGERS	 10.0	 14.0	 8.4 -
TECHNICAL STAFF	 8.5	 11.0	 7.0

n

^' n d SAMPLE: 22 SYSTEMS USING A VARIETY OF TECHNOLOGIES I

n n 4WCAR-4331-5

S

consisted of 22 scientific software systems developed in

FORTRAN on the same computers to support spacecraft flight
'Ra

dynamics applications.

a

1

{

i

a

1

7

t

y

I

fa
D. Card:
CSC

~5of17

i

a	 i

TECHNOLOGY MEASUREMENT

A degree-of-use score	 (technology index) was determined for

each of the .technologies listed in Table 1 for every system

in our sample.	 These scores are based on both subjective
and objective information. 	 (The table lists the median

score from the sample of 22 projects...),	 These scores are the

percentage of actualuse of a technology relative to its

maximum possible use.	 The exception is design time, which

is simply the percentage of the development schedule spent t

in design.
a

For those technology indices having only one component (see
Table 1), such as code reading, the score is the percentage }

of code to which this technology was applied.	 For those
i

technology,indices having more than one component, such as

documentation, the score is the percentage; of components

applied.	 In the case of the documentation technology index,

the score is the percentage of documents actually produced ;- t
by a project of those that might be produced in this
environment.

This analysis attempted to identify the effects of tech-

nology use on development team productivity and software
reliability.	 Productivity was measured in terms of the

number of noncomment lines of code designed, coded, and

tested per programmer hour of effort.	 Reliability was i

'measured as the inverse of the number of errors detected per
I

noncomment line of code. `!!

One .assumption made in this analysis is that the effect of

any technology is incremental.,	 That is, a high level of use
J

of a beneficial technology has more effect than a low level
of use.	 A technology that is of no valueunless applied
perfectly is of>no,value at all, because it will never be
applied perfectly.

D. Card
CSC
6of17

_

TECHNOLOGY EVALUATION

Evaluating the effect of a technology on an actual software

development project is not easy. In practice, several tech-

nologies may be applied together, and other factors such as

programmer effectiveness andproblem complexity also influ-

ence project results. Boehm (Reference 4) has pointed out

the difficulty of distinguishing the effects of modern pro-...
gramming practices from those of related factors. Table 3

lists the nontechnology factors considered in this analysis.

All of these have been suggested in the software engineering
literature to affect productivity and/or reliability.

Thus, the next step of this analysis was to identify the

major nontechnology factors and to develop a. procedure for

compensating for their effects on productivity and reliabil-

ity. The analysis of covariance technique (Reference 5) was

selected to deal with this situation. The Statistical

Analysis System (Reference 6) software performed the

computations reported in this paper.
	 {

The technology indices were collapsed for this analysis by 	
F

dividing the projects into "high" and "low" groups with re

spect to each technology index.	 Although this causes some

foss of information, the resulting analysis is also more
a robust.	 This analytic technique permitted tests of signifi-

cance to be performed between the high and low groups with

respect to productivity and reliability after compensating
w for the nontechnology factors (covariates).

r^

^- The two most highly correlated factors from Table 3 were

initially selected as covariates for productivity and reli-

" ability.	 Programmer effectiveness and computer use were

selected as covariates with productivity. 	 Programmer

effectiveness was also selected`as -a covariate with reli-

ability.	 However, because requirements changes was cor-

D. Card
ire CSC

7of17

v

''I

TABLE 3, OTHER FACTORS
CORRELATIONS

FACTOR	 MEAN I PRODUCTIVITY) RELIABILITY2

PRODUCTIVITY
	

3.0
	

0.51

n

i

PROGRAMMER EFFECTIVENESS	 5.7
(WEIGHTED YEARS)

REQUIREMENTS CHANGES/	 1.4
SUBSYSTEMS

NUMBER OF SUBSYSTEMS	 6

NUMBER OF DATA SETS	 ! 11

NUMBER OF DATA ITEMS	 328

AVERAGE STAFF LEVEL (FTE)	 3.3

AVERAGE MODULE SIZE (NEW)	 193

COMPUTER USE (HOURS/LOC) j	 0.008

MANAGEMENT/SUPPORT	 (19
EFFORT (%)

DATA DENSITY (DATA ITEMS/	 71
SUBSYSTEM)

'PRODUCTIVITY = DEVELOPED NONCOMMEN1

	

0.53 +	0.68•

	

-0.12	 -0.40

0.21 0.03

0.26 0.17

0.30 0.21

0.10 -0.09

-0.07 -0.15

-0.59• -0.19

-0.47 -0.18

0.07	 I	 0.38+

LINES OF CODE/PROGRAMMER HOURS
00 n C

	

° n n	 2RELIABILITY = -ERRORS/DEVELOPED NONCOMMENT LINES OF CODE

	

a	 +-qFr-nNn FACTOR SFl FCTFD_

"FIRST FACTOR SELECTED.
438 CAR l8(l

A

^	 i 4

related with programmer effectiveness, data density was

substituted as the second covariate for reliability. This

prevented collinearity in the model.

Each technology was evaluated independently in this manner.
r

One potential confounding effect recognized in an earlier

SEL study (Reference 7) and by Boehm (Refe-rence 4) was the

tendency of technologies to be used together. 	 This makes it

difficult to isolate the effects of one technology from

another and poses the possibility that there might be an

interaction of technologies that this procedure could not
f

r detect, a	 6

Productivity Results x

This approach to the evaluation of technologies resulted in

the generation of a class of models (one for each tech-

nology) of the form
i

Productivity = Technology + Programmer Effectiveness

+ Computer Use

x Together, programmer effectiveness and computer use ac- r

counted for 54 percent of the variation in productivity
E	 1

before the effects of any technologies were included in the }

models.	 Table 4 shows the additional variation accounted
R

Q for by the technology factors.	 The magnitude and signifi-

cance of the effect for each technology are also listed in

° the table.	 Individually, none of the technologies studied }	 j`

`. in this analysis showed a significant effect on productiv-

ity.	 However, this also indicates that any other benefits

derived from these technologies are not at the expenseof
f

;{

productivity.

Early suggestions were that the principal value of modern II,

- programming practices is primarily in the area of maintain- III
ability.	 Shephard (Reference 8) indicated that the effects

of such technologies are more apparent in less experienced

_ D. Card.M
CSCi^
9 of 17 _I

TABLE 4. SUMMARY OF
PRODUCTIVITY ANALYSES

TECHNOLOGY SIGNIFICANCE PERCENT EXPLANATORY
INDEX (EFFECT)

i
OF EFFECT (X 1) IMPROVEMENT CONTRIBUTION (X2)

QUALITY 0.87 -2 0
ASSURANCE

TOOL USE 0.77 3 0
Z

DOCUMENTATION 0.36 11 2

STRUCTURED 0.82 -2 0
e	 CODE

TOP-DOWN 0.95 -1 0
'	 DEVELOPMENT

CODE READ 0.45 8 1

CHIEF 0.16 -16 5
PROGRAMMER

E

DESIGN TIME 0.60 7 1^ 	 o^v
w	 ISOLATED TECHNOLOGIES HAVE NO DETECTABLE EFFECT ON

f	 ° PRODUCTIVITY

436 CAR 16b1

{

{ a-^

programmers than in experienced personnel such as those

studied by the SEL (see Table 2). Some other environment-

specific considerations are discussed in the summary at the

end of this section. Mills (Reference 9) proposed that pro-

ductivity is a byproduct of quality, that is, a consequence

of minimizing rework (errors). We would thus expect differ-

ences in reliability (quality) to be easier to detect.

Reliability Results

This approach to the evaluation of technologies resulted in

the generation of a class of models (one for each tech-

nology) of the form

Reliability = Technology + Programmer Effectiveness

+ Data Density
i

Together, programmer effectiveness and data density ac-	 j

counted for 63 percent of the variation in reliability be-

fore the effects of any technologies were included in the

models. Table 5 shows the additional variation accounted	 r

for by the technology factors. The magnitude and signifi-
cance of the effect for each technology are also listed in

the table.
3

Three of the technologies studied in this analysis showed

significant effects on reliability: quality assurance,

documentation, and code reading. All of these techniques
are examples of conscious efforts to understand and verify

the software product. Approximately 73 percent of the vari-

ation in reliability can be explained with a model of this it

type. Improvements in reliability were obtained without any

apparent effect on' productivity (Table 4) . Furthermore,i
this implies that skimping on these activities will not pro-

duce any cost savings for the developer.

w.<

n::

1$

TECHNOLOGY SIGNIFICANCE PERCENT EXPLANATORY
INDEX (EFFECT) OF EFFECT (X 1) IMPROVEMENT CONTRIBUTION (X2)

QUALITY 0.02* 29 10
ASSURANCE

TOOL USE 0.78 3 1

DOCUMENTATION 0.04* 27 8

STRUCTURED 0.75 3 1
CODE

TOP-DOWN 0.67 6 1
DEVELOPMENT

CODE READ 0.02" 29 10

CHIEF 0.56 8 1
PROGRAMMER

DESIGN TIME 0.% -1 0
N (n/
o n	 *P < 0.05
J

038 CAR Isb)

U E)l

TABLE 5. SUMMARY OF
RELIABILITY ANALYSES

w°

Summary

The numerical results just presented must be considered in

the context of the local software development environment.

e	 The results for each technology are discussed below.

•	 Quality Assurance--A program of regular reviews

(e.g., system requirements, preliminary design) improves

software reliability at little or no additional cost in de -

velopers' time. Time spent on reviews is retrieved by

avoiding subsequent problems.

•	 Software Tool Use--Extensive computer use in gen-

e:-al seems to have a negative effect on productivity, a1-

`-

	

	 though some specific tools may facilitate specific tasks.

This index is based on the tools available in the flight

dynamics environment. None of these tools has a demon-

strable effect on productivity or reliability.
^I

EI

•	 Documentation--The development of effective docu-

mentation requires a careful review of the product under

development. Documentation is, to some extent, a prerequi-

site for quality assurance reviews, and thus has a`signifi-

cant favorable effect on software reliability.

s •	 Structured Code--The use of structured code pro

	

k	 duced no significant effect on productivity or reliability..

	

E	 However„ the benefits of this technique are expected to

occur in maintenance.

•	 Top-Down Development--The high-level designs of all

of the systems in the sample studied were similar, and a 	 F`

substantial amount of code was reused from previous sys-

tems. Hence, it is not surprising that no benefit was idea-	 j

tified from the use of top-down development in this

x
environment.

	

k	
D. Card

CSC

13 of 17

y

^t

tr

•	 Code Readies--The simple practice of code reading

} 	 improves software reliability at little or no additional

cost in developers' time.
fj

•	 Chief Programmer--The use of a chief--programmer

team produced no significant effect on productivity or reli-

ability. However, it may provide other benefits.

•	 Design Time--The percent of schedule spent in de-

E-

	

	 sign showed no significant effect on productivity or reli-

ability. The high-level designs of all systems studied were

similar, and the software development problem was well x^

	understood. In this situation, additional design time may	 Y

not improve the product.

Gi 1

3

{

L
t

4

z.
4

W

Ik
S' y

CONCLUSIONS

The analysis results presented in the preceding section-lead

to two types of conclusions: those pertaining to the con-

duct of software development in the local (SEL) environment,

and those of a more general nature. For the most part,

these conclusions are consistent with similar work by other

researchers and with assumptions commonly accepted in the

software development community.

The Local Environment

The results, of this analysis provide the following sugges-

tions for the conduct of flight dynamics software develop-

ment projects:

•	 Use a small team of appropriately experienced in-

dividuals

0	 Do not depend on the computer to do the pro

i

i
I

I	
{4

A	 4

t

grammer's thinking
x,

'̀ •	 Read all code developed)f
-

•	 Effectively document each phase of development

•	 Conduct regular quality assurance reviews

The most important lessons are that developers must be 'cap- a

able and must consciously seek quality.	 These conclusions

will be fed back into the management of subsequent software

development	

-	

p	 g
p	 projects at. Goddard Space Flight Center	 (GSFC).

j

General Implications
F

The analytic procedure and some results of this study are

applicable to more than just the_GSFC flight dynamics <envi-

ronment. 	 The general conclusions of the study are as

follows:, - t

•	 Technology use can be measured and evaluated in a

production environment.

D. Card o

CSC
15 of 17

^.

6

r	 . 	,^'•'	
^.;/ij a .^'...	

. 	 x s`a .4.	 __y_	 rr+uaawen.'. `^* _`°	 __.

^–

__ __—	
-^.

{

k
A

•	 A model that explains much of the variation in pro-
q.

16

ductivity and reliability was developed for tech-

nology evaluation.

A

	

	 Limited use of the technologies studied can produce

up to about a 30-percent improvement.

Although the improvements identified in this study -ere in r'

the area of reliability, a corresponding decrease . in main-

tenance cost due to a smaller need for error correction

should also be realized. 	 Furthermore, productivity appears

` to be a companion of quality software development.	 In addi-

tion, some technologies may produce other beneficial effects

in areas not yet studied by the SEL.

p , The analysis of covariance model appears to be one appro-

priate technique for evaluating the effects of technologies

in this context.	 However, small improvements in productiv-

ity and/or reliability that were not detected by this pro- -

ced`ure might occur.	 More such evaluation efforts are needed

to provide an empirical basis for the formulation of soft-

R ware development standards.

s

D' Card
CSC
16 of 17

NEWp k	
.'_

ACKNOWLEDGMENTit

The authors would like to thank V. Basili, B. Curtis,

S. Zweben, and W. Agresti for their comments on an earlier

2
	 version of this paper.

REFERENCES
4

<•. 1. B. A. Sheil,	 "The Psychological Study of ',Programming,"
'-	 rl
k

h
ACM Computing Surveys, vol. 13, no. 1, March 1981 n

I d

2 L. L. Beck and T. E. Perkins, 	 "A Survey of Software
Engineering Practice:' Tools, Methods, and Results,"
IEEE'Transactions on Software Engineering., vol.	 90
no. 5, September 1983

3. Software Engineering Laboratory,,SEL-81-104, The
r	 t

Software Engineering Laboratory, D. N. Card,-
F. E. McGarry",	 G.	 Page,	 et al.,	 February 1982

4. B. W. Boehm, Software Engineeringg	 g Economics.- -New York.:
II	 p

Prentice Hall, 1981, pp.	 453-456 +

5. O. J. Dunn and V. A. Clark', Applied Statistics:
? Analysis of Variance and Regression.	 New York:

John Wiley & Sons, 1974, pp. 307-332

6. SAS Institute, Statistical Analysis System User's Guide,
J. T. Helwig and K. A. Council, December 1979'

i3

7. "Identification
Measures," , Proeedinsofthe nSixthlAnnual Software

njl

s

Engineering Workshop, December 1981

8. S. B.	 Shephard, B. Curtis,	 P. Milliman, et al.,	 "ModernF

Coding Practices and Programmer Performance," IEEE
:- Computer, vol.	 12, no.	 12, December 1979

k~' 9. H. D. Mills,	 "Software Productivity in the Enterprise,," ".
f Software Productivity.	 New York,:	 Little, Brown & Co.,

11983, pp.	 265-270

i

-	 D. Card .
CSC
17 of 17

i w

i,

OR	 P

OF POOR QLJAUI"^
N84 23139

A

MONITORING SOFTWARE DEVELOPMENT THROUGH DYNAMIC VARIABLES

Carl W. Doerflinger
Victor R. Basili

University of Maryland
Dept. of Computer Science

College Park, MD 20742
(301) 454-2002

Abstract
'	 t

This paper describes research con- 	 The interest in the software develop-
ducted by the Software Engineering Labora 	 ment process is motivated by ^ desire to
tory (SEL) on the use of dynamic variables 	 predict costs and quality of projects
as a tool to monitor software development.	 being planned and developed. For several 	 p
The intent of the project is to identify	 years, studies have examined the relation-
project independent measures which may be 	 ships between variables such as effort,

e	 used in a management tool for monitoring 	 4,5
software development. This study examines 	 size, lines of code, and documentation

-s	 several. FORTRAN projects with .similar pro - ' These studies, for the most part, used
files. The staff was experienced in 	 data collected at the end of past projects
developing these types of projects. The	 to predict the behavior of similar oro-
projects developed serve similar tune- 	 jects in the future. In 1981 the SEL con- 	 I

V	 tions. Because th se projects are similar 	 eluded that many of these factors were too	 i

we believe some underlying relationships 	 dependent on the environment to be useful
exist that are invariant between the pro- 	 6
jects. These relationships, once well	 for the models that had been developed	

9defined, may be used to compare the 	 Any model which attempts. to trace these.
development of different projects to 	 relationships should therefore be cali-
determine whether they are evolving the	 brated to the environment being examined. 	

y
same way previous projects in this 	 The meta -model proposed by the SEL is
environment evolved.

	

	 6	
{designed for such flexibility

	

Ov-erview	 Another way to isolate out the	 ;I
environment dependent factors. is by com 	 t

The Software Engineering Laboratory 	 paring two internal factors of a project, 	 it
(SEL) is a joint effort between the	 thus ignoring all outside influences. One 	 y',
National Aeronautics and Space Administra- 	 -approach that is used to monitor software
tion (NASA), the Computer Sciences Cor	 development examines the time gap between
poration. (CSC),: and the University of 	 the initial . report of software problems
Maryland established to study the software 	 and the complete resolution of the prob-
development process. To this end, data 	 7

s	 has been collected for the last six years.	 lem	 Comparing two variables is useful
 problem areasThe data

F	 s
	 attitude

and control softwaredevelopedelby CSC, b in	 as they	
accentuat e s

	they develop,providing relative infor	 1
FORTRAN, for NASA. Additional information 	 mation rather than absolute information.

p	 on the SEL, the data collection effort, 	 Relative information is useful to the pro-
and some of the studies that have been	 jest manager because it accentuates trends

°'.	 made may be found in papers from the 	 as the project develops. I"f project
Software Engineering Laboratory Series	 environments are similar, then similar

r`-	 1,20	 values should:. be expected .. Because the
published by the SEL	 project environments

be further extended in the SEL are

couldc	
t this approach , coulds	 lar, it was felt that

--^-^-	 to provide managers
p`	 This research was supported by the Na. 	 with information about how a set of vari-
'^	 tional Aeronautics and Space Administra-	 ables over the course of a project dif-

tion grant NSG-5123 to the University of 	 fered from the same set of variables on 	 j
Maryland. Computer support provided in 	 other projects (baselines). The managers 	 }
part by the facilities of NASA /Goddard	 could be alerted to potential problems and
Space Flight Center.	 use other variable data and project

434
0730-315718310000/0434SO1.00 0 1983 IEEE

^y

for

	

	 V. Mill
UofM
1 of 32

E

;f.

ORIGINAL r6rNGE M'

OF POOR QUALITY

1
}

i
knowledge	 to determine whether the project baseline.	 Any measures outside a standard 1was in trouble, deviation are flagged.	 These measures are

then interpreted by	 the project manager to 4
This methodology is flexible enough determine how the project is 	 progressing. ?

to resporrd	 to changing needs.	 Every	 time A flagged measure may 	 indicate a project
aproject is completed the measures col- is developing exceptionally well or it may
looted during its 'development may be added indicate a problem has been encountered. 1
in	 to calculate a	 new baseline.	 In	 this
changes in	 the environment,	 as	 they occur. The interpretation of a set of

flagged measures is a 	 three step	 process.)
Baselines might also be developedto First,	 the manager must determine	 the pos-

reflect different attributes.	 For sible	 interpretations	 for each flagged }
instance,	 several projects which had good relative measure using lists of possible
productivity might be grouped 	 to form a interpretations developed and verified
productivity	 baseline.	 Once	 baselines are based on past	 projects.
established,	 projects	 in progress may be
compared against them.	 All measures	 fal- Second, the union of	 the	 lists of f

ling outside the predetermined tolerance possible	 interpretations of each flagged F
range are interpreted by the manager, measure must be taken.	 The list formed	 by

this union contains all the 	 possible.
interpretations ordered using the number

MethodoloffY of times each	 interpretation is	 repeated
_ in the different lists.	 The	 larger the

The implementation of this methodol- number of overlaps a possible 	 interpreta-
ogy is dependent on two	 factors.	 The tion has,	 the greater the probability 	 it
first	 factor is	 the availability of meas- is the correct	 interpretation.
ures that are project independent and can
also be collected throughout aproject's Third,	 the manager must analyze the
development.	 Variables like programmer combined list and determine if a problem
hours and number of computer runs are pro- exists.	 Interpretations with an equal
ject dependent.	 By	 comparing these vari- number of overlaps all have an equal pro-`
abler against each other a set of relative bability of being the correct interpreta- I
measures may be generated which is project tion.	 If none of the possible	 interpreta-
independent.	 For instance, the number of	 -tions for a given relative measure overlap
software changes may vary 	 from project to then the relative Leasure should be con-
project.	 The project dependent features sidered separately.
shared by each variable will cancel out
when the ratio of software changes per When analyzing the interpretations,
computer run is taken.	 The resulting three pieces of information must be con- ti
relative measure is project independent. sidered; the measurements,	 the point in

- development,	 and the managers knowledge of
The second factor is the need fo g the project.	 A relative measure may ind-

H fixed time intervals common to all pro- sate different things depending on the
Sects.	 To normalize	 for time,	 project stage of development.	 For	 instance,-a

•_ milestones were used.	 The time into a large amount of computer time per computer
project might be twenty percent into cod- run early in the project may indicate not
ing instead of ten weeks into the project, enough unit testing is being done.	 per- x
for	 instance. sonal knowledge may also give valuable i

insight.
When computing the baselines one

other	 factor was considered. 	 At	 any given. A fundamental assumption for using
i, interval during development a variable may this methodology is that similar type pro-

measure either the total number of events jects evolve similarly.	 If a different
that have occurred from the beginning of type of project was compared to this data-
development (cumulative) 	 or the number of base, the manager would have to decide
ofevents that have occurred since the whether the baselines were applicable..

;.^ last measured	 interval	 (discrete).	 Since Depending on the type of differences, 	 the
x these approaches may convey different established baselines may or may not be of

information it was felt that they both any value:
,;. should	 be used.

For simplicity,	 the baseline for each EXAMPLE	 1:
-_---F ..-; relative measure was defined as the aver- -

age and standard deviation computed	 for Forty percent into coding a software
y	 _ the measure at predetermined intervals. 	 A manager finds that the lines of source

project's progress may now be charted by code per software change is higher than
the software manager.	 At each interval in normal.	 A list previously developed is
a projects development the relative mess- examined to determine what the relative
ores are compared with their respective easure might indicate. 	 The possible

475

W. Basili
UofM

4
2 of 32.

ii

t
f,

k,

^I

r_

S

gg

I

OF POOR QUALITY

interpretations for a large number of
lines of source code per software change
might be:

good code
easily developed code
influx of transported code
near build or milestone date
computer problems
poor testing approach

If this werethe only flagged measure the
manager would then investigate each of the
possibilities. If the value for the meas-
ure is close to the norm leas concern is
needed than if the value is further away.

averageand standard deviation was com
puted for each baseline. Some baselines
suffered from 7• kmited data points during
the beginning of the coding phase. A cou-
ple of the projects, in which problems
were known to have existed, were flagged
as soon as data on these projects
appeared, but this was fifty percent of
the way into coding. It is not knobrn how
much earlier they would have appeared, if
data existed at the early intervals.

Interpretation of Relative Measures

If in addition to lines of source
code per software change the number of
computer runs per software change was
higher than normal, the manager would also
examino this measure. The possible
interpretations for a large -numberofcom-
puter runs per software change might be:

good code
Iota of testing
change backlog
..poor testing approach

The union of the possible interpretations
of these two measures indicates that the
strongest possible interpretations are 1)
good code and 2) a poor testing approach.
The number of possibilities to investigate
is smaller because these are the only
measures which overlap. The manager must
now examine the testing, plan and decide
whether either of these interpretations
reflect what is actually occurring in the
project. If these two possible interpre-
tations do not reflect what is happening
on the project, .the manager would then
examine the other interpretations.

Baseline Development

To develop a baseline one must first
have variables whose measurements were
taken weekly for several projects. Five
variables in the SEL database were used.
The lines of source code, number of
software changes, and _number of computer
runs were collected on the growth history
form. The amount of computes time and
programmer hours were collected on the
resource summary form. Measurement of
these variables started near the beginning
of coding. In this study, nine separate
projects were examined whose development
was documented, with sufficient data, in
the SEL database. The projects ranged in
size from 51-112K lines of source code
with an average of 75K. No examination
was done for the requirements' or design
phases.

Once the variables were chosen the

i

Once a set of baselines are esta-
blished new projects may be compared to
them and potential problems flagged. To
interpret these flagged relative measures -
a list should be developed.. with each meas-
ures possible interpretations. Each list
must consider the possible interpretations
of the relative measure when it is either
above normal or below normal. What each
component variable actually measures
should also be considered when the dif-
ferent lists are developed.

A list was developed with possible
interpretations for each relative measure
being examined in the context of the SEL
environment. In another environment the
interpretation of these measures might be
different. These lists are subdivided
into two categories; above and below nor-
mal. The above normal category contains
possible. interpretations for the relative
measure when it is outside one standard
deviation from the average in the positive
direction. The below normal category
refers to Interpretations whenthe measure
is outside one standard deviation from the
mean in the negative direction.

One ofthe reasons this methodology 	 -
works is because of the implicit inter-
dependencies between different relative
measures. To show these interdependencies
more explicitly a cross reference chart
has also been provided for each interpre -

tation to indicate other relative measures
that can have the same interpretation. A
number, in the cross reference section
indicates the list number of a relative
measure that can have the same interpreta -

tion. The p.o.sition of the list number in
the 4-quadrant 'cross reference section
indicates whether both interpretations are
found with above normal values, both with
below normal values, or one with above and
the 'other with below normal values.

With these lists a set of flagged
relative measures may be evaluated. When
a relative measure is flagged, its associ-
ated list is examined for possible
interpretations. Overlaps of this list
with the lists of other flagged relative

V. Basili
U of M
3 of 32

8 T

i

i

i
^

N d

I	 14 OWN
W ti

^I	 E

v P
V^

a 7.
CLE
E

m
v

u

uE..

Sample Baseline
°

L3^L

t^' GaC
s^ c

eQ`cF,

a° s°

s	 la

ce

5

{
1

i

c°

i

H ^

J

ai

f

ORIGINAL PAC.E 19

OF POOR QUA

Q 0
_;V

10 9)

a
0

10

C Em

Llat 7: ComPutar Run! ,par Line of Source Coda

Ik	
I 	 1	 1	 c	 r tarance
I type i	 Sntarpr,ta CLOn	 I	 above I Delow	 1
1	 i	 1normal I	 normal	 I

	

Relative Measures Examined:	 i.. above	 I	 I	 I
i	 (1	 I

List I - Computer Run: par Lin: 	Source Code	
normal

List 2 - ComPu for Tie psr Llne of Source Cods 	
I	 -low pcmdu

tea

ct!vlty	 12 tl	 i	 (.

Llat-3 -Software C	 o

	

han ea	
1'	 -high	 mpl.ealty

tin	 I6 7g	
72 Y 78 9 1	 1

	

H	 per Llne f SOnrce Code	 I	 - lots of	 IList O - Programmer Hours per Line. of Source Code 	 I	 -removal of coda	 1212 3.4
Lint 5	 Computer Time per Computer Run 	 1	 (testing or transported)	 I	 I	 ILint 6	 Softwara Changan Der Computer' Run 	 Dad ap c1fLC tl ns 	 3 tl iI	 Pro	

I	 12	 1List 7	 grammes Xoura: per .Computer Run	 i.____._____._______...______.________'._________-(
(L1:t g .- C puter.Tlae par Softyare Chang, 	 below.	 1
1	 Li:t 9 - Programmer.. X..ra per So ftwa re . Ct18n8e	 'I nofaaI	 1	 1	 I

1	 -influx of transported cede 	 I.	 12 3 Y	 i
I	 ear Dulld or n l le a to ne date 16 	 12 3 4.8 9 I
I	 -little on line teating	 I	 12	 1

being done	 i	 I	 1
I	 -little executablecode	 i	 12

being developed	 I	 1
1	 -comDu ter p roDlema	 1	 13	 I

F

List 21 Computer Time Der Lin,. of Source.Code 	 List 3: Soft—re Changes per Line of Source Code.
______	 __________________	 ___.--___________.____:	 ___________
I	 1	 I	 croe	 eIerence	 I	 i	 1	 I	 cans reference	 1
t type 1	 interpretation	 Iabove1	 D 1	 I	 I typ e

.
1	 i s pr tattoo'	 1	 e. a	 I b 1	 II	 I	 I 1 I	 r	 1	 I.	 I	 I	 i	 11	 oral	 I

w

	

_--'--- 	 -------------------------------- ----------------------------L .	 1 above	 1	 I	 1	 ia bove
1 normal	 I	 I	 I	 Inormal	 I	 I	 I

.'	 I	 high complexity	 1t D T 8 9: I	 1	 1	 .good.[at"	 16	 IR 9	 1I	 lov prod tivicy	 It tl	 I-	 i	 I	 -err	 prone code	 IY 5 6	 12 7 H 9	 I
t]	 I	 -bad speoifica Lido: 	 I1 3. tl	1	 I	 I	 -boa p itl Cac ions	 (12 'tl	 I
y	 I	 -loco or cencinH	 I1	 1.6 7	 I	 I	 -codebeing r oven	 it. 2 Y	 I	 j
j̀ 	I 	 unit cents g b ingdon, 	 IH	 I5	 1	 I	 (testing e transpor ted) I)	 1

I	 code bein gremoven-	 L1 3 Y	 I	 I	 I------------------------------------1__________1__________1.
1	 (tenting or transported)	 1	 I	 1	 Ibelow	 I	 I	 I1_____ 	 normal.	 1	 7	 /
1 Below	 I	 I	 I..	 1	 -Influx of transported code	 I	 11 2 Y	 I

!:	 I. normal	 'I	 1	 I	 'I	 -near build or milestone date 16	 11 2 Y 7 8 I
-in[1u: of transported cose	 I	 I1. 3. t	 I	 I	 -good code IB 9	 16	 1

1.	 -near bulls or ml lee cone date 16	 11 3 tl 8 9 1	 1	 -poor testing program	 Ie 9	 16	 1
I	 -lit tie on line tenting 	 1	 I1	 1.	 1	 -change backlog . 	1	 16	 1
1	 being done.	 I	 I	 I.	 f	 -law cooplexit,	 I	 Itl.
1	 -cone erra

eduta bl
r prone	 13 4 5 6	 I7 1 9	 1	 J	 -Computer probl s

-little e I11	 xe code	 --1	 I1	 I

1ti^..	
I	 bei a	 itc	 I	 1

[C
° °,''t^
w

P`	 N	
fn

I

List 4: . Programmer Hours par Lineof Source Cod

111

_____.__ _________	 ________________

1
_

I	 croaa ref once	 1 List 5 Co put r T1	 per Compute	 R
I	 type d	 interpretation I	 bo,e	 I' b	 for	 1 ------ -----	 ------°------°- --°---------------------'
1	 I I	 normal	 1 normal	 1 I i I	 croaa rs to rence	 I

{ ---
_________ 1	 type 1	 interpretation I	 ab	 v. I	 b	 1	 I

1	 kbo,a I	 1 i I 1 I	 normal 1	 normal 	 I
Inormal

---T-hi 8h complexity U 2. 7 8 9 I i I	 above (1	 1
I'	 -error prone coda 135 6	 l2 T	 8	 9	 I i noroal I I	 I
1	 -badapeoi ticac ions It	 2	 3	 i I i -sYatem a Integra tlon testing 16 1	 I
1	 -d ode baing r^^o,sd I[2	 3	 I 1 I started early 1 1	 I

1 I	 {testing or ,	 na p orted} I	 I 1 I -error prone code 13	 4	 6 i2	 7	 8	 9	 f
I	 -changap ': r rd to leolata 17	 8	 9	 I I I -coaDute bound algorithms IB 1	 I

l I	 -changes hd co make. 17	 9	 I I I D ing tested I 1	 l
I	 -Low product it ity 1i	 2	 I 1 I	

____-------------------------------
I__________I__________1

I,------------------------------------1--•--.-----I----------I 1.De.or 1 T	 I
I I	 Dolor. i	 1 I 1	 n rural I 1	 1

I	 .ln0 1	 i 1 I -unit tasting goi nH en I2	 B i	 1
1	 -infiulx or .transported code I	 11 2	 3	 i 1 -easy arrora b!'%" found 1 IT	 9	 1

-naar Du11 d. or n tmlaatbna da t a 16	 I1 7 3 B 9	 1 ----------------------------' ---------------------`------`-
-3ow coap3sxity 1	 13 T

A

1

IList 6: Software. Changes par Computer Run
-------- __________ 	 ______	 -______ 	 _____	

wen"1	 1	 I	 cross	 re[
I	 type	 I
	

Interpretation	 .Iabo e	 I	 b	 to	 I
11	 I	 no	 n 	 1	 I	 n or mal.	 I

List 7	 Pr g amaer Ho	 p	 c puter
______.__	 ______	 ______	 _______

I	 I
1	 type	 i	 interpretation

un

j	 crass
f	 b ve 7

reference I
below

1 -
``
I'^

abo .•	 1
I	 normal	 I
I	 -good

	
testing 	 13

I	 -aystea a	 Integration teating	 15
I	 started. early.	 I
I	 -error Drone cod•	 13 4'5
I	 -near build or. at
	 13

 date 1

-------------------_
i
1)
18	 9	 I
1	 1
I	 I
12	 7	 8	 9	 I

2	 3	 I

1	 i

—---------- --------- --------------I	 abo,'
I	 n	 e	 1
1	 _high comple:icy
I	 -modlticationn being made to
I	 recently 'tra nn DOrted code
I	 -changes hard	 to isolate

I	 normal

f
1
Il 2	 6	 8	 9
I
I
Ik '8	 9

-- --------------------

1

t
!19

I
I

normal	 I

 I
1

 I

I
I

1 i
11
Ik 8	 '9	 I I	 -changes hard to make 14	 9 I 1

<-.

i

bal or
noru l	 -

I	 -good coda
1	 -lots of testing
1	 -Door teatln8 program
I	 -c nange bfak log.

i
1
13	 8	 9
I1	 2
13	 '89
13

I
I
I
17
I
1

I.
1
(
I
I
1

f below
1 ..realI.	 -es y	 rroro tieing [S.xed
i	 -error prone cod e
I	 -lots of testing
__________._____________________________

I
i
1
13	 4	 8	 6
11 	 2--------------------

1

IS
12
16

7

9	 1
8 9	 I

I

1
a ___ ___---

WA9

_.
r

1{

7

O +^c^^

'OF POOR QUALITY

. Liat _Bt _CoaPuter Tima _per _Software _Change List	 Hours	 Software Change_9t _Programeer
..

per

_
 ----	 ---	 -------- _.,____._____.._ ._..__._____

t	 i	 I	 cross	 Nfa rence
_____.._._____	 _.________.__..^____..__.___. 	 __--___.

I	 I	 L	 I	 Bross reference	 I
I	 type.	 I	 Interpretation	 I	 above	 1	 below 1	 1	 type	 I	 Interpretation	 I	 above	 I	 below	 I
1	 I	 1	 normal	 1	 normal I	 I	 11	 no .mall	 normal	 I

'.
_____________ ____________ _.__-__-_______________________

I	 above	 1.	 1
__.____-_

i	 i .above.	 _^___ -'_`__-'_-_'_"'_'_'_____"_____________"__ -.
1	 normal	 1	 I I	 I	 normal	 1	 i	 I
I	 -hood	 code	 13 9	 I6 I	 1	 -gcod	 coda	 13	 8	 16	 I

-Door	 testing	 p ro g ram	 13 9I6 I	 1poorerating program	 13 8	 16	 1
1	 -high complexit y 	11	 2	 4 7	 9	 1 !	 I	 -oho ngea	 hard	 to	 Isolate.	 14	 7	 8	 I	 f

° R
i	 -changes	 hard	 to	 isolate	 14	 7	 9	 1 I	 I	 -changes hard to sake	 14	 7	 1	 1
1	 -unit	 testing	 I2	 IS I	 1_____	 ______________________________1--____...__.1__.-_._____i
I	 -c oeputeg 	bound algorithtls	 IS	 I 1	 i	 below	 1	 I	 1 -
I	 being tefted	 I	 1 I	 I	 normal	 I	 i	 I

K- -	 - -good	 tenting	 13	 fi	 IB	 I
I	 below	 1	 1 t	 I	 -n earbuild	 or n S1}scone	 date	 16	 I1	 2	 3	 4	 B. 1 . r
I	 n
	
real	 I	 I 1	 1	 -easy changes	 I	 15	 7	 I-	 - 1	 -near	 build	 or	 milestone	 date	 16	 I1	 2	 3	 4. g i	 1	 -transported	 code belug.	 IT	 I	 I

1.	 -good	 teetin g.	 13	 6	 19 I	 I	 nodlfied	 I
	

I

-
1	 -error	 prone. code.	 1.3.	 4	 5	 6	 12	 7 9 1	 1	 -error	 prone	 code	 13	 4	 5 6	 .7	 B	 i:2

--

I

}

t

measures form the new list of what these noted when the different time intervals t
-̂ relative measures	 together might indicate. are discussed. -

The more overlaps	 a particular	 interpreta-
t Lion has,	 the greater the chance it is the The	 tables on	 the	 following page show

wnich relative measures were flagged whencorrect interpretation.	 Interpretations
with the same number of overlaps mus t be project twenty was compared to the base- 1
considered equally. The more relative lines for each stage of development. 	 The i	 I

measures flagged the more serious the numerical values represent how many 	 stan-

-
problem may	 be.	 It	 is up	 to the manager
to determine whether the deviation is good

dard deviations each flagged relative
measure was	 from the baseline.	 The base-

or	 bad. line for each relative measure was calcu-
lated using all	 nine projects.

-	 Monitoring a Software P
-
ro,j.ect's DeveleEment_	

--	 -	 --
'.._

P
_

Start o_fC_odim:
Once the baselines have been - k

developed and	 the lists of possible At	 the start of coding only one rela-
interpretations have been put together a tive measure is	 flagged.	 The smaller than

-, software manager may monitor the actual normal number of software changes per line
- development	 of	 a	 project..	 Example .1 of source code using the discrete approach -	 7

- demonstrated how a single interval may be reflects work done during the design
interpreted.	 The	 following discussion phase.	 The lists designed 	 in the previous
will	 trace the development of an _actual section were directed towards code produc-
project.	 During the actual use of this Lion and testing and do not apply	 to	 this
methodology,	 influence would be exerted to time interval when using the discrete i
correct problems as soon as they are ides- approach.	 This measure may indicate good
tified.	 With this study,	 we must be con- specifications or hots of PDL being *gen-
tent to study a projects evolution, grated.	 The manager might want to examine
without hindrance,	 and see at what points' this measure later if it constantly k
problems could of been detected: repeated.	 Since	 it is the only measure

flagged at this time	 it will	 be	 ignored. l	 I
' Project twenty* was chosen for this

examination because data existed f
throughout the projects development.	 In
most . respects project	 twenty was an aver -

`	 - age project._	 The project did have a lower
than normal productivity rate. 	 The lower
rate may be partially explained by the

fact the management was less experienced * The numbering convention used is an
when compared to other projects._ 	 The pro- extension of the one first used by Bailey

- ject also suffered from some delayed 6
_ staffing.	 Changes in staffing will bs" and Basili i

y

I. 440 %.	 ^.

V. Basili
UofM 4	 .

7- of 32
F

a

MW FAI 	 9
'	 .,	 .,	 ..- 	 .. 1';f ^r	 ,_	 .,i.^	

..	

,,.	 a r^	 _	 ..K^.; ;.	
9k.	 -•I r"ta aFiry s	 .- i	 #	 -	 ' 	 .. ,4

Ir `	

1	
^+	 R.. 3S	 , mss: ^m	 M

,

{

i
project:	 20.

i	 method of measurement:	 cumulative

------^--
I	 number of standard deviations from norm- 	 I	 I
1--I 	 I

-	 Istart 20%	 40 % 	 50%	 60	 80% start 50% start end	 1	 relative measures	 I
« [code code code code code code 	 sys	 sys accpt	 I	 I

---------- -------+----+----+°-_.+__-------}----}----------------
I	 1 .3	 I	 >1	 SD programmer hours/lines of source	 I

- I 	- 	 .7,..1	 1	 >1	 SD	 runs / lines	 of source'
1	 1	 1.8	 1.5	 1.2	 1	 >1 SD computer	 time/lines of source 	 I

---+--------------}----}----*----+---------+----}-------------------------------
1	 1.1	 1.2	 1.1.	 1 . 1	 1	 <1	 SD	 programmer	 hours/run	 I.
---+---------+---------}---^+---------}----}----+-----------=----'--------'--------------------

method of measurement:.. discrete.	
0
O

---'-----------------------------`---------------------------------------'---------------f
.11,11	 I	 number of standard 	 deviations	 from norm	 I	 1

I ------------------------'-------------------------- I 	 1
{	 u	 Istart 20%	 40 % 	50%	 60 % 	80% start 50% start end	 I	 relative measures	 I
((l\,
	

Icode code code code code code	 sys	 sys accpt	 I	 I	 r
• ---------------------- , ------------------------- 4f-- 	 ^.

i.	 1.0	 1.1	 1.8	 1.5	 2.0	 2.4	 1	 >1	 SD. programmer hours/lines of source	 I	 00	 ..
I	 1.,2	 1.8	 1.8	 1.7	 I	 >1	 SD runs/lines of source	 1	

n11.1	 1	 <1	 SD	 changes / lines	 of source	 I	
1'r

t	 1	 1_1	 1.1	 2.0	 2.0	 2.4	 1	 >1 SD changes/lines of source 	 (m
1	 1.2-	 1.3	 1..7	 2.1	 2.0	 1	 >1	 SD	 computer	 time/linen	 of	 source	 I

---+------------.--+----}----
x .: 1	 1.2.	 1	 <1	 SD programmer hours/run	 I

1	 1.2	 1	 >1 . SD computer time/change	 i
fi .	 ---'---°*-_--+----+---.------+----}----+-------`---------------------------

t	 00 Ci G
,r	

M

i
t

1

lam:
G	 i k	 a

ORIGINAL PAGE M

OF POOR QUAL6!

20% Coding: The number of possibilities is larger with
this	 set	 of possible	 interpretations.

The flagged	 relative measures found Five interpretations are slightly	 stronger
using	 the discrete approach at this point than the others.	 During the actual
represent the work done	 from the start of development,	 the	 first release of the pro-
coding until twenty percent of the way sect was made.	 The amount of code actu-
through coding.	 The list of possible ally written was also lower than normal
interpretations for the flagged relative during this period,. 	 The use of the
measures, generated from the lists made discrete approach gives a stronger feeling
previously for	 the	 individual	 relative that code	 is not	 being written.	 Trait-
measure, would look like: sported code tends to be installed	 in

large blocks which can be isolated using
/ overlaps	 interpretation the discrete approach.

3	 bad	 specifications

3	 code removed 50% Coding:
'.	 2	 low productivityp s

2	 high complexity The relative measures flagged during
2	 error prone code this period are the same as	 the ones
1	 lots of	 testing flagged at the twenty percent coding
1	 good	 testing interval.	 The deviation from the norm for

changes hard to isolate this interval is 	 larger.	 The	 larger devi-
changes hard to make ation may	 indicate a more serious problem.
unit	 testing being done The problem may	 of been	 as serious,just
easy	 errors being found earlier but without the extra data points,

that are now available, 	 it could not be
The	 strongest interpret:, eions are	 bad determined.	 The possible interpretations
specifications and	 code being removed. 	 If may be taken from the list developed ear-
the actual history	 is examined one finds lier.	 Bad	 specifications and code	 removal
that during this period there were a lot were not factors during this period.	 The

'	 of	 specifications being changed.	 This next three highest priority 	 interpreta- *	 _
resulted in code which was to be modified tions were;	 high	 col ,O-iexity,	 error	 prone 1
being discarded and new code being writ- code,	 and	 low productivity.	 In	 addition'
ten.	 During the early period lots of PDL to this the manager should be concerned
was being produced but very little new with the continued appearance of the 	 rela-
executable code.	 The list of possible tive measure,	 programmer hours per com- ' :
interpretations does show that low produc- puter run,. as	 seen using. the 	 cumulative
tivity	 is also a	 strong possibility. approach.	 This may indicate a lot of

testing going on.	 This	 in	 conjunction- N
with error prone code as a possible }

40% Coding: interpretation may	 indicate	 trouble.	 Dur-
ing actual development this period was

The flagged relative measures which spent developing code for the second
appear using the cumulative approach, from release.	 The project manager felt 	 that

a

this time period on,	 are stronger indica- code was still not being developed quickly i
tors than the ones used In the first cou- enough during this period.
ple of intervals because the average is 3

computed using more data points.	 The use
of the discrete approach for the 	 interval 60% Coding }
of twenty to forty percent is still depen-
dent on three data points.	 The list of 0nly one relative measure is shown at
possible interpretations for this time this interval.	 The number of programmer`
period is: hours per computer run using the cumula- a	 i

tine approach is lower than normal for the
# overlaps	 interpretation third consecutive time.	 This should con-

cern the manager because when examining 1
1	 low productivity the	 list for this measure one	 f7	 ds:
1	 high complexity

error prone code
1—	bad specifications error prone code
1-	 code being removed lots of testing 111

changes hard to Isolate easy -errors being fixed }
changes hard to make
lots of testing Since the occurrence of this measure is
unit testing being done persistent it may indicate that the prob- l
good testing lem was corrected but not enough effort
easy errors was expended to completely compensate for

j the past problems.	 It might also indicate

^

the problem still exists. 	 During the
j

u

442

V. Bashi

4

U of M
9 of 32

ORIGINAL PAGE: I
OF POOR QUALITY

f

_ actual project it was found that while a drop off from this high measure is to be
lotof code was written,	 it had not been expected when using the cumulative
thraughly tested.	 Release two was made approach.	 An examination of possible
during this period which could explain a interpretations that would apply for this
heavy	 test load.	 Two additional staff period of development include:
members were added to the project during

` this phase to aid in coding and testing.
high complexity
lots of testing

80% Co di ng: unit	 testing being done
testing code being removed

The eighty percent coding intervala does not show any measures outside the
normal bounds.	 The addition of two staff A lot of testing 	 is certainly	 indicated	 by
members during the sixty percent coding past history.
phase, as well as the addition of a senior
staff member during this phase, appears to

c have adjusted the project back along the Start Acceptance T_ e stingt 6
lines of normal development.	 To fully
compensate for the earlier problems one The relative measures flagged at this
might expect some of the measures to swing interval reflects the build up in testing
in	 the other direction away from the aver- before the start of acceptance	 testing. i

age.	 The fact	 this over correction did The list of possible interpretations looks
not occur might explain the problems like:
encountered in	 the next section.

W_
I overlaps	 interpretation

Start of System and Integration Tenting: 3	 bad	 specifications
---- 3-	 code being removed

q The flagged relative measures at this 2	 high complexity -	 1
° time period reflect the build up of effort 2	 low productivity

for the third and final release.	 The list 7	 error prone	 code
of possible interpretations 	 for the col- 1	 lots of	 testing
1ective set of flagged measures looks changes hard to isolate }
like: changes hard to make

R̀ unit	 testing . being done -
A	 overlaps	 interpretation good testing

3.	 high complexity Since: little code was being . developed	 dur- s
3	 bad specifications ing the	 testing period,	 a	 large amount of y

- 3	 code being removed .testing. with errors	 being	 found	 is	 the
2	 error prone code most reasonable	 interpretation of	 these

r̀ 2	 low productivity flagged measures.	 The early history of
2	 lots of testing poor testing may be seen here with errors
1	 changes hard to isolate being uncovered late.
1	 unit	 testing being done
1	 good	 code
1	 poor testing .End Acceptance Testing:

changes hard to make
good testing The two flagged relative measures at
compute bound algorithms the end of acceptance testing reflect the

being run clean up effort being made on the code.
easy errors being fixed An average amount of computer time and an

average number of computer runs indicates
rc
. Since the code did have 'a past history ofP that the acceptance testing isD	 B	 going well., iI1r

poor testing an unusually large build up The project was behind schedule due to the

E	 J of testing should be expected.	 The two earlier problems encountered.	 Clean upi
interpretations that apply most to this was done during the acceptance testing
situation are lots of testing and error phase in an attempt to get, the project out

w prone code. the door as soon as possible. 1

As seenin this example,	 the problems
y 52% System and Interration Testing: that occur during a projects development

are reflected in the values calculated for
Only one relative measure is flagged the relative measures.	 The methodology

t '' at this interval.	 This measure was preposed can be used to monitor projects. l
flagged using the cumulative approach.	 An The number of possible interpretations
examination of the measure at the previous increases with each new flagged relative
interval shows a very high value.	 A slow measure.	 The ordering of the measures by

443

G

V. Basili
UofM
10 of 32

ORIGINAL PACE 0-

OF POOR QUALITY

— --^—W

t	 R

Y

z'

i
i

4

E	 i

p ,

k

the numberof overlaps provides an easy
method of sorting the possible interpreta-
tions by priority. Another method of
sorting the possible interpretations could
includea factor that considers both the
number of overlaps and the probability of
• given interpretation being the cause at
• given interval. The weighting of
interpretations for a given interval could
be calculated using the pattern of
occurrence of the different interpreta -
tions which have appeared during the same
interval in past projects.

An Alternate App

Flagged relative measures might also
be interpreted using a decision support
system. The data for the various relative
measures would be stored in a knowledge
base along with a_set of production rules.
To eialuate a project the values for each
relative measure would be entered into the
syst.rm. The knowledge base would compare
the relative measures to their respective
baselines, determine which relative meas.
ures were outside the norm, and interpret
these relative measures using the produc -
tion rules. A list of possible interpre-
tations ordered by probability would be
generated as a result.

4

The difference between a decision
support system and the approach presented
in this paper, is the method of interpret-
ing the flagged relative measures. Each
production rule In the decision support
system is the logical disjunction of
several flagged measures which yields a
given interpretation. Each production
rule is assigned a confidence rating which

invariant relationships to determine when
projects are getting off track..

The ability of the manager to inter-
pret the measures that fall outside the
norm is dependent on the amount of infor-
mation the underlying variables convey.
The manager must decide what attributes
are to be measured (e.g. productivity) and
pick variables that are closely related to
them and are also measurable throughout
the project. As an example, a variable
like lines of code may be too general when
measuring productivity. Measuring the
newly developed code, either source code
or executable code, would be more informa-
tive since these variables are more
directly related to effort. How applica-
ble an interpretation is for the period
currently being examined should also be
considered when ordering the list. The
variables the manager finally decides on
are then combined to form relative meas-
ures.

One method of interpreting a relative
measure is by associating lists of possi-
ble interpretations with it. When a rela-
tive measure appears outside the norm, the
list of possible interpretations is con-
aidered. If more than one relative meas-
ure is outside the norm the lists are_com-
bined. The more times a possible
interpretation is repeated in the lists,
the greater the probability it is the
cause. How applicable an interpretation
is for the period being examined should
also be considered when ordering, the list.
The manager must investigate the suggested
causes to determine the real one.

is then used to rate	 the possible
z

interpretations.	 The lists for the rela- Conclusion
tive measures provided earlier in the ------_--
paper may be easily converted to produc- The ability to monitor a projects
tion rules using the cross reference see-. :development and detect problems as they
tion.	 To develop	 the production rules for develop may be Feasible.	 The methodology
an interpretation one must generate the proposed showed	 favorable results when a
various combinations of relative measures examining a past case.
which might reasonably imply the interpre-
tation.	 Some relative measures may not The use of baselines and lists of K
imply a particular interpretation unless interpretations for comparing projects j

they are found in conjunction with another provides an easy method for monitoring r

relative measure.	 Once the production software development.	 Both	 the baselines
rules are known and a knowledge base con- and the lists of interpretations may be
structed a decision support system may be updated as new projects are developed. 	 As

H: built.	 For an example of a domain- more knowledge is gleaned the accuracy of
independent decision support system see this system should improve and provide a

f^ 8 valuable tool for the manager.
Reggia and Perricone Acknowle dgements f

The authors would like to thank Dr. ;+
Summary Jerry Page of Computer Sciences Corpora- {

Lion and Frank McGarry of NASA/Goddard E'
The methodology presented in this Space Flight Center for theirr insight and q

paper showed that invariant relationships advice. j

..r exist for similar projects. 	 New projects jiEa

z

may be compared to the baselines of these'
x

f:

T
,.

464 r
L^

z

i

V. Basili
UofM
11 of 32

Y,

4 ORIGMAL PAGE ig
0F, POOR QUALITY

i^

References

(11 Card, David,	 Frank McGarry,	 Jerry
Page, Suellen Eslinger,	 and Victor I
Basili, The Software Engineering ti
Latioratary,	 SEL-B1-104,	 Software

t Engineering Laboratory Series,	 God- 1I
dard Space Flight Center,	 February t
1982.

(21 Church, Victor, David Card, Frank
i. McGarry,	 Jerry Page, and Victor

Basili,	 Guide To Data Collection,
SEL-81-101,	 Software Engineering
Laboratory Series, Goddard Space
Flight Center,	 August	 1982,

(37 SEL „ Collected Software Engineering 1t.•x, papers:	 Volume	 t,	 SEL-82-004,
Software Engineering Laboratory
Series, Goddard Space Flight Center, {
July	 1982.

3 [4] Walston,	 C.	 E.	 and C.	 P.	 Felix,	 A
Method of Programming Measurement and
Estimation,	 IB M Systems Journal, c
January 1977. tl

C51 Basili,	 Victor	 R.	 and Karl Freburger,' 1
Programming Measurement and Estima-
tion in the Software Engineering r
Laboratory,	 Jou rnal of Systems and
Software,	 19	

_	
-^-

(61 Bailey,	 John W.	 and	 Victor R.	 Basili,
A Meta-Model for Software Development
Resource Expenditures,	 Proceedings,
Fifth International Conference on
Software Engineering, September 1981,

(71 The Role of Measurements in Program-
ming Technology,	 Lecture presented
at University of Maryland, November
15.	 1982.

(81 Reggia,	 James and Barry Perricone,
KMS Manual,_TR-1136,	 Department of
Mathematics;	 University of Maryland
Baltimore County,	 January, 1982.

` (9) Minsky, M.	 L.,	 A Framework for the
Representation of Knowledge, The
PsYcholux of Compuler Vlslon, pp.
271-MO, McCraw Hill,	 New York,	 1975.

t
i {

1

V, Basili -
UofM
12 of 32 ,^

OVERVIEW

• A GENERAL METHODOLOGY TO MONITOR
SOFTWARE DEVELOPMENT TO DETECT
PROBLEMS EARLY

• THE METHODOLOGY MUST:

REQUIRE MINIMAL_ OVERHEAD FOR DATA
COLLECTION

PROVIDE AN EASY WAY TO INTERPRET DATA

BE ADAPTABLE TO CHANGING CONDITIONS

t^

I

wa<
o0
w 3 ^.

METHODOLOGY

wy

za<
o0
N .-

• DEVELOP A SET OF GOOD PREDICTORS FOR
THE DEVELOPMENT ENVIRONMENT

• NORMALIZE THE MEASURES TO DEVELOP
BASELINES BASED UPON PAST PROJECTS

• COMPARE A DEVELOPING PROJECT TO
KNOWN BASELINES TO DETERMINE
DIFFERENCES FROM KNOWN BASELINES

• INTERPRET THE DATA TO EVALUATE THIS
DEVIATION

• IF THERE IS A PROBLEM, DETERMINE HOW
TO CORRECT IT

i^

A
1

APPROACH

• PERFORM A PILOT STUDY
TRIAL METRICS, BASELINES
EVALUATE FEASIBILITY
(DONE: CARL DOERFLINGER)

• BUILD KNOWLEDGE-BASED SYSTEM
USING PILOT STUDY METRICS
IMPROVING INTERPRETATION AND
KNOWLEDGE MECHANISM
(JUST STARTED: CONNIE RAMSEY)

• INVESTIGATE OTHER METRICS
ERRORS
ERROR CATEGORIES
(IN PROGRESS: DEBA PATNAIK)

• MEASUREMENT POINTS (Pi)
COMMON ACROSS DATA BASE OF PROJECTS
NORMALIZED OVER TIME
REASONABLE TO MEASURE

• PILOT STUDY MEASUREMENT POINTS-
START DESIGN
50% DESIGN
START OF CODING
20% CODING
40% ^,CDING

50% CODING
60% CODING
60% CODING
START OF SYSTEM & INTEGRATION TEST
50% SYSTEM & INTEGRATION TEST
START ACCEPTANCE TESTOO0 o0

3 =:	 END ACCEPTANCE TEST

I

^.,1 i

• MEASURES (Mi)
AVAILABLE ACROSS MOST OF PROJECT
INVARIANT TO SIZE, CALENDAR TIME, ETC.
AVAILABLE ON SEVERAL PRIOR PROJECTS
EASY TO COLLECT

• DATA AVAILABLE IN SEL:
COMPUTER TIME
COMPUTER RUNS
PROGRAMMER HOURS
LINES OF SOURCE CODE
SOFTWARE CHANGES

• TRAIL METRICS FOR PILOT:
COMPUTER RUNS/LINE OF SOURCE CODE
COMPUTER TIME/LINE OF SOURCE CODE
SOFTWARE CHANGES/LINE OF SOURCE CODE
PROGRAMMER HOURS/LINE OF SOURCE CODE
COMPUTER TIME/COMPUTER RUN
SOFTWARE CHANGES/COMPUTER RUN
PROGRAMMER HOURS/COMPUTER RUN
COMPUTER TIME/SOFTWARE CHANGE
PROGRAMMER HOURS/SOFTWARE CHANGE

v

BASELINES/DEVIATIONS

• ASSUMPTIONS:
METRICS HAVE SIMILAR BEHAVIOR AT EACH
POINT
METRICS DO NOT VP;RY TOO MUCH OR TOO
LITTLE AT Pi
PROJECT ENVIRONMENTS ARE SIMILAR
DEVIATION FROM NORM IMPLIES SOMETHING
INTERESTING

• PILOT STUDY:
DATA: 9 PROJECTS IN BASELINE
BASELINES: METRIC AVERAGE A ll Pi

CUMULATIVE
DISCRETE

° ° W.	 DEVIATION: MORE THAN ONE STANDARDW.
WK

N -	 DEVIATION FROM THE NORM

b i

0

^iu

Z£ 3O 61

W 3o fl
MSeg •n

00

ĉNdd 1

o°

oolf51

0
a^0^

W

\o00

m

01)

CIS 5

^^,SV
Ld

yeti od

3N13-ISVE3 31dViVS

Aintmo Good :jO
61 3DVd WN19180

0 Om
T 0

O K
D ^ (n C
C -4

m
m^
zm
-^

O m

M
4
m

COMPUTER TIME PER RUNw
mD 0	0	(n

iv	a	am	ao	o	n>	>	m

OC

i 1

11
1	I1
11
11

\\

♦\

1^

1^

\

I A

INTERPRETATION

• SET OF MEANINGS FOR EACH Mi AT EACH Pi
FOR DEVIATION ABOVE THE NORM
FOR DEVIATION BELOW THE NORM

• SET OF MEANINGS AT Pi COMBINED

• MOST LIKELY INTERPRETATION DERIVED FROM SET OF
MEANINGS

• MANAGERS PERSONAL KNOWLEDGE ELIMINATES SOME
INTERPRETATIONS

• PILOT STUDY:
MEANINGS ASSOCIATED WITH Mi AT Pi GIVEN BY MANAGERS
VALUE OUTSIDE STANDARD DEVIATION GENERATES
MEANING SET
RANKING BASED ON NUMBER OF TIMES EACH MEANING
APPEARS

oC<
	w	 MEANING + RANKING + PERSONAL KNOWLEDGE
E	 N3=.	 INTERPRETATION

0	
^^I

a d
PROGRAMMER HOURS PER LINE OF

SOURCE CODE

CROSS REFERENCE
TYPE	 INTERPRETATION

ABOVE	 BELOW
NORMAL NORMAL

ABOVE NORMAL
— HIGH COMPLEXITY
- ERROR PRONE CODE
— BAD SPECIFICATIONS

- CODE BEING REMOVED
(TESTING OR TRANSPORTED)
CHANGES HARD TO ISOLATE

- CHANGES HARD TO MKAE
LOW PRODUCTIVITY

BELOW NORMAL

1 2 7 8 9

3 5 6
	

2 7 8 9

1 2 3

123

7 8 9

79

1 L

00

^ G3

d Z^ Dr
'ocnv^
r to

to

f`

<
o °
w 3 ^.

— INFLUX OF TRANSPORTED CODE

- NEAR BUILD OR MILESTONE DATE 6

- LOW COMPLEXITY

123

1 2 3 8 9

3

(0^)

SAMPLE MEANINGS FOR PILOT ON
TENTH PROJECT

AT 80% CODE:
TWO METRICS ABOVE NORM, ONE METRIC BELOW NORM
ABOVE NORM:

1. NUMBER OF COMPUTER RUNS/LINES OF SOURCE
(S. D. =1.6)

2. NUMBER OF PROGRAMMER HOURS/LINES OF SOURCE
(S.D. = 1.3)

BELOW NORM:
ti 3. NUMBER OF PROGRAMMER HOURS/COMPUTER RUN
Z (S. D. = 1.5)

_# OF OCCURANCES	 MEANINGS	 CONTRIBUTORS
2	 HIGH COMPLEXITY 	 192

+ 2	 REMOVAL OF CODE	 1,2
2	 LOTS OF TESTING	 1,3
1	 LOW PRODUCTIVITY	 1
1	 BAD SPECIFICATIONS	 2
1	 CHANGES HARD TO MAKE	 2
1	 EASY ERRORS FIXED	 3

PERSONAL KNOWLEDGE: NO CODE REMOVED
N STANDARD AMOUNT OF TESTING

1%

PILOT STUDY CONCLUSIONS 	 I

• METHOD VIABLE

r WORKED FOR ONE PROJECT STUDIED IN
DEPTH
MEASURES WERE EASY TO GATHER

ADAPTABLE TO CHANGING ENVIRONMENT
AND KNOWLEDGE
AUTOMATABLE

• NEXT STEPS:
ADD OTHER METRIC

wo `	 KNOWLEDGE BASED SYSTEMI r;
i	 N	 ^-•
t

...LLwY•V{:^ri.abnNa.us.u.a.aa..uw.^a.b«w'^_.. --.—._.w+ytiurw..nyw^y 3,.^e^w•u.rx.+rrMw+.w..w.^.+r^r.^.n.^w.r..^..y^,....w.nr	 _

%^ool.

OTHER METRICS UNDER STUDY

• METRICS: ERRORS AND ERROR CLASSES

• MEASUREMENT POINTS: SAME
{•
	

NUMBER OF TEST
RUNS TO DATE

e BASELINES: SAME

CUMULATIVE AND DISCRETE

w 3 ^.

0	
(t)

ch

AVERAGE NUMBER OF ERRORS OVER TIME

500

450

L1J 400

Q 350

OC
W 300

Q 250

OC
Q 200
cc

Ir 150W
100

50

0

^o
D L7
^ Z
^ D

r-

^ ^v^n
r-rn

:116,

50	 100 150 200 250 300 350 400 450 500 550 600 650

1'.),C<	 DAYS0
. .

ERRORS OVER TIME

l

500

450

400

350

300

Cr 250
Or
W 200

150

100

50

0

A

00""m
10 c)

0
m DF
CA
D G)
rm

:1ra

50	 100 150 200 250 300 350 400 450 500 550 600 650

TIME IN DAYS
0 0

N

^ A,

1	 2 3 4 S 6 7 9 9
I

0
I

1
1

2
1

3
I

3
0	 0 0 0 0 0 0 0 0 0 0 0 0 3
0	 0 0 0 0 0 0 0 0 0 0 0 0 3

40

20

0

00

00 2^a
r

— fn

Ora

JC<
0o
w3^.

LEGEND: ERRORTYP

CHANGES DUE TO ERROR BY CAUSE

ERROR SUM	 % i

RUNS

+CLERICAL ERROR
I1^ DESIGN ERR OF 1

FUNCT SPECS INCO
OTHER

Q^ COMPS DESCR INCO
UTI7J ERR IN LANGUAGE
® MISUNDERSTAND EX

REQ. INCORRECT

L

200

1 00

0

00T M

0ZM r
CD L7r m
{-W

CHANGES DUE Z'0 ERROR BY CAUSE

CUMULATIVE FRECUEN Y

300 1

b 1

1	 1	 1	 1	 1
t	 2	 3	 4	 S 6	 7	 9 S 0	 1	 2 3	 3
0 0 0 0 0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0 3

RUNS

o 0 . LEGEND: ERRORTYP	 +CLERICAL ERROR	 ® CONPS DESCR INCO
W 3 ^.	 DESIGN ERR OF 1	 LZ= ERR IN LANGUAGE
N

NNW, FUNCT SPECS INCO	 MISUNDERSTAND EX
^ OTHER	 REQ. INCORRECT

i

LW
r .mil

i

1 t

NEXT STEP

• WE ARE GOING TO BUILD A KNOWLEDGE-
BASED SYSTEM

• HOW WILL THIS SYSTEM BE USED?
A TOOL FOR MANAGEMENT
— WILL INDICATE WHETHER A CURRENT

PROJECT IS ON SCHEDULE
— AUTOMATED
— CAN BE UPDATEzD EASILY TO INCLUDE

INFORMATION FROM NEW PROJECTS AND
NEW INTERPRETATIONS AS MORE IS
LEARNED
MANAGER MUST USE HIS OWN

°	 KNOWLEDGE OF THE PROJECT WHEN
LOOKING AT THE RESULTS

co*

oC^

o0^
N

4. UPDATE

• BUILDING A KNOWLEDGE-BASED SYSTEM:

— USE KMS--A GENERAL SYSTEM USED FOR BUILDING
KNOWLEDGE-BASED TOOLS (AVAILABLE AT UNIVERSITY
OF MARYLAND)

— THERE ARE TWO DIFFERENT APPROACHES:
- PRODUCTION RULES
- HYPOTHESIZE AND TEST
WE WILL TRAY BOTH AND COMPARE

• METHOD
1. BUILD RULES FOR KMS
2. INPUT DATA FROM MANY SIMILAR PROJECTS IN SAME

ENVIRONMENT
3. GIVEN NEW PROJECT, CAN COMPARE CERTAIN METRICS

TO THOSE IN THE SYSTEM IN AUTOMATED MANNER.
KNOWLEDGE-BASE INDICATES ABNORMALITIES.

Q
_.	 I

T. =^+ VA.'1

POTENTIAL SCENARIO
BETWEEN MANAGER AND SYSTEM

KB = KNOWLEDGE-BASED SYSTEM
M = MANAGER

KB: READY FOR COMMAND
M: OBTAIN DIAGNOSIS
KB: STAGE:

(1) START CODING
(2) 20% CODING
(3) 40% CODING
(4) 50% CODING
(5) 60% CODING

M: 8

KB: GOODNESS OF TESTING:
(1) GOOD
(2) FAIR
(3) POOR

M: 3

KB: DIAGNOSIS:
POOR TESTING PROGRAM

u► C GOOD CODE
CHANGES HARD TO ISOLATE

N CHANGES HARD TO MAKE

(6)80% CODING
(7)START SYSTEM TESTING
(8)50% SYSTEM TESTING
(9)START ACCEPTANCE TESTING

(10)END ACCEPTANCE TESTING

< 0.60 >
< 0.05 >
< 0.25 >
< 0.10 >

,Ji

SUMMARY

• CHOOSE MEASUREMENT POINTS (Pi)
• CHOOSE A SET OF NORMALIZED INVARIANT

MEASURES (Mi)
• DEVELOP A SET OF BASELINES FOR EACH M i

AT EACH Pi
• CHOOSE BOUNDS nN DEVIATIONS FROM THE

BASELINES
• ASSOCIATE POSSIBLE MEANINGS FOR

DEVIATIONS (+ AND -) FROM THE
BASELINES FOR EACH M i AT EACH Pi

• DEVELOP A MECHANISM FOR DERIVING
INTERPRETATIONS

• INCORPORATE PERSONAL KNOWLEDGE OF
PROJECT

• GENERATE MOST LIKELY INTERPRETATION(S)

w

ORIGINAL PAGE 19	
A,

F	 OF POOR. QUALITY ".`N84 231.40
I'.

CHARACTERISTICS OF A PROTOTYPING EXPERIMENT

JUDIN SUKRI AND MARVIN V. ZELKOWITZ
' DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF MARYLAND j
COLLEGE PARK, MARYLAND 20742

INTRODUCTION
In 1982, NASA Goddard Space Flight Center began a project to prototype a new proposed }

„ software system. Since the system, the Flight Dynamics Analysis System (FDAS), was to be a r;
. source code control system, and not the more typical flight dynamics software which NASA per-

sonnel were more familiar with, the decision was made to prototype an initial implementation in
' order to gain insights into the actual features needed to build a full FDAS and to evaluate the

idea of a prototype in the NASA environment. This report describes the status of that project-at i	 Y
e	 ! the end of 1953.

Y

PROTOTYPING f

In developing the prototype for NASA we need to understand what a prototype is. More
importantly, for NASA, the issue of prototyping must answer the following questions: 1

% (1)	 What are the goals of a prototype? Is it to develop the requirements for a product? Evaluate E

its performance? Predict its final costs?
(2)	 What are the issues involved? How does one design for s prototype? Does the software

lifecycle change? Do we want multiple prototypes for different phases of the life cycle? How
v do we use a prototype when built? fl

(3)	 What tools can be used to design a prototype! to build a prototype? , to evaluate a proto-
type? j

(4)	 How does", one _mg-as ure a prototype? How do you know if your prototype was successful? #
Should you invest the cost and build the full system or abandon the project! What

j SHOULD a prototype coat? 10% of the final product or 50% or even 100%! e
FLIGHT DYNAMICS ANALYSIS SYSTEM (FDAS)
The Flight Dynamics Analysis System (FDAS) is being built to aid experimenters try alter- !!	 -

native flight dynamics models. 	 Currently if an experiment is to be run (e.g., try a new orbit cal- t
culalion model), the experimenter must access the Fortran source library, know which module to
modify, make the changes, test the changes, recreate a new load module, and then ran the experi-
ment. The experimenter must have detailed knowledge of the software. a

With FDAS, the experimenter enters the system, and interacts with a data base, directs the
ti system to modify the correct module and aids in the change. Thus changes to software are easier,
r require less time and less expertise about the internals.

FDAS consists of two major components - a source code control system to manage the
libraries of software modules needed for each application program, and a form of data abstraction

x allowing applications programmers the ability to write programs using flight dynamics data types
(e.g., state, cartesian coordinates, vector locations, etc.). These features are somewhat indepen-
dent and can be evaluated separately.

In order to manage source code, the applications programmer enters a tree chart of modules
(the program's structure).	 Usually this will be a full system developed by someone else. The
applications programmer can then tell the system to edit specific modules and to replace other
modules by new ones. The system maintains the current set of modules for the system, and keeps
track of which modules have been altered and which ones need to be compiled. Is some ways, this

r(

M. Zelkowitz

U of M

1 of 22 ,

i	 Y	 ^

flr

ppryry	 n	 ^}j	 e	 ,	 .:;,

VO'^a J^ti.^^Ce l^	 ^y2y^.: :y	 31.x7 '1

OF FLOOR QUALITY

I

i
1

model is very much like a combination of both the Source Code Control System (SCCS) and the
NIAKE processors running under UNIX systems. 1

In order to aid the applications', programmer, a form of data abstraction has been proposed.
A set of standard types have been defined. A programmer may code using these types, and a

`
preproeeswr converts this code into standard Fortran. 	 A generalized input -output structure has
been defined for data of this type. the programmer may write (PUTOUTPUT) the name and

` Yalu.- of any datum from one module, and read (GETINPUT) the name and value of that datum #
in another module. An intial design decision was to restrict abstract data to their own statements, s
and not mix them with the Fortran statements.

In order to build the prototype, the following general strategy is being used:
(1) A subset of the requirements for FDAS were written and a prototype built to those

e requirements.
p_ (2) Data was collected automatically by the FDAS prototype on user interaction with the e

system.
(3) The usual Software Engineering Laboratory data on programmer activities were collected 1during the development phase. 1
(4) The prototype will be evaluated by four groups representing four different views of the 1

Y system. A group of applications pro3rammers (the "users") will use FDAS and report on its useful-
ness in solving their flight dynamics problems, a group from the Software Engineering Laboratory

r will evaluate the FDAS model as an appropriate one for solving flight dynamics problems, a i
research group is looking at FDAS as an example of a source code control system, and the

')developers are evaluating the implementation itself, and issues such as efficiency, size, and exten-
dability to a full system.

` (5) Beginning in the early spring of 1984, a new task will begin to design the " full" FDAS
t system. The experiences in the prototype will undoubtedly be helpful in designing and building

the full system, but there is no committment to using either the design or the source code of the
a prototype_
r

(6)	 After	 the full system is built, 	 it will	 be compared with	 the initial effort. 	 The r
" effectiveness of the prototype on the final product will be evaluated. Was FDAS cheaper to build?

Will it be more reliable? Will it be more efficient? Will it have a better man/machine interface?

INITIAL EVALUATION
The initial requirements for FDAS began early in 1982. The requirements and initial design

r for the prototype were done in the fall of 1982 and the initial implementation of the prototype
began in January, 1983. As with many software projects, the task was bigger than expected, so an

s initial prototype was tested in July of 1983, but the " full" prototype was not available until
October. The evaluation phase is to last until late February, 1984.

Although it is a prototype, it is not a small system. There are 34K lines of Fortran source
code running under VMS on a VAX 11/780 computer. Of the 34,000 lines (including comments),

1 _ there are 20,200 lines of executable Fortran source statements. The prototype was installed with
a only one small applications system of 3;000 lines for experimentation. This size of 34K is already

$ within the size range of other larger " full" systems built by NASA. 1
Some of the data collected can be summarized by the followin8 table. In addition to FDAS,

there is data from 11 previous projects monitored by the Software Engineering Laboratory and
data from two other projects now under development.

Phase,:	 11 Pmj	 ;:. : Cone 1 "".Cone 2	 FDAS
Design	 22%	 31°.6'	 31% °	 39%'
Code	 48%	 43%	 Ewe	 61%
Tat	 _30%	 26516'•	 0%4	0%0

M. Zelkowitz
U Of M
2 of 22

,,	 Qom:+!

IORM3NAL PAGE IS

OF POOR QUALITY, +

•- Data still being collected

` As can be seen, hi p;torically, coding is over twice the design effort. That is also true with one
of the curre nt projects and is almost true with the other contemporary project. But it is most
definitely not true with FDAS. This reflects the high design costs siore it had 'never been bone
before.' It also reflects the relatively low priority given to full debugging and tenting, up to NASA
standards, of the resulting code. Since the prototype has a limited lifetime, 'hard" problems were
d L,ted from the prototype requirements, and users had to live with annoying but coon-critical
burs.	 (Note: At the time that this was written, the full data from testing FDAS was not yet
eutered into the data base, so full testing data is not yet available.)

The time spent in design, can be summarized as follows;

Hours	 11 Proj	 Coat 1	 Cont2	 FDAS
Design	 21701	 5885	 10758	 4508

i Total	 100324	 1'1085	 34461	 10477•

a- Still being collected
As can be seen, the 10,477 hours represents a sizeable effort, and is beyond the 'toy" proto-

type stage.
Just using the system has shown some other useful aspects to the system. one critical comr

mand, the DEFINE command, has been particularly hard to use, so it will need a better definition

F
documentation in the

The
 overhead

headarmposed by FDAS also seems tolerable. For

exam 1	 P	 times t lO	 d, a preprocessor overhead of 2 seconds is(r
;. tolerable. In arldition, since the linkage time for the application system is 18 seconds, the 3 second i

.
d• .Ho 	 the use of the preprocessor seems unduly

the
{,

inflexible and should be revised for	 full system.
{y d lexit	 in this evaluation is the alwaysA final complexityp	 ' y '	 ys changing requirements.	 When. originally

conceived, FDAS would be an experimental system used on a VAX 111780. However, in the two s
years since the idea was proposed, the operational groups at NASA are interested in the system,
and would like such a tool on their operational computer - an IBM 4341. Thus part of the evaluar
tion (new requirements?) is to consider a 4341 implementation, or an implementation that can i
easily be tram.ported to both systems. while this will undoubtedly make a comparison between l

-,° the full system and the prototype harder to do, since the operational environments (and hence the
projects' requirements) are different, it is certainly to NASA's advantage to have built the proto-
type so that all groups can view it before a final decision was made to build it in one particular }
environment.

l	 z

SUMMARY

The-evaluation phase is still going on, so it is not possible to give a full evaluation. How-
ever, some results are now apparent.

(1) The source code control aspects of FDAS are useable, and can be developed into a good
operational system.

(2) The data abstraction language and preprocessor need to be rethought and the features
need to be generalized. {

(3) The prototype and the underlying application are both written in Fortran. There is no lneed yor that to be so. It should be possible_ to monitor any source code application package {
regardless of the language in which FDAS is written.

(4) The use of the prototype has uncovered many minor and major defeea in the design of
_- such a flight dynamics analysis system. Some original assumptions made during the design phase i

turned out not to be true under actual usage conditions.

K i.
F

M. Zelkowitz
U of M
3 of 22

i

ORIGINAL PAGE €S

OF. POOR QUAL11

8

1.

'f

Begause of these experiences, many defects in FDAS have been discovered before a full eye.

	

tem is built. From the data collected so far, it appears as if FDAS %J be a large system when 	 ti
built. The development of the prototype should aid NASA . in avoiding costly mistakes. later.

a1
ACKNOWLE DGEMENT

	

This paper was supported by NASA grant NACS3E3 to the University. of Maryland. We 	 j

	

also acknowled ge the many programmers and analysts at NASA Goddard Space Flight Center 	 J

	

and Computer Sciences Corporation, including Sharon Walagora and Glenn Snyder, principal 	 1j
designers of the prototype, for their efforts in building FDAS, This report is mainly a collection of
thrir experiences.

^	 4

E

i

l
1'	

_ t

3

-i

i

^	 _	 Fi	 x

I

M Zelkowitz
U ofM
4 of 22

Part, of alo-orithm?f:

M

ip

ORIGINAL PAGE t9
OF POOR QUALITY

DO YOU MODEL:

Input-output behavior?

M. Zelkowitz
U of M
7 of 22

Feasibility -6--'-full system

User interface

R

USES OF A PROTOTYPE:

Performance

^. R

i
A

.,SEARCH ISSUES:	 a

How to measure a prototype?

What are profiles of a prototype

(baselines)?

How to evaluate a prototype?
F	 I

1

t

4j
ask

i

4	

+^1

{`y

A^.

3p

PROTOTYPING MODELS

R

NASA/GSFC FDAS PROTOTYPE
ti.

• '	 jl

(FLIGHT DYNAMICS ANALYSIS SYSTEM)

d
Now

Access Fortran library	 Fr
a

_	 Modify subroutines

Recompile and link

Run experiment	 T

—_-=> Need details of implementation'

FDAS:	 4

r	 Access FDAS
I

-	

1^-	 FDAS accesses Fortran code	 j

Modifications easier 3

{	 —> Modifications require less time and effort
r

r

M. Zelkowitz
`U of 1V1

11 of 22

--

-

FACTORS IN SOFTWARE DEVELOPMENT

FACTOR Usual Project FDAS
Requirem-ents Known ?
S.Size Known
Execution Known ?
Algorithm design Known
User interface Known ?
Cost Known

It

9
a
3

F

GOALS OF FUAS:

^,

.,

a

SCHEDULE

Requirements - Summer-Fall, 1982

Implementation - January-June, 1983

ACTUAL SCHEDULE:

r•
4

t

t

EFFORT BY MILESTONES

a

Phase 11 Projects Pred. C%ont 1 Cont 2 FDAS
Design %	 17%22^' 311% 31% 39%
Coded 'o1$8 ro	 36 ^ 43% 69% 61%
Test 30%	 47% 26%* O%* 0%*

Code/Design 2.2 -	 2,1- 1.4 2.2 1.6

r

f

Hours
Design 21709	 2045 5885 10758 4508
Total 100324	 11835 19085 34461 10477

* - Data still being collected

s

z	
l
tr

M. Zelkowitz

u.

U of M
17 of 22

5

f.
i

M

EVALUATORS

, z SOME SUBJECTIVE COMMENTS:

As expected, some hard decisions delayed

Addition of release I to schedule

1

Some features dropped

i Reliability not up to visual standards'
r

But system is not an operational one	 Y

ti
zf

Floating requirements

Y

t	 Full system on VAS or 431
1(I

f

M. Zelkowitz

subU of M
20 of 22

v

ADDTTTONAL COMMENTS

^ U+

PANEL #2

'7 TESTING PROCEDURE

r J. Ramsey, University of Maryland

A. Goel, Syracuse University
C. Savolaine, Bell Labs

0"W84 23141.

Structural Coverage of
Functional Testing.

James Ramsey

University of Maryland
at College Park.

Abstract

A FORTRAN program has been instrumented to produce
structural coverage measures. The structural coverage
profiles of functionally generated acceptance tests
and operational usage are used to examine two areas in
software engineering: the examination of faults and
the applicability of reliability models.

f

This paper describes a study performed at NASA's Goddard Space
1

Flight Center, Greenbelt, Maryland by researchers at the University of

Maryland at College Park.	 A ten thousand line FORTRAN program was modi-

fied to produce a structural coverage metric..	 After execution, the

modified program produces a list of executed statements. 	 The program

was executed using both functionally generated acceptance tests and

operational usage cases yielding structural coverage measures [CSC 781.	 p

The program's software failures during maintenance were recorded.

y

The study collected structural coverage data for both acceptance

^ test and operational usage and error data 	 faults rp	 g	 revealed during
s

maintenance.	 Using these data, some simple questions can be answered

immediately.	 "How much of the code is executed by functionally gen-

erated acceptance testing? (both by individual tests and by the entire

-test suite)"'.	 Individually, the test cases execute from 27% to 47% of
r

This research is funded by NASA grant NSG-5123.

J. RamseyIr++
UofM
1	 24of

WL

f`4
I

the executable statements. In total, 56% of executable statements are
i

executed. This percentage does not include statements executed in

either unit test or system test. 	
^i

i

_ "How many procedures are executed by functionally generated accep-

tance test"?	 Anywhere from 48% to 69% for individual tests, for a total

of 75% of procedures.
i

More complicated questions compare acceptance test coverage to f

operational usage coverage.	 "Does acceptance test execute the same code

as operational usage"?	 Yes, more or less.	 "Does operational usage
{

G:
Exercise code not exercised by acceptance test"?	 Yes, about 8% of the

z

total. executed code.	 The code executed by operational usage but not by
^, d

acceptance test contained a mix of statement types different than accep-

tance test alone.

There were eightfaults revealed during maintenance. 	 Each fault-

was contained in one procedure; one procedure contained two faults.

r There are not enough faults to reach any .firm conclusions, however I

} feel there is enough information to inspire interesting questions.
r

Are 'there faults revealed in maintenance in sections of code unexe-

cuted in acceptance test?	 No, although 8 1/10 of the codecould contain
5_1

such a fault.	 If faults had occurred in the untested 8% then perhaps

the functional tests could be improved by structural coverage testing.

rs^' Since structural coverage testing would require executing every state-

ment, it might have executed the 'code and 	 .revealed the fault.

"Are faults more :likely to be revealed in heavily executed 'pro-

cedures?" Procedures were classified by the number of times they were

K T. Ramseyi UofM_
2 of 24

ORIGINAL PAGE M
OF POOR QUALITY

i

J

w'	 executed in operational usage. Half of the procedures were executed by
I

more than 90% of the operational usage cases. About half of the

P	 1 i ftt	 9 ine u r	 +-11;0 "n" of ro^edures (3 of 8)r _vea e.	 au. s o c r ec	 L gr p	 p .,
tj

Tnformat.ion on each fault was collected using the SEL change report
.	 I

form fSEL 821. Faults are categorized by "time to isolate the error",

"tne time to understand and implement", acid the section "type of

_ ,,ror" * .

Time to isolate the change seems to be independent of procedure

-overage. Increased wage seems to be associated with a longer time to

understand and implement a change. This might be explained by sugge.st-

ing that the Lightly exercised procedures contain fairly simple code

whereas the heavily exercised code is, by necessity, more complicated

and requires more time to modify.	 There are too few faults to reveal

t	 ^ any interesting 	 between fault types and procedure coverage in
_I

operational usage,
f

b_

References
t - s

;CSC 781 Computer Sciences Corporation, Acceptance Test Methods,
CSC/TM-78/629.6,	 1978.

{^

-SEL 821 Guide to Data Coll ection, SE1:- 81 -101, ,Software Engineering
Laboratory Series, Goddard Space Flight Center, Greenbelt, Mary-
land, August	 1982. t`

,-y

v
y

Time to isolate the error is classified as taki.n . 	 less than one fr
r hour, one hour to one day, greater than one day, neverr :!found.	 Time to

understand and implement the change is classified as taking: less than
one hour, one hour to one day, one day to three days;, or greater than x

three days.	 Faults are categorized as originating in the: requirements, a	 ^`
functional specification, design (either involving data or expression),

! external environment, use of language, clerical or other.

J. Ramsey
it- U ofM

3 of 24

A

ORIGINAL PAGE IS	 #

OF POOR QUALITY	 r:.

(_.^------------------------Statement- -Coverage ----------- ----
by 10 Acceptance Test Cases.

(Percentage of Maximum)

Case Procs lxec Assign Calls Do if Reads Writes

t1 50,0	 (27.5 31.1	 1 27.5 34.4 34.1 17.6 6.3
- t1a 48.5 24.9 28.3 18.2 33.1 32.'T 17.6 6.3

t1b 44.1 21.?_ 23.9 20.1 23.6 27.0 17.6 4.9

i I I
t2 50.0 27.2 30.6 27.5 34.4 33.9 17.6	

I
6.3

i1
t2a 48.5 24.8 28.3 18,2 33.1 32.7 17.6 6.3
t2b 44.1 21.7 24.4 20.1 24.8 27.8 17.6. 5.3

t3 48.5 24.4 27.8 18.4 32.5 32.0 17.6 5.8
{t

t4 60.3 +	 37.9 43.3	
1

37.8 53.5 45.3 32.4 12.1 F
t4a 54.4 30.3 33.8 26.3 39.5 38.2 32.4 10.7
t4b 44.1 21.6

I	
24.3 20.1 24.8 27.6 17.6 4.9

t4c 52.9 28.6 33.3 24.2 38.9 36.9 17.6 6.8
t4d 44.1 21.6 24.3 20.1 24.8 27.6 17.6 4.91

1- t5 69.1 47.1 I	 52.6 55.7 54.8	 1 55.0 (41.2	 I 12.6
t5a 64.7 139.0

I	
43.9 38.5- 45.2 48.9 132.4	 i 10.2

t5b 67.,6 41.5 45.7 51.7 48.4 49.8 26.5 7.81

t6 67.6 42.7 47.4 51.7 48.4 51.8 29.4 10.7

Y• t6a 55.9 29.9 34.2 24.4 36.9 37.8 26.5 9.7
t6b 58.8 33.7 37.0 39.7 36.3 43.0 20.6 5.8

r

t7 66.2 39.0 43.8 40.4 44.6	 1 48.7 26.5 9.7
t8 66.2 45.6 51.2 50.0 54.1 55.0 38.2 _12.1

4 I	 t9 66.2 41.0 46.0 42.3 46.5 50.9 35.3 11.7 I
f

t10 66.2 40.2 44.9 40.9 45.2 50.3 35.3 11.7

Union 75,0 56.0 63.5	 1 68.4 68.8 65.1 41.?_ 14.6
R Intersect 42.6 ,	 18.1 20.8	 (10.0 22.3. 24.7 117.6; 4.9 Y

^
1

i

r

_. r

F,

Gr.

J. Ramsey

i	 UofM

4 of 24

' Case	 Procs

ORIGINAL PACE 19
OF POOR (QUALITY,

Statement Coverage
by 60 Operational Useage Cases.

_ (Percentage of Maximum)

xec Assign Calls Do^ - If~ Reads Writes

°	

7

w

1 1 57.4 31.8 35.3 29.9 33.1 43.0 29.4 6.8
2 f	 63.2	 l 39.8 44.5 46.2 51.0 50.6 29.4 9.2
3 6	 I6.2 42.6 47.9 Ii	 44.0 49.7 5 4 6 3 8.2 01	 .7
4 54.4 29.3 33.4 20.6 38,3 36.9 41.?_ 11.7	 I
5 54.4 29.1 33.0 28.7 33.8 36.7 I29.4	 I 7.
6 52.9	 1 25.5 2	 .7 20.1 31.8 34.3 26.5	

I
6.

7 48.5 23.5 26.0 22_.5 24.8 31.3 26.5 6.3

8
II 31.6 34.9 30.9 33.1 44.0 26.5	 I 6.3

9 54.4!	 1 29.0	
I

33.1 20.1 135.7 36.5 41.2 11.2
10 (54.4 29.1 33.0 28.7 33.8 36.7 29.4 7.3

11 64.7 40.5 44.4 46.9 48.4 50.7 32.4 9.2
12 54.4 29.0 32.,9 28.7 33.8 36.5 29.4 7.3
13 51.5 30.1 35.6 19.4 43.3 40.6 129.4 9.2
14 51.5 29.9 35.3 19.4 43.3 40.5 ,	 29.4 9.2

r 15 51.5 26.4 29.1 25.4 28.7 36.1 26.5 6.8 I
16 67.6 41.7 45.6 51.9 48.4 50.2 35.3 9.2
17 54.4 29.6 34.1 20. 6 36.3 36.9 1	 41 .2 11 .7
18 54.4 29.1 33.0 28.7 33.8 36.7 29.4 7.3
1 9 54.4 29.5 34.0 20.6 36.3 36.9 41.2 11.7

20 54.4 29.0	 + 32.9 28.7 33.8 36.5 29.4 7.3

21 54.4 26.0 28.4 27.0 24.8 33.6 20.6 4.4 1,	
j.

22 63.2 38.5 43.2 +	 37.1 43.3 48.2 41.2 12.1 r
2.3 44.1 23.1 27.0 14.8 26.8 32.1 23.5 6.3
24 44.1 22.9	 (26.5 15.8 26.8 32.0 23.5	 1 6.3
25 57.4 31.7	 , 34.5 31.6 ,	 33.8 42.8 '	 29.4 6.8
26 !	 50.0	

1
28.'7 34.1 18.2_ 42.7 38.2 2914 9.2

27 __54.4 26.1 28.3 24.9 33.1 135.2 26.5 6.8
28 154.4

i
29.3	 1 33.5 ,	 20.3 36.3 136.7 41.2 11.7

29 54.4 29.5	 I 34 .0 20.6 36.3 36.9 41.2 1 1,7

30 63.2 41.4 45.8 145.9 51 .0 54.6 29.4 9.7 l

31 54.4	 1 28.3	 # 31.7 1 28.9 31.8 37.5 i	 26.5	 ! 6.3

32 44.1 23.2	 1 26.7` 15.8 26.1 32.8 23.5	 I 5.3
33 48.5 24.9	 I '28.8 15.1 31.2 35.1 26.5 7.3
34 30.9 13.0 16.0' 5.0 15.9 11.1 .3 23.5 5.3 1
35 57.4 33.1 36.4 39.2 38.2 40.5 29.4 7.3

#	 36 154.4 29.1	 , 33.1 120.3 35.7 136.5 141.2 11.7
37 64.7 40.5 444 469 44 507 '32 4
38 54.1 29.3 33.6 20.6 f	 36.`3 36.9 (41.2	 I' 11.2 #

j 39 64. '7 40.	 I7 44.5 i	 47.6 14 9 .0 50.9 32.4 9.2)

40 55.9 29.3 3.7
. 2--.- 28.0 35:0 39.6 _9.4 7.3 r3a

J. Ramsey

E

UofM
5 of 24

WJI
i

URIGIRIAL PAGE 19
w	

OF POOR QUALITY

Statement Coverage
by 60 Operational Useage Cages.

(Percentage of Maximum)
(cont.)

	

Proes Exee^ Assign Calls ^Do	 ^If	 Reads Writes

i	 57.4 30.0 !	 34.1 24.2	 1 36.9 38.0 !	 35.3 11.2
I

41
42 52.9II 31.4 I	 37.2 20.8 45.2 43.3 126.5 8.7

I	 43 54.4 29.0 33.1 20.1 35.7 36.5 41.2 11.2
44 66.2 40.4 (44.8 41.1 45.2 50.7 44.1 13.1
45 66.2 46.6 51.9 51.0 54.8 57.8 47.1 13.6
46 64.7 39.2 43.8 38.8 45.2 49.3 41.2 11.7
47 57.4 30.0 34.2 24.2 36.9 38.o 35.3 11.2
48 66.2 39.1 43.7 40.7 44.6 49.1 35.3 11.2 t
49 66.2 45.8 51.1 50.2 54.8 55.4 47.1 13.6 e
50 66.2

1
41.2_ 45.9	

1
42.6	 1 46.5

1
51.3 44.1 13.1

51 57.4 131.1 I	 34.0	 1 30.4	 I 34.4 42.1 2.9.4 7.8
52 54.4 29.6. 34 • 0^	 I 20. 6 36.9 37.2 41.2 ;11. 2

I53 50.0 '._....
1

29.3 35.5 25.5 7-3
54 38.8 131.5 34.8	 1 30.1 33.1; 44.2 26.5 I 6.3

55 58. 8 33.9 36.8	 1 40.0 36.31 43.4 29.4 7.3
56 54.4 29.1 33.0 28.7 33.8 36.5 29.4 7.3 f
57 54.4 29.0 32.2 27.5 34.4 140.1 26.5 6.8
58 54.4 29.6 II	 34.1 20.6 36.3 36.9 41.2 I	 11.7

f59 50.0 24.4 27.6 17.2 31.8 32 .1 26.5 7.3
60 29.4 12.3 14.6 4.5	 1 15.3 14.1 23.5 5.3

I

UNION 80.9 641 71.9 78.2_	 1 76.4 77.2 55.9 17.5
INTERSECT 27.9 10 : 3 __[12.2 3 12.1 11 .4 X0.6 I	 4.4

j,

1

t

Z

i

J. Ramsey ,
U of 1V1
6 of 24

*m)

ORIAWNIAL	 IS;
OF POOR QUALirl

- _- -------~-------~_--__
Comparison of Statement Coverage

by 10 Acceptance Test Cosnn
and 00 Operational O	 Cawe3.-	 _-__'--___---____-----	 -- -_- ---__---__--___----___--	 _

Acpt 51 2488 1187 280 108

1

490 14 30
Usage

55 2757 1345 *327 120 581 19 36

Union 55 2768 1393 327 120 581 19]b
Intersect` 51 2397 11,119 286 74]O

0 11 9 O O 0
U-A /	 u |	 360 |	 16 6	 | 41 ^ 91	 ^ 5 |	 6	 {

'----__~-__-----__------	 -_-
of 3tatement Coverage

'
Comparison
 -' Acceptance T̂e -st Cases
and 6 Operationalponatinual Y	 Cases.enos,

/	 (by percentage of Maximum) 	 |

^
^
o	 |

^

^
^
z
â

i ^uoe ^r000 L, Xec unnj.gn Do I T xoaoo	 wrzLes

Acpt 75 0 56.0 63 5 68.4 68.8

Interp ect 75.0 55.7 63.0 08.11 68.8 65.1 41.2 14.6

J. Rainsey

Uofm
7f

7 of 24

m
^`.

"ORIGINAL

OF POOR

Zimm to Unders
t
and and Implement the Cbuuga vs

Number of Times Procedure was Exercised
Total Operational Executions.

(Effort to Isolate the Cause in Parenthesis)
-__	 -__-____ 	 _______

(1 hour <)

^

J. Ranisey

UofM

8 of 24

Ni

ORIGINAL PAGE €

OF POOR QUALiV

rime to].solate tree unange vs
Number of Times Procedure was Exercised

Total Operational Executions.

(Effort to Understand and Implement in Parenthesis)

+10^ ^ 1
___._.^r_-

^ (1h <	 1d) ---------- ----------
I1l 	 (1h ^	 Td) ------------

(1d < 3d)
90%
80% (1h	 <	 1d) (1d <	 3d)

70% q

60%
50% (1h <	 1d)

40% (1	 hour <) i (_,
30%

20%10%_, =- (1h	 <	 1d)Tour^Z:.^=dy__ =^_3y_
never-Found'! I^^.four__

i

t _

^	 s

F

'r

t

j

T

a

i

tt

I

E

r,

i

i

-
J. Ramsey
UofM
9 of 24 `

s

ORIGINIU
OF P 0 0 R U^^" a'VV

--
Faults by GRF' Classification -v's

Number of Times Procedure was Exercised / 	
P

Total Operational Executions.	 4

-- Req.	 Funs.	 Design	 Extern. ^- Lang. 	 Cler.	 Other
specs. 	 Data -^ - rxp 	 _ _ Env_-

1 90%

	

^p	 X	 K

70%-	 f

60

?	 I	

x

	

"0%

	 x

	
`	 F

	

1
30

y 	 r^

	

20%	
9

	

0 '.
	

JC
t

Overview

Functionally generated acceptance tests are examined using
s structural= coverage metrics.r

Reliability Models
a

Software faults

Management of acceptance testing process

i

i	 t

', zs

i
c

}

1

_ J. Ramsey
U of M
12 of 24

DEFINITIONS

Functionally generated acceptance test:
derived from the programs specifications

Structural coverage metrics:
procedure coverage

How many procedures were executed?
statement coverage

How many statements were executed?

Reliability Models
Given a history of software failures, predict:

mean time to next failure
total number of faults in the program

fit

J. Ramsey
Uofm
13 of 24

arm%

The programs:

Finished:
A, subset of a large satellite system
FORTRAN
68 procedures
10k lines of source
4.3k executable statements
Ten acceptance tests

not a rigorous samplin g of the input domain
but not trivial

60 operational use cases
Fault data for acceptance test and operation

in progress:
A whole satellite system:
FORTRAN
300 procedures

Ok Imes of co e
20k executable statements
Fault data for system test, acceptance test, and
operation

g^

5	 t

Structural Coverage of Acceptance Test

k

Executable Statement Coverage
b	 10 Test Cases.

Case	 Procedures	 Executable	 % Unique
Executed %	 Statements %	 Code

ti 50.0 27.5 0.0
t2 50.0 27.2 0.0
t3 48.5 24.4 0.0
t4 60.3 37.9 4.4
t5 69.1 47.1 1.7

t6 67.6 42.7 0.0
t7 66.2 39.0 0.0
t8 66.2 45.6 1.0
t9 66,2 41.0 0.0

t 10 66.2 40.2 _ 0.0

Cumulative 75.0 56.0
Intersect 1	 42.6 18.1

Structural Coverage of
60 O erational Usage Cases.

Procedures Executed
Executed % Statements

Cumulative 80.9 64.9
Intersection 27.9 10.3

Structural coverage of 60 executions by users after accep-
tance test:

1 a

A,

Are the acceptance tests representative of operational usage?

i
n

`'	 t

y

P

y

C

Y

J

Might not be valid to use reliability data gathered in accep
t

tance test to predict failures in operational use. a	,
P

{	 The `:`mix" of statements in the 8.4% differs from the "mix"ry.
of statements in the 55.7%

twice as likely to execute a CALL or IF
3

Otherwise, cannot distinguish acceptance tests from opera
-tional usage cases by their structural coverage numbers

{

r=,

J. Ramsey
UofM
18 of 24

Faults	 j

8 faults revealed in operation
all repaired by changing one procedure
one procedure contained two faults

1

€	 How are these related?

{
Time to isolate the fault

Time to understand and implement the change
r

Number of times the procedure is executed / 60

z

Questions:

Are faults more likely to be revealed in heavily exer-
cised code? lightly exercised code? P'

r Are there relationships between time to isolate the
S fault and how thoroughly the procedure is exercised?

Are "time to isolate" and "time to understand and
implement" related?

r
Yr

,i

f

r
_l

w

J. Ramsey

i

UofM
e 20 of 24 0

4

a.

Are heavily exercised procedures more likely less. likely to
contain a fault? Enticing but inconclusive with only 8 faults.

Time to isolate the Change vs
Number of Times Procedure was Exercised

Total Operational Executions

(Plus Effort to Understand and
Implement the Repair)

Time to Isolate
the Change

< 1 hour 1 hour ,< 1 day > 1 da
100% hours hours

days
90%
50% hours days
70%
60%
50% hours
40% minutes
30%
20%
10% hours

Is there a relation between time to isolate the fault and how
well the procedure was exercised?

,

Conclusions

Generated a method of comparing acceptance test and opera-
tional usage

Acceptance test is representative of operational usage except
for the "mix" of statement types (at least in this study) r	

`I

t
Structural coverage metrics may provide insight into
software faults

4

n
1

M

e

_h v	 3

J. Ramsey

U of M

23 of 24
Y

i 	
1

4j

^f

i

i

Future Activities

The next study will attempt to reinforce the results of this
study.

More faults and fault data

Larger, more representative NASA/SEL program

Exact order of acceptance test

a	 ^j

ORIGINAL PADS
is

OE POOR QV ALITV

N84 23143

An Error-Specific Approach to Testing

Peter M. Valdesl F

r Amrit L. Goe12

Syracuse University
s

rY The main objective of software	 testing in the soft- r

ware development life cycle is to verify conformance of the _ a

implemented software with its intended requirements.	 Such

k` requirements include

1.	 System requirements i

M:

2.	 functional requirements i
t

3.	 Programming requirement'

Non- conformance with such requirements causes what are

known as software errors.

' Specificying an appropriate testing strategy to

expose software errors is still an art.	 Traditional
s

approaches do succeed in revealing many- errors but none

is powerful enough to expose all errors.	 The best that can !

be hoped for is to use a specific test strategy to expose a

specific error type in specific program locations. 	 It_	 is' i

this limitation that we exploit to develop a new approach {

to software testing which we call an error-specific testing i

(EST) strategy.	 It is in fact a dual to the traditional +'

r

testing approaches, j

Research Assistant.

ZProfessor of 'Electrical & Computer Engineering, Syracuse x
University, Syracuse, NY 13210

r

r	 -

A. Goel
WO Syracuse U

I of 22

The EST approach hypothesizes and tests on specific

error-types in.,specified program locations. When applied

to all error types of interest, it becomes powerful enough

to satisfy the original objective of testing.

In the presentation we give highlights of the EST

approach. Then we show how such an approach can be used

to expose errors in a simple program, triangle. The material

presented here is not meant to be self-contained. Mathematical

results and other features (positive and negative) of this

y are discussed in technical reports availabletesting strateg

from the authors. Further work on the use of this approach

for determining software reliability (a different definition

than commonly -used) is also in progress and will be publisli.ed

in the near future.

A. Goel
Syracuse U
2 of 22

ra

• ^M

`	 An Error - Specific Approach to Testing

.k

f

Peter M. Valdes

r Amrit L. Goel
Leh	

'

Syracuse Universityyw

'b	 Syracuse, N.Y 13210

.4,

1!
1

i

f	 S

A. Goel
1 Syracuse U

3 of 22

q•

•

E

S
i

'
a

ri

Y^

OUTLINE

' 1_. Testing

2. Error -Specific Testing	 (EST)

3. Related Work
t

4. EST Methodology
,r

' S. Assumptions and Limitations
x

6. EST of Triangle.

k 6.1	 Functional Requirements (FR i I s) Decomposition 4

6.2	 Structural Parts	 (SP	
I s)1 Decomposition

6.3	 FR-SP Mapping
it 6.4	 Error Hypothese s
x Function-Based Errors (EF's)

Structure-Based Errors (ES's)

6.5	 Test of Error Hypotheses

Function-Based Error Testing Strategy

Structure— Based Error Testing Strategy

6.6	 Recording Test Results in the

s

FR-EF and SP-ES Matrices

7. Extensions of EST Philosophy

n

S

. Goel y
Syracuse U
4 of 22

V

k

ESTING

j,

• The main obJective of testing is to verify conformance

of the imp lemented software with its intended requirements	 `I

such as

•1 System requirements

• Functional requirements
k

• Programming requirements r

Non-conformance with intended requi rement is known as

a software-error.

i 	 r

ry

:

r

M
F.

sue'--^'

rG	
rr

p	 ' 	 is	

•.

A. Goel	 a _

i Syracuse U

IF	 5 of 22

^_—....	 ...	 _	 ^. .mss;' ^s^•►-s _^i - ^. 	 ... -̂.a...

n

Error-Specific Testing

Traditional testing strategies can expose embedded

software errors but none is powerful enough to expose

all passible errors	 therefore

• use a specific strategy to expose a

specific error type in specific_

program locations, i.e., Error Specific

Testing -(EST)

• EST is reall y ,a dual app roach to traditional testing.

When app lied to 'a1 possible hypothesized errors, it

becomes powerful enough to satisf y the ori g inal ob-
K

Jective of software testing.

a

6
r

i

h„

Error - Specific Testing

•	 Focuses on specific error types in specific locations

•	 Intuitivel y appealing and simp le to use

V '

K I
1

V•

{1

b

^I

A AWA,Rt

Iraditional Software Error-Specific Testing (EST)

Testing

5 ep c fy Testing strategy Error-t ype in a specific

or strateg ies
f

program location and an

approp riate testing strategy

EXkose Different t ypes of Specific error-t ypes in

° software errors in the specified locations

various program

wK locations.

Limitations Not all possible Onl y the specified error

errors can be (and. some incidential errors)

exposed is exposed.	 However,ft can be

Used to expose all errors if

011 these errors are tested

` for existence usin g appropriate

testing strategies',

f

f

c A. Goel

._ Syracuse U

° 8 of 22

,,

Howden

t

ORIGINAL PAGE IS
OF POOR QUALITY

v	 ^,

RELATED {YORK

Traditional

Use of non-error specific test

Strategies, e.g., path testing,

cause-effect. graphing

Weyuker and Ostrand

Introduced error-based testing which uses all

available information in exposingcertain types of errors.

i

Realized the limitations of traditional test

strategies but used them to expose certain types of

errors	 (weak mutation),

S

Clark, _et al.
F

Used the notion of error-sensitive-testing.

0.

G

u

I,

EST MET11ODOLOGY

1. Determine s/w functional requirements (FR iIs).

2. Decompose code into structural parts (SPX's).

3. Hypothesize specific error types of interest for

each FR and SPA

4. Specify EST strategy for error types in (3).

S. Determine test requirements for each EST strategy.

6. Optimize test requirements'.

7. Generate test cases from the optimized test requirements.

8	 Execute test cases debug exposed errors retest the

changed code including affected code.

t
,r
i
Y

2

f

r

i

I

r

!
i

A. Uoel
Syracuse U
10 of 22

F	
$pp

t

r.^

i

{

ASSUMPTIONS&IMITATIONS

FUNCTIONS REQUIREMENTS ARE CORRECT

'Shy-i,.^	 .. •	 -
.. 	 r -	 ..

4	 'i

r	 - J

Error-Specific Testing of TRIANGLE

. I.	 Functional Requirements D_e.compositi'on
i

Description t^

FR1 IF .v (A > B > C)	 then not

FR2 IF (A = B = C) then equilateral A V

f

FR3 IF (A = B > IC or A > B = C)	 then Isosceles A r
but not equilateral

FR4 IF (A > B > C and A2 = B2 + C2)	 then.right A

FRS IF (A > B > C and A2 > B2 + C 2) then obtuse

FR6 IF
and A<
(A > B

B + C	 2
> C and A	 < 2B	 + C) then acute A

}

r

r

,

r

r

I r

t

A. Goel
Syracuse U
12 of 22

ri
4

f^

Code
^+

Statenrient #
,;
J

0 procedure TRIANGLE (A, B, C)
'

1 if A > B go to 1
4	

i

go to 2

3	 j 1 if B > C go to 3

4 1 2 Print ('Illegal Input') 	 return r

5 3 if A= B go to 4 £w

6 if B = C go to 4

7! A : = A * A
8 B : - B * B

U 9 C= C* C s

^
10 D	 = B + C s	 3

3

11 if A ^4 D go to 5
=t 1'2 Print (' Right A')	 returnI

L 1.3 5 ifA<Dgoto6 s

14 Print ('Obtuse A') return k

15'	 j 6 Print ('Acute A') : return {

16 4 if A = B go to 7

-17 go to 8
i

18 7 if B= C go to 9
x

19 8 Print ('Isosceles A')	 return

r 20 9 Print ('Equilateral A') return
k, 21 end procedure

G

1

-	 A. Goel
a

- Syracuse' U
13 of 22, ;

,
ry

IF ice,

I

S

f

t

IT. Structured Parts Decomposition

Statement Number
(see TRIANGLE cede)

SP1 1

SP2 2

SP3 3

SP4 4

Sps 5

SP6 6
i

SPA 718,9,10.

SP8 11

SP9 12

P^iO

E

13

SP 11 -	 ;1 4	 Y

SP'
12

1S
j

SP13 16	 3

SP^14 17

SP15 18

SP16
,.

19

SP 17

y	
,

20

.,ap^	 .,^.	 17	 i p^SN^6 y'ti^o ^`^ .,b „r.nr \, nr . 	,n. ,^ ... '/'"^^ ..:^xM. '>^1 .^`xr. rpy rv . , a ...r.	 ..-.	 r r.i	 ^:++,a..^:::9 x. :.z^r"rr to r.^r...r ^ . ;;R^	 'f	 rn	 i:.	 F'ir ,
M '6 » 'r»r.	 \^^`.

7

i
>r

s

i
111.	 Functional Requirement -Structured Parts Mapping'

€ Bpi SP2	SP3	SP4 SPS SP6	SPA	SP8	 SPQ	SPIO SPll .;SM12 SP13-- 8ri1 SAS BP 6_ S 7._

FRl 1 1	 1	 1

f FR2 l 1 1 l	 1	 1

li FR3 1 1 1 1	 l	 1	 1	 1

FR4 1 1 1 1	 1	 l	 1
. FRS 1 1 1 1	 1	 1	 1	 1

O Ô
7

T
FR I 1 l l	 1	 1.	 1	 1 0

X

i 1O 't7

^j

^a
t

^^^

,, n 0
Nm ^.N ^

I

f

r

W

Jo
1

f
®

	

	 ORIGINAL PAGE 6

OF POOR QUALITY

IV. Error Hypotheses
y

t

Functional-based Errors (EF's)

'I

EFl	Non-satisfaction of FR (i.e. program not 	 !'

catching an illegal input)

EF2 Non-satisfaction of FR2

` EF3 Non-satisfaction of FR

EF4 Non-satisfaction of FR 4

r
EF5 Non-satisfaction of FR

EF6 Non-satisfaction of FR6

{

k
i'

Structure-based Errors (ES's)

X`
r

1 1'

ES

3 1'

E

S5 1' Inco-re^* -e^ atic.̂ .al cperat_r 7

ES ES
 ES8.1' ES

13.1'
{

X15.1' ES10.1

Note for subscript notation: Left of dot gives structure part
t

` number when error is possibly
embedded.	 Right of dot gives
error number for the given

F

structured part.

RS 1.2' ES 2.1' ES 5.21 Incorrect transfer of control
flow.

I^ES6.2 ES8.2' ES13.2'

ES14.1' ES15.2' j1

ES
10.2

ES7.1 Incorrect Arithmetic Operator

ES Incorrect Arithmetic Expression r#7.2 (Formula)
ES7.3 Incorrect Assignment

r

z,

,

r

A. Goel
Syracuse U
16 of 72

V ''

ORIGINAL PAG;-: Cg

OF POOR QUALITY

V. TEST OF ERROR HYPOTHESES
f

Function-based Error Testing Strategy {

!i

. Assume functional requirements given as

If (input conditions) then (output conditions)

. Generate test requirements for every valid and invalid

combination of the	 inputs,
a

}

input Condition Valid Combination Invalid Combination
f

FRl -(A > B > C) (A < B)	 A	 (B > C) (A > B)	 A	 (B > C)
(A > B)	 A	 (B < C) (A =- B)	 A	 (B = C)
(A < B)	 A	 (B < C) (A = B)	 A	 (B > C) M

etc.
„ J

FRZ (A=BC) (A=B)	 A	 (BC) (A0B)	 A	 (B=C)

(A	 B)	 A	 (B C)

(A # -B)	 A	 (B ¢ C)

FR3 (A = B	 C or (A	 B)	 A	 (B > C) (A > B)	 A	 (B ¢ C))
_A> B=C) (A> B)	 A-(BC) (AFB)	 A	 (B =C)

I
etc. - E

FR4 (A > B > C and (A > B)	 A (B > C) A (A,>	 B)	 A	 (B	 >, C) A

a Y

A
2

=_B2 + C2) (A2	 B2 + ' C2) (A2 # BZ + C2)
etc. d

FRS > 8 > C and (A > B)	 A	 (B ? C) A (A > B)	 A	 (B > C) AA(A!

> B2 + C2 (A2 > B 2	 C Z)+ (A2 >	 +B 	 C2)
and 	 < B+C) (A<B + C) (A> B+C)

etc.

PR6 (A > B > C and (A > B)	 A	 (B > C) A (A > B)	 A	 (B > C) A

A2 < B	 + CZ) (A2 <
B2 + C2) (A2 ^ B2 + C2)

i

s i

etc.

A. Goel
Syracuse U

r 17 of 22
r

MO	 --77777777--'-	 -7

OR101
OF POOR QUAU

Structure-based Errors Testing Strateqy:

Structural Part Testing Strategy

Incorrect Relational Operator

simple relational expression(SRE)	 Test Cases: A - B, A > B
ofithe form A < B

SRE of the form A < B Test Cases: A < B, A = B

SRE of the form A B or Test Cases: A B,	 A 31 B
A 10 B

SRE of the form A > B Test Cases: A B, A > B

SRE of the form A > B Test Cases: A < B, A B

Incorrect Construct in a SRE

SRE of the form A < k Test Cases: A = k, A* < k
where k constant where A* max (domain of A)

SRE of the form A < k Test Cases: A = k, A* > k
where A* min (domain of A)

SRE of the form A k or Test Cases: A k
k

SRE of the form A > k Test Cases: A k, A < k

SRE of the form A > k Test Cases: A k, A* > k

Incorrect Relational Operator
and Constant

SRE of the form A < k Test Cases: A < k, A k, A * > k,

(A < A*) A (A* < k)

SRE of the form A < k Test Cases; A* < k, A k, A * > k)

(A > A,) A (A* > k)

SRE of the form A k Test Cases: A* < k, A k, A* > k,

(A < A*) A W < k)

Pk SRE of the form A > k Test Cases: A* < k, A k, A* > k,

(A < A*) A (A* < k)

SRE of the form A > k Test Cases: A* < k, A k, A* > k,

(A > A*) A (A* > k)

A. Goel
Syracuse U
18 of 22

^ rLi ^a `S	 xa^ 3n ♦16m^ iE•^

t

Testing of TRIANGLE's ES's
U

i
H#othesized Error Testing Strategy

ES1.21 ES 2.1 ES5.2 ,' Simple traversal of go to
statement

ES6__ 2 1	 ES 8.2 1 ES13.2'

ES
13.2 1 ES 14.1 , ES18.2

ES10.2',

ES 1.1 Test Cases:	 (A = B).	 (A > B)
`

ES3.1 (3 = C) .	 (B > C) i

ES 5.1 (A = B),	 (A ¢ B)
Y

ES6.1 (B = C) ,	 (B	 C)

ES8.1 (A2	 B2 + C2). #

(A2	 B2 + C 2) i

ES 10
. 1 (A2_= B 2 + C2).

(A 2 > B2 + C2)

ES 13.1 (A - B) ,	 (A > B)

ES15.1 (B - C),	 (B	 > C) {

ES 7.1 Simple traversal of statements }
7,	 8,	 9,	 10 L

d ES 7.2 Simple traversal of statements Z	 fi'.

7, 8, 9,	 10

ES 7.3 Simple traversal of statements
7, 8, 9,	 10

}

i

j

f

^ r
Y

f

A. Goel
Syracuse U
19 of 22

•

i
1

Y

ORIGINAL
OF POOR QLALWY

VI. Recording Test Results in the FR-EF and SP-ES Matrices

Let
MFR-EF

s element of FR-EF matrix

MSP-ES =element of SP-ES matrix

Then, assuming w6 have a sufficient error-based strategy

MFR-EF	 0	 If test result is negative

or

MSP-ES	 1	 If test result is positive

If error-based strategy is imperfect

MFR-EF	 rdi	 If test result is negative but
test's relative degree of

or	 imperfccticn. is rdi

MSP-ES	 1	 If test result is positive;_	 z
a

E

i

it

r

rt _

A. Goel
Syracuse U
20 of 22

FR—EF Matrix

r-r	 -'ter	

^^^^

ON	 a n w
	

i	

fi

a

t

4

rr ^-

{ -

k
r

µ
BF EF2	 EF3	 EF4 EF5 EF6

PRl

FR
1

s ,	 PR
a

a	 FR4	
t	

t

FRS	 1
s,

k	 FR
F

s	
j.

w _	
SP-ES Matrix	

r

ES1.1
	 ES

1.2	
s

ES	 ES
ES2.1

ES	 ES ES15.2	 ES	 ES ES7.2	 ES7.3s.

SPl

t SP2

g
p 1n

F"
:19

4

EXTENSIONS OF EST PHILOSOPHY

MEASURE OF COMPLEXITY

MEASURE OF CORRECTNESS

TRADE—OFF STUDIES FOR ALLOCATION OF

ix

,t

F

RESOURCES

p
y.

d	 ^

1
J

i

a

e

3

ORIGINAL PAGE

OF POOR QUALITY	 W84 2 3144

Testing and Error Analysis of a Real-Time Controller

r
'!

C.	 G.	 Savolaine
^i

Bell Laboratories
Holmdel, New Jersey 07733

1.	 INTRODUCTION

This paper outlines inexpensive ways to organize and conduct system
testing	 that	 were	 used	 on a real-time satellite network control
system.	 This system contains roughly 50,000	 lines	 of	 executable
source	 code	 developed	 by	 a	 team	 of eight people.	 For a small
investment of staff, the system was 	 thoroughly	 tested,	 including
as,tomated regression testing,	 before field release.

Detailed records	 were	 kept	 for	 fourteen	 months,	 during	 which
several	 versions	 of	 the system were written. 	 A separate testing #j
group was not established,	 but testing itself was structured 	 apart fi
from	 the development process. 	 The errors found during testing are r
examined by frequency per subsystem by size and complexity as 	 well r,

as	 by type.	 The code was released to the user in March, 1983. 	 To
date, only a few minor problems have been 	 found	 with	 the	 system
during its pre-service testing and user acceptance has been good. l

2.	 THE SYSTEM BEING TESTED
11

The Satellite Network Control System (SNCS) is a 	 real-time,	 mini- !
computer	 based,	 call-processing	 system	 developed	 for
P`icturephone(R) Meeting Service (PMS).	 It controls	 the	 switching
of	 both	 1.5	 and 3.0 Mb/s digital circuits over a satellite using
Frequency Division Multiple Access	 (FDMA)	 technology.	 The	 SNCS -
runs	 on	 a	 dedicated F'estern Electric 3B-20S computer (similar in
capacity to a DEC VAX 11/7817) and supports interfaces to:

1.	 Earth stations 3	
..

2,	 A customer reservations system
3.	 A satellite_ maintenance -center +
4.	 A computer operator console

Satellite	 connectivity	 requests	 are	 sent	 to	 the	 SNCS,	 which
verifies	 these requests and assigns satellite transponder channels
to each.	 Every 15 minutes	 commands	 are	 generated	 and	 sent	 to
microprocessors located in the earth stations that tune the modems.
The	 real-time	 control	 interface	 to	 the	 microprocessors	 is
complicated	 by	 inter-dependencies among the commands across earth'
stations.	 To compensate, a sequencing is generated by the SNCS for
the	 commands,	 which	 changes	 with	 every	 reconfiguration.	 The
central	 SNCS	 _multiplexes	 these	 earth	 station	 work	 lists	 and i
simultaneously-	 distributes	 them to the stations, maintaining this
sequencing.

3.	 TESTING METHODOLOGY

A prototype of the system was 	 available	 in	 February,	 1982.	 It 1
needed	 significant enhancement to provide full service, and it had
not been thoroughly tested. 	 The methods used in testing the system
while	 new versions were being developed concurrently are described

r^

4
z

C. Savolaine	 r	 `.

Bell Labs	 r,

Iof17

S

' tea... ..r.K.,wywe+. »s.^, _.^ ... 	 chi.	 _.	 __	 _, ..r +1 -..^::	 /G3.^.^^ . _:.	 ^ -: o.	 . o

WIT

. to

ORIGINAL PAGE IS

OF POOR QUAL111Y

r

_
here.	 The next section will evaluate their usefulness.

+i

- The major techniques used were:

- • tester selected from the development team

• rotation of testing assignment {

• testing was automated

s formal testing of all versions

e careful tracking of error causes and effort to correct t

• deferring correction of low severity errors

• full	 regression testing

` + releasing test cases to user with code {

A person from the development team was assigned the full-time	 task
of	 creating and organizing test cases. The system was divided into

_r subsystems	 and test cases were created consisting of multiple test

t	 ;, situations	 per case. Each test case had the objective of testing a #
particular system feature. 	 The running of all cases was	 automated
with	 a	 difference program used on the output to isolate potential
errors.	 This made full regression testing possible.	 This	 testing
was	 done	 on	 each	 version	 even though only the last version was
released to the field. F'.

The testing assignment was rotated among the _group,	 changing	 with
each	 of	 the	 three	 versions	 created.	 Tests were automated and j
conducted by the tester, but problems, after being given a severity
codes	 were	 assigned to individuals in the development team. 	 The
correction of bugs having a low severity was deferred to 	 the	 next
version to avoid correcting multiple versions.

Each error Was	 classified	 into.,--one	 of	 three	 types:	 omission,
commission	 or	 requirements.	 The	 errors	 Clue	 to a requirements
misunderstanding	 often	 stimulated	 additional	 ,documentation	 to
clarify	 the	 mis-conception.	 The	 system	 Was	 divided into nine
subsystems, and each error was allocated 	 to	 one	 of	 these.	 The
subsystems and their errors were then analyzed verses code 'size and
complexity as determir)ad by the .McCabe !comp1Wty masure. m

j̀ For every error, the time was recorded to find the	 cause,	 to	 fix

.` it,	 and	 to test it. In addition,	 the number of iterations through 1

the cycle and whether other errors were 	 caused	 or 'found	 in	 the

r process was recorded. I
i

Test cases were released to the user	 along	 With	 the	 code.	 This r
provided	 a foundation for their testing efforts as well as serving
as detailed documentation. 	 By running	 known	 good	 cases	 in	 the
users	 environment, problems unique to their configuration could be
identified quickly.

r1

ow C. Savolaine
Bell Labs
2of17

{

ORIGINAL PAGE F-S

OF POOR QUALITY,

a;

4.	 RESULTS

By devoting 15% of the available resources to testing,	 an extensive
set	 of	 test	 cases	 was	 created	 and automated:.	 By rotating the
person responsible for testing, the	 testing	 process	 became	 more
robust	 and	 independent of individual. traits.	 It also made a task
that was perceived to be 	 onerous	 more	 palatable.	 The	 training
investment	 in	 rotating	 the	 testing position was low, !since each
tester was previously in the development team. 1

By automating the running and output comparison of the test 	 cases,
it	 was	 easy	 to run regression tests on a system that Was growing
and changing.	 The number of test cases grew steadily. Phased fixes
were	 manageable	 because	 the	 less	 critical errors were the ones dd
being deferred, and none were delayed more than a few months. x

The bugt Correlated wrl) with subsystem	 complexity	and	 lines	 of
code.	 Nearly	 half	 the	 errors	 were attributed to omission.	 Of
these,	 half	 occurred	 in	 the	 two	 largest	 and	 most	 complex
subsystems.	 About	 half	 the	 errors	 required	 only	 a	 one line
correction.	 For the first version, the time to find an error and to
correct	 it	 were equal.	 For later versions	 it took longer to find
the errors than to fix them.

Inviting the user to participate in generating 	 and	 reviewing	 the
test	 cases	 made	 it	 possible	 to	 gain	 early	 user involvement.
*<eleasing the test ::aces with the code gave theuser 	 an	 extensive 1
set	 of test cases upon which to build, and served as 	 examples for
user training.

Thus,	 by	 formalizing	 and	 automating	 the	 testing	 process	 a p_
thoroughly tested, stable system,	 plus test cases were delivered to °l	 A

the user on schedule.
r

_i

a

I
R

C. Savolaine_

_	 r

t	 €	 _

x;

Bell Labs
3of17

._-: . 71

rt.T

i

ORIGINAL PAGE IS
OF POOR QUALITY

r

References
li

1. McCabe, Thomas J.,	 "A Complexity Measure," IEEE Transactions on
Software	 Engineering,	 Vol.	 SE-2,	 No. 4, December,	 1976, pp.

308-320.

2. Metzger, P.K., Managing a Programming	 Project,	 Prentice-Hall, }

Inc.,	 1981.

3. Myers, G.J., The Art of Software Testing, John 	 Wiley	 b	 Sons,

xjInc.,	 1979.
1

1

V

t

3

i

r
l

F	 ^ 1

is

y ^	 I

r

s.

,

^rW.
C. Savolaine
Bell Labs

-
"

4 of 17

rF)
ORIGINAL PAGE 19
Of POOR QUALITY

TESTING AND ERROR ANALYSIS
OF A REAL-TIME CONTROLLER

• SY!5tem under te^t

• Testing methodoWgy

• D a t a and Ana I ysis
- Error distribution
- Error classification

• Conclusions

C. Savolaine
Bell Labs
5of17

am

ORIGINAL PAGE ill
Of POOR QUALITY

SATELLITE NETWORK CONTROL SYSTEM

EAIRTH
RESMATIONS	 STATION

SYSTEM

EARTH
STATION

OPEHATDR
CONSOLE

SATE LLITF'
MAINTENANCE

CENTER

C. Savolaine
Bell Labs
6 of 17

41

1

TESTING METHODOLOGY

Development team persionnel

•Full-time essigninent

• Full regression tasting
Ei

• Change management tracking system

C. Savolaine
Bell Labs
7 of 17
	 0

1
_	

1
J

ORIGi^ ^AL RUALIYY.
OF POOR Q

DEVELOPMENT/TESTING CYCLE
FEB S1FPT DEC MARCH AJ NP	 1st O T H

1982 1982 1982 1983 1983	 1984

DEV J

	

DEY i	 DEVELOPMENT

DEV 2 f

	TEST G	 LDEY 3

	

TEST 1	 DEV 4

TEST 2

	

	 INTERNAL TESTING
TEST 3

PfiESERV_ICE TEST

	

FIRST FIELD RELEASE	
USER TEST 1-1

USER TESTING
FIRST

SECaND FIELD RE zASE USE:q TEST ? r	 smYICE

I

C. Savolaine
Bell Labs
8 of 17

47

ORIGINAL PACE t9
OF POOR QUALay

i)
1

ERROR SEVERITY

LEV EL	 TY PE
	 FOUND

1	 SYSTEM FATAL
	 5

2	 FUNCTION WROR	 20

3	 AN NOY ING
	 44

4	 TRIVIAL
	 19

91 TOTAL.

C. Savolaine
Bell Labs
9 of 17

20000

175(}U
CORRELATION _ 745COEFFIUEMT

15000

LINES OF 12500CODE
F EIR loom

MODULE
?bm

5000

2 500

• = THIS POINT WAS OMITTED
FROM REGRESSION ANALYSIS

•
•

S 10 15 20 25	 30	 35

ORIGINAL PAGE "^'

OF POOR QUALITY

LINES OF CODE VERSUS MRS

NUMBER OF MRS

C. Savolaine
Bell Labs
10 oI' 17

0

rrnoIU cN A nn he

a

P	 ^i

ORIGINAL PA *E I
OF POOR QUALITY

COMPLEXITY VERSUS MRS

1 t Oo

100(?
9N)
B rx)

7 00

MOD) LE	 500

COMPI. EXITY SD0

400
300

2 DO
IDO

0
S	 10	 15	 20	 25	 30	 35

N U MBILR OF MIRs

C. Savolaine
Bell Labs
II of 17

--	 o
r

ORIGINAL PAGE iS
OF POOR QUALITY

COMPLEXITY 'VERSUS ERROR TYPE

COMPLEXITY ERROR TYK',.-
MEASURE O C	 R

880 10 5	 0

604 11 7	 3

403 2 1	 6

379 3 6	 1

369 1 1	 1

364 6 5	 3

277 2 3	 1

226 3 0	 4

107 s 1	 2

41+29+21 -91

C. Savolaine
Bell Labs
12 of 17

o^

S

ORIGINAL PAGE 19
OF POOR QUALITY

J

COMPLEXITY VERSUS ERROR TYRE
INTERNAL TESTING USER TESTING

COSAP! EXITY ERROF TYPE: EPROP TYPE:
MEASURE O C	 H O L	 H

880 10 S	 01 1
 3 6

4	 4^_ 20
dOA 11 7	 3J 3 7	 1)

403 2 1	 6 -

379 3 6	 1 1

369 1 1	 1 - -	 -

364 b 5	 3 1 2	 -

277 2 3	 1 - 2	 -

225 ? 0	 4 - -	 -

107 3 1	 2 -

41 +29+21	 -91 5 f 15+6 -26

C. Savolaine
Bell Labs
13 of 17

ORIGINAL PAGE IS
OF POUR QUALITY

COMPLEXITY VERSUS FATAL ERRORS

COMPt_Ex ITY FA I AL
ISCOUI .E M f AS Lwz ERRORS

^ 8U0

2 6 b.4

3 403

4 s r +o

5 3&9 1

6 364
7 277 2

8	 226	 1

9	 107

I
I

C. Savolaine
Bell Labs
14 of l7

P4
oo—

i

r	 l '^

ORIGINAL PAGE I9
OF POOR QUALITY

COMPLEXITY VERSUS FATAL ERRORS

CONO'LEXITY F A T AL

WWAM E MEASURE E RRO RS

1 880

? 6 64

3 403

4 BID

5 389 1

6 364

7 277 2

S 226 1

9 107 1

I

f C. Savolaine
Bell Labs
15 of 17

M^

ORIGINAL PAGE IS
OF POOR QUALITY

RESULTS

e Fatal errors occurred in less

complex modules

a Non-fata l errors correlated well

with complexity

• fMo4i-errors hound in pre-Bold

testing were ornis .blon type

is Most errors found in field testing

were comission type

C. Savolaine
Bell Labs
16 of 17

P

rlr...	 ti- -4

r	 ..

ORIGINAL PAGE IS
OF POOR QUALITY

CONCLUSIONS

• Avo id compWx moduWs

• In design phase, inspect for

ormsuon errors

• In int*rnal testing. lock f or

comic siw errors
s

c . sawlail,e
Bell Labs
17 of' 17

J^

0 fit GHP4 AL
OF POOR QUALITY `18484

TRANSFORMATIONS OF SOFTWARE DESIGN AND CODE
MAY LEAD TO REDUCED ERRORS

Edward M. Connelly

c. Performance Measurement Associates, Inc.
Vienna, Virginia 22180

ABSTRACT
f

This research investigated the capability of programmers
and non-programmers to specify problem solution! s by developing

!77	 0 example-solutions and also for the programmers by writing computer
programs; each method of specification was accomplished at various
levels of problem complexity.	 The level of difficulty of each pro-
blem was reflected by the number of steps needed by the user to
develop a solution.	 Machine processing of the user inputs per-
mitted inferences to be developed about the algorithms required to
solve a particular problem.	 The interactive feedback of processing
results led users to a more precise definition of the desired
solution.

Two participant groups (programmers and bookkeepers/ i
accountants) working with three levels of problem complexity and
three levels of processor complexity were used. 	 The experimental
task employed in this study required specification of a logic for

solution of a Navy task force problem. 	 This task involved choosing
ships from a ship list which identified the ship type, the transiting
time (the time required fo r the ship to get from its present position
to the desired site), and stationing time (the number of days the
ship can remain on station with available provisions). 	 In addition
to this specification of ship combinations the participants had to
specify by the example-solution the range of transiting and stationing
times required.	 In another related experiment, participants
developed FORTRAN IV code to solve the same problems.

The performance both of programmers and non-programmers
was found to decrease with increasing levels of problem complexity
and with reduced processor support.	 For both the groups, errors
of commission were relatively infrequent compared to errors of

r.

61; E. Connelly
PMA, Inc.
I of 18

4b, I

i;
a.
0
i^

,p
v
F
,

i3
C

i
_i

y1

ORIGINAL PAGE t13
OF. POOR QUALITY

omission. It was found', that the degree of processor complexity
was much more influential than problem complexity in predicting
performance scores. When little computer generalization of
user input was provided, performance was significantly lower than
during all other experimental conditions. Results also showed
that participant-strategy in the generation of problem solutions
was a significant factor in performance, though years of experience
and years of education were not found to be good predictors of
performance. The feedback aids were shown to be most effective
when they included the logic implied by the example-solutions.
These experiments demonstrate the effectiveness of the on-line
use of computer software to create and modify software routines.

Results also suggest that a measure for evaluating a programmer's
skill should involve evaluation of procedure that programmers
use in developing example-soluticns, and in designing and writing
program code. Finally, the superiority of using example-solutions
with inductive feedback over writing code suggests that the trans--
formation process provided by the induction might be applied anal-
ogously to software development. Considering designs and code in
multiple transformed forms may reduce software errors to a'level
found for example-solutions.

INTRODUCTION
1.^

Six experiments were conducted, with the same problems used in all C
experiments.	 The ability of the participants to develop example-solutions
was evaluated as a function of the participant's background and experience,
the complexity of the problem to be solved, and the level of processing pro-
vided by the computer, and the level of feedback aids, when aids were available.

Experiments 1 and 2 were designed to investigate the ability of expert
programmers and of bookkeepers/accountants who were not expert programmers
to develop example-solutions for thehypothetical Navy task force problem.
The experimental variables for both experiments were problem complexity
and processor complexity, i.e., the amount of machine processing of user
inputs.

Experiments 3 and 4 were designed to investigate the ability of expert
programmers and non-programmers to develop accurate and complete example-
solutions using various feedback aids at various levels of problem complexity. y
The feedback aid designs were based on the results of Experiments I and 2,

rr

E. Connelly.
PMA, Inc.
2of18

ORIGNUL
OF Poon Q4

UAU7-Y

where the systematic generation of example-solutions, as measured by a
combinational measure, had been shown to be highly correlated with
performance (explaining 63% of the score variance).

Experiment 5 was designed to investigate the capability of expert
programmers to revise problem solutions' specifications in the form of
example-solutions in which various numbers of initially incorrect entries
had been introduced, using the feedback-aids developed in Experiments
3 and 4.

Finally, Experiment 6 called upon expert programmers to develop
computer code written in FORTRAN IV for various levels of data input -

a design intended to be analogous to the design of Experiment I .	 The results
of Experiment 6 were sub-routines written in FORTRAN IV that should
accept or reject a ship combination, as that combination was correct or
incorrect.

The performance measures used in the experiments consisted of
error measures and strategies measures. Three error measures were:

a.	 PT
., the probability that a given ship combination was correctly

classified as acceptable or unacceptable.

b.	 PC ,the probability that a correct ship combination was accepted.

C.	 P
1C

the probability that an incorrect ship combination was
rejected.

In addition to the error measures above, relative error measures
were used. A relative error measure was defined as a participant's
error score (PT , PO , P

I
) on an experimental problem minus his/her

error score on the pretest problem. The relative error measures thus
tended to remove the effect of the participant's innate capability, and, as a
result, were more sensitive to experiment factors than were the error
measures alone. J

Two strategy measures were used to detect the frequency with which
participants used specific strategies. 	 One strategy measure, the combinational
measure, detected the frequency with which a participant changed only one
component at a time of each successive example-solution. Another strategy
measure, a sequence measure, detected the use patterns of the various
feedback aids.

E. Connelly

PMA, Inc.

3 of 18

,^ O

ORIGINAL PAGEE Q9,

OF POOR QUALITY

Results of Experiments 1, 2, and 3 in which programmers and
bookkeepers/accountants provided example-solutions are compared with
the results of Experiment 5 where experienced programmers wrote
FORTRAN IV program code for the same problems. Results of the other
experiments can be found in Connelly (1982 a, b).

RESULTS OF EXPERIMENTS 1, 2, & 3

Processor Complexity and Error Reduction

First, as expected, more errors occurredduring the work on the
more complex problems. However, the level of processing, or generaliza-
tion, of the example-solutions was found to be an important error reducing
factor, i.e., a significant reduction in errors occurred when data from
example-solutions were processed into a standard form and presented to
the participant.

Systematic Strategies and Feedback-Aids

A second result,; and perhaps the most important,, was that participants
in both categories who performed well tended to use' a systematic, step-by-
step strategy in selecting example-solutions. This result together withP
the first, noted above, suggested that feedback aids might be designed to
encourage participants to use systematic strategies, by processing their
example-solutions and then feeding back the resultant data to suggest possible
additional inputs.	 A description of the aid design results obtained in using
them are given in Connelly (1982 a, b).

Breadth vs. Depth of Experience

A third result of the first two experiments applied to the subsequent
experiments was that the numberof years advanced education (i.e., beyond
high school) and the number of years of professional experience were found f
to be relatively unimportant factors in predicting performance.

The lack of a strong prediptive relationship between years of higher
education or years of experience and performance may come as a surprise
to educators and d directors of personnel departments. This result was found j

i to all of the e	 eriments, so that very strong evidence is available to support
assertion years of education and relevant work experience are not m
 predictorsl	 good
	

s of problem-solving 	 suggestp	 p	 g performance. Additional. results su	 est f
that the "number of programming ,languages (used on l or more programs)" F
and "number of operating systems used" are better predictors of the capabil-
ities_of computer users/programmers.`

a ^

s

P

R

S

E. Connelly
PMA, Inc.
4of18

lap _ 	-

0 40

Low Frequency of Errors-of-Commission
J

The fourth result applied to the subsequent experiments was the
observation that only a few errors of commission occurreddurina the
generation of the example-solutions. The majority of errors that clkd occur
were errors of omission. This intriguing result influenced the design of
Experiment 6, where FORTRAN IV code was written to solve the same
problems used in.Experiment 1, so that a comparison of error rates would
be possible.

RESULTS FOR EXPERIMENT 6

Two types of errors were analyzed. One type, termed an "error
of omission", referred to an error that resulted in a failure to accept a
correct entity (e.g., ship combination). When specifying a problem solution
with example-solutions, an error of omission could be directly traced
to a failure to enter an example of a suitable entity (ship combination).
The second type of error considered was an "error of commission." When
example-solutions were used to specify a problem solution, an error of

commission corresponded town incorrect example entered into the processor
which was then treated by the processor as a correct example. An error
of commission resulted in erroneously accepting incorrect entities (ship
combinations).

Errors-of-Omission

There was little difference in the effect of problem complexity on
errors of omission between the two methods of specifying problem solutions,
i.e., by example-solution or by FORTRAN rV subroutines.

Errors-of-Commission

When generating example-solutions without feedback aids, the rate
of errors of commission increased sharply at a problem complexity-level
near 20,821, as measured by Halstead's E Metric (Connelly, Comeau, &
Johnson 1981).	 But, given a suitable feedback aid environment, such as in
Experiment 3, this problem complexitylimitation could be eliminated, as
evidenced by the Experiment 3 data in which performance degradation did
not appear.

E. Connelly
PMA, Inc.W

b 5 of 18

I	
ORIGMAL
OF POOR QUALITY

t
I

a'
F

r

•	 The most important result regarding errors of commission was
that specification, by example-solutions was superior to specification by	 i
program code. Analysis of the mean scores from Experiments 1, 2, and 3
provided strong evidence that using example-solutions substantially reduced
errors of commission compared to using FORTRAN IV program code. The
3% rate for errors of commission with example-solutions compared favorably
with 18% for program code.

	

	 ui

Three hypotheses concerning the superior performance of the example-
solution method seem plausible:

1 . It was working with examples and dealing with each individual
combination of items one-at-a-time that resulted in a low rate
of errors of commission.

i
2. It was the specification of each combination one-at-a-time that

alone was important. Consequently, if computer programs	 f

were developed to specify each solution combination one-at-a-
time, the rate of errors -of commission would be low.

3.	 The success of the example-solution method was due, in part,
to the transformation of example-solutions from one logic form
into another, such as the ship selection logic (SS L), or into
several different forms, such as the feedback aids.	 Thus, it
was the transformation ` of logic which enabled the user to view
the problem in more than one way and that resulted in a low
rate of errors of commission. Consequently, if program code- Y

entered by the user were transformed into a different logic form
and 'fed back to the user for approval, a low rate of errors of
commission would be obtained.

These hypotheses are not alternative hypotheses - all could be true.
We have strong evidence that the first hypothesis is true. 	 If the second is i
true but not the third, program design and coding methods could be adapted
to a-more combination dependent structure. And finally, if the third
hypothesis were found to be true, pre-compilation aids could be designed to
convert the user's program code into another form (while maintaining the
same programlogic) for feedback to the user.

f

E. Connelly
PMA, Inc.
6of18

\1'

EI

ORIGINAL P .ern r
OF POOR

Q0AL1"ry
iiY

x

' F

f COfUC LUSIONS

1 . The lack of a strong relationship between "years of higher
education", "years of experience" and performance, coupled with _-
the strong relationship between "number of computer languages"
known and "number of operating systems" used, suggests d
that education and experience should not be used as they have

' been in the past for hiring, promoting, determining salary
level, and assigning tasks. 	 Instead, the number of operating
systems used, which are better performance predictors, should a	 r
be used until the underlying factors included in each are discovered.

2. Apparently, the depth of an individual's experience is not asr important to performance as is breadth of his experience.

3. A possible common underlying experience related factor is the
ability to view problems from alternative viewpoints, or the
ability to develop alternative approaches to problems - an t
ability that might be enhanced with feedback aids. i

4. The performance prediction capability of strategy measures,
developed as moment-to-moment measures, not only clearly
demonstrates that systematic strategies were used by successful n

6 participants (which led to the design of the feedback aids), but
` also convincingly demonstrates that moment-to-moment measures

provide the sensitivity to explain considerable performance variance !j
(approximately 60% in Experiments 1 thru 4.)

5. The superior performance (fewer errors of commission) achieved
when using example-solutions and inductive processing to specify x
problem solutions over the performance achieved when using

4

FCRTRAN IV code may provide a basis for determining the
underlying mechanism forthat success and a, means for incor-

„

porating that mechanism into program designing	 and coding aids. y
Apparently, superior performance was obtained either because t
each combination of the input variables was treated individually
and/or because the example-solutions were transformed into
another logic form -- the ship selection logic (SSL).	 If the former
is a significant factor, then aids described in this report should be i

{

f
a

P	 ;

1

E. Connelly
PMA, Inc.
7of18

V ,

4

-	 T-nP.a.+wear, 'as^.+rm^"P'--	 __

}

ORIGINAL
OF POOR QUALM

adapted to program designing. and coding- aids. if the latter
is a significant factor then designing and coding aids should
be developed to transform the logic provided by the user into
another form which is then fed back to the user for his review.
Such a transformation might present the program's equivalent
logic.

REFERENCES
	 i

Connelly, E. M. A comparison of the accuracy an d completeness
of problem solutions produced by example-solutions and i
program code. (Technical Report 82-362). Performance
Measurement Associates, Inc. September 1982 (a).

ti4

` Connelly, E. M. Accuracy & completeness of problem solutions J
with example-solutions. (Technical Report 82-363).)

.rt Performance Measurement Associates, Inc. November 1982 (b)."
Connelly, E. M., Comeau, R. F., & Johnson, P. Effect of automatic

processing on specification of problem solutions for compute
F' erograms .	 (Technical Report 81 -361),	 Performance >z

Measurement Associates, Inc. March 1981. AD A108570
i

Halstead, M. H. Elements of software sc ience.	 New York:
Elsevier, 1977.

s

The research reported here was supported by the Engineering
{ Psychology Programs, Office of Naval Research. The views,

opinions and findings are those of the author and should not be

' construed as an official Department of the Navy position, policy,
decision.

E	
I

i

y-'

f

l
 i

r:	 e

i

k,;, E Connelly
PMA, Inc.
8of18

-r

PROGRAMMING VIA EXAMPLE-SOLUTION CAN

RESULT IN FEWER ERRORS

EDWARD M. CONNELLY

PERFORMANCE
MEASUREMENT
ASSOCIATES,
Incorporated

0 Op
^r

4 Am

_ao
r,

t^

tCk1	 F^+t[WWII, .. N „p,..^ ... _	

1	 ; 4	

r: ; ,r lyas^sr . .n r	 .,,..	 ..	 s	 ,..d. P_l'^,'y,{
..^1mKe'7i a^lx , at	

..,7 <	 ..:p `*":	 ,. ..

1	
s

7

RESEARCH. METHOD

TESTABILITY OF INDIVIDUALS

TO SPECIFY PROBLEM SOLUTIONS:

• EXAMPLE SOLUTIONS

• FORTRAN IV CODE

t

O a

r

SIX EXPERIMENTS

ORIGINAL EXAMPLE SOLUTIONS

1. PC/lR, PROGRAMMERS

2. PC/IR, BOOKKEEPERS

3. PC/FA, PROGRAMMERS

4. PC/FA, BOOKKEEPERS

REVISE EXAMPLE SOLUTIONS

5. PC/FA, PROGRAMMERS

FORTRAN IV COIL".10E

6. PC/IR, PROGRAMMERS

PC	 PROBLEM COMPLEXITY

IR = INFORMATION REQUIRED

FA	 FEEDBACK AIDS

E. Connelly
PMA,boc-
I I of 18

amp,	 ------

`ly,	 ^..

PROBLEM STATEMENT

1. THE SHIPS NEEDED FOR THE TASK

k

4

f

THIS TASK FORCE CRITERIA_ SPECIFIES THREE x
COMBINATIONS OF SHIP TYPES AS FOLLOWS:

• 2 CVA AND 2 SS
z _

OR

• 2 CVAN AND 2 SS

1
OR

• 1 CVA AND 1 CVAN AND 2 SS-

00

E +.

rt

SHIP SELECTION LOGIC _ (S'SL)

N-o--oi	 Transit Time __Stationing Time--
Ship Type---	 Ship Type	 MIN	 MAX MIN MAX

i
CVAN	 0

i
CVA	 1	 1	 5 10----- 50

CA	 0

CGN 	 0
Ar.,

CG	 0

DID

SSN	 0
i
,,
?: SS	 2	 1	 5 10----- 50

AO	 0

TOTAL:.	 3

4

r ^^

yep

DEMOGRAPHICS

• YEARS OF EXPERIENCE AND YE

HIGHER EDUCATION ARE NOT

PREDICTING PERFORMANCE.

• NUMBER OF COMPUTER LANG

KNOWN AND NUMBER OF OPEF

SYSTEMS USED ARE IMPORTANT TO

PREDICTING PERFORMANCE.

• UNDERLYING FACTOR MAY BE ABILITY

TO VIEW PROBLEMS FROM ALTERNATIVE

VIEWPOINTS.

^t

-- "Z m
n

0 >o
7^-2
00 C,; CD

^o

+ .z nPrr

mm, MOT

DEMOGRAPHICS

• YEAR--S--OF-EXPE-RtENCE AND YEARS OF

HIGHER EDUCATION ARE NOT IMPORTANT TO

PREDICTING PERFORMANCE.

• NUMBER OF COMPUTER LANGUAGES -_ -
t

KNOWN AND NUMBER OF OPERATING

SYSTEMS USED ARE IMPORTANT TO

PREDICTING PERFORMANCE.

r	 • UNDERLYING FACTOR MAY BE ABILITY

^r TO VIEW PROBLEMS FROM ALTERNATIVE

VIEWPOINTS.

°;.moo

r

EXAMPLE SOLUTIONS/

FORTRAN IV CODE

• EXAMPLE SOLUTIONS AND FEED-

BACK AIDS YIELDS SAME ERROR

OF OMISSION RATE AS FORTRAN

IV PROGRAMS

• EXAMPLE SOLUTIONS AND FEED-

BACK AIDS YIELD MUCH LOWER

RATE OF ERROR OF COMMISSION

AS FORTRAN IV PROGRAMS

--bm
° ^o

IL

i
1

4

s

ERRORS OF

i
COMMISSION

EXAMPLE SOLUTIONS PLUS 3%
INDUCTIVE FEEDBACK

PROGRAM CODE 17.7%

t

E

a ^n0 >

n
Y

3

C	 N

f

.I

HYPOTHESES

i

SUPER-10-R-PE-RFORf ONCE OBTAINED

WITH EXAMPLE SOLUTIONS MAY

BE DUE TO:

• WORKING WITH EXAMPLES

OR
------ -

• WORKING WITH EACH SOLUTION

ONE-AT-A-TIME

OR
M

• THE TRANSFORMATION FROM ONE

FORM TO ANOTHER (EXAMPLES TO

EOUIVALENT LOGIC)

^,ao

i)

i
ORIGINAL PAGE 6Q

OF POOR QUALITY

EXTENDED ABSTRACT

"You can observe - a lot by just watching"t
How Designers Design2

David Littman Kate Ehrlich, Elliot Soloway s , John Black**

Department of Computer Science s	Department of Psychology*`
Yale University

New Haven; Connecticut 06520

(Please address all correspondence to Elliot ' Soloway)

1. Introduction: Motivation and Goals
Rather than developing design languages and support environments on the basis of what we

think designers should be doing, we felt that a more informed process would be to first find out

what they do do. To this end, we interviewed for two hours each 4 exper. software designers and

I,

s

F+

i
2 novice designers as they designed an electronic mail system; subjects were encouraged to talk- 4

k aloud as they worked; and the design session was video-taped. 	 Here we briefly summarize the {

key observations based on an analysis of these tapes.
}

* 2. Subjects and Task
-

All designers were professionals supplied to us by a nearby branch of ITT. Expert designees
1

I
had at least S years of design experience in commercial settings, while novices had less than 2 n

r years of similar experience.	 Note, however, that the novices were without question bright,

competent individuals; they simply had less experience than the experts. 'Subjects were given the

following task: l
TASK -- Design an electronic mail system around the following primitives: 	 READ, REPLY,

k_

SEND, DELETE, SAVE, EDIT, LIST-HEADERS. 	 The goal in to get to the level of pseudocode
that could be used by professional programmers to produce a running program, The mail system
will run on a very large, fast machine so hardware considerations are not an issue. g	 -',

r
r	

`.

^• ^

f

1

^

'Quote from Yogi Berra, a catcher for the New York Yankees.
4

j

° rThis work was sponsored' by a grant from ITT.

k

W.,	 r_

E. Soloway
Yale
I of

F RR.

^Y

{

ffi

_	 T

ORIGINAL PAGE M
OF BOOR QUALITY

3. Observation I: How the Design Progressed
All our expert designers considered the same topics, almost always in the same order, and

usually at the same level of detail. This surprisingly consistent observation led us to posit the

concept of a session theta-plan, which we believe guided the expert software designer's treatment

of the electronic mail system. Novices did not seem to use anything analogous to a common plan

of attack on the mail system problem: their design sessions were less systematic than those of

the experts.

As illustrated in the time line shown below,, the meta-plan of our experts contained rive distinct
phases: first the experts described how a user would view the mail system, then they stated
various assumptions (e.p, we will use dumb terminals); then experts used models of mail systems

at various levels of generality (e'g., at the most general level was the flow of information model,
followed by examples of other mail systems they have known followed by the specific system at

hand); finally, the exper tm, worked on the concrete design. _Notice that the novices dove right into

} the detailed specifications of the system.	 We asked all subjects to provide a wrap up evaluation)
"a at about 10 minutes before the end of the session._ R

3

Start	 Finish

NOVICES:		 concrete	 design,,	wrap-up
3

- 100	 mins	 -10 miss 7

EXPERTS:	 user....essump-....abstract......... concreto...rrop-up

model	 Lions	 erodels of	 design
c; mail	 system 4

-- 10 mins -10 mins	 -80 miss	 -10 mina

The following quotes taken from the protocols are representative and support the above claims;

`g At 3 minutes into the task, one novice said:

} (Writes SAVE) "To save I have to open a file and then write to that file... If I have 5 or G
messages 1 have to consider if I want to save all of them or whether I should save a specific one
and specify which one I am saving."

Similarly, at 3 minutes into the task, one expert said:

"I guess I have to establish a set of assumptions of my own"
>i

At 10 minutes into the task, one novice said:
e

"The number of the message line has to be specified... In order to Set the message,., if I have 4
messages, I need to know which lines I 'm going to take if the user only wants to save one
menage.."

•
Similarly, at 10 minutes into the task, one expert paid:

w

i
i

i

E. Soloway
Yale
2 of

V'

ORIGINAL PAGr jU

OF POOR QUA L—ITY

"Let me start looking at the states of a user, first of all, and what the world is going to seem
from the view of a user.'

4. Obwirvistlon II: DesIgn Strat^egles

We observed that experts all employed the following four general design strategies -- and the

novices did not.

1, The experts w.,̂ re purposeful: experts continually stated explicit goals and subgoals,

and continually checked to see how their design satisfied those goals., 	 For example,
one expert said:

'I want (.o go backwards for a minute. I want to think about bow I got to here and
from here to there and how I'm now going to go back to the user. OK I've got it."

in ct;^itrast, novices operated in a more botbom up fashion: 	 they pursued ,goals as
problems _, ame up, without a global sense of where they were 99W.

2. The experts were model-directed: experts drew on their experience and continually

manipulated models of Cbe mail system at various levels of abstraction, e.g., at the

most abstract levfl, one expert viewed mail as a stream of incoming data that

needed to be ea-uted to the appropriate place, These models were used to set up goals
to be pursued.

3. The experts always followed a course of balanced development; components of the
system were desi"ed in a breadth-wise fashion: 	 at each level	 the detail d	 L

component was about the same. For example, one expert said:

Subject: "So I'm trying to keep all the things level.

Intavierwer: "Knowing a little bit about each one."

Subject: "Knowing a little bit about each one, The same level of eompleyity with
each one and hopefully the questions may have,.. and as you've seen before
sometimes when I ask a question about one thing it reminds me of another thing I

had passed over before and if I'm at the same level of decomposition I can see some
links between them,'

In contrast, novices plunged into the details of a specific component only to rind
when they came to the next component that assumptions and constraints or the
earlier component were violated — and thus bugs were introduced.

4. The experts employed a variety of notes that they used during the design:

*Assumptions: these notes eat out the parameters of the system; they were

typically specified early in the design, e.g., we will be using dumb terminals.

e Constraints: as components were being defined certain properti ,!s that would
have a global effect needed to be noted, e.g., in working on the REPLY

command a constraint was set up that the buffer pointer to the current
message should not be updated by the READ command.

e Expectations: these notes set up demons that would interrupt the designer at
key points in the process, e.g., in reviewing the LIST-HEADERS command, the
designer realized that the data structure for the mail messages better permit

access to the subject field, as well as the contents field.

The notes were used by the experts to continimilly monitor and evaluate the progrew

E. Soloway

Yale.

ORIGINAL. PAGE E8

OF POOR QUALITY

of the design.

S. Implications for the Software Aids
What are the implications of these observations for the design daoguages and support software?

Where did the experts need assistance?' It is clear to us that information management was a key

skill that experts had, but which they could use soiiw assistance on --- especially when the

complexity of the task grows large. However, the type of information management that we think

designers need is not simple "version management"; this type of assistance merely regurgitates

back to the user exactly what he /she has typed in. Rather, the software aids that we see

relevant to enhancing the design process are those that can digest the information provided by

the designer. In particular, one aspect in which the designers seemed to need assistance' was in
the keeping track of the "notes' they made (the assumptions, expectations, and constraints) and

recalling them at just the appropriate time. Software that could perform this type of assistance

would require considerable understanding of the design process itself, and information that is

problem specific.

For example, in designing an electronic mail system, assume the designer noted the following

assumption to the software aid:

Assumption: use only dumb termina ls 	 i

Reason; keep costs down

Then later when the designer -was working on, say, the SEND command, and contemplating how
a message could be edited, the software aid should respond with:

f
Careful: you assumed that dumb terminals would be used; this type of terminal 	 l

does not have local editing capability

This type of reminding assistance would provide powerful assistance to an expert. Moreover, it
a might help a novice designer learn good habits, by encouraging him/her to carry out the design

o

b

using notes about assumptions, expectations, and constraints.

g d. Concluding Remarks
The verbal protocols we collected and analyzed from our subjects provide a tantilizing glimpse

x into the process of design.	 While even in this small pilot study we saw clear convergence of

'

techiques among the experts — and clear differences between the novices and the experts, we see

the observations made in this paper as only a beginning. 	 We feel strongly that studies of the	 l
l

type reported here are necessary in order to get a better understanding of design — which in turn

can knowledgeably inform the development of design aids.	 Yes, Yogi, you can observe -a lot by	 I
i

just watching!	 j

4	 ^	 f

rK,

a=

^.

	

	
E. Soloway
Yale
4 of 4

,

O

z ,

r

h
,r

-I------ -	 .
4	

1 ,

OWGINAL PROS 11

OF POOR QUAL"ry
""N84 23146

EVALUATING MULTIPLE COORDINATED WINDOWS
FOR PROGRAMMER WORKSTATIONS

Ben Shneiderman*, Charles Grantham, Kent Norman#, Judd Rogers,
and Nicholas R6ussopouloS*

*DOuartment of Computer Science
#De'bartment of Psychology

Human-Computer Interaction Laboratory
University of Maryland
College Park, MD 20742

October 14, 1983

ABSTRACT: Programmers might benefit from larger screens with
mu' ip a windows or multiple screens, especially if convenient
coordination among screens can be arranged. This research
project explores uses for multiple coordinated displays in a
programmers workstation. Initial efforts focus on the potential
applications, a command language for coordinating the displays,
and the psychological basis for effective utilization so as to
avoid information overload. Subsequent efforts will be devoted
to implementing the concepts and performing controlled
psychologically oriented experiments to validate the hypotheses.

INTRODUCTION

Full screen display editors are rapidly
I
replacing line oriented

editors, because they offer a larger windowand more intuitively
clear operations..	 Comparative studies indicat e display editors
can be learned in half the time and permit twice the productivity
for many tasks	 (Roberts, 1979).

Similar productivity gains may be possible by furtherexpanding
the personal workstation,to include multipL* coordinated windows.
Multiple windows have been used in graphics systems where one
screen provides command facilities for the graphic display.
Applications with complex information display- ,requirements-often
employ multiple computer displays, e.g. nuclear reactor control,
air traffic control, manufacturing control, spacecraft control,
and commodity exchanges.

Multiple display research in programmer workstations has been
conducted by the Japanese	 (Mano et al., 1982),	 in the Spatial
Data Management project at Computer Corporation of America
(Herot, 1980), and by Xerox with their overlapping windows
strategy (Smith et al., 1982). 	 This latter approach, often
called the 'cluttered desk model n , allows the user to create

Presented at EIGTH ANNUAL SOFTWARE ENGINEERING WORKSHOP, NASA, Goddard
Space Flight Center, 11/30/83

E. Grantham
Uofm
I of I I

xi

a,
0

^e

multiple windows in which independent processes can be initiated. 	 ri

Other researchers are developing , the software architectures 	 J
necessary to support multiple window activity (Gonzalez „1982;
O'Hara, 1983, Weiser et al., 1983).

Larger displays and multiple windows are attractive (IBM, 1983),
but can overwhelm the user with too much information and the
frustration of having to issue many commands to accomplish their
tasks. 3

c

RESEARCH DIRECTION t

In this project we propose to go'.beyond these early efforts and4LL
evaluate-a multiple window environment in which the activities r
across windows can be coordinated to support programming tasks.
Appealing applications include:

1) A central window shows program text, while .the left window
shown input test cases and the right window shows output:.
results.	 Each press of a function key moves--t,he! left window
to the next test case and the right window to the next output

' case,	 The programmer can then examine the code and verify the i
correctness of the output or track ,anomalies.

2 11 One window shows program text and as the cursor is moved
w onto a variable, the declaration, recent values, and

cross-reference list automatically appear in another window.''

3) One window shows the module design specification, another
r window shows the flowchart, and the third window shows the

program code under development. 	 As the user enters the name
` of another module, the specification, flowchart, and code

appear simultaneously.

4) The top-down structure chart appears in one window, and as
the user moves the cursor onto one of the boxes, the code
and/or specifications appear in other windows.'

5) Three windows show a contiguous sectiong	 n of a program 120
x

r

lines long, 40 lines per window. 	 The command DOWN 25 causes
all three screens to move down 25 lines. }

6) With a single command the user can display all three 	 (or
more) modules invoked by a higher-level module, to check for
commonality of argument passing strategies.

The list could be made much longer, but these examples convey the
rich potential for multiple windows, if useful coordination and

y' synchronization can be achieved conveniently. 	 Multiple screens
are advantageous for situations which require correlation between
two ,segments of text, fuller context for comprehension of local

,. code, and concurrent viewing of the root, sub-tree, and leaves of j
x a tree structure.

r ,

b.

6
_	 E. Grantham

U of-m-

2 of I I

WW- _

l
: fy.
Y

OF POOR QUALITY

u

We are in the process of designing a language to specify
window coordination. Our initial approach is to use text editor
macros to create a set of commands which would fit in the editor

` environment. For example, the macro nc (for Next Case) might be
specified as 1>L /**/; 3>L /CASE/ which means locate on screen 1
the string ** (a marker for the beginning of an input test case)
and simultaneously locate on screen 3 the string CASE (a header
field for each output case). Conjointly, we will study 	

!Iprogramming behavior to isolate those tasks which can benefit
from the user of multi-screen information piesenta`ion
strategies.

We are inF	 hworkstation to P test salternative lstrategies. screen We hoPpeotoarefine t9
Successful strategies by using the initial system for our own use	 n
and to test the system with programmers recruited to perform	 s^
benchmark tasks. In addition to producing a useful system, we
expect to develop a better understanding of how programmers do
their work. An additional benefit would be the development of 	 1
simplified strategies for coordinating split screens on single 	 u

display systems - these concepts _might be rapidly applied to
currently available programmer workstations.

^	 1

EVALUATION STRATEGY

a	 s^.	 Our early experiments will concentrate on comprehension tasks .'x
which can be administered in 'a well-controlled manner
(Shneiderman, 1980). For example, we have observed that in-line 	 -f

k'	 comments,tend to clutter the listing and cause more window
movement commands to study a program. There are three.
experimental conditions:

1) Single screen with in-line comments	 the control group.
2) One screen with program text only and one screen with
comments only. A single window movement command will cause	 s

'	 both screens to move in synchrony.	 L
r	 3) Two screens which are linked together to show twice as many

Lines of program text with in-line comments. The screens are

x
linked so that they act as simply a doubly long window.

Subjects will be given a comprehension test forward trace (for a
given input what is the output), backward trace (for a given	 1

K	 output: what must the input have been), value of 'variables, counts
of execution, and other questions. Subject evaluations
complement the objective test scores.:

As our implementation becomes more powerful we will explore
program debugging, modification, and composition tasks.

Acknowledgements: We are grateful to IBM Federal System Division
for support of this project.

c	 ;x

r

c	 E. Grantham
U of M
3of11

s

^	 .	 '..	 -,^-- 	 _	 ..-.1 '. .!..mss,	 t.^.+•"i	 a , e.	 __ _^i- ._	 --..^ __^,..s._. _.__.^...._.... _.^

3.

ORIGINAL Fn _U^ 0

OF POOR QUALITY

REFERENCES

Gonzalez, J.	 C., Implementing a window system for an all points s',
X addressable display, IBM Cambridge Scientific Center Report

G320-2141,	 (December 1982).

Herot, Christopher, Spatial management of data, ACM Transactions
on Databases 5, 4 	 (December 1980),,493-513.

IBM 3290 Information Panel: Description and Reference, Form
GA23-0021-0,	 Kingston, N.Y'., 	 (March 1983).

Mano, Yoshihisa, Omaki, Kazuhito, 	 and Torii, Koji,,Early
experiences with a multi-display-programming environment, Prod.
6th International Software Engineerigq_Conference, Available from
IEEE,	 (19 2) ; -4	 _4 r

Y

O'Hara, Robert P., An interactive-display environment or knitting
sheep's clothing for a wolf, Proc.-National Computer Conference,

t
Vol.	 52,	 AFIPS 'Press, Arlington,VA,	 (1983),	 329-339,'

Roberts, Teresa L_., Evaluation of -computer text editors, Ph. D.
' dissertation, Stanford University,	 (1980).-	 Available from

'university Microfilms, Ann Arbor, MI, AAD 80-11699.

Shneiderman, Ben, 'Software Psychology: Human Factors in Computer ;.
F; and Information Systems, Little, Brown and Co., Boston, MA

` (198.0) ,
'a

Smith, Cranfield, et a1., Designing the STAR user	 interface, BYTE
4,	 (April	 1982),	 242-282. f

- r

., 9g, R:, and Wood, R., The MarylandWeiser, M., Torek, C., Trigg,
window systems, University of Maryland Computer Science Technical

N
Report TR-1271,	 (January 1983). s

z

m
1

^ J

^ a

P

E. Grantham'
Uofm

ii

4 of

C<

:y

I

°I

1

EVALUATING MULTIPLE COORDINATED

WINDOWS for PROGRAtIMER WORKSTATIONS

1a

f

<I

Ben Shneiderman*, Charles Grantham, Kent Norman#,

Judd. Rogers: and Nicholas Roussonoolos # Y

s

}
N

Department of Computer Science

Department of Psychology

a

Human-Computer Interaction Laboratory
a-

Universi ty of Maryland

College Park, !"D 20742

+i

y

f

E. Grantham_
UofM{
5of11

ORIGINAL PAME E

OF POOP QUALITY

TWO RESEARCH STRATEGIES

r	 ,^

d	
1	 II	 ^

i
i	 ^	 1

s
3	

I^	 4

C

'	

) KEYBOARD	
I

I
0

.	 __ .	 _	 ._^^	 ,^
^^		

^^^^^

^^'^

f

^'

^STJ

• Data Structure

COMPOSITION INTEGRATION • Control Structure
• Modular Design

TESTING CORRELATION •
•

Input
Exhected'utput

VARIANCE • Semantics
DE-BUGGING FROM

PLAN • Syntax

REFERENCE • Semantics
MODIFICATION +

LOCATION • Specifications

iii
7

FOCUS IS ON COORDINATED USE OF INFORMATION FOR EACH GIVEN COGNITIVE TASK

Summary of Observational Study Results

TASK
	

COGNITIVE ACTIVITIES

6 ~ i
F s
F

, V,

EXAMPLE:

CONFIGURATION A

PROGRAM COMPOSITION
TASK

(3)

a.	 Module	 Structure
Specification

	

	 under	 Chart	 t
Development

Keyboard

4	 ^	 j

,»	 E
a

Reference to a module causes all screens to move in a linked fashion.
1.

Screen` 2 is the `work area'; Screen l displays specifications, Screen - that portion of the 	 1
Structure Chart where the modUle appears.

1

^„	
1eK

r	 ^

i

l

E. Grantham j
i U ofM

.

9ofII

EXAMPLE:

CONFIGURATION B

x	 PROGRAM COMPOSITION
TASK

AU ,2 jr
it

SOFTWARE MACROS

SEMANTIC ORGAN IZATIO14:

One. c-reen will be control target. Action (in p ut) on

this screen causes correlated changes in other screens.

In Confi g uration A:	 Screen 2

In Configuration B:	 Window 3

POTENTIAL SYNTAX:

MACRO NC	 (macro definition)

3>L/CASE/

END MACRO

Pt
R51".

E. Grantham
Uofm
11 of 11

kI

I
N+Tv

1

i

PANEL #4

QUALITY ASSESSMENT

t
-	 t

P. Currit, IBM
K. Ro»e, IBM

J. Romeo, IITRI
u

r
}

i

f

x

r

j

1^.^_^.,,.	
_ -	 _—

__...^ -..1- -• _!tea:—ir3̂ -^r^̂ -_.>.	 _ 	 _—

^r'v,.i y
^a6

L!

Introductionr

The "Cleanroom" software development methodology is designed to take the
gamble out of product releases for both suppliers and receivers of the
software. The ingredients of this procedure are a life cycle of execut-
able product increments, representative statistical testing, and a standard
estimate of the MTTF (Mean Time To Failure) of the product atthe time of
its release.

In the paper ;e consider a .statistical approach to software product test-
ing using randomly selected samples of test cases. A statistical model is
defined for the certification process which uses the tliming data recorded
during test. A reasonableness argument for this model is provided that
uses previously published data on software product execution. Also in -
cluded is a derivation of the certification model estimators and a compar-
ison of the proposed least squares technique with the more commonly used
maximum likelihood estimators.

A Statistical Model of Software Ru-1 i abi'l i ty

If there are errors in a software product, users may experience inter-
productmittent failures as the

intermittent failures in hardware, these tintermittent tfailuresbin^software
are repeatable * -- that is if the software is executed again under iden-
tical initial conditions, then the failures will occur in exactl y the same
places. The appearance of int`:ermittent failure in software in a given 	 F
instruction seeming to.fail one time and not another is due to the com-
plexity of circumstances in which the instructions are executed rather
than in underlying physical problems that occur during the execution of
the instruction.

In the case of hardware failures, the basis for a statistical model
appears in the very physical behavior of the hardware. But in the soft -
ware, we must find another basis for statistical behavior. Fortunately,
that basis is close at hand_- it is in the nature of the usage of the
software by various users. Any particular user will make use of the
software from time to time with different initial conditions and differ-
ent inputs. During any sp_e.cific use. of the software, inputs may be
entered from time to time and outputs observed from time to time during
the course of the execution. The only failures detectable in the software
are either from its aborting or from producing faulty output. But any one
execution from a fixed initial condition from fixed inputs will be-have 	 !^
similarly for every user every time they use it.

..

	

	 I
We call any such fixed use an "execution" which is distinguishable from
all other executions by its initial .condition and its inputs. Any given
execution may have one or more failures associated with it, which is
determined by the software itself as compared to the specification it is 	 -'
intended to satisfy. An execution will require a fixed number of
machine cycles.

r^ P. Currit
IBM
2 of 34

ry_

.{s

^,	 tl

Now we can imagine an "execution lifetime" foran 	 i en user to b thI 	 ----.y 9.. v	, .	 e	 e
sequence of executions the user calls for with the software. Such se-
quences of executions for each user can be : assembled 'into a collection of
sequences of executions -- one for each 'user -- and the statisticalproper-
ties of this collection identified as a'stochastic process. That is, we
consider, for the software product, a statistical pattern of usage for
the product in terms of its, initial conditions and inputs. Any execution
selected in such a stochastic process will in general depend upon the
past history of the sequence. For example, it is very unlikely that a
user will query files before the files are loaded or that a user will
call for two successive file maintenance executions. These kinds of
conditions can be represented in a stochastic process which defines prob-
abilities at any point in time to depend upon the state of the past history
of the process.

With a statistical basis of user usage of the product,. we can determine
various statistical measures such as the MTTF, or the variance around the
MTTF, etc. where time is measured in machine cycles. We are interested
in failure free execution intervals, rather than p rying to estimate the
errors remaining in a software design. Our objective is to measure
operational reliability which is the reason for the user usage perspec-
tive.

The Effect of Enqineering Changes on the MTTF of Software

Consider a software increment under test and certification in which
failures are observed and the results returned to the development
group. On the analysis of these failures, the development group may
propose engineering changes to correct the software. These engineering
changes can increase the MTTF of the software, and we wish to account
C	

t_ .	
th MTTF

r

i

r

'i	 or tha	 ncrease 4n	 e

When engineering changes are made to software, it is only prudent to
undertake regression testing to insure that these changes have not

a	 created new failures in execution.	 This regression testing should use

previously generated statistical tests.	 It goes without saying that	 j

--	 this 'regression testing cannot be considered part of the statistical	 k
sample used for estimating the reliability of the software. 	 Instead,_
theiincreased MTTF, if any, must be detected and accounted for by new
samples independent of the old ones (very likely new samples in later'
increments in which the retested software is only part of the total
software being tested).

Suppose at a certain point in time that a set of engineering changes

EC1, EC21
 ECm ,'has been applied to the software as a result of certifi-

cation testing and analysis. 	 Suppose that the failure rate of the software r

a,

a.
P. Currit
IBM
3 of 34

may -	 _	
>n ^_:

_-mss:-	 .r.`l

E-

3

is X and the failure rate associated with engineering change EC i is Xi.

Then the failure rate associated with all the engineering changes made
to date is the sum	 -

al + X2 + ... + X

If the engineering changes have corrected all errors in the software,
then the foregoing sum will equal a; otherwise, it will be less Clan X.
But, in fact, no one will ever know which case holds, and we assume
neither case.

For convenience, we define XO to be the deficiency, if any, between

and the foregoing sum. 	 That is

X
01

-X2 ...	 -Xm

In this case, the quantities

X / X . P-	 X /X' P2 	 / X .	 ..	 p-	 X /X.Jp0	 0	 1	 1	 2	 2	 m	 m

are probabilities -- namely, p l is the probability that a failure was

caused by the error corrected by engineering change EC 1 .	 (po is the

probability a failure was caused by an error not corrected by any
engineering change.)

If we assume an exponential distribution for time to next failure, in
line with Adams'	 (8) and Nagel's (9) 	 findings, the MTTF is the reciprocal
of failure rate'.	 We can then calculate a new MTTF after each successive
engineering change has been made - namely, beginning with MTTF O , the

MTTfm	of the original product after m changes will be

MTTF 1 	MTTF0/(1°P1)

MTTF2 = MTTF 0
/(1-P 1 --P2)

i,
{

MTTFm = MTTF
0
/(1-p 1 -	 ... - pm)

The p i values, or correspondingly X i /X, can be expected to be decreasing

in size, even though we cannot observe them directly with any certainty. 	 Y
This is because the errors with the highest associated rates of failure
will be most likely detected and corrected earliest.	 That can't be guar-
anteed_, of course, because a'rare failure may well occur early as well
and a correction made for it. 	 f

P. Currit

t.

IBM
4 of 34

This expected decrease in size can be modeled in a simplified form if
the p i are defined by the probability distribution of geometrically

decreasing terms

p i = ^1'a) ai-1^ 0 > a >1

That is, each p i is a fraction a of the preceeding p i _ 1 . We can expli-

citly sum the denominator on the right side of the MTTFm eq"ation to get

a new formula

MTTFm = MTTFORm , where R = 1/a

In this formula, R is the average fractional improvement of the MTTF for f
each engineering change.	 In fact, in actual practice`, R is just an
average.	 Some engineering changes will affect the MTTF more than others
depending upon the rate of failure associated with the error that has
been fixed.

r This particular software reliability model has been independently derived
by several other people starting with different initial assumptions. 	 It
is equivalent to the Moranda geometric-de-Eutrophication model and the
Ramamoorthy-Bastani input domain based model. 	 Moreover all of these
models can be viewed as special cases of the Cox Proportional Hazard model.

It is well known that engineering changes themselves can introduce more ±'
errors in a software product.	 It appears that errors induced by such
changes are much smaller when carried out by the original development
group than with a separate field support group; but, nevertheless, we s

augment the above model with a contribution of error from engineering
changes themselves. 	 For this purpose, assume that engineering change
ECi	 introduces a failure rate at the level of

p i
, then the above calcu-

lation needs to be modified to alter the definition of the p i to the
following

pi
	 pi)/N

In this case, the remaining calcul -ations go as before with p0 again j
a^. defined to account for the discrepancy but with the tame end result,

namely ;_+

r^ MTTFm = MTTF0 R
m 1

r

P. Currit
IBM

IF
5 of 34

.,

^. -	 -.-.	 - 	 _....':-_	 u... ^1	 -.. .. mss:	 T,^^s .r	 ...	 ,.	 •.0	 w__	 s	 _ - ...i,.	 '"-'r ...^	 __.-.a^

e

A Reasonableness Check ofthe Model

In 1980 Adams analyzed the software failure history of a number of large rs'
software products.	 Table 1 is taken from that work and illustrates the
percent of errors in various failure rate classes. 	 Two striking features
of this data are the wide range of failure rates and the high percentage
of very low rate errors.	 One third of the errors have MTTF of 5000 years.

Table I

FITTED PERCENTAGE DEFECTS ,±

MEAN TIME TO PROBLEM OCCURRENCE IN KMONTHS BY RATE CLASS

60	 19	 6	 1.9	 .6	 .19	 .06	 .019'

PRODUCT
1	 34.2	 28.8	 17.8	 10.3	 5.0	 2.1	 1.2	 0.7 11
2	 34.3	 28.0	 18.2	 9.7	 4.5	 3.2	 1.5	 0.7
3	 33.7	 28.5	 18.0	 8.7	 6.5	 2.8	 1.4	 0.4
4	 34.2	 28.5	 18.7	 11.9	 4.4	 2.0	 0.3	 0.1
5	 34.2	 28.5	 18.4	 9.4	 4.4	 2.9	 1.4	 0.7 i

p 6	 32.0	 28.2	 20.1	 11.5	 5.0	 2.1	 0.8	 0.3
7	 34.0	 28.5	 18.5 	 9.9	 4.5	 2.7	 1.4	 0.6

--	 8--	 31.9	 27.1	 18.4	 11.1	 6.5	 2.7	 1.4	 1.1 t
9	 31.2	 27.6	 20.4	 12.8	 5.6	 1.9	 0.5	 0.0

' liable 1 gives a new insight into the power of statistical testing, rela-
tive to selective testing or inspection, for improving MTTF. 	 Finding
errors at random is a very different matter than finding execution fail-'
ores at random.	 One third of the errors found at random will hardly affect
the MTTF at all; the next quarter of the errors found at random do little
more.	 The two highest rate classes, some two percent of the errors, cause
a thousand times more failures per error than the two lowest rate classes,
some sixty percent of the errors.	 That is, statistical testing will un-
cover the high rate errors by a factor of 2000/60, some 30 to 1, while-ran-
domly finding errors uncovers high rate errors by a fraction of only 1 to 30. -j

r_ The availability of the Adams data provides a unique opportunity for
checking model(s) reasonableness, since it can provide failure rate as
a function of engineering change.	 Most available data is given in terms

a; oferrors found or inter-fail times but not true failure rate. 	 With the
Adams data separate examinations of model assumptions and parameter esti-
mation techniques can be performed. 	 Quantile-Quantile and trend plots

-" have been previously proposed for comparing the goodness of fit of differ-
ent models but.without failure rate data were unable to differentiate

between assumptions and estimation techniques when models performed poorly.

The reasonableness analysis for the certification model was performed in F

two parts, first assuming perfect debugging of the software and subse-
quently considering the effect of introducing-errors during product repair.

P. Currit
IBM
6 of 34

V
	

w

To perform the analysis, failure rate data exhibiting the effects o f engi-
neering changes was derived from the Adams datawhich was reported ing
terms of failure rate classes and failure counts. 	 First

X1' -
X
2 8 E

were defined as the failure rates associated with the eight rate classes
and n (i,k) as the number of errors in rate class i after k engineering
changes.	 The initial failure rate for a product (before making any
engineering changes) can then be expressed as

F
0
 = E8 ai	 n(i3O),

C To introduce the effect of engineering changes, successive failure rates
i

r must be derived by simulating the occurrence of failures. 	 This is done by
expressing the probability of the first error being from rate class i as

t

X	 n(i3O)/a
{.

gand using a random number generator to select a ' rate class (designated i 0)

according to these probabilities. 	 The number of errors in each class rate
after removing the first error would then be expessed as

n(i,l)'=	 n(i 3 O)	 for i	 i0

n	 _	 -	 r i	 _ i0.(i,l)	 W ,0)	 1 fo

Since the number of errors for each rate class can be derived, the failure
rate for the product after removing one error (first engineering change)
can be expressed as

This process is repeatable to develop successive failure rates for the
product and produces a single realisation of a failure rate curve based
on the Adams data.

For reasonableness analysis_an.expected failure rate curve obtained by
averaging a number of realizations is a better tool. 	 Figure 1 illustrates
such a curve that was.created by averaging 100 realizations of the Adams
data assuming an initial count of 500 errors.	 The availability of the
expected failure rate curves permits an examination of the reasonableness 	 ^!
of the proposed certification model and a comparison .of its assumptions
and estimation techniques against other software reliability models. 	 F.

--- The curve illustrated in Figure 1 is not of the form 1 /MRk (the reciprocal
of MTTF in the certification model) since its logarithm is not linear, as
shown in Figure 2.	 However large segments of the curve are of the desired
form which suggests that the model is useful for certification but not
extended prediction.	 Since our objective is software certification, the
model satisfies this role and introducing complexity for long range predic-
tion is not warranted.

i	 P. Curet
IBM
7 of 34

.qx	 .^	 e•., ,.. i 	 ->wr.t . f_ "Rr,.^it^,^	 ŷ 1^1if"n{FrrvR	
t u' :,	 ..r,.	 .-	 _	 .n.	 t 	 i 		 ,.	 _

µ

FAILURE RATE FROM ADAMS DATA
F1;
^eJ

140- 1 . 'i l
130 i

12J

I
:ou

90 ;
0 O

00
to

7U

to

so -
Q ° I

1

40-

30

20

R

e

10
U

0	 5	 10	 15	 20 25	 30	 35	 90	 45	 50	 55	 60	 65	 70	 75	 00	 OS	 90	 95	 100

ENGINEERING CHANGES

00^'C
200	 INITIAL BUGS	 GAMMA =0	 5U SiMULl.TInNS

W	 ^

rr

f	
,

y	 -,'^5 try^^^^s^i'j^'?tLr,?r•^ra '^+'N'c^+'N.-,^	 .^.... _I' . ["r•^^:l9	 ^'F''^^'R^3xzt ,^7'f .^a„	 .,.

r

R'	

,,AAA`	 y11
	

,-.a.	 .-	 . H ..	 y	 'F	 ,,	 r.	 a.,	 r.

1
4	 3lrt-!_

IBM 8/5^. ..

LOG(FAILURE RATE FROM ADAMS DATA)
11'1(

s.cu^1

E
,.SJ

^l

i N - o ®

'.75

+ri

o

2.50-

10
:2.25

I 1.Tr

1.25

I . oo
1

3	 10	 15	 20	 25	 30	 35	 40	 45	 50	 55	 60	 65	 70	 75	 00	 05	 70	 75	 100

ENGINEERING CHANGES

O•,1 r	 n 200	 INITIAL PUGS	 cAmmA=o	 50 SlhIlI AIInNS
W

K

C'4r

Sx	 r

'r

t .

The failure rate curve shows that failure rate does not decrease linearly
with engineering changes as assumed by the Jelinski-Motanda and deri'va'tive `.
models.	 The Littlewood-Verrall model has good fit with the failkire rate
curve and has been used by one of the authors for long range predictions. 7!

Failure rate curves that cover the imperfect debugging case require addi-
tional knowledge of ,the probability (Y) that a fix creates an error and the

` probability (g i) thatthe created error is:from rate class i. 	 A reasonable

assumption is that y should be in the range 0 to .25 and based on Adams
suggestion (14) g i can be derived by assuming the repair process is similar

to the development process. 	 The following set of g i values have been
experimentally derived:

Rate Class of Created Error

1	 2	 3	 4	 5	 6	 7	 8 F'

Probability	 .04	 .08	 .15	 .22 	 .20	 .16	 .09	 .06

r Expected failure rate curves have been generated using the derived
gi

data

over a-range of Y values.	 Analysis indicates that the certification
model is equally useful in the imperfect debugging case where the major
distinction is the appearance of fatter tails than in the perfect
debugging case.

i

Parameter Estimation

r To use the proposed model for actual software certification, methods are
required for estimating the model parameters (MTTF

0
 and R) from recorded

testing data.	 The suggested estimation procedure differs from methods
used by other reliability models and is based on a least square technique.

Let t1 , t
29
	 ..., to be the successive interfail times for a product under

r, test and certification. 	 From time to time, engineering changes will be

,^. made to the product in response to observed failures. 	 These changes areg i
introduced after the failures are observed, and typically packaged in an
incremental release from develo pment to test.	 For each i,	 et c	 be thep	 1	 i r'r li
cumulative number of engineering changes made to the product after the
interfail interval measured by t i .	 The t i	introduce a source of random-

ness since the times to failure will vary about the mean. 	 The certifica-
tion model and most other models assume an exponential distribution,
which seems to be corroborated by the Nagel' and Skrivan work.

Y

P. Currit
IBM 1

10 of 34

_ _ . _ •_	 _	 -. ^ ,^. »+-+ter.-•-r,,z:r ,..,...^„^.,... .. ^. ^.

R	
^

x
f

Properties of a model's estimators, such asunbiasedness, are as important
as the underlying model assumptions. Estimators for the MTTFO and R	 i.

parameters in the certification model have been developed, which are com-
puted with a least squares analysis of the logarithms of the interfail

times and a bias correction.

._

	

	 Most existing models rely on maximum likelihood estimators (MLE) which have
a known set of problems as discussed by Forman-Singpurwalla, Sukert, and
Li.ttlewood-Verrall relative to the Jelinski-Moranda model. It has been 	

y

demonstrated that for practical number of :data points MLE exhibits bias and

v

	

	 has greater variance than.the estimators log least squares estimators. The
bias can not be corrected because there is not a closed form MLE solution.

Figure 3 showsthe MTTF curves when the logarithmic technique is used for
estimating the MTTFO and R parameters. As calibration points, 50, 100, 	 f.

150 and 200 data points were selected to evaluate the method using the 	 a
simulation of the Adams data. Since the intent at this point was to demon-	 r	 '
strate the effectiveness of the estimators, interfail times simulated from

i
C.

4

	

	 a curve of the form MTTF R	 could have been used. However usin9 any
realization, such as ill2strated in Figure 3, provides a more interesting
test and a closer simulation of what will actually occur. As can be seen,
all curves give a good prediction of MTTF with the most discrepancy in the
50 point case when prediction is carried too far into the future.

f

u
r

e,	
s

Y ;^:t
^
^

=I

r	 1

P. Curritl
IBM
11 of 34

.a,

^t	 "°	 1#^t li".^^'I..tY^t1^A
s

^^	 .^^n^.nY4 ..:`	 .n.,. 4 ,	 ..^,y)r;:.^'y.x. .,,.. '^.A.A. ^1TA i^J*1` rwc.r^ . r. 	 ^..	 ..	 n r	 5i.. v +^.: • `;`T2: "̂ î rvtpRt•'+(if A"R: "^, 	 fl	 v.Mwa: ^ _	 - a irT	 '^f..	 ^ «^n_4 :	 t 	 v
..	 ...	 a,

ate.	 t.	 e	 - sax	 v ... s.. ...	 -	 _ -	 .`l

j

^' 9 0

MTTF IMPLIED BY -L S FIT OF LOG
7.5

Tf^da-lHTE-kf'nIl_ 'flrl[S
Q

1 LLLO61	 11tt1E	 MTTF
REO	 1at'Fi.	 ^^,^	 t:, , 1	 1`,

7.0
DASEGR	 -14	 U 01i 150 f 1'

6.5

6.0

5.0

00
4.5 ;u

F5

'04.0
1 t Op

1 s

2 S SO ► t. Esttyte
•	 — 1•^•' Tn,e KTTi t s

a.
.00 ►t. Estimtes

2.0 150 ►t. Estteties

t
a"}

'' ' 1.5'' 1 t
t	 t

,^
t1.0 '	 t	 t t	 1	 '	 tt	 '	

t	 t
^ • —fit—t1 	, t	 1	 t _

t

t	 t	 tt	
-t

t 1	 ^	 t t

1
1

-
,•	 t	 1	 t',,_t. 1	 i ,	 t	

1

t	 t	 t
'	 i	

t
oo	 •	 '	 1	 t'	 1_.,	 ,	 •	 ^'	 '	 •	 t	 1	 s	

t t •	 '

^'	 N CA 0.0	 t	 '	 • t„ t r 	 t•	 1 1 , •	 •	 ' s	 '	 t	 ••	 t	 t	 •	 '	 t	 •	 c	 ,	 t	 of 	 t	 1	 t	 • t	 1

j'	 f 1 —	 0	 10 20	 30	 40 50	 60	 70	 00	 90	 1 00	 110	 ! 1 20	 130	 140	 150	 160	 1?0 '	 100	 190	 2C-'

1	 A	 ' Ei1;:11ic C1 , dNG	 C111*10GEE ^SletvSl

c	
„.

k

s	
=	 3

ff AL lb

ORIGINAL PAGE IS
OF POOR QUALITY

O

S	 ^!

f,

{

t

WHY MTTF?

x

Quality Should Be Measured From Customer's Perspective

How often does it fail?

F

MTTF reports by large commercial customers

MTTF ship criteria {

What's the severity of a fail?

t,

r

a

t

F

ELI

r	
(

i

r.

WHY MTTF?

. Management Decisions

I

a

F

High MTTF is good, low MTTF is bad, j

g If x errors hove been fixed, is that good or bad?

If x is small,	 either:

1)	 There were very few errors made

or _.	 r

2)	 There are p lenty of errors	 but the --

testing p rocess is ineffective

If x is	 large,	 either;
x

1)-	 There were a large number of errors made

or

2)	 The testing p rocess is very effective

f

P. CLUrrit

IBM
15 of34

a^"a

Ei

i^

'I *T7

'1	 {

.....	 ,._.	 .tom	 .___....	 .__._.._,^.,a..,,^,.^.,	

y^ ^.^

*		 ^7̀ a
k ,

Y

1 s.

g ^^M

i

[AWT

ORIGINAL PAGE IS

OF POOR QUALITY

I

Each lifetime has a p robabilit y of occurrence.

Failure rate F of the p rog rams is averaged over all

possible	 lifetimes.

MTTF	 M
F

Each error e has an associated failure rate.Fe.

F	 zFe.
e

Fe
Let Pe	 (Relative freq uency of error e)

P. CLirrit
IBM
18 of 34

V

J

j
r

3 '

^p

i

Upon removal of error e;
	 r,

fi

R ^r

Let p t = (1-a) ai-1,
Y
s

Then, after k en g ineering changes,

y _	 M

1- (1-a)a 1-
r

x

=	 M	
x

1-	 1-d
^;	

(1—roc)

f
b
u	 _

a
4

+ It

S

MRk

where R _ 1,
ak

a.	 F

SOFTWARE CERTIFICATION MODEL

DT. t

A

Mean Time To Failure After k En g ineering Changes

t,

i	 f

MRk

F

where

k
f4

M	 Mean time to failure before any

eng ineering changes ..,E

R = Factor for relative im p rovement in MTTF

due to a sing le engineering change
I

yy	 1.

is

i

q

f

k

i!

J,
Ji

m
t^

SOFTWARE CERTIFICATION MODEL ASSUMPTION 	
JI

Equivalent to

RamamoorthY-Bastani

App lication. Nuclear Reactors	 f

II

s
4

p

MODEL REASONABLENESS
i

l	
Adams data

a

Large software products

Product usage	
Y

Defects found

Failures due to a defect

MTTF classification of defects 	 ;

Ir"	 :-^7i	 ^;r,	 ._	 ,..	 .^,	 om-a.:	 Tea:	 xn i'tx^'^±trn^.t^:	 ..	 - e^.syny	 e^^	 °x	 -*	 ..

f

Fitted Percentage Defects

Mean Time to Problem Occurrence in Years

1.6 5 16 50 160	 500 1600 5000

Product

^.' 1 0.7 1.2 2.1 5.0 10.3	 17.8 28.8 34.2

2 0.7 1.5 3.2 4.5 9.7	 18.2 28.0 34.3

3 0.4 1.4 2.8 6.5 8.7	 18.0 28.5 33.7

* 4 0.1 0.3 2.0 4.4 11.9	 18.7 28.5 34.2

5 0.7 1.4 2.9 4.4 9.4	 .18.4 28.5 34.2

6 0.3 0.0 2.1 5.0	 _ 11.5	 20.1 28.2 32.0

7 0.6 1.4 23 4,5 9.9	 18.5 28.5 34.0

b 1.1 1.4 2.7 6.5 11.1	 18.4 27.1 31.9

9 0.0 0.5 1.9	 - 5.6 12.8	 20.4 27.6 31.2

L
rt C^

E.	 N. Adams-; RC 8228, 4/11/80, P. 191	 IBM Research

r
a

O ^ n

4

SIMULATED FAILURE RATE CURVES
i

Based on Adams Data

For Perfect Debugging

Let n (i, k) = number of errors of fai lure

rate i	 after k fixes
rli

41

Let Fk 	program failure rate after k f ixes
a

8
F0 =	 11 1 	n(i3O)

t
i =1 ^

Probabili ty that first fa i lure is caused by an error of	 j1
rate 1i

^

A i 	n(i3O)/F

Randoml y select i 0 accordi ng to p reced ing p robability!

n(i,l)	 n(i,p) i	 i o 	i
}

n(i,l)	 = n(i3O)-1 i	 =	 iU

+

Fl = ^ i	 n(i,l)
i=1 R

Repeat to determi ne F2 , F3 .	 s e ll	 f

P. Currit	 r

IBM	 ;{:i
25 of 34

0 _0

IV 0

0M r
00-0C >

M

I

r

t1 T`d4d°1t^=,;1'•^k'* rF,;

. .	 ^.^;r	 .,.f-^,,^	 , ^q•£a iu^?rr^r•r.-*.		 v, r.	 f^rw*...,.c	 ;r•^r^ •h	 ^.	 _	 s«-^,g •,+9	 -	 :ia ^''	 ^T' °''	
,

a
S

FAILLUi E 'RATE FROM yDAIMI ' DAT—A

i

,tir,r

1 r^

)st,

125

i>	 t,l.	 ;4.1	 .)Cl	 ti(/	 f•)	 %^/	 llel	 'Ji)	 1i)(I	 li' O	 IN,	 I,:A	 14U	 1 • •il	 160	 l tl	 l:lu	 1':A	 _^{!tr

-	 FIXC.S

N 1-r rti
Q^ " o n,	 III171AI Id II.S	 I:AMMA:.6	 1 Clit14 AI 11111

0

W ~

lu

41

	

w	I

r

W SN1 I i I V 1111115 O;	O-VNNV'1	5:1111 711MINI 00.-	V	0	'	}

UJ	

0.1^fV

fir a	FIT.wrr1 W c11 rarr:r"W3
(i(4	S!	C/.	!,ll	<al	St	G:.	O'd	! .	V :	!.l•	(7l-	S)'	OF	r:	O.	r: l	O l	U%

n	„_...

J
< 0
y

O O

	

4	-.,	^	
1

1	^

t	,:p	^	1

1
1

	

VyV a SiIVaV 110 aLl as -ra M il1 vd	k

Ao

{

A

%Al

^t	 ^

_.^yl^..t t	 _,. rry	 r	 .. _.	 ^.....	 ..	 _	 .,	 v^..	 .+^err:^nkC?"t • fir ir^^fa ztc	 ..	 rt^	 .mr.:vt,t:

^	 .._

r^^.tr q15	

^... ^^	

^p ^

	 - ^

LOG(FAILURE RATE FROM ADAMS DATA)

1.

1 Z

2.SJ

:•/. 7

	

10	 15 20 	 25.	 30	 15	 40	 4	 50	 ; i 'j	 !.<t	 .'5	 70.	 7Ii	 110	 111;	 '!0	 1:,.	 1.70

COG IIJI:LkI14G tat	 0GE'S

r` -

700	 INITtnI	 MILS	 C.Gttnr.-0	 ;,0	 Sl ydll nilnl:T

,

l
^+_.^.	 _ ^^. -

_ ̂ 	 — —__	 ^..... »u .iw.f5.^ .3«,^:.. ,w.«. a «.	 r..-^. -Wan	 a...	 ti. «.. -.,. r y.<^ 	, .	 ,._.

I,WA
I

{

00

O

to

t

Z.- —

I	 _	

^; tj
^p',t^^ ^r^e,s

^^ k

,

k

^^.{

'.?,.I

J

^	 ^

I	 {

I

-	 _`^

S

_^	 ? 5.

n.

a^

^` 3

3.

'^1

^^ ^
t:;

1,

dr
,^ f .

^',
^, A.

^ ^ ^')	 .

'

O
M	 ^
W	

^

^,
,^

A

t

' fi^

^^ ^v,.

^^^.Y, 	7^:!A^}^• 1^Y
	 • +,.. ^ .	 ^^,:^,,	 t ,^:r^.^^	 r.r. o.	 ...	 trc,.^4'^:n^-9	 :: ^;r,.	

t	
....	

x ^t
. ; . 	prt+^;: ^•r ^	 '	 °""'1	 P'i r	

x

'

:

^.s
MTTF IMPLIED BY L S FIT OF LOG

SFGh : l! ITFI*['iI'li	 r i mr SYELLOU = 11*I1E MT'1F
RUI,	 i rt '1 t uf!	 1 i C7.0

	

	 FiIU[M'1Sf: p EIFJ 100 PTS
GREEN WISED (114 150 P US

6.5

6.0
i

I 5.S

5.0

i	 4.5
'

ji 104.0—t
t	 ^	 e

;I
4'3.5

e
3.Q	

e

C	 e

a	 s

2. 5 	, 	 50 Pt. Estimate	 a

.sue "'T-

(at	

2 .0

	 100 Pi. Estimates

'	 150 Pt. Estimates

1 '. 5	 '	 t

is	 s,
1 0

r	 ,	
r	 a	 t	 •	 r	 t	 t	 1	 r

of	 31
,	 ,	 a

t	 t

pp	 t	 ^	 t	 :	 a
Ir= !i7	0.0—t	•	 •n ,^ ^'	 s ,	 , : s , a	 a a^	 :	 , !_ ,^	 t	 t:^ ^t a	 a	 s	 t	 ,

O	 n	 0	 i	 _0	 30	 40	 50	 60	 70	 co	 90	 1 00 1 t 0 i —'0 1 3Q 1 ^'0 i 50 i L0 t'J 	 ^	 9 ^'	 , ^1
p	

w "

rt}

i

Ow 0
n R^

Q0
to `u
^ 4
A ^}
P; 4

L?^

PARAMETER ESTIMATION

Comparison with Maximum Likelihood
iI,.

t,
1

3	 _	 t

'>~. ^ ^
l̀ t(^R IFtC,^S ^i'^'° .s^^a„ 	 ,;;.	 ^Pa	 .,`®,:^.t	^^i^^,^y,^^rr^re . , x	 ..,.... ._.	 . r.	 ar	 rya	 ,i^ s ^.'mk,.»r.,u	

^ :^^. T I	

.I	 _.	 r .; ^Y1 ,_.	 ,r rs	 •	 ,	

: - *	 '.,

I

MISRA DATA USING CLEAN' ROOM MODEL
(.kFFi4-1'SEIII)11 INTEL: VAI1	 TIMES

Jill	 I •	 Mill	 1	 ill..% l

9

r^

40

i' s•,

3U Q

11

,.^

,
00 -u

C•

r

I
Wool

own

--I; t U

ww^w

wwrr aloof 	 —•—j

w+r

so"""

l	 : r l 40	 60 _	 do	 1.00	 1:10	 1 40 14.0	 11,10 ?.,o	 :'aV t
W ...
tJ	 n IN61NLLh11,11.	 111AULl .1'

F	
,.y

Implies 15 expected errors in STS4

v

..	 _	 _	 _	 .._..F...	 _	 __	 . _^._ ,.-	 ..	 a	 _	 ^^.,

t

I

IV84 23148

Projecting Manpower to Attain
Quality

u	 E

Y

t
i9

d

r_
by

Kyle Y. Rone +!

j
s

f

b
3

i

a

I

International Business Machines Corporation
Federal Systems Division

: Houston, Texas

f
i

rr	 s...
C

K. Rone
IF IBM
s 1 of 55

r_
w

i

i
t

1q

1

. p

Abstract

In these days of ,soaring software costs it becomes increasingly important
to properly manage a software development project. One element of the
management task is the projection and tracking of manpower required to
perform the task. In addition, since the total cost of the task is
directly related to the initial quality built into the software, it
becomes a necessity to project the development manpower in a way to!
attain that quality. The purpose of this paper, then, is to describe an
approach to projecting and tracking manpower with quality in mind.

The basic approach is to begin with a current manpower model which
accurately describes thecost of developing a usable element of software.
Then, based on the assumption that improving quality does not cost more
over the entire life cycle,; the current model is modified to reflect
greater expenditure on elements of work which are known to improve
initial quality. This requires a reduction in the cost of other elements
since an increase in quality does not costmore. The obvious elements
to reduce are those directly affected by quality. The final result of
this type of analysis is the development of a manpower model designed to
generate quality 'software;

Tne resulting model is userul as a projection tool but must be validated
in order to be used as an on-going software cost engineering tool. A
procedure is developed to facilitate the tracking of model projections 	 ?
and actual data to allow the model to be tuned. Finally, since the
model must be used in an environment of overlapping development activities
on _a progression of software elements in development and maintenance, a

r
manpower allocation model is developed for use in a steady state development/.
maintenance enviornment.

f.

C.

h.'

!4 j

U^

r, 9

c!

K. Rone
IBM

Sk	 2 of 55

V	 ..

Table of Contents

o	 Introduction

o	 The Cost of Ignoring Initial Quality

o The Current Manpower Model

o Development of a Manpower Model Based on Quality ti
tl

-	 Data Collection
-	 DR Analysis
-	 DR Prevention

t -	 Modifying the Current Manpower Mode
-	 Model Change Justification
-	 Savings Due to Fewer DR's

`- -	 Savings Due to Rephasing Skills
-	 A Generalized Quality Mode

r° 3
i

o Extension to a Manpower Allocation Model

o Buffer Management

o Model Tracking

o Model Sensitivities

o Summary
i

P

1	 !

^
##k
S

i

u_

t

K. Rone
IBM -'
3 of 55

_
r	._

l	 j

Introduction

In these days of soaring software costs it becomes increasingly important +
to properly manage a software development project. 	 One element of the
management task is the projection and tracking of manpower required to
perform the task.	 In addition, since the total cost of the task is
directly related to the initial quality built into the software, it
becomes a necessity to project the development manpower in a way to t;
attain that quality. The purpose of this paper, then, is to describe an
approach to projecting and tracking manpower with quality in mind.

1

The basic approach is to begin with a current manpower model which
accurately describes the cost of developing a usable element of software. }
Then, based on the assumption that improving quality does not cost more
over the entire life cycle, the current 'model is modified to reflect
greater expenditure on elements of work which are known to improve
initial quality.	 This requires a reduction in the cost of other elements
since an increase in quality does not cost more. 	 The obvious elements

• to reduce are those directly affected by quality. 	 The final result of j
this type of analysis is the development of a manpower model designed to

a
generate quality software.

The resulting model is useful as a projection tool but must be validated
,. in order to be used as an on-going software cost engineering tool. 	 A

procedure is developed to facilitate the tracking of model projections,
and actual data to allow the model to be tuned. 	 Finally, since the }
model must be used in an environment of overlapping development activities
on a progression of software elements in development and maintenance, a
manpower allocation model is developed for use in a steady state development
maintenance environment,

e

K: Rone
IBM
4ofSS

\.I

r

The Cost of Ignoring Initial Quality

r,Q.
+a

In the past software projects have generated initial software relying on
the usual network of functional, subsystem and system tests to find the
"bugs" prior to system delivery. This is a questionable approach,
however, when the overall cost of the finished (debugged) system is
considered. As Figure 1 shows, software development is a pyramiding or
stair-stepping group of functions each of which, when begun, continues
until the project is complete. Errors found early in development when
only the programmer is involved are essentially "free". That is, they
can be absorbed in the normal work flow at a minimum cost. Once the
code is placed on the master system, however, an error must be
documented by a di.screpancey report (DR) which must be eventually closed
by all elements of the project. And so it goes, the later in the life
cycle that a software error is discovered the more elements of the
project are involved in the software and themore work must be done to
correct the error. This naturally costs more. The result is that shown
generically in Figure 1 and can be summarized as: The later in the
software development cycle that an error is found, the more it costs.

The obvious conclusion is that steps should be taken to find errors
early in the development process to minimize cost. The first step in
this process is to define the positive actions required and to plan the
life cycle and project appropriate manpower to accomplish those actions.

00

a5C)
0

'oc 0
4-0

A, him

FLIGH

RECONFIGUI

LEVEL 7 TEST

FIELD SITES
if

T&O, FIELD SUPPORT
COST OF
DR FIXES - LEVEL 6 TEST

STANDARDS/IPV STUDIES

LEVEL 3/4 TEST

CM/DM

BUILD & INTEGRATION

DEVELOPMENT

q

'The Current Manpower Model

As mentioned in the introduction, the basic approach requires the use or
generation of a manpower model which reflects the current software
development environment. The complete development of the model used is
described in Reference 1, however, to aid in this discussion a brief
summary is included here. The development of the model was initiated by
delineating all project costs with the following information:

•	 Type cost: direct change request (CR) cost/technical and
project support costs.

•	 organization: software development project organization.
•	 Function: purpose of the cost.
•	 Drivers: factors affecting the cost.
•	 Estimation methodology: how the item is estimated.

These project costs were placed into categories and then reordered -by
_ those categories.	 The categories used were as follows:

file
0	 Category	 I:	 direct CR cost 'I
o	 Category	 II:	 development/verification technical support
o-	 Category III:	 preprocessors

= o	 Category	 IV:	 management and common support
o	 Category	 V:	 project release/schedule/reconfiguration
o	 Category	 VI:	 maintenance
o	 Category VII:	 project independent costs

Using the first five categories (ignoring maintenance and project independent
costs for the moment) and examining Release 19 of the Shuttle onboard
Primary Avionics Software System (PASS) we can express the cost of that
release with the percent model shown in Figure 2. r

rn
S
F

t.

4

r z

a

IS

K Rorie s

IBM

IF 7 of 55
r

R19 Manmonths

197	 16
173	 14

	

13	 1

	

26	 2

	

9	 1

	

27	 2

19 2
8 1

14 1
139 11
38 3

OO
30 3 -v

O^
135 11 0

70 5

r

dQ 't7
140 11 > 0100

C
7

1218 100

k

g CATEGORY AREA FUNCTION

I DEV. Direct CR Est.
VERIF. Direct CR Est.

LI DEV. Requirements Analysis (R.A.)
Level 3 Test (L3)
Systems Analysis (SA)

' Systems Architecture (SAr)

II VERIF. Studies and Audits (ST/AU)
Common Function Tests (CF)
Systems Measurement (S Meas)
Level 7 Test (L7)

' Level 6 >DR Support

^, III DEV. Preprocessors (PREP)

IV DEV, VERIF, Management and Support (M&S)
I' P.O. Common Support (CS)

p^
1 V SFO Build and Integration (B&I)

Resource Management (RES MGT.)

r
Configuration Management/
Data Management (CM/DM)

^r

TOTALS

.^

°.. Figure 2. Percent Model for PASS Release 19
o
CD

r{

Ut

E

By examining these costs by category, it can be seen that a factor can be
developed which will relate the total eost through Category IV to the direct
costs contained in Category I.	 This is accomplished by the following
calculations:

DIRECT CR COSTS CRD	CATEGORY I

INDIRECT CR COSTS CRI CATEGORIES II IV

CID + CRI 	 +,,+,,,+IV
FACTOR

CR
D

370 + 293 + 30 + 205
FACTOR	 2.5

370

This factor can be used along with estimates of the direct CR costs to cal-
culate those costs driven by CR's. However, maintenance (Category VI) costs
are also driven by CR costs whereas Cate gories V and VII are not.

The cost to maintain a CR is given by the area of the difference between a
Rayleigh curve without the CR and one which includes it evaluated over the
maintenance timeframe. (Figure 3)

K-Rone
IBM
9 of 55

s

00

CO

Zi ia

A

Paw-

-1

rat %W

FACEE [S-1.

OF POOR QUALITY

This is calculated by taking the integral of the difference between the
two generalized equations of the curves and letting the time of the maximum
be one year consistent with current release plans. Doing this a formula for
maintenance is generated:

-a
Maintenance	 e 2 (K1-K2)

But the time of the maximum is one year which implies that a2 = 1/2. Thus:
-1/2

1 2

This means that maintenance costs are 60% of the total cost of developing
a CR. However, the maintenance timeframe does not begin for all project areas
at the time of the maximum. If the time of the maximum plus .3 years is
used for the beginning of the maintenance timeframe then the following
equations are derived:

Maintenance	
.56 (K1-K2)

Development	 .44 (K1-K2)

The factor necessary to add maintenance costs to the development cost is
given by:

Maintenance	 (.56 + .44) /.44	 2.25

Thus, we have developed a useable manpower model that can be expressed in
terms of categories of cost and associated manpower, a percent model based
on the categories and a generalized cost model shown in Figure 4 which uses
factors to arrive at total costs driven by direct CR costs.

K. Roiie
IBM
11 of 55

17,

Asa

"	 gb ^!Y`'^ rE^	 tf ^xm, -.'b;n^ra^t^-.: 	 ^,	 .^^ t	 -f''l.t^ `"^1,' a	 S`aa7R J,t.z r.,. ,-.	 . ,	 .sar	 r:.	 z sr n.; ..	 ^.: `.Rt4azetlt ,^b•,:Y!.9+/r iPo	 ?•+

ACTIVITY COST CATEGORY ALGORITHM

I II III IV	 V	 VI	 VII

DEVELOPMENT THROUGH X X X X 2.5 (CRDj
INITIAL SYSTEM

{	 j RELEASE

DEVELOPMENT AND X X X X	 X 2.25 (2.5(CRD)) = 5.6(CRD)

,t

MAINTENANCE

+ TOTAL PROJECT X X X X	 X	 X 	 X 5.6	 (CRD j + CAT. V + CAT. VII
r COST

r.

s.

.7

00.^ m

m 0
0
;a r

00
C 7D:D0r
I ro1ti

1

a

Figure 4. Generalized Cost Model

N x	 _=_ = SPACE SHUTTLE PROGRAMS
	 ' Page

Development of a Manpower Model Based on Quality

As with any modeling exercise, this one is initiated by collecting data.
All data is collected by releases of Shuttle onboard PASS. Since the data
for Release 19 is incomplete only the data for Releases 16 and 17/18 is used.

Data Collection

All the data gathered is from the Project Development Plan and data
bases which support the plan or from Project Office history files.
Requirements Change Request (CR) data is collected as the total
number by release. Discrepancy Report (DR) data reflects the total
number by release divided into those which require a code fix and
those which do not. It is important to note that the "No Fix"
category includes user notes, waivers, and other categories which have
the potential of becoming "Fix" DR's in the future. The largest
group in the "No Fix" category, however, are the DR's which are simply
not PASS problems but simulator, user or misinterpretation errors.
The manpower data is divided into base work prior to system delivery
and maintenance work after delivery. 	 Each of these categories is
subdivided into work performed by the developuicat and verification
groups.	 The data collected is then used to generate the data
comparison table presented as Figure 5. 	 The first four columns of
data in the table represent the data collected from the project.
The remaining five columns show relationships derived from the
ratios of the data elements.

K. Rone
IBM
13 of 55

	
^	

.§	
a ^:^.14^^pi^.^^^+a^8tr,"=.,,.,,.,.r.^^ 	 ^/•^;^ TI .s-{^^^+sn:Fff.,i ^	 ..	 „.-yam	 r . 	_ 	

^	

.,...	 ^	 ^	 ,.

s

RII FASE/	 DEV	 NAINr	 DR/	 PM/	 IM'1/	 MABU/ DR/

AREA	 CRS	 m	 DRS	 m	 CR	 CR	 DR	 DEV	 H3 DEV

R-16

DEV	 -	 6228	 817	 -	 3.6	 .2	 .1

t,
+	 VEP.IF	 -	 3179	 618	 1.9	 .1	 .1	 -

FIX	 =	 -	 2371	 =	 1.4	 =	 --	 .4

NO FIX	 2289	 1.3	 -	 .4

COPAL	 1725	 9407	 4660	 1435	 2.7	 5.5	 .3	 .2	 .8

-R-17/18	 .0

0
DEV	 -	 1286	 381	 -	 1.6	 .2	 .2	 -	 0 Ss

VERIF	 -	 972	 -	 3	 -	 1.2	 0	 0	 -
,^	 c:

FIX	 951	 -	 1.2	 -	 -	 .7	 >' +-

NO FIX	 1449	 1.9	 -	 -	 1.1

TWAL	 782	 2258	 2400	 384	 3.1	 2.8	 .2	 .2_	 2.0

i	 Figure 5. Shuttle Onboard PASS Data Conparison Table

I	 .,

- -	
Page

SPACE SHUTTLE PROGRAMS

CD

o ^^

	

2	n.	 rz	 a	 e.' .	 .,.	 s. tee	 a	 z .>	 v	 .	 -	
...	+..wwa	 ..-	 w	 ..h s

n+1*,

a

DR Analysis

The next step in the process is to analyze the DR and maintenance

ii
n

data to generate the Average Cost of "Fix" and "No Fix" DR's.
Beginning with Release 16 data the initial action required is to
remove the technical support manpower from the maintenance manpower

A

by dividing by 2.25 (the technical support factor less the project
office).	 Then knowing that, on the average, five times as much
effort is spent on "Fix" DR's as "No Fix" DR's, the following j
equation can be written: ?I

^. 1435/2.25	 =	 2371 x + 2289 (x/5)

The solution of the equation renders the result that each "Fix" DR

k

cost 4.50 mandays total or 2.25 mandays for each of development and 3
verification.	 Performing the same analysis for Release 17/18,
using development maintenance only since verification maintenanceg	 P	 Y p'^
was not required, the equation yields 2.7 manda ys of development
effort for each DR. 	 Averaging these figures the following direct .I
impact values are derived:

o	 The direct impact of a DR which is fixed is:_

' -	 2.5 and FOR DEVELOPMENT

-
_

-	 2,.5 and FOR VERIFICATION
t

` o	 The direct impact of a DR which is not fixed is:
-	

t

-	 .5_md FOR DEVELOPMENT
r

.5 and FOR VERIFICATION

r
t

F +

1

a

K. Rone
IBM
15 of 55

t

RR

:

DR Prevention

In the Shuttle onboard PASS project DR's are written for a problem only
after the software causing the problem has been placed on the Master 	 '!
System. Once a DR is written, all areas of the project become involved
in its closure regardless of whether it is a problem or not. Hence,
there are two possibilities for reducing the number of DR's. The first
is to enhance the requirements analysis activities to give a reliable
point of coordination before the DR is written. This subject will not be
treated further in this study but will be the object of a later study.
The second possibility, and the main object of this study, is to enhance 	 i
the development process prior to the master system build. The two

a,	ways to accomplish this are to enhance requirements analysis activities
and design and code reviews early in the initial development cycle. Re-
quirements analysis should be enhanced to improve the quality of CR's
before implementation begins, shepherd CR's through the development
life cycle, help specify level 1 and 2 tests, review level -1 and 2	 t.
test results and support design and code reviews. Design and code
reviews could be improved by allowing more time for the reviews, improving
checklists and review documentation, providing for improved and dedi-
cated review moderators and to require wider involvement from functional
areas of the project,	 i

i

i
r

s

n
r	 ^	 ,

i^

K. Rone
IBM

IF	
16 of 55

u

Modifying the Current Manpower Model

The approach, then, to modifying the current manpower model is to consider
i;

which areas of the model should be increased for DR prevention, which
areas of cost will benefit from having fewer DR's to deal with and which i

areas contain the skills required to enhance early development. 	 These
-	 areas should be modified accordingly to create an incremental release
'	 model which assumes an enhanced early development and fewer DR's - in

other. words, a model which assumes and also assures quality. 	 Figure 6
depicts the process of modifying the current manpower model which is
reflected under the "Old %" column. 	 The modifications are listed under

`f	 the	 column.	 It should be noted that 3% is taken from each of u
Level 6 and 7 verification and redirected toward the early development

'	 activity.	 This results in no change to the overall project development t
•	 model.	 This is consistent with the introductory assumption that quality

t
{n	 }

does not cost more.	 The final two columns show the current and quality
manpower models in terms of Release 19 mannionths.

I.

y

1

5

k ^ 's

n

17 of 55	 ,

1.

i

R-19 NEW
CAT. AREA FUNCTION OLD % 7. NEW % EXAMPLE EXAMPLE t'

' I DEV. DIRECT EST. 16 .4(16)=+6 22 197 274 `7
VERIF. DIRECT EST. 14 14 173 173

1r

II DEV. RA 1 1 13 13
P L3 2 2 26 26

SA 1 1 9 9
SAr 2 2 27 27
DR - - 0 0 t

II VERIF. RA - - 0 0
ST/ AU 2 2 19 19
CF 1 1 8 8
S MEAS 1 1 14 14

,.

L7 11 -3 8 139 100
PRE CI DR's 3 -3 - 38_, 0

III DEV. PREP 3 3 30 30 a

k IV All M & S 11 11 135 135
CS, 6 6 70 70

V SFO B & I 11 11 140 140
RES MGT 8 8 100 100
CM/DM 7 7 80 80

f	 ^.

C

100 0 100 1218 1218

Figure ,6.	 Modifying the Current Manpower Model

i

r	 I

i

f

K. Bone
IBM
18 of 55

f.
ry

A	
.

• Model Change Justification
r:

r

The amount of manpower relocated in the model change is not arbitrarily
selected.	 The direct development manpower is increased by 40%.
Twenty percent is added to account for increased requirements
analysis.	 This figure is based on early Release 16 history when a
separate requirements analysis group was maintained in the development
organization.	 This reflects a return to heavy emphasis on requirements

• analysis as a front end process of the project.	 The remaining 20;0
is added to the direct development manpower to account for enhanced
design and code reviews. This figure is based on a comparison of

:. the old and new review processes in terms of increased elapsed time
of the reviews, broader involvement of the project in the reviews

fl
j

and increased documentation and tracking.

To account for the 40% increase in development a corresponding de- 3
`• crease must occur elsewhere since quality does not cost more.	 The

two areas selected to sustain the reduction are Level 6 DR support t

and Level 7 Test.	 Each of these reductions is examined individually.

i

a

j

s y

i 1

K ,

n

ti

ai

K. Rone
IBM
19 of 55

t
^1'"^- pWWC	 ""

20 of 55

t

'I

i'
^I
*I

j

t

N

Savings Due to Fewer DR's

Better initial quality should be reflected in the project as fewer
DR's during the development and verification process. The task
then is to quantify the projected savings. To do this the following

r

	

	 procedure is used. By examining Release 19 data it is noted that
there are 235 CR's included in the release. Based on the Release
16 and 17/18 DR/CR ratios it can be projected that there will be
705 DR's during the completion of the development life cycle. Of
these only 40% or 282 should be code changes. If we increase the
development budget to improve the initial quality of the software
going to each build, a decrease in DR's after the builds should be
expected. It should also be expected that not all DR's will be
eliminated. Selecting 50% of DR's as a target for elimination, a
projected savings can be calculated ass

(282 DR's)	 (.5) (2.5 and/DR)	 =	 18 man months

Including technical support (without the project office) a savings
of 41 man months can be projected in the verification area. This
amount alone justifies the reduction to the level 6 test function.
However, the development area will experience a similar 41 man
month decrease during the verification support time frame. This
means that our model is conservative. The goal is to reduce the DR
number by 50% but a 25% reduction will enable the development and
verification areas to "break even".

t

J

K
3

ti

Savings Due to Rephasing Skills

The skills necessary to enhance the requirements analysis task currently
reside in the level 7 test group in the verification organization. a
Rephasing these skills to the requirements analysis task must there-
fore be justified.	 In the current model the level 7 task took 11%
of the release manpower. 	 Examination of Release 17/18 data, however,
shows that of the 674 DR's found by verification, only 35 were found
by the level 7 test group.	 Of these, only 12 were significant flight
software problems.	 It appears obvious then that the recommended re-
phasing of skills would be not only feasible but desirable. 	 Three
percent of the release manpower would be adequate to perform the
requirements analysis task which would be reflected in fewer DR's u
reaching the master build.	 This would leave 8% to perform level 7 i
testing which could be performed in a more stable envicrnment due to
fewer DR's during the performance time frame.

The completion of this exercise concludes the justification of the
x

manpower movements to create the quality model. 	 The % model given
in Figure 6 can then be used to project manpower for Release 20 j
and beyond. i

f

F
c

,r

K. Roiie
IBM
21 of 55

2

A Generalized Quality Model
r

A % model alone does not completely satisfy the project need. Consequently,
the procedure used earlier in the paper to generate a generalized model
is used again with the quality model. By examining the costs
through category IV, the following calculations can be made:

DIRECT CR COSTS CRD CATEGORY I

INDIRECT CR COSTS	 CRI = CATEGORIES II - IV	 til

CRD + CRI _ I+II+III+IV
r-ArTOR =	 I

CRD	
L

FACTOR 447 + 216	 30 = 205	 2.0
447

i
i

Again this factor can be used to calculatethe development and verifi-
cation costs directly driven by CR's.

Once again maintenance, which is not included in this factor must be 	
l

considered. By using generalized equations for Rayleigh curves with
and without a CR the following equations are derived:

D

4

DEVELOPMENT	 .4 (Kl - K2)

MAINTENANCE	 6 (K1 - K2)	
e,

t	 ,

s
F	 i

x

K. Rone
IBM
22 of 55

t.
f,

t;

M

k

l
A "

But part of the maintenance time frame in the development area is
now devoted to verification support and maintenance begins at the
completion of the verification cycle. By separating the verification

' support from the maintenance as shown in Figure 7 the equations are
modified as follows:

1i

CAPABILITIES DEVELOPMENT = .4 (Kl - K2)
F

VERIFICATION SUPPORT	 = .1 (K1 - K2)

' MAINTENANCE DEVELOPMENT	 _ .5 (K1	 K2)
i

g
f

But the verification support contains someverification costs.	 Cor-
recting for this the equations become:

G {i

CAPABILITIES DEVELOPMENT .43 (Kl - Kq)

{I
r	 .

VERIFICATION SUPPORT	 = .07 (K1 - K2) y
€ ^ a

MAINTENANCE DEVELOPMENT	 = .5	 (Kl	 K2)

Thus the factors necessary to add verification support and maintenance
f

costs to the costs directly driven by CRs	 are:

VERIFICATION SUPPORT	 _ .43+.07 	 =	 1.15
.43

1 MAINTENANCE	 _ .5+.5	 =	 2.00 gr
.g

FHence, the generalized model presented in Figure 8 is complete.

i

i

,.;

K. Rone
IBM
23 of 55

F

ORIGINAL PAGE 13

OF POOR QUALITY	 ^

t^1 ^a^^,^IE^§^^^r ^sz-^n,^ z: r:.' . ` " ' " ^r ` ^^`^^,o
vt.^,^a R'snifi^T-=	 r	 .. , r	 a r	 _	 _	 ,	 n	 c	 ^	 j	 _	 tl	 :

ACTIVITY	 ---- COST CATEGORY ALGORITHM

I 11 111 IV V VI VI1

DEVELOPMENT AND

VERIFICATION ROWS
x-

x x x 2.0	 CCRD)

VERIFICATION
`

TOTAL	

SUPPORT 1.15(2.0(CRD))	 =.2.3(CRD)

ROPI' S

MAINTENANCE x x x X X

2.0(1.15(2.O(CRD)))=2.0(2.3(CRD))= 4

RUNOUTS AND
PROPOSALS x x x X x X x 4.6	 (CRD) + CAT.	 V+ CAT. VII

Figure 8. Generalized Quality Model

6 CRDA

'n 17

O Ẑ
0 r
c v
^I

sn

k^

i
Cl,

F

Finally, it should be noted that if better initial quality is intro- 	 t.

duced into the software system then the cost of maintenance should go
down. Again, the quality model is conservative since it did not take
this into account.	 As actuals are accrued, then the model can be +,
tuned to reflect those actuals.

^I

r

z.

i

h	 '

i

^

}

r	 .

r

i{

i'

rz i

.,
r

t

s

y

K . Rorie
IBM
26 of 55

^''

i

I
	

+R

+f

Exnension to a Manpower Allocation Model
	

^r

There comes a time in the life of most projects when they can no longer be
viewed as one Rayleigh curve but as one curve followed by a series of
smaller curves each of which represents a release. A generic graph of this
time frame is reflected in Figure 9. As a steady state, uniform set of
releases is reached the total manpower line tends to a steady state and
the maintenance line also tends to a steady state. Studies using groups
of curves in this fashion have shown that the steady state maintenance level
reached is 25% of the total steady state level. Based on the study conclu-
sion the first allocation of manpower should be:

DEVELOPMENT	 75%

MAINTENANCE	 25%

To allocate below this major division, a % model base on organization
rather than category is required. Performing this reorganization the
quality % model by organization is given in Figure 10.

F

00

0-
0

60
C

G)

:1 -M

X TOTAL DEVELOPMENT
TOTAL MAINTENANrF

MAN MONTHS
PER
MONTH

TIME

Figure 9. Manpower in the Incremental Release Timeframe

00 SPACE SHUTTLE PROGRAMS

0

ORIGINAL pAGE: Gq
OF POOR QUAE UTY

t.

ORG. CAT. FUNCTION NEW " NEW EXAMPLE

DEV. I DEV.	 DIRECT EST. 22	 (3) 274

41

DEV. I - VERIF.	 DIRECT EST. 14 173

DEV. II VERIF. ST/AU 2 19
DEV. II VERIF. CF 1 8 {

DEV.	 ' III PREP 3 30

. DEV. IV M & S (PART) 8 98
50 602

SE II RA 1 13
W	 4

.
SE II L3 2 26
SE II SA 1 9
SE II SAr 2 27

:r SE II SMEAS 1 14
SE II L7 8 100

q° SE IV M_& S	 (PART) 3 37
i

18 226

P.O. IV CS 6 706 70

o.
4

OTHER V B &	 I 11 140
OTHER V RES MGMT 8 100

G OTHER V CM/DM 7 80
26 320

a
100	 100 1218	 1218 r

Figure 10.	 Quality % Model by Organization

b

K. Bone

IBM

29 of 55

fa

6

Since in a incremental release time frame all activities of the project
are progressing simultaneously, a time slice allocation can be made to
each activity. The allocation to development activities is shown in
Figure 11. The legend of this figure is the same as the % model with the
following exceptions. Software development is divided into capabilities
development (CD) which is ongoing development of the master system and
verification support (VS) which handles error correction during the veri-
fication time frame. Half of the verification support is set aside as a
buffer to handle late, mandatory CR's required by near term flights.
This allows the capabilities development to be scheduled and worked without
interruption. It should be noted that a comparable amount of buffer
must be set aside for verification.

Including maintenance and development into one allocation model the model
depicted in Figure 12 is _attained:

S	 1

c

5

n

1

r

_	 t

K. Rone
IBM
30 of 55

y.
i

0I5	 0I6	 0I7

OI4	 OIS	 0I6

0I4	 0I5	 0I6

i

9
c/
,o

u,x

P

RA

L7

5
o^
,0

i

1

L3, SA,
SAR

7%

1w

i

ORIGINAL PAGE 19
OF POOR (Q UALITY

18°^

^^ 	 I

9v
i^

2 0.7 NN

4

Y

{

CS 6/	 I

q.,	
B& I

CM /DM,`
	

261,
RES MGT.-

CD
{

I7	 14'

vs

1

15

;x
a
f

L7
	

7 f

j

g

	 RA
	

4%	
s7

C
	

7

L3, SA,
SAR
	 5,3	

E

1

4 0/CS
	

,o

t	 Cf•1/DM,
B&I,

19 00

RES MGT.

Y=	 MAINT
	

25`0

L6

i
,i

Buffer Management
a

Since the idea of CR buffers in the verification support and verification

p.

`!

areas has been introduced, some attention must be paid to the management
of those buffers.	 From Figure 10 it can be seen that the factor which ^!

e.
represents organizational technical support (overhead) should be:

.
CRD + CRDI	 19 + 8DEVELOPMENT FACTOR	 =	 =	 = 1.4

CRD	
19

CRV + CRVI__ 14 + 6VERIFICATION FACTOR =	 = 1.4
CRV	 14

The buffer management factor then is 1.4 for both development and verification. N

Theround rules for buffer management can now be stated as:b	 g

o	 Begin with defined CR buffers in the verification support and
G L6 verification allocations.

o	 Adjust the buffers to account for the final build in each
' operational increment which is left open for DR corrections.,

4
o	 On a continuing basis account for change by:

-	 Adjusting both buffers by the direct CR estimates marked
x ° up by the buffer management factor.

-	 Adjusting for actuals overruns and underruns if required.I!,

' q	
aj

n	 ,

s

ET . ^

1
f
k

r

i

mot..
is	 ...

t ..

o
F'

K., Ronc'
IBM
33 of 55

4 ^

Fr	

t

{t	 I

I

Model Tracking	 d.

An initial model is good only for a first projection and allocation of
manpower. In order to make the model useable on a continuing basis,
actual data relating to the projected data should be tracked and used to
validate and/or modify the model. For this model two types of data
tracking are required. The first requirement is that the quality projected 	 1
is attained. The most appropriate measure of quality appears to be DR's
per manmonth of development. The DR count is the number of DR's which 	 i
require fires written against the builds contained in the increment or
release. The manpower number is the total manpower expended during
capabilities development and verification support. This measurement is
initiated at the end of the first capabilities development phase and
terminates at CI for a given release. As shown in Figure 13 an alert

tline has been established from Release 17/18 experience. If the measurement
violates the alert line then an effort will be made to determine if the
initial quality is not what, had been projected. The maximum alert line
is 75% of the Release 17/18 Fix DR per manmonth of development number
found in Figure 5. A graph of this measurement is reviewed in the
project and with the customer on a periodic basis. The second type of
data tracking required is that expenditures by major function must be
examined on a release basis and the data used to tune the model. To
assist in this task a form has been developed to allow for the recording
of schedule, manpower projections, buffer management, actuals and quality
tracking data for a iven rele	 Th'f	 A 4 F'g	 ase.	 is	 or is presente	 in	 fim	 gure 14.
Since it contains scheduling, tracking, and completion data it could be
useful as a release management tool as well as a software cost engineering
tool.

c

w^ '	 6

i

s	 t

-

K. Rone
IBM
34 of 55

ORIGINAL PAGE 19
OF POOR QUALITY,

i

i.^

^
u

/ ^	 t

ALERT LINE

dop

FIX DR'S / MM

r	 ,

c // z

3

1c __

a^,

2	 3	 4	 5	 i	 6	 7	 B	 9	 Cl

I
t

1
CAPABILITIES
DEVELOPMENT MONTHS	 L6 BASE	 REGfiESSION
COMPLETE, PLAN	 PLAN

BEGIN L6 COMPLETE COMPLETE

{

e

J't

F
1

it
_a

i

t,

r Figure 13.	 Software Quality Tracking;

i -

{

s

f
t I

f

`

K. Rone
.- IBM

35 of 55

ORIGINAL PAGE I3
OF POOR QUALITY

SCHEDULES;

CR	
01	 OfCUTOFF	
RELEASE	 RELEASE

01	 i	 OI

VS & L6 D1

L6 02,

PROJECTIONS

PROJECTION DATE	 CR BASELINE DATE

NO, OF CR'S	 DIRECT CR ESTIMATE	 PROJECTED DR'S

MANPOWER ALLOCATION

FUNCTION MM I	 °' FUNCTION MM % FUNCTION MM

CO L7 C5
VS RA B&I, CM/DM
L6 L3, SA, SAR RES MGT

TOTAL TOTAL TOTAL

t

TOTAL RELEASE ^ _

BUFFER IN VS	 BUFFER IN L6.	 BUFFER CUTOFF
f

BUFFER MANAGEMENT
.DATE	 CR'S	 COST BUFFER DATE	 CR'S	 COST BUFFER DATE	 CR'S	 .COST BUFFER

e

CR'S: ABSORBED -	 BUFFER USED 	 SUFFER REMAINING	 .-

ACTUALS	
f

.ACTUALS DATE .. 	 CR BASELINE DATE	 DR BASELINE DATE

NO. OF CR'S	 -	 DIRECT CR EST,	 -	 -	 NO, OF DR'S	 `.

	

MANPOWER ACTUALSI 	 i

FUNCTION MM %. FUNCTION MM % -	 FUNCTION MM

_. CD L7. `.CS
VS RA 0&I,CMIDM
L6 L3. SA, SAR RES MGT.

TOTAL TOTAL TOTAL

I	 TOTAL RELEASE	 DELTA, FROM PROJECTION Ii

-	
QUALITY a
TRACKING

y z	 BEGIN	 L6	 1	 2	 -	 3	 4	 5:—	 6	 7	 B 9:
It	 ,.

Figure 14,	 Release Tracking Form

i

K. Rone
IBM

M 36 of 55

0

i

fi.

Model Sensitivities

' It is important to point out that the generalized model is sensitive to
the direct CR estimates.	 The accuracy of this basic building block of Y	 +,
most cost models is important to any project which has a significant amount
of ongoing change.	 Also, since the quality model emphasises early develop -
ment, ;he increased impact due to enhanced design and code reviews, re-
quirements analysis and pre-build testing need to be included in the direct y
CR costs.	 The model is also sensitive to the number and cost of the DR's'
generated during development and test of a release. 	 The tracking of re-

_- lease quality will keep a proper project focus on this sensitivity. u

4
3

a

.:. s

K. Rone
IBM
37 of 55 a

4

Summary
	 }

4
1

Since the total cost of a software development project is directly related
to the initial quality built into the software, it becomes a necessity to
project manpower to attain that quality. The basic approach takes a current
manpower model and, by reflecting greater expenditure on elements which
are known to improve initial quality, generates a new manpower model de-
signed to generatequality software.	 Since the model must be used in an
ongoing incremental release environment:, an allocation model is developed
to allocate manpower across a project's organization. -Finally, a procedure
is developed to allow the tracking of data for model validation and modi-
fication.

r

r

i
^s

Y^

7

4

j

K. -r2one
IBM
38 of 55

T

1

ORIGINAL PAGE IS
OF POOR QUALITY

PROJECTING MANPOWER
TO ATTAIN QUALITY

i a

t

t
RO

O^t

s

SPACE SHUTTLE r

C

PROGRAMS
^

3

Cam. I

i	 K.	 Y.	 RONE
}

4 FEDERAL SYSTEMS DIVISION
p

HOUSTON, TEXAS x

s }

K . Federal Systems Division
1322 Space Park Drive, Houston 77058

j

1
j

c

r

K. -Rone
IBM
40 of 55

i

'E

t

V

FLIGHT SUPPORT

RECONFIGURATION

LEVEL 7 TEST
_	

FIELD SITES

T&O, FIELD SUPPORT

'COST OF
DR FIXES _	 LEVEL —6 TEST

i
^. STANDARDS/IPV STUDIES

LEVEL 3/4 TEST 00

CM/DM ZO0
l^

:u

BUILD & INTEGRATION 00
^

D
—DEVELOPMENT r' m

TIME IN LIFE CYCLE

I	 s

CD

u

00
E5

Q

to

N^m
D

^'° poy

C-0

1

..a a a _ .^.... r , t 	 .. ^	 i 3"'	 S)[)siF^T	m	 5	 ra.	 r	 e	 .-..

4
i
	11	 `	

`1	

[

w	 M	 ^:

ORIGINAL PAGE E9

OF POOR QUALITY
p.
jI

PURPOS E

j

x

• THE INCREMENTAL RELEASE PLAN IS A PROJECT PLANNING
METHODOLOGY WHICH MILL RESULT IN HIGHER QUALITY
FLIGHT SOFTWARE RELEASES:

—	 SMALLER, MORE FREQUENT DEVELOPMENT INCREMENTS

—	 MORE COMPREHENSIVE TESTING PRIOR TO FIELD
DELIVERY

a • MANPOWER IS BEING REPHASED ON THE PROJECT TO PLACE MORE
EMPHASIS ON REQUIREMENTS ANALYSIS, DESIGN/CODE REVIEWS
AND PRE—BUILD TEST

• THE PURPOSE OF THIS STUDY IS TO MODIFY THE CURRENT MAN -
POWER MODEL TO REFLECT THESE CHANGES AND PROVIDE A USABLE

r ONGOING MODEL FOR CLASS I WORK IN THE FUTURE' ^	
t

i

}

w
T

i

T

* m	 = SPACE SHUTTLE PROGRAMS
F

K. Aone
IBM
43 of 55

G

t

F	

ORIGINAL PAGE LIE

OF POOR QUALITY

APPROACH

a

	

	 START WITH CURRENT MA NPOWER '=EL

- 1W DEVELOPMENT ESTIMATE

- ROM = 2.25(2.5(1.8(1 MW)1)	 -	 5.6(1.8(1 4M)
= 10.1 MW

t

'« a	 BEGINNING WITH THE BASIC ASSUMPTION THAT IMPROVING QUALITY
DOES NOT COST'MORE, WE DEVELOP :A MODEL WHICH

-	 ADDS 408 TO DEVELOPMENT FOR BETTER REQUIREMENTS
ANALYSIS AND BETTER DESIGN AND CODE REVIEWS

r
-	 THIS IS EQUIVALENT TO ADDING 1 DAY FOR R.A. AND

1 DAY FOR REVIEWS

-	 THIS WILL RESULT IN FEWER DRs_SO EVEN THOUGH THE j
DEVELOPMENT COST IS UP THE TOTAL COST IS THE SAME y

-	 THE DEVELOPMENT COST WOULD BE 1.4 MW WHILE THE
DIRECT L6 COST IS THE SAME (.8) i

-	 ROM =	 2.0	 (1.15(2.0(2.2 MW))) 	 =	 4•.6	 (2.2 MW)	 =	 10.1 MW

E •	 THIS IS A CONSERVATIVE APPROACH FOR THE FIRST MODEL ?WHICH
h CAN BE MODIFIED BASED ON ACTUAL DATA i

•	 THIS MODEL IS INTENDED FOR USE WHEN THE INCREMENTAL RELEASE
STRATEGY REACHES STEADY STATE ?

1

S

y

r

SPACE SHUTTLE PROGRAMS 	 —78—, s

k

' K. Rone'

44 of 55w

'	r

t.

SWVHJ0ud gnimsIDWS= _____	_o

f

Eq
T:
F

f0'ZV	Z,'8'Z1'E78£Oh7Z85ZZZ8L	'Itl,LOL
LL CY

6`1
-6771--	Xl3 ON

! 0
L' Z'l-IS6--	XI3

CL

LL-0	0Z' 1-£ZL6-	ADMA

0'0
Z	Z'9'I-18£-98ZiA3Qf

Z'Z7'	£'£"ZCZS£hi0997106€MI	`IYLOl

68ZZ--	XI3 OX

?'1-IL£Z
_

-	XI3

_Z.	1'0'1819-SIL1-	-1213,1

Z.	Z.£'I-L18-C81Z
_	

-A311

91-H

'A'AU 194A;•i(1	21(1111.)2C11414".210I414 '1;1 	VAIN

/2LQ/.LNIVIJ	/1414/IJIJ/illlLN1V1JA21(1/.IbVa'I.11

_.areaffimemmrrma,.is.:ni.sa`-elY-?.^w+tv2.3c.^:^FtcrYr^l:vma.YC4*arru.Y:"...table:^n,::,m:.w.arnry.ue.rrsca.w-n..-m-Y....w:.^..

A -	
s

i

7

w

{

R16 AND R17/18 DR ANALYSIS

•	 The maintenance manpower includes technical support for both
Development and Verification.

•	 Taking that support out of R16 we get 1435/2.25 = 638mm

•	 Knowing that we spend, on the average, 5 times as much effort on fix
#IDRs as no fix DRs we can write:
T

638 mm	 =	 2371X+2289(X.5)
y

3190	 =	 11855X+2289X
3190	 =	 14144X

X	 =	 .23mm
4.50md

or	 2.25md/Fix DR for each of Development and
Verification

a

•	 Performing the same ,analysis for R17/1118 (for Development only since
Verification maintenance 0 since CI is so close to flight) we get:

2.66 and/Fix DR Development
,

x

s •	 If we average these numbers we arrive at:

s

The direct impact of a DR which is fixed is:
z

-	 2:5 and for Development
-	 2.5 and for Verification

The direct impact of ,a DR which is not fixed is:
i

.5 and for Development

i
.5 and for Verification

h 4

r ^

K.'Rone
IBM
46 of 55 a

OF POOR QUALITV,

°•

OR PREVENTION

• URS ARE WRITTEN FOR A PROBLEM ONLY AFTER THE-SOMIARE
CAUSING THE PROBLEM HAS BEEN PLACED ON THE MASTER SYSTEM

• ONCk A DR IS WRITTEN, ALL AREAS OF THE PROJECT BECOME
,. INVOLVED IN ITS CLOSURE REGARDLESS OF WHETHER IT IS A

PROBLEM OR NOT

• HENCE, THERE ARE TWO POSSIBILITIES FOR REDUCING THE NUMER
OF DRS:

ENHANCE THE REQUIREMENTS ANALYSIS ACTIVITY
r-
c _. TO GIVE A POINT OF COORDINATION BEFORE THE

OR IS WRITTEN

ENHANCE THE DEVELOPME NT PROCESS PRIOR TO THE
BUILD FOR THE MASTER SYSTEM

«	 ENHANCE REQUIREMENTS :ANALYSIS

t -	 IMPROVE QUALITY OF CR BEFORE
IMPLEMENTATION BEGINS`

-	 COORDINATE CRs

-	 SPECIFY L1 /L2 TESTS

` -	 REVIEW TEST RESULTS

-	 SUPPORT O&C REVIEWS

•	 ENHANCE DESIGN & CODE REVIE;IS
I

SPEND MORE TIME ON REVIEW
i

--	 IMPROVE_ C.HECKLISTS, DOCUMEN-
TATION

- -	 IMPROVED /DEDICATED MODERATORS

l

a.-

-	 UNDER INVOLVEMENT ON PROJECT

a== _ SPACE SHUTTLE PROGRAMS	 ^-

ORIGINAL PAGE 1
OF POOR QUALITY

R-19 NEW
CAT, AREA FUNCTION	 OLD %	 A %	 NEW % EXAMPLE EXAMPLE

I DEV. DIRE,,$ LT	 16	 .4(16)-+6	 22 197 274
VERI=. 0 7 REC7 EST.	 14	 14 173 173

II DEV. RA	 1	 1 13 13 t
L3	 2	 2 26 26
SA	 1	 1 9 9
SAr	 2	 2 27 27
DR	 -	 - 0 0 i

^;
II VERIF. RA	 -	 - 0 0

R
^.

ST/AV	 2	 2 19 19
CF	 1	 1 8 8 n

MEAS
11L7 	 -3	 8 139 100

a	

+

PRE CI DR's	 3	 -3	 - 38 0

III OEV. PREP	 3	 3 30 30

ta IV All M & S	 11	 11 135 135
CS	 6	 6 70 70

# V SFO B & I	 11	 _	 11 140 140 j
RES MGT	 8	 8 100 100

r
CM/DM	 7	 7 80 80

r	 A^

1

-

J

-
}

T

i

^,	 I 100--	 0	 100 1218 1218 M
tt

sa	 SPACE SHUTTLE PROGRAMS 83-

K. Rone
IBM
48 of 55

ORIGINAL PAGE €S
OF POOR QUALIFY

^	 R

OC
^y

0/c
r

I

ORIC-INAL F*
OF POOR QUALITY

MANPOWER ALLOCATION MODEL

BASED ZN THE STUDY CONICLUSION, THE FIRST ALLOCATION OF

MANPOWER SHOULD BE:

•	 IN ORDER TO ALLOCATE BELOW THIS MAJOR DIVISION, A % MODEL

BASED ON THE NEW ORGANIZATION IS R6-qUIRED

ye
y

SPACE SHUTTLE PROGRAMS
—q4—

K. Rone
IBM
51 of 55

Ff
4
i

OPWINAL	 IS

NEW ORGANIZATION % MODEL

ORG CAT. FUNCTION NEW % NEW EXAMPLE

DEV. I DEV. DIRECT EST. 22 (3) 274

DEV, I VERIF. DIRECT EST. 14 173

DEV. II VERIF. ST /AU 2 19
E,

DEV. II VERIF. CF 1 8 ,{

DEV. III PREP 3 30

e
DEV. IV M & S (PART) 8_ 98

:`

-Or

SE II RA 1 13 j
r SE II L3 2 26

SE 1I SA 1 9

SE II SAr 2 27

SE II SMEAS 1 14

SE II L7_ 8 100
r.

SE IV M & S (PART) 3 37

?

_

P.O. IV CS 6 70

f

OTHER V B & 1 11 140

OTHER V RES MGMT 8 100

OTHER V CM/OM 7_ 80_

I

r.
100 =6 1218 12=8

4}4

=2 j-w 	 SPACE SHUTTLE PROGRAMS
a5 t

w

r-

E•`

1	 .. K. Rone
--	 ;

IBM

52 of 55

g

t

A
1

1

OF PQ.pR ^'U'ALIT-Y

-fl
,[^;

TOTAL MANPOWER ,ALLOC?.TION MODEL

CD OI5 016 Oil 140

r
E

VS 014 -T 0I5 0I6 7%

c

L6 014 015 016 15'0

k^

L7 014 AND 015 70

s

RA 0I5/0I4 016/0L5 017/0I6 4%

5

° L3, SA,	 I 0I5/0I4 I	 016/0I5 0I7/0I6	 I 5.

SAR

Mr. CS 4%

TM.' B&I,
CM/OM,. 19°L

RES MGT.

y

r
MAINT 25%

100".

96-
SPACE SHUTTLE PROGRAMS

Y

N

_	 .' <.._	
v._ .+1 ^ 	 ads:•	^.1--i ^ "

-
°:r.	}:-.., ^-.	 •r

11
I

SOFTWARE QUALITY TRACKING

• MOST APPROPRIATE MEASURE IS DR'S PER MAN MONTH
BASE-MANPOWER NUMBE R ► .>'TOTAL EXPENDED DURING

CAPABILITIES DEVELOPiviL54T AND CAPABILITIES REFINEMENT
-DR COUNT WILL BETHE DR'S WHICH REOUIRE FIXES WRITTEN

n	 AGAINST THE BUILDS CONTAINED IN THE INCREMENT
pt

r INITIATE MEASUREMENT AT THE END OF FIRST CAPABILITIES
DEVELOPMENT PHASE, TERMINATE AT Cl

•, ESTABLISH "ALERT" LINE FROM RIB/119 EXPERIENCE

• REVIEW PERIODICALLY WITH SSD

RELEASE STATUS MEETING

•

R

k

ALERT LINE

FIX DR'S /MM /

f

{	 or

'	

t	
1	 1	 2	 3	 4	 ;	 5	 ;	 6	 7	 8	 9

p	 7p	 CAPABILITIES	 e
DEVELOPMENT	 MONTHS	 L6 BASE REGRESSION-o

O COMPLETE.	 PLAN	 PLAN
co	 BEGIN 1.6	 COMPLETE COMPLETE

U
JJ

^^ rr

.^r
F'

isl̂ee^,

ai f

CI

ORIGINALAL	 114

OF POOR QUACK

4	 !

^ n

i,
f '

r

1	 YY

	 ^,

G
r

r	
a

RELEASE NO.	 01'S	 RELEASE MGR,

SCHEDULES

CA	 OI	 OICUTOFF	
RELEASE	 RELEASE

GI __	 CI`

L6 02

PROJECTIONS

PROJEOTION DATE	 CA BASELINE DATE

NO. OF CR'S	 DIRECT CA ESTIMATE	 PROJECTED OR'S

MANPOWER ALLOCATION

r
-p

T

I

I

3

.•	
TOTAL RELEASE a.

y,	 BUFFER IN VS	 SUFFER IN L6	 BUFFER CUTOFF

SUFFER MANAGEMENT	 -	 -

c

FUNCTION MM	 I	 o FUNCTION MM 'o	 I FUNCTION	 MM	 I	 "o

CO -	 L CS
VS RA. B& I. CM'DM
L6 L7, SA, SAR A ES MGT

TOTAL ^.
	

TOTAL I TOTAL

' 	 CR'S ABSORBED. BUFFER USED BUFFER REMAINING	 7

ACTUAL$
-

ACTUALS . DATE CA BASELINE DATE OR BASELINE. DATE	 !

L,	 NO. OF CR'S DIRECT CA EST.. NO. OF DR'S	 F t^
' MANPOWER ACTUAL$ _	 I

r
FUNCTION	 MM	 o	 ::°UNCTION.	 MM	 'e	 FUNCTION	 MM I 'L

	

co	 L7	 cs
k	 VS	 -	 RA

	

778 CM/OM
LIS 	 lJ, SA, SAq	 S MGT	 +	 1.

1v

W84 23149

An Approach To Software Baseline Generation

tt

1

By:

Jorge Luis'Romeu

LIT ReseResearch Institute
,.r

199 Liberty Plaza

Rome, New York 13440
R

F

r	 x

F

zx^-

J. Romeu
IITRI
1 of 27 4

l	 y

r UM	 7,

^ V

1.0 INTRODUCTION

This paper summarizes a current Data & Analysis Center for Software (DACS)

effort to develop software baselines. This baseline effort is an on-going

activity; that is, the baselines are meant to be updated as new software data

becomes available. The information presented and processed has been organized to

make periodic updating a much simpler task.

A baseline, for this effort, will consist of an estimation of any

characteristic of a software project that may be helpful to a developer, manager,

or monitor to manage, control, or influence a software product. The objective of

these baselints is to provide a tool for aiding software developers, in their

daily work. Baselines have been synthesized from an empirical dataset provided

by the Software Engineering Laboratory at NASA Goddard Space rlight Center

k MZ^A/ r)tL	 Inese data nave	 Deen	 selecteQ	 Decause Lne daLa collection effort

developed at the NASA/SEL is the most thorough and complete available to us. 	 The

characteristics of the NASA/SEL environment^may not 	 be common	 to most or	 all

users.	 Therefore,	 the	 user	 is	 advised	 to	 calibrate	 our	 baselines	 with	 his

professional	 judgement and exII-erience to provide for the possible differences

between his and the NASA/SEL environments.

The baseline effort, defined as an on-going activity, 	 has been broken down

into several--phases,. 	 The motive for	 the	 division	 of	 the	 baseline	 effort	 into

successive phases	 is	 two	 fold.	 The first motive	 is	 the,desire to provide	 the

practitioner with the. most current information. 	 Waiting unti I al -1 variables have

been analyzed to release the package incurs the risk of providing very outdated

baselines.	 Second, and more important for the future development of this effort

the	 plan	 for	 roducing	 the	 baselines	 may	 be	 subject	 to	 modifications.	 Thep

practitioner	 may	 require	 different/additional	 information	 or	 the	 same

information presented in another form.	 Therefore, any comments and suggestions

to	 adapt,	 modify or	 change	 the	 present	 baselines	 in	 order	 to	 improve	 their

practical use is not only welcome but is considered to be an integral part of

^Z
	 this effort.

J. Rorneu
IITRI
2 of 27

Re-

2.0 METHODOLOGY

The importance of breaking down software projects into smaller and more

homogeneous subgroups was an insight gained from previous analysis tasks.

Project heterogeneity was caused by the presence of very different factors which

were not possible to isolate in different software projects. A solution was

provided by breaking down the set of software projects into more homogeneous 	 n

subgroups.	 X`

We have selected the current version (February 1983) of the NASA/SEL dataset

as the empirical base from which to develop software baselines.	 This set_

contains the latest version of the comprehensive and thorough data collection	 m

effort performed by the NASA/SEL staff. It exhibits two interesting features.

at both the project and module or component levels.First, the data . was collected	 ,

j	 Second, these components are classified according to their function (See Table

I).	 This classification will allow us to characterize each component by the

function it performs within the project. These module functions also provide the

scheme for breaking the data into homogeneous subgroups.	 #'

TABLE 1: DESCRIPTION OF THE MODULE/COMPONENT FUNCTIONS ANALYZED

DURING THE PRESENT EFFORT

NASA/SEL Encoding Dictionary

Module/Component
Code	 _Name	 Function

i

	

1	 Include	 Include Statements

	

2	 Control	 Control Statements (JCL, Overlay)

	

3	 System	 System Statements (ALC)

	

_4	 Gess	 Graphics Statements (LESS)

	

5	 Data	 Data Statements

	

7	 CDR	 FORTRAN Control/Driver Module	 f

	

8	 C COMP	 FORTRAN Control/Computational Statements]

	

9	 OTRANS	 FORTRAN Data Transfer Module	 }^

	

10	 I0	 FORTRAN Input/Output Module

	

17	 IOCDR	 FORTRAN Control/Driver Module with I/O 	 -i

	18	 I.00COMP	 FORTRAN Control/Computational Module W

	

19	 IODTRANS	 FORTRAN Data Transfer Module with I/O

^ 4

It is useful to perform a simultaneous analysis as a triple function of data

analysis (baseline generation), data quality assurance, and research where a

large dataset such as the NASA/SEL is being studied. The first, baseline

generation, is the primary objective of this effort. The baselines are designed

to statist ically address the following question:

What does a module or component of a given function look like? In other
iwords, how can I describe a "typical", module that performs a igiven

function in terms of i V" ,; silze, effort, runs necessar y to develOD this
module,	 origin,	 complex ,;	and	 type	 of	 specification?	 How does	 this
situation	 vary,	 if	 any,	 from	 the	 moment	 this	 module	 is	 given	 to	 a
programmer until the moment this module is ready (i.e., from the NEW to
the COMPLETED stage)?

The	 second,	 quality	 assurance,	 is	 inherent	 to	 statistical	 analysis.	 A

statistician	 carefully	 logs	 in	 his	 quality	 assurance	 notebook	 all	 observed

inconsistencies during the process of data reduction and analysis.	 The analysis

of these isolated inconsistencies provide insight to the process being studied
and/or improvements to the data collection process. 	 These insights often prove
useful for both the data collector and the analyst in future efforts. 	 Finally,

the	 research	 function	 in	 the	 baseline	 generation	 follows	 a	 sequence	 of

activities:

(1)	 look at large numbers of software components or modules grouped by common
function	 to'	 try	 to	 isolate	 the	 similarities	 and	 differences	 stemming
fl rom this grouping

(2) try to determine, given that we are dealing,with empirical data, whether
these similar and different behavioral patterns are arising by chance

(3)	 if (2) is not true, to determine if there is sufficient statistical proof
to	 state	 that	 these	 patterns	 are	 an	 inherent	 characteristic	 of	 these
groupings of modules/co-m-po-nents

This type of information is useful to both the theoretical software engineering
researcher and active practitioner, the software developer. 	 It may be possible
in	 future	 efforts	 to	 uncover	 a	 correlation	 that enables	 the	 practitioner	 to

obtain one element 	 (module/component)	 from another or to monitor one element

while fixing	 the other,	 once	 it can be established that a relationship exists

between two integral elements of the dataset,

J. Rorneu
IITRI
4 of 27

In addition, certain relationships are known to hold from theory or

experience. If it is found_ that they also hold in the data, it provides an

indicator of the quality of them information; if they don't, it may either mean

that the quality of the data is suspect or that there may be some special

characteristics about this situation that deserve further investigation. This	 '?

indicator becomes a useful working tool. This is the framework in which the

present research effort has been conducted. Baseline results should follow this 	 ^,I

line of thought. .t

We have worked exclusively with the variables shown in Table LI in the

current phase of the baselines task. e	 E

y

TABLE IL: DATA DEFINITI.ON FOR VARIABLES USED IN PHASE I
t

r

' Variable Formata

1. Project - code I(2)
2. Component - code I(3)
3. Module-- function I(2)h
4. System/subsystem I(2)

h 5. Origin- I(2)
6. Precision of specifications I(2)
7. Complexity A(2)
8. Num-comp-called I(2)
9. Num-calling-components I(2)

10. Primary-language I(2)
11. % of Primary I(3) r

`. 12. Secondary-',,language I(2) {

F 13. % of Secondary I(3)
14. Total	 - runs I(4)
15. Total	 - time I(4)

I

16. Total - effort I(4)
17. Total-source-for-components I(8)

".' 18. Development status A(2)

a' There were several reasons for selecting from all of the possible variables

k--
existing	 in the	 NASA/SEL dataset these 18 variables. The main thrust of the k

current phase of the baselines task is the characterization of project compon-ents

r, by some type of useful grouping.	 Project code combined with component code (1

and	 2)	 provides	 identification	 for	 each	 module/component,	 and	 the	 module	 1

r function	 (3)	 provides the	 required	 subgrouping	 to produce more	 homogeneous

subsets.	 The variable System/subsystem (4) was not used in	 this	 phase of the
k

J. Romeu
IITRI`
5 of 27

T_.

baselines	 task.	 The	 qualitative	 variables	 origin	 (5),	 precision	 of	 the

specifications	 (b),	 and	 perceived	 complexity 	(7),	 were	 selected	 to	 assess

whether the subjective appraisal of a module/component by a programmer primarily

reflects	 the	 module's	 characteristics	 or	 rather	 the	 programmer's

characteristics.	 The number of components called (8) and the number of calling

3 components	 (9)	 were	 selected	 as	 an	 indicator	 of	 the	 module	 complexity	 with

respect to its	 interface within the whole system structure.
i j

Data on the variables	 (8)	 and	 (9) was not available throughout the entire

twelve module functions defined in Table I in quantities large enough to support

analysis.	 These variables,	 therefore, were analyzed only in the last four and E

most numerous, module function groups.

x, It was observed that each component was written in a single language and that

only	 wo languages, FORTRANy	 g,	 g	 ,	 and-Assembler, were utilized throughout the dataset. #^

The	 variables	 total	 runs	 (14),	 total	 time	 (15),	 total	 effort	 (16)	 and	 total

source for components (17) refer to computer runs, time spent by a programmer in

computer work,	 programming effort and module size respectively. 	 These last 4

variables will provide	 quantitative	 characterization baselines	 in	 subsequent
M

phases of this effort.

The variable development status (18) provides two qualitative classes: 	 New

and Completed.	 This variable provided a key analysis tool since it is possible

r to compare the state of the module, represented by all of the above variables,

G before and after its implementation. 	 This type of analysis will yield a valuable r

s management	 tool	 since	 it will	 allow	 assessing	 the	 accuracy of the estimates

provided by the _„programmers at the beginning of their tasks. k

^ r

Preliminary	 results	 are	 presented	 in	 Tables	 IIIA,	 IIIB,	 IVA,	 and	 IVB	 as

examples of the type of output obtained from these analyses by module functions.

n

_ R

v J. Romeu
IITRI
6 of 27

-	 __.	 _::.	 _._	 .__^ _	 -.. :.......^I -r. .!^s-'.1:.=.i^..^ w	 .._-z.:_ Ems._-...•e -^ 	 ...^::	 ..^ t i..	 ^^,a.x!-s,.,a.«..:, ^

MIR

tu
I

i

r

TABLE IIIA:	 CORRELATION SIZES/SIGNIFICANCES {

I ° NEW (PRE-DEVELOPMENT ESTIMATES)

MODULE SIZE VS EFFORT VS TIME VS

FUNCTION EFFORT TIME RUNS	 TIME RUNS, RUNS

Include 26/*** 25/* 25/NS	 25/** 25/** 25/**

Control N/A N/A N/A	 N/A N/A N/A

y, System 10/NS 9/NS 8/NS	 9/* 8/NS ^7/NS

Gess 85/*** 84/*** I84/***	 88/*** 88/*** 88/***

Data 135/*** 108/*** 1114/***	 112/*** 118/*** 1'12/***
F

CDR 48/*** 46/*** 46/***	 47/*** 47/** 46/'*•*
t

C COMP 28/** 22/** 26/NS	 24/*** 28/** 24/***

DTRANS 53/** 40/NS 43J**	 42/*** 45/* 42/**

I0 ***129/119/****** ***	 ***119/	 111/ 121/ *** fill/ ***

IOCOR- 255/*** 206/*** 212/***	 209/*** 215/*** 208/***

IOCCOMP 189/*** 160/*** 163/***	 163/*** 166/*** 163/***
IODTRANS 128/ *** 101/ *** ***	 ***103/	 105/ 107/*** 105/***

F Legend: N/A sufficient data not available to support test
NS non-significant
* significant at level a	 0.05_ i

' ** significant at revel a	 0.01
** significant at level a	 0.001

Footnote to TableIIIA

This table provides in each cell the number of pairs used in the
estimation of the	 T correlation	 coefficient	 and	 the significance

level	 attained by this coefficient.	 For example,	 "26/***"	 in	 theypT.,
first	 cell, indicates	 that	 the	 T	 correlation	 coefficient	 was {

computed for 26 "Ln_clude" modules and resul ts were that effort and
size were correlated at the .001 level of significance. The tab 1e'is

useful for _I

i)- directing the analyst in successive phases of this effort

ii) evaluating the quality of the data

iii) proposing new and assessing old research questions
s

l

J. RoniClI
IITRI
7 of 27

'v

a .

7 n" r ,

c
f.

r
a;

TABLE III8: CORRELATION SIZES/SIGNIFICANCES

fi COMPLETE (ACTUAL)

MODULE
FUNCTION EFFORT

SIZE VS
TIME

EFFORT VS
RUNS	 TIME	 RUNS

TIME VS
RUNS

Include 25/NS 25/* 25/*,:	 251***	 25/*** 25/*** i
Control N/A N/A N/A	 N/A	 N/A N/A
System 7/NS N/A N/A	 N/A	 N/A

N A

Gess 73/*** 31/** 32/**	 31/	 32/ 31/***
t

Data 142/*** 86/*** 87/***	 86/**	 87/*** 86/***
r

CDR 51/*** 46/* 46/**	 46/***	 46/*** 46/***
C COMP 36/*** 27/NS 27/*	 271*	 271** 'Z71** *
DTRANS 60/NS 39 NS/ 3g /**	 39/***	 39/*** 39/***

3

IO 119/*** 84/*** 86/***	 84/***	 86/' 84/***
IOCOR 254/*** 197/*** 199/***	 198/***	 2001*** 2011***
IOCCOMP 180/*** 135/*** 137/***	 136/***	 138/*** 136/***
IODTRANS 124/** 89/*** 92/**	 89/***	 92/*** 89/***

ti

e
Legend:, N/A sufficient data not available to support test

a

NS non-significant x

significant at level a = 0.05** significant at	 level	 a = 0..01 j	 =.
** significant at 	 level	 a = 0.001

.Footnote to Table III
a
f

. This table provides in each sell the number of pairs used in the
estimation	 of	 the	 T	 correlation	 coefficient	 and

}

_ thelevel	 attained	 by	 this	 coefficient.	 The	 interpretation
si gn ificance

of	 this
I

table is the same as for Table'IIIA.	 The table	 is useful for

t) directing the analyst in successive phases of this	 effort''

ii) evaluating the quality of the data

iii`) proposing new and assessing old research questions

J. Ronieu k
IITRI
8 of 27

- w. „ .r. zI ^+	 ^i'r•	 I..Jti, .pia rya 	 .	 _ :.,.	 ^_i,. s

f

t i

TABLE IVA:	 CONTINGENCY TABLE RESULTS

COMPLEXITY VS CODE ORIGIN

MODULE FUNCTION	 NEW	 COMPLETE

.! Include_	 N/A	 N/A

Control	 N/A	 N/A

System	 **	 NS
a

Data	 NS	 NS }

CDR	 NS	 NS

C COMP	 NS	 NS

DTRANS	 NS	 NS ri

IO	 ***	 NS

IOCDR	 NS	 * i

P IOCCOMP	 NS	 NS

IODTRANS	 NS	 NS

Legend:	 N/A	 'sufficient data not available to support test
NS	 non significant at level a = 0.05 -'; * significant at level a = 0.05
**	 significant at	 level (x = 0.01

', ***	 significant at level a = 0.001

Footnote to Table IVA

The degree of association between th(two qualitative
^ T

variables	 complexity	 and	 code	 origin	 was -established

through	 contingency	 tables	 at	 the	 NEW	 and	 COMPLETED

V^ development phases.	 The results are	 tabulated	 here and

k may provide

i)	 an evaluation of the quality of the data ^ t
;J

ii)	 new research questions
F

J. Romeu
IITRI a
9 of 27

G

o < V-1 jp-

TABLE IVB: CONTINGENCY TABLE RESULTS

COMPLEXITY VS PRECISION OF SPECIFICATION

MODULE FUNCTION	 NEW COMPLETE

Include	 N/A N/A

Control	 N/A N/A 1

w' System	 * ***

Data	 *** ***

CDR	 NS NS f:
w^

C COMP	 * NS
t

DTRANS	 ** NS i

I0	 *** ***
'I

IOCDR	 ** ***

IOCCOMP	 NS

IODTRANS	 NS ***
z _

,
o.i ,

Legend:	 N/A	 "sufficient data not available to support test R

NS	 non-significant at	 level a = 0.05
< *'	 significant	 at 	 level a = 0.05 t

**	 significant at level a = 0.01
** significant atlevel a = 0.001 r

Footnote. to Table	 IVB

The degree of association between the two qualitative

variables	 complexity	 and	 code	 origin was	 established

through	 contingency	 tables	 at	 the NEW	 and	 COMPLETED

-development phases.	 The results	 are tabulated here and

may provide: !

i)	 an evaluation of the quality of the data_i
ii)	 new research questions

J. Romeu
IITRI
10 of 27

r

_ 4

CONCLUSIONS'

k The baselines effort is an on-going activity.	 It has barely started and some

elementary baselines will be generated to include a subset of the variables that

characterize	 a'module	 from a	 functional	 perspective.	 The next phase	 in this

effort will contemplate completing this characterization process by looking at

(other variables and exploiting 	 some of	 the functional	 relations	 that have been

n !explored and established during the present phase.
i

F

a

r It wi 11	 become necessary to begin 	 a study of the performance measures of tl

these same modules after the characterization process is sufficiently explored.
v

This activity will 	 include the study of productivity and the process of changes

- (both error correction	 and	 enhancements). ` 	 Eventually,	 this will	 lead	 to	 the
study	 of	 different	 methodologies	 and	 other	 production	 factors	 and	 their

T
I

,influence on the behavior of the above-mentioned performance measures and other

measures suggested by thi s research.
c

sm, ACKNOWLEDGEMENT
^ l

" r

The author thanks Frank McGarry l(NASA/SEL) for furnishing the data to perform
i

the present analyses and Rocco Iuorno 	 (IITRI)	 and John'Palaimo	 (RADC/COEE)	 for }

their help in defining the Software Engineering baseline needs.
1

{

f

4

n

F

- J. Rometi
IITRI

1I of 27
1

Y

Y ^S

{

ti

d

3	

t
p

4

i

f	 R

Bibliography

'k	 A - Sof tware Eng i neer i ng

1. Thayer et al., Software Reliability Study, RADC-TR-76-238, August 1976.

2. Evaluation of Management Measures of Software Development, Vols. l & 2, SEL-

82-001, September 1982.

3. Dekker, G.J., Wilt and F.J. Bosch, Functional Requirements for a Software

Cost Database, National Aerospace Laboratory, The Netherlands, 1982.

4. Wallston, C.E., and C.P. Felix, "A Method of Programming Measurement and

r,. Estimation," IBM Journal,	 16(1),	 1977,	 pp 54-73.

5. Byrne, W.E., A Military Standard for Software related Technical Data, MITRE
)

Corporation, MTR-8556, January 1982.

6. Basili,	 V., and	 D.	 M,	 Weiss_,	 A Methodology for Collecting Valid Software

Engineering Data, University of Maryland,	 Technical Report__TR-1235.

7. McCall,	 J.A., and M.T. Matsumoto, Software Quality Metrics, September 1979.

Final	 Report for the Metrics Enchancement Study, contract No.	 F30602-78-C-

0216.
3

8. McCall,	 J., et.	 al.,	 Factors	 in Software Quality, RADC-TR-77-369, Vols.-I,.

II,	 and	 III, November 1977. }

^- 9. Iuorno, R., et al., "The DACS Software Engineering Data Collection Package",

DACS draft report, _June 1983.̀

-	 i

n
 j

s

J. Romeu ;.

-- IITRI
12 of 27

B- Statistic
r

'a BOX73 Box, G.E.P.and G.C. Tiao, Bavesian Inference in Statistical Analyses,_ ,

s> Addison	 Wesley,	 1973,	 Chapter	 3:	 "Effects	 of	 Non-Normality	 on

t inferences about a population mean with Generalization."

KEND70 Kendall,	 M.G.,	 Rank	 Correlation Methods,	 Griffin,	 London	 1970	 (4th

edition)

LEHM75 Lehman,	 E.L.,	 Non-Parametrics	 Statistical	 Methods	 BasEd	 on	 Ranks,

,. Holden Dey, 1975. Q
,

NEL79 Nelson,	 Richard,	 "Software	 Data	 Collection	 and	 Analysis,"	 Draft,

Report, DACS,	 1979.
w

ROHA76 Rohatgi, V.K., An Introduction to Probability Theory and Mathematical

Statistics,	 Wiley,	 1976.

ROME82 Romeu,	 J.L.,	 and C. -Turner,	 "Parametric vs Non-Parametric Techniques

in	 the Analysis of Software 	 Productivity Data,"	 Draft	 DACS	 Report,

s

December 1982.

ROME83b Romeu, J.L., and S.A. Gloss-Soler, "Some Measurement Problems Detected

in the Analysis of Software Productivity Data and	 Their	 Statistical

Consequences," Proceedings of COMPSAC	 183.

SEN71 Puri,	 M.L.,	 and	 P.K.	 Sen,	 Non-Parametric	 Methods	 in	 Multivariate

Analysis,	 Wiley,	 1971.

SIEG56. Siegel,	 S.,	 Non-Parametric	 Statistics	 for	 the	 Behavioral	 Sciences,

ry McGraw-Hill,	 1956.

_ J. Romeu 3y_
c-
rte► IITRI

13 of 27

n^

!

!^	 1S ^^h i 4"iF.jY r: •	4^]SZ'+.	 ^	 7^	 .ri' ^'.. 1T'^3:)if^Ix r 3	
-TT:..

An estimation of any characteristic of a- software
F

project that may he helpful to the developer, manager
or monitor to manage, control or exert any conscious

^r

'S

y

,,.	 ^n ^t'',;^^^8,r,^q^^;^n{*+^i ^a nso y}..-	 ,-„__ f..^^	 .,^^,^: `.^;,,^ia; 	 ..	 .,	 .^«_	 ^:i n;a^,....i.^rr	 .t€r;•^.°s+	 :r	 *e	 =n+=D ^a :	. e	 =^ .	 ^.,^

a	 •

a

SOFTWARE PROJECT
t

i

WHAT

a _.

i

r	 E
HOW WELL 440mmommill000 HOW MUCH

^19^ #" S •'r7'ii^ ^g^l la $ ';^3;	

kff'^r±,... r	 ^ ^,r^f	 +•''y}" n T:,+1], r . ,	 ..	 . r r.	 -,-.F"r vw:^ , ,57	 `.'^#,' ^q	 NP^,+I	 ,r	 ..	 ri . T	 `M'	 .. 7	
,..	

F M	 M
.	 t	 ..! ...'-,r^

le,

DESCRIPTION OF THE MODULE/COMPONENT FUNCTIONS ANALYZED

A! DURING THE PRESENT EFFORT
^^ r

1
NASA/SEL ENCODING DICTIONARY

y

MODULE/COMPONENT

CODE NAME FUNCTION

1 INCLUDE INCLUDE STATEMENTS

Z CONTROL CONTROL STATEMENTS (JCL, OVERLAY)

3 SYSTEM SYSTEM STATEMENTS (ALC)

4 GESS GRAPHICS STATEMENTS (GESS)
5 DATA DATA STATEMENTS

7 CDR FORTRAN CONTROL/DRIVER MODULE

8 C COMP FORTRAN CONTROL/COMPUTATIONAL STATEMENTS

9' DTRANS FORTRAN DATA TRANSFER MODULE a.

f ^ 10 I o FORTRAN INPUT/OUTPUT MODULE

;I
17 IOCDR FORTRAN CONTROL/DRI`3ER MODULE WITH I/O

18 IOCCOMF FORTRAN CONTROL/COMPUTATIONAL MODULE W

° m 0 19 IODTRANS FORTRAN DATA TRANSFER MODULE WITH L/0
3 ^

P•.	 .,fit,i w.„»,p ?.fi.,.'....	 .:»'.',.k .,	 .. .:.A,::		 :.r:.•.'*rc..	 ..,,	 a'.	 x.at: ..,	 r4..:^...i...., any«,, 	 .. z=, m	 rmi...ea.swvruse:=^k k	 ..	 •..	 .•	 :	 R .	 ^iii	 1,	 ,.'3Y.,	 .k,X.,.t..,..	,t 3.. _.	 .,..	 ..,...	^r..-...w ,r ..	 ::. k.q,

.."^.	 wa rk!

"	 ""	 1^	 u 'F^'Si94 ^i jR^#i,	 1P 	 .-iix — 	a 	 ..	 ,,.^	 ...^^,.^^tr	 rv['S+; •,.^..,	 r z	 +.	 ax . r nR R::'iya 	 1rsu • nr^ , A .9e

----DATA DEFINITION	 -----

VARIABLE"

1. PROJECT - CODE

2. COMPONENT - CODE

3, MODULE - FU'NCTION

4. SYSTEM/SUBSYSTEM

5, ORIGIN

6, PRECISION OF SPEC
'

/. COMPLEkITY

8, NUM-COMP-CALLED

g . NUM-CALLING-COMP

10. PRIMARY-LANG

11, % OF PRIMARY

12, SECONDARY-LANGI

13. % OF SECONDAR',

r 14. TOTAL - RUNS

r' 15, TOTAL - TIME

16. TOTAL - EFFORT

17, TOTAL-SOURCE-FOR-COMP

18, DEVELOPMENT STATUS

oQ'71 ;
.0 a
o-
-© j-

c ^^2a i

1,1 $	 ^fi t} t r 3	 P F	 ,-
c
y	

yg.
..-^.._	 . 	

\'	
^'t	 ,• ^k	 IY.^	 ;e 3	 '	

..	 •': I	 _	 _,..	 t	 {	 +	 ^- w
	

3	 r}^	 rr.		
}..	

..- .r .^:	 t... _..	
; ^,

{

w

CORRELATION OBJECTIVES
^I

1 J Directing t-he analyst in successive phases

2) Evaluating theg_	 quality of the data a

3) Exp loring new and assessing old research
questions

c^
y

N	 ^
^1	 fL

r

1s

i

f

' Y

CORRELATION SIZES/SIGNIFICANCES

NEW

It	 MODULE	
SIZE VS$E	 FUNCTION	 EFFORT EFFORT VS

I	
TIME	 .RUNS	 TIME	 RUNS	

TIME
RUNS

INCLUDE	 26/***25/*	 25/NS	 25/**	 25/'*	 25/**CONTROL N/A	 N/A	 N/A	 NIA N/A	 N/A
SYSTEM	 10fNS	 9/NS	 8/NS	 *

<<	 GESS	 85/*«*	 84/***	 84/**«	 ..

r;	
9/	 8/NS	 7/NS

DATA	 135/.**	 108/**	 114/...	 112/..«	 1181...

88/	 88/'*•

8/	 112/***{	 CDR	 48/***	 46/***	 46/'**
	

47/**«
	 47/*'	 46/*`	 o

C COMP	 28'/**	 22/*`	 26/NS	 24/**.
	

28/****
DTRANS	

24/	 o z
S3 "	 40/NS	 43/**"	 42/***	 45/*	 42/*'	 o

'	 10	 129/,**
	

110/***
	

119,(..«
	

111/.«.
	

1211*..
	

111/**'	 ,o r
IOCDR	 255/***
	

206/***	 212/"'*	 209/***	 ..	 c

I000OMP	 189/***	 160/	 163/	 163/	 166/	 163/
**.	 .*«	 /...	

215/*..*	 208/**

.*.
!	 IODTRANS	 128/•«* 101/.*,

	
103/.**
	

105/***	 1071**.	 105/.*.

i

I J

d

f

CORRELATION SIZES/SIGNIFICANCES

COMPLETE'

'
MODULE

FUNCTION EFFORT
SIZE VS
TIME EFFORT VS TIMERUNS TIME RUNS

VS
RUNS

INCLUDE 25/NS 25/* 25/**

25/** 25/•
**

25/*..
,i CONTROL N/A N/A N/A N/A Ir/A N/A

SYSTEM A/DNS N/A N/A N/A WA N/A
GESS 731*** 31/** 32/*• 31/**' 32/«.* 31/•••
DATA 142/*** 86/*** 871*** 86/** 871*** 86/***
CDR 51/*** 46/" 46/*• 46/*.* 46/*.* 46/*.*

ran

C COMP 36/*** 27/NS 271* 271* 271•• 271*** 4 2!DTRANS 60/NS 39/NS 39/** 39/ *** 39/**' 39/••* :0 r
Io 119/"*" 84/*** 86/*** 84/*** 86/*** 84/**.

10

IOCDR

IOCCOMP

254/*"*

**

197/*** 199/*.* 198/*** 200/*** 201/***

k

130/. 135/*** 137/*** 136/*** 138/**. 136/***
IODTRANS 124/** 89/*** 92/** 89/•*. 92/*** 89%***

o ^o

N	 ^
J

r

e

:..,.	 ®^fi	 9 a AF,((M'i`j^5tq s^"'a,= ^,p ,s•.^ .,.. 	 .. .^....F	 -,7^^{; ^,.r.	 +	 11:n	
^.^.	 ^.	-'	 '^y	

.. :,^	 _ :;	

_.... `

COMPLEXITYVS CODE ORIGIN!

MODULE FUNCTION NEW COMPLETE

INCLUDE N/A N/A

CONTROL N/A N/A

i SYSTEM* NS

DATA NS NS

: CDR NS NS

:j C COMP NS NS

DTRANS [iS NS

10 NS

IOCDR NS

t; IOCCOMP NS NS

a IODTRANS NS NS

O

^, J	 CD
`i
E

4

i'-_.`	 ... ^:.c;^.....^ r-•—.;.sa+:^.a:+^,..ia:m......_^......,...,.::,^,.« ^...,,,.. ,...-»..:.	 -.».,.._,......_^..	 -.«,.,m,,.,.,...-.•.-^...e...-,-.^. ^._	 .^..,x-	 .	 Y...	 ^	 ,.,._.:xzr ^..	-	 _..._._.a:^:..-..	 .,... _	 ^	 x^arr^x	 ,1„

V
t

.Am

,...	 ;	 rg4+^i^s^7^^^^l^f^i^^i 	 ^`8`	 ..re„	 ;:	 :-m.	 -:^" t'JA\s	 i.•-`y'l a,	 .xnrF	 t' cu3 ^.:	 .. n.	 ..	 ^xfc.	 N.l4.T"'.'^F" ` 1,74't _"Srr^^,`;1^.
	 .^	 's. .n'M1a:"^.,	

rp	
. .y{	 c ^	 ^,.

:
a...^^	 _ "'°.;"°'.'

a

G

COMPLEXITY VS,	 PRECISION OF SPEC

MODULE FUNCTION. NEW COMPLETE

IN'CLUD'E N/A N/A

CONTROL NSA NSA

SYSTEM NS

DATA NS NS

CDR NS NSr

C COMP NS NS

DTRANS IJS NS

IO
NS «;

i' IOCDR NS
1

' IOCCOMP NS NS

IODTRANS NS NS

N	
CDJ

f
^

'^.A'^	 }	 ;g^aNrY+#1p	 'lF^a	 , a»nu.?^nr..l•. ,x,:.	 ,:	 r	 t`	 ".!

CONCLUSIONS

L

BASELINE METHODOLOGY
f

2) INITIAL BASELINES

'' 3 FURTHER W ORK/RESEARCH{ _	
1

"	 d

d,

1

•r

h

r,

:r r

OF POOR

i

PEOPLE WHO ATTRNnED THE WORKSHOP 0" MOVEMBER 30, 1983
'. 1^^^^^w^wwlw•www^Mw^w^w w^l y w^wl.^^^1 ww^^w^ grww^^w•^ww^^^ a '

NA m E n^rgnTl7. ATI^t+!
j

YALE: UMIVERSTTYO-FL g om In

'• A8nAN!(JY,0 gF,,9FARrH & DATA SYSIFM9,TN(" >.

A;;TI T +^,P S1^rYi-A	 ^qTA
^

AY rKc,r, CnR00QA^'Inhl,Y
AAnSr,T r•	 .^,

aaSIT.X IV t?,NTVF'RS I T Y	 017 	 mA0YT,A%T» ?

ar T',i,, j D^:INCFI Copps

Y
^Irv^;;► n,*^ rr•S•'	 DT'.t'r•	 ;)w	 eG0I(71 f,T !TR'r

 >z r t	 ^ J'n	 c	 i± r Q	 r	 f	 r 1	 R: !

Atr IS,n r~':'r+sQAT.	 ['l^FC'^!?TC
r nol"l	 o " G TNr+RAPT.

;

q 10", { R rtASA / G St
r,

ctRi C<,w'a,D A7ycyy;;	 ,; l 3

^.an

f, j T o j

'-t. ,^ rly l);i L:^1. N(_!'F r^.	 TJ ^^^At	 .'.+tOT? r^.^Ar!r 	 yn};^. ^' .t

_
a ► T -tih Kr, R, ,;! T+!'T'	 r,Uj ; AC	 .I TC

11ijT 'r;,E r	 Ssr. 4

T,J Tr • 	 t	 ^ !^'F' ^ 	'	 Ats * I r'=JT,,f!TRTOr

1

}

r^ r!

r	 ,

S n

F .ALT+Y.

A t	 ^^	 2	 A	 C	 K	 t	 ti	 1
-,. 1

n^K,r T','F	 ^'1	 >n;^e l'T	 °

P=- 	
^'_.

r`jta'riT5	 t^ 'i••	 !)?r'?'^	 +,r,	 Q^;pl!`tfT	 ^}•1^''6.

A-1

ORI4:i.ltAL PAGE t9
Of POOR QUALITY

nctw ^c'K., ...^^..

ni r^^C'JgTr^ •t•C.	 ') CPT .) c	 ^(= ^lrll/•'T'e'as'
rijCC`1r^s,^c^ C^r+•n^

r)urt,;t,gc ^ c 'N!♦ r•"SCt .n^^: tlt,	 ,nr Twe!^^	 c^, o 1 T(' ^^
^'a7. [C H r^1 ART •ar	 a: R c^tt^^i	 CT`4o`^'tiTln:'
t► I)^'4^I^,J oF.gG"R^N	 'prtjA:.r•^r:	 .;cpTT^t^tr

V ijTA r"r^C^
•' MSq /^^^^ r

Fjr^9i!^^D ;VACc'	 ESCnPF SC j F N`.-
cgr;A	 IN Tn't	 r:)c^nrQl'T^^A+
^,,rj^^e •,"^CQ/GS^r
IT^tZTr'o t ^ ^^;`t^)LX

p i v ^jvJ^A g+;Otjn+)r^^	 r•.^o^nRpgTite^
t^^T ^n^t!1 rt t i) "1gr1	 I UOJP+ '{E j'^,)^I
r! K C^ 1T F V	 ♦ T.4'.	 natt CT+^M
I.gat ^: L T r

:^ t•C.e•
r•h7 JT.^s+^^„ n. ^{Q P 	 ,,;	 4 G0 jr U T t•+sac

r: ^ ^	 T .y ^; S . v ' j
't' ^ '^	 r' . I p v'^ D r+ 'r T j^ *'

r; j T,: ^kT^ T tl^C.^'<'Y	 IJ T> >:'Q	 TEST	 6	 r; vA T .	 (`^'Q

S I T ^.^; ^.^.^.

r: ')^;, r q nF-t^r	 .js	 T,m"%	 '" ; 40:	 K.	 nPl7 k	 RF:3r47)CN

FA?oIr	 ^t^o nFc^r^	 .)a' , AI r A	 pp c:pKrH
e''2rYrL T IT F. LL T+ DC 	 rMr

r!^rj,tOR ^.1MCN/Ucrr
• Tor	 ItcG 8Re"H 	 Z'''Sr(TIITF_

r:.^ T ^ ^, C ZG,tr)TX

u 4	 • Tye ^.. T 4'T' f-'R , , t! L 	 RFV	 ;	 1F	 SL- R"T^F

u ^r.i,^^^o ^n '+^ c ^'l:°	 GU	 ;J s'	 T.tt;	 r!,:,nrgtlS
u'.^T,l,^yeYr A

'. ► AS:,	 4cScA0Cv Cr"TFR
#-- F"'r,o.T,	 CO c q,,,'Aow.	 Cn4*'j0ATin v

Q.j'!,,S L"R	 A "S"/ntKT../KTA

tJKR,.C,C A /GSFf
T U ir L 4 U "r' t T.T.T•°.T.
1VI L'S f% 	 (.j '!yAAIC.Rwr

^tW.,00SWI	 7 r:i7t{t11)(:nC	 -Oqp.
loluu .Cryl p T q1^• ,a	 np'rA
.tO t o ,Q7 +' f r, -C cl r F	 :'+ c	 C	 V 'ri,, A rlr	 jjr. t;cur'p•tt."tT

.70 0 .%`d .L ". -.r•

PW	 A-2

£-d

D 'd i1	7 ' 1 ^ 1CS

X711

^ ^ P̂ 1 :'^ ^ r 1 u

a.^1ntJ.a>	;:^ySll3	'.ti'11b'	.S.7JtIU

ti ,^ b' ' l l^ a'O w	,^ i^	A ,L I ^ N ;^ 111 ^•; u^ ' :• Y , n C+,r

yE'v'7	"'v l.arlu^u?ia	y'^i"" 'l'+

s,,^+YU,rVWs	Aw	1►aamui	'j4`Vu7yh;i",^c •u	►ti
J•^^^I tl	N c.H' %,US a:!n

' a ' y' {^u' Y h^'1t^uVt+

•d'D'Jv^^^aAr.

SJlsoVLl Av	1'1a	^.:^;^6'^+►'
ne.1,M

,^W^tylySt^2	4^?^V:̂a'aa	r,Ii.{'u j. r9-AIor,

C.7ulA4^1	^^^,^JSAy	d^74.'J.^ar`'li
SJTr,0liU,,.i	9	1alSi1t1"l	.uC'	fllz:3u^!L^'^;"t1lr►

aSJ	a	u'̂i::y:^;	a^Y ^o^'^	thll^i.A•''i lbn►.+ clt ran
}	.0	A'.ur1U' .10.AT.

.a..	ov.#a"^'4a►6..Ir+

1	^^rJ	'' uT,^lllr"UYO	.L ^'^'1'• ^ ^♦!.i•. "A.^A

•y•y•',^,'vr,,.^^^,^

ad^{Ia16A^	t	.yrl:J^`•nTC1	"d^lY'̂^ ^'C[''!+L('tt^n

r

urd	.4	rla	'At' A"'r ^Ar'JJr.

4.4^^i/t/^hit^^	.̂:1 4yw

".a"d .S5Taa1^'ru'ay^}w

:d J f A ri a S	'^ ►►'' .^ A ,^ 19	l v ^ el'^ .^ ^' 1.+ ^ u rl Y ^` u ^+ d ^ U1

aM;1.1.1^l.lIa`'ry	all	'J,r?.^^I	'^'{{N'}'v'ax'1

rir,J	T.a:ldd^l^	"•uI5>^mA{►^J	!t'a^u^.^,''ay,:+°'1
• J•'•,Jr •t	l
•J•,'3b^i171

J",1	'SvIa.l,^{.a'?W^ 1(t';hrv^u': r
.I, A & V	:Yi s V	^ ^i, lJ ^1r r .	' 'rt

r^vT.^vW>,v°^^'"YNy	a^^'^t.cs'su':.'{^;'.'bc{Vr.Tu^tA
•L•,•i(^.	I.i^A

^111tr1n„l n`^Y	a`'	'y^.. •'	'a•t,^+•1r .l.s:."„Ih

VTh

rrYl	"uJ5"111^via	.v.^aA	A^ /^-A

A1.^^'a'^	?J ,a^^irl'.°^' a	sl+^.^•a'"^.S^`t.,^"n

A.^N.tii%'^	tiJ'".i^^♦rt'1^'•'y•`•a	OS7 "`J"^v^	..^y^A

1 .•^•'l^4hn	.0'^^	^r.l^l^JPlr^.^^•e.^'1n

JWyno y0od Jo
30Vd .IVMDIUO

I

.	n

ORIGINAL. PAGE 19
OF POOR QUALITY

^ t

nrr.c.T 19 v flees	 :iC"r .	 iC	 aa^[^:ttIP1'kc

o"
01	 00

t'y'':ITI,TU - '^! r, 1t.,TV^'r{cT'ry	 r)r	 A D YT A
OhCr.tV^ h, : .1..0T^	 r,^•	 rl 1 V^r"! (a	 k	 i1G'G("Ii	 hSV•

PS

p,'	 (,r111t',, r P+.,Srts	 ..1t.icq'1
^	 Yet. O«`• ;Y

	

84;e.lt"latc.8

7i^rnyC^ t ..LT^,	 r,^0y,^1k>trT^,a

ol l c	 *w, M,'J'ry	 Aq%tirc_T,T,g

D„^IS..Y	
J •• : T r^kci T',r	 „c	 t`ADYta•'u

7 N '^^^ i6-W!!* 0 i I T	 'r if	 01,t
t	 ^ ^t^C^	 ^jRNT,	 • ,c	 ACplr• .. •rtT,^=•

0 177	 J'l I TlrnS^•/Ti2C	 7r:';a1;^1 ,
P3 ro	 v^7 rrr,^DAT	 r,t,C,r^Tr•
Q ; .0	 T';o=$^;•

o ,v^'•UC^,,, '.,,,Cj'T,,,r:rf`1^IC^'	 C•T^t,r'[G1^	
T.^..1D^

o jaI.. •f, t TIT	 I%tS 'rITJTr.
r i'1 ^,^ TH'	 .0	 pf'Rnq,T;j„
o.itr ^^ .;^c	 cY C^F'	 t

or',a,.	 ' ^' y qT IN c^lS^^	 */ t e9C g P T 	 cCT^^^ir c
D^^.C ,̂ T ,, I!. et	 plat	 cLrCTRTC
n :JC1' 01l'1 0 t1 vwt.r;	 "N'TV.ocTIv
Drt ^• 7 ; , r c ;n	 ur •, r	L.14•,	 ,8 0 0 T r 4r,.	 cn;c

¢^^	 e• Zn7C	 ^, r t•TVw4,c^T'rY	 Yt,p",

cT ..V^a '	 Ty» N C t T V	 r>r	.,hDYty',

c.,T^u^	 1 ,1(„t	 CIIU	 'DL	 ?I.	 r•in

C	 T t •I

A-4

3

J
I

0-

z

ORIGINAL PAGF 19

OF POOR QUALITY

c..v,.^j.^ ^
,.3r7^.. ,.	 C	

,,.

.4t. if Z,	 v	 =' V6t. ,	 11 "'jtr^o5T'pY
t Ta^•1MTC47^R n^nT•	 ^^^	 7"^ ►

J. DCv ,0	 A
	

'Sr)Ar.
i	 T	 r•rr.. 't^ c.	 v	 T.	 ^1c	 D f:^I^(l t T ►► ^c

..^5l^Q•r'

TCc• ? .!	 Srl cl .rgor	 ^uc,3hA?jetTyeWtt"i	 t;c	 ti'gcyt.,;.7!)
c ^' L ' c ^ T •' ^'-A"tt^< S	 c,a;Y	 n KANt:a	 A^

•'^c;;/„car
T., f4 	 f.%.$ I,r "i+c4/yc.r+
T I^',R '!	 c	 n
T	 r ART-'”	 7. tr. !lft^'N	 C^kp

A	 (;.!t C
T^"^GC•/ T j••'	 "'fi t.':. D Kf` 14	 j"1S T T'*1J To:
T•t'! ^^K, K ► ^^r)Ac
T 1 Q	 '? 1Cr', 'y ^	 C	 ^+

1t ^^' ^. r c •	 i^a rT .	 ttii.• 	 B;;A j"ut	 "4C.
uH•.^n') '^t•• 7,, Q,,!!Kr!n	 e,)Art	 Gj(ST a`	 a	 T„fe•

71p1.a T ^ . J ^''yC4 /V^r'P

5 0"T ,^ 17MT I
.."^.,	 .yt lr^c A7t 	 nM	 STA^!,)a^'^SS"'".y ,. ► cc.^/,,ear

T.T.T.	 k r o c 4^C u	T •.•SiT"p ►► rC

!•^	 e 140 ISTAT
101

Ift

'djt ^,T„^•Jj'^.,^•ji TIT	 Q:g^'T Dh^r
''t i t !• T i, u T, 	 *. t LT •'bC	 I''!C
►,r^T^^^,r M . C.
.,,y"	

. U

Va..
^} qqq /Ggrr

v,. nom•
► ^,Tjn•,^DL	 S-C' t RT't'V	 4i^p,.ir'Y

^..•	 ; e^^fi^ /T^ccv
vi't	

;C I T•t^	 r^pp^^nTI^^^''
7	 ► 	 n	 T ..

cI^	 D	 ^^Tq

ZYGIE LBAUM,A

► .Ty, K C j Ty	 ,ic	 tq^Yt la"•.,7tiT o ^^' t ^Sjn„	 ^^Dy

TOTAL = 243

A-5

r	 t

i

r;
a

BIBLIOGRAPHY OF SEL LITERATURE
i^

1

The technical	 a ers_^ 	 p p memorandums, and documents listed in

this bibliography are organized into two groups. 	 The first
z

group is composed of documents issued by the Software Engi-

neering Laboratory (SEL) during its research and development

activities.	 The second group includes materials that were {

published elsewhere but pertain to SEL activities.
w	 t

yx
y

SEL--ORIGINATED DOCUMENTS d	 .	 7

SEL -76 -001, Proceedings From the First Summer Software Engi- 3
veering Workshop, August-1976

= SEL-77-001, The Software Engineering Laboratory,
V	 R. Basili,_M. V.	 Zelkowitz,	 F. E. McGarry,	 et al., May
197?

SEL-77-002	 Proceedin9 s From the Second Summer Software En- Y
gineering Workshop, September 1977 ►

r
SEL-77-003, Structured FORTRAN Preprocessor	 (SFORT), B. Chi
and D. S. Wilson, September '1977

G SEL-77-004, GSF,C NAVPAK Design Specifications Languages
Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-001, FORTRAN Static Source Code Analyzer	 (SAP) Design
and Module Descriptions, E. M. O'Neill, S. R. Waligora, and

t

a C. E. Goorevich, February 1978

1SEL-°78-002, FORTRAN Static ,Source Code Analyzer 	 (SAP)

R

s
.w User's Guide, E. M. O'Neill, S. R. Waligora, 	 and

C. E. Goorevich, February 1978

SEL-78-102, FORTRAN Static Source Code 'Analyzer Program k
(SAP)	 User's Guide	 (Revision 1), W.	 J. Decker and

' W. A. Taylor, September 1982 G
r

4F SEL-78-003, Evaluation of Draper NAVPAK Software Design,
K. T'asaki and F. E. McGarry, 	 June 1978 r

. SEL-78-004, Structured FORTRAN Preprocessor	 (SFORT)
PDP-1.1/70 Users Guide, D. S. Wilson and B. Chu, September

O

77---7^

SEL-78-005, Proceedings From the Third Summer Software Engi-
neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL
Environment, T. . E. Mapp, December 1978

SEL-79-001, SIMPL-D Data Base Reference manual,
M. V. Zelkowitz, July 1979

SEL-79-002, The Software Engineering Laboratory: Relation-
ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System
Description and User's Guide, C. E.. Goorevich, A. L. Green,
and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-
gram Design Language (PDL) in the Goddard Space Flight Cen-
ter (GSFC) Code 580 Software Desiqn Environment,
C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

SEL-79-005, Proceedings From the Fourth Summer Software En-
gineering Workshop, November 1979

SEL-80-001, Functional Requirements/specifications for
Code 580 Configuration Analysis Too_l___(CAT), F. K. Banks,
A.L. Green, and C. E. Goorevich, FebFu-ary 1980

SEL-80-002, Multi-Level Expression Design Language-
Requirement fe-vel(MEDL-R) S2stem E aluation, W. J. Decker
and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular-Spacecraft -- Ground Support
Software System (MMS/GSSS) State-of-the-Art Computer Systems/
CompatibiliEy Stud , T. Welden, M. McClellan, and
P. Liebertz, May	 80

1SEL-80-004, System Description and User's Guide for Code
580 Configuration Analysis Tool (CAT), F. K. Banks,
W. J. Decker, J. G. Garrahan, et al., October 1980

SEL-80-104, Configuration Analysis- Tool (CAT) System De-
scription and User's Guide (Revision 1), W. Decker and
W. Taylor, December 1982

SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

B-2

f

a

SEL-80-006, Proceedings From the Fifth Annual Software Engi-
neering Workshop, November 1981

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-
s	 tion Models for Software Systems, J. F. Cook and

F. E. McGarry, December 1980

1SEL - 81-001,', Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., September 1981

n	 i^

SEL-81-101, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982 '{

1 SEL-81-002	 Software Engineering Laboratory	 (SEL) Data
*	 Buse Organization and User's Guide, D. C. Wyckoff, G. Page,

and F. E. McGarry, 'September 	 9

r	 SEL-81-102, Software Engineering Laboratory 	 (SEL) Data Baser Organization and User's Guide Revision 1, P. Lo and
D. Wyckoff, July T9

1SEL-81-003, Data Base Maintenance System (DBAM) 	 User's
Guide and System Description, D. N. Card, D. C. Wyckoff, and 3I
G. Page, September 1981

SEL-81-103, Software Engineering Laboratory 	 (SEL) Data Base
Maintenance System (DBAM) User's Guide and System Descrip-
tiori,	 P:	 Lo and D. Card, .July 1983

z
1SEL-81-004, The Software Engineering Laboratory,

S

' D. N. Card, F. E. McGarry, G 	 Page, et al., September 1981

SEL - 81-104, The Software Engineering Laboratory, D. N. Card,
F. E. McGarry, G.	 Page,	 et al., February 1982

1SEL - 81 -005, Standard Approach to Software Development,K
V. E.	 Church,	 F. E. McGarry, G.	 Page, et al., September 1981 r

' 1SEL-81=105, Recommended Approach to Software Development, {
S. Es-linger,	 F. E. McGarry, and G. Page, May 1

SEL-81-205, Recommended Approach to Software Deve-loem^ment,
w - F. E.	 McGarry, G.	 Page, S. Eslinger, et al., April	 $ 1

SEL-81-006, Software Engineering, Laboratory (SEL) Document
Library (DOCLIB)	 System Description and User's Guide,
W. Taylor and W. J. Decker, December 1981-

1SEL-81-007, Software Engineering Laboratory (SEL) Com-
^ pendium of Tools, W. J. Decker, E. J. Smith, A. L. 'Green, r
^-	 -. et al., February 1981

r B-3

001
U

^-

i	

c

E
i

SEL-81-107, Software Engineering Laboratory (SEL) Compendium
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,
February 1982

_SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Work-
bench Phase 1 Evaluation,-W. J. Decker and F. E. McGarry,
March

i

1SEL-81-010, Performance and Evaluation of An Independent
Software Verification and Integration Process, G.'Page and
F. E. McGarry, May 19

SEL-81-110, Evaluation of an Independent Verification and
Validation (IV&V) Methodology for Flight Dynamics, G. Page
and F. McGarry, December 1983

SEL-81-011, Evaluating Software Development by Analysis-,of
Change Data, D. M. Weiss, November 1981

` SEL-81-012, The Rayleigh Curve As a Model for Effort Distri-
bution Over the Life of Medium Scale Software Systems, G. O. µ

Picasso, December _.19T

SEL-81-013, Proceedings From the Sixth Annual Software Engi-
neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory	 (SEL)
A. L. Greer,, W	 J. Decker, and F. E. McGarry, 	 September 1981

SEL-82-001, Evaluation of Management Measures of Software
. Development, G. Page, 	 D. N. Card,	 and F. E. McGarry, j

September 1982,;vols. 1 and 2

SEL-82-002_, FORTRAN Static Source Code Analyzer Progr- am_

(SAP)	 System Description, W. A. Taylor and W. J. Decker,`
Aug— ust 138" {

SEL-82-0013, Software Engineering Laboratory 	 (SEL)	 Data Base ,
Reporting Software User's Guide and System Description,

i
P. Lo, September 1982 s

SEL-82--004, Collected Software Engineering Papers: . -Vol-
f	 ; ume 1,, July 1982:

1SEL-82-005, Glossary of Software Engineering Laboratory
Terms,- M. G. Rohleder_, December 1982

B-4

}

tt

-

^wr

r^
F

x

*i

I

i

SEL-82-105, Glossary of Software Engineering Laboratory
Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,-
October

,
 1983

1SEL-82-006, Annotated Bibl=iography of Software Engineer-
ing Laboratory (SEL) Literature, D-. N. Card, ,November 1982

SEL-82-106, Annotated Bibliography of Software Engineeri.,g
Laboratory Literature, D. N. Card, T. A. Babst, and
F. E. McGarry,---November 1983

1 SEL-82-00'7, Proceedings From the Seventh Annual Software
Engineering Wor s op, December

SEL-82-008, Evaluating Software Development by Analysis of
r

Changes:	 The Data From the Software Engineering Laboratory,
V. R. Basili and D. M. Weiss, December 1982

n	
^

;I SEL-83-001, Softwari 	 Cost Estimation Experiences,
F.	 E. McGarry, G.	 Page, D.	 N.	 Card,	 et-al.,	 November 1983,

F;
fi SEL-83-002, Measures and Metrics for Software Development,

D.	 N.	 Card,	 F.	 E. McGarry, G.	 Page, et al., November 1983

SEL-83-003, Collected Software Engineering Papers:	 Vol- f
ume II, November 1983

SEL-83-004, SEL Data Base Retrieval System (DARES) User's z

Guide, T. A. Babst and W. J. Decker, November 1983

SEL-83-005, SEL Data Base Retrieval System ,(DARES) 	 System
Descr,ption,	 P.-_ Lo and W. J.	 Decker, November 1983_.

i

SEL-83-006, Monitoring Software Development Through Dynamic
` Variables, C. W.	 Doerf'linger, November 1983

SEL-83-007,	 Proceedings From the Eighth Annual Software En-
gineering Workshop, November 1983

ri SEL-RELATED LITERATURE

2Agresti, W.	 W.	 ,	 F.	 E. McGarry, D. N.	 Card,	 et al.,
F^ "Measuring Software Technology," Program Transformation and
4j Programming Environments. 	 New York:-Springer-Verlag, 1984

3Bailey, J. W., and V. R. Basili, 	 "A Meta-Model for Soft- ;;	
t

ware Development Resource Expenditures," Proceedings of the
Fifth International Conference on Software -Engineerin

^. New York:	 Computer Societies Press, l

B-5

y

7.

A

t^

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
1980

3Basili,	 V. R.	 "Models and Metrics for Software Manage-
ment and Engineering," ASME Advances in Computer Technology,
January 1980, vol. 1

Basili, V. R.,	 "SEL Relationships for Programming Measure-
f

m: ment and Estimation," University of Maryland, Technical Mem-
orandum, October 1979

Basili, V. R.', Tutorial on Models and Metrics for Software`
4 Management and Engineering.	 New York;	 Computer Societies

Press, 1980	 (also designated SEL-80-008) s

3Basili,	 V. R., and J. Beane,	 "Can the Parr Curve Help
With Manpower Distribution and Resource Estimation Prob-
lems?", Journal of Systems and Software, February 1981,
vol.	 2,	 no.	 l

i

3Basili, V. R., and K. Freburger,	 "Programming Measurement
y and Estimation in the Software Engineering Laboratory," i

Journal of Systems and Software, February 1981, vol.	 2,	 no.	 1-

2Basili,	 V. R.,	 and B.	 T.	 Perricone, Software Errors and w^	 i
Complexity:	 An Empirical Investigation, University of

a Maryland, Technical Report TR-1195, August 1982
Y

3Basili,	 V. R.,	 and T.	 Phillips,	 "Evaluating and Com-
x

paring Software Metrics in the Software Engineering Labora-
tory," Proceedings ofthe 'ACM SIGMETRICS Symposium/
Workshop;_ Quality Metrics, March 1981

M_	
,

2Basili,	 V.	 R.,	 R.	 W.	 Selby,	 and T.	 Phillips,	 "Metric Al
^IAnalysis and Data Validation Across FORTRAN Projects," IEEE

Transactions on Software Engineering, November 1983

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedings of the Workshop #,
on Quant	 ative Software Models for Reliability, Complexity
ana CosCos t , October - 1:9 79

2Basili,	 V.R.,	 and D. M. Weiss, A Methodology for Col-
xz

letting Valid Software Engineering Data, University ofk
Maryland, Technical Report.TR-1235, December 1982

Basili,	 V.	 R.,	 and M.	 V.	 Zelkowitz,	 "Designing a Software'
Measurement Experiment," Proceedings of the Software Life;

j

Cycle Management Workshop, September 1977

^

.

IF
B-6

='"	 "; x.... +1 -.	 mss.•	R^^^'s ..r

r

t

r

3Basili, V. R., and M. V. Zelkowitz, "Operation of the
Software Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1978

3Basili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment,"
Computers and Structures, August 1978, vol'. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York: Com-
puter Societies Press,

3Basili, V. R., and M. V. Zelkowitz, "The Software Engi-
neering Laboratory: Objectives," Proceedings of the
Fifteenth Annual Conference on Computer Personnel Research,
August 1977

2Card, D. N., "Early Estimation of Resource Expenditures
and Program Size," Computer Sciences Corporation, Tech

1 M	 d	 J	 1982nica	 emoran um,	 une

2Card, D. N.,	 "Comparison of Regression Modeling Tech-
niques for Resource Estimation," Computer Sciences Cor-
poration, Technical Memorandum, November 1982

Card, D.. N.,	 and V.	 E.	 Church,	 "Analysis Software Require-
!Iments for the Data Retrieval System," Computer Sciences

_ Corporation Technical Memorandum, March 1983

Card, D. N.,	 and V.	 E. Church,	 "A Plan of Analysis for
Software Engineering Laboratory Data "!Computer Sciences

t Corporation Technical Memorandum, March 1983

Card, D. N., and M. G. Rohleder,	 "Report of Data Expansion
Efforts," Computer Sciences Corporation, Technical Memoran-
dum,	 September- 1982

3Chen	 E., and M.	 V.	 Zelkowitz,	 "Use of Cluster Analysis'
?- To Evaluate Software Engineering Methoaologies," -Proceed-

ings of the Fifth International Conference on Software
ngineering.	 New York:	 Computer Societies Press,	 1981

2Doerflinger,	 C.	 W.,	 and V.	 R.	 Bas_ili,	 "Monitoring Soft-' s

x ware Development Through Dynamic Variables," Proceedings of
the Seventh International Computer Software and Applications'` i
Conference.	 New York:"	 Computer "Societies Press,	 1988

r-
_ Freburger, K., "A Model of the Software Life Cycle"	 (paper M

A prepared for the University of Maryland, December 1978)>
3
s

B-7

-.,».- :'.tom

r

y

w

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
e—s g ated SEL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre- 	 a
pared for the University of Maryland, Decenber 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"'
(paper prepared for the University of Maryland, December
1978)

McGarry, F. E., G. Page, and R. D. Werking, Software Devel-
opment History of the .Dynamics Explorer (DE) Attitude Ground
Support System (AGSS), June 1983	 Y

Miller, A. M., "A Survey of Several Reliability Models"
(paper prepared for the University of Maryland, December,.	 1978)

i
National Aeronautics and Space Administration (NASA), NASA
Software Research Technology Workshop (proceedings), March

Page, G., "Software Enineering Course Evaluation," Computer
Sciences Corporation, Technical Memorandum, December 1977

}
Parr, F., and D. Weiss, "Concepts Used in the Change Report
Form," NASA, Goddard Space Flight Center, Technical Memoran-
dum, May 1978	

r

I	 Reiter, R. W., "The Nature, Organization,, Measurement, and
.r----..---1 ..0 0.-F4.-.o .-r. n..m..l Zvi i-	 --- --or»rerl Fir +-ho

U11LV.CL71l.y UL 11C.tLY.LClilU,

Scheffer, P. A., and C.
Order Languages Study:
tion, Technical Memoran

Turner, C., and G. Caro
Software Development Da
Software, Special Publi

Turner, C., G. Caron, a
dium, Data and Analysis
cation, April 1981

r	 Weiss, D. M., "Error an
Laboratory, Technical M

Williamson, I. M., "Res
Naval Research Laborato

s
.rM!k

ML;Will1JCL 171Uj

Velez, "GSFC NAVPAK Design Higher
,ddendum," Martin Marietta Corpora-
im, September 1977

A Comparison of RADC and NASA/SEL
t, Data and Analysis Center for
ition, May 1981

i G.--Brement, NASA/SEL Data Compen-
,enter for Software, Special Publ_i- .y

Change Analysis," Naval Research
,iorandum, December 1977 	 -b

irce Model Testing and Information,"
► , Technical_ Memorandum, July, 1979-

B-8

F

v +.r.. .ate -• -..	 -	 -.

g

3 Zelkowitz, M. V., to 	 Estimation for Medium Scale
Software Projects," Proceedings of the Twelfth Conference on
the Interface of Statistics and Computer Science.
New York: Computer Societies Press,

2 Zelkowitz, M. V., "Data Collection andEvaluation for Ex -
perimental Computer Science Research," Empirical Foundations
for Computer and Information Science (proceedings),
Novembe r

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of , -

a Software Measurement Facility," Proceedings of the Soft-
ware Life Cycle Management Workshop, September 1977

h

li
j:

s

H	 l

b	 ,-F

a

s

t

{

r,
t

n

k
F

^î 11
rt

A l
^

a
1

i

1This document superseded by revised document.

2This article also appears in SEL-83-003, Collected Soft- {
ware Engineering Papers: Volume II, November 1983.

:. 3This article also appears in SEL-82^-004, Collected Soft-'
-ware Engineering Papers: Volume I, July 19-9T.—

:.. B-9

61

