General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

S777R2

{) #7172

SOFTWARE ENGINEERING LABORATORY SEL-83-008 SEL-83-008

NBU=23137
THRU
N84=23149
Unclas
G3/61 13076

a aE ~um
(NASA-TM-854L3S) EFOCEEDINGS CF THE EIGHTH

ANNUAL SOFTWARE ENGINEERING WOFKSHOF (NAS&{
326 p HC A15/MF A1 CSCL 09E

PROCEEDINGS OF THE I
EIGHTH ANNUAL SOFTWARE
ENGINEERING WORKSHOP

NOVEMBER 1983

NNASN___

National Aeronautics and
Spa~e Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

PROCEEDINGS £
OF : I

! EIGHTH ANNUAL SOFTWARE ENGINEERING WORKSHOP
"'K o

Organized by: : |

Software Engineering Laboratory
GSFC

DA P S R PR

B R i

e s N

e

FTRIT MW AT e 5397 7 99
AL L A LR TN

b RN P St

3
5 TR b ik e e it

LR
v el

November 30, 1983

BSOS A5 RS i sk SN ol S d

AR

kb R B intel

)Pt 5, 23 LI b

: GODDARD SPACE FLIGHT CENTER o

Greenbelt, Maryland | | | | .

- i

e L

ST e R

FAPREOLAY BT TR

*

4

:
*

W

i
%

»

B
E*‘
h
:
"
L
Z
£,
¥
e
1Y

-y
=
3
£
Vi

—— R A S L e %
T . ' B |

FOREWORD

The Software Engineering Laboratory (SEL) isjahﬂorganization
sponsored by the National Aeronautics and Space Administra-
tion Goddard Space Flight Center (NASA/GSFC) and creéted for
the purpose of investigating the effectiveness of software
engineering technologies when agplieditoithe development of
applications%software. The SEL was created in 1977 and has
three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)
The Uniyersity of Maryland (Computer Sciences Department)l
Computer Sciences Corporation (Flight Systems Operation) E

The goals of the SEL are (l)'to understand the software de-
velopment process in the GSFC environment; (2) to measure
the effect of various methodologies, tools, and models on
this process; and (3) to identify and then to apply success-
ful development practices. The éctivities, findings, and

; recommendations of the SEL are recorded in the Software En-

gineering Laboratory Series, a continuing series of reports
that includes this document.

Single copies of this document can be obtaineda by writing to

Frank E. McGarry

Code 582.1

NASA/GSFC

Greenbelt, Maryland 20771

SEVITN

BT R

et Tt

PRatNetTiy - At SHCTIEN SR

gl S AT T T

—miake ST e

it st st e e 2

FESNCEES 5 cbt SR

TR B TR R

i A

B

[P Y

J
a

M v

el e I N

RS s L a

i
i
i
i
i
i

EIGHTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

ABOUT THE WORKSHOP

The Eighth Annual Software Engineering Workshop was held on November 3,
1983 at NASA/Goddard Space Flight Center in Greenbelt, MD. Once again,
the attendance approached 250 persons representing 5 universities, 23
agencies of the federal government and 44 private companies.,

The four major topics of discussion included: 1. The NASA Software
Engineering Laboratory, 2. Software Testing, 3. Human Factors in
Software Engineering and 4. Software Quality Assessment. As in the past
years, there were 12 position papers presented (3 for each topic)

followed by questions and very heavy participation by the general
audience.

The workshop is organized by the Software Engineering Laboratory (SEL),
whose members represent the NASA/GSFC, University of Maryland, and
Computer Sciences Corporation (CSC). The meeting has been an annual
event for the past 8 years (1976 to 1983), and there are plans to
continue this event as long as it is felt they are productive.

This record of the meeting is generated by the SEL and is printed and
distributed by the Goddard Space Flight Center. -“All persons who are
registered on the mail list of the SEL receive a copy at no charge.

Additional information about the workshop or about the SEL may be
obtained by contacting:

Mre Frank E. McGarry
N+5A/GSFC
Ccle 582
Greenbelt, MD 20771

301-344-6846

USSR S WY CPIY- NN LR I Y

NN TR T DL T S v i

~EESEL T T

ST

T

T TRUIRR RO T I
- B

SRt

A3 TS RRTRERG T

e

T TR R

8:00 a.m.
8:45 a.m.

9:00 a.m.

10:30 a.m.

11:00 a.m.

12:30 p.m.

AGENDA

EIGHTH ANNUAL SOFTWARE ENGINEERING WORKSHOP
NASA/GODDARD SPACE FLIGHT CENTER
BUILDING 3 AUDITORIUM
NOVEMBER 30, 1983

Registration — ‘Sign In’
Coffee Donuts

INTRODUCTORY REMARKS J. J. Quann, Deputy Director
(NASA/GSFC)
Session No. | Topic: Current Research in the Software

Engineering Laboratory (SEL)
Discussant: F. E. McGarry (NASA/GSFC)

“Evaluating Software Engineering /
Technologies in the SEL” D. Card (CSC)

“Dynamic Metrics for Software
Management”’ V. Basili (University of MD)

“Characteristics of a Rapid

Prototyping Experiment” M. Zelkowitz (University of MD)

BREAK

Session No. 2 Topic: Testing Software
Discussant: J. Page (CSC)

“Structural Coverage of
Functional Testing” J. Ramsey (University of MD)

“A Methodology for Detecting
Errors™ A. Goel (Syracuse University)

“Testing and Error Analysis of

a Real-Time Controller” C. Savolaine (Bell Labs)

LUNCH

St

A g S T

3
3
i
5
]
i
H
i

| Tingng g Ll T S
P, TN e

1:30 p.m.
| 3:00 p.m.
3:30 p.m.
~ 5:00 pm.

Session No. 3

“Transformations of Software
Design and Code May Lead to
Reduced Errors”

“You Can Observe a Lot by Just
Watching How Designers Design™

“Evaluating Multiple Coordinated

Windows for Programmer
Workstations”

BREAK

Session No. 4

“Cleanroom Certification
Model”

“Projecting Manpower to
Attain Quality”

*‘An Approach to Software
Baseline Generation”

ADJOURN

Topic: Human Factors

Discussant: V. Basili (University of MD)

E. Connelly (PMA, Inc.)

E. Soloway (Yale)

C. Grantham (University of MD)

Topic: Quality Assessment

Discussant: W, Agresti (CSC)

P. Currit (IBM)

K. Rone (IBM)

J. Romeu (IITRI)

T AT R

™ e

< R A e

S SN

PR TE N B i A

SUMMARY OF THE SESSIONS: EIGHTH ANNUAL SOFTWARE

ENGINEERING WORKSHOP

Prepared for the
NASA/GSFC
FIGHTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

by
Thomas A. Babst

COMPUTER SCIENCES CORPORATION
and

THE GODDARD SPACE FLIGHT CENTER

SOFTWARE ENGINEERING LABORATORY

: !
i
i

e i) ek g, 28 e £ et e e R IS

PRI STV

o i

- ‘ T e ok e B e e T
T T T T e L W e T T T :

| A 1 ANES v TN S PR - L e e e B L

INTRODUCTORY REMARKS ' i

. e s

John J. Quann, Deputy Director, Goddard Space Flight Center
(GSFC) , made the opening remarks at GSFC's Eighth Annual :
Software Engineering Workshop. He stressed the importance
of Softwdre Engineering Laboratory (SEL) activities to GSFC
and pointed out the effect of this work on the Spacelab
project and its relevance to future projects such as the
Space Telescope and Space Station.. ; o

The Space Station, for example, Will require all NASA cen- § !
ters to work together in a disciplined manner. NASA will be '
studying the results of SEL research to identify étfategies
for the desigﬁ} implementation, testing, and interfacing of
the software system. Mr. Quann also emphasized the impor-

tance of conferences, such as this one, as opportunities for
the exchange of ideas among managers, developers, and acad-
emicians. This is the route to excellence in the field of

e et 3 7

oottt s aF i ST b i v am

software engineering.

5w

g e rptn e e e

- - ——— - o R DR . - IS Rt s Ed R M e e s B % &

P 4

L
¥ |
M o
S H I
L oy
g SESSION 1 - CURRENT RESEARCH IN THE SOFTWARE s
? ENGINEERING LABOURATORY ;
: i
2 | Frank McGarry--"The Software Engineering Laboratory" ; 3

Frank McGarry of GSFC summarized the efforts of the Software g
é Engineering Laboratory over the past year. Mr. McGarry ex- f i
? ‘ plained that the SEL is a consortium that also includes i_ %
5 ’ Computer Sciences Corporation Ané the University of Maryland. % i
f _ The SEL has concentrated its efforts in four major areas of E. §
fd | software engineering research: software reliability and i é
é, testing, technology evaluation, software measures, and soft- g ;
?: ware development management. ? !
éw Many experiments have been performed by the SEL on produc- E %
E tion projécts to evaluate software developmentutechnologies § ;
% and to test software engineering theories. The results of : j
§- some of these activities are being presented at this work- §. %
shop. One of the principal areas of future activities will P

y be the development of a software management environment to :
% provide managers with the tools necessary to monitor and % ’ 5

control the software development process.

I Seate ot i

R

T N ST I Coe

T. Babst
CSC
20f18

T ., [TR TR T - : B aecasr - ST SR RS e o i e Rl R el

Dave Card (Computer Sciences Corporation)=--"Evaluating
Software Engineering Technologies in the SEL"
Mr. Card's presentation described the results of a study
that measured the effects of some software engineering prac-
tices, tools, and techniques on productivity and reliability
in a production environment. The study was based on a
sample of 22 similar software systems selected from the SEL
data base. Eight widely used and accepted technologies were
evaluated: quality assurance, software Eodls, aobumenta—
tion, code reading, top-down development, chief programmer
team, structured coding, and desigﬁ time. A statistical
technique was employed to compensate for the effects of non-
technological factors such as program- mer effectiveness and
computer use.

The study concluded that none of the individual technologies
evaluated had‘a:significant effect on productivity during
deveiopment; however, reliability was increaséd Signifie
cantly by quality assurance, documentation, énd code read-
ing. ' A 30-percent improvement was achieved with théée
technologies, and other benefits méy also be obtained. In

particular, a reduction of maintenance costs seems probable.

In response to questions and comments from the audience,
Mr. Card clarified the following points:

e All systems studiedﬁpassed their acceptance tests,
_thus the quality of each was at least "good."

[] ‘The measure of programmer effectiveness used was a
- weighted measure of years of experience. ‘

) Productivity was measured during development. That"
is, it is based on the cost to deliver the system |
to‘the customer. Subsequent maintenance costs are
not included.

T. Babst
CSC
30f18

R

iy 4 R 1 b

o by de eE

PR

e sieniia$

S

. . . N .
i i) ok D e . . e s AT SRt
g T —————— e g NS Be) e Sl SRR S S e e

e

Victor Basili (University of Maryland)--"Dynamic Metrics for
Software Management"

Dr. Basili's presentation described several efforts related

to the development of a general methodology for monitoring

software developmeht for the early detection of problems. A

pilot study, tool implementation, and extension activities i
were discussed. '

The approach of the pilot study was to develop a series of
baselines for critical measures; The actual values realized
by a project under developmént can be compared with the base-
lines to detect significant deviations. A set of explana-
tions was defined for each type of deviation, and the
methodology provided a mechanism for rating the probability
of these explanations. 1In the pilot study, data from eight
projects formed the baseline, and one other project was com-

s e o

pared with them.

Dr. Basili indicated that future plans include extending the
methodology to include additionalfmeasures and developing a
knowledge-based system incorporating this methodology. The
system will be developed using KMS (a spftware system used
in cons;rgctingvkﬂowiedge-based SYSﬁems) at the University
of Maryland. Dr. Basili stressed that this system is not
intended to replace a manager's expert;judgmént but rather
to support it with a formal tool.

e vttt -

In response to gquestions and comments from the audience,
Dr. Basili clarified the following points: S

° Measurement can be extended to the whole life L ; 1
cycle, and this option is under study. ‘ '

° The baselines are defined at discrete points corre-

oot it i

sponding to specific percents of work completed.
In practice, it is difficult to determine the per-
cent completion of a project under development.

T. Babst

CSC
40of 18

T T om e A e ey et O . .
e 3 e TR e T B9 5 SN0 a2 o et Sam ot e e e LU - e,

i;ﬁ&@ﬂﬁ“WT*”’T - : y lJ;)
A I 1
? S
| 4
- ‘ |
!
LI
L {n
i
The best way to do this can be determined only by f
studying the environment in which the methodology ‘
is to be applied. % |
Rate of change can be used as an indicator but is: E
not in the current methodology. b
: f
. Programmers in this environment do not appear to be ! :
changing their behavior to match the metrics. T
x The KMS knowledge-based system may be transport- ﬁ :
i able, but that is not an important consideration % ;
3 now. }
R
: Lo
] : !
3 : .
; ;]
] L
~ b
, Lo
i
L
& |
5 : |
2
e
| :
i
| :
| i
| 5
| §
g : :
B T. Babst g
= CSc
' 50f18

"

E
%
b

SRR - S ek 46 LR R I

:
Be
4
Eq
3
E
3]
i
£
4

Marvin Zelkowitz (University of Maryland) --"Characteristics

of a Rapid Prototyping Experiment"

Dr. Zelkowitz discussed the issues of prototyping in the
context of an actual prototype recently developed for GSFC.
This prototype, the Flight Dynamics Analysis System (FDAS),
is currently under evaluation.

FDAS is intended to provide an integrated software develop-

ment environment for spacecraft attitude, orbit, and mission
analysis research. It consists of a management system and a

library of application software. The application software
was implemented in an extended version of FORTRAN that pro-
vides data abstraction and generalized input/output
capabilities,

Dr. Zelkowitz provided three definitions of a prototype: a
"quick and dirty" throwaway, a partial implementation, and
first build. Some portions of a quick and dirty prototype
may be reused later in the final system, A prototype need
not be cheap to be cost-effective if it enables the full
system to be implemented less expensively and with greater
reliability than it would have been without the prototype.

In response to questions and comments from the audience,
Dr. Zelkowitz clarified the following points:

® The goal of FDAS was not to save code,'although
~ much will probably be reused. !

[Forty-eight percent of the development effort was

spent in implementation. This phase includes cod-

ing and unit testing activities.

) _“‘The;full FDAS system may be implemented in a lan-
o guage ‘other than FORTRAN.

() FDAS is 1n the public domain and w1ll probably be

made available through COSMIC when it is completed.

T. Babst

6of18

p——— S BT ASR e Ee

i i

¥
1
4

P i o EE S o i et O B

BESSION 2 - TESTING SOFTWARE

Jim Ramsey (University of Maryland)--"Structural Coverage of
o Functional Testing"

Mr. Ramsey described the initial results of an evaluation of

the effectiveness of functional testing by examining struc-

tural coverage metrics. A FORTRAN program consisting of :
68 subroutines was instrumented to produce structural cover-
age measures when executed. Then, structural coverage data
were collected by performing (functional) acceptance tests.
These results were compared with data from operational use
of the program.

Mr. Ramsey reported that although the acceptance tests and
operational use largely covered the same software, there ;
were significant differences. Also, about one-third of the
code was never executed. However, this procedure does have
the potential for providing a numerical measure of the ef-
fectiveness of (functional) acceptance tests.

A much larger piece of software is now in the process of t

results should be derived from this additional data.

being instrumented and tested in this manner. More concrete P

In response to the questions and comments from the audience,
Mr. Ramsey clarified the following points:
® Conclusions cannot be made at this time about :

whether larger or smaller modules are more fully ‘?
exercised or aboupwthe nature of the untested code.

° The tests pérformed were derived from the func-

tional requirements of the program, not from knowl-
edge of the code.

B RIS

ey

tiandi a2

O i

B RS S L T

B -

A T IRSER T RSIRATS T TOee

TR T

NG ATY T

e Gt R

;j

IR L g

Amrit Goel (Syracuse University)--"A Methodology for

o Detecting Errors"
Dr. Goel described a mathematical approach to selecting
software tests. No: testing strategy can detect all errors;
however, Error Specific Tests (ESTs) can be devised to iso-
late those types of errors important to the tester.

In this approach, test requirements are formulated in alge-
braic notation. Tests are determined from the requirements
specification and its functional decomposition. Next, tests
specific to each type of error targeted by the user are de-
veloped and enumerated in a test plan. This process of de-

fining functional requirements and structural parts may also
provide insight to software complexity.

In response to questions and comments from the audience,
Dr. Goel clarified the following points:

® The methodology discussed has not been tested on
’ actual software development problems.

e Optimization of the test plan is necessary to avoid
‘ redundant tests. '

® - Automation is essential because of the complexity

and comprehensiveness of the resulting test plan.

) This method of testing is different from program
proofs, although the notaticn is similar.

T. Babst

CSC

80of18

B s s SN e

i
te
i
¢
4
3o

o it g § ekl s wnet i

b s ey &

A

RO PR

ey

Cathy Savolaine (Bell Laboratories)--"Testing and Error
Analysis of a Real-Time Controller"”

Ms. Savolaine reported the results of an error analysis f
based on data collected from the development and testing of
a real-time communications controller system. The system
.o studied was the Satellite Network Scheduler (SNS), which
: controls ground stations as part of a reservation system for
picturephone conferencing. Testing for each release was
performed by an individual not involved in the development
of that release. The number of errors per module was corre-
lated with module size and cyclomatic complexity. Errors
were classified in three groups: omission, commission, and
S requirements. Half of the errors detected before delivery ;
o were errors of omission. In contrast, half of the errors

found during operational usage were errors of commission.

T R it

Ms. Savolaine concluded from these results that complex

s St i ol i

modules should be avoided, more code inspections should be ;
péerformed, and developers should look harder for commission o

errors because these were the principal type found by the
user.

i v AT 1T

In response to questions and comments, Ms. Savolaine clari-
fied the following points:

e ey Y IR DR R SRR e

2 ® Records were kept of the numbers of errors found

% | during code inspection, but the data are not

% readily available. :
%% L The development cost of an autbméted test package |
gﬁ was included in the SNS development budget.

Errors of commission were not further categorized,
| . but this can be done. S

F

A

il L M -, SR

R T E I A SR

I TE TR R T

. ; ° It is not known at this time why fatal errors
' seemed to cluster in the simpler modules.

o

&g T
®

The total number of errors, not error rate, was
compared with size and complexity.

fer T T NRAN T

T, Babst ;
csc
10 of 18 “

RN i L — o

R R

byt

gﬁg’i?f%wWM”-

TETTELL Y ke T I TRec TSP

SESSION 3 - HUMAN FACTORS

Ed Connelly (PMA)--"Transformation of Software Design and
Code May Lead to Reduced Errors"

Mr. Connelly described a series of experiments conducted to
determine how well people can use examples to specify logic.
In this study, individuals were asked to devise solution

algorithms to various problems (specifically, scheduling and
allocation problems).

The problems were initially given to accountants, and later.
to programmefsJ The solution algorithms were fed to an iﬁ—g
ductive processor. Feedback from the processor helped to

systematize the subjects® thinking. The solution algorithms

were compared with FORTRAN programs, and both were tested
for correctness.

Based on the resuits of these experiments, Mr. Connelly con-
cluded that performance is correlated with the number of
languages and operating systems the programmer is familiar
with. He also indicated that the examples had fewer errors

of commission than FORTRAN code developed for the same
problem.

In response to questions and comments ﬁrom the audience,
Mr. Connelly clarified the following point:

°® The dependent variable in the analysis was perform-

‘ance (i.e., the number of incorrect inputs recog-
nized by the program).

T. Babst
CSC
11 0of 18

e S T ey e e A BT R T T i

s R e

LRI ¢ T R

gt

ST ST WPt

o ey il

A

\
N

o S, Ll ey 2k o ivishal oo INECF OSSR S L N T e I EE e S 4 N
4 28 (N

Elliot Soloway (Yale University)--"You Can Observe a Lot by
Just Watching" (How Designers Design)

Dr. Soloway described some observations made during a study
of the work habits of novice and experienced software de-

signers. The experts had 8 or more years of experience; the
novices had 2 years or less; all were familiar with telecom-
munications system software. . Y

Each individual was given the same vague set of specifica-
tions for an electronic mail system and was asked to develop s :
: |

.y

1,

a design. The design process was recorded on videotape. An

ree

3,
,:‘,

interviewer prompted the designers to describe what steps

they were taking. The experts approached the problem sys-

tematically in a top-down fashion. They kept detailed notes

of assumptions, constraints, and expectations. In contrast,

the novices immediately began working on the problem at a :
very detailed level. f

One conclusion drawn by Dr. Soloway was that an effective i
design tool should provide a capability for Kkeeping track of e
notes of the type made by the experts. Most such tools de- I
veloped in the past have focused on what the designer should }'
be doing rather than on facilitating what he/she actually
does. t

In response to questions and comments from the audlence,,v
Dr. Soloway clarlfled the fullow1ng points:

° The expert designers were very 1nd1v1duallst10.

° The experts seemed to have some familiarity with
the problem. It would be: 1nterest1ng to test'them
in other 01rcumstances. :

) The expe;ts'were clearly designers, whereas the

P,

novices could have been programmers who were asked
to design. ‘ ‘

T. Babst Ly
CSC Leiw
120f18 :

. L KA L e i T A M R i KT B e - AR £ ey

The experts continued to "back up" if questions
remained unanswered. It would be interesting to

see and measure where this backup occurs.

It might be possible to build a system to teach

novices to become experts in design.

The experts and novices were separated, but it
might be interesting to see how they worked

together.

The experiment was exploratory in nature, rather
than a rigorous test of any hypothesis.

S T e il R e e e s B i

4
H
“
b
¢
i
h
4
.
!
‘.‘
:
; 4‘
L Al
: :
: ‘
' !
f
H i
K A
H %
: il
: ki
i
;
.
r
-
#
iy
: |
H
: }
i]
¥ f
3
- T, Babst f
CSC . {
13 0f18
!

f

25 A
f

T TR T R RO AAR T AR AT

T TR,

Bl St

.

£
Bra
B,

|
L
é.
Y
#

X
=

et
&
oo

TR TIITTT L T

Charles Grantham (University of Maryland)--"Evaluating

Multiple Coordinated Windows for Programming
Workstations"

Dr. Grantham described the results of some recent research
on the design of a multiple-screen programmer workstation.
Two such workstation designs are under evaluation. One sta-
tion consists of three separate screens; the other consists
of one screen with four windows. The information on each
screen or window is ccordinated with the others. The appro-
priate information to be displayed on each window was deter-
mined by observing the behavior of programmers while
testing, debugging, and modifying software. The module
specification, structure chart; and source listing are dis-
played under both configuratioﬁs. The four-window configu-
ration has an additional user-defined area. Ultimately,
better workstation designs should improve the software de-
velopment process by maximizing the number of tools that are
available to the programmer at one time.

In response to queétions and comments from the audience,

Dr. Shneiderman and Dr. Grantham clarified the following
points:

] Many multiple-screen systems do exist, but most are
passive displays that do not have coordinated

screen action. This study addresses dynamic screen
coordination.

) Software maintenance will be facilitated by using
multiple screens in this manner, because additional
details about the module being maintained will be
available.

T, Babst

CSC

14 of 18

: %QSE

T e L AR i e i e e B e e PR

e e

- 4

o, ¥

el o o e e o g

e wn s e a4, A

A N ToTe—y . s T TR o S o R T Y S . 2=/ : wi
™~ . - . . o @ h
*.

3; |
; ‘
A i
o 9
L K
- ° The importance of left/right orientation should be 1
1

considered when selecting and arranging display

- contents.

R T
PL

: [] The layout of information in different screens or : :

: . . . -

> windows was essentially fixed (not dynamically con- g :

3 trolled by the user). ; o
Lo
: §
.

. ; H

g i

s, ;

2

2

:

4

) #

: | 4

;‘: ‘\; -1

: ; ;

. r.; i

3 £ !

. : ,

. i :
!

WOFLOE g g T T A

H

qy\::;:}\;pﬂ;l

:

]

!

i

!

»” I 1
> |
i
i ; L
:)

s

: !

i i

H §

H :

T, Babst
csC
15 of 18

SESSION 4 - QUALITY ASSESSMENT

Al Currit (IBM Corporation)--"Cleanroom Certification Model"

Mr. Currit described the software reliability model used for
software certification in the "cleanroom" development ap-

A 1Ll

proachf The cleanroom is a rigorous methodology that sepa-
rates developers from all testing activities. It replaces
unit and integration testing with rigorous code inspections.
Although it is difficult to produce software with zero de-
fects, it is hoped that this approach will produce code with
- i a very low probability of failure.

Certification of the developed code is dependent on its

g achieving a specified mean time to failure (MTTF) during

?u testing. MTTF is an appropriate measure because it is unam-
g biguous and relates to the customer's needs. The certifica-
§ tion model predicts MTTF based on failure data collected

g during testing. It shows good agreement with published data.
f Although mathematically similar to some popular reliability
% models, it is simpler than most. This MTTF model seems to

? | be an effective tool for determining when software is ready
§ | for delivery.

; % In response to questions and comments from the audience,

é § Mr. Currit clarified the following points:

5 § ° MTTF is measured in terms of usage months rather
- than CPU execution time.

éﬁ' i L The Cleanroom concept replaces unit testing with

i' i statistical testing. - Test data are used to calcu-
>~ late MTTF. | |

%f/ (° Under the cleanroom system, programmers are kept

away from the computer as much as possible. They
only get clean compiles of their code and are not
able to debug programs on the computer.

T. Babst
CSC
16 of 18

TR L A LT T ‘ P = o e S [ty i N
« Bt
2 o3

£
1

i AR L ST AN

R 133> 83 /P L sl Sl AP SN NSRRI Sy

Kyle Rone (IBM Corporatlon)--“Pro;ectlng Manpower To Attain

Quality"

Mr. Rone described the derivation of a model to predict the
manpower required to insert new technology into a system.
This model will also aid in deflnlng the distribution of
manpower needed to achieve maximum quality.

The devélopment environment studied generates software in
incréméntsg as a series of releases. The goal of this re-
search effort is to create a model that matches this strat-
egy. Increasing the manpower at the beginning of a project
and moving more quality ahalysis toward the front seems to
facilitate the early detection of er:oﬁs} Mr. Rone believes
that by following this plan, maintenance costs for the sys-
tem studied, which annually are now approximately 25 percent
of the development cost, will be reduced to around 15 or

20 percent.

In response to questions and comments from the audience,
Mr. Rone clarified the following point:

o Maintenance includes the effort reqdirédﬂto fix
errors documented on discrepancy reports. It does
not include the effort spent to complete change
requests.

T. Babst
CsC
17 of 18

i A Py

R T L Ny) N S

£

o R R IR AN S T R A TR SR TR T -

WREEIAT T

S

&

¢

-
&
3

g

-
.
e !
o
)
3
:
29
-
3
=
L

it
!

8 RIRERSE A DO Rt G e
. B) RNy

%
)

Jorge Romeu (ITT Research Institute)--"An Approach to
Software Baseline Generation"

Dr. Romeu discussed the initial results of an ongoing re-
search effort to define baselines for the management of
software development. A baseline was defined to be an esti-

mate of the usual value of any characteristic of a software
system.

The analysis was based on data collected by the Software
Engineering Laboratory. Correlations were calculated be-
tween effort and other software characteristics, and de-
scriptive statistics were generated. The ultimate goal of
this research is to develop guidelines for estimating costs
and performance characteristics for software development
based on historical data. The baseline approach is widely
applicable and easily implemented.

T. Babst

CSC

18 0of 18

lilaien RO N S B T A P i s 1 o gy e T

s w

T e

e

iR

e e g e e e

i - A T 1t B e e o b e - fo

NI e w e ¢

iy e

TERTIOR

TEie A

BOWE S OERE Y aaTeor o

B MR Sl 2 U S A5 36 LA SR
g .

PANEL #1

CURRENT RESEARCH IN THE SOFTWARE
ENGINEERING LABORATORY (SEL)

D. Card, Computer Sciences Corporation
y. Basili, University of Maryland
M. Zelkowitz, University of Maryland

)

e R PR

et il A5 0 bl it A g’ s

s e £ £

TV W e

e

Lo vanithe

EVALUATING SOFTWARE ENGINEERING

TECHNOLOGIES IN THE SEL

David N. Card

LY

COMPUTER SCIENCES CORPORATION

Frank E. McGarry

GODDARD SPACE FLIGHT CENTER

Gerald Page

COMPUTER SCIENCES CORPORATION

Prepared for the

NASA/GSFC

Eighth Annual Software Engineering Workshop

D. Card
CSC
1of17

e R T e R R e TG

TR R S

L IR

[U PSS N FOF P e

Sl S ks it

e v e

S XY et

e ey R AR A =

]

INTRODUCT ION

The basic goal of software engineering is to produce the
best possible software at the lowest pussible cost. Many
practices, tools, and technigues (collectively referred tO]v
as technologies) have been developed that purport to help do
this, some of which have become widely accepted in the soft-
ware industry. However, few of these technologies have been
effectively evaluated experimentally (Reference 1). ‘This ié
due in large part to an insufficient understanding of the
software development process, a lack of recognized standards
for measurement, and the prohibitive cost of iarge—scale
controlled experiments.' The analysis described in this
paper addresses some of these issues. The specific objec-
tives:of this study were to

L Measure technology use in a production environment

[] Develop a model for evaluating software engineering
technologies

° Evaluate the effects on productivity and reliabil-

ity of some specific technologies

Eight widely used technologies were selected for study, as
identified in Table 1. The extent Of‘general use shown' in
Table 1 is the perceﬁt of:réspondents reportihg'having suc-
cessfully appiied these technologies in a survey by Beck ard

Perkins (Reference 2).

The data analyzed in this study was collected by the Soft-
ware Engineering Laboratory (SEL). The SEL has collected
data from more than 45 projects during the past 6 years
(Reference 3). Table 2 shows some of the characteristics of
these;projects. Although a controlled experiment was not
performed for this study, a carefully matched sample was
selected for analysis from the SEL data base. The sample

D. Card
CsC
20f17

e N T s g Y, e R A e B e

8

T

A28 s A e

LS S n i st SR L e

T e T

e o i S TR Y
Y

|
R T e - .

o Ll3o¢g

J8D
pred '

e

ﬁrm S8 ARIED 18 £ Aiie A r A e LN i R e e CL At ®

TABLE 1. TECHNOLOGY INDICES

SEL
INDEX MEDIAN (%)

 QUALITY ASSURANCE? 49

TOOL USE2 | 49

DOCUMENTATIONZ)

STRUCTURED CODE 70

~ CODE READ | 20

TOP-DOWN DEVELOPMENT 60
CHIEF PROGRAMMER 85

DESIGN TIME o - 32

TEROM SURVEY BY BECK & PERKINS.
2COMPOSITE OF SEVERAL ITEMS.

T T S I S S P .

GENERAL!

USE (%)

49
NA
78
59
a4
60
46

NA

T oW
TN

2R

e G~

4“-"‘&/‘ T

v

L1Jod

28D
PieD) 'd

TABLE 2. ENVIRONMENT STUDIED

TYPE OF SCIENTIFIC, GROUND-BASED, INTERACTIVE GRAPHIC,
SOFTWARE: MODERATE RELIABILITY AND RESPONSE REQUIREMENTS

LANGUAGES: 85% FORTRAN, 15% ASSEMBLER MACROS
MACHINES: 1BM S/360 AND 4341, BATCH WITH TSO

PROJECT CHARACTERISTICS: AVERAGE HIGH Low
'DURATION (MONTHS) . 158 20.5 12,9
EFFORT (STAFF-YEARS) - 8.0 1.5 2.4
SIZE (1000 LOC)
DEVELOPED 57.0 1.3 21.5
DELIVERED : 62.0 112.0 32.8
STAFF (FULL-TIME EQUIV.)
AVERAGE 5.4 6.0 1.9
PEAK 10.0 13.9 3.8
INDIVIDUALS 14 17 7
APPLICATION EXPERIENCE
MANAGERS 5.8 6.5 5.0
TECHNICAL STAFF 4.0 5.0 2.9
' OVERALL EXPERIENCE
MANAGERS 10.0 14.0 8.4
TECHNICAL STAFF 8.5 1.0 7.0

SAMPLE: 22 SYSTEMS USING A VARIETY OF T‘ECHNOLOGIES

43-CAR-(33)-5 .

S M v T T NI R W Rt et ST e ngmidl i it it | ket A i S e e g e el et o B L L L e N

! .3
T e et

TR 0 R

S

e B

Mg oy

M SRS

RS

P raiI B

consisted of 22 scientific software systems developed in
FORTRAN on the same computers to support spacecraft flight
dynamics applications.

LT T T T —

D. Card
CSC
50f17

b
;
l :
3
i
i
:
i

o Y |

ST NG g v -

4

E-‘-«&”‘*W"'w SR T

TECHNOLOGY MEASUREMENT Ty

A degree-of-use score (technology index) was determined for

each of the technologies listed in Table 1 for every system ;
; ; in our sample. These scores are based on both subjective
| and objeéﬁive information. (The table lists the median
score from the sample of 22 projects.) These scores are the
- % percentage of actual’use of a technology relative to its .
2 E l maximum possible use. The exception is design time, which j, f
i is simply the percentage of the development schedule spent : t
in design. ”

For those technology indices having only one component (see
Table 1), such as code reading, the score is the percentage
of code to which this technology was applied. -For those

SRR TR R TR e 3
. ’

§

:)

technology indices having more than one component, such as . ;

! documentation, the score is the percentage of components |

% applied. 1In the case of the documentation technology index,
' the score is the percentage of documents actually produced

LR RS At S

1 | by a project of those that might be produced in this o
. environment. : K ‘

This analysis attempted to idéntify the effects of tech-
nology use on development team productivity and software-
reliability. Productivity was measured in terms of the ; i

TR TUTRNTTOT a4 a3 T

number of noncomment lines of code designed, coded, and R

|

{

| tested per programmer hour of effort. Reliability was

} measured as the inverse of the number of errors detected per

AN AR

noncomment line of code.

s

One assumption made in this analysis is that the effect of
any technology is incremental. That is, a high level of use

7
Lo
2

oq a beneficial technology has more effect than a low level

R

of use. A technology. that is of no value unless applied
perfectly is of no value at all, because it will never be
applied perfectly. ‘

D. Card
CSC ’ :

P N BTN

L e T T s R R i U e iy e o e e, F E SRR AR e -

e

R AR R Aol

FoRERE et @R RN

o
:
i
A
3

3
t
~

TECHNOLOGY EVALUATION

Evaluating the effect of a technology on an actual software
development project is;not easy. In practice, several tech~-
nologies may be applied together, and other factbrs such as
programmer efﬁecﬁiveness and problem complexity also influ-
ence project results, Boehm (Reference 4) has pointed out
thejdiffiCulty of distinguishing the effects of modern pro-
gramming practices from those of related factors. Table 5
lists the nontechnology factors considered in this analysis.
Allhbf“these have been suggested in the software engineering
literature to affedt productivity and/or reliability.

Thus, the next step of this analysis was to ijidentify the
major nontechnology factors and to develop & procedure for
compensating for their effécts on productivity and reliabil-~
ity. The analysis of covariance technigue (Reference 5) was
selected to deal with this situation. The Statistical
Analysis System (Reference 6) software pérformed the
computations reported in this paper.

The technology indices were collapséd for this analysis by
dividing the projects into "high" and "low" groups with re-
spect to each technology index. Although this causes some
loss of information, the resulting analysis is also more
robust, This analytic technique permitted tests of signifi-
cance to be performed between the high and low groups with
respect to productivity and reliability after compensating
for the nontechnology factors (covariates).

The two most highly correlated factors from Table 3 were
initially selected as covariates for productivity and reli-
ability. Programmer effectiveness and computer use were
selected as covariates with productivity. Programmer
effectiveness was also selected as a covariate with reli-
ability. However, because requirements changes was cdr-

D Card
CSC
Tof17

YA N TR I AL PR AN AL e e

el o LR e R e BRI R A e

e e A R P TIT T 7 ey

b

ol e W OB R dh. e et an v e

e A < U it T e et dme *5a

© ek B

Lty Fet e

X3yt

b atiat e T e 4 s e e . < e e

L1JO8

28D
pIe) ‘(I

TABLE 3. OTHER FACTORS

CORRELATIONS

SUBSYSTEM)

FACTOR MEAN

PRODUCTIVITY! | RELIABILITYZ
PRODUCTIVITY 3.0 - 0.51
PROGRAMMER EFFECTIVENESS 5.7 053" 0.68*
(WEIGHTED YEARS)
REQUIREMENTS CHANGES/ 1.4 -0.12 -0.40
SUBSYSTEMS
NUMBER OF SUBSYSTEMS 6 0.21 0.03
NUMBER OF DATA SETS 1 0.26 0.17
NUMBER OF DATA ITEMS 328 0.30 0.21
AVERAGE STAFF LEVEL (FTE) 3.3 0.10 -0.09
AVERAGE MODULE SIZE (NEW) 193 -0.07 -0.15
COMPUTER USE (HOURS/LOC) 0.008 -0.59* -0.19
MANAGEMENT/SUPPORT 19 -0.47 -0.18
EFFORT (%)
DATA DENSITY (DATA ITEMS/ 7 -0.07 0.38%

TpRODUCTIVITY

DEVELOPED NONCOMMENT LINES OF CODE/PROGRAMMER HOURS

2RELIABILITY = ~-ERRORS/DEVELOPED NONCOMMENT LINES OF CODE

+SECOND FACTOR SELECTED.
*FIRST FACTOR SELECTED.

436-CAR-(6f)

related with programmer effectiveness, data density was
substituted as the second covariate for reliability. This

ISR 'S TR

prevented collinearity in the model.

T
.
a4

>
K.
s

Each technology was evaluated independently in this manner.

One potential confounding effect recognized in an earlier ‘

SEL étudy (Reference 7) and by Boehm (Reference 4) was the i
tendency of technologies to be used together, This makes it i

difficult to isolate the effects of one technology from f 1
another and‘pbses the possibility that there might be an ;
interaction of technologies that this procedure could not ;- 3
detect. : o _ , f

&

Productivity Results

- | This approach to the evaluation of technologies resulted in
the generation of a class of models (one for each tech-

nology) of the form

PR ARG E YRR TR
- R

Productivity = Technology + Programmer Effectiveness
+ Computer Use o ’ o

Together, programmer effectiveness and computer use ac- :
counted for 54 percent of the variation in productivity

before the effects of any technologies were included in the 1
models; Table 4 shows the additional variation accounted

coEARR TR AR AR

N

for by the technology factors. The magnitude and signifi-

:

E cance of the effect for each technology are also listed in
§ the table, 1Individually, none of the technologies studied
é[in this analysis showed a Significant effect on productiv-
g; ity. However, this also indicates that any other benefits
%4 derived from these technologies are not at the expense of

>

1 ; productivity.

-~ ;

- Early suggestions were that the principal value of modern
’ programming practices is primarily in the area of maintain-
ability. Shephard (Reference 8) indicated that the effects
of such technologies are more apparent in less experienced

D. Card
CSC
90of17

L R L e il LN A e R ey e

JSO
pIed "'

L13O0I

=

TABLE 4. SUMMARY OF
PRODUCTIVITY ANALYSES

TECHNOLOGY SIGNIFICANCE
INDEX (EFFECT) OF EFFECT (X4)

PERCENT
IMPROVEMENT CONTRIBUTION (X,)

EXPLANATORY

QUALITY 0.87
ASSURANCE

TOOL USE 0.77
DOCUMENTATION 0.36
STRUCTURED 0.82
CODE

TOP-DOWN 0.95
DEVELOPMENT

CODE READ 0.45
CHIEF 0.16
PROGRAMMER

DESIGN TIME 0.60

ISOLATED TECHNOLOGIES HAVE NO DETECTABLE EFFECT ON

-2

3
"

PRODUCTIVITY

0
2

1

436 CAR-(6b)

programmers than in experienced personnel such as those " {
studied by the SEL (see Table 2)., Some other environment- : !

A TESY AT T
.o e

specific considerations are discussed in the summary at the
end of this section. Mills (Reference 9) proposed that pro- : 1
ductivity is a byproduct of quality, that is, a consequence |

R

of minimizing rework (errors). We would thus expect differ- '
ences in reliability (guality) to be easier to detect. !)

Reliability Results

v AT TRy o

& This approach to the evaluation of technologies resulted in
the generation of a class of models (one for each tech- : :

AP A S
-

nology) of the form :

(A A L L

Reliability = Technology + Programmer Effectiveness

+ Data Density

Together, programmer effectiveness and data density ac-

Rl Ll
.

|
)
j
counted for 63 percent of the variation in reliability be- ’
fore the effects of any technologies were included in the : j

B ST X At

models. Table 5 shows the additional variation accounted : t ' 3
‘ for by the technology factors. The magnitude and signifi- }
% : cance of the effect for each technology are also listed in :
: the table. : | ’ §

Three of the technologies studied in this analysis showed %
significant effects on reliability: quality assurance, |

documentation, and code reading. All of these techniques ' | i
are examples of conscious efforts to understand and verify

the software product. Approximately 73 percent of the vari-
ation in reliability can be explained with a model of this @ j

type. Improvements in reliability were obtained without any

— apparent effect on;productivity (Table 4). Furthermore,
: this implies that skimping on these activities will not pro-
duce any cost savings for the developer.

D. Card
CSC
110f17

TABLE 5. SUMMARY OF
RELIABILITY ANALYSES

b TECHNOLOGY SIGNIFICANCE PERCENT EXPLANATORY
| INDEX (EFFECT) OF EFFECT (X4) IMPROVEMENT CONTRIBUTION (X,)

QUALITY 0.02* 29 10

| ASSURANCE

‘;} TOOL USE 0.78 3 1

‘ DOCUMENTATION 0.04* 27 8

i STRUCTURED 0.75 3 1

E‘} CODE

: TOP-DOWN 0.67 6 1

‘ DEVELOPMENT

| CODE READ 0.02* 29 10

!

| CHIEF 0.56 8 1 |'
PROGRAMMER

f. DESIGN TIME 0.96 . 0

-
| Xele *P < 0.05
| - 436-CAR-(8b)

ey —_— = rer——— . - B % ST T T e e o T N YWl
O LU . # s . . &

Summary f
S The numerical results just presented must be considered in 4

the context of the local software development environment.
The results for each technology are discussed below. i

L
-

° Quality Assurance--A program of regular reviews

(e.g., system requirements, preliminary design) improves
; ‘ software reliability at little or no additional cost in de- i
é | velopers' time. Time spent on reviews is retrieved by
' avoiding subsequent problems. Loy

. o Software Tool Use--Extensive computer use in gen-

eral seems to have a negative effect on productivity, al-
though some specific tools may facilitate specitic tasks.

b st R

| This index is based on the tools available in the flight
dynamics environment. None of these tools has a demon- :

SRRt L LA S 56 LI
. : |

strable effect on productivity or reliability.

e iyt et 1 e thme,

) Documentation--The development of effective docu-

T TR IR .

mentation requires a careful review of the product under

ATUSTHE AN ST
i o vl

development. Documentation is, to some extent, a prerequi-

Lok MR L N S
S

site for quality assurance reviews, and thus has a signifi-

§ | cant favorable effect on software reliability.

¢
¥
E
s
R
3
&

N
B
e
1
o
:?:L,/
P
e
%
&
™.
=

°® Structured Code-~-The use of structured code pro-

duced no significant effect on productivity or reliability. : :

However, the benefits of this technique are expected to
T e !

occur in maintenance. ‘ o

o: Top-Down Development--The high-leVel designs of all

of the systems in the sample studied were similar, and a %

substantial amount of code was reused from previous sys-

\

L

tems. Hence, it is not surprising that no benefit was iden- :
tified from the use of top-down development in this :

environment.

D. Card
CSsC
13 of 17

SV - TTE T 3 - e ad A iy sttt . R A e a2 e Ly \. 4
L £ Bl M it e o i £
e - * - E S JR— ; N
s v
h
Ny
.

5

° Code Reading--The simple practice of code reading f X

: improves software reliability at little or no additional {

g‘ cost in developers' time. i

;.) Chief Programmer~~The use of a chief programmer ‘ ?
? team produced no significant effect on prod@ctivity or reli- |

ability. However, it may provide other benefits. S ;

o . i ; . + {

é ® Design Time--The percent of schedule spent in de- . '§

: sign showed no éignificant effect on prOductiviﬁy or reli- f\ ;

y ability. The high-level designs of all sYstems studied were E‘ ;

. similar, and the software development problem was well ; é

;7 understood. In this situation, additional design time may ‘- E

;‘ not improve the product. 8
. :
| :
e

Voo

; i

. |

1

¥
&
N
&
;;
K
£
&
&
b
¥
L3
F—al
£
J—

D. Card
CSC :
14 of 17

R R L, el A i e e e e

2 -2

£
o

, i
A
> b

-';,L CONCLUSIONS

:' L
The analysis results presented in the preceding section lead ; j
, to two types of conclusions: those pertaining to the con- g
: duct of software development in the local (SEL) environment, : i

and those of a more general nature. For the most part,
these conclusions are consistent with similar work by other
researchers and with assumptions commonly accepted in the
software development community.

The Local Environment | ' | 1
The results of this analysis provide the following sugges- E §
tions for the conduct of flight dynamics software develop- » !

ment projects:

ray v e Py RS ko

® Use a small team of appropriately experienced in- :

dividuals i 2

: i

: ® Do not depend on the computer to do the pro- . !
é grammer's thinking 7
A ° Read all ccde developed % =
P () Effectively document each phase of development : :
’ ° Conduct regular quality assurance reviews 5 E

The most important lessons are that developers must‘be cap-
able and must consciously seek guality. These conclusions - }
will be fed back into the management of subsequent software

development projects at Goddard SpacejFlight~Center (GSFC) . ' ;

General Implications™

IR U PR o

i, The analytic procedure and some results of this study are :
it applicable to more than just the GSFC flight dynamics envi- ’ ?
%» ronment. The general conclusions of the study are as ;
3 follows: E
o ' : :

L [Technology use can be measured and evaluated in a

%ék production environment.

1

’,5 D. Card

£ CSsC

= 15 of 17

i s RN e A R A S T TR o0 e et L TR 02 L R AL A e g

LT il i e i a a4 VT i e 4 e

WA MRS SPTRTER R T

5
A

I— - - - - T L AR 3
T : 7 :

(] A model that explains much of the variation in pro-
ductivity and reliability was developed for tech-
nology evaluation.

Limited use of the technologiés studied can produce
up to about a 30-percent improvement.

Although the improvements identified in this Stﬁdy were in
the area of reliability, a corresponding decrease_ih main-
tenance cost due to a smaller need for error correcﬁion
should also be realized. Furthermoxe,‘productivity:appears
to be a companion of quality software éevelopment. In addi-

tion, some technologies may produce other beneficial effects
in areas not yet studied by the SEL.

The analysis of covariance model appears to}bé one appfo—
priate technique for evaluating the effectsyof technologies
in this context. However, small improvements in pn:oductiv-~
ity and/or reliability that were not detected by this pro-
cedure might occur. More such evaluation efforts are needed
to provide an empirical basis for the formulation of soft-
ware development standards.

D: Card
CSC
16 of 17

RS T i el SN s e G TT o i sp—_ ;

< aooka v e

i e e 2

S T o]

o ha i -

G el T
%

AL SRR A N S A
. .

R s S AN St St

RS D

...:41\,?.;1}%‘_.,..,,&}7; L‘,{;xr:wﬁ',yfﬂ.,;r,~ RERE T T AT

‘;._.a

ACKNOWLEDGMENT

The authors would like to thank V. Basili, B. Curtis,

S.

Zweben, and W. Agresti for their comments on an earlier

version of this paper.

REFERENCES

B. A. Sheil, "The Psychological Study of Programming,"
ACM Computing Surveys, vol. 13, no. 1, March 1981

L. L. Beck and T. E. Perkins, "A Survey of Software
Engineering Practice: Tools, Methods, and Results,"
IEEE Transactions on Software Englneerlng, vol. 9,
no. 5, September 1983 , ‘

Software Engineering Laboratory, SEL-81-104, The
Software Engineering Laboratory, D. N. Card,
F, E. McGarry, G. Page, et al., February 1982

B. W. Bdehm, Software Engineering Economics. - New York:
Prentice Hall, 1981, pp. 453-456

0. J. Dunn and V. A. Clark, Applied Statistics:
Analysis of Variance and Regression. New York:
John Wiley & Sons, 1974, pp. 307-332

i

D M A A R o R TREREETRNRREE e e T T

SAS Institute, Statistical Analysis System User's Guide,

J. T. Helwig and K. A. Council, December 1979

D. N. Card, "Identification and Evaluation of Software
Measures," Proceedings of the Sixth Annual Software
Engineering Workshop, December 1981

S. B. Shephard, B. Curtis, P. Milliman, et al., "Modern
Coding Practices and Programmer Performance," IEEE
Comguter, vol. 12, no. 12, December 1979

H. D. Mills, "Software Productivity in the Enterprise,"
Software Productivity. New York: Little, Brown & Co.,
1983, pp. 265-270

I).(jard
csc
17 of 17

g e Bk et

ey

TAARTEL I T

I L T T T e

R L. ¥ o

PR

1
b £
| ,] t
” i - i B
wf i N '
o j Nt AL y , L
oRcL. PAC (€ " N84 23139 .
i P A
i | OF POOR QUALITY :
T i .
. 1 |
i £,
; b
r k f’
E {
s !
y- | MONITORING SOFTWARE DEVELOPMENT THROUGH DYNAMIC VARIABLES ‘
* i ‘
f . ! Carl W. Doerflinger :
i Victor R. Basili |
I s
University of Maryland :
: Dept. of Computer Science : \
5 College Park, MD 20742 : !
(301) 454-2002 :
_ ¥ ;
‘ Abstract
!
4 ; : N
- This paper describes research con- The ‘interest in the software develop- ! o
e ducted by the Software Engineering Labora- ment process is motivated by =~ desire to : I
- tory (SEL) on the use of dynamic variables predict costa and quality of projects ! :
‘ as a tool to monitor software development. being planned and developed. For several i 8
The intent of the project is to identify years, studies have examined the relation- i
project independent measures which may be ships between variables such as effort, ¥
used in a management tool for monitoring 4,5 K
3 software development. This study examines size, lines of code, and documentation . H
it several FORTRAN projects with similar pro- These studies, for the most part, used :
files., The staff was experienced in data collected at the end of past projects : ‘
developing these types of projects., The to predict the behavior of similar pro- : !
projects developed serve similar func- jects in the future, In 1981 the SEL con- : 3
tions. Because th se projects are similar cluded that many of these factors were too i
we believe some underlying relationships dependent on the environment to be useful i
exist that are invariant between the pro-
jects. These relationships, once well for the models that had been developed . ‘3
defined, may be used to compare the Any model which attempts to trace these 3
development of different projects to relationships should therefore be cali- 3
determine whether they are evolving the brated to the environment being examined.
same way previous projects in this The meta-model proposed by the SEL is
6

environment evolved. b
designed for such flexibility . y

RN

tion (NASA), the Computer Sc¢ciences Cor-
poration (CSC), and the University cf
Maryland established to study the software
development process. To this end, data
has been collected for the last six years.
The data was from attitude determination
and control software developed by CSC, in
FORTRAN, for NASA. Additional information
on the SEL, the data collection effort,
and some of the studies that have been
made may be found in papers from the

Qverview Another way to isolate out the .

environment dependent factors is by com- : H

The Software Engineering Laboratory paring two internal factors of a project, : 3
(SEL) 1s a joint effort between the thus ignoring all outside influences. One .
National Aeronautics and Space Administra- approach that is used to monitor software z

development examines the time gap between
the initial report of software problems
and the complete resolution of the prob-

lem . Comparing two variables is useful
because it alsc accentuates problem areas
as they develop; providing relative infor-
mation rather than absolute information.
Relative information is useful to the pro-
ject manager because it accentuates trends
as the project develops. If project

[P

gLJ Software Engineering Laboratory Series environments are similar, then similar ;
_ 1,2,3 values should: be expected. Because the :
3088 published by the SEL project envirgnments. in the SEL are simi- §
& . ‘ . lar, it was felt that this approach could i
= be further extended-to provide managers H
i This research was supported by the Nae with information about how a set of vari- . . *

tional Aeronautics and Space Administra-

tion grant NSG=5123 .to the University of
Marylaand. Computer support provided in
part by the facilities of NASA/Goddard
Space Flight Center.

ables over the course of a project dif- £

fered from the same set of variables on . H
other projects (baselines). The managers
could be alerted to potential problems and
use other variable data and project

et rnpivia e

. 434
0730-3157/83/0000/0434501.00 © 1983 IEEE

V. Basili
UofM
1 0of32

TR Mg ® TR

N

M IES AT

“VY;‘,"" L I \{*"‘ﬁ‘j‘m’

]
g,
&

-4

|
|
i

[

ORIGINAL PAGE &
OF POOR QUALITY

knowledge to determine whether the project
was in trouble.

This methodology is flexible enocugh
to respond to changing needs, Every time
a project 1s completed the measures col.
lected during its development may be added
in to calculate a new baseline. In this
changes in the environment, as they occubk.

Baselines might also be developed to
reflect different attributes, For
instance, several projects which had good
productivity might be grouped to form a
productivity baseline. Once baselines are
eatablished, projects in progress may be
compared against them. All measures fal-
iing outside the predetermined tolerance
range are interpreted by the manager.

The implementation of this methodol-
ogy i3 dependent on two factors. The
first factor is the availability of meas-
ures that are project independent and can
also be collected throughout a project’s
development. Variables like programmer
hours and number of computér runs are pro-
ject dependent. By comparing these vari-
ables againat each other a set of relative
measyres may be generated which i3 project
independent. Ffor instance, the number of
software changes may vary from project to
project. The project dependent features
shared by each variable will cancel out
when the ratic of software changes per
computer run is teken. The resulting
relative measure is project independent.

The second factor is the need for
fixed time intervals common to all pro-
jects. T¢ normalize for time, project
milestones were used. The time into a
project might be twenty percent into cod-
ing instead of ten weeks intoc the project,
for instance.

When computing the baselines one
other factor was considered. At any given
interval during development a variable may
measure either the total number of events
that have occurred from the beginning of
development {cumulative) or the number of
of .events that have occurred since the
last measured interval (discrete). Since
these approaches may convey different
information it was felt that they both
should be used.

For simplicity, the baseline for each
relative measure was defined as the aver-
age and standard deviation computed. for
the measure at predetermined intervals.. ‘A
project’s progress may now be c¢harted by
the software manager., At each interval in
a projects development the relative meas-
ures ‘are compared with their respective

435

baseline. Any measures outside a standard
deviation are flagged. These measures are
then interpreted by the project manager to
determine how the project is progressing,
A flagged measure may indicate a project
is developing exceptionally well or it may
indicate a problem has been encountered.

The interpretation of a set of
flagged measures is a three atep process,
First, the manager must determine the pos-
sible interpretations for each flagged
relative measure using lists of possible
interpretations developed and verified
based on past projects.

Second, the union of the lists of
poasible interpretations of each flagged
measure must be taken. The list formed by
this union contains all the possible
interpretations ordeéered using the number
of times each interpretation is repeated
in the different lists. The larger the
number of overlaps a possible i{nterpreta-
tion has, the greater the probability {t
isa the coérrec¢t intevpretation.

Third, the manager must analyze the
combined list and determine if a problem
exists. Interpretations with an equal
number of overlaps all have an equal pro-
bability of being the correct interpreta-
tion. If none of the possible interpreta-~
tions for a given relative measure overlap
then the relative measure should be con=
sidered separately.

When analyzing the interpretations,
three pileces of information must be con-
sidered; the measurements, the point in
development, and the managers knowledge of
the project. A relative measure may indi-
cate difrerant things depending on the
stage of development, For instance, a
large amount of ‘computer time per computer
run early in the project may indicate not
enough unit testing is being done. Per-
sonal Kknowledge may also give valuable
irisight.

A fundamental assumption for using
this methodology is that similar type pro-
Jects evolve similarly, If a different
type of project was compared to this data-
base, the manager would have to decide
whether the baselines were applicable.
Depending on the type of differences, the
established baselines may or may not be of
any values

EXAMPLE 1:
Forty percent into coding a software
manager finds that the lines of source
code per software change is higher than
normal. A list previously developed i{s
examined to determine what the relative
easure might indicate. The poasible

V., Basili
UofM
2 0f32

Py 3

-
L
{

{'.Z

-~

ol

H

PO R e TR TR

PO .

L=
OF P

interpretations for a large number of
lines of source code per software change
might be:

good code

easily developed code

influx of transported code
near build or milestone date
computer problems

poor testing approach

If this were the only flagged measure the
manager would then investigate each of the
possibilities. 1If the value for the meas-
ure is close to the norm less concern is
needed than if the value is further away.

If in addition to lines of source
code per software change the number of
computer runs per software change was
higher than normal, the manager would also
examins this measure. The possible
interpretations for a large number of com-
puter runs per software change might be:

good code

lots of testing
change backlog

poor testing approacéh

The union of the possible interpretations
of these two measures indicates that the
strongest possible interpretations are 1)
good code and 2) a poor testing approach.
The number of possibilities to inveastigate
is smaller because these are the only
measures which overlap. The manager must
now examine the testing plan and decide
whether either of these interpretations
reflect what is actually occurring in the
project. If these two possible interpre-
tations do not reflect what is happening
on the project, the manager would then
examine the other interpretations.

Baseline Development

To develop a2 baseline one must first
have variables whpse measurements were
taken weekly for several projects. Five
variables in the SEL database were used.
The 1lines of source code, number of
software changes, and number of computer
runs were collected on the growth history
form. The amount of computer time and
programmer hours were collected on the
resolurce summary form. Measurement of
these variables started near the beginning
of c¢oding. -In this study, nine separate
projects were examined whose development
was documented, with sufficient data, in
the SEl database. The projects ranged in
size from 51-112K lines of source code
with an average of 75K. No examination
was done for the requirements or design
phases.

Once the variables were chosen the

OOR QUALITY

average and standard deviation was come
puted for each baseline., Some baselines
suffered from limited data points during
the beginning of the coding phase. A cou-
ple of the projects, in which problems
were krown to have existed, were flagged
as soon as data on these projects
appeared, but this was fifty percent of
the way into coding. It is not known how
much earlier they would have appeared, if
data existed at the early intervals.

Interpretation of Relative Measures

Once a set of baselines are esta-
blished new prcjects may be compared to
them and potential problems flagged. To
interpret these flagged relative measures
a list should be developed with each meas<
ures possible interpretations. Each list
must consider the possible interpretations
of the relative measure when it is either
above normal or below normal: What each
component varifable actually measures
should also be considered when the dif-
ferent lists are developed.

A list was developed with possible
interpretations for each relative measure
being examined in the context of the SEL
environment., In another environment the
interpretation of ‘these measures might be
different. These lists are subdivided
into two categories; above and below nor-
mal. The above normal category contains
possible interpretations for the relative
measure when it is outside one standard
deviation from the average in -the positive
direction. The below normal category
refers to interpretations-whern the measure
is outside one standard deviation from the
mean in the negative direction.

One-of the reasons this methodology
works is because of the implicit inter-
dependencies between different relative
measures. To show these interdependericies
more "explicitly a cross reference chart
has also been provided for each interpre-
tation to indicate other relative measures
that can have the same interpretation. A
number. in the cross reference section
indicates the 1list number of a.relative
measure that can have the same interpreta-
tion, The position of the 1ist number in
the l-quadrant cross reference section
indicates whether both interpretations are
found with above normal values, both with
below normal valueZ, or one with above and
the other with below normal values.

With these lists a set of flagged

‘relative measures may be evaluated. When

a relative measure is flagged, its associ-
ated list is examined for possible
interpretations., Overlaps of this 1list
with the lista of other flagged relative

V. Basili
UofM
30f32

PR

st g,

RO N S PN

I-r—_x AR - LT . T B S o I e F [P S % S TR RS -
§ 1 * S e e . et e 8 i o R
i
i

ORIGINAL PACGE 9 |
OF POOR QUALITY. .

!
[t
b
L4
#
§
w
cC ‘
Sample Baseline o0 1
ob Vet |
':,:,"5&(\ - |
e LAY c
., ‘;“_ ‘P{\‘" ; ‘l
. e oo
- “B .
s ;
o e K
:e‘i:“-\'oq’ @
iy ‘
?
(‘@ €
28
¥t yo® §
i &3 e 3
i oF b
i N !
1
s
P
e o o® ;
" o o B
i e 1
)
)
Shypet i
[+) E
/ <
/ 3
D { bl
R i \\\L 'g ! y
B N i & { i
o | N : g 0% A b
- 3\ b%:)b” l E 2
%, g 1
5 3 Lo\ G ¥
b \ % . ‘
- . .
[T . B ‘
L8 R ; i
: % NCS . :
; g . Y m“lg»“ :
i kel H [A 1 .
: Sz H :
H g 1 13
; § 9
i g ¢
: 3 2 w
; 2 2
i g g ‘ H 5
| o E ¥ (g i i
: “ o | H ‘»“'36"'(& : 3
. 3 5 (3 1
L P a o © 0 ¢ " a i
9 24 - - o o o a a
3 g
5 B
VOERODMHME HEM ARE D=
: ®
1
§
i
5
i
V. Basili ST

UofM .
4 of 32

& a e

Relative Measures Examined:

List
List

Computer Time per Software Change
Prograaner Hours per Software Change

List 1 -~ Computer Runs per Line of Source Code
1.ist' 2 - Computer. Time per Line of Source Code
List 3 - Software Changeés per Line of Socurce Code
List 4 - Programmer Hours per Line of Source Code
List 5 - Computer Time per Computer Run
ist 6 Software Changes per Computer Run

List 7 Prograsaer Hours per Computer Run

L]

9

b

List 2: Computer Time per Line of Source Code

1 | cross reference |
type .} interpratation | above | below 1
i normal | nermal |

ceios
nion
seq “A

R e

Mera3 1S w0 e

above
naormal
-high complexity
-low productivity
-bad specificatiors
~lots of testing
-unit testing being done
-code being removed
{testing or transported)

below
normal
=influx of transported code
~near build or mileatone date
=little on line testing
being done
-code error prone
~little executadle code
being written

o

it St intd
=
w
o

[V St

o N e e s

e,

List 1: Cowputer Runs per Line of Source

Code

cross reference

i type 1} interpretatiocn I above | Dbelow
I t 1 normal | noraal
| above ! I

{ normal t 1

§ ~-low productivity 2 & t

§ ~high complexity 12 87894

I ~lots of testing 12 t6 7

| -removal of code 12 3:4 i

) {testing or transported) 1 |

i -5ad spectfications 12 34 '

[[

| below t 1

| normal t i

] =influx of transported code I 2 3 %

| -near bdbuild or milastone date {6 (23489
| -1ittle on line testing 1 12

| being done 1]

| -ilittle executable code i 12

1 being developed ! 1

§ -computer problems 1 13

List 3; Software Changes per Lire of

Source Code

1
1
1
|
1
1
1
1
|
[
1
i
|
|
i
1
|
i
|
|
|

| 1
| type | interpretation
| I

croas referance
above | ‘below
normal | normal

above
normal
-good testing
~error prone code
~bad specifications
-code. being reaoved
(testing or transported)

-— o
NNW»
£ &0

below

normal
-influx of transported code
-near bulld or milestone date
-good code
~poor testing program
~change backlog
~low complexity
—computer prodlems

®mon

we

s sk

A Nt e N

10 4004 yo
d TYNIDRO

AlNvn
BI zmy

et PN

P

.3

R T e . o BOTT o - - N &
CRESL ST A TET ST T S B S e e Sl 1A Nk v LI o . A . - : K "
g
i
?]
1]
4
H
i
: g
| .
“ i A
. i
List 4: Programmer Hours per Line of Source Code
i 1] ! cross reference 1 List 5: Computer Time per Computer Run
; I j el interpretation ! above ' | - below !] I N | cross reference !
e '- S ! norsel | normal | | type | interpretation 1 above | below 3
i above (i ' | l I normal ! normal |
| riormal i 1 I T - ; ; ;
; <high complexity Itr27891 i | :o:;:l ! f i
~error prons code 1356 12789 |
i : : Zbad specifications 1123 i) : -”::::::d‘:::{;“wn teating :6 : :
- ~code being remaved It 23 ! |
' § | (testing or transported)] 1 { | -error prone cdde :?3 56 :2 789 :
1 i ~changes hard to isoclate 1789 i | | -compute bnunddalgorllhl: ! ' ! .
1 =changes hard to make 179 | 1 [being teste : ; i
I -low productivity iy 2 1 t : oy ! , '
] €low
| below : : ll I normat] i t
{ normal 1 i i] -unit testing going on t2 8 ¥ I
I -influx of transported code | 213 1 1 -easy errors belng found 1 17 9 1
1 -near duild or milestone date I§ 23891 - mmees--
B [} ~10w complexity I} 13 i

(134

@ T

2

List 6: Softiware Changes per Computer Run

4 TENIDRIO

List 7: Programmer Hours per Computer Run

ynd ¥ood 40

-, 1
] | cross reference | o
| type | interpretation | above |. below | 1 1 i eross reference | @
Y) | normal ! normal. | | type | tnteppretation ! above | below { i‘iﬁ
- | norsal | normal | d
| above |] | — R
1 normal |] { | above i t | &@ -
! -good teating 13 189 i | normal | ! 1 !
1 ~3ysteam & integration testing [5 i t 1 -high complexity Iv2 48891 !
1 started early | | 1 i -modificationy bejng made to | 19 f
1 -error prone cods 1345 12789 | 1 recently ‘transported code | t |
I ~near build or milestone date | tr 23 | | ~changes hard to isolate t68 9 } 1
1 { f4 .89 1 | ~changes hard to make 18 9 1 i ‘
. i - 1 | [] 1 1 [)
: | below t | I I' beiow 1 1 1 ;
- | normal { { | | normal i | 1 :
qu | ~good code 1389 l i | -easy errors being fixed] 15 9 1 A
o, I -lots of testing 2 17] 1 -error prone code I3 456 12 89 1 3
'Q: ‘ i -poor -testing program j3 89 [} I 1 -lots of testing 2 16 I -
H h i -change backlog 13 i }
] i -
il
el
.
o
]
. =S, =
$og w 2w
o NTE
I3
}
! ;
’ i .
] . e bt . . i S . or s e PR - ORI e e N s . oy 7 - ‘* -
N i

e . L R b e

B R - T T R b i e o s i s S

% List 8: Computer Tiame per Suftware Changs

i i | cross reference |
lnterpretation 1 above | Dbalow 1
1 | 1 normal | normal |

{ 1
{ normal 1
i ~g00d code |
1 ~poor testing prograam I
] ~high coaplexity {
§ -changes hard to lsolate 1
1 =unit testing I
1 -compute bound algorithas]
I being tested 1

|owsmacorun
| below i
| normsl 1
{ ~-neapr build or milestone date |
i -geod testing I
i <error prone code 1

measures form the new 1list of what these
relative measures together might indicate.
The more overlaps a particular interpreta-
tion has, the greater the chance it is the
corregt interpretation. Interpretations
with the same number of overlaps must be
considered equally. The more relative
measures flagged the more serious the
problem may be. It {s up to the manager
to determine whether the deviation is good

A or bad.

; Monitoring a Software Proiecg'a Development
3 |

s : Once the baselines have been

, developed and the lists of possible

4 i interpretations have been put together a

software mpanager may monitor the actual
development of a project. Example 1
demonstrated how a single interval may be
interpreted, The following discussion
will trace the development of an actual
project. During the actual use of this
methodology, influence would be exerted to
‘ correct problems as soon aa they are iden-
: ! tified. With this study, we must be con-
' | tent to study a projects evolution,

; without hindrance, and see at what points
i probléms could of been detecteds

Project twenty® was chosen for this
examination becauase data existed
throughout the projects development. In
most respects project twenty was an aver-

k; : age project.. The project did have a lower
: i than normal productivity rate. The lower
—— i rate may be partially explained by the

fact the management was less experienced

» ‘when compared to other projects. The pro-
- Ject also suffered from some delayed

; staffing. <Changes in staffing will bse

(3F?5€359Jﬁ1§. E&;ggzwa 5}

e I

OF POOR QuALITY

List 9¢ Programmer Hours per Software Change

| | | cross refersnce !
interpretation | above | Dbelow i
[| ! norsal | norasil |

i
! normal

| -good code

1 -poor testing progras

| -changes hard to i{solate
[~changes hard to make

i
| normal

1 «go0d testing

I -near build or milsstone date
I -e3sy chinges

¥ -transported code belng

! modified

| ~erpror prone code

]
i
|
|
|
{
|
below 1
|
!
|
1
I
[
|

noted when the different time intervals
are discussed.

The tables on the following page show
wnich relative measures were flagged when
project twenty was compared to the base-
lines for each stage of development. The
numerical values represent how many stan-
dard deviations each flagged relative
measure was from the baseline, The base-
line for each relative measure was calcu=-
lated using all nine procjects.

Start of Coding:

At the start of coding only one rela-
tive measure is flagged. The smaller than
normal number of software changes per line
of source code using the discrete approach
reflects work done during the design
phase. The lists designed in the previous
section were directed towards code produc-
tion and testing and do not apply to this
time interval when using the discrete
approach. This measure may indicate good
specifications or lots of PDL being gen-
erated., - The manager might want to examine
this measure later if it constantly
repeated. Since it is the only measure
flagged at this time it will be ignored.

The numbering convention used is an
extension of the one first used by Bailey
6

and Basili .

V. Basili
UofM
Tof 32

T e o R R SR

o e

- e e 6 e

vex

e e Bt

R L s

¢ sl e bt o =

g tos ealilitie .m.‘%‘

Lo e s o

X5

el

< gt B

P T

e it

S

: . . .

i L o

?
i
|
: g
SN T I LAAER W

project: 20

i : method of measurement: cumulative

) {start 20% 40% S50% 60% BO% start 50% start end | relative measures
AT lcode code code code code code sys sys accpt !
B e S R e Aot o a2 08 e e e 4o o
| 1.3 | >1 SD programmer hours/lines of source | B
| - .3 | >1 SD runs/lines of source |
{ 1.8 1.5 1.2 I >1 SD computer time/lines of source | B
P R T R it et R R e T DR L e ————e e —— e m——————————
| 1.1 1.2 1.1 1.1 | <1 SD programmer hours/run | ‘
B e e R R e T T ————— e G, — . ———— —mm———

£ ‘method of measurement: discrete 91 (@]
= T L L e =) .
| number of standard deviations from norm | | 8 g 3
oo m e me e cmmm i ————— e e ————————— | | ‘*
a . §
w |'start 20% 40% S0% 60% B80% start 50% start end | relative measures | % -]
|code code code code code code 3ys 3ys accpt | ! r
e o i o s e i o Pt e e - - - - - - - O "
1 1.0 1.1 1.8 1.5 2.0 2.4 } >1 SD programmer hours/lines of source | c g
| 1.2 1.8 1.8 1.7 | >1 SD runs/lines of source | >
b1] <1 SD changes/lines of source 1 - G2
| 1.1 1.t 2.0 2.0 2.4 | >1 SD changes/lines of source | - m ’
| 1.2° 1.3 1.7 241 2.0 | >t SD computer time/lines of source J 1 = ;s
) e S r Dy S Pmmmmpmm—— D ettt I e e T e et e ket m
i | 1.2 | <1 SD programmer hours/run |
& e S e h e m e nm o e e e n e b e i o o e o e o o 0 > > mte
: | 1.2 | >1 SD computer time/change i
?‘ e e i r e m P s e o o e et e e i e e o o - o0
4l ‘g
i i {
2 ©C <
; o
= .9., g:!
W
o2 g
=
. . R e e - .
— o T e e et e e e S gt e NG gt b . - R . e N " n

S U —

ORIGINAL PAGE (8
OF POOR QUALITY.

20% Coding:

The flagged relative measures found
using the discrete approach at this point
represent the work done from the start of
coding until twenty percent of the way
through coding. The 1liat of possible
interpretations for the flagged relative
measures, generated from the lists made
previously for the f{ndividual relative
measure, would look like:

overlaps interpretation

bad specifications

code removed

low productivity

high complexity

error prone code

lots of testing

good testing

changes hard to isolate
changes hard to make
unit testing veing done
easy errore being found

—_ NN W W

The strongest interpretsz:iions are bad
gpecifications and code being removed. If
the actual history is examined one finds
that during this period there were a lot
of specifications being changed. This
resulted in code which was to be modified
being discarded and new code being writ-
ten. During the early period lots of PDL
was being produced but very little new
executable code. The 1list of possible
interpretations does show that low produc-
tivity is also a strong possibility.

The flagged relative measures which
appear using the cumulative approach, from
this time period on, are stronger indica-
tors than the ones used in the first cou-
ple of intervals because the average is
computed using more data points. The use
of the discrete approach for the interval
of twenty to forty percent is atill depen-
dent on three data points. The list of
possible interpretations for this time
period is:

overlaps interpretation

1 low productivity

1 hilgh complexity

1 error prone code

| bad specifications

1 ¢code being removed
changes hard to isolate
changes hard to. make
lots of testing
unit testing being done
good testing
easy errors

The number of possibilities is larger with
this set of possible interpretations.

Five interpretations are slightly stronger
than the others; During the actual
development, the first release of the pro-
Ject was made, The amount of code actu-
ally written was also lower than normal
during this period. The use of the
discrete approach gives a stronger feeling
that code is not being written. Tran-
sported code tends to be installed in
large blocks which can be isolated using
the discrete approach,

50% Coding:

The relative measures flagged during
this period are the same as the ones
flagged at the twenty percent coding
interval, The deviation from the norm for
this interval is larger. The larger devi-
ation may indicate a more serjious problem.
The problem may of been just as serious
earlier but without the extra data points,
that are now available, it could not be
determined., The possible interpretations
may be taken from the list developed ear-
lier. Bad specifications and code removal
were not factors during this period., The
next three highest priority interpreta-
tions were; high cozpiexity, error prone
code, and low productivity. 1In addition
to this the manager should be concerned
with the continued appearance of the rela-
tive measure, programmer hours per com-
puter run, as seen using the cumulative
approach., This may indicate a lot of
testing going on. This in conjunction
with error prone code as a possible
ifntterpretation may indicate trouble, Dur-
ing actual development this period was
spent developing code for the second
release. The proje¢t manager felt that
code was still not being developed quickly
enough during this period.

60% Coding:

Only one relative measure is shown at
this interval, The number of programmer
hours per computer run using the cumula-
tive approach is lower than normal for the
third consecutive time. This should con-
cern the manager because when examining
the 1ist for this measure one i -ds:

error prone code
lots of testing
easy--errors being fixed

Since the occcurrence of this measure is
persistent it may indicate that the prob-
lem was corrected but not enough effort
was expended to completely compensate for
the past problems. It might also indicate
the problem atill exists. During the

442

V. Basili
UofM
9 of 32

£ st e 44

SEMUMRIL,

P e

CR Y

TR oL

d
i
#
i

e A e

o e et G AT s o et

¥

;-
3
“ -

R TR

L

'l
4
:
o
t
3
£
3
i
:
3

COSTRTR TR REE

TR et

3
3

"‘Lq'{':’«‘\u-a;’v

»

= n}»\aj

e
%

Y

actual project it was found that while a
lot of code was written, it had not been
throughly tested. Release two was made
during this period which could explain a
heavy test load. Two additional staff

members were added to the project during
this phase to aid in coding and testing.

80% Coding:

The eighty percent coding interval
does not show any measures outside the
normal bounds. The addition of two staff
members during the sixty percent coding
phase, as well as the addition of a senior
staff member during this phase, appears to
have adjusted the project back along the
lines of normal development. To fully
compensate for the earlier problems one
might expect some of the measures to swing
in the other direction away from the aver-
age. The fact this over correction did
not occur might explain the problems
encountered in the next section.

Start of System and Integration Testing:

The flagged relative measures at this
time period reflect the build up of effort
for the third and final release. - The list
of possible interpretations for the col-
lective set of flagged measures looks
like:

overlaps interpretation

high complexity

bad specifications

code being removed

error prone code

low productivity

lots of testing

changes hard to isolate

unit testing being done

good code

poor testing

changes hard to make

good testing

conpute bound algorithms
being run

easy errors being fixed

PPN R R VRN

Since the code did have a past history of
poor testing an unusually large build up
of testing should be expected. The two
interpretations that apply most to this
situation are lots of testing and error
prone code.

50% System and Integration Testing:

Only one relative measure is flagged
at this interval. This measure was
flagged using the cumulative approach. An
examination of the measure at the previous
interval shows a very high vqlue. A slow

ORIGINAL PAGE i€
OF POOR QUALITY

drop off from this high measure is to be
expected when using the cumulative
approach, An examination of possible
interpretations that would apply for this
pericd of development include:

high complexity

lots of testing

unit testing being done
testing code being removed

A lot of testing is certainly indicated by
past history.

Start Acceptance Testing:

The relative measures flagged at this
interval reflects the build up in testing
before the start of acceptance testing.
The 1list of possible interpretations looks
like:

overlaps interpretation

bad specifications

code being removed

high complexity

low productivity

error prone code

lots of testing

changes hard to isolate
c¢hanges hard to make
unit testing deing done
good testing

— o NN W

Since little code was being developed dur-
ing the testing period, a large amount of
testing with errors being found is the
most reasonable interpretation of these
flagged measures. The early history of
poor testing may be seen here with errors
being uncovered late.

End Acceptance Testing:

The two flagged relative measures at
the end of acceptance testing reflect the
clean up effort being made on the code.

An average amount of computer time and an
average number of computer runs indicates
that the acceptance testing is going well.,
The project was behind schedule due to the
earlier problems encountered. Clean up
was done during the acceptance testing
phase in an attempt to get the project out
the door as soon as possible.

H

ks .seen in this example, the problems
that occur during a projects development
are reflected in the values calculated for
the relative measures. The methodology
preposed can be used to monitor projects.
The number of possible interpretations
increases with each new flagged relative
measure. The ordering of the measures by

PO T

Sa R

i
¥
3
*
3
3
3
¥

S oo e+ e <o <Rk

i

* g

ey s

443

- V. Basili L

UofM Lo
10 of 32 7

B s ket B o L SRR

L RTTE
HRlstat

'

ORIGINAL PAZE 2
OF POOR QUALITY

the number of overlaps provides an easy
method of sorting the possible interpreta-
tions by priority. Another method of
sorting the possible interpretations could
include a factor that considers both the
number of overlaps and the probability of
a given interpretation being the cause at
a given interval. The weighting of
interpretations for a given interval could
be calzsulated using the pattern of
occurrence of the different interpreta-
tions which have appeared during the same
interval in past projects.

An Alternate Approach

Flagged relative measures might also
be interpreted using a decision support
system. The data for the various relative
moasures would be stored in a knowledge
base along with a set of production rules.
To etaluate a project the values for each
reiative measure would be ertered into the
systiem. The knowledge base would compare
thus relative measures to thelr respective
basel’nes, determine which relative meas-
ures were outside the norm, and interpret
these relative measures using the produce
tion crules. A list of possible interpre-
tations ordered by probability would be
generated as a result.

The difference between a decision
support system and the approach presented
in this paper is the method of interpret-
ing the flagged relative measures, FEach
production rule in the decision support
system is the logical disjunction of
several flagged measures which yilelds a
given interpretation. Each production
rule is assigned a confidence rating which
is then used to rate the possible
interpretations. The lists for the rela.
tive measures provided earlier in the
paper may be easily converted to produc-
tion rules using the cross reference gec-
tion. To develop the production rules for
an interpretation one must generate the
various combinations of relative measures
which might reasonably imply the interpre-
tation. Some relative measures may not
imply a particular interpretation unless
they are found in conjunction with another
relative measure. Once the production
rules are known and a knowledge base con=-
structed a decision support system may be
built. For an example of a domain
independent decisionssupport system see

Reggia and Perricone .

Summary

The methodology presented in this
paper showed that invariant relationships
exiast for similar projects. New projects
may be compared to the baselines of these

invariant relationships to determine when
projects are getting off track.

The ability of the manager to inter-
pret the measures that fall outside the
norm 18 dependent on the amount of infor-
mation the underlying variables convey.
The manager must decide what attributes
are to be measured (e.g. productivity) and
pick variables that are closely related to
them and are also measurable throughout
the project. As an example, a variable
like lines of code may be too general when
measuring productivity. Measuring the
newly developed code, either source code
or executable code, would be more informa-
tive since these variables are more
directly related to effort. How applica-
ble an interpretation is for the period
currently being examined should also be
considered when ordering the list. The
variables the manager finally decides on
are then combined to form relative meas-
ures.

One method of interpreting a relative
measure i3 by associating lists of possi-
ble interpretations with it. When a rela-
tive measure appears outside the norm, the
1ist of possible interpretations is con-
sidered. If more than one relative meas-
ure is outside the norm the lists are com-
bined. The more times a possible
interpretation is repeated in the lists,
the greater the probability it is the
cause. How applicable an interpretation
is for the period being examined should
also be considered when ordering the 1ist.
The manager must investigate the suggested
causes to determine the real one.

Congclusion

The ability to monitor a projects
development and detect problems as they
develpp may be feasible. The methoudology
proposed showed favorable results when
examining a past case.

The use of baselines and lists of
interpretations for comparing projects
provides an easy method for monitoring
software development. Both the baselines
and the lists of interpretations may be
updated as new projects are devéloped. As
more knowledge is gleaned the accuracy of
this system should improve and provide a
valuable tool for the manager.

Acknowledgements

The authors would like to. thank Dr.
Jerry Page of Computer Sciences Corporae-
tion and Frank McGarry of -NASA/Goddard
Space Flight Center for their insight and
advice.

Y
§
K
¥
ks
3

Loy voky by

1 i . i vons e b

=
-
i {
;o 3
=
!

b o

e ey e et it P it i b Ao e e . i ot 84 5 4+

V. Basili
UofM
11 of 32

FUEARE Ll Y,

L g S ey

e i gy e L

i ——————

| ows gt |

Vo BB

ORIGINAL PAGE 8
OF POOR QUALITY Ty

Referencea o

{1} card, David, Frank McGarry, Jerry s
Page, Suellen Esiinger, and Victor f‘
i Basili, The Software Engineering
. Laboratory, SEL-81-104, Software
] : Engineering Labtoratory Series, God- i
{: : dard Space Flight Center, February
: 1982.

b T N

{2] <cChurch, Victor, David Card, Frank

MceGarry, Jerry fage, and Victor f

i Basili, Guide To Data Collection,

SEL-81-101, Software Engineering

i Laboratory Series, Goddard Space
Flight Center, August 1982,

St

P (3] SZL,, Collected Software Engineering
r'apers: Volume 1, SEL-82-004,
Software Engineeriig Laboratory
Series, Goddard Space Flight Center,
July 1982,

Ppisitados

[4) Walston, C. E. and C. P, Felix, A
Method of Programming Measurement -and
Estimation, IBM Systems Journal,

January 1977.

St 4

(51 - Basili, Victor R. and Karl Freburger, '
Programming Measurement and Estima- ;
tion in the Software Engineering : - £
Laboratory, Journal of Systems anmd :]

ST 104 A KATRLD

Software, 1981. D

[6] Bailey, John W. and Victor R, Basili, : RN
A Meta-Model for Software Development : L
Fifth International Conference on
Software Engineering, September 1981,

{71 The Role of Measurements in Program-

ming Technology, - lLecture presented
H at University of Maryland, November [
: 15, 1982, 5

. {8) Reggia, James and Barry Perricone;,

X i KMS Manual, TR-1136, Department of

; J . Mathematics, University of Maryland ¢
Baltimore County, January 1982, §

(9] Minsky; M. L., A Framework for the
Representation of Knowledge, The
i Psychology of Computer Vision, pp.
271<280, McGraw Hil1l, New York, 1975.

RO

PSSP

V. Basili T
UofM o »’
{2 of 32

e R R AR T G e

OVERVIEW |

e A GENERAL METHODOLOGY TO MONITOR
SOFTWARE DEVELOPMENT TO DETECT
PROBLEMS EARLY

e THE METHODOLOGY MUST:

REQUIRE MINIMAL OVERHEAD FOR DATA
COLLECTION

PROVIDE AN EASY WAY TO INTERPRET DATA
BE ADAPTABLE TO CHANGING CONDITIONS

ceiopl

WJon
seq ‘A

METHODOLOGY

DEVELOP A SET OF GOOD PREDICTORS FOR
THE DEVELOPMENT ENVIRONMENT

NORMALIZE THE MEASURES TO DEVELOP
BASELINES BASED UPON PAST PROJECTS

COMPARE A DEVELOPING PROJECT TO
KNOWN BASELINES TO DETERMINE
DIFFERENCES FROM KNOWN BASELINES

INTERPRET THE DATA TO EVALUATE THIS
DEVIATION

IF THERE IS A PROBLEM, DETERMINE HOW
TO CORRECT IT

cgio sl

Wion

Tniseq ‘A

APPROACH

e PERFORM A PILOT STUDY
TRIAL METRICS, BASELINES
EVALUATE FEASIBILITY
(DONE: CARL DOERFLINGER)

e BUILD KNOWLEDGE-BASED SYSTEM
USING PILOT STUDY METRICS

IMPROVING INTERPRETATION AND
KNOWLEDGE MECHANISM

(JUST STARTED: CONNIE RAMSEY)

* INVESTIGATE OTHER METRICS
ERRORS
ERROR CATEGORIES
(IN PROGRESS: DEBA PATNAIK)

. - — . @ ;p

cgJo9gj

Wion
fiseq "A

e MEASUREMENT POINTS (Pi)
COMMON ACROSS DATA BASE OF PROJECTS
NORMALIZED OVER TIME
REASONABLE TO MEASURE

e PILOT STUDY MEASUREMENT POINTS:
START DESIGN
50% DESIGN
START OF CODING
20% CODING
40% CCDING
50% CODING
60% CODING
80% CODING
START OF SYSTEM & INTEGRATION TEST
50% SYSTEM & INTEGRATION TEST
START ACCEPTANCE TEST
END ACCEPTANCE TEST

e T Py

— A — ——.

———

el A T S—

£ 3oL
Wion
seq ‘A

s o

e T et

T W AT
- - o

e MEASURES (Mi)

AVAILABLE ACROSS MOST OF PROJECT
INVARIANT TO SIZE, CALENDAR TIME, ETC.
AVAILABLE ON SEVERAL PRIOR PROJECTS
EASY TO COLLECT

DATA AVAILABLE IN SEL:
COMPUTER TIME
COMPUTER RUNS
PROGRAMMER HOURS
LINES OF SOURCE CODE
SOFTWARE CHANGES

TRAIL METRICS FOR PILOT:

COMPUTER RUNS/LINE OF SOURCE CODE
COMPUTER TIME/LINE OF SOURCE CODE
SOFTWARE CHANGES/LINE OF SOURCE CODE
PROGRAMMER HOURS/LINE OF SOURCE CODE
COMPUTER TIME/COMPUTER RUN

SOFTWARE CHANGES/COMPUTER RUN
PROGRAMMER HOURS/COMPUTER RUN
COMPUTER TIME/SOFTWARE CHANGE
PROGRAMMER HOURS/SOFTWARE CHANGE

BASELINES/DEVIATIONS

e ASSUMPTIONS:

|
{ METRICS HAVE SIMILAR BEHAVIOR AT EACH
; POINT

|

METRICS DO NOT VARY TOO MUCH OR TOO
LITTLE AT Pi

PROJECT ENVIRONMENTS ARE SIMILAR

DEVIATION FROM NORM IMPLIES SOMETHING
INTERESTING

e PILOT STUDY:
DATA: 9 PROJECTS IN BASELINE

BASELINES: METRIC AVERAGE AT Pi
CUMULATIVE
DISCRETE

227 DEVIATION: MORE THAN ONE STANDARD
) DEVIATION FROM THE NORM 4

e e e R A o e ek & { o S oL S R = TR ——
— —

o - - — - @

ORIGINAL PAGE 19
OF POOR QUALITY
{
{
1
o «F
SAMPLE BASLEINE ‘,,‘%;:"O |
‘
7 o o
/ <
_ 1[’:,:;‘:\‘o [
~C < ‘
~ N, W*’ B
s\\ \\ E #,«@\,.o |
\;\ \\ g\ . ;
» i
\ \ b :
\ \ i
\ \ {
‘L \ " :
\ e |
\ ®
‘ ¥
\‘ !
\ - 1
iy S 2]
w 7 \ *® - 3
rqm 4
w 4 1
2@ £ 1 !
z 8 ~~‘~ \ ! :
/4 ~] e 0
wo S O W :
a T e l\ o°°\ ;
w ’2 \ \ ;
.:. w \ 1 3
-= \ \
W\
’é 2 \ Yy °
£ V1 |
o= \ \ S
Ou Vil s ;‘
Zo \ l| s"o‘:wtc’ ‘
S0 - '
wI « ~ o o © - o~ °
(2 E - - - o =) -] o 1= f
o3 NNY H3d IAIL HILNAWOD |

V. Basili
UofM

=3 - L el v . R = - s &,

19 of 32

A

ot . v
S e e e - - P —

cejo ot
Wion
fnrseqg ‘A

INTERPRETATION

SET OF MEANINGS FOR EACH Mi AT EACH Pi
FOR DEVIATION ABOVE THE NORM
FOR DEVIATION BELOW THE NORM

SET OF MEANINGS AT Pi COMBINED

MOST LIKELY INTERPRETATION DERIVED FROM SET OF
MEANINGS

MANAGERS PERSONAL KNOWLEDGE ELIMINATES SOME
INTERPRETATIONS

PILOT STUDY:
MEANINGS ASSOCIATED WITH Mi AT Pi GIVEN BY MANAGERS

VALUE OUTSIDE STANDARD DEVIATION GENERATES
MEANING SET

RANKING BASED ON NUMBER OF TIMES EACH MEANING
APPEARS

MEANING + RANKING + PERSONAL KNOWLEDGE =
INTERPRETATION

PROGRAMMER HOURS PER LINE OF

SOURCE CODE

TYPE

INTERPRETATION

CROSS REFERENCE

ABOVE BELOW
NORMAL NORMAL

- O ——

o S e - —

ABOVE NORMAL

HIGH COMPLEXITY
ERROR PRONE CODE
BAD SPECIFICATIONS

CODE BEING REMOVED
(TESTING OR TRANSPORTED)

CHANGES HARD TO ISOLATE
CHANGES HARD TO MKAE
LOW PRODUCTIVITY

l

Wion

BELOW NORMAL

INFLUX OF TRANSPORTED CODE
NEAR BUILD OR MILESTONE DATE

LOW COMPLEXITY

12789
356 2789
123
123
789
79
12
123
6 12389
3

€Jo|
fiseq "A

C

ALITVND ¥ood 40
Bl 29vd TWNIDINO

cglo e

Wion
Iiseq ‘A

TPy Ty s e

SAMPLE MEANINGS FOR PILOT ON
TENTH PROJECT

AT 80% CODE:
TWO METRICS ABOVE NORM, ONE METRIC BELOW NORM

ABOVE NORM:
1. (héU[l)VlBE"FlG)OF COMPUTER RUNS/LINES OF SOURCE
2. NUMBER OF PROGRAMMER HOURS/LINES OF SOURCE
(S.D.=1.3)
BELOW NORM:
3. (héU{;ﬂBEF}))OF PROGRAMMER HOURS/COMPUTER RUN
D.=1.
OF OCCURANCES MEANINGS CONTRIBUTORS
2 HIGH COMPLEXITY 1.2
2 REMOVAL OF CODE 1,2
2 LOTS OF TESTING .3
1 LOW PRODUCTIVITY 1
1 BAD SPECIFICATIONS 2
1 CHANGES HARD TO MAKE 2
1 EASY ERRORS FIXED 3

PERSONAL KNOWLEDGE: NO CODE REMOVED
STANDARD AMOUNT OF TESTING

.

PILOT STUDY CONCLUSIONS

e METHOD VIABLE

|
| WORKED FOR ONE PROJECT STUDIED IN
DEPTH

MEASURES WERE EASY TO GATHER

ADAPTABLE TO CHANGING ENVIRONMENT
\ AND KNOWLEDGE

AUTOMATABLE

e NEXT STEPS:
ADD OTHER METRIC
KNOWLEDGE BASED SYSTEM

nion
['seq "A

CEJo €T

T‘é*‘ :

- s e 4 y— -

OTHER METRICS UNDER STUDY

e METRICS: ERRORS AND ERROR CLASSES

e MEASUREMENT POINTS: SAME

NUMBER OF TEST
RUNS TO DATE

o BASELINES: SAME
CUMULATIVE AND DISCRETE

ORIGINAL PACE IS
OF POOR QUALITY

©
—
i
650

<
—*
600

500 550

T
450

T
400

i
350
DAYS

T
300

T T T T
100 150 200 250

T
50

AVERAGE NUMBER OF ERRORS OVER TIME

3OVH3IAV HOHHS

V. Basili
UofM
25 of 32

ERRORS OVER TIME

500 A
450 —

350 -
o 300 -

| v
! - 250

, w 200
150

100

Ll

50

: =3 5 3

R B S w— —— —

ALITYND ¥O00d 40
gl 39Yd TUNIDINO

e TIME IN DAYS
[
{
® S

I ! | ! I 1 1 I I i

o0 100 150 200 250 300 /O 4O 5O

| 1 1

500 550 600 650

e

B a o Al oa eclind S Pia b Dl dees et i B0

CHANGES DUE TO ERROR BY CAUSE

ERROR SUM

eﬂi
|]
o]

SRR s P SRR, _ ccmam b D g e aa e

{ £3
) v o
‘» C =
| S5
i e ez
; ! 1 1 1 | E2
‘ 1 2 3 4 5 66 7 88 8 @ 1 2 3 3 3z
@ @ @ © 2 @ © © © ©® ©e © e 3
@ 0 @ © @ ©@ © © 8 ® ©° ©8 o 3
RUNS
e LEGEND: ERRORTYP BN +CLERICAL ERROR [ZZZZ3 COMPS DESCR INCO
S o B DESIGN ERR OF | (ZZZ7Z) ERR IN LANGUAGE
1] B FUNCT SPECS INCO ZZZZ3 MISUNDERSTAND EX
S Em— OTHER [ZZZ7Z) REQ. INCORRECT

RS

B e R T e T o T T U T O R e T T e

(@

[®

£Jog

WJion
iseq A

CHANGES DUE TO ERROR BY CAUSE

CUMULATIVE FREQUENCY

300
200

e U

100 o

Q

1 2 . 4 S 6 7

2 9 0) Q 0 Q0

Q0 g 0 0 Q2 Q2 2

RUNS

LEGEND: ERRORTYP

M OTHER

94

SO0RN

s +CLERICAL ERROR
B OESIGN ERR OF 1
EEEE FUNCT SPECS INCO

Lzl

A

oW

74
"z
"z
."‘w
V1 [
7%
7 o
S N IR
@ 1 2 3 3
@ @ ©8 8 3
@ 8 ©8 @ 3

[ZZZZ3 COMPS DESCR INCO
ZZZZ) ERR IN LANGUAGE
(ZZZZ) MISUNDERSTAND EX
ZZZ7Z] REQ. INCORRECT

ALITYND ¥00d 40
/d TYNIDNO

51 3O\

e . . i

€ 3o 67

nion

iseq ‘A

NEXT STEP

e WE ARE GOING TO BUILD A KNOWLEDGE-
BASED SYSTEM

e HOW WILL THIS SYSTEM BE USED?
A TOOL FOR MANAGEMENT

WILL INDICATE WHETHER A CURRENT
PROJECT IS ON SCHEDULE

AUTOMATED

CAN BE UPDATED EASILY TO INCLUDE
INFORMATION FROM NEW PROJECTS AND
NEW INTERPRETATIONS AS MORE IS
LEARNED

MANAGER MUST USE HIS OWN
KNOWLEDGE OF THE PROJECT WHEN
LOOKING AT THE RESULTS

i e e

R et S e P -

cgioog
Wion
iseqg "A

e BUILDING A KNOWLEDGE-BASED SYSTEM:

— USE KMS — A GENERAL SYSTEM USED FOR BUILDING

KNOWLEDGE-BASED TOOLS (AVAILABLE AT UNIVERSITY
OF MARYLAND)

— THERE ARE TWO DIFFERENT APPROACHES:

- PRODUCTION RULES
- HYPOTHESIZE AND TEST

WE WILL TRY BOTH AND COMPARE

e METHOD

1.
2.

3.

BUILD RULES FOR KMS

INPUT DATA FROM MANY SIMILAR PROJECTS IN SAME
ENVIRONMENT

GIVEN NEW PROJECT, CAN COMPARE CERTAIN METRICS
TO THOSE IN THE SYSTEM IN AUTOMATED MANNER.
KNOWLEDGE-BASE INDICATES ABNORMALITIES.

UPDATE

-~

—

!_—__—-—_~———‘—_—-—"Wf" 2 et 3ty)

POTENTIAL

SCENARIO

BETWEEN MANAGER AND SYSTEM

KB = KNOWLEDGE-BASED SYSTEM
M =MANAGER

KB: READY FOR COMMAND
M: OBTAIN DIAGNOSIS

KB: STAGE:

(1) START CODING
(2) 20% CODING
(3) 40% CODING
(4) 50% CODING
(5) 60% CODING

- B —

.. MI §
s{’\ KB: GOODNESS OF TESTING:
\ (1) GOOD
{ (2) FAIR
; (3) POOR
M: |

KB: DIAGNOSIS:
POOR TESTING PROGRAM
GOOD CODE
CHANGES HARD TO ISOLATE
CHANGES HARD TO MAKE

cgioi¢g
nion
fiseq "A

(6) 80% CODING

(7) START SYSTEM TESTING

(8) 50% SYSTEM TESTING

(9) START ACCEPTANCE TESTING
(10) END ACCEPTANCE TESTING

<0.60 >
<0.05>
<0.25>
<0.10>

-8

)

PRSI ST -

(*

——— T T R R T TR e R \Aae

SUMMARY

e CHOOSE MEASUREMENT POINTS (Pi)

e CHOOSE A SET OF NORMALIZED INVARIANT

MEASURES (Mi)

? e DEVELOP A SET OF BASELINES FOR EACH Mi
AT EACH Pi

’? e CHOOSE BOUNDS ON DEVIATIONS FROM THE
BASELINES

! e ASSOCIATE POSSIBLE MEANINGS FOR
.. DEVIATIONS (+ AND -) FROM THE
' BASELINES FOR EACH Mi AT EACH Pi

e DEVELOP A MECHANISM FOR DERIVING
INTERPRETATIONS

 INCORPORATE PERSONAL KNOWLEDGE OF
s PROJECT

- o GENERATE MOST LIKELY INTERPRETATION(S)

P R ETAE TR N e p

>

Rk Y G vl‘t{r,nt\uvhy’l

Pk ¥

B

ORIGINAL PAGE 18
OF POOR QUALITY

CHARACTERISTICS OF A PROTOTYPING EXPERIMENT

JUDIN SUKRI AND MARVIN V. ZELKOWITZ
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND 20743

i B

INTRODUCTION

In 1982, NASA Goddard Space Flight Center began a project to prototype a new proposed
software system. Since the system, the Flight Dynamics Analysis System (FDAS), was to be a
source code control system, and not the more typical flight dynamics software which NASA per-
sonnel were more familiar with, the decision was made to prototype an initial implementation in
order'to gain insights into the actual features needed to build a full FDAS and to evaluate the

idea of a prototype in the NASA environment. This report describes the status of that project at
the end of 1983. o

PROTOTYPING

In developing the prototype for NASA we need to undemtand what a prototype is. More
importantly, for NASA, the issue of prototyping must answer the following questions:

(1) What are the goals of a prototype? Is it to develop the requirements for a product? Evaluate
its performance? Predict its final costs?

{2) What are the issues involved? How does one design for a prototype? Docs the software

lifecycle change? Do we want multiple prototypes for different phases of the life cycle? How
do we use a prototype when built?

{3) What tools can be used to design a prototype? to build a prototype? to evaluate a proto-
type?

(4) How does one measure a prototype? How do you know if your prototype was successful?
Should you invest the cost and build the full system or abandon the project? What
SHOULD a prototype cost? 10% of the final product or 50% or even 100%?

FLIGHT DYNAMICS ANALYSIS SYSTEM (FDAS)

The Flight Dynamics Analysis System (FDAS) is being built to aid experimenters try alter-
native flight dynamics models. Currently if an experiment is to be run (e.g., try a new orbit cal-
culation model), the experimenter must access the Fortran source library, know which module to
modify, make the changes, test the changes, recreate a new load module, and then run the experi-
ment. The experimenter must have detailed knowledge of the software.

With FDAS, the experimenter enters the system, and interacts with a data base, directs the
system. to modify the correct module and aids in the change. Thus changes to software are easier,
require less time and less expertise about the internals.

FDAS consists of two major components - s source code control system to manage the
libraries of software modules needed for each application program, and a form of data abstraction
allowing applications programmers the ability to write programs using flight dynamics data types
{e.g., state, cartesian coordinates, vector locations, etc.). These features are somewhat indepen-
dent and can be evaluated separately.

In order to manage source code, the applications programmer enters a tree chart of modules
(the program's structure). Usually this will be a full system developed by someone else. The
applications programmer can then tell the system to edit specific modules and to replace other
modules by new ones. The system maintains the current set of modules for the system, and keeps
track of which modules have been altered and which ones need to be compiled. In some ways, this

M. Zelkowitz.
UofM

> a e B

1 of 22

. N84 23140

RS P A Pt B ks

T

e oot it Tty i ¢

ciien? oW Nl e

il AL ey

TR TR T Ty

T U v A S ST

*‘wvwmww'—""v"‘"‘& T '@ g : TTTTE) T - hd

URSINAL PAEE IR K

OF POOR GUALITY, i

P i

1 model is very much like a combination of both the Source Code Control System (SCCS) and the :
: MAKE processors running under UNIX systems. Ly

3 ' Jo order to aid the applications ‘programiner, a form of data abstraction bas been proposed, :

;) : A set of standard types have been defined. A pregrammer may code using these types, and a

: preprocesscr converts (bis code into standard Fortran. A generalized input-output structure has
been defined for data of this type, The programmer may write (PUTOUTPUT) the name and :

' valuz of any datum {rom one module; and read (GETINPUT) the name and value of that datum
in another module. An intial design decisibn was to restrict abstract data to their own statémeats:
and not mix them with the Fortran statements.

. In order to build the prototype, the following general strategy is being used:

(1) A subset of the requirements for FDAS were written and a prototype built to those :
reqnirements. -

(2) Data was collected automatically by the FDAS proiotype on user interaction with the
system.

S R S R IR

B s

(3) The usual Software Engineering Laboratory data on programmer activities were collected ¢
during the development phase.

(4) The prototype will be evaluated by four groups representing four different views of the
system. A group of applications programmers (the "users”) will use FDAS and report o its uselul-
mess in solving their flight dynamics problems, a group from the Software Engineering Laboratory
will evaluate the FDAS model as an appropriate one for solving flight dynamics problems, a
research group is looking at FDAS as an example of s source code control system, and the
developers are evaluating the implementation itself, and issues such as efficiency, size, and exten-
dability to a full system.

(5) Beginning in the early spring of 1984, a new task will begin to design the "full” FDAS
system. The experiences in the prototype will undoubtedly be helpful in designing and building
the full system, but there is no committment to using either the design or the source code of the .
prototy pe. i

i (6) After the full system is built, it will be compared with the initial eflort. The
eflectiveness of the prototype on the final product will be evaluated. Was FDAS cheaper to build?
Will it be more relinble? Will it be more efficient? Will it have a better man/machine interface?

v AR BSS e iR TR R

i iand

Geti s

A

AT el TN

B
-

S

':, INITIAL EVALUATION i
¢ .
' The initial requirements for FDAS began early in 1982. The requirements and initial design ! H
4 ’ for the prototype were done in the fall of 1982 and the initial implementation of the prototype ; ;
P began in January, 1983. As with many software projects, the task was bigger than expected, so an !

£ ! initial prototype was tested in July of 1983, but the ”full” prototype was not available until I

E | October. The evaluation phase is to last until late February, 1984. ;

&4 ~“Although it is a prototype, it is not a smali system. There are 34K lines of Fortran source '

b code running under VMS on a VAX 11/780 computer. Of the 34,000 lines (including comments), -

5 there are 20,200 lines of executable Fortran scurce statements. The plo&otype was installed with - {

only one small applications system of 3,000 lines for experimeontation. This size of 34K is already S s
within the size range of other larger "full” systems built by NASA. ;

|

| Some of the data collected can be summarized by the following table. In addition to FDAS,
there is data from 11 previous projects monitored by the Software Engineering Laboratory and
data from two other projects now under developmeat.

th : - 11'Proj:2:Cont'1-" Cont 2 FDAS
Design = 22% 31% 31% 39%
Code 48% 43% 69% 61%
Test 0% 20%e 0%+ . 0%e

M. Zelkowitz
UofM

2 of 22 @:

E 28 8 SURuEaia gl Bate ARk e

B o =02 S0t

-

i

ORIGINAL PARE !
OF POOR QUALITY,

s. Data still being collected

As can be seep, bistorically, coding is over twice the design effort. That is also true with one
of the current projects and is 2linost tree with the other contemporary project. But it is most
definitely not true with FDAS. This reflects the high design costs since it had "never been done
before.” It also reifects the velatively fow priority given to full debugging and testing, up to NASA
standards, of the resulting code. Sivce the prototype has a limited lifetime, "hard” problems were
deloted from the prototype requiremeats, and users had to live with annoying but non-critical
bugs. (Note: At the time that this was writtea, the full data from testing FDAS was not yet
eutered into the data base, so full testing data is not yet available,)

The timc spent in design, can be summatized as follows;

Hours 11 Proj Contl <Cont2 FDAS
Design 21709 5885 10758 4508
Total 100324 10085 34461 10477+

¢ Still being ccllected

As can be sces, the 10,477 hours represenxs a sizeable eﬂmt and is beyond the "toy” proto-
type stage.

Just using the system has shown some other ‘useful aspects-to-the system, One critical com-
mand, the DEFINE command, has been particularly hard to use, so it will need a better definition
and docuimentation in the full system. The overhead lmposed by FDAS also seems tolerable. For
example, with compilation times of 10 seconds standard, a preprocessor overhead of 2 seconds is
tolerable. In addition, since the linkage time for the application system is 18 seconds, the 3 second
FDAS overhcad on top of this is also small. However, the use of the preprocessor secms unduly
inflexible and should be revised for the full system;

A fina! complexity in this evaluation is the-always cha.ngmg reqmremcngs When originally
conceived, FDAS would be an experimental system used on a VAX 11/780. However, in the two
years since the idea was proposed, the operational groups at NASA are interested in the system,
and would like such a tool on their cperational computer - an IBM 4341: Thus part of the evalua-
tion {new requirements?) is to comsider a 4341 implementation, or an implementation that can
easily be transported to both systems. While this will urdoubtedly make a comparison between
the full systeni and the prototype harder to do, since the operational environments (and hence the
projects’ reqmrements) are different, it is certainly to NASA's advantage to have built the proto-
type so that all groups can view it before a final decision was made to build it in one particular
environment,

SUMMARY

The evaluation phase is still going on, eo it is not postible to give a full evaluation. How-
ever, some results are now apparent.

(1) The source code control aspects of FDAS are useable, and can be developed into 3 good
operational system.

(2) The data abstraction language and preprocessor need to be rethought and the features
need to be generalized.

(3) The prototype and the underlying aprlication are both written in Fortran. There is no
peed for that to be so. It should be possible to monitor any source code application package
regardless of the language in which FDAS is written. -

{(4) The use of the prototype has uncovered many minor and major defecis in the design of
such a flight dynamics analysis system. Some original assumptions made during the design phase
turned out not to be true under actual usage conditions.

M, Zelkowitz
UofM
30f22

i

:
.
H

Ria e e

| S
ORIGINAL PAGE 3 T
OF POOR QUALITY |

19
&

Because of these experiences, m‘.my: detects in FDAS have been discovered before a full sys- ’ :
tem is built. From the data collected so far, it appears as if FDAS wi be a large system when 9
built. The development of the prototype should aid NASA in avoiding costly mistakes later.

ACKNOWLIDGEMENT :

This pajer was supported by NASA grant NAGS-368 to the University of Maryland. We
also acknowledge the many programmers and analysts at NASA Goddard Space Flight Centes
and Computer Sciences Corporation, including Sharon Walagora and Glenn Snyder, principal e S
designers of the prototype, for their efforts in building FDAS. This report is mainly a collection of :
their experiences,

[P—

e s g rie v

iyt o rstrme, S esees

M. Zelkowitz : o
UofM ; o

4 of 22 ;
AL e 8 » INCU PR VAR g S

R S

:
3
d
A
g
¢
1
:
L
&
o
:

CHARACTERISTICS OF A

PROTOTYPING EXPERIMENT

‘Marvin V. Zelkowitz
Department of Computer Science

University of Maryland

TSI L e e e e T

M. Zelkowitz

UofM
"5 0f22

)

LN R e

IR

e - - oy EEm e R AT

PROTOTYPING IS OF CURRENT INTEREST i

But is it:

A Quick and dirty throw-away? *

3 Subset implementation?

Release 1 of full system?

M. Zelkowitz
UofM
6 of 22

i

R L e sl o, S S A e T T e e LIS

ORIGINAL PAGE 19
OF POOR QUALITY
DO YOU MODEL:
Input-output behavior? |

N
v

Part of algorithm? -

M. Zelkowitz
UofM
7 of 22

@-amldﬂuﬂ-_&d:ahm LS st sRebs0s

-

[s

e T TN YT Spe———

pap— e e S

PR

o A —— e ——— e —— — ——

'-r

e s TR T e e T e i e —— i 'ij

USES OF A PROTOTYPE:

Feasibility & full system
User interface
Performance

Costs

T e Ve Sl LY T B S o

M. Zelkowitz

UofM
8 of22

§ihe SR L O Sl S-S A

alsdeconie;

RESEARCH ISSUES:

What are profiles of a prototype
(baselineé)?

How to evaluate a prototype?

el G~ N A S e F e b E

How to measure a prototype?

M. Zelkowitz
UofM
906122

e RO

Bl LY

i

TSR R TR

?
§
|:

B e S e

PROTOTYPING MODELS

Prototype is cheap, system expensive
Prototype is expensive, system cheap
Both expensive, but better system

(more reliable, better user interface)

R i il | SR e, B e PG

M. Zelkowitz
‘UofM '

10 of 22

v S % ih oo

T LS S Sr U PE OF SR 4

FTERRERLT L TR R an QT ISR T

RLTARR TIR T

‘;,-,;{_.\\\vyn\‘,)éy ki .7\-5- >[T‘lw‘\;ﬂ”fﬂ11f\fé""ﬂv‘mw“w‘v RO A
1) / N

NASA/GSFC FDAS PROTOTYPE
(FLIGHT DYNAMICS ANALYSIS SYSTEM)

Now:
Access Fortran library |
Modify subroutines
Recompile and link
Rﬁn experiment

=== Need details of implementation

FDAS:
Access FDAS
F DAS‘ accesses Fortran code

Modifications easier

)

———> Modifications require less time and effort

M. Zelklowitz

UofM

11 of 22

Ser T RO T U A R e SR BT T s tae

i e at et % A

3
%
3
B
4
5 wod
i 1
B .
P ¢
¥ H
:
g 3
i, 2
i i
H i
¥ H
H ;
¥ i
E 1
i i
1

5 RIS y
" E e e AT S v b L

i
-
.
%%
:
:
Y
t
3
3
<
5
,

3
<

FACTOR

A
Requirements
g Size

Eixecution
Algorithm design
User interface
Cost

R SRS SRR L A A 36 LA o
" F N .

e .

|

»

3

A

:

.

(.

1
;.
1
.
»
?_".__/'
;r;» -~
2

%
e
e

-

:

g
oo

A

i
i

@51131 Project

Known
Known

- Known

Known
Known
Known

|

FDAS

D D D 0\ 9 D

FACTORS IN SOFTWARE DEVELOPMENT

M. Zelkowitz

UofM
12 of 22

e g g e e e s

it o ot e S

P s A

X5 a ot rem o

.its BN

T N
- @

R e R

: GOALS OF FDAS: T

Decrease cxperimental setup time -

AL ks e
T

. . . ! .;
Solve more problems than is possible today BT
¥ Lower required knowledge of system R
3 Ifase of use of experimental system :
Lower software costs to add to FDAS e
% |

e meiiae

M. Zelkowitz
UofM
13 0of 22

i 2RI L e, Oy T Ml e R L B i R

M ¥

;
"

%

L
i.
[

%
.
=
e
L
>

i

¥

L

¥

FEATURES:

AT TR T T

ol

Source code control
Data abstractions
(e.g., state, cartesian)

Generalized input-output

M. Zelkowitz
UofM
14 of 22

B R

R T T R

B S SN L e

ST 2 S

3
&
3
H
k
Ex
&
%
5 .
i
I
N
i

SCHEDULE
Requirements - Summer-Fall, 1982

Implementation - January-June, 1983

ACTUAL SCHEDULE:
Requiréments - Summer—Fall, 1982
Rel.ease 1 - January-July, 1983
Release 2 - July-October, 1983
Evaluation - October-December, 1983
M. Zelkovit

UofM
15of 22

o LI T w SV TP

P TupeE

,—.-;:' .. G‘,ﬂ“w"’”_:’—"" G e B eI R A L N e e

bt i e o pealiait e S ot e s e

L e e o e - S

R L S i

b e

TERRRRTERL R

T‘v‘,-‘:ra'\‘-aw, R P EAF

-\

Xz 73 *7\::

i ‘}“\if'iv""'r*'fﬂiw\‘m":‘1‘""‘%”?"’"’??"f"’ e e 2 S A)) e N R =TT
A qE 2 . ‘. o .

!

SIZE OF FDAS
Source code - 34K

Fxeciutable Fortran statements - 20.2K

Application area - 3K

M. Zelkowitz v

UofM
16 of 22

P R L T T R

ez g e i

EFFORT BY MILESTONES | ’ v

Phase 11 Projects Pred. Cont 1 ant 2 FDAS o ’1
Design 22% 1% 31% 31% 39% . ;
Code #3% 36% - 43% 69% 61% ! :
Test 30% = 41% 26%*+ 0%+ 0%+

Code/Design 2.2 2.1 1.4 2.2 1.6
Hours

~ Design 21709 2045 2885 10758 4508
| Total 100324 11835 19085 34461 10477

. * - Data still being collected

M. Zelkowitz
UofM
17 of 22

e TR T T e e S T TR
R e R i T e e

B L . ; S ST GNP i : c e e ¥
Awe o il L. N e S At SR M W e m Vet L e S 1

FermaTaT 0

T

AL S S S D

TR T R RS e AT

R At

AT B

EVALUATORS

NASA/GSFC - FDAS for flight dynamies
" OSC SEL - Use of data types
UNIV. OF MD - FDAS as source code support

Developers - Evaluate FDAS capabilities

M. Zelkowitz
UofM
18 of 22

<

P T Y (N

[

e ATt e

LRt S

SRR

P e = A A o B S E -
. “~

EVALUATION CRITERIA

Usable - How easy to set up

Flexible - Can user alter code easily
Adaptable - Can FDAS be altéred

Consistent - Can it be used across applications
Reliab’lef Can new applications be added
Stable - _Doeswi»s f@il

Speed - How fast does it execute

M. Zelkowitz
UofM
19 of 22

o ket SAsow . B cwn e

o s oo 2 Siria e b i £ e P g i

ey Y

4
i

Vg e

. voaas

N
Py
-
5
o
i

A

SOME SUBJECTIVE COMMENTS:

As expected, some hard decisions delayed
Addition of release 1 to schedule

Some features dropped

Reliability not up to nsual standards

But system is not an operational one P

Floating requirements

Full system on VAX or 4341s?

M. Zelkowitz

[

: .

4 z

. 2

H 3

: 3

i i

: §

i

i {

r 1
*

: i

: 3]

.

¥

H

UofM
20 0f 22

N

TRE T ARG Y STy eI

ADDITIONAL COMMENTS

PEEYTY ST

'+ Some commands redefined

TERWTANT NI TAE L8
RUSES

(DEFINE not well understood) o

Cost of system minimal compared to system overhead

(preprocessor-2 sec. compiler-10 sec.)

RSO B AT UNE RSN T

: (build time-3 sec. link time-18 sec.)

M. Zelkowitz
~UofM ‘ i
210f22

SRR Y e —— S R v, T o R a2 e i ot . J[

- - T T T T T
1= - B S

X e

=

SUMMARY

Still need to complete evaluation -
More data to collect

Need to evaluate error data
Prototype profile reflects quick development

.L - Problems in user interface discovered early

|
|
|
i

‘M. Zelkowitz

UofM
22 of 22

RN

g 2o A s e

e s e s it

tou
g ey

PANEL +#2

TESTING PROCEDURE

T

- e

£
b ;
@ 1
5 :
’ ’
¥ $

J. Ramsey, University of Maryland ; ;
A. Goel, Syracuse University ' ;
C. Savolaine, Bell Labs

RALRME. S3Erit SRE Ry

sam cpey

B SLE B S Rl 7 k28

LN AT e A

3
4
.
: .
: : :
4 i }
§ : H
5 i H
3 i -
» g
: §
‘ H
: .'.
‘ i L
g 4
3 i i
! . i
3 ¥
i B
L ! :
3 ! % !
- H §
- i ;
g H :
vl
: : : L]
4 : :
- i .
N i :
] | #
S }
] | :
; b3
- : | I
; i]
i i ;
. - i#
3 £
£ 4
- :
e
" L4 v
Y

LTIV | gy T £ e T

FrTamRE LR

"N§4 23141

Structural Coverage of
Functional Testing.
James Ramsey
University of Maryland

at College Park.

Abstract

A FORTRAN program has been instrumented to produce
structural coverage measures. The structural coverage
profiles of functionally generated acceptance tests
and operational usage are used to examine two areas in
software engineering: the examination of faults and
the applicability of reliability models.

This paper describes a study performed at NASA s Goddard Space
Flight Center, Greenbelt, Maryland by researchers at the University of
Maryland at College Park. A ten thousand line FORTRAN program was modi-
fied to produce a structural coverage metric. After execution, the
modified program produces a list of executed statements. ' The program
was executed using both functionally generated acceptance tests and
operational usage cases yielding structural coverage measures [CSC 78].

The program’s software failures during maintenance were recorded.

The' study collected structural coverage data for both acceptance
test and operational usage and error data about faults ﬁevealed durigg
maintenance. Using these data, some simpleyquestions;cén 5e answered
immediately. - '"How much of the;che is'éXecuted by functioﬁally gen—l
erated acceptance testing? (both by individual tests and by tﬁé entire

test suite)". Individually, the test cases execute from 27% to U47% of

‘This research is funded by NASA grant NSG-5123.

J. Ramsey
UofM
1 of24

e S 3 A T AR AR W i e

- — T T

Lok gkt b e e s ey e

T

5
¢

SRR LRSS PESERTRREI Ee aT
- N . L}

Y e W,’m 7\3}(, L{ &) YRREYET PPN TR L ST O T R Ay PR e
; .

the executable statements. In total, 56% of executable statements are
executed., This percentage does not include statements executed in

either unit test or system test.

"How many procedures are executed by functionally generated accep-~
tance test"? Anywhere from 48% to 69% for individual tests, for a total

of 75% of procedures.

More complicated questions compare acceptance test coverage to
operational usage coverage. "Does acceptance test execute the same code
as operational usage"? Yes, more or less. "Does operational usage
exercise code not exercised by acceptance test"? Yes, about 8% of the
total executed code. The code executed by operational usage but not by

acceptance test contained a mix of statement types different than accep-

tance test alone.

There were eight faults revealed during maintenance., Rach fault
was contained in one procedure; one procedure contained two faults.
There are not enough faults to reach any firm conclusions, however I

feel there is enough information to inspire interesting questions,

Are there faults revealed in maintenance inksections of code unexe-
cuted in acceptance test? No, although 8% of the code could- contain
such a fault. TIf faults had occurred id the untested 8% then perhaps
the functional tests’could be improved by structural coverage testing.
Since structural coverage testing wouldrrequire exeéuting every state-

ment, it might'have executed the “code and'revealed the fault.

"Are faults more likely to be éevealed in- heavily: executed pro-

cedures?" Procedures were classified by the number of times they were

J. Ramsey
UofM

2 of 24

T S T e SR

e e AT vt S . mah t

T

G e i ot e e &

ity ek b

ORIGINAL PAGE (S : -
| OF POOR QUALITY

SR
e N

executed in operational usage. Half of the procedures were executed by

more than 90% of the operational usage cases. About half of the ’ i

- m——
L e

revealed faults occurred in this group of procedures (3 of 8). i

Information on each fault was collected using the SEL change report ‘

W e

form [SEL 82]. Faults are categorized by "time to isolate the error",

"the time to understand and implement', and the section "type of -l

copopt#,

Z : Time to isolate the change seems to be independent of procedure

b g e SRR e w

-overage. - Increased usage sesms to be associated with a longer time to j

st

understand and implement a change. This might be explained by suggest- ;

ing that the lightly exercised procedures contain fairly simple code

RiZand - AL cbt 38 SRR Ll

whereas the heavily exercised code is, by necessity, more complicated

SR R N

and requires more time to modify. There are too few faults to reveal

any interesting patterns between fault types and procedure coverage in

operational usage.

FIp TR R AR T RSN

H
4
4
2

References

:CSC 78] Computer Sciences Corporation, Acceptance Test Methods,
CSC/TM-78/6296, 1978.

— imtad¥e e ATE. 4

LSEL 82] Guide to Data Collection, SEl.=81-101, Software Engineering
Laboratory Series, Goddard Space Flight Center, Greenbelt, Mary-
land, August 1982.

‘yﬂﬁmﬁyTﬁ“WWvW”*““"“*"”

* Tlme to isolate the error is cla %LfLed as tak:ng. less than one
hour, one hour to one day, greater than one day, npverifound. Tine-to
, understand and implement the change is classified as taking: less than : :
=L one hour, one hour to one day, one day to three days, or greater than : :
: 1 . three days. Faults are categorized as originating in the: requirements,
functional specification, design (either involving data or expres51on),
thernal env1ronment, use of language, clerical or other.

AR e

TR
~

SR

it
5
i
i

J. Ramsey
UofM
3of24

f 4
: ORIGINAL PAGE i€ o
. OF POOR QUALITY ' (41
- T “Statement Coverage cTTTTTT T t
by 10 Acceptance Test Cases. I
! e _____(Percentage of Maximum) : v
‘*‘ Case Proes Exec Assign Calls Do If Reads Writes
.| {
: £1 50,0 | 27.5 | 31.1 | 27.5 | 3u.4 | 3h.1 | 17.6 6.3 f
3 t1a 48.5 24.9 28.3 18.2 | 33.1 32.7 17.6 6.3
;g t1b 44,1 21.2 23.9 20.1 23.6 | 27.0 17.6 4.9 i

£2 50.0 | 27.2 | 30.6 | 27.5 | 3u.4 | 33.9 | 17.6 6.3 |
e t2a 48.5 24.8 28.3 18.2 | 33.1 32.7 17.6 6.3 .
S t2b 44,1 21.7 24.4 20.1 24,8 | 27.8 17.6 5.3 ;
= t3 48,5 | 2u.4 | 27.8 | 18.4 | 32.5 | 32.0 | 17.6 5.8 5
3 t4a 54.4 30.3 33.8 26,3 | 39.5 | 38.2 | 32.4 10.7
x the 52.9 28.6 33.3 24.2 | 38.9 | 36.9 17.6 6.8
= thd 44,1 21.6 24.3 20.1 24.8 | 27.6 17.6 4.9
2 £5 69.1 | u7.1 52.6 55.7 | 54.8 | 55.0 | U1.2 12.6
] t5a 64.7 | 39.0 | u3.9 | 38. 45.2 | 48.9 | 32.4 10.2
v
g t6 67.6 | u2.7 47.4 51.7 | 48.4 | 51.8 | 29.4 10.7 }
g t6a 55.9 29.9 34,2 24,4 36.9 | 37.8 | 26.5 9.7 SR
: t6b 58.8 | 33.7 37.0 39.7 | 36.3 | 43.0 | 20.6 5.8 Lo
] O
g t7 66.2 | 39.0 43.8 40.4 | 44,6 | U8.7 | 26.5 9.7 L
;- t8 66.2 45.6 | 51.2 50.0 54,1 55.0 38.2 12.1 !
; t9 66.2 41.0 46,0 42,3 46.5 50.9 35.3 1.7 :
g t10 66.2 | 40.2 | U4.9 40.9 | 45.2 | 50.3 | 35.3 1.7 :
Union 75.0 | 56.0 | 63.5 | 68.4 | 68.8 | 65.1 | 41,2 14.6
3 Intersect 42.6 18.1 20.8 10.0 | 22.3 | 24.7 17.6 4.9 | ;
3 :
3 Lo

J. Ramsey

UofM

4 of 24

h
H
2
:
{

T R e gt e o o

ORIGINAL PACE S
OF POOR QUALITY

B Statement Coverage 1
by 60 Operational Useage Cases.
(Percentage of Maximum) x
Case Procs Exec Assign Calls Do If Reads Writes
1 57.4 31.8 35.3 29.9 33.1 43,0 29.4 6.8
2 63.2 39.8 4y.5 46,2 51.0 50.6 29.4 9.2
3 66.2 2.6 47.9 44,0 49.7 54,6 38.2 10.7
i 54,4 29.3 33.4 20.6 26.3 36.9 41,2 11.7
5 54. 4 29.1 33.0 28.7 33.8 36.7 29.4 7.3
6 52.9 25.5 28.7 20.1 31.8 34.3 26.5 6e -
7 48,5 23.5 26,0 22.5 24,8 31.3 26.5 6.3
8 574 31.6 34.9 30.9 33.1 4.0 26.5 6.3
9 sS4, 4 29.0 33.1 20,1 35.7 36.5 41.2 11.2 :
10 54,4 29.1 33.0 28.7 33. 36.7 29.4 T.3 g
11 6U4.7 40.5 by, 4 46.9 u8.4 50.7 32.4 9.2
12 54,4 29.0 32.9 8.7 33.8 36.5 29.4 7.3
13 51.5 30,1 35.6 19.4 43.3 40.6 29.4 9,2
14 51.5 29.9 35.3 19.4 43,3 40.5 29.4 9.2
15 51.5 26.4 29.1 25.4 28.7 36.1 26.5 6.8
16 67.6 41,7 5.6 51.9 ug.n 50.2 35.3 9.2 ;
17 54,4 29.6 34.1 20.6 36.3 36.9 41,2 1.7 ;
18 54,4 29,1 33.0 28.7 33.8 36.7 29.4 7.3 ;
19 54,4 29.5 34.0 20.6 36.3 36.9 41.2 11.7 ‘
20 54,4 29.0 32.9 28.7 33.8 36.5 29,4 T.3
21 sh.4 | 26.0 | 28.4 | 27.0 | 24.8 | 33.6 | 20.6 4.4 |
22 63.2 38.5 43,2 37.1 43,3 48,2 41,2 12.1 :‘*
23 4y .1 23.1 27.0 14.8 26.8 32.1 23.5 6.3 !
24 4y 1 22.9 26.5 15.8 26.8 32.0 23.5 6.3
25 57.4 31.7 34.5 31.5 33.8 42.8 29.4 6.8 -
26 50.0 28.7 34,1 18.2 42,7 38.2 29.4 9,2
27 54,4 26.1 28.3 24.9 33.1 35.2 26.5 6.8
28 54,4 29.3 33.5 20.3 36.3 36.7 B1.2 1.7 §
29 54,4 29.5 34,0 20.6 36.3 36.9 41,2 1.7 i
30 63.2 1.4 45.8 45.9 51.0 54,8 29.4 9.7 ‘
31 54,4 28.3 31.7 28.9 31.8 37.5 26.5 6.3
32 4y .1 23.2 26,7 15.8 26.1 32.8 23.5 .3
33 48.5 24.9 28.8 1541 31.2 35.1 26.5 7.3
34 30.9 .- 13.0 16.0 5.0 15.9 14.3 23.5 5.3
35 57.4 33.1 36.4 39.2 38.2 40.5 | 29.4 T3
36 54,4 29.1 33.1 20.73 3547 36.5 ‘}&1.2 11.7 :
37 64,7 40.5 - .,y 46.9 u8. 4 50.7 32.4 9.2 ;
38 54,1 29.3 33.6 20.6 36.3 36.9 §1.2 11.2 :
39 U, 7 40.7 44,5 7.6 k9,0 50.9 32.4 9.2
40 55.9 | 29.3 | 32.7 | 28.0 | 35.0 | 39.6 | 29.4 7.3 | @
H .
J. Ramsey
UofM :
50f24 v B

AN

I et b e i i o o ot SRR

.
]
N
.
o
4%
i
7
,
2
‘.
2,
v

<
-3

-1
%
»

IS il Siel BPL AR
R e St A N

BRSO SER

TR R TR AREE L AR T SRS BT

BN RS

AL P B

aindad

N ‘\-7« A quﬁ‘c'{n‘ﬁ‘-“?\:r’,m TRes T MR ST

b | R I S ‘—-,m- @ﬁ.{
£
{
ORIGINAL PAGE IS .
OF POOR QUALITY 4
" Statement Coverage T {
by 60 Operational Useage Cases. 1
(Percentage of Maximum) 5
(cont.) k
Case " Procs Exec Assign Calls Do If Reads Writes y
41 57.4 30.0 34,1 24,2 36.9 38.0 35.3 11.2 ’j
y2 52.9 31.4 37.2 20.8 45,2 43.3 26.5 8.7
43 54,4 29.0 33.1 20.1 35.7 36.5 41.2 1.2
ny 66.2 4o.4 44.8 41.1 45.2 50.7 4y, 1 13.1
i5 66.2 46.6 51.9 51.0 54.8 57.8 47,1 13.6
46 64.7 39.2 43.8 38.8 45.2 49,3 41,2 11.7
y7 57.4 30.0 34,2 24,2 36.9 38.0 35.3 1.2
48 66.2 39.1 43.7 | 40.7 44,6 49,1 35.3 11.2
ko 66.2 45,8 51.1 50.2 54.8 55.4 47.1 13.6
50 66.2 49,2 45.9 bh2.6 46.5 51.3 4y, 1 13.1
51 57.4 31.1 34,0 30.4 34.4 42,1 29.4 7.8
52 54,4 29.6 34.0 20.6 36.9 37.2 41.2 1.2
53 50,0 | 27.5 | 31.3 | 26.1 | 29.3 | 35.5 | 25.5 | 7.3
54 8.8 31.5 34,8 30.1 33.1 4y,2 26.5 6.3
55 58.8 33.9 36.8 40.0 36.3; - 43.4 29.4 7.3
56 54,4 29.1 33.0 28.7 33.8 | 36.5 29.4 7.3
57 54 .4 29.0 32.2 27.5 34.4 40.1 26.5 6.8
58 54,4 29.6 34,1 20.6 36.3 36.9 41,2 1.7
59 50.0 24,4 27.6 17.2 31.8 32.1 26.5 7.3
60 29.4 12.3 14.6 4.5 15.3 14,1 23.5 5.3
UNION 80.9 64.1 71.9 78.2 76.4 T7.2 55.9 17.5
INTERSECT | 27.9 | 10.3 | 12.2 | 3.8 | 12.1 | 11.h | 20.6 4.4
J. Ramsey .
Uof M
6 of 24
ST g T e PP SRR SR S SR e S s KR P N u:p»

g LT e

T W e

SLNICCL RS W A R A

B T e R e e el e T T B PR

Comparlson Tof ~

Case Procs Exec

Acpt 75.0 56.0
Usage 80.9 64.1
Union 80.9 64,4
Intersect 75.0 55.7
A-U 0.0 0.3
- { 1 5.9 8.4

]

et v e 4 w8 T o N 8 P M e o o o Vi s o

Ass3ign

- g Akt o Sl g 1 ot s | A A g e I Ll M D o e s

Statement Coverage
by 10 Acceptance Test Cases
and 60 Operational Tsage Cases.
(by percentage of Max1mum)

e s s e e e L L LT

Caiils

Do

76.4 | 77,2 | 55.9 | 17.5

68.8 | 65.1 | u1.2 | 14.6

0.0 0.0 0.0 0.0
7.6 J 1200 | w7 | 2.9 |

e o e v e o1 o

If

Comparison of Statement Coverage 77777
by 10 Acceptance Test Cases
! and 60 Dbbritlondl Usage Cases.
Case Procs mxee Asamgn Calls Do T Reads
Acpt 51 2408 1187 286 108 490 14
Usage 55 2757 1345 327 120 581 19
Union 5% 2768 353 327 120 581 19
Intersect 51 2397 1179 285 108 490 14
A-U 0 11 3 0 0 0 0
U-A] 360 155 Q1 12 91 5

Reads

1.2
55.9

Writes

30
36

36
30

0
b

L o s

Writes

1“.6
17.5

J. Ramsey
UofM
7 of 24

T A AR,

i

Lav e AT A

TR T 1

R et ot

?
i
g,

P e I A R

rtine i v s o vk 3w

e e ——— i oAl

ORIGHNAL PAGE &
OF POGR QUALTTY

il

i

B ""Time to Understand and Implement the Change vs] g

Number of Times Procedure was Exercised / ¥

| Total Operational Executions. {
: (Effort to Isolate the Cause in Parenthesis) |
ST | ;

100% (Th<1d) (1 h<1d) |

@ (1 hour <) !
. 90% :
80% (1h<1d) (>1 day) :
' 70% .
& 60% f
- 50% (1 hour <) ;
4o% (1 hour <) ;

30% ’

20% :

__10% (1h<14d) - 1

' <"1 hour T hour < 1 day T day < 3 days ~>73 days :

Rt AR J Tve LA RS L S A

ee
k. | !
: ; i
: A
g : |
E |
| H
fo |
| 1
| ;
3 |
l; .
| :
{ J |
£ “ ‘
e '
i | ; |
N ! ‘ |
E x
r |
FAR i "
e l
) 1 !
3 ! '
$ i
3 |
% i
[y i ‘
ll i %
B !
o i
‘2 1 ‘;
& ! ‘i
!
;
Kl

"“!f‘éﬁ“\\!’rywmqu Lt

%

J. Ramsey

U

of M

8 of 24

“

3

3

»

1
A

ﬁ‘ AOORETT T g

ooy b

ORIGINAL PAGE (g ' ¢
OF POCR QUALITY

Timé to isolate the Change vs .
Number of Times Procedure was Exercised /
Total Operational Executions.

(Effort to Understand and Implement in Parenthesis)

O W S Vg SR S NS

100% (1h < 1d) (1th < 1d) i
(1d < 3d) :

90% L
80% (th < 1d) (1d < 3d) i
70% :)
60% o
50% (1h < 1d) R
40% (1 hour <) : :
30% e :
10% el (< 1d) N 7 H
e <~T hour Thour < T day | 5 T day | never found | L

R

I T T P

J. Ramsey

i
%
P
UofM ;
9 of 24 1:;»

29, it 4 TR g T Lo . R L3
i

AT

T AT g

SRR TR, 3

ORIGINAL Piles v
OF POOR QUALITY

T T T T F4a1Es oy CRF Classification vs
Number of Times Procedure was Exercised /
Total Operational Executions.

Req. | Func. Design Extern, | Lang.
Specs. Data BXp Env.
_____ ;-...;._.._.- o im ta i e e ot cen o e o oot en o om0 it o o e s s o v o e e i e e o

100% XX X

D N B

P v v 8 b e A 2 = . e

s e e o e 8 s b e s S s oy > T b S e w we o " o ey e > T S e T e T T VTV M e o Sl S e o S A i . o

L Ramséy
UofM
10 of 24

B R

. e

R

e B

o s Bt i st 41

.
s it St i and

LURE AR e by o

ST T eastameenn i . < AW

RN 2 R gy il

2

?”’?m‘ww‘ﬁ "-';:V N -7 '""':I - o - T i 3
r;f‘“m : ; L

"N84 23142 |

Examining Functional Acceptance Testing
With Structural Coverage Metrics

v -
James Ramsey TR

University Of Maryland ; i
At College Park S

November 1983

T T AT SRR M T S

- J. Ramsey
UofM
11 of 24

T

Overview
Functionally generated acceptance tests are examined using |

structural coverage metrics.

T L

Reliability Models

COREETG e

Software faults P
“ : 4
-
Management of acceptance testing process
K. »
2 3
;
SR

H i

S

] - . 2
4

j

-'~ J. Ramséy ‘
UofM aor

12 of 24 R

e e T i Ll e A e s e B e e e e . _— Iy e
s L el A R e g e T e e T R Ly

i

i

#
i
4
P

o

DEFINITIONS
L Functionally generated acceptance test:
i derived from the program’s specifications

Structural coverage metrics:
procedure coverage

PP T b e

~ How many procedures were executed?
b statement coverage

How many statements were executed?

Reliability Models | s
Given a history of software failures, predict:
mean time to next failure
total number of faults in the program

CT TN RS P IS R

 OTET R

J. Ramsey
UofM
13 of 24

T R e S T e T T e, et P .
CEREIE AT b il I g e e B W = —_

H :
Ny \

Lo oy Ammesadd s

2 ot b b e e i a5t

P

b S e G

Liramnd

;
The programs: :
Finished: ','f
3 A subset of a large satellite system
: FORTRAN ‘
68 procedures S
: 10k lines of source
3 4.3k executable statements)
Ten acceptance tests
: not a rigorous sampling of the input domain ﬁ
but not trivial
s 60 operational use cases
j 4 Fault data for acceptance test and operation
: |
3 In progress:
] A whole satellite system:
e FORTRAN
- 300 procedures
- 50k lines of code
20k executable statements
Fault data for system test, acceptance test, and
operation
< |
- |
g s
e %
J. Ramsey
UofM
14 of 24

S T L i EE B

RS s 2d CE s S S R e B e T B

S SN TEEE S L S SO A

7 SRR RN R CA Y R e

[}

173
) 2 Bers I RN

Structural Coverage of Acceptance Test

Executable Statement Coverage
by 10 Test Cases.

Case Procedures Executable % Unique
Executed (%) Statements (%) Code

tl 50.0 27.5 0.0

t2 50.0 272 0.0

t3 48.5 24.4 0.0

t4 60.3 37.9 4.4

tO | 69.1 47.1 1.7

t6 67.6 42.7 0.0
t7 66.2 39.0 0.0
t8 | 66.2 45.6 1.0
t9 66.2 | 41.0 0.0
-~ t10 - 66.2 40.2 0.0

Cumulative 75.0 56.0

i Intersect 42.6 18.1

Note:

44% of executable statements were not exercised in accep-
tance test. They may have been executed in system / unit
testing. |

J. Ramsey
UofM
15 of 24

Vi T L e i | i e R e R L e L

T e e b e it e b it i i e et o0 408 R e ten

= s L 2 e e i - rm——r—
’-ﬂ Eﬁi‘?mwa ” " s ‘fg . .

Structural coverage of 60 executions by users after accep-

tance test:

60 O

Structural Coverage of

erational Usage Cases.

Procedures Executed
Executed (%) | Statements (%)

Cumulative

Intersection

80.9
27.9

cases.

SRR R T T RTIE

TN R

TSI |

TR TR

i

¥

3

¢

4 H

";

B

£

&

£

2

¥

£

-9

[

B
-t

10% of the code was executed by ALL of the operational

- B P v
L S ol S VR A

64.9 :
10.3

J. Ramsey
UofM
16 of 24

E"“"g’ e ot o Mt &

PR Y

I S N TN

e ittt -

-

Are the acceptance tests representative of operational usage?

SRETVES e L e
« .

This assumption MUST be true if using acceptance test
failures to predict failures in operational usage.

LA

BT

A MERTe TR T o T
g

3 H ¥
I3 §
z s
H i
3
. ki
: s
¥

RN et s AR A 1 L T S S
. B k

=
T e N

4RSS AT

RS S

B
S U SR A

TR T
oo,

J. Ramsey
UofM
17 of 24

R s {8 TTETRRTRTTET Uy o N g o o Daalh i s T s 7 L TR TR A i - ChAm. NS & ¢ |
@S, i I S : * ; - ~ 7?7 . \V

'qu:uﬂ
i A

|
Are the acceptance tests representative of operational usage? ?
' :
A
"
;
z;
]
. . . age K D) é. b'i
T Might not be valid to use reliability data gathered in accep- b
S tance test to predict failures in operational use | o
E | The “mix’’ of statements in the 8.4% differs from the ‘‘mix”’
of statements in the 55.7%
| ~ twice as likely to execute a CALL or IF ; :
Otherwise, cannot distinguish acceptance tests from opera- B
tional usage cases by their structural coverage numbers :
;
;
J. Ramsey
UofM
18 of 24

—_ T N A A 4 4oty sl ot eyt om AP v

e No faults were revealed in the 8.4%

-, If faults had been revealed in the 8.4%, then there was
L a flaw in the test plan

S chance to augment the tests

chance to re-evaluate how tests are written

RIS TR T R AL TIRPY DUERUHERIE O Y e

R ALEET W

\

!

e T AR ATV R AL ARE: & el R A L e
Yo "\?,mﬂ ﬂlj\ﬁf’{y“\"‘\aﬂl’fﬂ Le

£
T
[
k
b
B

J, Ramsey
UofM
19 of 24

T s v

R

L2 M e TR BT T

B TR

e et b < oo . o et e i atadE T e

Eﬂ?‘?ﬁwwlw”w‘w s & . T . T . L2l g -
” ‘ . ' - Q .'

L e
L | o
l“: !‘
!
g Faults
? 8 faults revealed in operation |
. all repaired by changing one procedure
one procedure contained two faults |
i ! i
= :
) How are these related? SR
S) B
L Time to isolate the fault f 2;
| o o

Time to understand and implement the change

Number of times the procedure is executed / 60

RS SRR vk LR A

Questions:
2 Are faults more likely to be revealed in heavily exer-
| cised code? lightly exercised code? -
S Are there relationships between time to isolate the F
S fault and how thoroughly the procedure is exercised? o
; z , , :
;:%:‘ ! : . L] L3
N Are “‘time to isolate”” and ‘‘time to understand and ‘
s implement”’ related? . _
: ¢
3
J. Ramsey : .
UofM
20 of 24 :

Are heavily exercised procedures more likely / less likely to
contain a fault? Enticing but inconclusive with only 8 faults.
Number of Times Procedure was Exercised /
Total Operational Executions
Faults Procedures
100% * %% PPPPP
PPPPP
PPPPP
PPPPP
: PPPPP

= 90% PPP
. 80% * * PPPP
| 70% p
o 60% | PPPP
50% * PPPP
0% * PPPPP
P

30% PPP
20% o | |
10% B PPPPP |

s PP
0% uuuuu

auuuuu
uuu

,,,,T‘. ""\"\74"1\7?3"”‘&;"?“3’-‘\,"wfp'w" EIASE ARSI B S A A A st

™ w ‘g“\&‘;':*"miz"ww“i"#f”wvw e
"“I h' s‘»“z B "t‘m Yiiee ' .
N\
i i e et et it s o e
e
f
|
]
i

Half of the 55 procedures were executed by 90% or more of
operational usage cases.

UofM
21 of 24

: " L s e S SR T IR N D
J R e el P AT O e, F e TR ; ‘

J. Ramsey

I T e)

e

Ja—

']
! i
' ¥
¥
b
e
:]
. \
i
) .
: l
: 1
{ J
: 4
Cd
3
s
¥ :
i
eyt R

Is there a relation between time to isolate the fault and how
well the procedure was exercised?

Number of Times Procedure was Exercised /

Time to Isolate the Change vs
Total Operational Executions |

(Plus Effort to Understand and
Implement the Repair)

Time to Isolate
the Change

TUTSREILEE g B -
s oem NN -

100%

90%
80%
70%
60%
50%
40%
30%
- 20%
10%

< 1hour | thour < lday | > 1 day
hours hours

days

hours days
hours o
minutes | L

hours

S RO F O e G L £ SR

4144 e R BN G o e S L

Time to isolate the fault is Vrelated to time to understand and
implement the fix.

J. Ramsey
UofM
22 of 24

AR SR O i Tt L 1

i e U i el R T ITF R e T JEpERTEN

e —— s —wt i x e L AN Y NS RN R e

e WS et

. 4

. » ¥

Conclusions :

Generated a method of comparing acceptance test and opera- .

t tional usage

] Acceptance test is representative of operational usage except -

for the “mix” of statement types (at least in this study) P

; ; . '] [. [g ’

Structural coverage metrics may provide insight into Ly

j; software faults o
% 4
3 ! :

%

to

' B

» !

SR

i !

i

J. Ramsey | r :
UofM - : ¥
23 of 24

LR L e e g e e s e R R

TER TR

TR ATRERT T

R ITVIV gman § T A

£.8 28

R s

R e sl AR

Future Activities

The next study will attempt to reinforce the results of this
study.

More faults and fault data

Larger, more representative NASA /SEL program

Exact order of acceptance test

J. Ramsey
U of M
24 of 24

4

BT SR T R

Ao

LA TR ARy e

3
&
&
£
£
£
£
.
4
4
)

" N84 23143

, € S
ORIGINAL PAG
OF POOR QUALITY

An Error-Specific Approach to Testing

Peter M. Valdes1

Amrit L. Goel2

Syracuse University

The main objective of software testing in the soft-
ware development life cycle is to verify conformance of the
implemented software with its intended requirements, Such
requirements include

1. System requirements

2. Functional requirements

3. Programming requirements

Non-conformance with such requirements causes what are
knewn as spftware errors.

Specificying an appropriate testing strategy to
expose software errors is still an art. Traditional
approaches do succeed in revealing many errors but nomne
is powerful enough to expose all errors. The best that can
be hoped for is to use a specific test strategy to expose a
specific error type in specific program locations. LE is
this limitation that we exploit to develop a new approaéﬁ"“~«“
to sbffware testing which we call an error-specific testing
(ééT) strategy. It is in fact a dual to the traditional

testing approaches.

Ikesearch Assistant.

2Profcssor of Electfical § Computer Engineering, Syracuse
University, Syracuse, NY 13210

A Goel
Syracuse U
10f22

i Soin s e aina

i o i et e L ¢ gt 51

P T Sy

s g e

:;“.
+ “
;Ev 4
3 The EST approach hypothesizes and tests on specific ﬁ
¥ . ;
3 error-types in specified program locations. When applied
, to all error tYpeé of interest, it becomes powerful enough % |
A to satisfy the original objective of testing. o
2 -
%' In the presentation we give highlights of the EST H W
i

approach. Then we show how such an approach can be used ¥ W

- ' : to expose errors in a simple program, triangle. The material
presented here is not meant to be self-contained. Mathematical
results and other features (positive and negative) of this

testing stranegy are discussed in technical reports available

i from the authors. Further work on the use of this approach

g ; for determining software reliability (a different definition
% i than commonly usedj is also in progress and will be published
! :

: ‘ in the near future.

: |

,

A. Goel
Syracuse U
2 of 22

R T P

Tirs Ay

An Error - Specific Approach to Testing

Peter M. Valdes
~Amrit L. Goel

Syracuse University
Syracuse, N.Y 13210

L T Ll AT e e e i S

‘A. Goel

Syracuse U

3 0f22

S WL e T T

i e o e

e ool oL

T TR RS TR T

1.

3.
4.
5.
6.

OUTLINE

Testing

Error-Specific Testing (EST)

Related Work

EST Methodology

Assumptions and Limitations

EST

6.1
6.2
6.3
6.4

6.5

6.6

of Triangle.
Functibnal Requirements (FRi's) Decomposition
Structural Parts (SPi's) Decomposition
FR-SP Mapping
Error Hypotheses
Function-Based Errors (EF's)
Structure-Based Errors (ES's)
Test of Error Hypotheses
Function-Based Error Testing Strategy
Structure-Based Error Testing Strategy
Recording Test Results in the
FR-EF and SP-ES Matrices

Extensions of EST Philosophy

A.Goel
Syracuse U
4 of 22

L

el e T e e T TR TR e iAo L 2o s

S U U O W

SUURLILNWRGE. Ay SIPS

b e N i e

Ny N R

s

TR

WETTRARNS b

;
v

B

=

13

E

&

%

5‘,“

%

e’
f‘f P
s
350
B

N
"9/",

TESTING

« The main objective of testing is to verify conformahce
of the implemented software with its intended requirements
such as
« System requirements
« Functional requireménts
e« Programming requirements

e Non-conformance with intended requirement is known as
a software-error.

A. Goel
Syracuse U
50f22

i L e e e s e

5 RIS T =

e

RS st i T R R B R

TR N

ek AR

T e ey

k, £
4 i
F !
Error-Specific Testing _— ; ;
e Traditional testing strategies can expose embedded o
4) ; |
: . software errors but none is powerful enough to expose ‘
all possible errors - therefore ‘
: :) ‘ % 1
- e use a specific strategy to expose @
2 specific error type in specific l
‘ ,'
: | program locations, i.e., Error Specific !
Testing (EST) :
2 e EST is really a dual approach to traditional testing. ?
§ When applied to aii possibie hypothesized errors, it |
; becomes powerful enough to satisfy the original ob- 9
: Jective of software testing. e
:
|
|
=, i
B t
!

A. Goel
Syracuse U
6 of 22

L e e e e e RS s e T L G et e

TR TAYT RETEREERAT ket sk @ DU ERESE TR L e S o T VR

;
|
|
i
i
1
i
|
|
!
!
|
!
i
i
i

4

Error - Specific Testing %

Focuses on specific error types in specific locations i
Intuitively appealing and simple to use ;
Number of test cases is bounded 1

. X 1
Can be automated o

Permits trade-offs in allocation of resources

o Ve 10 e g

(Gt il ot b e i s s

i bkt >

A e e e o

A. Goel ' 1 !
Syracuse U oo
7 of 22 L

g H iz L e i e R . R
B T R il A L S SR T e SR i s e e A TR i

I .«n.A)

Traditional Software Error-Specific Testing (EST)

.

g M ke o B

% Testing
|
Specify Testing strategy Error-type in a specific 7
| or strategies program location and- an f
appropriate testing strategy ;
§ % Expose Different types of Specific error-types in f
é | software errors in the specified locations §
: | various program :
§ locations a
i .
l .
% Limitations Not all possible Only the specified error ;
errors can be (and some incidential errors)
exposed Is exposed. However,!t can be

'F
ga
¢
2
&
L
kS
T
i
:
:
A
1
&
&
13
&
9
[
FA
e’
&~
s
]
&
H
i
£

used to expose all errors if
all these errors are tested
for existence using appropriate
testing strategies.

\

i

A.Goel
Syracuse U
8 of 22

2

R . i PUSNESS e e S e e AT e T T T e AT Maassna Bk T
L e Ee e Ll -

L 8 L

g -
o ORIGINAL PAGE (S
€ OF POOR QUALITY, A
e
. RELATED WORK f
b7 5‘
; g
? Traditional :
‘ : , i
] < “
_ Use of non-error specific test :
" Strategies, e.g., path testing, ; !
i cause-effect graphing Lo
3 :
j Weyuker and Ostrand :
: Introduced error-based testing which uses al i
3 available information in exposing certain types of errors. y
3 '
% Howden i
3 | ;
4 | Realized the limitations of traditional test |
. i
3 |
1 strategies but used them to expose certain types of 4
y | errors (weak mutation). .
1 i
; s
j ‘ Clark, et al. ;
Used the notion of error-sensitive-testing. J et
it i
X B . 1
> o
-)
- : l ¥
i i §
| %z i
A. Goel i
Syracuse U R
9 of 22
5 "?mk~wwém¢awwﬂvkﬁ%+~ﬂ;@@@*&¢$;L:T?J

e e . : T e Te - T @W"‘

£

1
. {d

{
3 S
EST METHODOLOGY ; ‘3
i 1. Determinc s/w functional requirements (FR;'s). ﬁ
) 2. Decompose code into structural parts (SPj's). : ;
! 3. Hypothesize specific error types of interest for :
1 each FRi and SPj. %~ :
- . . : .
< 4. Specify EST strategy for error types in (3). ; p
: S ¥
. S. Determine test requirements for each EST strategy. ;
= 6. Optimize test requirements. i
§4 7. Generate test cases from the optimized test requirements. ;
E 8. Execute test cases, debug exposed errors, retest the z
:
g changed code including affected code. ?
; i !
: o
v Y
o
>
i :
>~ ;

P2

A. Goel
Syracuse U
10 of 22

e T T L i ey, S R G

Ry - v s a0 T g

ASSUMPTIONS/LIMITATIONS

+ FUNCTIONS REQUIREMENTS ARE CORRECT

. EST STRATEGY AVAILABLE FOR EACH HYPOTHESIZED
ERROR TYPE

+ NEED TO TEST FOR EACH HYPOTHESIZED ERROR TYPE

A. ‘Geel
Syracuse U
11 of 22

3

HRAT T

R LTt 0

X ERTE YRGS

EOTAERR I

v TETEAT

3

|3

5

¥

4

4
A
)
3
[
K
G
?_/
=
5
&

LT LT

Error-Specific Testing of TRIANGLE

XI.

Functional Requirements Decomposition

FRl
FR,
FR3
FR,
FRS

FR6

IF
IF

IF

iF

IF

IF

AJ(A > B > C) then not A

(A =8

Description

C). then equilateralfA

(A=B>CorA>B =2C) then Isosceles A
but not equilateral

(A >B

(A >B
and A <
(A >B

> C and Az

> C and A2

B+ C

> C and A2

>

<

A

B

B

B

2
2
2

+ C2) then right A
+ C2) then obtuse A

+ Cz) then acute A

A. Goel
Syracuse U
12 of 22

- e R e e

RS e

ey tewin

ANt

T Ay ecbmeems

Code E ;

Statement # o 1 i

E procedure TRIANGLE (A, B, C)
| oo
E if A > B go to 1l]

O

i - go to 2 e L
1 4if B> C go to 3 |

2

3 b
4 2 Print ('Illegal Input') return %J ;
5 3 if A = B go to 4 ; %
6 if B =C go to 4 : %

7 A:=2a*a -
‘ B:=B*B : ; s

9 C:=cCc*cC ;

10 D:=B+C i

11 if A#D go to 5

12 - Print ('Right A') return

13 ' if A < D go to 6

14 % i Print ('Obtuse A') return

e

R o ERP L PR L A IS Ak

e =

i e s o s tom 2 e

M e S Nl et

-
(8]
Lt TR LY T
e e Pt 2,

: li - 6 Print ('Acute A') return % %
: 16 | 4 if A =B go to 7 o
% 17 % go to 8 : :
% . | ‘ . : ;
{ 18 ; 7 1if B=Cgo to?9 ; |
&) | : ¥)
4 19 8 Print ('Isosceles A') return i !
% 20 9 Print ('Equilateral A') return % |
% 21 end procedure : !
3 ;

T

L H

~ A, Goel P
~ Syracuse U [R
13 of 22

53
H
%
bis

k3

&

#

X
[
n

A

AET LR ST A

iR

NS

SR ACTRUT S TURRTIOS R T e o
g »

CAVTEIRST

x;voy»\},;» (‘yv‘\;h?\)r\.l’v:'r\ L oTe B ., T e

B S
DN RS

1I.

Structured Parts Decomposition

Statement Number
(see TRIANGLE code)

SP1

SP|

(-]

DUCTT— o

A. Goel -
Syracuse U
14 of 22

T

A 0 T I o SR * Bl A N

ST ARRE e IR TR b Ny ST AT MR TR £ Al DL S A A A R B ot ol 3]
\ARASE M o L o T ’;ﬁ‘;ﬁ,a i\,xu_n ﬂ,n"\xﬂyff'f x ; o ‘ 4 o
A ‘ ~] - : ' T T T T k5

; ‘ , I1I1. Functionalﬁlnng u:lzemenl; ‘-Mshsfgcguredk Parts Mappin
§§ ’ ‘ ‘ SPI SPz BP3 SP‘ SPS SPS SP-, SPB SPQ Slig 55-1,. 8&2 s&l_ SIi‘ 855—256—«{ 7.
| FRy 111 R e
FR, 1 1 1l 1 1 1
FRy 1 1 1 1 1 1l 1 1 |
FR, 1 1 1 1 1 1 1 9 9 \‘;
rns 1 1 1 1 l 1 1 1 .g &—2
FRg 1 1 1 1 1 1 1 S §

8! 3vyg -

ALITvYnd

" i
¥

:

E

[20D 'V

¢tio sl
[1-9SNoeIAS

R £

LS L A

i 15 A

TEPRIERR ALY AT RS IS R

FUPT A EPFTI ORI OITR s T T e T

~

S

i

v
i
>
2
Fu

kN
Ll

Iv.

CRIGINAL PAGE 19
OF POOR QUALITY

Error Hypotheses

Functional-based Errors (EF's)

EF) Non-satisfaction

of Fnl‘(i;e. program not

catching an illegal input)

EF, Non-satisfaction
EF3 Non-Satisfactiop
EF4 Non-satisfaction
EFg Non-satisfaction
EF¢ Non-satisfaction

Structuie-based Errors (ES's)

ES1.1v BS3.1r BS5)yr
ESg,1r ESg 1r ESy3 1

ESys5.17 ESy0.1
Note for subscript notation:

zf'1.2' ES; 17 ESg5 o
ESg 2+ ESg a¢ ES;3 3¢
ES14.17 ESy5.2¢

ES10.2
ES; 1

ES;.2
BS9.3

of FR2

of FR3

of FR4

of FRS

of FR6

Incorrect relaticnal cperator

Left of dot gives structure par+
number when error is possibly
embedded. Right of dot gives
error number for the given
structured part.

Incorrect transfer of control
flow.

Incorrect Arithmetic Operator

Incorrect Arithmetic Expression
(Formula)
Incorrect Assignment

o e e S

St otk e e e S

e cemr Sor T a2 e =

s dmaate, S

A. Goel
Syracuse U
16 of 22

ORIGINAL PAGE [
OF POOR QuALITY

V. TEST OF ERROR HYPOTHESES

Function-based Error Testing Strategy

. Assume functional requirements given as

1f (input conditions) then (output conditions)

. Generate test requirements for every valid and invalid

combination of the inputs

E
]
3
3
5,
o

input Condition valid Combination Invalid Combination
FR, ~A > B >0C) (A<B) A (B2C) (A>B)A (B>C)
(A >B) A (B <C) (A =B) A (B =¢0)
(A <B) A (B <C) (A= B) A (B >C)
etc.
FR, (A =B =C) (A=B) A (B=0¢C) (A #B) A (B=0C)
(A =38} Ao (B#C)
: ; ‘ (A ¥ B) A (B #C)
FRy (A=B Cor (A = B) @ (8 > C) (A >B) A (B #0)
A>B=C) (A>B) Ao (B=0) (A #B) o (B =0)
‘ . etc.
FR, (A >B >Cand (A>B) A (B>CA (A>B) a (B>C)A
a2 = 82 4+ c? @? =8% + ¢} a? # 8% + c?)
| ! etc.
PR, (A >B>C and (A>B) A(B>CA (A>B) A (B5>C)a
a? > 2 4 (2 (a2 > 82 4+ ¢? (a2 > % + ¢c?)
and A < B + C) (A <B +0) (A >B + Q)
| L etc.
FRg (A>B>Cand (A>B) A(B>CIA (A>B) A (B>C)A
a2 < 8?4+ cd (a? < 8% + c? a2 > 82 + c?)
etc.
A. Goel .
Syracuse U
17 of 22

I e SN B L L

SR TR L

H
)

4

&

i

it

3

o nZ b 4 b 0t aro® N & o o sy, RN ¥k

oS Sy

N ORI T H R

i A h S e g a n

Sixcde.

A NS e

L dnsnen v wlh

rin e

¥ o

Sk B TIQTEEEE TS TSl

A
g,

3

:

ORIGINAL PAGE i
OF POOR QUALH

K‘."év

A

2

Structure-based Errors Testing Strateqy:

Structural Part

Incorrect Relational Operator

Sihple relational expression (SRE)
of the form A < B

SR# of the form A < B

A

B or

SRE of the form A
A f B

SRE of the form A B

v

SRE of the form A > B

Incorrect Construct in a SRE

SRE of the form A < k
where k = constant

SRE of the form A < k

SRE of the form A = k or
A=k
SRE of the form A > k

SRE of the form A >'k

Incorrect Relational Operator
and Constant

SRE of the form A < k

tA

SRE of the form A < k

H
=

SRE of the form A
SRE of the form A > k

SRE of the form A > k

AR AR S 0 YIS A AP b e A ¥ 0 b A 0 R R et e 1

Tésting Strateqgy

Test Cases:

Test Cases:

fest Cases:

Test Cases:

Test Cases:

|
Test Cases:
where A* =

Test Cases:
where A, =

Test Cases:

Test Cases:
Test Cases:
Test Cases:
|

Test Cases:
Test Cases:
Test Cases:

Test Cases:

e T L el e i o N i s

ey W

A =B, A>B

< B,A=B

=B, A#¥B
A=B, A>B
A<B, A=2B
A =%k, A* < k
max {domain of A}
A=k, A, > k
min {domain of A}
A=k

e

=k, A <k

=k, a, >k

"Q
A <k,a=k, A, >k,
(A < Aa*) A (A* < k)
A* <k, A=k, A, > k)
(A > Aa,) A (A, > k)
A*<k'A=k'A*>k'
(A < A*) A (A* < k)
A* <k, A=k, A, >k,
(A < A%) A (A* < k)
A* <k, A=k, A, >k,
(A >3n,) A (A, > k)

A. Goel
Syracuse U
18 of 22

" sisen ey

Sy e el e ickiar s b

v»...m(ﬂ.,....‘,
P e ey .

- x e e i

oo A eh

bt e s e 61

g A e

5 4
ORicH L, ri o g 7 |
CF POUR ity .
3
!
Testing of TRIANGLE's ES's ' ' "
Hypothesized Error : Testing Strategy :
¥P
|
ES ES , ES Simple traversal of go to .
§1.2' 2,17 75.2° statement i
ESg.2+ BSg a2+ ES13 20
ES)3,2¢ BS14.17 BSyg.2 |
ES10.2
ES; , Test Cases: (A = B), (A > B) ! ;
ES; (83=0c), (B >C) F
ESg , (A =8), (A#B) :
g R
ESg 4 (B=c), (B#C) . .
ESg , (a2 = 82 + c%, 3
: ;
(a? ¢ 8% + ¢ : z
: 3
Eslo 1 (32‘ = Bz + cz) ’ ! ;
! (A,z > 82 + c?) T
E$13.1 (A = B), (A >B) : 5
ES B=¢C), (B >C i
515.1 (B =)' () E
ES,; 4 Simple traversal of statements :
. 7, 8, 9, 10 H
¥
ES, 5 Simple traversal of statements ;
* 7, 8, 9, 10 -
ES, 4 Simple traversal of statements
: * 7' 8-' 9’ 10 ;
’
]
' 1
?
A. Goel -
Syracuse U
19 of 22

Ta D TR N

e T

CVEERT T e

R TE AR i o LA A

TR

A IAE UTE AT TRE TR T

vI.

e Chan IR A canint

ORIGINAL PALE 15
OF POOR QUALITY

'

Recording Test Results in the FR-EF and SP-ES Matrices

Let Mo pp = element of FR-EF matrix

M

Sp-ES = element‘of SPfES matrix

Then, assuming wé have a sufficient error-based strategy

HFR-EF 0 If test result is negative
or =
HSP-ES b 3 If test result is positive

If error-based strategy is imperfect

HFR-EF rdi If test result is negative
‘ test's relative degree of
or = imperfccticn is rdi
MSP-ES 1 If test result is positive

e v ST TP

but

B T e A

D% AR et b

A. Goel
Syracuse U
20 of 22

4.. WP .

b
{,a
3
.
9

.

3
™
Y
I3

Cew B

FRy
FR,
g' j FR 3
i FR4
FRg

PRG

T TSR

;

'5 SPl
SP2
SPy,

FR-EF_Matrix

SP-ES Matrix

EF,

EF

ORerizss o

e
ek
waNE G
ey A
Y
NN
ce-

ﬁ:d‘%&,‘&w}«f

EF 4 EFS EF

. ﬂ‘#’_

A. Goel
Syracuse U
21 of 22

D

R S WY Py

P T S VO A

e

CAg e e

i
P
)

EXTENSIONS OF EST PHILOSOPHY

S MR ANIATIETTS T,

i . MEASURE OF COMPLEXITY
£
: . MEASURE OF CORRECTNESS

A i

» TRADE-QFF STUDIES FOR ALLOCATION OF
RESOURCES

Bager,] "“,1'»5(&1w:’up' .p,- R

RN

IR AR RGO T

SN

A. Goel
Syracuse U
22 of 22

o ST FONE AR B e e b e £ - &£ aee . - - " B . - o R
. - o S~ L et e e v 7 R C IR St S S lepeerrme ot .o 2l

— s

FI

b T

LN TN i b s ettt et e e e & et 1od st o et e

ORIGINAL PAGE 1S

OF POOR QUALITY + N84 231 44

‘I

g

t

4

ﬁ Testing and Error Analysis of a Real-Time Controller

é C. G. Savolaine

% Bell Laboratories

E Holmdel, New Jersey (7733

1

$ i. INTRODUCTION

! This paper outlines inexpensive ways to organize and conduct system
] testing that were used on a real-time satellite network control
3 system. This system contains roughly 50,000 lines of executable
v source code developed by a team wof eight people. For a small
T investment of staff, the system was thoroughly tested, including

automated regression testing, before field release.

Detailed records were Kkept for fourteen months, during which
several versions of the system were written. A separate testing
group was not established, but testing itself was structured apart
from the development process. The errors found during testing are
examined by frequency per subsystem by size and complexity as well
as by type. The code was released to the user in March, 1983. To
date, only a few minor problems have been found with the system
during its pre-service testing and user acceptance has been good.

2. THE SYSTEM BEING TESTED

The Satellite Network Control System (SNCS) is & real-time, mini-
computer based, cali-processing system developed for
Picturephone{R] Meeting Service (PMS). It controls the switching
of both- 1.5 and 3.0 Mb/s digital circuits over a satellite using
Frequency Division Multiple Access (FDMA) technology. The SNCS
runs on a dedicated Festern Electric 3B-20S computer (similar in
capacity to a DEC VAX 17/780) and supports interfaces to:

1. Earth stations

2, A customer reservstions system
3. A satellite maintenance center
4. A computer operator console

8atellite ‘connectivity requests are sent to the SNCS, which
verifies these requests and assigns satellite transponder channels
to each. Every 15 minutes commands are generated and sent to
microprocessors located in the earth stations that tune the modems.
The real-time control interface to the microprocessors is
complicated by inter-dependencies among the commands across earth
stations. To compensate, a sequencing is generated by the SNCS for
the commands, which changes with every reconfiguration, The
central SNCS multiplexes these earth station work 1lists and
simultaneously distributes them to the stations, maintaining this
sequencing.

3. TESTING. METHODOLOGY

A prototype of the system was available ‘in February, 1982, It
needed significant enhancement to provide full service, and it had
not been thoroughly tested. The methods used in testing the system
while new versions were being developed concurrently are described

|
C. Savolaine !
Bell Labs
1of17

!
)
)
i

|
B
3
/
{

i W

Ry y memmrne s

o ey £

v

-

N
»

ORIGINAL PAGE 8
OF POOR QUALITY

here. The next section will evaluate their usefulness.
The major techniques used were:
e tester selected from the developﬁent team
e rotation of testing assignment
e testing was automated
e formal testing of all versions
o careful tracking of error causes and effort to correct
» deferring correction of low severity errors
e full regression testing
e releasing test cases to user with code

A person from the development team was assigned the full-time task
of creating and organizing test cases. The system was divided into
subsystems and test cases were created consisting of multiple test
situations per case. Each test case had the objective of testing a
particular system feature. The running of all cases was automated
with a difference program used on the output to isolate potential
errors. This made full regression testing possible. This testing
was done on each version even though only the last: version was
released to the field. :

The testing assignment was rotated among the éroup, changing with
each of the three versions created. Tests were automated and
conducted by the tester, but problems, after being given a severity
code, were assigned to individuals ip the development team. The
correction of bugs having a low severity was deferred to the next
version to avoid correcting multiple versions.

Each error was classified into _one of three types: omission,

commission or regquirements. The errors due to a requirements
misunderstanding often’ stimulated additional documentation to
clarify the mis-conception. The: system wa§ divided into nine

subsystems, and each error was allocated to one of these. The
subsystems and their errors were then analyzed verses code isize and
complexity as determined by th_Mccabg;cqmngxiLy<mg§§uﬁe.FT]

For every error, the time was recorded to find the cause, to fix
it, and. to test it. In addition, the number of iterations through
the cycle and whether other errors were caused or “found ' in the
process was recorded.

Test cases were released to the user along with the code. This
provided a foundation for their testing efforts as well as serving
as detailed documentation. By running khown good . cases - in . the
users - environment, problems unique to their configuration could be
identified quickly. -)

e e e e A s GihBsv: 4k . Wi AT

C.-Savolaine

o i e e e R A T

A o e SR R T

<t

o Ao b

yens S b iAo bt kot N2

a NG e

]".\z?vm':r‘(vﬂw’m:r,xav'm"'V BT
No{Y s - R N

i

Ty

ORIGINAL PAGE i3
OF POOR QUALITY,

4. RESULTS

By devoting 15% of the available resources to testing, an extensive
set of test cases was created and automated. By rotating the
person responsible for testing, the testing process became more
robust and independent of individual traits. It also made a task
that was perceived to be onerous more palatable. The training
investment in rotating the testing position was low, since each
tester was previously in the development team. ‘

By automating the running and output comparison of the test cases,
it was easy to run regression tests on a system that was growing
and changing. The number of test cases grew steadily. Phased fixes
were manageable because the less critical errors were the ones
being deferred, and none were delayed more than 2 few months.

The bugs correlated wel! with subsystem complexity and lines of
code. Nearly half the errors were attributed to omission. Of
these, half occurred in the two largest and most complex
subsystems. About half the errors required only a one line
correction. For the first version, the time to find an error and to
correct it were equal. For later versions it took longer to find
the errors than to fix them.

Inviting the user to participate in generating and reviewing the
test cases made it possible to gain early user involvement.
keleasing the test cases with the code gave the user an extensive
set of test cases upon which to build, and served as examples for
user training.

Thus, by formalizing and automating the testing process a
thoroughly tested, stable system, plus test cases were delivered to
the user on schedule.

C. Savolaine
Bell Labs
30f17

s s o

s

Ssmsitmia

s o e

g At o e s s

|
i
!
f
|
|
|
2
|

R

\ ORIGINAL PAGE 19
: OF POOR QUALITY

5
i
‘;.
g
References !
I
; : 1. McCabe, Thomas J., "A Complexity Measure,'" IEEE Transactions on i
S Software Engineering, Vol. SE-2, No. 4, December, 197€, pp.
308-320.
2. Metzger, P.W., Managing a Programming Project, Prentice-Hall, ﬁ
| g Inc., 1981. R
. E 3. Myers, G.J., The Art of Software Testing, John Wiley & Sons, v .Q
S Inc., 1979. i :
4
§
" by
1
M
|
§)
-
= ¥
-
¥ /
: i
= !
e J
e v
. R
: P
B
F £
:
;
;
: R
E o
F : |
': % |
& - ! i
p |
5
v 1
: i
] : ’
‘ | : |
— |
! ! |
)
3

C. Savolaine
Bell Labs
4 of 17

LT il A L

ORIGINAL PAGE (9 |
OF POOR QUALITY

TESTING AND ERROR ANALYSIS '1
OF A REAL-TIME CONTROLLER |

® System under test
® Testing methodology

¢ Dagta and Analysis
- Error distribution

- Error classification

e Conclusions

C. Savolaine
Bell Labs
50f17

- p— e P - - - -
. - el - :—-{::-” v — 5 o s gt

ORIGINAL PAGE IS

OF POOR QUALITY

; SATELLITE NETWORK CONTROL SYSTEM
EARTH
STATION
EARTH
STATION

SATELLITE

OPERATOR
CoNSOLE MAMTEMANCE

C. Savolaine
Bell Labs

6ofl7

TESTING METHODOLOGY

¢ Development team personnel

® Full-time essignment

® Full regression testing

® Change management tracking system

C. Savolaine
Bell Labs

7 of 17 @

J s canad Bia Aadincaaiieg

—

DEVELOPMENT/TESTING CYCLE

FEB SEPT DEC MARCH JUNE i1st TR

1982 1982 1982 1983 1983 1904

+ + —f)e + + + -
DEV Q]

DEV 1 DEYELOPMENT

DEV 2]
Y
|TEST UW

TEST 1 ?
|TEST 2

INTERNAL TESTING

TEST 3
[PRESERVICE TEST}
FIRST FIELD RELEASE LugeR Tf ST1] Lser TeSTING F'LT
SECOND FIELD RELEASE [USERTEST 2% SERVICE

C. Savolaine
Bell Labs
8of17

— el . . R e =
e TRES AL

ORIGINAL PACE 19
OF POOR QUALITY

ERROR SEVERITY
Tree —
SYSTEM FATAL y
FUNCTION ERROR .
ANNOY ING -
TRIVIAL »

91 TOTAL

= == -y » “awh &

C. Savolaine
Bell Labs
90f17

‘
{

{i
' ORIGINAL PAGE It |
OF POOR QUALITY

| LINES OF CODE VERSUS MRs

9 i
'» |
n‘ '
r CORRELATION _ ..
| 17600 COEFFICIENT ~— - '
E 15000 ® +— THIS POINT WAS OMITTED
: LINES OF FROM REGRESSION ANALYSIS
125040
CODE
FER
MODULE
)

C. Savolaine
Bell Labs
10 0of 17

COMPLEXITY VERSUS MRs

gE2EEEE

CORRELATION _ .,
i COEFFICIENT —
- Ll

—

- -
it

35

C. Savolaine
Bell Labs
110f17

- -8

LT e e . st

. —

ORIGINAL PACE (2
OF POOR QUALITY

COMPLEXITY VERSUS ERROR TYPE

COMPLEXITY ERROR TYPE:
MEASURE 0 C R

880 10
884
403
378
369
364
277
228
107

=

=h
SIaoumao..qa.
gl»a-u-n-aouo

B
d'OONO-‘QN
+

+
]

(]
-

C. Savolaine
Bell Labs
120f 17

COMPLEXITY
MEAS URE

880
684
403
a79
369
364
277
228
107

ORIGINAL PAGE (S
OF POOR QUALITY

COMPLEXITY VERSUS ERROR TYPE

INTERNAL TESTING

USER TESTING
ERROR TYPE:
O € R

1 4 4
= 46 =20
SR

ERROR TYPE:
0 C R
10 S o
11 7 3
2 1 6
3 6 1
i 1 1
6 S 3
2 3 1
3 0 4
3 § 2
41

+29421 =M S+ 15+6 =26

-l -

C. Savolaine
Bell Labs
130f 17

- -

T T T e T - & e e

ORIGINAL PAGE I8
OF POOR QUALITY

COMPLEXITY VERSUS FATAL ERRORS

COMPLEXITY FATAL
MODULE MEAS URE FRRORS

880
664
403

369
364

2
3
4
S
6
7
-}
9

C. Savolaine
Bell Labs
14 of 17

ooaoaau»-:‘é

‘ww
¥ v —

|
|

ORIGINAL PAGE 19
OF POOR QUALITY

COMPLEXITY
MEASURE

880
664
403
879
369
364
27
226

107

o e A R . b B -
R o e i

COMPLEXITY VERSUS FATAL ERRORS

FATAL
ERRORS

q|¢¢--

C. Savolaine
Bell Labs
BSafl]

s —

S

ORIGINAL PAGE (S
OF POOR QUALITY

RESULTS

® Fatal errors occurred in less
complex modules

® Non-fatal errors correlated well
with complexity

® Modi-errors found in pre-field
testing were omission type

® Most errors found in field testing
were comission type

C. Savolaine
Bell Labs
16 of 17

€
ORIGINAL PAGE | :
OF POOR QUALITY f
CONCLUSIONS ‘

e Avoid complex modules
® In design phase, inspect for]
omission errors
]
® In internal testing, lock for !
cOMisSion errors |
i
;

C. Savolaine
Bell Labs
17 0f 17

— e - - o WL S
o add o A AN == e

R Tt e A

PANEL #3 : |

';)
HUMAN FACTORS :

s et A RS

E. Connelly, Performance Measurement Associates
E. Soloway, Yale University
C. Grantham, University of Maryland

e g VSRR 5 W b 5y i dahe o4 iy, dy% et

; }
! 1
t 2
v’ k'
! }
: e
!i 1 r
‘f L
| [
| z
! i
‘ H
| ’
| |

i

&

ORIGINAL PAGE 1S

OF POOR QUALITY "Wéfl 23145

TRANSFORMATIONS OF SOFTWARE DESIGN AND CODE
MAY LEAD TO REDUCED ERRORS

Edward M. Connelly

Performance Measurement Associates, Inc.
Vienna, Virginia 22180

ABSTRACT

This research investigated the capability 6f programmers
and non-programmers to specify problem solutmns by developing
example~-soluticns and also for the programmers by writing computer
- programs; each method of specification was accomplished at various
' levels of problem complexity‘. The level of difficulty of each pro-
blem was reflected by the number of steps needed by the user to
develop a solution. Machine processing of the user inputs per—
mitted inferences to be developed about the algorithms required to
solve a particular problem. The interactive feedback of processing
results led users to a more precise definition of the desired

solution,

Y S

2 : : Two participant groups (programmers and bookkeepers/
accountants) working with three levels of problem complexity and
three levels of processor complexity were used. The experimental
task employed in this study requff*e’d'sp'eciﬁcation of a logic for
solution of a Navy task force problem. This task involved choosing
ships from a ship list which ideéntified the ship type, the transiting
time (the time required for the ship to get from its present position
to the desired site), and stationing time (the number of days the
ship can remain on station-with available provisions). In addition
to this specification of ship combinations the participants had to
specify by the example~solution the range of transiting and stationing
times required. In another related experiment, participants
developed FORTRAN IV code to solve the same problems.

The performance both of programmers and non-programmers
was found to decrease with increasing levels of problem complexity
and with reduced processor support. . For both the groups, errors
of commission were relatively infrequent compared to errors. of.

E. Copnelly
PMA, Inc.
1of 18

-—" i o R

et e oS 4 B g 1 L s i e i <o

e e W et o R . et tek e

i P

T EEAR A PR A R N AR IR T YT

9
i
i
i

P B G o LS

s, 4 : ﬁﬂ
ORIGINAL PAGE
OF PQOR QUALITY

omission. It was found that the degree of processor complexity
was much more influential than problem complexity in predicting
performance scores. When little computer generalization of

user input was provided, performance was significantly tower than
during all other experimental conditions. Results also showed

that participant-strategy in the generation of problem solutions
was a significant factor in performance, though years of experience
arid years of education were not found to be good predictors of :
performance. The feedback aids were shown to be most effective
whan they included the logic implied by the example-solutions.
These experiments demonstirate the effectiveness of the on~line

use of computer software to create and n-iodi’fy software routines.

Results also suggest that a measure for evaluating a programmer's
skill 'should involve evaluation of procedure that programmers |
use in developing example-soluticns, and in designing and writing
program code. Finally, the superiority of using example-solutions
with iriductive feedback over writing code suggests that the trans-
formation process provided by the induction might be applied anal-
ogously to software development. Considering designs and code in
multiple transformed forms may reduce software errors to a level
found for example-solutions.

INTRODUCTION

Six experiments were conducted, with the same problems used in all
experiments. The ability of the participants to develop example-solutions
was evaluated as a function of the participant's background and experience,
the complexity of the problem to be solved, and the level of processing pro-
vided by the computer, and the level of feedback aids, when aids were available.

Experiments 1 and 2 were designed to investigate the ability of expert
programmers and of bookkeepers/accountants who were not expert programmers
to develop example~solutions for the hypothetical Navy task force problem.

The experimental variables for both experiments were problem complexity

and processor complexity, i.e., the amount of machine processing of user
inputs.

Experiments 3 and 4 were designed to inyestigate the ability of expert
programmers and non~programmers to develop accurate and complete examplée-
solutions using various feedback aids at various levels of problem somplexity .

The feedback aid designs were based on the results of Experiments 1 and 2,

E. Connelly

PMA, Inc.

20f18

i e Diagmid e s s st o

ik N

L

B R I T St SEI

i dor bew

[

3.

RGNl e ST B - ' ' - > (g)"f

* POOR QUAUW Lo

where the systematic generation of example-solutions, as measured by a ; 4
combinational measure, had been shown to be highly correlated with
performance (explaining 63% of the score variance).

Experiment 5 was designed to investigate the capability of expert £ 8
programmers to revise problem solutions' specifications in the form of i g
example-solutions in which various numbers of initially incorrect entries I)“
had been introduced, using the feedback=-aids developed in Experiments * |
3 and 4.

Finally, Experiment 6 called upon expert programmers to develop
computer code written in FORTRAN 1V for various levels of data input -
- a design intended to be analogous to the design of Experiment 1. The results
: of Experiment 6 were sub-routines written in FORTRAN IV that should
accept or reject a ship combination, as that combination was correct or
incorrect.

£t £ R T TR

- T N e e

RSN R

: The performance measures used in the experiments consisted of
o : error measures and strategies measures. Three error measures were:

o kb e

agrTAUEARR P

a. P.., the probability that a given ship combination was correctly
classified as acceptable or unacceptable.

o b s i

IRtk e

b. PC 5 the probability that a correct ship combination was accepted.

c. P, ., the probability that an incorrect ship combination was 2 g
rejécted. ‘ e

In addition to the error measures above, relative error measures .
were used. A r‘elative er‘r'or' measure was defined as a participant's . [N |
error score (F’) on an experimental problem minus his/her
error score on the pr*ete (E problem. The relative error measures thus
tended to remove the effect of the participant's innate capability, and, as a
result, were more sensitive to experiment factors than were the error - -
measures alone.

T TN AT T TR LR TR SRS Y
s o

ORI

Two strategy measures were used to detect the frequency with which
participants used specific strategies. . One strategy measure, the combinational
! measure, detected the frequency with which a participant changed only one
! ' component at a time of each successive example-solution. Another strategy

3
&
r
[
K
&
&
z .

._g/ measure, a seguence measure, detected the use patterns of the various i
£ feedback aids. :
e

i 4

}
i

gt

" E. Connelly
PMA, Inc.
30f18

iR AT

ORIGINAL PAGE ©& -
OF POOR QUALITY -

Results of Experiments 1, 2, and 3 in which programmers and
bookkeepers/accountants provided example~solutions are compared with ;
the results of Experiment 6 where experienced programmers wrote
FORTRAN IV program code for the same problems. Results of the other
experiments can be found in Connelly (1982 a, b).

RESUL.TS OF EXPERIMENTS 1, 2, & 3
Processor Complexity -and Error Reduction

First, as expected, more errors occurredduring the work on the
more complex problems. However, the level of processing, or generaliza-
tion, of the example-solutions was found to be an important error reducing
factor, i.e., a significant reduction in errors occurred when data from
example~solutions were processed into a standard form and presented to
the participant.

U

e e e

Systematic Strategxes and Feedback-Atds

A second result, and perhaps the most important, was that participants
in both categories who performed well tended to use a systematic, step-by-
step strategy in selecting example~solutions. This result, together with
the first, noted above, suggested that feedback aids might be designed to
encourage participants to use systematic strategies, by processing their
example-~sclutions and then feeding back the resultant data to suggest possible
additional inputs. A description of the aid design results obtained in using P
them are given in Connelly (1982 a, b). - Pl

j
|
i
5

Breadth vs. Depth of Experience

A third result of the first two experiments applied to the subsequent
experiments was that the number of years advanced education (i.e., beyond .
high school) and the number of years of professional experience were found . H
to be relatively unimportant factors in predicting performance. i :

‘The lack of a strong predigtive relationship between years of higher
education oryears of experience and performance may come as a surprise
to educators aqd directors of personnel departments. This result was found
in all of the experiments, so that very strong evidence is-available to support : :
the assertion that years of education and relevant work experience are not s
good predictors of problem-solving performance. Additional results suggest . ;
that the "number of programming languages (used on 1 or more programs)" . , S
and "number of operating systems used" are betten predictors of the capabil- } Ll

ities of computer users/programmers,

P Y

E. Connelly ~, e
PMA, Inc. R
40f18 UL

AR P

CERIRILER G T T

RS A A Sl A S

,;Ar?iig‘-«lq-&;‘n)‘mw’,.r:, B Ll LR e et

S5

e

g e T S

Oﬁfwﬁma r-m
OF POOY’\

f":,"‘v .{..

QU&U a"y

Low Frequency of Errors-of-Commission

The fourth result applied to the subsequent experiments was the
observation that only a few errors of commission occurredduring the
generation of the example-solutions. The majority of errors thst aid occur
were errors of omission. This intriguing result influenced the design of
Experiment 6, where FORTRAN IV code was written to sclve the same
problems used in.Experiment 1, so that a comparison of error rates would
be possible.

RESULTS FOR EXPERIMENT 6

Two types of errors were analyzed. One type, termed an "error
of omission", referred to an error that resulted in a failure to accept a
correct entity (e.g., ship combination). When specifying a problem solution
with example~solutions, an error of omission could be directly traced
to a failure to enter an example of a suitable entity (ship combination).
The second type of error considered was an "error of commission."” When
example-solutions were used to specify a problem solution, an error of
commission corresponded to an incorrect example entered into the processor
which was then treated by the processor as a correct example. An error
of commiission resulted in erroneously accepting incorrect entities (ship
combinations).

Errors-of-Omission

There was little difference in the effect of problem complexity on
errors of omission between the two methods of specifyying problem solutions,
i.e., by example-solution or by FORTRAN IV subroutines.

Errors-of-Commission

e : ‘

When generating exam;ile-solu.ifidhs,without feedback aids, the rate

of errors of commission increased sharply at a problem complexity-level
near 20,821, as measured by Halstead's E Metric (Connelly, Comeau, &
Johnson1981). But, given a suitable feedback aid environment, such as in
Experiment 3, this problem complexity limitation could be eliminated, as
evidenced by the Experiment 3 data in which performance degradation did
not appear.. .

E. Comie,lly\
PMA, Inc.
50f18

EASE of i o0

TS Lt

b
o

s,
g R o -l

D A

- by Ao it

[

T

g
A
%‘
t
3
3

Y AT T

fal
&<

2
Legs

ORIGINAL PAGE (8

The most important result regarding errors of commission was
that specification by example-solutions was superior to specification by
program code. Analysis of the mean scores from Experiments 1, 2, and 3
provided strong evidence that using exampla-solutions substantially reduced
errors of commission compared to using FORTRAN IV program code. The
3% rate for errors of commission with example-solutions compared favorably
with 18% for program code.

Three hypotheses concerning the superior performance of the example-
solution method seem plausible:

1. It was working with examples and dealing with each individual
combination of items one-at~a-time that resulted in a low rate
of errors of commission.

2. It was the specification of each combination one-at-a-time that
alone was important. Consequently, if computer programs
were developed to specify each solution combination one-at-a-
time, the rate of errors of commission would be low.

3. The success of the example-solution method was due, in part,
to the transformation of example-solutions from one logic form
into another*, such as the ship selection logic (SSL.), or into
several different forms, such as the feedback aids. Thus, it
was the transformation of logic which enabled the user to view
the problem in more than one way and that resulted in a low
rate of errors of commission. Consequently, if program code
entered by the user were transformed into a different logic form
and fed back to the user for approval, a low rate of errors of
commission would be obtained.

These hypotheses are not alternative hypotheses ~ all could be true.
We have strong evidence that the first hypothesis is true. If the second is
true but not the third, program design and coding methods could be adapted
to a more combination dependent structure. And finally, if the third
hypothesis were found to be true, pre~compilation aids could be designed to -

convert the user's program code into another form (while maintaining the
same program logic) for feedback to the user,

E. Connelly
PMA, Inc.
60of 18

5 : I i
e e e g L e

T

R T s R T

ORIGINAL p
OF POOR QUAW‘? .
1 1
, i
| CORNCLUSIONS : :

1. The lack of a strong relationship between "years >f higher :
education', "years of experience'" and performance, coupled with <
the strong relationship between "number of computer languages"
known and "number of operating systems" used, suggests i
that education and experience should not be used as they have
been in the past for hiring, promoting, determining salary
level, and assigning tasks. Instead, the number of operating
systems used, which are better performance predictors, should
be used until the underlying factors included in each are discovered.

SHIRIN R

RS

2. Apparently, the depth of an individual's experience is not as
important to performance as is breadth of his experience.

T s

3. A possible common underlying experience related factor is the
ability to view problems from alternative viewpoints, or the
ability to develop alternative approaches to problems — an
ability that might be enhanced with feedback aids.

EE AR AR T,

4. The performance prediction capability of strategy measures,
developed as moment-to-moment measures, not only clearly
demonstrates that systematic strategies were used by successful
participants (which led to the design of the feedback aids), but :
also convincingly demonstrates that moment-to-moment measures k
provide the sensitivity to explain considerable perfor‘manqe variance
(approximately 60% in Experiments 1 thru 4.) A

ity ey it IS e i) bt o M 6y R B <E

e s v

5. The superior performance (fewer errors of commission) achieved
when using example-solutions and inductive processing to specify
problem solutions over the performance achieved when using
FORTRAN IV code may provide a basis for determining the
underlying mechanism for that success and a means for. incor- 5
porating that mechanism into program designing and coding aids.
Apparently, superior performance was obtained either because

4
NE*Y

ot -

each combination of the input variables was treated indvidually i

and/or because the example-solutions were transformed into : i

another logic form == the ship selecticn logic (SSL). If the former

is a significant factor, then aids described in this report should be " : !
P
R
s PR

=

E. Connelly : o
PMA, Inc. A
7of 18

2 T |

£y WL < s

ORIGINAL Palls o
OF POOR QUALITY
e i
* E
¢ ,
. 1
.) ' adapted to program designing. and coding aids. If the latter
. is a significant factor then designing and coding aids should
bz developed to transform the logic provided by the user into !
; another form which is then fed back to the user for his review. .
- Such a transformation might present the program's equivalent
H logic. . ,
: ; b :
e REFERENCES :
Connelly, £. M, A comparison of the accuracy and completeness i
3 : of problem solutions piroduced by example-solutions and s
5 program code. (Technical Report 82-362). Performance -)
?“ ! Measurement Associates, Inc. September 1982 (a). ;
£ ; C 2
: ' bl
i, ‘ Connelly, £. M, Accuracy & completeness of problem solutions b
i with example-solutions. ' (Technical Report 82-363). J
r Performance Measurement Associates, Inc. November 1882 (b). :
}
§ Connelly, E. M., Comeau, R, F., & Johnson, P. Effect of automatic ,'
d processing on specification of problem solutions for computer E
; programs. (Technical Report 81-361), Performance 3
Measurement Associates, Inc. March 1981, AD A108570 1]
; o
Halstead, M. H. Elements of software science. New York: !
§ Elsevier, 1977.
‘
| The research reported here was supported by the Engineering L -
| Psychology Programs, Office of Naval Research. The views, Lo)
: opinions and findings are those of the author and should not be
construed as an official Department of the Navy position, policy, ;
. ! decision. : i
> i Y
; ;
L #
e ‘
-
.

E. Connelly

PMA, Inc.
8of18

. Tt

81J06
oul 'VINd
Ajpuuo) ‘g

PROGRAMMING VIA EXAMPLE-SOLUTION CAN
RESULT IN FEWER ERRORS

EDWARD M. CONNELLY

PERFORMANCE
MEASUREMENT
ASSOCIATES,
Incorporated

¥00d 40
IVNIDINO

ALI'TYnd

RESEARCH METHOD

~ TEST ABILITY OF INDIVIDUALS -
TO SPECIFY PROBLEM SOLUTIONS:
e EXAMPLE SOLUTIONS
e FORTRAN IV CODE

@

e T TRt

813001
Ul "'VIAd
Afjouuoy 'q

L
J
/
;

e s e v 3 T I T T T R T o L T T R) TR R e

ol o 3 W\\‘” BT SRS it iR L AT ARy Ay ’,'("\\':15 'L”‘T}\I&“ RITVRMPRE R T s moamRem CREETERS RS RET IR IR R T o R R TR T L ed R DT TR T T z *
b g i 4 v) 4 ~ i .
meg ') ‘: ! ‘ ‘ '
! ’ ‘) ~ .
o R R S St : i . . ?
Y

e

E A G A £

L]

RN R N st S I & L R e

SIX EXPERIMENTS

ORIGINAL EXAMPLE SOLUTIONS

1
2
3.
4

PC/IR, PROGRAMMERS
PC/IR, BOOKKEEPERS

PC/FA, PROGRAMMERS
PC/FA, BOOKKEEPERS

REVISE EXAMPLE SOLUTIONS

5.

PC/FA, PROGRAMMERS

FORTRAN IV COCE

6.

PC =

PC/IR, PROGRAMMERS

PROBLEM COMPLEXITY

IR = INFORMATION REQUIRED
FA = FEEDBACK AIDS

E, Connelly
- PMA, Inc.

110f18

it Sl il . i e b L

o rrpane s

PO A T e 4L N T “F N L ST e I A
el “n & - R
3 > "

r‘r:"“' “
e

&
e

PROBLEM STATEMENT

1. THE SHIPS NEEDED FOR THE TASK)

FORCE ARE: .
| e 2 AIRCRAFT CARRIERS — NUCLEAR 1
; (CVAN) OR NON-NUCLEAR (CVA) 5 2
AND
¢ 2 SUBMARINES (SS) ;

| 2. THE TRANSITING TIME MUST BE 5
| DAYS OR LESS AND -

3. THE STATIONING TIME MUST BE 10 S
DAYS OR MORE. s

R '{"‘"‘f“

5
2o
N

z

;
!
:

E. Coﬁnelly :
- PMA, Inc.
12 of 18

TR S pupre— @St Sal ot ety o s " T

B ool G 2t

- 8130¢€l
Ul ‘VINd

Afauuo) ‘g

s et PR T BAY l LSRA T S TR T R T U

. e
THIS TASK FORCE CRITERIA SPECIFIES THREE
COMBINATIONS OF SHIP TYPES AS FOLLOWS:
e 2 CVA AND 2 SS
OR
e 2CVAN AND 2SS
OR
* 1.CVA AND 1 CVAN AND 2 S§

i , P ER . T - Tl
SO N O T e S T G S R N FESRTIEI TP L T

Nl 2 @

BRI

B e T s e T TR R e e T TR IR s T e e Tt RePTRTT e T R DR BT L T A e R T e T T e r T et T TR s T A TeTe T ST . -7 = o
- e -~ - et " LT TR T TR T ESe BT R St L TEATEET ST TmE e e T I R T U e eI Nt LA e A S

SHIP SELECTION LOGIC_ (SSL) .

| N-o:—-oi - Transit Time »-~-~~Stati6néng Time---
Ship Type Ship Type MIN MAX MIN MAX

| CVAN
| CVA
CA
CGN
CG
DD
SSN
SS
AO

PR g T ShK

s e T e

T o

© N © © © © O = ©o

griovpl
oul ‘VINd
Afpouuo) g

v-
B S N I L S I e i e

wwwmw—.ﬁu .
pe 4 . - + L

DEMOGRAPHICS

e YEARS OF EXPERIENCE AND YEARS OF
HIGHER EDUCATION ARE NOT IMPORTANT TO
PREDICTING PERFORMANCE.

e NUMBER OF COMPUTER LANGUAGES
KNOWN AND NUMBER OF OPERATING
SYSTEMS USED ARE IMPORTANT TO
PREDICTING PERFORMANCE.

- P

e -

e UNDERLYING FACTOR MAY BE ABILITY
TO VIEW PROBLEMS FROM ALTERNATIVE
VIEWPOINTS.

Ul 'VIAd

81JO ¢S]
Afjauuo) 'q

DEMOGRAPHICS

e YEARS-OF EXPERIENCE AND YEARS OF ‘
HIGHER EDUCATION ARE NOT IMPORTANT TO

PREDICTING PERFORMANCE.
. « NUMBER OF COMPUTER LANGUAGES
f 4 KNOWN AND NUMBER OF OPERATING
" SYSTEMS USED ARE IMPORTANT TO
't PREDICTING PERFORMANCE.
3
‘ e UNDERLYING FACTOR MAY BE ABILITY
i TO VIEW PROBLEMS FROM ALTERNATIVE
sz VIEWPOINTS.
8

it -
® = , |)

EXAMPLE SOLUTIONS/
FORTRAN IV CODE

e EXAMPLE SOLUTIONS AND FEED-
BACK AIDS YIELDS SAME ERROR
OF OMISSION RATE AS FORTRAN
IV PROGRAMS

. B —

e EXAMPLE SOLUTIONS AND FEED-
BACK AIDS YIELD MUCH LOWER
RATE OF ERROR OF COMMISSION
AS FORTRAN IV PROGRAMS

e e e

oul ‘VINd

81 JO0 91
Afjpuuo) g

I SEP TSI T b L T T TR AT o L e b o : s ate

—

a2

_en

3 .~v,~1}11;\§-‘27’7’ 7&3—?#&?}:}#}%’?' B

a'\ i :v
; 3
f !
t
i

| ERRORS OF
| i | | COMMISSION

i ; EXAMPLE SOLUTIONS PLUS = 3%
S | INDUCTIVE FEEDBACK «

PROGRAM CODE ‘ 17.7%
jo
b E
3 i |
o |
H
4
¥
o
g
i
, b S
15 ®g 3
P &g
pooo %
.
3 =
\\:‘: ’;i
i3
i ‘ : £ RTINS e T TR T e e 8 LR, e £V T B R WE S B A R § NRATT T AL 8 G s - S e g e s e e B T pom

T L A T S PRI NDRPUL ISP LTL SN 3 s P g R o I N N S et e RS T T N R L

o e

- - ~ -

[e s e et TR

8130 8I

oul "VINd
Afjpuuo) 'q

T T THE T A T IORR TR SRR TR R BT T
i \M i\t.'\’,“'“f,r ;
A

R A T Eachd B i) o Sl

; - W DR T TR T TR R N
ff;@.ms\a T | :
A -

HYPOTHESES

SUPERIOR-PERFORMANCE OBTAINED

WITH EXAMPLE SOLUTIONS MAY
BE DUE TO:

e WORKING WITH EXAMPLES
| OR

e WORKING WITH EACH SOLUTION
ONE-AT-A-TIME

OR

e THE TRANSFORMATION FROM ONE

FORM TO ANOTHER (EXAMPLES TO
EQUIVALENT LOGIC)

o mBs

L

T ey

o

S

Sl A i -ttt RS

\"F:‘W?Hf:'r A M

5,
4
¢

ORIGINAL PACE (S
OF POOR QUALITY

EXTENDED ABSTRACT

“You can observe a lot by just watching!
How Designers Deasign®

David Linman., Kate Ehrlich’, Elliot Soloway., John Black"*

Department of Computer Sciénce'» Department of Psychqlogym
_ Yale University
New Haven, Connecticut 06520

(Please address all correspondence to Elliot Soloway)

1. Introduction: Motivation and Goals

Rather than developing design languages and support environments on the basis of what we
think dcsig'ners should be doing, we felt that a more inférmed process would be to first find out
what they do do. To this end, we interviewed for two hours each 4 expert. software designers and
2 novice designers as they designed an electronic mail system; subjects were encouraged to talk-
aloud as they worked; and the design session was video-taped. Here we briefly summarize the

key observations based.on an analysis of these tapes.

2. Subjects and Task

All designers were professionals supplied to us by a nearby branck of ITT. Expert designers
had at least 8 years of design experience in commercial settings, while novices had less than 2
years of similar experience. Note, however, that the novices were without question bright,
competent individuals; they simply had less experience than the experts. Subjects were given the
following task:

TASK -- Design an electronic mail system around the following primitives: READ, REPLY,
SEND, DELETE, SAVE, EDIT, LIST-HEADERS. The goal is to get to the level of pseudocode
that could be used by professional programmers to produce a running program. The mail system
will run on a very large, fast machine so hardware considerations are not an issue:

1Quote from Yogi Berra, a catcher for the New York Yankees.

2This work was sponsored by a graat from ITT.

E. Soloway
Yale
1 of4

NSRRI ¢ e e

LA BN IO RS AN TR L L ey ke

e oS,

2 e o

SN L

[

BRI

g “TRERAT S L s onin LANISESES

R

E
7
{;
b
7
r
¥
&
[
i
;
5

g

4

ORIGINAL PAGE (8
OF POOR QUALITY

3. Observation I: How the Design Progressed -

All our expert designers considered the same topics, almost always in the same order, and
usually at the same level of detail. This surprisingly consistent observation led us to posit the
concept of a session meta-plan, which we believe guided the expert software designer's treatment
of the electronic mail system. Novices did not seem to use anything analogous to a common plan

of attack on the mail system problem: their design sessions were less systematic than those of
the experts. ‘

As illustrated in the time line shown below, the meta-plan of our experts contained five distinct
phases; first the experts described how a user would view the mail system, then they stated
various assumptions (e.g, we will use dumb terminals); then experts used models of mail systems
at various levels of generélity (e’g., at the most general level was the flow of information model,
followed by examples of other mail systems they have known followed by the specific system at
hand); finally, the experts worked on the concrete design. Notice that the novices dove right into
the detailed specifications of the system. We asked all subjects to provide a wrap up evaluation
at about 10 minutes before the end of the session.

Stert Finish

NOVICES: concrete design...,............, wrep-up

100 mins ‘ ~10 mins

EXPERTS: wuser,...assump-....abstract......... concrets. . .wrap-up
model tions rodels of design

mail system
“10 mins 10 mins “80 mins ~10 mins

The following quotes taken from the protocols are representative and support the abbve claims:

At 3 minutes into the task, one novice said:
(Writes SAVE) “To save ! have to open a file and then write to that file... If I have 5 or 6
messages [have to consider if [want to save ali of them or whether I should save a specific one
and specify which one I am saving.”
Similarl&, at 3 minutes into the task, one expert said:
“I guess | have to establish a set of assumptions of my own”
At 10 minutes into the task, one novice said:
. “Thé number of the message line has to be specified... In order to get the message,.. if | have 4
messages, I need to know which lines I'm going to take if the user only wants to save one
message..”

Similarly, at 10 minutes into the task, one expert said:

L e WA RS ecowiu

. e S b

¢ b e s e

A S < s by mitrZina Y ¢ Bibned

.t

AL PR R et s b) TR s e e

'E. Soloway S

Yale

20f4

AT L el

LU it | TR P W T s LN

B ¢ ptn st e kil

AR N T

ORIGHNAL PRGE |
OF POOR QuaLi7y

“Let me start looking at the states of a user, first of all, and what the world is going to seem
from the view of a user.”

4. Observation II: Design Strategies
We observed that experts all employed the following four general design strategies --- and the
novices did not.

1. The experts wzre purpose ful: experis cohiinually stated explicit goals and subgoals,
and continually checked to see how their design satisfied those goals. For example,
one expert said:

“] want (o go backwards !or a minute. [want to think about how I got to here and
from here to there and how I'm now going to go back to the user. OK I've got it.”

in coatrast, novices operated in a more bottom up fashion: they pursued goals as
problems zame up, without a global sense of where they were going.

2. The experts were model-directed: experts drew on their experience and continually
manipulated models of the mail system at various levels of ab%ractlon, e.g.,-at the
most absiract level, one expert viewed mail as a stream of incoming data that
needed to be ruted to the appropriate place. These models were used to set up goals
to be pursued.

3. The experts always followed a course of balanced development; components of the
system were desigried in a breadth-wise fashion: at each level, the detail of each
component was about the same. For example, one expert said:- :

Subject: “So I'm trying to keep all the things level.”

Intervierwer: “Knowing a little bit about each one.”

Subject: “Knowing a little bit about each one. The same level of ‘.omplexny with
each one and hopefully the questions may have,. and as you've seen before
sometimes when I ask a question about one thing it reminds me of another thing I

. had passed over before and if I'm at the same level of decomposition I can see some
links between them.”

In contrast, novices plunged into the details of a specific component only to find
when they came to the next component that assumptions and constraints of the
earlier component were violated — and thus bugs were introduced.

4. The experts employed a variety of notes that they used during the design:
. A:aaumptiona: these notes set out the parameters of the system; they were
typically specified early in the design, e.g., we will be using dumb terminals.

e Conatraints: as components were being defined certain propertiss that would
have a global effect needed to be noted, e.g., in working on the REPLY
command a constraint was set up that the buffer pointer to the current
message should not be updated by the READ command.

. Ezycctatwna these notes set up demons that would interrupt the designer at

key points in the process, e.g., in reviewing the LIST-HEADERS command, the

designer realized that the data structure for the mail messages better permit
access to the subject field, as well as the contents field.

The potes were used by the experts to continually monitor and evaluate the progress

E. Soloway
Yale
3 of4

¥a

SRELEES

LI,

RS Y pemaeag e 2 b e impe e s

e

R

;.
3
:

ITRRERIRTRST B s 4SO

R LR C

£

1

¢

n g5 .

ORIGINAL PAGE [‘

OF POOR QUALITY i

{

“gv

of the design. '

L . ;

6. Implications for the Software Alds i
What are the implications of these observations for the design languages and suppori software?
Where did the experts need assistance? ' It is clear to us that information management was a key

skill that experts had, but which they could use soisi assistance on --- especially when the ’

compfexity of the task grows largé. However, the type of information manngcmenuhpt we think -
designers need is not simple “version management"; this type of assistance mer;cly regurgitates

back to-the user exactly what he/she has typed in. Rather, the software aids. that we see . ' :

; ; ; L ‘

relevant to enhancing the design process are thiose that can digest the information provided by | ; i

the designer. In particular, one aspect in which-the designers seemed to need assistance was in ; d

the keeping track of the “notes” they made (the assumptions, expectations, and constraints) and ! :

recalling them at just the appropriate time. Software that could perform this type of assistance :

would require considerable understanding of the design process itself, and information that is :

problem specific. ‘ o

L

For example, in designing an electronic mail system, assume the designer noted the following 4

assumption to the software aid: :

[}

Assumption: use only dumb terminals i

Reason: keep costs down i

Then later when the designer was working on, say, the SEND command, and contemplating how ‘

a message could be edited, the software aid should respond with: 4

S

Careful: you ussumed that dumb terminals would be used; this type of terminal ; : E

© does not have local editing capability i o

This type of reminding assistance would provide powerful assistance to an experi. Morcover, it T “

might help a novice designer learn good habits, by encouraging him/her to carry out the design z

using notes about assumptions, expectations, and constraints.
I

8. Concluding Remarks

The: verbal protocols we collected and analyzed from our subjects provide a tantilizing glimpse : :
into the process of design. While even in this small pilot study we saw clear convergence of :
techiques among the experts — and clear differences between the novices and the experts, we see ‘ :
thé observations made in this paper as only a beginning. We feel strongly that studies of the
type reported here are necessary in order to get a better understanding of design - which in turn
can knowledgeably inform the development of design aids. Yes, Yogi, you can observe a lot by S’
just watching! :

UCH P

E. Soloway
Yale
4 of 4

S s R

TRETESSTER TSR LT T

s ek 1 (R

i

e LG e it L ALE R R it S kil (L St

Ww:m A s adn,
s

o I

ORIGINAL Zﬁiﬁ ‘ "N84 231 46

OF POOR

)

EVALUATING MULTIPLE COORDINATED WINDOWS
FOR PROGRAMMER WORKSTATIONS

Ben Shneiderman*, Charles Grantham, Kent Norman#, Judd Rogers,
and Nicholas Roussopoulos*

*pevartment of Computer Science
#Department of Psychology

Human-Computer Interaction Laboratory
University of Maryland
College Park, MD 20742

October 14, 1983

ABSTRACT Programmers might benefit from larger Séteens w1th
multiple windows or multiple -screens, especially if convenient
coordination among screens can be arranged. This research
project explores uses for multiple coordinated displays in a
programmers workstation. -Initial efforts focus on the potential
applications, a command language for coordinating the displays,
and the psychological basis for effective utilization so as to
avoid information overload. Subsequent efforts will be devoted
to implementing the concepts and performing controlled
psychologically oriented experiments to validate the hypotheses.

INTRODUCTION

Full screen display editors are rapidly replacing line orxented
editors, because they offer a larger window and more intuitively
clear operations.. Comparative studies indirate display editors
can be learned in half the time and permit twice the productivity
for many tasks {Roberts, 1979)

Similar productivity gains may be p0551b1e by further expanding
the personal workstation to include multiple coordinated windows:
Multiple windows have been uséd in graphics systems where-one °
screen provides command facilities for the ygraphic dlsplay.
Applications with complex information display requirements..often’.
employ multiple computer displays, e.g. nuclear reactor control,
air traffic control, manufacturing control, spacecraft control,
and commodity exchanges.

Multiple display research in programmer workstations has been
conducted by the Japanese (Mano et al.,, 1982), in the Spatial
Data Management project at Computer Corporation of America
(Herot, 1980), and by Xerox with their overlapping windows
strategy (Smith et al., 1982). This latter approach, often
called the "cluttered desk model"™, allows the user to create

Presented at EIGTH ANNUAL SOFTWARE ENGINEERING WORKSHOP, NASA, Goddard
* Space Flight Center, 11/30/83

<E. Grantham
UofM '
1 of11

e e e N R RS S

R T R L

v s bt

s 18

i

LU L TRISAR T LTI AR Ty L T I L B T .

L

[

T 2y s

e

R R .= Y

N e

o gl nir

aihaanidl b duebior S amic Mo 0 3 Ry W

P I I)

o ek g

L e e . - SeetB . 87w sicME o

NIRRT e T AR IR LR R ERTAEEL T

’{A\Twl?ﬁ»rv;gyr”vp”ﬂpﬂ TN AT AT

f';;rva! JE
t

?'«rvf\

T

i
i
£
e

A
e
¥
B
g};

Eﬁ

1%

Bous

oF &d&u«i Gl ;&-H)f

multiple windows in which independent processes can be initiated.
Other researchers are developing the software architectures '~
necessary to support multiple window activity (Gonzalez, 1982.
O'Hara, 1983, Weiser et al., 1983).

Larger displays and multiple windows are attractive (IBM, 1983),
but can overwhelm the user with too much information and the
frustration of having to issue many commands to accomplish their
tasks.

RESEARCH DIRECTIGH

In this project we propose to go beyond these early efforts and
evaluate a multiple window environment in which the activities
across windows can be cocrdinated to support programming t:zsks.
Appealing applications include:

1) A central window shows program text, while the left window
shows ianput test cases and the right window shows output
results. Each press of a function key moves.the left window
to the next test case and the right window to ithe next output
case. The programmer can then examine the ¢ode and verify the
correctness of the output or track anomalles.

2; One window shows program text and as the cursor is moved-
onto a variable, the declaration, recent values, and
cross~-reference list automatically appear in another window.

3) One window shows the module design specification, another
window shows the flowchart, and the third window shows the
program code under development. As the user enters the name
of another module, the specification, flowchart, and code
appear simultaneously.

4) The top-down structure chart appears in one window, and as
the user moves the cursor onto one of the boxes, the code
and/or specifications appear in other windows.

%) Three windows show a contiguous section of a piograﬁ 120
lines long, 40 lines per window. The command DOWN 25 causes
all three screens to move down 25 lines.

6) With a single command the user can display all three (or
more) modules invoked by a higher-level module, to check for
commonality of argument passing strategies.

The list could be made much longer, but these examples convey the
rich potential for multiple windows, if useful coordination and
synchronization can be achieved conveniently. Multiple screens
are advantageous -for situations which require correlation between
two segments of text, fuller context for comprehension of local
code, and concurrent viewing of the root, sub-tree, and leaves of
a tree structure.

C - % E. Granthamﬂ
J | UofM

2ofll

A gy A e

ket

P T T T R e

O

Y)

P

s g w6

K e N

e 40

ORIGINAL PA2T 19 .
OF POOR QUALITY o

B

We are in the process of designing a language to specify :
window coordination. Our initial approach is to use text editor : 4
macros to create a set of commands which would fit in the editor ,
environment. For example, the macro nc {(for Next Case) might be ’ ‘
specified as 1>L /**/; 3>L /CASE/ which means locate on screen 1
the string ** (a marker for the beginning of an input test case)
and simultaneously locate on screen 3 the string CASE (a header '
field for each output case). Conjointly, we will study 4
programming behavior to isolate those tasks which can benefit I |
from the user of multi-screen information jpresentation) { .
strategies. : ! .

AR KL

RELEEE SRR LR

[USTev.

We are in the process of designing a three screen programmer :
- workstation to test alternative strategies. We hope to refine 3 s
- successful strategies by using the initial system for our own use i
and to test the system with programmers recruited to perform
1 benchmark tasks. In additicn to producing a useful system, we
expect to develop a better understanding of how programmers do
their work. An additional benefit would be the development of
simplified -strategies for coordinating split screens on single
display systems - these concepts might be rapidly applied to
currently available programmer workstations.

T

SRS RN TS e

SIS SHRC Ak 1008 LR B
PN
et

EVALUATION STRATEGY

Qur early experiments will concentrate on comprehension tasks’
which can be administered in a well-controlled manner
(Shneiderman, 1980). For exzmple, we have observed that in-line
comments. tend to clutter the listing and cause more window
movement commands to study a program. There are three
experimental conditions: . S

4 st iae seks o e 32

N RS I

SRR

v

e e b i T £

1) Ssingle screen with in--line comments - -the control group.

2) One screen with program text only and one screen with
comments only. A single window movement command will cause
both screens to move in synchrony,.

3) Two screens which are linked together to show twice as many
lines of program text with in-line comments. The screens are
linked so that they act as simply a doubly long window.

»
e R s v

:

SubJecfs will be glven a comprehension test forward trace (for a
given input what is the output), backward trace (for a given
output. what must the input have been), value of variables, ¢ounts
of exacution, and other questions. Subject evaluations
complement the objective test scores,

‘vﬁgyﬁﬂq‘xﬂxsvrvww.‘;v:v“«am TIRTERS TR IR UR LT AR WY e

As our implementation becomes more powerful we will explore
program debugging, modification, and composition tasks.

% .
&
=

Acknowledgements: We are grateful to IBM Pederal System Division
for support of this project.

E. Grantham
UofM
3ofll

‘ : ORIGHEAL FAGE (& T
- OF POOR QUALITY !

;

A !
4
x REFERENCES §
’ Gonzalez, J. C., Implementing a window system for an all points 1
2 addressable display, IBM Cambridge Scientific Center Report ‘
2 G320-2141, (December 1982). :
. Herot, Christopher, Spatial management of data, ACM Transactions

? on Databases 5, 4 (December 1980), 493 -513.

IBM 3290 Information Panel: DeSC[lpthn and Reference, Form))
GA23-0021-0, Kingston, N.Y., {(March 1983). :

Mano, Yoshihisa, Omaki, Kazuhito, and Torii, Koji, Early

experiences with a multi-display programming environment, Proc. ;
6th International Software Eng1neer1ng Conference, Ava11ab1e from b
IEEE, (1982)7”422-423

O'Hara, Robert P., An interactive d1splay environment or knltt1ng
sheep's clothing for a wolf, Proc. National Computer Conference,
Vol. 52, AFIPS Press, Ar11ngton, VA, (1983), 329-339.

i 14 LR

Roberts, Teresa L., Evaluation of computer text editors, Ph. D. ; 1
dissertation, Stanford University, (1980). Available from ' ;
University Mlcrofxlms, Ann Arbor, MI, AAD 80-11699.

FEEURT

Shneiderman,: Ben, Software Psychology- Human Factors in Computer
and Information Systems, Little, Brown and Co., Boston, MA
119807,

smith, Cranfield, 'et:al., Designing the STAR user 1nterface, BYTE
7, 4, (April 1982), 242-282.

Weiser, M., Torek, C., Trigg, R., and Wood, R., The Maryland
window systems, University of Maryland Computer Science Technical (
Report TR-1271, (January 1983). : i

RSN T T AT e

LI \/. = <,m}v\1 p(ﬂ«gwgwﬁyplugp ST ReRed e

{
\

»

1
)

i

E. Grantham
Uof M
4o0f1l

L - . et s SR P At 2htaaiiin EEAAS

t‘x‘.;f(/};w?{?'x’:sf fe SR aa)
R

R R

EVALUATING MULTIPLE COORDINATED %
WINDOWS for PROGRAMMER WORKSTATIONS

RAS, Lo

5 5 Ben Shneiderman®*, Charles Grantham, Kent Norman#, Lo é
Judd Rogers and Nicholas Roussopoulos* g

.
3
4
J
X

* Department of Computer Science
Department of Psychology

B S T

3 Human-Computer Interaction Laboratory
University of Maryland
College Park, MD 20742

TR RS A T SO AR SRR T T

R Wil LA bt

T
¢
e e e Ao e A b i s St A it a 4Tt ¥

FET .

g :

é :

e g ;

E. Grantham . '

UofM
50f1l1

ARG S s

SIERRRIRRRALS TR e AR ag b AT T Ry
B) Ll +
.

R

SRR

'517\1‘7[«\\: """”?‘/’f ’1!(:'7 SFFYTIETELTT A e
v

vl
i

g

32‘«"*)3\74

1

R s

T
3

b N »K\ £

: - .
{ R :

‘ . XY AN Ll I
R

e

.

bk

ORIGHNAL PAGE (Y
OF POOR QUALITY

TWC RESEARCH STRATEGIES

KEYBOARD

\

e

I

KEYBOARD

T e STl T AT T

E. Grantham
UofM
60ofll

S S

va b b A i e

Ao £ e

ey Tt iy

PROGRAMMER TASKS TO BE EVALUATED
(all require comprehension)

A - Composition
B — Testing
C — De-bugging

D - Modification

E. Granthain
U of M
7of 11

ot ST

B e

Leseraey TR

e ol et

N TN

Y rr———

FOCUS IS ON COORDINATED USE OF INFORMATION FOR EACH GIVEN COGNITIVE TASK
Summary of Observational Study Results
TASK COGNITIVE ACTlVlTlES
° Data Structure
COMPOSITION INTEGRATION e Control Structure
i e Modular Design
Pl e Input :
TESTING CORRELATION e Expected utput '
; | :
: ?]
‘ |
|
VARIANCE e Semantics ,1
DE-BUGGING " FROM : :
i PLAN e Syntax | b 3
'] ! “ Ty
SEEEE REFERENCE o Semantics .
'. MODIFICATION + B
F - LOCATION e Specifications
1R ; i
I
=] | ‘»
e : 1
< '
3 |
L ;
. !
]
1
- L
_ E. Grantham .
3 UofM i
E 8 of 11 f
A o “*) :
v . 4 4%

Em— e Nl T T R s eyt B e

. T
A 7

' EXAMPLE:
{
CONFIGURATION A o
PROGRAM COMPOSITION Cy
k. TASK i |
: W | @) = o
3 A
" , Module Structure :
- Specification under Chart ‘ '
: Development ; f
7 P
\ ; : :
Keyboard ’
g
i
: i
i
Reference to a module causes all screens to move in a linked fashion. ‘

A e e B

AT R TR TR T TT IR R RS T TR Ny ¢

t
Screen 2 is the ‘work area’; Screen 1 displays specifications: Screen 3 — that portion of the i
Structure Chart where the module appears.
o
; ?
1
! i
‘e 1
i]
g
o
| 3
i s
E. Grantham Lo
UofM i i
9ofll E

Rl PR It R o
o

Y

hCods B I

LEEZ AR A G 5L

!
3
3

DR

BRI SL

:

1

1

o

.

>

.
;‘
3
R
-

ard
Lo !
fom
ol
3

I

*

E
EXAMPLE:
CONFIGURATION B
PROGRAM COMPOSITION
1
(1) I @
" (User Definable Area)
Specifications l l
” Second Module
il
LR]
3) | @
Il
Module | | Structure
under I
Development ' Chart
|

Coordinated changes of information occur in same fashion as Configuration A except user
definable space is in window 2.

cr T R TETERRRRRE T EER

E. Grantham

: SOFTWARE MACROS -
a SEMANTIC ORGANIZATION: o

One acreen will be control target. Action (input) on ?
this screen causes correlated changes in other screens. '

In Configuration A: Screen 2
In Configuration B: Window 3

CURAL G RERRAONR e e e e
S T

A SO
S N PP
b v as s L oot vk e S 2

R
it 2

& TN RS RN TR RS Lt

POTENTIAL SYNTAX: L

MACRO NC (macro definition) §
DL/ xn/ ?
351 /CASE/
END MACRO

?:}"’(l}‘("i'.lv‘ LR i

b

P

R Vi N L A

i

1““Fmﬁw R
T
‘i R
|
1

o\ R

E. Grantham
UofM
11 of 11

. i . P e e T e Y T S e

R N o e——— oo ECny

F S T T R TR) e e e i sl B T

4

-
<

PANI

P. Currit, IBM

K. Rone, IBM
J. Romeu, lITRI

L
QUALITY ASSESSMENT

g
!
1
3

-

A A A B B T ¢ o s xSt e e b

D, O S Oy . : gt rorant g
+ . # T I T e e e e e > e e T S SR AL T T L L R N TR T e SN LT R e IR T I e T

@/D

-

t,
Nl
-
=
O
P

S o
”3
M.f
= °

. N84 23147

B

Cleanroom Certification Model
P. A, Currit
October 13, 1983

% o : * _(
O B . L T N T P . i :
S a¥ . - ; . \
. . 5 ’
[

. . a 2 : H BRI i .,
AT T S I R B TS T BIPALr AR O TR S S PN S

BT P e ST Y R

Introduction

The "Cleanroom" software development methodology is designed to take the
gamble out of prodict releases for both suppliers and receivers of the
software. The ingredients of this procedure are a life cycle of execut-
able product increments, representative statistical testing, and a standard
estima%e of the MTTF (Mean Time To Failure) of the product at the time of
its release.

In the paper we consider a statistical approach tc software product test-
ing using randomly seiected samples of test cases. A statistical model is
defined for the certification process which uses the t1m1ng data recorded
during test. A reasonableness argument for this model is provided that
uses previously published data on software product execution. Also in-
cluded is a derivation of the certification model estimators and a compar-
ison of the proposed least squares technique w1th the more commonly used
maximum likelihood estimators. :

A Statistical Mode] of Software Ruliability

If there are -errors in a software product, users may experience inter-
mittent failures as the product is executed. Unlike the possibility of
intermittent failures in hardware, these intermittent failures in software
are repeatable -- that is, if the software is executed again under iden-
tical initial conditions, then the failures will occur in exactly the same
places. The appearance of intermittent failure in software in a given
instruction seeming to fail one time and not another is due to the com-
plexity of circumstances in which the instructions are executed rather
than in underlying physical problems that occur during the execution of
the instruction. :

In the case of hardware failures, the basis for a statistical model
appears in the very physical behavior of the hardware. But in the soft-
ware, we must find another basis for statistical behavior.. Fortunately,
that basis is close at hand -- it is in the nature of the usage of the
software by various users. Any particular user will make use of the
software from time to time with different initial conditions and differ-
ent inputs. During any specific use of the software, inputs may be
entered from time to time and outputs observed from time to time during
the course of the execution. The only failures detectable in the software
are either from its aborting or from producing faulty output. Eut any one
execution from a fixed initial condition from fixed inputs w111 behave
similarly for every user every time they use it.

We call any such fjxed use an "execution" which is distinguishable from

all other executions by its initial condition and its inputs. Any given
execution may have one or more failures associated with it, which is

determined by the software itself as compared to the specification it is

. intended to satisfy. An execution will require a fixed number of

‘machine cycles.

P. Currit
IBM
2 of 34

T O o i NP

O T S

e L

EETRIR S

i

Now, we can imagine an "execution lifetime" for any given user to be the L
sequence of executions the user calls for with the software. Such se- g
quences of executions for each user can be assembled into a collection of ’
sequences of executions -- one for each user -- and the statistical proper-
ties of this coliection identified as a stochastic process. That is, we
consider, for the software product, a statistical pattern of usage for |
P the product in terms of its initial conditions and inputs. Any execution ;
: selected in such a stochastic process will in general depend upon the ;
| , past history of the sequence. For example, it is very unlikely that a Py
| } user will query files before the files are loaded or that a user will g
: call for two successive file maintenance executions. These kinds of ! ;
conditions can be represented in a stochastic process which defines prob- {

abilities at any point in time to depend upon the state of the past history :
of the process. o :

With a statistical basis of user usage of the product, we can determine
various statistical measures such as the MTTF, or the variance around the
MTTF, etc. where time is measured in machine cycles. We are interested 3
in failure free execution intervals, rather than trying to estimate the : !
errors remaining in a software design. Our objective is to measure :
operational reliability which is the reason for the user usage perspec-
tive. o

AT N T S

? | The Effect of Enginéering Changes on the MTTF of‘Spftware

. 3
 Consider a software increment under test and certification in which o
' : failures are observed and the results returned to the development i
1 3 group. On the analysis of these failures, the development group may i
i 5 propose engineering changes to correct the software. These engineering :
changes can increase the MTTF of the software, and we wish to account
for that increase in the MTTF. ‘

When engineering changes are made to software, it is only prudent to S
undertake regression testing to insure that these changeg have not e 1
created new failures in execution. This regression testing §hou1d use
previously gencrated statistical tests. It goes without saying that

Y e

= this regression testing cannot be considered part of the statistical % 1
<] sample used for estimatiig the reliability of the software. Instead, P

- § the increased MTTF, if any, must be detected and accounted for by new R ‘
S samples independent of the old ones (very likely new samples in later i

. increments in which the retested software is only part of the total :
— software being tested). ‘ : |

e gy e

i 5 Suppose at a certain point in time that a set of engineering changeg'_
C ECI, ECZ, ECm, has been applied to the software as a result of certifi-

cation testing and analysis. Suppose that the failure rate of the software 1

AR AT

P. Currit
IBM
Jof34

i}

g o R RS ST SR T B L S L B e R T R s, A

:
;<
,
g
i
]

bl R S R S

FEERER ¥ e
) R . " "

r
.
-
3
=
-
3
3
-
-
ju
-
;,-r

BNy e b L

2
i
B

S o - Y S R o R

is A and the failure rate associated with éngineering change EC; is Ai.
Then the failure rate associated with all the engineering changes made
to date is the sum

Al + Az + ... + Am

If the engineering changes have corrected all errors in the software,
then the foregoing sum will equal A; otherwise, it will be less tkan A.
But, in fact, no one will ever know which case holds, and we assume
neither case.

For conVehience, we define AO to be the deficiency, if any, between A

and the foregoing sum. That is

AO = A —~A1 - AZ cee = Am

In this case, the quantities

po = AO/A’ Pl = AI/A: pz = AZ/A, LU pm = Am/l-
are probabilities -- namely, Py is the probability that a failure was
caused by the error corrected by engineering change ECI. (po is the
probability a failure was caused by an error not corrected by any
engineering change.)

If we assume an exponential distribution for time to next failure, in
line with Adams' (8) and Nagel's (9) findings, the MTTF is the reciprocal
of failure rate. We can then calculate a new MTTF after each successive
engineering change has been made - namely, beginning with MTTFO, the

MTTFm of the original product after m changes will be

MTTF, = MTTFo/(1-p;)

MTTF2 = MTTFO/(I-p1 prz)

MTTF = MTTFg/(1-py= ... - p_)

The P; values, or correspondingly Ai/x, can be expected to be decreasing

in size, even though we cannot observe them directly with any certainty.
This is because the errors with the highest associated rates of failure
will be most 1ikely detected and corrected earliest. That can't be guar-
anteed, of course, because a rare failure may well occur early as well
and a correction made for it.
P. Currit
IBM
4 of 34

L i L L i -l A L R T L R L e T T T e i, G

R b s

‘
b s AN B 4 L i it g M ¥ b ety B3 - e eyt

LAYy mem

it otbe s L0y lend

d ‘]
3

i
-

S LR s R

R R TR

¢
L
#

i
-

¥

4

[3

4

g
.

&
=
Lo
W
e
8

5, .
h
el

This expected decrease in size can be modeled in a simplified form if
the py are defined by the probability distribution of geometrically

decreasing terms

i-1

p; = (1<) a’™%, 0> a >1

That is; eéch P; is a fraction o of the preceeding Pi-1- We can expli-
citly sum the denominator on the right side of the MTTFm equation to get
a new formula '

MTTF = MTTFORm, where R = 1/a

In this formula, R is the average fractional improvement of the MTTF for
each engineering change In fact, in actual practice, R is just an
average. Some engineering changes will affect the MTTF more than others
depending upon the rate of failure associated with the error that has
been fixed.

This particular software reliability model has been independently derived
by'severa] other people starting with different initial assumptions. It
is equivalent to the Moranda geometric de-Eutrophication model and the
Ramamoorthy-Bastani input domain based model. Moreover all of these

models can be viewed as special cases of the Cox Proportional Hazard model.

It is well known that engineering changes themselves can intrcduce more
errors in a software product. It appears that errors induced by such
changes are much smaller when carried out by the original development
group than with a separate field support group; but, nevertheless, we
augment the above model with a contribution of error from engineering
changes themselves. For this purpose, assume that engineering change
EC introduces a failure rate at the level of Py , then the above calcu-

1at1on needs to be mod1f1ed to alter the def1n1t1on of the Py to the
following

N - 01', - p;)/A
In this case, the remaining calculations go as before with Py again

defined te account for the discrepancy but with the same end result,
namely

. /M
MTTF, = MTTE, R

IR T R) l | : (ﬂf)‘
A CEENS T - . A

A Reasonableness Check of the Model

In 1980 Adams analyzed the software failure history of a number of 1arge 3
. software products. Table 1 is taken from that work and illustrates the o
percent of errors in various failure rate classes. Two striking features ~
of this data are the wide range of failure rates and the high percentage Coh
of very low rate errors. One third of the errors have MTTF of 5000 years. ‘

‘Table 1
FITTED PERCENTAGE DEFECTS o

MEAN TIME TO PROBLEM OCCURRENCE IN KMONTHS BY RATE CLASS

: 60 19 6 1.9 .6 .19 .06 .019
f PRODUCT

4 1 34.2 28.8 17.8 10.3 5.0 2.1 1.2 0.7
3 2 34.3 28.0 18.2 9.7 4.5 3.2 1.5 0.7
g 3 33.7 28.5 18.0 8.7 6.5 2.8 1.4 0.4
z 4 34,2 28,5 18.7 11.9 4.4 2.0 0.3 0.1
: 5 34.2 28.5 18.4 9.4 4.4 2.9 1.4 0.7
; 6 32.0 28.2 20.1 11.5 5.0 2.1 0.8 0.3
1 7 3.0 28.5 18.5 9.9 4.5 2.7 1.4 0.6
: -8 31.9 27.1 18.4 11.1 6.5 2.7 1.4 1.1
§ 9 31.2 27.6 20.4 12.8 5.6 1.9 0.5 0.0

3 : Table 1 gives a new insight into the power of statistical testing, rela-
: § tive to selective testing or inspection, for improving MTTF. Finding

i : errors at random is a very different matter than finding execution fail- o
; a ures at random. One third of the errors found at random will hardly affect o
5 the MTTF at all; the next quarter of the errors found at random do little ;
more. The two highest rate classes, some two percent of the errors, cause
a thousand times more failures per error than the two lowest rate classes,
some sixty percent of the errors. That is, statistical testing will un-
cover the high rate errors by a factor of 2000/60, some 30 to 1, while ran-

b]
: domly finding errors uncovers high rate errors by a fraction of only 1 to 30. |
S ‘ ' §
%- The availability of the Adams data prov1des a unique opportunity for i
£ checking model(s) reasonab]eness, since it can provide failure rate as }
e a function of engineering change. Most available data is given in terms |
% of errors found or inter-fail times but not true failure rate. With the

s Adams data separate examinations of model assumptions and parameter esti-

{ mation techniques can be performed. Quanti]e-Quanti1e and trend plots

E*”‘ have been previously proposed for comparing the goodness of fit of differ-

; ent models but.without failure rate data were unable to differentiate

2, between assumptions and estimation techniques when models performed poorly.

£ The reasonableness analysis for the certification model was performed in - g
B two parts, first assuming perfect debugging of the software and subse- ‘
2 quently considering the effect of introducing errors during product repair.

£ | : : ,

3

P. Currit
IBM :
6 of 34

i b < e et e e S U S E R

L e LT LT e o R e, TV T T st S T L

AR T

2Pl hidt SR R T)

DL

GELE PR Lol St S T

R A

AR R BRI T T e

R RTRERS T

TR AT

RS

Sa “'4’{7"‘\;}‘3 """7»'\2:'7[?": ATRREIEST B e e

\

1

?

%
é,

;

s

%s:’

A

é’
A
.
4
2
%

To perform the analysis, failure rate data exhibiting the effects of engi-
neering changes was derived from the Adams data which was reported in
terms of failure rate classes and failure counts. First Al, Ao cees A8

were defined as the failure rates associated with the eight rate classes
and n(i,k) as the number of errors in rate class i after k engineering
changes. The initial failure rate for a product (before making any
engineering changes) can then be expressed as

- 8 .
To introduce the effect of engineering changes, successive failure rates

must be derived by simulating the occurrence of failures. This is done by
expressing the probability of the first error being from rate class i as

Ai n(i,0)/A

and using a random number generatof to select a rate class (designated io)
according to these probabilities. The number of errors in each class rate
after removing the first error would then be expessed as

n(i,l) = n(i,0) for i # iO
Since the number of errors for each rate class can be derived, the failure

rate for the product after removing one error (first engineering change)
can be expressed as

0

_ .8 .
This process is repeatable to develop successive failure rates for the

product and produces a single realization of a failure rate curve based
on the Adams data. ’

For reasonableness analysis an expected failure rate curve obtained by
averaging a number of realizetions is a better tool. Figure 1 illustrates
such a curve that was created by averaging 100 realizations of the Adams
data assuming an initial count of 500 errors. The availability of the
expected failure rate curves permits an examination of the reasonableness
of the proposed certification model and a comparison.of its assumptions
and estimation techniques against other software reliability models.

- The curve illustrated in Figure 1 is not of the form l/MRk (the reciprocal
of MTTF in the certification model) since 1ts logarithm is not linear, as
shown in Figure 2, However large segments of the curve are of the desired
form which suggests that the model is useful for certification but not
extended prediction. Since our objective is software certification, the
model satisfies this role and introducing complexity for long range predic-
tion is not warranted.

P, Currit
IBM
7 of 34

g+ s

L eSS PRENACHRIGIN S | L1 R L i Ak A e e et oy L o

s it

SN e o e i T e A B e ey

2 am e §T TR T 2w R TR ERRVTRGAM 0 LS AR LRGSO AT T T g T B
Ay WO R T O TSR Ay Trars SE T RTRARE S AR SRS .1

- xR EE R RO RS SRR T B AL B ¢ 7‘3\33, CE yARTRIp . . N - . . " .
L e e S (L] WG | o : L
1 e . - P — e P

i SR
f
|
|

I8N B/5T

kg
160

FAILURE RATE FROM ADAMS DATA L
150::
1404
130

i ‘ 1203 !

116

. ' 100
:

NIDIMO

1 aanbyd

= e =

691

50

FYNO ¥00d 40

40—

31 30¥d

Al

© 5 .10 15 20 25 30 35 40 45 S0 S5 60 &5 70 75 80 85 90 95 100
: ENGINEERING CHANGES

Wl
mmy od

200 INITIAL BUGS CAMNA=0 50 STHILATIONS

PEJo 8

Tf::ws .
!.

i
:
1
i

¥

3

»

¢

¢

y

)

|

5

!

)

¥

P€J0 6

WAl
1Y g

-1BM 8/53

2 34nbi4

3.507]

. T R R Al B ae 6 T SO
14 AR N
5, 33 BT : \)

3,259

s.0040

2.754
1

'.-.s»—i
2.25
2.904

t.75

1.50

1.00

= sspe s G AR T AR OPEL TARCTRT LR v A L A U e e R .
Lﬂ,g“m’;.”fﬂ,"—f-.}mm e O e t 9 ; & R R

LOG(FAILURE RATE FROM ADAMS DATA)

1S 20 25 30 35 40 45 S0 S5 &0 &5 10 75 60 85 70
ENGINEERING CHANGES

?5 100

206G - INITIAL [ucs CaHMA=0 50 SIALATINNS

ynd u00d 40

AL

NIDIO

B Z9v¥d Y

e DR TRSVIRA ST e

IR & .o L e oo
- .

Dbt AR B g

R A SR LI St RS S S S L
. s

SRR

1
3

>

»

g

3

>

.
'é»

:

B

¥

The failure rate curve shows that failure rate does not decrease linearly
with engineering changes as assumed by the Jelinski-Motanda and derivative
models. The Littlewood-Verrall model has good fit with the failure rate
curve and has been used by one of the authors for long range predictions.

Failure rate curves that cover the imperfect debugging case require addi-
tional knowledge of the probability (y) that a fix creates an error and the
probability (g)that the created error is from rate class i. A reasonable

assumption is that Y should be in the range 0 to .25 and based on Adams
suggestion (14) g; can be derived by assuming the repair process is similar

to the development process. The following set of 9; values have been
experimentally derived:

Rate Class of Created Error

1 2 3 4 5 6 7 8
Probability .04 .08 .15 .22 .20 .16 .09 .06

Expected failure rate curves have béén ééﬁérated using‘fhe derived g% data

over a range of Y values. Analysis indicates that the certification
model is equa11y useful in the imperfect debugging case where the major
distinction is the appearance of fatter tails than in the perfect
debugging case.

i h N
Parameter Estimation

To use the proposed model for actual software. cert1f1cat1on, methods are
required for estimating the model parameters (MTTF0 and R) from recorded

testing data. The suggested estimation procedure differs from methods
used by other reliability models and is based on a least square technique.

|
Let tl, t2’ cees tn be the successive interfail times for a product under

test and certification. From time to time, engineering changes will be

made to the product in response to observed failures. These changes are
introduced after the failures are observed, and typically packaged in an
incremental release from development to test. For each i, let ¢y be the

cumulative number of engineering changes made to the product after the
1nterfa11 interval measured by ti The t1 introduce a source of random-

ness since the times to failure will vary about the mean. The certifica-
tion model and most other models assume an exponential distribution,
which seems to be corroborated by the Nagel and Skrivan work :

~ P. Currit
IBM
10 of 34

e T e S il ol e B R B R e Gl AT

NS

S R,

)
4
b
3

TETEST T T e

e B

il R bR A 1 PO B
. f

AR GRS i L

Properties of a model's esfimators. such as unbiasedness, are as important
as the underlying model assumptions. Estimators for the MTTF0 and R

parameters in the certification model have been developed, which are com-
puted with a least squares analysis of the Togarithms of the interfail
times and a bias correction. '

Most existing models rely on maximum 1ikelihood estimators (MLE) which have
a known set of problems as discussed by Forman-Singpurwalla, Sukert, and
Littlewood-Verrall relative to the Jelinski-Moranda model. It has been
demonstrated that for practical number of data points MLE exhibits bias and
has greater variance than .the estimators log least squares estimators. The
bias can not be corrected because there is not a closed form MLE solution.

Figure 3 shows the MTTF curves when the logarithmic technique is used for
estimating the MTTF0 and R parameters. As calibration points, 50, 100,

150 and 200 data points were selected to evaluate the method using the
simulation of the Adams data. Since the intent at this point was to demon-
strate the effectiveness of the estimators, interfail times simulated from
C.
a curve of the form MTTF R‘T could have been used. However using any
realization, such as i]]gstrated in Figure 3, provides a more interesting
test and a closer simulation of what will actually occur. As can be seen,
all curves give a good prediction of MTTF with the most discrepancy in the
50 point case when prediction is carried too far into the future.

Sy

P. Currit -

“IBM.
11 of 34

Sl L e, e) R o ot B e SR e W T Ll S

.,u..w..‘,._m-,(,».‘,_n

PPt

et 30 st e s et 75

i e o

e

}
iz

! "y U LA A S T B S S i ol B LR ¥ PMEL LA Bk ths U A A S i b i IR AT EEE K AL L A T SR T T D

“~olnsh 4 3 ACA TR AR W AR AR SRR e AT AR T R T A R N LSRR e Beny T E BN M 8 L R : Lo .o

e PRSI A T (A G LA : : o o e
< g R . . i L.

5.0~]
i MTTF IMPLIED BY L S FIT OF LOG .
1 . -
1.5 STARS=INTERFATL _TTAES .
4 YELLOVW =TRUE HTTF |
] RELUE haseh bit 108 F1s
B t { D B
7.0 CRELN BASED O 150 FTS
6.5 .
: 4
i 6.0
e *
il S.S-E
: 5.0
) O 0
i 3 =
‘s‘ 4.5'_‘ -ou Q ‘
) S4.04) . o% i
14 54'0- . T = |
) [+ i g g 1
“3.53] ‘ ‘
' 3.5 . >0 3
- 3 s o |
]) e ‘
3'0? ') - j 8 i
] Pt Estimte ' |
2.5 ' True MTTF ,) ' o
3 200 Pt. Estimates 1
o 150 Pt. Estimates |
‘ 2.0'-" J
;.\.] '
i .53 '
o .
:'] Y]
E 1.0 ' |
s 1 ' |
1 N
i 0.5': Y . (]
b p d ¥] 3]
i} :] N . o .] l' .0 w v' J . 'l o . 'L Ve ¢ ! , LI . .
! — 5 0.03"° N R Yy a0 v s i vy . LI ' wae '
; o * * T T T T T T T Y T T Y T vy T Y T ' NS ¥ . &
; o X0 = 0 19 23 30 40 50 40 70 8O 90 100 110 420 130 140 150 160 170 €D 190 20
il N 3. EHGINUEIRING CHAIGES c5/8 W
! = - - B

AT TR T T 7

,¥ 0T

ORIGINAL PAGE (S
OF POCR QUALITY :

SOFTWARE CERTIFICATION MODEL

e e e o bpbs Bt T hiebied e e Sint

P. A. CURRIT
IBM Corporation
November 30, 1983

1

P. Currit
IBM
13 of 34

Py
L.
£
i
Fi
i
i
el

i
.
B
!
1)
B

g

g

265

o

&

B

g
! —— . . g 5 ki e - - e oo

= B Col S a3 e e s T il S Y SR N FRe T AR TG FEER TN B ovemmimon & o et PR B -

iy W SR ek wx @ MANIE o cd

iz
” 4
>3

AR A BT

3 S

SR

b 3 "“f«~*fﬂg*mﬁg{zf(ﬂ‘n"wmﬁ?‘wv'?v,"wv-w'"wT"" e it it oRE i L

‘\

A |
1

AR TR

&

!1.
;

i

e

WHY MTTF?

Quality Should Be Measured From Customer’s Perspective

How often does it fail?
MTTF reports by large commercial customers

MTTF ship criteria

What’s the severity of a fail?

P. Currit
IBM

WHY MTTF?

Management Decisions

High MTTF is good, low MTTF is bad.
If x errors haye been fixed, is that good or bad?

If x is small, either:

1) There were very few errors made
or

2) There are plenty of errors, but the
testing process is ineffective

If x is large, either:

1) There were a large number of errors made
or

2) The testing process is very effective

P. Currit

IBM

15 of 34

S
I

“ TR po S W b TR TR
B R Pe Sty S-S SIS S S R

e

L ey i w LB,

Y T Y st

FORF,

R e A R B s

AR tidhhalE sl
B TN
. '. n "‘ . T =

RS - e S

WHY MTTF?

You Get What You Measure,

Why Not Measure What The Customer Wants?

[T AP LS RCA WU

P. Currit
IBM
16 of 34

kb B e

[———

e

Ry N

afantty

#
A
-
¢
=3
.

e

bt ek Rl

CORTETEER T SRR A CTRIW AR R

X ‘"""K?ﬂ‘;ﬂ'ﬂ"‘l‘r*’vlnqq"ﬂ'f’m" SRR T s ET e mmeRt T o E R sa ey

\

Y

3
3
3
2
£
2
;.f_)

MODELING GOALS

Certify MTTF

Avoid Restrictive Assumptions

Provide Statistically Sound Estimators

Keep 1t Conceptually Simple

e AR e ST
" e CRRE ST YE M e 4 Ny, AL g

LT SMTESSTITI IR R i R

R AT LR T S

3oiseE

ettt

P.‘ .Currit
IBM
17 of 34

Szalih R K A O h e a e S I e bodd ey & 3
1 H ’ Lo i ’ .
AN e - . - - < g i X
» “‘ . N " . . . I . » O . . W
. -
.

ORIGINAL PAGE IS <
OF POOR QUALITY S

-«

*x
+
ey

Y
" i
L H
f
; — A— |
x ;
kl "‘
5 L
] ’ - 4 : '

Each lifetime has a probability of occurrence.

SRR LS LRI R RS EE T a

Failure rate F of the programs is averaged over all

possible lifetimes. |

1
MTTF = M =—
. F

Each error e has an associated failure rate.Fe.

F = tFe.
e

Fe
Let pe = g~ . (Relative frequency of error e)

P. Currit
IBM
18 of 34

Wnlwﬁ% E‘%‘R’f’w PR e

Y

i
|

: fi
Upon removal of error e; i

e

F——> F - Fe

. M s 1

In general, upon removal of errors el, e2, ---, en,

: i > N {1 p2- ... -on

v ‘ !
P H 3
[i -
B H P
; ’

O R S
2.

iy
-

T NG Y

Ry
£ s R O

g T AN

s
~

Huls Bt
.

P. Currit
- IBM

19 of 34 '

3 L 2w L o AR L T T e e S i e S
i il S -

R . o D SR T et e
W INETEETTE R L e T *
<y i PR .

]
.
3
.,
3

Let pl = (1-a)ol71,

R T e

G

Then, after k engineering changes,

I
=

>
-

M

K -1
1-§ (1-a)a

i=1

TRELANN A e il * o

1-(31-5) 1-dK

(1-7)

"

ST R AR LA ST ey SRR R

NSRS CL I S N A

P, Currit
IBM
20 of 34

i
;
}
i

SOFTWARE CERTIFICATION MODEL

-
-
g0
M
N
3

o

Mean Time To Failure After k Engineering Changes
= MRK

where

Mean time to failure before any

il

M
engineering changes

A e R T P 2 et Sl B i L

e sl A

R = Factor for relative improvement in MTTF
due to a single engineering change

3

i

1

:

5

7

3

3

3

3
S
3
<
A
.

i
i

P. Currit
IBM
21 of 34

S e T R R e o sl g s T i o Mo e R e

A T

BEL SR Sl

P ISR

TEER IR BT S S

SR L A

R WT“ Y E R AT i
: - ‘ : Fl

SOFTWARE CERTIFICATION MODEL ASSUMPTION

Equivalent to

Ramamoorthy-Bastani

Application: Nuclear Reactors

Moranda Geometric De-Eutrophication

Special case of

Cox Proportional Hazard Rate

Application: Boeing Computer Services

IV -
P. Currit
IBM
22 of 34

AT RTINS

v

S Al ki Dty 8 B A S S A

R AR

T

PW“"‘"TBX‘W‘E BLELRL Y s Sl it

MODEL REASONABLENESS

Adams data

Large software products
Proéuct usage
Defects found
Failures due to a defect

MTTF classification of defects

Allows independent check of
Model assumptions

Estimation procedures

vmnin

P. Currit ,
IBM
‘23 of 34 :

T e e e e 2o~ e I

R .’.._a-‘w‘_ '-- s BRI

€30 ¥

Wl
my g

i g B) et e
: ¥

\

~ Product

1

N O Ul & WN

O oo

E. N. AdOmS;jRC 8228, 4/11/80, p. 19, IBM Research

1.6

0.7
0.7
0.4
0.1
0.7
0.3
0.6
1.1
0.0

IR R UL 0L U AL Al 8 i R L SRt
. '

Fitted Percentage Defects

Mean Time to Problem Occurrence in Years

5

1.2
1.5
1.4

0!3
Ly

0.8
1.4
1.4

0.5

16

2.1
3.2

- 2.8

2.0
2.9

2.1

2.7

2.7

1.9

50

5.0
4,5
6.5
Iy, 4
T
5.0
4,5
6.5
5,6

160

10.3
9,7
8,7

11.9
9,4

11.5
9,9

11.1

12,8

500

17.8
18.2
18.0
18.7

18.4
20.1
18.5
18.4
20.4

1600

28.8
28.0
28.5
28.5

28.5

28.2
28.5
27.1
27.6

FREE TR} T U

5000

31,2
34,3
33,7
34,2
34,2
32.0
34,0
31.9

31,2

™M

AR e

% .
— s ed aw

re——— s it T T . T s oL T T e R T T Tty o “5
i TPSEEVITIT SRR, T L T .. T . . W
e Lo N t

A\

.

Mhbiitead |,
Py

SIMULATED FAILURE RATE CURVES

pacanl Al
s e Rnm e

A i -

Based on Adams Data

5

TP WS

AERE

For Perfect Debugging

SARERL LS (e
-

Let n(i,k) = number of errors of failure
rate li after k fixes

Let Fk = program failure rate after k fixes

8
Fo =Z A n(i,0)
i=1

Probability that first failure is caused by an error of
rate Ri

= A, n(1,0)/F, |

Randomly select iy according to preceding probability % o

n(i,1) = n(i,0) 1# I

n(i,1) = n(i,0-1 i = i, | o

Fy = ZA n(i,D | R |

Repeat to determine Fy, Fz, P
P.Curit f ‘__W

IBM
25 of 34

[yl
o)}
]

=
w
N

W1
nuny g

. Vv“‘?\[’" graTART IR
[\ P

)

I

| FEPTVSTITE FUTRVTIP [IVTTIVVTT PYVOT

122

125

A XVIL]

POY PUTTTIUTTY PPVOIVTIIN FOVITUTI |

Ak

FAILURE RATE FROM ADAME DaTa

Ab 10

¥ T T T T T T T Y T T T
a0 S0 &9 0 {9 29 OO0 190 120 13D 140 NG 1600 T

FIXES

SO0 ANITIAE WS GAMHG:O ST AT N

e e e RO et atp e —y e PN e e b < © s gy
ES

Xg < mer

190

3l 2OVd TYNIDIO

Qo
5
v
(@]
o
X
Q
(o
»
=

Y

Sy

i
{

pEJO LT

Wel
Hun) g

ks

T

imbvinm

1 aanbiLg

196+

1Ay
‘
H
106 '
[
L0)
[RETRS

]
roud

Ve

1\

704

Sillianbie e o 7 GLIEE LN LA e

TR FFRT NI N o W e TS

FAILURE RATE FROM ADAMS DATA

:0-% \
R \\\——____
h—_—_.
—_—
" T Y T T Al 11 Ll T T
o BOAD A 20 XS 0T 8h A0 A% 50 N5 4D @ WD 7h o un % 9D ¥h 190
ERGTHUERING CHAMGLES
200 INITIAL MULS GAHHA-Q. %0 NI ALEONS
s e e s A 1 AR . , o S,
N 3

DT T e T OO S W S R A

ALITYND ¥ood H0
1 30Vd TYNBIO

Ay]

TR

el

¥ g, A - .
SN R I oeoascsrn it Attt o Psiviirs. i s b

@

N

TR R

FOURET ApmTLTY LT U T T ARG asmg e o, Ty T S ———
) - ry . 4
. - L. . K4 :

3
-

f
1

LOG(FAILURE RATE FROM ADAMS DATA) k'a

o
o

R K

é aanbi4

& TYNIDNO

LT

Wi v

/
ALTYND ¥00d 40

G ol

'~ 1
{ ~
\v 2.004 \ #
! \ .
1,759 \\
] \
1.0 e
3 Na
1.25-9
-
‘ .‘.0-‘ L4 T 4 Y Y 14 T L T T T T T T id
o . 9 10 15 20 25 30 35 10 4% 50 99 Q0 &5 70 &) 1o 0y “?0 2% 39
CRGINCLERING CHANGES X
R, R
700 - InIYIAL RULS CANNS O L0 SInll ATINRS
- A‘ ’.& il - - . e PR e *»
H h e
- - i e ot N e e s

4 -)) e
f oL FARAMETER ESTIMATICH
;] STAR=TNTF_Fall TINES
| 4 RED=TITTED GV
i E | |
:
7.0 '
1 4
0.5—‘:
)] .
i 5.9
E] J
S N |
: 5.5
‘ i 5.0
3]
1] " -
i . t L]
¢] ‘
; 4,0 '
3 i
8] ' 4 l
k¢ = '
‘ 3.5 s
" 1 * o
) 3.0 . v ;
; . E t ' *
'2.5-: 1 s
] ' v, LI ¢
4 t [
2.0 ’ + oy Yy -(1?‘ C%
] 1 1 ' e
J]) Y ' ,._-/) Z)
. 1.5 el v Q5
> . L F o
,&l J] : ;3 §=ﬂ
i 0 4 ' ' . . 1
’ '-07 ot pae
-y . . "A*
. ' ’ B
. 0.5',: [. s g m
4 v] '
. 1 [
| 0 N vl =] o ' ' : rrr 2 &
O &= .03 " S AAACAd aAdasAIA LaaacAtaal AAtAtAA M AAAAMMAMMEAAAAAAAARLARAAAM RN
e = Q B 70 80 . 90 100 110 120 130 159 150
‘ f{;’ 3. . E 100 RTHG CHANGES
; 2
1
!
f
- il -~ - - - bt iean e - Al o buiad -) - o T W
. 7
", ' ‘
. il e — o -

ST TR AT e M g [T T e

S Sk A S
. B

TAARTE ¥ A T

i

LOG

o
[%]

o~
o

M PN WS FEUWE FUUWY FWVETS T PR Ve

€ 34nb14
[#] > o (V] w
. . » . .
v =] v o ¥]

(2]
»
Lo

50 Pt. Estimate

N S LA L LA B
. "

v TNIDIMO

£y

,‘wz
4.

ALTYND ¥00d 40
5 3

100 Pt. Estimates 1 }
150 Pt. Estimates 3
i

b4 T L4 1 4
A0 150 140 170

NNy g
o
c
5]
@]

A (8]

i O
D
(=
w
(o}
o
(=]
-~
o
[ow]
(]
<
S

32

E {0 RAE

G
i

-
k
.

.

PARAMETER ESTIMATION

Comparison with Maximum Likelihood

P. Currit
IBM
31 of 34

T N

e st e

oo ME'?\}’ o ﬁ’\;wﬂ-ﬁw\n‘ﬂj& RTIIT TI R TR ,;:»-;‘y.x}f,x.ﬂ&;;-«.{?;-—r.“qmﬁ’frrv,»fr'".cm-m At SR A A R i G S 8 L LI S AL S S A A R Sl R S
PRI T A AN A , ° - .

MISRA DATA USING CLEAN RCOM MODEL
CREEN:=FSEUDD INTER FAIL TINES "
I S T B S R L . FIN N B
b
N %

» »
o - ..
JUVOVIN FUVTRVOVIS CTOUTIVINS FUVUPITOTN FUVVUTIIUY PUVUPTTON |

w
NG

17
<

"
. L3
FRTUE VUCUTUTVIN FUTTVUUTUN FUTTUTTOTS TUTTTUCTIN FRUTOTIv FOW

" iy g

lc.“
&1 3DV TUNIDRIO

ALrvnd ¥ood 40

é
|
'1
!
)
1

-
Al

e e €T

[
10
‘,.
0
Lo iy o) 0 40 60 80 109 DAY ¢ 1 A0 150 18O 200 00 va0 .

; t; 2 O ENGIHLERIHG LHANGLL Y

: salad Impli 5 j '
| mplies 15 expected errors in STS4 |
j
1

|

St e 3 AR AR e TV AT BN I e VR o B LT R

Estimators:

SOFTWARE CERTIFICAION MODEL

Statistical Properties

Unbiased

Decreasing variance

Relative efficiency

Bt R RS . Stk s O v A A5 R ket Y S S S I A (S H M R ek

gk okt bt

Nt JBLE p R i

14

e

i

: .
’ : I
; CONCLUSIONS]
- ' 1"
Y {‘
- « Goals are acceptably satisfied i
. %
- {

e Programmed version of the model is available

- e

o

L (Although none is required. Any statistical
' package will suffice.)

R bl LR i 14 L
. .
it s s st} S35 o

s LA

~
Wb i ottt el N

i
¢ i
t
ke
2
¥
x 1
I K
: ¥
:A
g&
7"«
o i
?‘-’./ i
T :
L :
o 1.
N '
e
:
i ;
[
14
i P
B {
; {
i r
P :
Yl
i sy
: ;

P, Currit :
IBM—
34 of 34

o
3
=
ol
i
R
8
8 L
.
3
%

RS

¥ v
S
L b
L
x oy
Ly
B
TR
? s

AL

- " R - - S ST T e S

"N84 23148

Projecting Manpower to Attain
Quality

by
Kyle Y. Rone

International Business Machines Corporation
Federal Systems Division
Houston, Texas

K. Rone
IBM
1 of 55

G R

e

b -

CENY W b

2 g

d

R P

I e

e et 3 A Ay

LG

asodr, i

e

o e B

Abstract !

In these days of soaring software costs it becomes increasingly important
to properly manage a software development project. One element of the
management task is the projection and tracking of manpower required to
perform the task. In addition, since the total cost of the task is
directly related to the initial quality built into the software, it
becomes a necessity to project the development manpower in a way to | ;
. attain that quality. The purpose of this paper, then, is to describe an }
i approach to projecting and tracking manpower with quality in mind.

Lt T

PR R

The basic approach is to begin with a current manpower model which f
accurately describes the cost of developing a usable element of software.
Then, based on the assumption that improving quality does not cost more
over the entire life cycle, the current model is modified to reflect
greater expenditure on elements of work which are known to improve
initial quality. This requires a reduction in the cost of other elements
: since an increase in quality does not cost more, The obvious elements
AT to reduce are those directly affected by quality. The final result of

; this type of analysis is the development of a manpower model designed to
generate quality software. -

R SR

i A o

The resulting model is useful as a projection tool but must be validated
in order to be used as an on-going software cost engineering tool. A ,
procedure is developed to facilitate the tracking of model preojections g 7
and actual data to allow the model to be tuned. Finally, since the b
model must be used in an environment of overlapping development activities :
on a progression of software elements in development and maintenance, a
manpower allocation model is developed for use in a steady state development/.
maintenance enviornment.

IR ST TT UURESETIRACE AR ORISR T o7
" >

N e v

SRR ot 4

A
e e

!
3 |]
r
=

K. Rone

T

Ve 4

- - - e 8 a - v T e D . e
7

1
» ¥
.
4
i
Table of Contents i
-3 4'
s E o Introduction :
é 0 The Cost of Ignoring Initial Quality
; z ! ,
. : o The Current Manpower Model v
: ? o Development of a Manpower Model Based on Quality § f
? ‘ ’
3 f - Data Collection ;
i ' - DR Analysis !
il - DR Prevention
1 - Modifying the Current Manpower Model ;
i - Model Change Justification ; :
3 5 - Savings Due to Fewer DR's f !
: ‘ - Savings Due to Rephasing Skills ﬁ i
5 - A Generalized Quality Model : ;
L
o Extension to a Manpower Allocation Model)
o Buffer Management %: §
- i i
4 § o Model Tracking ' !
; 0 Model Sensitivities
?] o Summary 2
L :
¢ 5 |
; ;
| |
= |
: i
‘ I4

o A s s e 28 0 S

L il A o

Py

Introduction

In these days of soaring software costs it becomes increasingly important
to properly manage a software development project. One element of the ;
management task is the projection and tracking of manpower rcquired to
perform the task. In addition, since the total cost of the task is
directly related to the initial quality built into the software, it
becomes a necessity to project the development manpower in a way to
attain that quality. The purpose of this paper, then, is to describe an
approach to projecting and tracking manpower with quality in mind.

The basic approach is to begin with a current manpower model which
accurately describes the cost of developing a usable element of software.
Then, based on the assumption that improving quality does not cost more
over the entire life cycle, the current model is modified to reflect
greater expenditure on elements of work which are known to improve
initial quality. This requires a reduction in the cost of other elements
since an increase in quality does not cost more. The obvious elements

to reduce are those directly affected by quality.

The final result of
this type of analysis is the development of a manpower model designed to
generate quality software.

TR W TN

; The resulting model is useful as a projection tool but must be validated Do

P in order to be used as an on-going software cost engineering tool. A '
procedure is developed to facilitate the tracking of model projections ;
and actual data to allow the model to be tuned. Finally, since the v
model must be used in an environment of overlapping development activities
on a progression of software elements in development and maintenance, a

R

!

- ,

_ | manpower allocation model is developed for use in a steady state development/ ‘
8 g maintenance environment.

AT WA AT
b B

T
-

e e

H

i

s .-.fr\{7~x;;>f*'j s;“-['\v"\'\":"*"w

T LS

SRR

FR

oy

KERone
IBM

4 of 55 @

\
{

b
. L
The Cost of Ignoring Initial Quality ,
: In the past software projects have generated initial software relying on : ;
< the usual network of functional, subsystem and system tests to find the o
‘ "bugs" prior to system delivery, This is a questionable approach, P
however, when the overall cost of the finished (debugged) system is fi
considered. As Figure 1 shows, software development is a pyramiding or \
I stair-stepping group of functions each of which, when begun, continues
until the project is complete. Errors found early in development when
only the programmer is involved are essentially "free". That is, they j
can be absorbed in the normal work flow at a minimum cost. Once the l
code is placed on the master system, however, an error must be
documented by a discrepancey report (DR) which must be eventually closed :
by all elements of the project. And so it goes, the later in the life |
] cycle that a software error is discovered the more elements of the : i
y ' project are involved in the software and the more work must be done to Lo
i : correct the error. This naturally costs more. The result is that shown .
o generically in Figure 1 and can be summarized as: The later in the LT
s software development cycle that an error is found, the more it costs., Lo
o . 3
. The obvious conclusion is that steps should be taken to find errors :
3 early in the development process to minimize cost. The first step in !
i this process is to define the positive actions required and to plan the i
E, life cycle and project appropriate manpower to accomplish those actions. !
¢ k
3 :
L |
o
£ * o
£ f o
2 L
:; j
s I»
i f +
P
.
=L «
BT

{‘1

PO

K. Rone
IBM :
5 of 55 i

N e e 2N

o AR

o

i

T AR o

66309

gl
auoy "y

COST OF
DR FIXES |- -

“"‘L{’“‘,'f,‘“mffr"”""“‘"" R A e ik 1 AR S A S A T B A
" . .

FLIGHT SUPPORT

RECONFIGURATION

LEVEL 7 TEST

FIELD SITES

T&O, FIELD SUPPORT

LEVEL 6 TEST

STANDARDS/IPV STUDIES

 LEVEL 3/4 TEST

. Cwm/DM

BUILD &JNTEGRATION

DEVELOPMENT

TIME IN LIFE CYCLE

Figure 1. DR Cost vs. Time in Life Cycle

PURE R b it sk rattpa s Tl aedd ey ke e e ® e o iy RS <3 - g mibier W Aagh | wes 6 o ot et

40

ALITYND ¥00d 40
8§ 39Vd TN

The Current Manpower Model

w o A//»;»mv .z v§~>.
00 O0C

s

Category I:
Category 1II:
Category III:
Category 1IV:
Category V:
Category VI:
Category VII:

DAL S b it of LEl e

hhaiiall Shiias il
0O 000O0OO0D

development environment.
described in Reference 1, however, to aid in this discussion a brief
; summary is included here,
- ‘ delineating all project costs with the following information:

As mentioned in the introduction, the basic approach requires the use or
generation of a manpower model which reflects the current software

The complete development of the model used is

The development of the model was initiated

o Type cost: direct change request (CR) cost/technical and
project support costs.

Organization: software development project organization.

Function: purpose of the cost.

Drivers: factors affecting the cost.

Estimation methodology: how the item is estimated.

These project costs were placed into categories and then reordered by
those categories. The categories used were as follows:

direct CR cost

development/verification technical support
preprocessors

managemeif and common support

project release/schedule/reconfiguration
maintenance

project independent costs

release with the percent model shown in Figure 2.

by

| Using the first five categories (ignoring maintenance and project independent
; ; costs for the moment) and examining Release 19 of the Shuttle onboard
Primary Avionics Software System (PASS) we can express the cost of that

K. Rone
IBM
7 of 55

bt e e st

SRS art e 4 o 3 V. 2 e

R T IR i

ety sl

Wimw ?P‘y D s 1 ;4.@\,,J,?“.”’.’,\%T,{W:,,,v‘..,.,,,,;w.;L.,,(DI e P e e vl ,mf,,‘.,_.,ﬂ,,;,,..?‘,v.ﬁ?,.,‘,,, T IR IR e TR TR T ‘ TW@
; - - : i
CATEGORY AREA FUNCTION R19 Manmonths % >
. X
I DEV. Direct CR Est. 197 16
VERIF. Direct CR Est. 173 14 "‘"
I1 : ~ DEV. Requirements Analysis (R.A.) 13 1
Level 3 Test (L3) 26 2
E Systems Analysis (SA) 9 1 '
L Systems Architecture (SAr) 27 2 |
¢ o II | VERIF. Studies and Audits (ST/AU) 19 2
g . ' Common Function Tests (CF) 8 1
' Systems Measurement (S Meas) 14 1
‘ Level 7 Test (L7) 139 11
! ‘ : Level 6 DR Support 38 3
L III DEV. Preprocessors (PREP) 30 3 o5 |
i Q2 ;
.i v DEV,. VERIF, Management and Support (M&S) 135 11 % r:g 1‘
| P.O. C S t (CS 70 5 |
! | ommon Support (CS) g |
N ' . cx= |
\ | v SFO Build and Integration (B&I) 140 11 =8 |
't ~ Resource Management (RES MGT.) 100 8 ’i o \.
v Configuration Management/ 80 7 @ |
) Data Management (CM/DM) :
i
¥
e TOTALS 1218 100 '
3 !
i oogR -
; 2w Figure 2. Percent Model for PASS Release 19
h S 8.
(&)
|

S e

SR TN ore et BT AR B sy e

e HET AsqW

T eeSTorns AT AR 3T

R EERRA TR e

By examining these costs by category, it can be seen that a factor can be .

developed which will relate the total cost through Category IV to the direct ;
costs contained in Category I. This is accomplished by the following ;
calculations:

DIRECT CR COSTS = CRD = CATEGORY I

INDIRECT CR COSTS = CRI = CATEGORIES II - IV

FACTOR = Z'p + Br mirmirrney
CRD I

. .
FACTOR = 270 293 + 30 + 205 . 35

370

This factor can be used along with estimates of the direct CR costs to cal-
culate those costs driven by CR's. However, maintenance (Category VI) costs
are also driven by CR costs whereas Categories V and VII are not.

The cost to maintain a CR is given by the area of the difference between a
Rayleigh curve without the CR and one which includes it evaluated over the
maintenance timeframe. (Figure 3)

Ty g

SRR T Ay e T e e TR R T T e e T PR

{W TN TR .

me §“‘§"'T.‘:‘Wf!?;kwv"\wq,‘g}’“’l;l’}‘m—.xw e wi'wn'-‘;"\(?/‘“\',‘* '-‘F?:){\‘f

t
i} Manmonth O (@)
3‘1 Per - x5
) ¢ Month i v} :52 :
S Q5 “
| %
< \; P
: O g
\ ; <
i Time In Life Cycle ol)
; g .
z;\;‘ = E
i
i
i
. Figure 3. Maintenance Cost of a CR
1
. I,,‘;e, R
1 — 5 ~ SPACE SHUTTLE PROGRAMS .
I e} d N
i o =
‘ =, 8
w =
w T
b
|

NS v R o oo gt oS e At L S o8 s e S os ey 1 etk me e e Wee el w o gmel 0D TGt T e TN

e e m—— - il S bt s

PR T e ey VTR T T R
s

REihi g8
».

ki

PR | N A
.

R A

\

R

CORIGINAL PARE &

OF POOR QUALITY

This is calculated by taking the integral of the difference between the
two generalized equations of the curves and letting the time of the maximum
be one year consistent with current release plans. Doing this a formula for
maintenance is generated:

Maintenance = e (Kl—Kz)
But the time of the maximum is one year which implies that a, = 1/2. Thus:

-1/2
Maintenance = e (Kl_K2) = ,6 (Kl—kz)

This means that maintenance costs are 60%Z of the total cost of developing

a CR. However, the maintenance timeframe does not begin for all project areas

at the time of the maximum. If the time of the maximum plus .3 years is
used for the beginning of the maintenance timeframe then the following
equations are derived:

Maintenance .56 (Kl—KZ)

]

Development A4 (Kl—Kz)
The factor necessary to add maintenance costs to the development cost is
given by:

Maintenance = (.56 + .44) /.44 = 2,25

Thus, we have developed a useable manpower model that can be expressed in
terms of categories of cost and associated manpower, a percent model based
on the categories and a generalized cost model shown in Figure 4 which uses
factors to arrive at total costs driven by direct CR costs.

K. Rone

IBM
11 of 55

T B e e . = s Lo st e i

B

ST

Swm P W AT L ST B b

T S S

P i)

e T a7 e i ks

N

LS Al

fl
1
|
1

§c3otl

Wd1
suoy "M

f&‘zf“[q’"}"“;ﬂ'm AR
R

FURT RAAT T SRR TR S TSR AR SR Mg e L, O e v

ACTIVITY COST CATEGORY ALGORITHM
11 111 1V VI VII
DEVELOPMENT. THROUGH X X X 2.5 (CRD)
INITIAL SYSTEM
RELEASE
DEVELOPMENT AND X X X X 2.25 (2.5(CRD)) = S.G(CRD)
MAINTENANCE
TOTAL PROJECT X X X X X 5.6 (CRD) + CAT. V + CAT. VII
COST
Figure 4. Generalized Cost Model
= |Page
2 SPACE SHUTTLE PROGRAMS
Lo b e bbb b Lot S e e S ;10 v _-.._,.A‘-,_‘«;,«;._‘-.m.,qf Skom rhas v e ¢ e b B

L
3
3
9
30
=z
o]
o E |
QO 1 |
c ¥ |
> 6 g
Cm |
=@

S

It R St s i L A

TERIEEL T

Rt LA A i £ S

.

Development of a Manpower Model Based on Quality

As with any modeling exercise, this one is initiated by collecting data.
All data is collected by releases of Shuttle onboard PASS. Since the data
for Release 19 is incomplete only the data for Releases 16 and 17/18 is used.

Data Collection

All the data gathered is from the Project Development Plan and data
bases which support the plan or from Project Office history files.
Requirements Change Request (CR) data is collected as the total
number by release. Discrepancy Report (DR) data reflects the total
number by release divided into those which require a code fix and
those which do not. It is important to note that the "No Fix"
category includes user notes, waivers, and other categories which have
the potential of becoming "Fix" DR's in the future. The largest
group in the "No Fix" category, however, are the DR's which are simply
not PASS problems but simulator, user or misinterpretation errors.

The manpower data is divided into base work prior to system delivery
and maintenance work after delivery. Each of these categories is
subdivided into work performed by the development and verification
groups. The data collected is then used to generate the data
comparison table presented as Figure 5. The first four columns of
data in the table represent the data collected from the project.

The remaining five columns show relationships derived from the

ratios of the data elements.

K. Rdne
IBM
13 0f 55

* aone

o e e n e

et Pt aais Iy S T Ty b o et i S

-

LAY e e

oyl e el

e N e AN g w1t ek

vt

i v

2 e

RO SR S LA 2 ASLOL A N 08 LTS S Y IR

ez .i i "?’.‘\‘V‘““‘ﬁ' ;U%,Kl;“ Lﬁw;\};‘?ﬂ”wf R T G T A Y [o PO a

e e e et b S e~ T

e e

&,
RELEASE/ DLV MAINT DR/ M/ M/ MAINT/ DR/
ARFA CRs M DRs M CR CR DR DEV M1 DEV
: g
: R-16 ’
8 , DEV - 6228 - 817 - 3.6 2 .1 -
1 VERIF - 3179 - 618 - 1.9 1 1 -
FIX - - 2371 - 1.4 - - .4
NO FIX - - 2289 - 1.3 - - - .4
' TOTAL 1725 9407 4660 1435 2.7 5.5 .3 .2 .8
N oo
4 : mx
3 R-17/18 w5
. 0z E
DEV - 1286 - 381 - 1.6 .2 .2 - o%
< ‘
o VERIF - 972 - 3 - 1.2 0 0 - O T
"i d . [ol 0
1 FIX - - 951 - 1.2 - - - .7 » &
I
» NO FIX ~ = 1449 - 1.9 - - - 1.1 1 o ¢
)

TOTAL 782 2258 2400 384 3.1 2.8 .2 .2 2.0

Figure 5. Shuttle Onboard PASS Data Comparison Table

‘ IPaqe
Z SPACE SHUTTLE PROGRAMS

HE)

Wdi
auoy "M

gsiovl

oy JERI OF-- YU, . T et BB
1 e B s St g i et ity v o e [e TR .

ndalhs e S T ~ e R - e o T R T T ~ ml
, k) 5 T - P .
A Q . . 3 L
) T o . N I %
. e M R - : - 7
-

Pt
¥ ‘
; 4
Q DR Analysis g .
: i
3 ; : "
TR The next step in the process is to analyze the DR and maintenance o 4
AR data to generate the Average Cost of "Fix'" and '"No Fix" DR's. . :
t Beginning with Release 16 data the initial action required is to V
i remove the technical support manpower from the maintenance manpower : /!
P by dividing by 2.25 (the technical support factor less the project !
. office). Then knowing that, on the average, five times as much g
o effort is spent on "Fix" DR's as '"No Fix" DR's, the following ; ;
X § equation can be written: s
L 1435/2.25 = 2371 x + 2289 (x/5) ;
A :
’ The solution of the equation renders the result that each "Fix'" DR :
- cost 4.50 mandays total or 2.25 mandays for each of development and :
» verification. Performing the same analysis for Release 17/18, :
; using development maintenance only since verification maintenance ;
3 was not required, the equation yields 2.7 mandays of development ;
f Do effort for each DR. Averaging these figures the following direct ;
SET impact values are derived:
" : ﬁ
;o o The direct impact of a DR which is fixed is:
- - 2.5 md FOR DEVELOPMENT
- - 2.5 md FOR VERIFICATION g
g] o The direct impact of a DR which is not fixed is: !
- .5 md FOR DEVELOPMENT
o - .5 md FOR VERIFICATION :
.
S oo
& i ;
S 1
3
: i
i !
s
4

K.Rone
IBM
15 of 55

.
. . . . : g/
T T el T T I e e ~ : - Ty v v aa J

N eI T T R

E . el

DR Prevention

In the Shuttle onboard PASS project DR's are written for a problem only
after the software causing the problem has been placed on the Master
System. Once a DR is written; all areas of the project become involved
in its closure regardless of whether it is a problem or not. Hence,
there are two possibilities for reducing the number of DR's. The first
<o is to enhance the requirements analysis activities to give a reliable
i point of coordination before the DR is written. This subject will not be
treated further in this study but will be the object of a later study.
The second possibility, and the main object of this study, is to enhance
the development process prior to the master system build. - The two
3 ways to accomplish this are to enhance requirements analysis activities
and design and code reviews early in the initial development cycle. Re-
quirements analysis should be enhanced to improve the quality of CR's
before implementation begins, shepherd CR's through the development
life cycle, help specify level 1 and 2 tests, review level 1 and 2
test results and support design and code reviews. Design and code
| reviews could be improved by allowing more time for the reviews, improving

N

AR O
i

7

By 3O

- checklists and review documentation, providing for improved and dedi-
- ; cated review moderators and to require wider involvement from functional
; 1 areas of the project.
g i

3 i

: .

|

L |

: |

i

B H

. i

¢

. i

: i

E o

£ i

£ s

v |

, g

it 1

K. Rone
IBM
16 of 55

SR

e AR ewn

¥

it e e < Pt e i e S s 4V a i B

St ten b anppa g s s
A

et

iy

et mes Tl Ak

- ; Modifying the Current Manpower Model

S The approach, then, to modifying the current manpower model is to consider

E'f which
: 3 areas
: areas
T areas
R model

areas of the model should be increased for DR prevention, which
of cost will benefit from having fewer DR's to deal with and which
contain the skills required to enhance early development. These
should be modified accordingly to create an incremental release
which assumes an enhanced early development and fewer DR's - in

other, words, a model which assumes and also assures quality. Figure 6

depicts the process of modifying the current manpower model which is
reflected under the "0ld %" column. The modifications are listed under
the "A %" column. It should be noted that 3% is taken from each of
Level 6 and 7 verification and redirected toward the early development
activity. This results in no change to the overall project development
. model. This is consistent with the introductory assumption that quality
{ does not cost more, The final two columns show the current and quality
manpower models in terms of Release 19 manmonths.

FTRVETLRAL OIS R

IR IR EFT Y

S e

5] LTl S
D

N

K. Rone
IBM
17 of 55

i
b
i

LA

R

FER R T

R Loy

L

B e

siaacis

e i B i rimr 1t e e aoss < in sy $10s et

T R s PN

i
1
!
2

- e T i ‘ - e |
MEENTL L i S ST z ; - . o (*)‘ 1

£
* s‘
* |
R-19 NEW o
CAT. AREA FUNCTION OLD % Ay NEW % EXAMPLE EXAMPLE ‘:
| V , o
. I DEV. DIRECT EST. 16 4(16)=+6 22 197 274 K/
VERIF. DIRECT EST. 14 14 173 173 po
| j II DEV. RA 1 1 13 13 Cy
E] L3 2 2 26 26 |
: J SA 1 1 9 9
SAr 2 2 27 27
DR - - 0 0 =
II VERIF, RA - - 0 0
ST/ AU 2 2 19 19 Sl
CF 1 1 8 8 o
S MEAS 1 1 14 14
L7 11 -3 8 139 100
PRE CI DR's 3 -3 - 38 0 '
- III DEV. PREP 3 3 30 30 o
IV All M&S 11 11 135 135 ‘!
cs 6 6 70 70 %
:
e ;
: vV SFO B &I 11 11 140 140 Sy
: RES MGT 8 8 100 100 N
‘é CM/DM 7 7 80 80 R
. N
100 0 100 1218 1218
. 3
' Figure 6. Modifying the Current Manpower Model 1‘
: !
‘f i : i
o
— |
z z
3 c
K. Rone
IBM
18 of 55

S i, il A o e, e e e B e ———" g

L oaw

3
-
3
"
%

N S

- JEITEIAr Y T

S e T Shads

]

e Eﬂ;u'@ﬂ?ﬂﬁ

T 9’\3

Model Change Justification

The amount of manpower relocated iu the model change is not arbitrarily
selected. The direct development manpower is increased by 40%.

Twenty percent is added to account for increased requirements
analysis. This figure is based on early Release 16 history when a
separate requirements analysis group was maintained in the development
organization. This reflects a return to heavy emphasis on requirements
analysis as a front end process of the project. The remaining 207

is added to the direct development manpower to account for enhanced
design and code reviews. This figure is based on a comparison of

the old and new review processes in terms of increased elapsed time

of the reviews, broader involvement of the project in the reviews

and increased documentation and tracking.

To account for the 407 increase in development a corresponding de-
crease must occur elsewhere since quality does not cost more. The
two areas selected to sustain the reduction are Level 6 DR support
and Level 7 Test. Each of these reductions is examined individually.

K. Rone

IBM.

19 of 55

e

SN YT R ST

[

T R e

oo ws

Lt MTR A <

e e S

T

. " .
s ST it i S aai oam

NG o ze

V1

I B A U VAT T LS

LRl

DA

T IR S A R AT T e o

- -w(187 '\{ e ""’*‘Kaf {ﬂ‘x‘g«zmpp»- A i

TEE

TR

Savings Due to Fewer DR's

Better initial quality should be reflected in the project as fewer
DR's during the development and verification process. The task

then is to quantify the projected savings. To do this the following
procedure is used. By examining Release 19 data it is noted that
there are 235 CR's included in the release. Based on the Release

16 and 17/18 DR/CR ratios it can be projected that there will be

705 DR's during the completion of the development life cycle. Of
these only 407 or 282 should be code changes. If we increase the
development budget to improve the initial quality of the software
going to each build, a decrease in DR's after the builds should be
expected. It should also be expected that not all DR's will be i
eliminated. Selecting 50% of DR's as a target for elimination, a
projected savings can be calculated as:

(282 DR's) (.5) (2.5 md/DR) = 18 man months

Including technical support (without the project office) a savings

of 41 man months can be projected in the verification area. This

amount alone justifies the reduction to the level 6 test function.

However, the development area will experience a similar 41 man

month decrease during the verification support time frame. This

means that our model is conservative. The goal is to reduce the DR

number by 507 but a 25% reduction will enable the development and

verification areas to '"break even'". :

K. Rone
IBM
20 of 55

> e G,

e kit et it i

SRR B Wyt L

TIETAARIUEN

e T e T

?

1

;'[1\‘73 £23F1° ,.'S' " R”‘.}""“&ﬂ?ﬂ
DIEREEAE

o Q

B

PP TR

AN

Savings Due to Rephasing Skills

The skills necessary to enhance the requirements analysis task currently
reside in the level 7 test group in the verification organization.
Rephasing these skills to the requirements analysis task must there-
fore be justified. In the current model the level 7 task took 117%
of the release manpower. Examination of Release 17/18 data, however,
shows that of the 674 DR's found by verification, only 35 were found
by the level 7 test group. Of these, only 12 were significant flight
software problems. It appears obvious then that the recommended re-
phasing of skills would be not only feasible but desirable. - Three
percent of the release manpower would be adequate to perform the
requirements analysis task which would be reflected in fewer DR's
reaching the master build. This would leave 8% to perform level 7
testing which could be performed in a more stable enviormment due to
fewer DR's during the performance time frame.

The completion of this exercise concludes the justification of the
manpower movements to create the quality model. The % model given

in Figure 6 can then be used to project manpower for Release 20
and beyond.

K. Rone

IBM
21 of 55

e W AT T

e

P T o SR R e

R

LT S

-
i i i a3

- SR L
.
‘

v iy

umem e
. e

s ST

s

EEERER

B Bt L A

SR S

kg X D O

i

&

&
k.
g
Ha

v
[

"
=~
:~ .

v
woo
i
i
:r

, A Generalized Quality Model

A 7 model alone does not completely satisfy the project need.
the procedure used earlier in the paper to generate a generalized model

is used again with the quality model.

By examining the costs

through category IV, the following calculations can be made:

DIRECT CR COSTS = CRD = CATEGORY I

INDIRECT CR COSTS = CR

= CATEGORIES II - IV

I
CRy + CRI _ I+II+IITH+IV
| FACTOR = ———
‘= CR,, I
_ 447 + 216 = 30 = 205 = 2.0
FACTOR = w7

Consequently,

Again this factor can be used to calculate the development and verifi-

cation costs directly driven by CR's.

Once again maintenance, which is not included in this factor must be

considered.

and without a CR the following equations are derived:

DEVELOPMENT = ' (Kl -
MAINTENANCE = .6 (Kl -
i
<

K

Ky)

2)

By using generalized equations for Rayleigh curves with

K R0ne
IBM
22 of 55

tiew e oo b wrad Y

st

A A T S D N TR

i

o

v g vt e s

s

H

{

L 2 g
* 1

; But part of the maintenance time frame in the development area is .

now devoted to verification support and maintenance begins at the j

completion of the verification cycle. By separating the verification $

: i

- support from the maintenance as shown in Figure 7 the equations are :
' modified as follows:

S

CAPABILITIES DEVELOPMENT = 4 Ky - K,)
(3
VERIFICATION SUPPORT = 1 (K; - K,) P
Co
MAINTENANCE DEVELOPMENT = 5 (k1 " K

But the verification support contains some verirication costs. Cor-
recting for this the equations become:

g W IV ok iz e

CAPABILITIES DEVELOPMENT .43 (Kl - K,)

4

Sy

VERIFICATION SUPPORT

.07 (Kl - K2)

MAINTENANCE DEVELOPMENT

5 (K] - K)

Thus the factors necessary to add verification support and maintenance
costs to the costs directly driven by CRs are:

roo VERIFICATION SUPPORT

= L43+.07 = 1.15, | ' P
NES : ;
A
i
I MAINTENANCE = «5+.5 = 2,00 :
‘ / .
; Hence, the generalized model presented in Figure 8 is complete. : E
= |
- |
o |
‘ |
|

K.Rbne 5*
23 of 55 Al

Lk iy T . B TR e G it S L il

i
{
|
|

MANPOWER
REQUIRED

“
L

e

ORIGINAL PAGE IS
OF POOR QUALITY

Time In Life Cycle

Development Verification Maintenance
Support

Figure 7. Division of Life Cycle Ménpower

K. Rone
IBM
24 of 55

oy 'w,‘v,;.‘*— - — - ’ S

,..._ e Y Y

B e

Ay wene e e -

[P] BRIV ST SRl e S AR I T SR G T T S R T A P B -t
p— w Eﬁ‘*‘ﬁ“ﬂ‘l(ﬁ@“ﬂi‘5-'.“"@3«’7:“"5‘“1"‘ T v‘\“ﬁ’"ﬂ—? N LW“""”’;” o : . : 4
RA IR | AU N .

.
g e \ ’ ; " . :

ACTIVITY [COST CATEGORY ALGORITHM

1 11 ItI v \' vl VII

DEVELOPMENT AND

VERIFICATION ROH'S x| x | x |x 2.0 (cry)

VERIFICATION
SUPPORT .0(CR = CR
TOTAL 1.15(2.0(CRy)) =.2.3(CRy)

ROK'S

MATNTENANCE X1 X X X X

x',
§
b
.
¥

2.0(1.15(2.0(€Rp)})=2.0(2.3(CRy))= 4L 6 cRy i i

RUNOUTS AND

o N e
PROPOSALS ’ X X X X X X X 4.6 (CRD) + CAT. V + CAT. VII - a

3% ’

©%

A |
it 23 |
‘4 >
. 29
31’ Figure 8. Generalized Quality Model 1"5

IPagc
SPACE SHUTTLE PROGRAMS

§§3o 6T
ndl1
auoy "y

P T B Ml

. oo . N e P o s N
T Y b o . atvieaiag aea gt bl T R by < maa 0% - gy Bvie Tavi . o mudret B o poewen e geeig 0 TS -

3

L1

£ 4
3 1
: g
Finally, it should be noted that if better initial quality is intro- E

duced into the software system then the cost of maintenance should go y

down. Again, the quality model is conservative since it did not take :
this into account. As actuals are accrued, then the model can be f
tuned to reflect those actuals. : *

.

2 ; !
'~ ;
!
3
: 3
S 3
3 . _,
. i :
o i i
3 ‘ .
- i
E ¢
:)
g : |
;:. ! d
1 ¥
e ¢ ;
] z g 4
- | i N
3 ; ! !
: ; 2 E
i)
|
f ; :
. ¥ :
; i A
v i i
a ; j
3 : 3
- 3 b
3 : !
> : .
%
-
o ;
e ¥
: i
e i
: i
%‘.._ ;
2 i
3
8
B o X
I
- . 1
i

K. Rone {‘wzg
IBM '
26 of 55

s, w i o T

]
]

SRS e

R

TTATEFERTIIS

SRS R Btk O

\ :z(q‘:,pr“.’,’:yw LiaF SRt ki

Exzension to a Manpower Allocation Model

There comes a time in the life of most projects when they can no longer be
viewed as one Rayleigh curve but as one curve followed by a series of
smaller curves each of which represents a release. A generic graph of this
time frame is reflected in Figure 9. As a steady state, uniform set of
releases is reached the total manpower line tends to a steady state and

the maintenance line also tends to a steady state. Studies using groups

of curves in this fashion have shown that the steady state maintenance level
reached is 257 of the total steady state level. Based on the study conclu-
sion the first allocation of manpower should be:

DEVELOPMENT 757
MAINTENANCE 257
To allocate below this major division, a % model base on organization

rather than category is required. Performing this reorganization the
quality 7 model by organization is given in Figure 10.

K. Rone
IBM
27 of 55°

1 ot oo et s N 5

e 2 IR

e AL e s

TR AT T LT owends T T e T

FRETE SR AT R TWER LT ORI TR o UL S 96 LU SR CEE S

[P 19 S s B I L

AR T

. o IR
E
\ i

F
|
f
%
¢
]
1
]
]

1
A
]

A
a

I

X TOTAL DEVELOPMENT

] ¥ TOTAL MAINTENANCF T
i ;
E !
(" - ‘
‘ i
3

i MAN MONTHS |-

PER
MONTH

xr
L 3
7

AJITYND ¥OOd 40
3] 39Vd TYNIOINO

TIME

Figure 9. Manpower in the Incremental Release Timeframe

b =t = |Page %"
s E

oo I % SPACE SHUTTLE PROGRAMS _—

o 2w .

s (o) 4

W = |

w @

ﬁ - T -
CRIGINAL PAGE 19
o OF POOR QUALITY
. N
ORG. CAT. FUNCTION NEW ¢ NEW EXAMPLE
DEV. I DEV. DIRECT EST. 22 (3) 274
DEV. I VERIF. DIRECT EST. 14 173
DEV. I VERIF, ST/AU 2 19
DEV. I VERIF. CF 1 8
DEV. ’ 111 PREP 3 30
, DEV. IV M & S (PART) 8 98
- 50 502
SE 11 RA] 13
SE 11 L3 2 26
P SE I SA 1 9
SE 11 SAr 2 27
_— SE 11 SMEAS 1 | 14
SE I L7 8 100
SE Iv M & S (PART) 3 37
: 8 226
P.0. v o 6 70
6 —70
OTHER v B&l 1 140
OTHER v RES MGMT 8 100
OTHER v CM/DM 7 80 ,
76 320
100 T00 1218 1718
Figure 10. Quality % Model by Organization
K. Rone
IBM
29 of 55

P e

e

o aid i s 22

e e oae et B

Sy o e~ ;..‘ & -4 iy RV FETER T e

.- - T

g. u{,}“zt",mwavw"“W—: . 'ﬁf ° , i o . ‘ -

Since in a incremental release time frame all activities of the project

are progressing simultaneously, a time slice allocation can be made to
each activity. The allocation to development activities is shown. in
Figure 11. The legend of this figure is the same as the 7 model with the
following exceptions. Software development is divided into capabilities
development (CD) which is ongoing development of the master system and
verification support (VS) which handles error correction during the veri-
fication time frame. Half of the verification support is set aside as a
buffer to handle late, mandatory CR's required by near term flights.

This allows the capabilities development to be scheduled and worked without

interruption., It should be noted that a comparable amount of buffer
must be set aside for verification.

Including maintenance and development into one allocation model the model
depicted in Figure 12 is attained.

K Rone

IBM

30 of 55

e gl

i s ittty b o v weh et St

vty g S5

comBem

R T . foad

P o e

3 Ap.v wimene

Mt

T eigsatti e aia o

T T T T T A ATy Y

TR b

e
3
:
;
§

CD

VS

L6

L7

RA

L3, SA,

SAR

€S

B&I,
CM/DM,

ORIGINAL PAGE I9
OF POOR QUALITY

0I5

0I6

017

18%

014

0I5

0l6

9%

014

0I5

0l6

20%

0I4 AND 0I5

0I5/014

016/015

017/016

5%

' 015/014

016/015

017/016

7%

RES MGT.

267

Figure 11. Development Manpower Allocation Model

100%

KfRone
IBM
31 of 55

b D i (,.
-

. s det it moer

FR— wn.k.i&v‘»-w

i, AN

. 5
: 3
. “
i 9
; U
i
i :
: :
¥ z
4 B

L by g g e

355,

i

:

:

X

%

1

:

;

:

;

3
:&A

2

b
_:’. .
-
&«
;

ES

I
e
.

CD

VS

L6

L7

RA

L3, SA,
SAR

CS

B&I,
CM/DM,
RES MGT.

MAINT

0I5

0l6

017

143

014

0I5

0I6

7%

<«
ot
oS

015

0I6

0I4 AND QIS5

015/014

0I6/01I5

0I7/016

015/014

016/015

017/016

Figure 12.

Total Manpower Allocation Model

o
w0

4%

o/
i3

. or
10

19%

25%

100%

K. Rone

IBM
32 of 55

R T

o i s ewe

icomd bt e e e

[Y

4

Iy
: . 1
o &
Buf fer Management f ¢
k
ey Since the idea of CR buffers in the verification support and verification f ¥
o areas has been introduced, some attention must be paid to the management : :
| of those buffers. From Figure 10 it can be seen that the factor which [
i' represents organizational technical support (overhead) should be: ‘
‘ . _ CRD + CRDI 19 +8
DEVELOPMENT FACTOR = CRD = 73 = 1,4 :
{
Y
- ; _ CRV + CRVL b+ 6 ‘

ég’ L VERIFICATION FACTOR RV = T =-1.,4

;. The buffer management factor then is 1.4 for both development and verification. ;
v ¥ %
A ® ¥,
. The ground rules for buffer management can now be stated as: : :
;. o Begin with defined CR buffers in the verification support and !
. | L6 verification allocations. T
E o Adjust the buffers to account for the final build in each ; :
e operational increment which is left open for DR corrections. i 3
| P
t ! o On a continuing basis account for change by: j i
oo
- ‘Adjusting both buffers by the direct CR estimates marked : i
up by the buffer management factor. é
J

- Adjusting for actuals overruns and underruns if required. !

T TG T TR AT AR AR, TN SR ke

B
-

%

ol

{

n

]

‘

E

na

£

£ |
2 |
r.

¥

L

ol ¥

1}" |
a8

~K., Rone
IBM

U,

i 3 Model Tracking

An initial model is good only for a first projection and allocation of
manpower. In order to make the model useable on a continuing basis, i
actual data relating to the projected data should be tracked and used to
validate and/or modify the model. For this model two types of data
tracking are required. The first requirement is that the quality projected f
is attained. The most appropriate measure of quality appears to be DR's 7
per manmonth of development. The DR count is the number of DR's which
require fixes written against the builds contained in the increment or
release. The manpower number is the total manpower expended during e
capabilities development and verification support., This measurement is
initiated at the end of the first capabilities development phase and
terminates at CI for a given release. As shown in Figure 13 an alert
) ; lire has been established from Release 17/18 experience. If the measurement
; f violates the alert line then an effort will be made to determine if the
initial quality is not what had been projected. The maximum alert line
is 75% of the Release 17/18 Fix DR per manmonth of development number
found in Figure 5. A graph of this measurement is reviewed in the
project and with the customer on a periodic basis. The second type of
data tracking required is that expenditures by major function must be
examined on a release basis and the data used to tune the model. To
assist in this task a form has been developed to allow for the recording
of schedule, manpower projections, buffer management, actuals and quality
tracking data for a given release. This form is presented in Figure 14.
Since it contains scheduling, tracking, and completion data it could be

; useful as a release management tool as well as a software cost engineering
i 5 tool.
.

Rt S sh-Te-

oo

SR ATINIE e

=AU et A T

s WG W kg i L e

iy

iAo Mo Gl kit e | I . R

A mea e s

B S Y L O TP

S

o
N

v N

-
e il ok

e

K. Rone S :
IBM
34 of 55

L T X ST LT S T sl R AT et - “ i 0 A

- - . g L 0
g e : s .

ORIGINAL PAGE 19 ‘
OF POOPR. QUALITY, !

- * = g
e
P . o KXW

- - carw e T r

;

LR

S

I
i
’ : l
-
i - == R o
7 i
< .
. ALERT LINE S
T o
FIX DR'S / MM P .
. f
9 : ;
B R l)
. ; ;
o
: T T T 1
e T2 T T s s 1 s 7 8 ° o
' H o
S’éC‘é‘.’_'&&L‘éﬁT MONTHS L6 BASE REGRESSION 3
COMPLETE, PLAN PLAN :
BEGIN L6 COMPLETE COMPLETE :

s Y U ARV EAL ATA STTRA AR WP T
RN

"Z H
i 3 2
: : ii
% :' 11
i k
(3 |
3 L
4 3
L. !
- :
< !
H Figure 13. Software Quality Tracking i
T
f B}
— !
'

R
| |
K. Rone _ o 1.
IBM , 1
35 0f 55

SR it ot) PO 30 N A0 3 4t
e e «

t
3
A
e

sl B

B A B

STy
W et

N b

ORIGINAL PAGE S
OF POOR QUALITY

N - LIS LTt un,
SCHEDULES!
CR '
[o]] H (o]}
CUQOFF - RELEASE ’ RELEASE
l L Qt i Q! !
A
PR W,
VS & LG 01
U S—
L6 02,
PR S PR N— ‘
ey
PR S,
PROJECTIONS
PROJECTION DATE CR BASELINE DATE
NO.OFCR'S __ DIRECT CRESTIMATE _____ PROJECTED DR’S
MANPOWER ALLOCATION
FUNCTION MM % FUNCTION MM % FUNCTION MM *%

co \ L7 ¢S

VS AA B&I, CM/DM

Lo L3, SA, SAR RES MGT

TOTAL TOTAL ToTAL

TOTAL RELEASE = __

BUFFER IN VS BUFFERINLE . BUFFER CUTOFF

BUFFER MANAGEMENT

e vt i G 4« s b s taie i B

DATE cR'S COST | BUFFER | DATE CAR'S cosT | BUFFER loaTE CR'S .COST |BUFFER
CR'S ABSORBED. _._________ BUFFERUSED _____ BUFFER REMAINING
ACTUALS
ACTUALS DATE CRBASELINEDATE _______ DA BASELINE DATE
NO. OF CR'S DIRECTCREST, . .. NO, OF DR'S
MANPOWER ACTUALSH
FUNCTION MM % FUNCTION MM % FUNCTION MM %
cp L7 cs
Vs RA B&I, CM/DM
L6 L3, 5A, SAR RES MGT
TOTAL TOTAL ~ ToTAL
TOTAL RELEASE DELTA FROM PROJECTION
B m e e e e e
QUALITY P
TRACKING Prhe
d’ -
R I KTt o
T T L3 T T 1 L) 1 N 1 L)
BEGIN L6 1 2 3 4 5 6 7 8 9

Figure 1l4. Release Tracking Form

H
i
H
2

[,

i

1

- RS TRE LS

- s I S) DA e -
Model Sensitivities .
; {
: ¢
I 3;
It is important to point out that the generalized model is sensitive to 3 i
the direct CR estimates. The accuracy of this basic building block of : 1
most cost models is important to any project which has a significant amount :
of ongoing change. Also, since the quality model emphasises early develop- :
ment, khe increased impact due to enhanced design and code reviews, re- :
quirements analysis and pre-build testing need to be included in the direct i .
CR costs. The model is also sensitive to the number and cost of the DR's S
generated during development and test of a release. The tracking of re- §. ;
lease quality will keep a proper project focus on this sensitivity. : :
. 3
o
e
H ;
5 1
S
¥ i
-
3
4
i
R
i
3
- 3 B
: i]
i
P
K. Rone .
— IBM — :
37 of 55 ;
S ORGP SR D S ko B L e TR R LR (AU SRS S LSRRI /|

FEIm AT

ot

TR T S S

Summary

Since the total cost of a software development project is directly related
to the initial quality built into the software, it becomes a necessity to
project manpower to attain that quality. The basic approach takes a current
manpower model and, by reflecting greater expenditure on elements which

are known to improve initial quality, generates a new manpower model de-
signed to generate quality software. Since the model must be used in an
ongoing incremental release environment.,, an allocation model is developed

to allocate manpower across a project's organization, Finally, a procedure

is developed to allow the tracking of data for model validation and modi-
fication.

K:-Rone

38 of 55

BB

o S b e i T ook e s 2wl e

b o Ly e

v

g L sy o

‘lwmw,‘"v"—ﬂ':;:‘ . T T = b N N REITWTETRTRET T - -

£

o

{.\

f

(i

s ;

REFERENCES g

. l. Rone, K. Y., "General Project Cost Procedures', 1982, %
N : FSD Houston. .\ ¢

D T O xSRI e

(e vam ! b+

e S lidaet o Dot 1o

ORIV LSy TR T
N
e o,

H E

1 &
z
i

H

§ i

i ke
¥

S e

K}Rone
IBM :
39 of 55 ;

DA

WWW”’"FQ IR B | o ‘. R = B) FOR ' .

ORIGINAL PAGE 1S :
OF POOR QUALITY S

P

: §

3 1‘
\ PROJECTING MANPOWER

TO ATTAIN QUALITY ~

A Sl

: r f

!

! ;

UTTLE
PROGRAIVIS

AL SRS - ML A 0 L R
: v

2.2

? K. Y. RONE i
? FEDERAL SYSTEMS DIVISION L ;
% HOUSTON, TEXAS ;
: = —= 5 i
g Federal Systems Division
; 1322 Space Park Drive, Houston 77058
‘;‘
;
i

- K:Rone
IBM
40 of 55

NOERE St L i o . v T e i

gt Y s
TR S N TR TP R

: ,

"

*

FLIGHT SUPPORT

RECONFIGURATION

-~ LEVEL 7 TEST

FIELD SITES

T&O, FIELD SUPPORT

COST OF

DR FIXES LEVEL 6 TEST

Ve e~

STANDARDS/iPV STUDIES

LEVEL 3/4 TEST

CM/DM

T

-

BUILD & INTEGRATION

R

DEVELOPMENT

ALITYND ¥00d 40
Bl 39vd TwynDo

g'
i,i

I - =
~ TIME IN LIFE CYCLE 3
Lo
o = 7~
277 |
: : (¥4 =
TS o
i
i
- e B e o o e A e e
> i
Sl
e e T N P S N B

Y g v

i e i

$
:
u' ;
S
[y}
i o
w
wn

\\ﬂ\

I g MY e TYAT T A RSN Y T YT RS TN VAR R AR A et AT YT T oy e

ST T T e S S LT 0 o il il EEE P 3

2 e ,lr ‘f\?'\l\;vv\?‘ PN \
I ’

T,

EAPABILITIES

DEVELOPHENT

t[2]3]a]5]e]7[8]9]w0] InzllsIM](san[nlw[g[zolzljzzlzslu]ulzs[z'z[zj[zslao[u [32

| \NCREMENT
DEVELOPMENT

oL
LEVEL ©
02

o

ALITYNO 2004 40
&1 25Vd TYNIIHOo

WAl
auoy Y

T e S s T el % Raeay wweSeay s L

LEVEL7 ' o '
-0 [2] g
| cx [¢ Gt
INCREMENTAL RELEASE PROCESS
ZE55L SPACE SHUTTLE PROGRAMS [

.. N B . — o m R
ke Be B ST S T T S - PR >

o

e N

LB,

.
S SOt

RS SR e e

»

CUEERTRRS T L TR

RERRSRE IS5 S

ISR T

‘&'.'KT’FA;

LY

R

. e
¢
ORIGINAL PAGE [§
OF POOR QUALITY
54
PURPOSE !
j
e THE INCREMENTAL RELEASE PLAN IS A PROJECT PLANNING :
METHODOLOGY WHICH WILL RESULT IN HIGHER QUALITY
FLIGHT SOFTWARE RELEASES: :
- SYWALLER, MORE FREQUENT DEVELOPMENT INCREUENTS
- MORE COMPREHENSIVE TESTING PRIOR TO FIELD
DELIVERY ;
e MANPOWER IS BEING REPHASED ON THE PROJECT TO PLACE MORE ;
EMPHASIS ON REQUIREMENTS ANALYSIS, DESIGN/CODE REVIEWS :
AND PRE-BUILD TEST !
e THE PURPOSE OF THIS STUDY IS TO MODIFY THE CURRENT MAN-
POWER MODEL TO REFLECT THESE CHANGES AND PROVIDE A USABLE :
ONGOING MODEL FOR CLASS 1 WORK IN THE FUTURE g
!
smaz » |
. 82375 SPACE SHUTTLE PROGRAMS : == i
i F
|
K.Rone
IBM
43 of 55
g AR v~ ,-..'o'-y S~ s RLTTOE e e

B I R

s et

e i i i

s

|
i
|
1
|

ORIGINAL PAGE &
OF POOR QUALITY

APPROACH

START WITH CURREUT MANPOWER MODEL

~ YW DEVELOPMENT ESTIMATE

E - ROM = 2.25(2.5(1.8(1 MW))) = S5.6(1.8(1 Mi))
; s 10,1 MW

L tahd R I

L BEGINNING WITH THE BASIC ASSUMPTION THAT IMPROVING QUALITY
DOES NOT COST MORE, WE DEVELOP A MODEL WHICH

- ADDS 40% TO DEVELOPMENT FOR BETTER REQUIREMENTS
ANALYSIS AND BETTER DESIGN AND CODE REVIEWS

- THIS IS EQUIVALENT TO ADDING 1 DAY FOR R.A. AND
1 DAY FOR REVIEWS

- THIS WILL RESULT IN FEWER DRs SO EVEN THOUGH THE
DEVELOPMENT COST IS UP THE TOTAL COST IS THE SAME

oRCER R R Rl it £ L

- THE DEVELOPMENT COST WOULD BE 1.4 MW WHILE THE
DIRECT L6 COST IS THE SAME (.8)

- ROM = 2.0 (1.15(2,0(2.2 MW))) = 4.6 (2.2 MW) = 10.1 Md

. THIS IS A CONSERVATIVE APPROACH FOR THE FIRST MODEL WHICH
CAN BE MODIFIED BASED ON ACTUAL DATA

[] THIS MODEL IS INTENDED FOR USE WHEN THE INCREMENTAL RELEASE
STRATEGY REACHES STEADY STATE

ST TR T R A AT

Stk i SR

M
X

A

-
Hinf)

£ SPACE SHUTTLE PROGRAMS Z78-

K. Rone
IBM
44 of 55

ey e

R

s mvayig §55

S ST

S

’!"'!‘\ R = e e “ iaa - -
; | E
- e T:,,_
i
fa
D — w |
A(
RELEASE/ ' DEV ~ MAINT nr/ M/ MM/ MAINT/ nr/
AREA CRs MM MRs MM CR. CR DR DEV MM DEV X
R-16
g B DEV - 2183 - 817 - 1.3 .2 2 -
¥
‘ VERIF - 1718 - 618 - 1.0 .1 .2 - '
FIN - - 2371 - 1.4 - - _ 1.1
X0 FIX - - 2289 - 1.3 - - - 1.1
TOTAL 1725 3901 4660 1435 2.7 2.3 .3 A ' 2.2
k4 H .
} | : ' R-17/18
po ,
i
Yy DEV - 1286 - 381 - 1.6 .2 .2 -
3 , (e Ne)
. ; VERIF - 972 - 3 - 1.2 0 0 - Mmoo |
T & b
FIX s - 951 - 1.2 - - - 7 o= 1
) : Q% ‘i
S; N0 FIX - - 1449 - 1.9 - - - 1.1 = ‘
{ O T i
v TOTAL 782 2258 2440 384 3.1 2.8 .2 .2 2.0 C o 1
i p E,‘v) |
i i
Tl & i
<& i
¥ :
b
N S :
w® 'x = ll‘.nuc e
o =z z i SPACE SHUTTLE PROGRAMS J
W =
w (¢

PR T

ARt

B BN L s T

J‘\'!;Tyt:"n*“wuﬁ]'ﬂ LESE At s

N SN

HERY

un
il

£

R16 AND R17/18 DR ANALYSIS

) The maintenance manpower includes technical support for both
Development and Verification.

° Taking that support out of R16 we get 1435/2.25 = 638mm

° Knowing that we spend, on the average, 5 times as much effort on fix
DRs as no fix DRs we can write:

638 mm = 2371X+2289(X.5)

3190 = 11855X+2289X

3190 = 14144X

X = .23mm
= 4.50md
or 2.25md/Fix DR for each of Development and
Verification '
) Performing the same analysis for R17/R18 (for Development only since

Verification maintenance 0 since CI is so close to flight) we get:

2.66 md/Fix DR Development

. If we average these numbers we arrive at:
-~ The direct impact of a DR which is fixed is: ?
- 2.5 md foereveIOpméhi %
- 2.5 md for Verification ‘
- The direct impact of .a DR which is not fixed is: :
2 - .5 md for Development
% - .5 md for Verification .

L
K. Rone
IBM

LG - R JHEE

e, o it

46 of 55

*V‘-i»(wpw‘r“w" ‘, I U R R N o T * B e E (*,,(.

. . s S RSP

oo st

R R

B Y - T . . : P . S, N T
S
: P
: CIUICIRAL PACE 3 ; i
}; OF POOR QUALITY
W [
i Vs :
i (=4
4 1% !
S O / ” E
¥ ;
Y DR PREVENTION L
g
e DRs ARE WRITTEN FOR A PROBLEM ONLY AFTER THE' SOPTJARE ; !
CAUSING THE PROBLEM HAS BEEN PLACED ON THE MASTER SYSTEM . ;
o i :
, e ONCE A DR IS WRITTEN, ALL AREAS OF THE PROJECT BECOME i :
e | INVOLVED IN ITS CLOSURE REGARDLESS OF WHETHER IT IS A ! ;
. PROBLEM OR NOT : :
b 4 §
F e HENCE, THERE ARE TWO POSSIBILITIES FOR REDUCING THE NUMER f :
OF DRs: i :
§ »
- ENHANCE THE REQUIREMENTS ANALYSIS ACTIVITY :
TO GIVE A POINT OF COORDINATION BEFORE THE i
DR IS WRITTEN ;
- ENHANCE THE DEVELOPMENT PROCESS PRIOR TO THE ﬁ !
BUILD FOR THE MASTER SYSTEM y i
e ENHANCE REQUIREMENTS ANALYSIS b ;
- IMPROVE QUALITY OF CR BEFORE ; 1
IMPLEMENTATION BEGINS E“ :
J : kA
5 - COORDINATE CRs i é
: - SPECIFY L1/L2 TESTS i
T ' = REVIEW TEST RESULTS . i
i : 4
| - SUPPORT D&C REVIEWS : p
5 :
e ENHANCE DESIGN & CODE REVIEWS 2 :
: | i ;
, | -~ SPEND MORE TIME ON REVIEW ; ;
! | : L] B
4 | - IMPROVE. CHECXLISTS, DOCUMEN- J j
3 ‘ TATION g {
A - IMPROVED/DEDICATED MODERATORS
< ' - OUNDER INVOLVEMENT ON PROJECT ;
SR ‘ |
. T
N .33
- — i
, H SPACE SHUTTLE PROGRAMS - i
g :
K. Rone R
IBM e
47 of 55
- e T e e e S

E wWimTr Y o e ey - B e T T T TR [e itk oS i = e i
i et
¥ : J
% f“
ORIGINAL PAGE (€
OF POOR QUALITY
i
“
3 4;
: ‘ |
3 S |
x o
it R-19 NEW
» CAT. AREA ___ FUNCTION D% A% NEW % EXAMPLE _ EXAMPLE
I DEV. DIRECT £4T, 16 .4(16)=+6 22 197 274 -
-‘«, VERIF., DIRECT E:T. 14 14 173 173 : !
e 11 DEV. RA 1 1 13 13 ;
¢ : L3 2 2 26 26 ;
. SA 1 1 9 9 i ;
‘. SAr 2 2 27 27 ; ,
. DR - - 0 0 %
‘Q I VERIF. RA - - 0 0 ;
; ST/AV 2 2 19 19 ;
3 CF 1 1 8 8 v »
E S MEAS 1 1 14 14 SR
E L7 n -3 8 139 100 :
- PRE CI DR's 3 -3 - 38 0 p
> 11 DEV. PREP 3 3 30 30 , ,i
: VAT Ma&S n 1 135 135 :
: cs 6 6 70 70]
; V. SFO B&I 1 1 140 140 3
; RES MGT 8 8 100 100 i !
CM/DM 7 7 80 80 2 3
; ;) ;
: H ; ° ;
: ;
; , ; :
!
-
» 100 0 100 1218 1218 :
r=mIF r———

, 25371 SPACE SHUTTLE PROGRAMS - SS : ;
\' M
|
/ ,
4

K. Rone Lo

1BM i

48 of 55 - SR

e
%

ORIGINAL PAGE {8
OF POOR QUALITY

TR ST

R ERE TETR TR A EE

R

I smopy
>

.

YA

73
#

R

3

P

AT S e T W

DEVELOPMENT OF INCREMENTAL

RELEASE MANPOWER ALLOCATION MODEL

i
bl
iy

Yl
'm
i}
vl

Q7=

SPACE SHUTTLE PROGRAMS

K:Rone
IBM
49 of 55

.
4
'
14
0
3
5
]
'I
¥
: [
-
' |
; .
;
i
i 4
: §
1; -
: ;
H 4
g 1]
4 1
1
B
3 E
" :

FOEWE AL

i s ey 1

H :
¥ :
M ¥
. B
' p-
£
i
'

i
H
i
.
[
i
H
i
i
§
3
d
7
B

£
s
;

-;’-\q:.—{y;‘-—nqtgmr,’xp,..-.,.- R S T SR UL S L AT ERHC AR A A L S S

X TOTAL DEVELOPMENT |
% TOTAL MAINTENANCE

~ MAN MONTHS
PER
MONT#H

D TANBINO

bx

ALYND ¥00d 40

81 &

i

TIME

W4l

AUOY Y

§gloo¢

e e s

. . - 8) . *_
TSI o . .) . .

e e R R L o o - i e 1A 8 AR T A0me v s coalbitatite bt - cheont o e a6 o . PR R . - . y o .
Seedbds o~ e - - L.

it

i ,
" |
i S
W
L4
5 y
¥ 5

. ORIGINAL Fiili [| |
OF POOR QUALITY |

fE RPN R
)
v e

E PA% :
B %/3 MANPOWER ALLOCATION MODEL '

I P TYie

. BASED <N THE STUDY CONCLUSION, THE FIRST ALLOCATION OF

5 MANPOWER SHOULD BE: .]
DEVELOPMENT 75% ‘

MAINTENANCE 25%

irka Fh I g ettt ph i

TR TR e S L R

e IN ORDER TO ALLOCATE BELOW THIS MAJOR DIVISION, A % MODEL 1 ;‘

BASED ON THE NEW ORGANIZATION IS RCQUIRED L

ty
3 f
——

i R o ‘

35#3%% SPACE SHUTTLE PROGRAMS — [oow !

|

; ‘ ! v ‘ A

' : ' K. Rone ,

' ~ IBM
51 of 55
" s e i L e Bk, s ,,-w;;__i‘-m G | e

.
532
;
X
5
it

Rl B

3

S - IR oaif Bl IS DA
R T Aalit e

Xy

i
s
”
S
v

s SRR

"“?N’H&ZJ‘R&F’W%!{W?‘?{’{_ﬂ b SARTFT
v

N S i e

e ST : Lo e : "
%
£
t
;
|

. .
ORIGINAL PACE (S :
TS {
OF POOR QUALITY i
7 !
A |
2R 2
lé.‘;/“ 2% |
g :
NEW ORGANIZATION % MODEL ,
0RG. CAT. FUNCTION NEW % NEW EXAMPLE g
DEV. 1 DEV, DIRECT EST. 22 (3) 276
DEV. i VERIF, DIRECT EST. 14 173 f)
DEV. 1 VERIF. ST/AU 2 19 : i
DEV. 1 VERIF. CF 1 8
DEV. 111 PREP 3 30
DEV. v M &S (PART) 8 _ 98
™ 0T 3
SE 1 RA 1 13]
SE 11 L3 2 26
SE 11 SA 1 9 : :
SE 1 SAr 2 27]
SE 1 SMEAS 1 14 o
SE I L7 8 100
SE v M & S (PART) 3 . w o
" 7 o
¥
£.0. v cs 6 70 ;
-6 -7 ;
¥
OTHER v B4l n 140 :
OTHER v RES MGMT. 8 100 ; -
OTHER v CM/0M 7 80
o =% ko e
| i .
R
100 Yoo 1218 T2TE :
*m . . T
2 seace sHUTTLE PROGRAMS —35s f
L
i
K. Rone % e
IBM R
52 of 55

e S F . o ,f; A o 4)4
g RIGINAL BAGE 19 A
F POOR GuaLITy L
% K
; ¥
‘i;
i :

TOTAL MANPOWER ALLOCATION MODEL

s raesia g

018 016 017 14%

Vs 0l4 0I5 0le 7%

L6 014 0I5 0I6 15%

L7 014 AND 0I5 7%

it WA it i s e e i e Fa e

RA 015/014 016/015 017/016 4%

S
, Pl
L3, SA, 015/014 016/015 017/016 5% ;

SAR , : '

“ 4 {0
I)
; i
CM/OM,. o . 19%
RES MGT. _ i
i
MAINT 25%

3 5 100% : : P

o i ‘ T

j

[T
g

X .
-‘-i'é SPACE SHUTTLE PROGRAMS g

K. Rdhe
1BM
53 of 55

il =5 s

S B S Sy

i
]
i

§S oS

W4l
suoy 'y

SOFTWARE QUALITY TRACKING
e MOST APPROPRIATE MEASURE IS DR'S PER MAN MONTi
—BASE MANPOWER NUMBER /= TOTAL EXPENDED DURING
CAPABILITIES DEVELOPME T AND CAPABILITIES REFINEMENT
—DR COUNT WILL BE THE DR'S WHICH REQUIRE FIXES WRITTEN
AGAINST THE BUILDS CONTAINED IN THE INCREMENT
o INITIATE MEASUREMENT AT THE END OF FIRST CAPABILITIES
DEVELOPMENT PHASE, TERMINATE AT C
o ESTABLISH “ALERT” LINE FROM R18/R19 EXPERIENCE
e REVIEW PERIODICALLY WITH SSD
—RELEASE STATUS MEETING =5
32
S%
P
- QT
c 5
B i
e
[
4] LR
———————————— ;’—-:'—-—.‘—'—_‘__————_ — ”—V“"—v' -
7

FIX DR’S ! MM

ALERTLINE 7
7

N
7 i

A }
: 1) | ¥ 1
o 2 3) ! 5 ! 6 7
 CAPABILITIES T | ,
DEVELOPMENT MONTHS L6 BASE REGRESSION
COMPLETE, : PLAN PLAN

BEGIN 1.6

COMPLETE COMPLETE

CRIGINAL PAGE
OF POOR QUALITY

i

HELEASE NO. ors RELEASE MGR,
SCHEDULES
CcR
ot ot
o RELEASE RELEASE
i l | Cr__ Ci____
. I 1 Y
YER L3 ™]
‘, S
y l 1502
vy]
7 P t— ,_._ﬁ
|
e
£, by
PROJECTIONS
PROJECTION DATE CR BASELINE DATE
]
| NG. OF CR'S DIRECT CR ESTIMATE PROJECTED DR'S
|
| MANPOWER ALLOCATION
| FUNCTION MM % FUNCTION MM % FUNCTION MM %
co L7 cs
vs RA 8&1, CM'OM
ao L6 L3, SA, SAR RES MGT
TOTAL TOTAL TOTAL
TOTAL RELEASE =
BUFFER IN VS BUFFER IN L6 BUFFER CUTOFF
BUFFER MANAGEMENT
DATE cA's COST | BUFFER | DATE CR'S COST | 8UFFER |DATE CR'S cosT |8uFFER
CR'S ARSORBED BUFFER USED BUFFER REMAINING
ACTUALS
§ ,
4 ACTUALS DATE CR BASELINE DATE DR BASELINE DATE
J
- NG, OF CR'S DIRECT CR EST. NO. OF OR'S
2 MANPOWER ACTUALS
5 FUNCTION v | s FUNCTION MM % FUNCTION Mmoo
co L7 cs
vs RA 341, CM/OM
6 L3, SA, SAR RESMGT
| TOTAL ! ! ! TOTAL | : | TOTAL | I |
TOTAL RELEASE DELTA FROM PROJECTION
18 i i . e e e s 3 e e e ———
QUALITY "
TRACKING .
.-
| SR
v
Y g B 14 T » T . "
BEGIN . L6 1 2 3 1 5 3 g 3. 9
-98-.

=
K. Rone
IBM

55 of 55

pEnslishg] S

[P

S T,

T R e -

L meth IR

- go-s

i

S i’ mat g ity et 7

o AR e

it ‘*”W%"g

*N84 28149

An Approach To Software Baseline Generation

By:

Jorge Luis Romeu
IIT Research Institute
199 Liberty Plaza

Rome, New York 13440

eniig vt aBiaS s Y mbdh Pl aem aiire sren . %o & ki B3 i

sttty W

A3y e

o, s wet L r L4

b v

.
3

;
.
o
v

1
3
4
@
:

HCC B

RLERAREE AR A A

R A S LA AR L 15 LN R
! s

B L

CALERL L SR S
>

R

i+
\

ATTAT

-

ATpR e IR R

LA R R AR

1.0 INTRODUCTION

This paper summarizes a current Data & Analysis Center for Software (DACS)
effort to develop software baselines. This baseline effort is an on-going
activity; that is, the baselines are meant to be updated as new software data
becomes available. The information presented and processed has been organized to
make periodic updating a much simpler task.

A baseiine, for this effort, will consist of an estimation of any
characteristic of a software project that may be helpful to a developer, manager,
or monitor to manage, control, or influence a software produtt. The objective of
these baselines is to provide a tool for aiding software developers in their
daily work. Baselines have been synthesized from an empirical dataset provided
by the Software Engineering Laboratory at NASA Goddard Space Ffight Center

(NASA/SEL). These data have been selected because the data collection effort
developed at the NASA/SEL is the most thorough and complete available to us. The
characteristics of the NASA/SEL environment may not be common to most or all

users. - Therefore, the user is advised to calibrate our baselines with his
professional judgement and experience to provide for the possible differences
between his and the NASA/SEL environments.

The baseline effort, defined as an on-going activity, has been broken down
into several phases. ‘The motive for the division ofrfhg baseline effort into
successive phases is two fold. The first motive is the desire to proVide the
practitioner with'thevmoét current information. Waiting untii all variables have

been analyzed to release the package incurs the:ri§g:of providing very outdated
baselines. Second, and more important for the future development of this effort,.

the bian for producing the baselines may be subject to modifications. The

practitioner may require different/additional information or the same —°

information presented in another form. Therefore, any comments and suggestions
to adapt, modify or change the present baselines in order to improve their
practical use is not only welcome but is considered to be an integral part of

this effort.

Bt R R . DL T SN PR

24 i P -t Wi o S e g Wb Perh

e e - it N ¢

R

3 Ay

ek bt s 24T

rmnﬂl¥ﬁw@ﬂy«

TR

pavt b

sS4 fapelt

T R MR A E

TR TR

E
i
:
£
w
%
Eded

SRAN IS

B S

L e Aol ST A s
R S 11 - PR . . %

2.0 METHODOLOGY

‘The importance of breaking down software projects into smaller and more

homogeneous subgroups was an insight gained from previous analysis tasks.
Project heterogeneity was caused by the presence of very different factors which
were not possible to isolate in different software projects. A solution was
provided by breaking down the set of software projects into more homogeneous

subgroups.

We have selected the current version (February 1983) of the NASA/SEL dataset

as the empirical base from which to develop software baselines. This set

contains the latest version of the comprehensive and thorough data collection
effort performed by the NASA/SEL staff. It exhibits two interestingkfgatures.
First, the data was col1ected§at both the project and module or component levels.
Second, these components are classified according to their function (See Table
[). This classificatidh will allow us to characterize each component by the
function it perférms within the project. These module functions also provide the
scheme for breaking the data into homogeneous subgroups.

TABLE I: DESCRIPTION OF THE MODULE/COMPONENT FUNCTIONS ANALYZED
DURING THE PRESENT EFFORT

NASA/SEL Encoding Dictionary

Module/Component
Code Name Function'
i |
1 Include © Include Statements
2 Control . Control Statements (JCL, Overlay)
3 System ‘ System Statements (ALC) . :
4 Gess Graphics Statements (GESS)
5 Data Data Statements
7 CDR FORTRAN Control/Driver Module
8 C comp FORTRAN Control/Computational Statements
9 DTRANS o FORTRAN Data Transfer Module
10 10 - ; FORTRAN Input/Output Module
17 I0CDR : FORTRAN Control/Driver Module with I/O
18 [OCCOMP FORTRAN Control/Computational Module W
19 IODTRANS - FORTRAN Data Transfer Module with I/0

J. Romeu
IITRI
3of27

T A s B < ey Bt AT S

et S b | b i s et < b ihe Bh: e

NI N1
N i
car b, S

e e

e e e

¥
a2

3

]

‘
X

PR

T A C e N

Vo TR R AR Y SRRV e
g : »

r’&a&;‘! E\’\vy,,‘gg.r’rp RO LI

It is useful to perform a simultaneous analysis as a triple function of data
analysis (baseline generation), data quality assurance, and research where a
large dataset such as the NASA/SEL is being studied. The first, baseline
generatidn, is the primary objective of this effort. The baselines are designed
to statistically address the following question:

What does a module or component of a given function look 1ike? In other
words, how can I describe a "typical" module that performs a Qgiven
function in terms of 1us s‘ze, effort, runs necessary to develop this
module, origin, complexit; and type of specification? How does this
situation vary, if any, from the moment this module is given to a
programmer until the momant this module is ready (i.e., from the NEW to
the COMPLETED stage)?

The second, quality assurance, 1is inherent to statistical analysis. A
statistician carefully logs in his _quality assurance notebook all observed
inconsistencies during the process of data reduction and analysis. The analysis
of these isolated inconsistencies provide insight to the process being studied
and/or improvements to the data collection process. These insights ofteh'prove
useful for both the data collector and the analyst in future efforts. Finally,
the research function in the baseline generation follows a sequence of
activities:

(1) look at large numbers of software components or modules grouped by common
function to try to isolate the similarities and differences stemming

from this group1ng

(2) try ta determine, given that we are dealing with empirical data, whether
these similar and different behavioral patterns are arising by chance

(3) if (2) is not true, to determine if there is sufficient statistical proof

to state that these patterns are an inherent character1st1c of these

groupings of modules/components

This type of information is useful to both the theoretical software engineering
researcher and active practitioner, the software developer. It may be possible
in future efforts to uncover a correlation that enables the”practitioner to
obtain one element (module/component) from another or to monitor one element
while fixing the other, once it can be established that a relat10nsh1p exists

‘between two integral elements of the dataset,

J. Roiﬁ'éil
IITRI
4 of 27

o Sy o AR St

b e A

o e

Y
A
|

L &v@g

1

- |

. d
‘ In addition, certain relationships are known to hold from theory or b

experience. If it is found that they also hold in the data, it provides an [y

indicator of the quality of the information; if they don't, it may either mean ;: %

that the quality of the data is suspect or that there may be some special . !

characteristics about this situation that deserve further investigation. This . ﬁ

indicator becomes a useful working tool. This is the framework in which the i :

present research effort has been conducted. Baseline results should follow this i |

g - : il

line of thought. L

We have worked exclusively with the variables shown in Table II in the 1 :

current phase of the baselines task. Lo

TABLE II: DATA DEFINITION FOR VARIABLES USED IN PHASE I % ?

3 £ :

3 Variable e Format i

- I =i)

d 1. Project - code 1(2) : ;

! 2. Component - code : 1(3) ! }

: 3. Module - function I(2) : 3

3 4, System/subsystem I(2) Eo g

3 5. Origin- I(2)]

4 6. Precision of specifications 1(2) R

: 7. Complexity A(2) '

i 8. Num-comp-called I(2) L

H 9. Num-calling-components I1(2) : !

; 10. Primary-language 1(2) 2

i 11. % of Primary I(3)

A 12. Secondary-language 1(2) (

: 13. % of Secondary I(3) i ;

£ 14. Total - runs 1(4) f :

t 15. Total - time ' 1(4) ! |

& 16. Total - effort I(4) f |

n 17. Total-source-for- components 1(8) : |

£ 18. Development status e A(2) % |

= |
g: | There were several reasons for selecting from all of the possible variables é
: existing in the NASA/SEL dataset these 18 variables. The main thrust of the 5

current phase of the baselines task is the characterization of project components !
vﬁy-some type of useful grouping. Project code combined with component code (i ‘
and 2) provides identification for each module/component, and the module E
function (3) provides the required subgrouping to produce more homogeneous
subsets. The variable System/subsystem (4) was not used in this phase of the

J. Romeu - g

ITRI !
Sof27

. - ey N P e T
A— L R e i P O TR T TR i T T B R

Ienatiates ELLCLR i L A S R O S

A TR AT AT

S

2

£

£,
[
B
B

baselines task. The qualitative variables origin (5), precision of the
specifications (6), and perceived complexity (7), were selected to assess
whether the subjective appraisal of a module/component by a programmer primarily
reflects the module's <characteristics or rather the programmer's
characteristics. The number of components called (8) and the number of calling
components (9) were selected as an indicator of the module complexity with
respect to its interface within the whole system structure.

Data on the variabies (8) and (9) was not available throughout the entire
twelve module functions defined in Table I in quantities large enough to support
analysis. These variables, therefore, were analyzed only in the last four and
most numerous, module function groups.

It was observed that each component was writteh in a single language and that
only two languages, FORTRANvaﬁd'Assembler, were‘utiiized throughout the dataset.
The variables total runs (14), total time (15), total effort (16) and total
source for components (17) refer to cdmpUter runs, time spent by a programmer in
computer work, programming effort and module size respectively. These last 4
variables will provide quantitative characterization baselines in subsequent
phases of this effort.

The variable development status (18) provides two qualitative classes: New
and Completed. This variable provided a key analysis tool since it is possible
to compare the state of the module; Eepresented by all of the above variables,
before and after its implementation. This type of analysis will yield a valuable
management tool since it will allow assessing the accuracy of the estimates
provided by the programmers at the beginning of their tasks.

‘Preliminary results are presented in Tables IIIA, IIIB, IVA, and IVB as
examples of the type of output obtained from these analyses by module functions.

=
|

J. Romeu
IITRI
6 of 27

T T Rk D

T T T T et ol T MR e T R PR S B T

i
i

i
-
A

[

[

TABLE TIIA: CORRELATION SIZES/SIGNIFICANCES
NEW (PRE-DEVELOPMENT ESTIMATES)

SIZE VS EFFORT VS - TIME VS

EFFORT TIME RUNS TIME RUNS. RUNS

26/*%** ' 25/* 25/NS 25/%% . 25/%x 25/**

N/A N/A N/A N/A N/A N/A

10/NS 9/NS /NS 9/ 8/NS 7S
85/ *** 84 /% 84/ *** 88/ KKk 21 Ak 88/ *¥x*
136/4% 108/%%x Lla/w%x L12/*wk L18/kek 11274k

48/*** 46/*** 46{*** 47/*** 47/** 46/**
28/%* 22/%* 26/NS 28/*x% 2B[** 24 /%¥*
53/x 4O/NS 43/x 42/eex 45/ 82/%%
129/*** 11‘0/*** 119/*** 111/*** 121/*** 1;11/***
255/*** : 206/*** 212/*** 209/*** 215/*** 208/***
189/4%% 160/%** 163/%%% 163/%** 166/t%* 163/***
128/*** 101/*** 103/*** 105/*** 107/*** 105/***

Legend: N/A

{

sufficient data not available
non-significant

to support test

" MODULE
Z f FUNCTION
l Include
; Control
?, System

% Gess

é Data

3 COR

; C comp

3 DTRANS

2 10

{ 10COR

: 1occomp
g IODTRANS
%Lf

-

-

:

3

éﬁ

i

éi

* significant at level a = 0.05
** significant at level a = 0.01
**%x gignificant at level o = 0.001

Footnote to TableIlIA

“level attained by this coefficient..

lMVT‘his table provides in each cell the number of pairs used in the
estimation of the T correlation coefficient and the significance

first cell, indicates that the <t correlation coefficient was
computed for 26 "anlude“ modules and results were that effort and
size were correlated at the .001 level of s1gn1f1cance ~The table is
useful for -

i) directing the analyst in successive phases of this effort

ii) evaluating the quality of the data

ii1) proposing new and assessing old research questions

J. Romeu
IITRI
7 0f 27

For example, "26/***" in the .

B i S S = ST~ e

T SRR I T T

—-—k AN

* Vg,

SR I AL AN SRR A S AR
R R A

MODULE
FUNCTION
Include
Control

System
Gess
Data
COR
C Comp
DTRANS
I0
TOCDR
I0Ccomp
IODTRANS

TABLE I11B: CORRELATION SIZES/SIGNIFICANCES

SIZE VS
EFFORT TIME
25/NS 25/*
N/A N/A
TNS . N/A
73/***‘ 31 /%%
142 /%% 86 /*¥*
51 /**x 46/*
36/*** 27/NS
60/NS 39/NS
119/*** 84/***
254 /%% 197 /%x*
180/*** 135/%*x
124 /%% 89 /**x
Legend: . N/A
NS
*
*%
*hh

Footnote to TablellIR

This tabie providés in e
estimation of the T correl

i) directing the éhalySt in successive phases of this effort

RUNS

25 /%%
N/A
N/A

R/

87 Jxxx

46/**;

27/%
39/**

86/ ***
199/***
137/***
92/**

ation co

COMPLETE (ACTUAL)

EFFORT VS
TIME RUNS
25 [k*x 25/ %%k
N/A N/A
N/A. N/A
131 /%% 32 /*x%
§86/** 87 /***
46/ *** 46/ x**
27/* 27 /%%
39/ **x 39/x*x
84 /*** 86/%**
198/*** 200/&**
136/*** 138/***
89/ *** 92 /x**

0.05
0.01

1) evaluating the quality of the data

0.001

TIME VS
RUNS
25 /hk
N/A

iN/A

31/**# .

86 /***
46/ ***
27 /*xx
39/**%

84/**;

201/***
136/***
89/***

sufficient data not available to support test
-non-significant
significant at level o
significant at level a
significant at level «

ach cell the number of pairs used in the
efficient and the significance
level attained by this coefficient. The interpretation of this

table is the same as for Table TIIA. The table is usefy] for

iii) proposing new and assessing old research questions

U A S i

J. Romeu

IITRI
8 of 27

R R e el e T

e N e
LR N

, | b
“ ¥
i [
TABLE IVA: CONTINGENCY TABLE RESULTS ‘(
: COMPLEXITY VS CODE ORIGIN :
! o
ﬁ i 1-
¢ MODULE_FUNCT ION NEW COMPLETE ;
Include N/A N/A e
4 Contral | N/A N/A !
1 ~ i ;
; System *x NS g {
| Data NS NS | IR
q COR NS NS §;
a C coMp NS NS :
: DTRANS NS NS
B 10 *xk NS !
| I0CR NS S ;
ﬁ 1occomp NS NS ;
i I0DTRANS NS NS “
i | |
%§ 1 Legend: N/ﬁ Iéufficiént data not available to support test ; L
X ? NS non significant at level @ = 0.05 R
i 3 * significant at level @ = 0.05 SR
j ** gignificant at level @ = 0.01 , sl
: *** significant at level @ = 0.001 SRR
; Footnote to Table IVA SR ER
i The degree of association between th¢ two qualitative
4 P . - o
| ~variables complexity and code origin was established
- | through contingency tables at the NEW and COMPLETED
é,,a ' j development phases. The results are tabulated here and
| may provide .
. | %
? ..g i) an evaluation of the quality of the data | o _ e A
SR ii) new research questions e ' R R
- J. Romeu i ‘
-l ITRI g
E- 9 of 27

(&) - @ S M. Gﬁf
3 ' :)
1
f
; TABLE IVB: CONTINGENCY TABLE RESULTS i
i COMPLEXITY VS PRECISION OF SPECIFICATION : é
: MODULE FUNCTIGN NEW COMPLETE
g e
i Include N/A N/A R
| Control N/A N/A o
; System * *hk o :
Data ' *hk *kk ‘,
; COR NSL NS % i
3 : # [
. C comp * NS k Cd
. DTRANS WL NS . _ 3
%1 10 *kk kkk : ;}
% 10COR *k Kk ; i
: 10CCOMP NS * :)
g IODTRANS NS *kk f |
, Legend: N/A Sufficient data not available to support test §7 o
g ‘ NS non-significant at level a = 0.05 e
I * significant at level a = 0.05 R
** gignificant at level a = 0.01 } :
. **% gignificant at level a = 0.001 ;
i Footnote to Table IVB : . o
é The degree of association between the two qualitative
E variables complexity and code origin was. established
§ through contingency tables at the NEW and COMPLETED
; development phasés.r The results are tabulated here and 5
i ‘may provide: ‘ ' :
é i) an evaluation of the quality of the data ?
: ii) new research questions | G0 YE
z i ’
i J. Romeu : ‘
i IITRI
= A T e - PR P e e PEITETUR

E‘gmw:::' T P L L e e el s R 8 a3 e
sl

) .

I

8

€

CONCLUSIONS

Fs

CETA T e o e T

The baselines effort is an on-going activity. It has barely started and some
> . elementary baselines will be generated to include a subset of the variables that

Z Echaracterize a module from a functional perspective. The next phase in this !
i éeffort will contemplate completing this characterization process by looking at é
; zother variables and exploiting some of the functional relations that have been é
; §explored and established during the present phase. ;5
o _ R {
3 | It will become hecessary‘tocbggih a study of the performance measures of %
; Lthese same modules after the characterization process is sufficiently explored. f
;A 'This activity will include the study of productivity and the .process of changes é
§ i(both error correction and enhancements).: Eventually, this will lead to the f
; . study of different methodologies and other production factors and their é
% %influence on the behavior of the above-mentioned performance measures and other j
§~ :measures suggested by this research. %
: ACKNOWL EDGEMENT i
é , The author thanks Frank McGarry‘(NASA/SEL) for furnishing the data to perform iﬂ
E ‘the present analyses and Rocco luorno (IITRI) and John Palaimo (RADC/COEE) for T
; their help in defining the Software Engineering baseline needs. b
é
=
o ;
1

J. Romeu %

HTRI

11 of 27

e N A T

: :) ~ B S e B g e g LT . k
LR e e el A i s L R st s S sy

'\tz:s,j"r'!& "}‘;““"@'%*ﬁ;m

S m B

:
i
¥
;
i

3

Ed
f
*
H
i
s

‘

3

R CH AR LAt A AL SO YO APLO R T A
' » .

r\'yze{gx mvriir.; 1 S Y A
; o
.

\

R

&
2

L
=,
3
|5
3
&
=

Bibliography
A - Software Engineering

Thayer et al., Software Relijability Study, RADC-TR-76-238, August 1976.

Evaluation of Management Measures of Software Development, Vols. 1 & 2, SEL-
82-001, September 1982.

Dekker, G.J., Wilt and F.J. Bosch, Functional Requirements for a Software

Cost Database, National Aerospace Laboratory, The Netherlands, 1982.

Wallston, C.E., and C.P. Felix, “A Method of Programming Measurement and
Estimation," IBM Journal, 16(1), 1977, pp 54-73.

Byrne, W.E., A Military Standard for Software related Technical Data, MITRE
Corporation, MTR-8556, January 1982. '

Basili, V., and D. M, Weftss, A Methodo]dgy‘for Collecting Valid Software
Engineering Data, University of Maryland, Technical Report TR-1235.

McCall, J.A., and M.T. Matsumoto, Sofiware Quality Metrics, September 1979.

Final Report for the Metrics Enchancement Study, contract No. F30602-78-C-
0216. o

McCall, J., et. al., Factors in Software Quality, RADC-TR-77-369, Vols. I,
I, and T1l, November 1977.

[uorno, R., et al.; "The DACS Software Engineering Data Collection Package",
DACS draft report, June 1983.

J. Romeu i
IITRI
12 of 27

G R L e e e

R L MR T SOy

» g, e o

or s o ot e a7 Skl i s i 50

S k3R N

e

CRLTY

T oY

. |
. 1A
]
|
* i
. B - Statistics :
/ ef}‘ { o é'
; BOX73 Box, G.E.P. and G.C. Tiao, Bayesian Inference in Statistical Analyses, ﬁ
Addiscn Wesley, 1973, Chapter 3: “Effects of Non-Normality on ; y
% inferences about a population mean with Generalization." ; a
KEND70 Kendall, M.G., Rank Correlation Methods, Griffin, London 1970 (4th 2 : ’:
g edition). §i %
'- i 1
; LEHM75 Lehman, E.L., Non-Parametrics Statistical Methods Based on Ranks, f E
i' Holden Dey, 1975. § ;
?' NEL79 Nelson, Richard, "Software Data Collection and Analysis," Draft E §
F Report, DACS, 1979. | | 1
%’ ROHA76 Rohatgi, V.K., An Introduction to Probability Theory and Mathematical : ' é
E‘ Statistics, Wiley, 1976. | -3
: ' ' L
? - ROMES82 Romeu, J.L., and C. urner, "Parametric vs Non-Parametric Techniques §
] in the Analysis of Software Productivity Data," Draft DACS Report, - S
December 1982. o o
é ~ ROME83b Romeu, J.L., and S.A. Gloss-Soler, "Some Measurement Problems Detected i: : %
Z ~in the Analysis of Software Productivity Data and Their Statistical S i
? Consequences," Proceedings of COMPSAC '83. ; |
%f" - SEN71 ~Puri, M.L., and P.K. Sen, Non-Parametric Methodé in Multivariate %;x“; '
g;, | Analysis, Wiley, 1971. |
é_‘ | SIEGS6 Siegel, S., Non-Parametric Statistics for the Behavioral Sciences, | '%
; % McGraw—Hi]l, 1956. : i. i
P ;
i - J. Romeu o
& o

Y
g
s

o

g e B T R T g G L TR T TR e i e ey e S SRS LR

\7?“,\, {‘m., YT T Y ; =

’

U i M S S

H

A RS e R TR arearivey B

~ e

e skt

=
-~ SOFTWARE o

R

o
2
o
2
>
F
X,
=
£
]
@

o

N

v

o

o

2

Lo

| c
>

C

RILI
q°r

nawo

LTIOPI

il

£
4

. B, T e et g . aa s . - .
T L -2 :
¥ .
- ; v Y
A '
.
! .
B v take madt o 2 Sile DO SN . N
et gt ah o Sl e i 1 o e = o s, vk
L ~ : ey S teidam n S i o, 5 il P 24 i A Kl

‘AN APPROACH TO SOFTWARE
- BASELINE GENERATION

JORGE LUIS ROMEU-

CT e @

| IT Research Institute
A | 199 Liberty Plaza
| Rome, New York 13440

B o e

I4.LII

LT30Sl
nawoy °f

. T & P L 2 R o FATCELC ATROTT TTen ToUeind pEesges gt RS UEAS TSRO EATT CR AR SnAmgt e T el e oo e e e s &= ¥ -
Hv{m’- w% E{ﬁy.':\‘-iﬁ:wf—{ﬂw\v‘iﬁ?rﬁ ORI AT T T‘T R \7""}{ are /\}; [{\‘”‘f‘ SRIEFT T . " . .
v it ! W - : 4 ’ . e e a1 s S X

BASELINE

An estimation of any characteristic of a software -
project that may be helpful to the developer, manager
or monitor to manage, control or exert any conscious
influence over a software project.

R R St

o T e R

t
i — g
NG
o X
- e
N3
~ 8
iy 1] i s

$hD RN e T g 5 ey S8 e et

- i s g ——3—T L RS B T
s x

.
"

PR S

si! \

= VT L it o ST TR W -t

Ty TR A R ORISR T Ty e o

o SOFTWARE PROJECT

b
|
1
[

| WHAT

. HOW MUCH

— B
a ~ q ;
f: omZ
, " e
£ N B
Hoje 2 ~ o
i =

[FEP—, L e ey b e s bty enan St o i b (mnaocs mamren e imntis mw | bt 470 < e XL B R S,

"

V.

- B e Ty Ares MR e g LTI SRR LA SR SR w1 a3 - SET M T o o " A e o s - o k = . 23
y T R et s v ait el v BT v B ¥ FramaT o E AR IR RN 2T M e Y R .] + ¥ ,
o - RN Cl e : i TN : ' ' U
1 i SRR : \ A Y.
¥ L - . s . o e [-

' FRAMEWORK

1) DISAGREGATE

5) CHARACTERIZE ‘
, e : | | _ 1
' 3) PATTERN SEARCH

S e TR e T <

4) STATISTICAL TESTS

T e U i

RILID
nawoy ‘r

5) INFERENCES

LTI0 81

. b (ZANE . e g R AN .
S ’ ‘ . . we"““;"'
B s e e e e e S — e e e » '1'

- e o
D i %
¥ P DescripTION OF THE MoDULE/COMPONENT FUNCTIONS ANALYZED %%
| i '

. w g“«\-?r‘-‘}‘ﬂ-‘“gﬁm\‘!‘an}?wny)ﬂﬁ?“’“ T, T ,,‘,. AT ‘r,\-y/nx;§»wnr’\‘;'r [ﬁrl‘«;nl]”rrr RARRAE S G A S itk R TN AE S L R S A S AR TN E s B R /A A S
\ AL]. 3 -) i E ~ . d -
. \ .

DURING THE PRESENT EFFORT

NASA/SEL Encobine DicTionARy

MobuLe/CoMPONENT
Cobe | NAME FuNCTION

INCLUDE INCLUDE STATEMENTS

3 G

wnD H0o0d 40

ALY
£

CoNTROL ConTrOL STATEMENTS (JCL, OvERLAY)

SYSTEM | SysTeM STATEMENTS (ALC)

GESS | GRAPHICS STATEMENTS (GESS)

Data DATA STATEMENTS

CDR FORTRAN ConTroL/DR1VER MoDULE

C comp FORTRANSCONTROL/COMPUTATIONAL STATEMENTS
DTRANS FORTRAN DATA TRaNsFER MoDULE

10 FORTRAN InpuT/QuTpuT MODULE
| 10CDR FORTRAN ConTROL/DRIVER MODULE WiTH 1/0
; 10ccomMp FORTRAN ConTroL/CompuTATIONAL MoDULE W
I0DTRANS FORTRAN DATA TrRANSFER MoDULE wWITH [/0

" 00

Y

T

S I e e A e

=
o N o

4L

Lc o6l
nawoy ‘f
o
w

RATIS A e CSITRITRG ea T L L e L g i e st

@ e T e T S T R T e

PR D L

3 - b T B TPRIR Ll sy gl e

T I e Ao Al

L
aawoy

LE3o0T

s

T ey B 1 & bk Rty oL & A
L ST S L SR B A AN LR
DR . ,

ro
kB4 v.m‘ﬁ]\ﬁw !;4?;-‘»,5»_’(A A)
' . s Ly

PAEH 4t TSR T T o T e o

~ REASONS FOR VARIABLE SELECTION

1) IDENTIFICATION

9) CLASSIFICATION

3) CHARACTERIZATION

4) SUBJECTIVE EVALUATION |

5) TIME MILESTONES

e kiR

L i T

A tcant

FODRTEASRST MRS OAREE RN A w0 e R TR TETTY N Tt TR B T T a v st

] LR 00 S bR R T (2R Nal £ S 4 R S TR - . . ety i %

¥

- —BATA DEFINITION —— -
VARIABLE

PROJECT ~ CODE

COMPONENT - CODE -
MODULE - FUNCTION

SYSTEM/SUBSYSTEM

ORIGIN
PRECISION OF SPEC
COMPLEXITY

40

NUM-COMP-CALLED

Ww 00 N O U &= W N

NUM-CALLING-COMP

DT L e el LT

Y el

—
o

PRIMARY-LANG

DY TNIDIMND

% OF PRIMARY

3

= b
el
ALYnd ¥ood

SECONDARY-LANG |
13, 7 oF SECONDARY .
j 14, ToTAL - RUNS
: 15, TotaL - TIME
16, ToTAL - EFFORT

LT

nawoy '
[
>

Lciol1c

TOTAL-SOURCE-FOR-COMP
18. DeveLoPMENT STATUS

AT vt oS

X D KA 20 NG A £ ST AR I N L e e e St E 3 EYRURR I ¢ 1
X vwll“"‘:%:‘&?‘v\mu S % T ‘ (L AENEAN Cﬁ. i [et RTRRSERA NS ' S T SN e R) . R &
' 23 2 iy il B L SES 2020 Jﬂm}"&mh"’-’f”,wrﬁlu E R N Rt SSTPER LRl BETE T B - 1 < o g . o o
! i

RPN RT. &,

'CORRELATION OBJECTIVES |

1) Directing the analyst in successive phases

'2) Evaluating the quality of the data

PN o SR TSR i e SRR

3) Exploring new and assessing old research
] . questions

“nawoy 'r

MR B L TR S AR TR e (R e e T L e e T TR B R e e T T T TR T R e B IR

TN ST (AP UTRN STRRE UL A . U T3 N SAUNSN N e et

i
CoRRELATION SIZES/SIGNIFICANCES h‘
New
Fﬂgg%gﬂ Errort Sﬁrﬁsvs Runs TmsEFFORT v Runs TIRSN‘;S 4
. , IncLupe 26/%* 95/ 25/N 25/* 25/* 25/
i | ConTROL N/A N/A NA N/A /A N/A
| | SYSTEM | 10/NS 9/NS 8/NS 9/* 8/NS 7/NS
E Gess | 85/%** Use*= gy res 88/ 88/*** 8g/***
DaTa 135/%** 108/*** 114/%+ 112/%*+ 118/%** 112/%**
; CDR | 4g/*** o/*e 4g/ =+ 4z/oee uz/*e 4o/ 29 |
! T comp 28/%* 22/** 26/NS 2u/%** 28/°* 24/%** 3 g }i
: DTRANS 53/%* BO/NS 43/ 42/%** 4s/* 42/ Sz ‘
! 10 . 129/%** 1107*** 119/%** 111/%* 121/7%* 111/%* Q3
' 10CDR 25 206/%* 212/ 209/*** 215/*** 208/°* =8 .
\‘ 10ccomp 189/%*+ 160/%** 163/%** 163/%** 166/*° 163/ 35
W IODTRANS 128/%*+ 101/%*+ 103/%** 105/ 107/%** 105/***
BE=
2 5? | "
1o =
. N2
¥

CORRELATION S1ZES/SIGNIFICANCES

CompLETE

gk' ' v Fﬂﬁ??%gm EFFoRT S%TSEVS Runs TIMEEFFORT v Runs T’EENXS
| v INCLUDE 25/NS 25/* /% 5y opywes 25/%**
! ~ ConTRo N/ N/ N/A A WA WA
: SvsTEM /NS N/A N/A CONA WA WA
o Gess 73/ 31/ 32/% 3y 32/%* 31
f{ DATA S 'Y2e 86/*** 87/%% 86/"* g7 86/%**
3 CDR S gl 46/* up/ee YAl /e /e
1 Sccomp 36/% /M8 27/ 27/* 27/%* 27/%%
| DTRANS 60/NS , 39/NS 39/%+ 39/ e+ 39/%»* 39/%%e
31 o 119/%** 8l e 86/*** gl/ee 86/%** 8l/eee
,ﬁ‘ I0CDR 250 /%% 197/%** =~ 19g/*e» 198/%** 200/*** 201/***
* 10CCOMP 180/*** 135/%** 137/%* 136/%** 138/*** 13g %+

10DTRANS 124/ 89/*** 92/%* 89/*** 92/**e 89/"**
‘ 0 =
| o AP

aesimer ' 4

T e T AR /3
R SEEE T A I B e T - e e S ® ”w
A RS SRR R 8 L A - - I B LoEe .

Rt Sl £k A Sl CL A A i ; . . Lk

LS AREEN ,—“ ""’“'\‘7"‘?’» swv;\z; (\R’ ARV

ynd yood 10
g;“aaw TYNIORO

; B OO . . S POy
e R e S T awe -
iy i e e W T X it R 4o e e .

B e ST TTITY PR R T DT e s T T e R e e e Ay . - - A E] P i
- R AT s R “"1 R R G Nl U R : . . %

e o 51 SERERR N S o e

" Bing ' — .

A R : :

IE]
o
i

CompLEXITY vs Cobe ORIGIN

MopuLe FuncTioN NEw CoOMPLETE

INCLUDE N/A N/A 3
- ConTROL » N/A N/A ‘
(' B SYSTEM : ** NS
! | DaTa | | NS NS
e COR NS NS
Lo - C cop | NS NS .
DTRANS HS NS
10 e NS
[0CDR NS .
- 10ccomP NS NS
10DTRANS NS NS

PO M IR

gl AR B e

LI

LT 30 ST
nawoy ‘g

T e e o TIPS

: ‘ : o e R L R
NN . e o i i S giee s b s Mk e e M AW s ek ome e e e R
e e e e e e« . aow s

\

‘“ E ?\‘iﬂl\;_w?‘Iwﬁxﬂgw\};\@itg.,;lw,ﬂn?uemm P ~:—m‘,- A w,ysw‘%\w?\;ﬁa ﬁ],:ﬁ\;u,ﬁ:}p:iu«pt“% B o s RS i ol 48 SN R LA BN T B ‘ oply (I RIROR S e e
ATy 5 , . G T O A . : ‘ .) 4 .
-+

COMPLEXITY VS, PRECISION CF SPEC B

MoDuLE FUNCTION New COMPLETE .

, [NCLUDE N/A N/A

i | ConTrOL N/A N/A
e SYSTEM *x | NS
DATA NS NS
CDR NS NS
C comp NS NS
DTRANS | HS NS
10 ¥ NS

[0CDR : NS | *

i ~loccomp NS NS
| [ODTRANS | NS NS

] onftii e L L)

B D . < A o)

LI

L7309
nawoy| ‘[

o AT
B R SR

i T

P L

Eo

g
i
3

:
1
|
!
|

R O

e ch T e e T R AN IECVENETUUNTN G anoSITe g oenal CTRSR T TATTEEESOR D5 ¥ AEA Y RS B A Ll R S
N ‘R\;nﬁ.;ﬂ,m“\wﬁﬁrqvwﬂ:;!eswis' R ""i" Lh \"7 ‘\‘)-’f""'f\%' L K aas S o . . : s AT AL . 4r
LB R R AR R ¢ ; X . A AR .
R R P o

1) BASELINE METHODOLOGY

2) INITIAL BASELINES

3) FURTHER WORK/RESEARCH

19 =t
omB
6] ﬁt
~ =
o —— it E £ EaEEER T & T ==
N
.

Wab b gy e a

- T T T P R S TS L NP E e VRIS PR

L

i
I

W TR ——T T g} v - T . T o T - : * . . ;’ .
s&Pﬁﬂrw e . . S o - . 4?
n 298 : 5

¥ ORIGHMAL PATE [T
‘ OF POOR QUALITY,

F‘ i

. ki I
!l‘ o
: i

PENPLE WHO ATTENDED THR WORKSHOP ON NQVEMBER 30, 1983 é g

! :

NAVE OQGAMIZATION : .
i . ’ .l-‘-- ' L L R N K N R 4 2 X J

| ADFLSOM, R YALE UNIVERSTTY :
AGE”‘:«GTT!“ ﬁc‘Son- T

AKPRS, P MASA/GSFC \ IR

S ' A:[JQRTGOI". CTeSells f :
) AKDANGY,® MRSEARMH & DATA SYSCFNS,TNC : :
ASTINL,P slltwa maTA ? !
,. AYTRS, | ARTHC RISEARTH CORPORATINN ; :
" ﬂAﬂS'r"T Cls-ﬁl ' . ;
2 R4PVSDALR,;.T YASA/GSEC 5 |
RARRIFYT, NMASA/GSEC ; ?
: QASINT,V MHIVERSLITY 0OF MADYT,AND : 1
; REND, DINCE COPPS i i
3 REANIN0,N .S, DTET, OF BGRICULTNRF ; :
ApAen, R ",S, DF2T, 0T AGRIAULTNIRT : :)
. RIFIM=NAVIR, D AENERAT, TRCTRTC :]
2 RUEAD, b JH AT, i |
] "0, R M,S.A, o E 1
E RO, H MASA/GSED ' i :
4 AgACYEN,D Va8 A/ GSEN e
i WELTS0N, K AAD CHRIORATTAN Lo
E ARTTIM, e TLT, T, T, o
% RRMNUIKD, G .. & G, f i
: RO TED HOT LAY MORTOARE CORP L t
f RRTAAKFTR, o TUTELLTHRC AVC] :
; RUTH,E .S B
% ARynns,m YETRT CORPARMITON ‘ ﬁ
E BUR N, M8, DFRT, P AGPIAGLLURE ;
: PATLARBN, J MASA/GRAC o
E F,\“‘;U'—’&:r.h,d :’.Q.!\. ‘ 2
¥ C4nG,0 BRI PR : ,
3 CARLTYTER,T, L OASA/GRET : |
B REPYAS, A MASa/GSEN i |
= ;pmeo T, o MARA/GSwe 0 1
i;' (“SFU\!QH‘,'F’"E’* 1 (‘.qu”' 3 !
- Callemy, e, !
© fUPs, S Tern, 1M : 3
= APLELNY S DERPARUAMCF MASITKEMFYTS ASSAC f
< anng, MASA/ZGSY T ;
? i, GEMERAT, SYTTWARK CARPIRATLINS ;
o ChNITR, R TeSe WTeT, T AGRIALUTLIRT
; i ﬁ céoaoxmqrrm’m ACTIN % ;
L PNATIRD, B PEN([AZS _ : R
= T ORUIAKSANNK, Tl OR2ARA TN : H
e L CUPRTIL B T TaY TUREORALTGY "R
[P gj Quﬁr?s’g ‘ ‘ n’q, meT. O Agnlfuyfnq? %‘)
| :
A-1

ot ol or My, GO, M D 11 1 B TR T T T e . e

"gphraoﬂ
hlﬁ‘ﬂg“'”
NITCY AR, Y
NISATN,D
nultgnLaASs, e
NAZLI7R,J
NyNHA4,]
NYMIEG, M
FOWARQS, ®
ELTAS,N
Fak,?

FSTAR]IA,P
F“da“'v
eLTL7,N
CRRZTED,D
EIPaKkt, Y
eLTUYD,A
eRYLMMAN,D
QAT REY, Y
GLW TP,V
BARUT TR, »
GAPKTCK, !
ApoY,P
GINLTHNRS, V
clmnvkm'j
CI'U-K
eLTeY,V
)T ,A
BON;R0Y, B
auAsTaN D
G2rY,L
agean"
naPLY, 8
CrTETLAND,, R
AgTe™,8
GyTan W

Ha Ab M
HILLYED, D
"U"‘lﬂ"‘ Ay 04
Uit T5,8
untr.T§,R
HOSTR,A
HUt L. G
Hyh . .2, P
TLFLSQY, ™
JAMITSON , L
JAYDRSKT,R
Jousenw T
JOU LSOV, A
A% NN, L

ORIGINAL PAGE 18
OF POOR QUALITY

2

.
DEPT P AGRYIAUNTIRT
”~

.

N
".g
P.F
".S.QUDE;AU .Jf 'Hr p'h‘-:_,s."s
PRAFPESSINAAL STWWTRART SL.2VTC7TS
ART AP R REARAY CNRDUPATLIA !
PESEARMH PRIALOLE T SpTTU(R
\..s.‘.

MaSA/GRAe
F..T.’.
TASA/GSE

SPACT TETLESCNPFR SCTEMCT
Ta't FORPIAKATOM

IAQA /870

neMoTX

”.Q.P.

BIRARN)C IS FORDARATT NV

S LRIV PTE W Sk

Ta't AHBSHARATTAN

J.Q.ﬂ.

ALBARTYLMT I AGRIFUTTYIRF
wARQ /R

MASQ/GRAP

TLTRD CORRNARATTION

nw S, 0iki'y O TEST & wpl. CyR
FQQOP'

YeSeh,

NEDT IF Ty TN & NPFR RFSFARCH

MASA/GR0

ARSI OF NAVAT, RESLBRFAH
TITELLTAAC INC

”.g.r.

HaSA/GSel

TIT FLECCARCH IMSTITUTE
aAzMNTX

MNySALGESC

TATERLRL RFYFAUVE SERYICE
"8, 3uPLAY OF THAF ARNSUS
M“ga L;qcbvy qrsrAncu CP"T?R
AENKRAY, SOFTYARE CORPURATING
MASK/GSEO

ASM/NRT 4/KTA

MASA /GRS

MARA/CSRC

T.I.*.Q.'.

NqSL/GeA0

DRRNIGHS FORP,

g§1748 PaATH

AFTICE QOF SUFTWARE DFVELOPYeMT
feS.Ce

A-2

o

e e el . R e e

A

a4

e TR ——

"

EU S

Enaniy DRI SEESIRIV L g

FaT—

e eb iR |

o

¢

“n

P L

v‘\”l.":
€™,
YATZ,5
v;vhaue(v,F
v.r bv,'z
'1"4‘"4
REVSeTN .
(hv.?'v
'I‘J."K.K
'l_“pﬁ"\

L& 8 BR 0
€yt .\,'
USRI L W
ta?1€,¢
far,”

' :"'[N":")
V.f_""(

i, @

it uk, "
'lIT;"‘ioH
MArLAUALN, Y
‘IAPK',‘
VA“(Q'N
MRDIE
MASON, D.
MANTEUFEL, T.
'lCF:_,V"d
\pcﬂ:‘guv'u
Vcﬁaoq?,f
ucﬂa?a",b
VCUJCH.J
MCW MmN, .Y
VOV NZTE
wCPLTE,Jd
'-"cZ“S"'-“..R

MENDTJUATL,Y

\"..‘.!'.‘,.JQ'QTH'Q
Myt -;Q'_T
MITLER,F
MITLLTR, W
MIT LTSRN, W
VIVAL»\!{-:O.B
MOWuUANY , &
Winauy, 3
VY”RQ'D
MANOT A, N
M;.:' sn_“'u
ROULE RPN |
MG,
MO°-“D‘\}.K
nNiveppe , Q
NYETLLL

ORIGINAL Paq
OF POOR ouafn!:

naITyeRe lW'l L u“!)y",‘a.)

LT IRE T-\»“'}-,V,L'c':?m('i- “v’-“’."cv
NPSIGE T PLOLTAOL A A%MCY
AV

19T PRACILEIN. AR

taR4 /%l

MN,S, UTOT, LF AGRIAULINRT
CLTRE AORpARATTOM

ViQau/(G8«"

e QTTICRANYKE (MO,

Dur/NIR

"ogoao

o8 PEPT OF TRALGPARTATLIAI
MaRAa/GSe 0

"NTY ASSACTATHS
TamzRarrnirs, TNE

P.‘.ﬁ.

CeSeC

FeNeRAT COVVERSING SNPPRARY CTk
"n.S, DVRT, UF AGRIFUTTILE
TaTERGAL RFPVELUE SFRVFE
MASA/ZGSEr

ARTFFISS AT

MLRA/ZGSHT

UHRRNUAHS AORPARATT Y

Ma By /GRE0

vuVal, SUREACE WEApNuS FEMIFR
T(TRT

MASA/ZGSEr

AEMEQAT. FLTCTRTC

QA QEARAK TILAVALF T epTTUOTR
“.OQO”'

JET PRASILR]YIN: AR

aypedll NE T NGSTRIAL FOOMOMIFS
AUVPULF« IFCU NLNGY rgenn
WAy SUCEFACE wWErpn] TR
MASA/GSEC

TPEAY OF TUNUSTRIRL ©AGMOMIRS
DRA SYSTFuS RENYTCFES

F‘.g.r‘.

FENERAT. SOT{WAPE |FSTINMG CTR
FIT DRCEARCH INSTITHTE
ALNERLTY. DYyNauIfs

MARA/GREC

0.".F.

v, 8.4,

MASK/GSFC

TATIONEE, SURFAN AR STAVDBARPS
TET PRARNLEIAG LAJS
NLTYERSITY OF MAPYT,AND

",S, CUSTOM SERVTICE

RELL LARS

A-3

L ol o A Wy o Fh o AF W om

IR, SoC

bk IR ST R e Ve A R

R

TP ———

i o

i
§
i
g

P

Apt.R«T v
Viha'ly,
Bhﬁ“aﬂﬂ.ﬂ

Pafi.g

PANLYLT U Ry, .

BLBrnVSK,
bau.rq‘g
AP, %,

PACSALCAR,T

VLN 4V 1T,
anr“efb.n
Brﬂ',')gg' A
BLEy T,
PURYLAK,)
POt i,

nnn."v

gﬁ“g#YoJ

LT ISR, Y

Qq'jf'ﬁ
b;ﬂhv'ﬁ
nqﬂhr-?'c
Ddﬂy'ﬁ
RE™ONE T
QI’?‘QHI'Q
OHOQQ\V'V
RPHR«T 28,
QR [I§7,.]
PLYLT O, -
LITRURA A |
ell.'L.K

LOL T

LTL TSRS B

BuSsT i,
ROSTALY, A
QTS LP
B2 .0,V
DYV 3L,
Sav- 1,{’1. 1

L PR U R LN
_Qc'.l FIHEE " E R ',4
RCH:N 1pvED D

REHLT PPN
Qc‘tf'[
,Qt' -.V'!"
‘31'. SR T
§uEs340n,
[RIMS,
’I"Gl'"\
Q..;"f-'l"?

R Tju,.t

€ T, 0
(yTiU'Q

ORIGINAL PAGE 9
OF POOR QUALITY

Hat, NPT Hp AgRLrunYRe
aysnese

Loy /GR0F

..‘.”.

TLTVERSTITY AP MADYLAM
NaBf, 9 A0S TYNG & HRRPRH ney,
YaRA/ S8

+%: "

CoMgNs L He@AN

Du?ly BRQRFINYES

MaARL /7 8P

ALTRT CLURLAKATT Y

.ogono

NOTYE 4SSPCTATES

BEBT 9P LAAQD

TLRAZGSRE

TLIVIRSAITY (® vaRyrav,
ToTaQuR(, EYEIME OV e

N, 8, OFpPT, HF ACD]IAITTIQE
Takp /R

TITRE CORIARBTTOAN

a4 /Gl

VASA/(RE

AFRSA/TRS DavIAGH:

FeVeaRAY, FLOCTRTC

l|.§.a.

“.Q."O

WESTTuAnNYSE ENelfTR1IM r;0¢
TIT PESFERAH INSTITUTe

TuY CORPOARATTION

GCrFe Sy|yr:e

CPACT TILESCNOT SCTEMCE
RENEOAY. CLPCTRTC

Var.k {iMTVSOST Y

Fuh HGM, [AJY MOARTALA. (CNRP
BQUKERE TRNGT AOvRALY
MASA/GSEr

MACR/GRW”

oLty LES

MoTYRGEITY AF MADYT AV,
YEEIINPLE B LUILAS

Fﬁc.'ﬂ.

"OQOB.

WUTYERSTTY P MAQYT 4.
S0P PoLESCOAIR SCTEVCT TaQTYY
'—OQOAO

LAVEE QUBPECE Watan €@ Aorvog
Ry D Pe? QY[R . & A ik . N
YAl LR 0m

TAVAY SURFACE MFALAN.S AR
Q.ﬁ. LT BN

MAVLYL SuPRICT WuhufNase Ao

A-4

———.

240 Mo st 31 o8

VISR PR

.

e e T

o A 0 i o 1 G

Py s

&
§

R 1. 1 i it

SRS

f.Vi"2,3
Qg',;ivs.—)-v'a
S o "“vp,
RPN T 2,0
Q"J'S;‘V:._f-*;;",\ oLk
sidce,n
RirTOY, 0
gga.v'u
ErULg, .
Qr",r.:
Gqﬂjffﬁ,c
SJ¥.7v,
RLITLT.eKY,
Ta®a®],K
T;—-‘"..'.‘,)”\]',.;
T["-‘-,"

L

*‘Jm' e 3
TaIRe

TP T, 1
Tu 2gew, 4
"s'.!..')'f:
VA'.,Q.OA)’?'.Y
Var.o®s,p
VAL« 7T, U
varLvpeen,a
WAT 1709, S
'-'Af.ubCS"'\
V4TSN, A
WaTRY, 4
Welk pderavy
wﬁ?5e'b
VITOTS, -
WITLTaAYS,D
WET LTS,V
Myl.a®i,n
"'vaul"é‘
WYY ..V

= = Lo
¥y,

. {5 e
Vit ey

240) ch &/ Sl

r
ZYGIELBAUM, A

TOTAL = 243

B e e e

ORIGINAL ppge 1q

AQQOF.
..g.".
VATe USIVERSTY

ﬂ!vﬂ““ ne “'

L Bt | '\;,7;‘

FJe0 AT SDAr;

TS, LEET, OF AgeIALTPIIE
MARp/GREA

VAKn 2o

o™ QY!,",.;,Q .‘-IOVYCPS

STAVERAT SOFIWARE CNuBaRATIAY
"LTVFRSITY OF vMADYr ANn
Pall.sS Spdaw NRAPFI A4
ARG /G,

A/ /e

'?.Q.A.

ARTL® 2.8 AxC) CARP
MARA/ZGR,

Tyr DgQuaﬁC"]nvavuve
(ALY Yol

-.Q.F.

n.t. ')'?". o 5591#0[3!’."“@
P.RLARH & OATA SYSTF . Ty~
Y.q.g.?.

MuS4/GRwe

ERTAM DaSabhnrH CNup

'Ogoﬂc

MATINNA, JNICAN AR gTaeIaaNg
MERQLIGEHO

TQ?.T. H"S"A”C" TuS TNy e
NSAF/FTDS Y

AO*STAT

NLRRAZGRWPR

TIT RiSTRA~N

TauTaPLTubdC [MC

SETRIY CNIDYRATIAY

Lol
MaRA/GSar

TATINYBL, STCHURTTY aGery
AFNSA/T RS

‘ITw® FIRPASIATIAN

fI~va faTa

""'TV"’KQI_"‘Y ne AAR YT porsy
vg‘v‘ ’Rq""hgln'\' '.JBH

A-§

- e

—e .o

e

e -

T ———p—

B

-4

LTITRENE

BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorahdoms, and documents listed in »
this bibliography are otganized into two groups. The first : ,
group is composed of documents issued by the boftware Engi- o

neering Laboratory (SEL) durlng its research and development ; j
activities., The

published elsewhere but pertain to SEL activities.

i

second group includes materials that were ?
i

SEL-QRIGINATED DOCUMENTS ¢

SEL-76-001, Proceedings From the First Summer Software Engi-
neering Workshop, August 1976

SEL-77-001, 'The Software Engineering Laboratory, '

| V. ?. Basili, M. V. Zelkowitz, F. E. McGarry, et al.,
| 197 ; :

SRR b SLENERAE £

May

; f SEL-77-002, Proceedings From the Second Summer Software En- o
. gineering Workshop, September 1977

, SEL-77-003, Structured FORTRAN Preprocessor (SFORT), B. Chu
i ‘ and D. S. Wilson, September 1977

SEL-77-004, GSFC NAVPAK Design Spec1f1catlons ‘Languages
Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-001, FORTRAN Static Source Code Analyzer (SAP) Design

% and Module Descriptions, E. M. O Nelll, S. R. Waligora, and

‘. C. E. Goorevich, February 1978

= LlsEn-78-002, FORTRAN Static Source Code Analyzer (SAP)
AN User's Guide, E. M. O'Neill, S. R. Waligora, and :
i C. E. Goorevich, February 1978

?‘ 2 SEL-78-102, FORTRAN Static Source Code Analyzer Program

AP I (SAP) User's Guide (Revision 1), W. J. Decker and

I

. W. A. Taylor, September 1982

L SEL-78-003, Evaluation of Draper NAVPAK Software Design,
K. Tasaki and F. E. McGarry, June 1978

SEL-78-004, Structured FORTRAN Preprocessor (SFORT)

; PDP~11/70 User's Gulde, D S. Wilson and B, Chu, September

“w !‘ @\-f L“?"T'\h:ﬁ“"'\‘,m?f“ﬁﬁw AT .\ ARS

)
3
i *
i }
$
= S B LR

L AT S

fwTES =

3

Y EEEFe Y s

AT

MR S St S LR

‘\7-‘,}, &wﬂ;\h;‘r{m'“;“i}ﬂ"} | A A A A S

1

Pl

SEL-78-005, Proceedings From the Third Summer Software Engi-
neering Workshop, September 1978

SEL-78-006, GSFC Softwaré Engineering Research Requirements
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL
Environment, T. E. Mapp, December 1978

SEL-79-001, SIMPL-D Data Base Reference Manual,
M. V. Zelkowitz, July 1979

SEL-79-002, The Software Engineering téboratory: Relation-
ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System
Description and User's Guide, C. E. Goorevich, A. L. Green,
and S. R. Waligora, August 1979 B

SEL-79~004, Evaluation of the Caine, Farber, and Gordon Pro-
gram Design Language (PDL) in the Goddard Space Flight Cen-
ter (GSFC) Code 580 Software Design Environment,

C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

SEL-79-005, Proceedlngs From the Fourth Summer Software En-
glneerlng Workshop, November 1979 :

SEL-80~001, Functional Requ1rements/ope01f1cat10ns for
Code 580 Conflguratlon Analysis Tool (CAT), F. K. Banks,
A. L. Green, and C. E. Goorevich, February 1980

SEL-BO-OO?, Multi-Level Expression Design Language-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker
and C. E. Goorevich, May 1980

SEL-80-003, Multimissiqn Modular- Spacecraft Ground Support
Software System (MMS/GSSS) State-of-the-Art Computer Systems/

Compatibility Study, T. Welden, M. McClellan, and
P. Liebertz, May 1980

lSEL—80-004, System Description and User's Guide for Code
580 Configuration Analysis Tool (CAT), F. K. Banks,
W. J. Decker, J. G. Garrahan, et al., October 1980

SEL-80-104, Configuration Analysis Tool (CAT) System‘De-
scription and User's Guide (Rev151on l), W. Decker and
W. Taylor, December 1982

SEL-80-005, A Study of the Musa Rellablllty Model,

"A. M. Miller, November 1980

B-2

R

o

Uy et BRI 1

Pl & - - - : .
e 2P et W SRt SERRY s U RN S B T Rt e R g M, 2 o R

it e ARt A e otk it Y, 9

s e Ay

+ A 3

NG ey

U GGTRG TR R TR T .
. X A

AT WAy e

.\ "/”‘Y}‘T“"“'};\”3'(f§"“7‘"!ﬂ.’v A A D
.

il

v emery e

IS

"~

:
:
Z
;~
&
&
2

SEL-80~006, Proceedings From the Fifth Annual Software Engi-
neering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-
tion Models for Software Systems, J. F. Cook and
F. E. McGarry, December 1980 -

lSEL—Bl-OOl,i_Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., September 1981

SEL-81-101, Guide to Data Colleétion, V. E. Church,
Db. N. Card, F. E. McGarry, et al., August 1982

l1sEL-81- 002, Software Engineering Laboratory (SEL) Data
Base O;ganlzatlon and User's Guide, D. C. Wyckoff, G. Page,
and F. E, McGarry, September 1981

SEL~-81-102, Software Englneerlng Laboratory (SEL) Data Base
Organlzatlon and User's Guide Revision 1, P. Lo and
D. Wyckoff, July 1983

lSEL-81-003, Data Base Maintenance System (DBAM) User's
Guide and System Deéscription, D. N. Card, D. C. Wyckoff, and
G. Page, September 1981

SEL-81-103, Software Engineering Laboratory (SEL) Data Base
Malntenance System (DBAM) User's Guide and System Descrip-
txon,'P Lo and D. Card, July 1983

lSEL-81-004, The Software Engineering Laboratory,
D. N. Card, F. E. McGarry, G. Page, et al., September 1981

SEL-81-104, The SOftWaﬂe EngineerinéﬁLaboratory, D. N, Card,
F. E. McGarry, G. Page, et al., February 1982

1sEL-81- -005, Standard Approach to -Software Development, . :
V. E. Church, F. E. McGarry, G. Page, et al., September L981“

lSEL-BI'—lOS, Recommended Approach to Software Development,
S. Eslinger, F. E. McGarry, and G. Page, May 1982

SEL-81-205, Recommended Approach to Software Development,
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SgL—Bl-OOG, Software Engineering Laboratory (SEL) Document
Library (DOCLIB) System Description and User's Guide,

W. Taylor and W. J. Decker, December 1981

lsgL-81- -007, software Engineering Labofato:y (SEL) Com-=
pendium of Tools, W. J. Decker, E. J. Smith, A. L. Green,

et al., February 1981

H

e e T el L s S L e B e i - e i

B e————

—57 Nk

i S0

by Hgr e b sl AR 4w

et S e T £ PR K T st

Rl T

b
4
.
t
-
-
.
-
3
e
‘.

A SR B b S

| FEETETE R R A
» ST A Ty
-, . N

SEL-81-107, Software Engineerihg Laboratory (SEL) Compendium
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smitnh,
February 1982 : v ’ o

SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Work-

bench Phase 1 Evaluation, W. J. Decker and F, E. McGarry,
March 1981

lSEL-81-010, Performance and Evaluation of an Independent
Software Verification and Integration Process, G. Page and

F. E. McGarry, May 1981

SEL-81-110, Evaluation of an Independent Verification and
Validation (IV&V) Methodology for Flight Dynamics, G. Page
and F. McGarry, December 1983 »

SEL-81-011, Evaluatlng Software Development by Analysis of
Change Data, D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve As a Model for Effort Distri-

bution Over the Life of Medium Scale Software Systems, G. O.
Picasso, December 1981

SEL-81-013, Proceedlngs From the Sixth Annual Software Engi-

neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL),
A. L. Green, W. J. Decker; and F. E. McGarry, September 1981

SEL-82~001, Evaluation of Managemenf Measures of Software
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2 T =

SEL-82-002, FORTRAN Static Source Code Analyzer‘?rogram

(SAP) System Descrlptlon, W. A. Taylor and W. J. Decker,
August 1982_

SEL-82-003, Software Englneerlng Laboratory (SEL) Data Base
Reporting Software User's Gu1de and System Descrlptlon,
P. Lo, September 1982

SEL-82-004, Collected Software Engineering Papers;,'Vol-
ume 1, July 1982

lSEL-82-005, Glossary of Software Engineering Laboratory
Terms, M. G. Rohleder, December 1982

B-4¥Wv

P LT T L e s L e o i, B R B

vamyo

%T

ST

R-TTEETTEEE T T T e
.

.
|
i
i
'
}
3
d
|
!
H
|

SEL-82-105, Glossary of Software Engineering Laboratory
Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

1SEL-82—006, Annotated Bibliography of Software Engineer-
ing Laboratory (SEL) Literature, D. N. Card, November 1982

SEL-82-106, Annotated Bibliography of Software Engineeri.g
Laboratory Literature, D. N. Card, T. A. Babst, and
F. E. McGarry, November 1983

SEL-82-007, Proceedings From the Seventh Annual Software
Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of
Changes: The Data From the Software Engineering Laboratory,
V. R. Basili and D. M. Weiss, December 1982

SEL-83-001, Softwar:: Cost Estimation Experiences,
F. E. McGarry, G. Page, D. N, Card, et-al., November 1983

SEL~83-002, Measures and Metrlcs for Software Develqgment,
D. N. Card, F. E. McGarry, G. Page, et al., November 1983

SEL~-83-003, Collected Software Engineering Papers: Vol-
ume II, November 1983

SEL-83-004, SEL Data Base Retrieval System (DARES) User's
guide, T. A. Babst and W. J. Decker, November 1983

SEL-83-005, SEL Data Base Retrieval System (DARES) System
Description, P. Lo and W. J.»Decke:, November 1983 ’

SEL-83-006, Monitoring Software Development' Through Dynamlc
Varlables, C. W: Doerflinger, November 1983

SEL-83-007, Proceedlngs From the Eighth Annual Software En-
gineering wOrkshop, November 1983

'SEL¥RELATED LITERATURE

2Aqresti, W. W. , F. E. McGarry, D. N. Card, et al.,
"Measuring Software Technology," Program Transformation and
Programming Environments. New York: Springer-Verlag, 1984

3Bailey, J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures," Proceedings of the
Fifth International Conference on Software Englneerlng.

New York: . Computer Socleties Press, 1981

B-5

I GORE LT

et T = =~ i e e s RSERESEY

SR

BESTRERHES

R T A S

e . ot < i Lt 1 dmlorer samt e e & 20 My WL St

3 Agows e demn o

s e

,‘% Banks, F. K., "Configuration Analysis Tool (CAT) Design," i !
S Computer Sciences Corporation, Technical Memorandum, March = !
s 1980 b N

H {
z) 3Basili, V. R., "Models and Metrics for Software Manage- :

ment and Engineering," ASME Advances in Computer Technology,
January 1980, vol. 1

e A

s
-

3 Basili, V. R., "SEL Relationships for Programming Measure-
i ment and Estimation," University of Maryland, Technical Mem-
orandum, October 1979

N

Basili, V. R., Tutorial on Models and Metrics for Software
. ' Management and Engineering. New York: Computer Societies
' Press, 1980 (also designated SEL-80-~008)

v e e A e

3Basili, V. R., and J. Beane, "Can the Parr Curve Help
With Manpower Distribution and Resource Estimation Prob-
lems?", Journal of Systems and Software, February 1981,
vol, 2, no. 1

e RS Th

SRR P AU

TSR

3Basili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2, no. 1

ol

§ ; 2Basili, V. R., and B. T. Perricone, Software Errors and
Complexity: An Empirical Investigation, University of
; Co Maryland, Technical. Report TR-1195, August 1982

iU R
R o °

3Basili, V. R., and T. Phllllps, "Evaluating and Com-
paring Software Metrics in the Software Engineering Labora-
tory," Proceedings of the ACM SIGMETRICS Symposium/
Workshop: Quality Metrics, March 1981

TR

R

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric

Er gt

Analysis and Data Validation Across FORTRAN Projects," IEEE ,

Transactions on Software Englneerlng, November 1983 ; #

Basili, V. R., and R. Re1ter, “Evaluatlng Automatable Meas— 5

ures for Software Development," Proceedings of the Workshop Lo

P on Quantitative Software Models for Reliability, Complex1ty i
e A and Cost October 1973

zBasLlf;wV.R., and D. M. Weiss, A Methodology for Col- i‘f_ 3
Lo lecting Valid Software Engineering Data, University of B T !
B Maryland, Technical Report TR-1235, December 1982

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

PO

IR L

ARG PR RS RPN B T I e e A

CEART PR A

ger s 3T EO0

Cﬂldfﬁ’“m‘lf;rv»-:-T:V-vmn-.., u,.‘_,

3Basili, V. R., and M. V. Zelkowitz, "Operation of the
Software Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1978

3Basili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment,"
Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York: Com-
puter Socileties Press, 1978

3Basili, V. R., and M. V. Zelkowitz, "The Software Engi-
neering Laboratory: Objectives,” Proceedings of the
Fifteenth Annual Conference on Computer Personnel Research,
August 1977

2Card, D. N., "Early Estimation of Resource Expenditures
and Program Size," Computer Sciences Corporation, Tech-
nical Memorandum, June 1982

2Card, D. N., "Comparison of Regression Modeling Tech-
niques for Resource Estimation," Computer Sciences Cor-
poration, Technical Memorandum, November 1982

Card, D»'N., and V. E. Church, "Analysis Software Require-
ments for the Data Retrieval System," Computer Sciences
Corporation Technical Memorandum, March 1983

Card, D. N., and V. E. Church, "A Plan:of Analysis for
Software Engineering Laboratory Data," Computer Sciences
Corporation Technical Memorandum, March 1983

Card, D. N., and M. G. Rohleder, "Report of Data Expansion
Efforts," Computer Sciences Corporation, Technical Memoran-
dum, September 1982 e . :

3Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis
To Evaluate Software Engineering Methoaologies," Proceed-
ings of the Fifth International Conference on Software
Englneering. New York: Computer Societies Press, 1981

2Doerflinger, C. W., and V. R. Basili, "Monitoring Soft-
ware Development Through-Dynamic Variables," Proceedings of

the Seventh International Computer Software and Applications®

[

s ettt ki ki e e rer 22s & Ak ey Sew <

Conference. New York: Computer Societies Press, 1983

Freburger, K., "A Model of the Software Life Cycle" (paper
prepared for the University of Maryland, December 1978)

B-7

o T w R B e

ek i s

e

VLt A e

-l

o —bipab

e TR

TUW AT T 2 R

TR TEATET Y

S

h

b

5

£

14

&

[

e

g
=
s
H

g%
R
=

Hiéher Order Software, Inc., TR-9, A Demonstration of AXES

for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SEL-?77005)

Hiélop, G., "Some Tests of Halstead Measures" (paper pre-
pared for the University of Maryland, Decenber 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"

(paper prepared for the University of Maryland, December
1978)

McGarry, F. E., G. Page, and R. D. Werking, Software Devel-
opment History of the Dynamics Explorer (DE) Attitude Ground

Support System (AGSS), June 1983

Miller, A. M., "A Survey of Several Reliability Models"

(paper prepared for the University of Maryland, December
1978) ' :

National Aeronautics and Space Administration (NASA), NASA

Software Research Technology Workshop (proceedlngs), March
1980 o

Page, G., "Software Engineering Course Evaluation," Computer

Sciences Corporation, Technical Memorandum, December 1977

Parr, F., and D. Weiss, "Concepts Used in the Change Report

Form," NASA, Goddard Space Flight Center, Technlcal Memoran-
dum, May 1978

Reiter, R. W., "The Nature, Organization, Measurement, and
Management of Software Complexity" (paper prepared for the
University of Maryland, December 1976)

Scheffer, P. A., and C. E. Velez, "GSFC NAVPAK Design Higher

Order Languages Study: Addendum," Martin Marietta Corpora-
tion, Technical Memorandum, September 1977

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL
Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publl-‘
cation, April 1981

Weiss, D. M., "Error and Change Analysis," Naval Research
Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"
Naval Research Laboratory, Technical Memorandum, July 1979

B-8

i A e el

o LAELRE

v AR

- e

A bl st b S 20 kg 't P

PRI PO 5 %

oA

N e e

S A

¥ TRAR TS
IR

ARG TV

FUTIC S

3Ze1kowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedings of the Twelfth Conference on

the Interface of Statistics and Computer Science.

New York: Computer Societlies Press, 1Y%/9

2Zelkowitz, M. V., “Dafa,Collection and Evaluation for Ex-
perimental Computer Science Research," Empirical Foundations

for Computer and Information Science (proceedlngs),
November 1982

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility," Proceedings of the Soft-
ware Life Cycle Management Workshop, September 1977

lﬁhls document superseded by revised document.

2Thls article also appears in SEL-83-003, Collected Soft-
ware Engineering Papers: Volume II, November 1983.

3rhis article also appears in SEL-82-004, Collected Soft-

~ware Engineering Papers. volume I, July 1982

B9

B TN

LR R e

ISR TR T

i TR e ST

ek ymmerat OM BT e it

e

ks <M~...'_p‘.;—_,‘ S an

