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THE ROLE OF WATER IN SLIP CASTING

by

R.A. McCauley and G.W. Phelps

Department of Ceramics, College of Engineering
Rutgers, The State University
Piscataway, New Jersey 08854

ABSTRACT

Slips and casting are considered in terms of physical

and colloidal chemistry. Casting slips are polydisperse

suspensions of lyophobic particles in water, whose degree of

coagulation is controlled by interaction of flocculating and

deflocculating agents. Slip a7-'ting rate and viscosity are

functions of temperature. Slip rheology and response to

deflocculating agents varies significantly as the kinds and

amounts of colloid modifiers change. Water is considered as

a raw material. Various concepts of water/clay interactmns

and structures are discussed. Casting is a de-watering

operation in which water moves from slip to cast to mold in

response to a potential energy termed moisture stress. Drying

is an evaporative process from a free water surface.
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INTRODUCTION

The role of water in ceramics is of the utmost impor-

tance. If a normal piece of whiteware clay(ball clay or
ID

china clay) is placed into a large volume of water, the

water gradually penetrates the clay lump, loosening and sep-

arating ' the particles until the mass falls apart, or slakes.

Mixing with a propellor device ( blunging) or milling in a

ball mill speeds up the disintegration. The result is a slip

or slurry.

By reducing the amount of water to one-third to one-

half the weight of the clay (depending upon clay fineness),

a plastic state is attained. When the plastic mass i.a dried,

it farms a hardened. lump. By proper treatment with certain

chemicals the plastic matierial can be converted to a creamy,

fluid slip.

Slip casting is a consolidation or drawing together

of the particles of a casting slip into a semi-rigid, plastic

mass through removal of a portion ^f the liquid phase by an 	 f'

absorbent mold, which brings the particles close enough to-

gether to allow certain natural forces of attraction to
i

M	 function.

Slips designed for slip casting operations may be thought

of as consisting of one or more polydisperse, particulate

ceramic materials dispersed in a liquid (most usually water)

at high -volume solids by action of one or more deflocculating

agents, forming a suspension that is fluid enough to enter

2
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and completely fill an absorbent mold. Slip casting with

low-volume solids ceramic particle suspensions and absorbent

plaster molds was practiced as early as the 18th century(l)

but use of alkali hydroxides and/or hydrolyzable alkali salts

to produce fluidity in high-volume solids slips for casting

goes back with certainty only to about 1890	 VariousVarious re-

fractory oxides were being made into high solids casting

slips by acid deflacculation by around 1910(3).

A slip casting operation demands apparently contra-

dictory qualities. The slip must be .fluid while being pumped 	 E

through pipes or poured into molds. Yet the slip must not

allow its larger, heavier grains to segregate from the finer

particles while the slip is quiescent in the mold. These

demands are met by a slight thickening which occurs upon

cessation of shear. The degree of gellation, ;However, cannot

be so great as to interfere with a quick clean drain:^ng of

excess slip at the end of the casting period. The resulting

cast must be firm enough to stand and be handled without

distortion yet have sufficient plasticity to permit trimming

and cutting to allow its ready release from the mold. All

this requires an understanding of the physical and colloidal

character of deflrcculated, high-volume solids systems.

Particles of ceramic materials used in slip casting

can range downward from perhaps 5 # 000?m (in certain refractory

products) to 0.001?m. The large majority of casting formulas,

however, are classed as "fine" (4) , with an upper size limit

3



of around 100-200,Pm. Particles of ceramic materials are most

often platey or blocky in shape despite the fact that sizes

are here expressed in terms of spherical diameters. Mathe-

matical complications with nonspherical geometries are avoided

by using the principle of hydrodynamic similarity (equivalent

spherical diameter or ESD) where particle size is given as

the diameter in microns of a sphere having the same density

anc edimentation velocity as the nonspherical particle under

test. As the size of particles is made smaller, there is

a gradual change in certain important physical properties

(Brownian motion, sedimentation rate, diffusion, rate'of

coagulation) until particle sizes reach approximately 0.2-

0.5pm. Below this diameter there is a sharp increase in the

rate of property change. The particlev in this state of

subdivision are said to be colloidal. A suspension of minus

0.2pm particles in a liquid is termed .a lyosol or more simply

a sol. If D is taken as a characteristic linear dimension

(the diameter, for example) of a particle then its surface

is proportional to D 2 and its mass to D3 . The ratio of

surface-related forces to inertial (or mass) forces varies

as D-1 . which accounts for the very large changes in proper-

ties as the particles become more and more colloidal.

COLLOID= CHEMISTRY

Two main types of colloid are recognized; lyophilic

and lyophobic. Lyophilic substances disperse spontaneously

4
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in appropriate liquids to form sols that are not coagulated

or flocculated by electrolytes (substances such as NaCl or

x2so4
0
 that dissociate into ions in molution). Lyophobic

materials do not spontaneously disperse in liquids but re-

quire mechanical (grinding, for example) and/or chemical

(deflocculation, for example) assistance to form sole.

Lyophobic colloids coagulate or flocculate readily in the

presence of electrolytes which allow the van der Waals forces

to hold the particles together to form agglomer4tes(5).	 S

Coagulation of lyophobic suspensions can be reduced or elim-

inated by developing a diffuse double-layer of electrical

charges around the particles (6) or by neutralizing acidic

groups of adsorbed organic compounds (7) or by combining

these effects. Nearly all ceramic materials are lyophobic

in nature and require deflocculants to form stable, non-

coagulating slips.

The mechanism by which lyophobic particles -are brought

into proximity, where van der Waals forces can function, is

diffusion by Brownian motion (8) . The smaller the particles

the faster they move, so that flocculation of ceramic slips

wilydepend upon (a) the fineness of the colloid fraction,

(b) the percentage of colloid, and (c) the extent to which

the forevs of attraction have been offset by deflocculating

agents.

Some high solids (.e., concentrated), deflocculated

slips can be made to flow readily when stirred or shaken

5

r.



	

d°	 f

V
i	 f

	

c a	"

gently but will resist stirring at higher rates of shear,

assuming a dry grainy appearance that disappears in a few

moments after stirring is stopped. Slips that act in this	 A

manner are referred to as dilatant or shear-thickening slips(9).

The particle size distributions of the solid phases of di-

latant slips have characteristically narrow ranges and are

generally low in colloid. By way of contrasts other high

solids, defloccvlated slips become progressively more fluid
as shearing rate is increased and will thicken with time when
allowed to stand quietly. This phenomenon is termed thixotropy

or shear-thinning (9) . The particle size distributions of

thixotropic slips always have appreciable percentages of

colloidal-size particles.

It was found (10) that the deformation and flow (rheology)
i

of ceramic slips can be made to vary by simply altering the

extension of the particle distribution (i.e. # broadening':or

narrowing the size limits) or by altering the intermediate

distribution between fixed size limits (e.g., substituting
	

i

one coarse-grained body constituent for another having a
	

i

differing particle size distribution). Changes of inter-

mediate distribution can also result in marked changes in

the ease with which the liquid can pass through the developing

cast into the mold3(11)0

STABILITY OF LYOPHOBIC SLIPS

In the case of clay slips sodium carbonate and the

6
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various sodium silicates are the commonly used thinning or

deflocculating agents. It has been shown that ions such as

Ca++, Mg++, SO4^, and Cl tend to reduce deflocculation or

even cause flocculation. The presence of limited amounts

of certain types of organic matter associated with ball

clays improves deflocculating efficiency of sodium carbonate

in the presence of flocculating ions. An excess of such

organic material, however, can result in lessened fluidity

of clay slips(7).
Experience has shown that metal oxides can be defloc-

culated either at low pH with HC1 or HNO 3 or at high pH with

NaOH, with complete flocculation at some intermediate pH.

The intermediate pH slip, however, can be deflocculated by

introducing alkali salts of a carboxylated or sulfonated

polyelectrolyte (12) . All slips become progressively more

fluid as the amount of deflocculating agent is increased,

pass through a minimum viscosity, and then become progressively

more viscous as the deflocculant is further increased.

DEFLOCCULATION OF CERAMIC MATERIALS
i

Clay particles gain their surface charges both by ioniza-

tion and ion adsorption. The lattice structure of the clay

minerals of the ceramic clays either permit isomorphous re-

placement of higher valence cations by lower valence cations

or allow occasional cation vacancies (13) . Either way * the

resulting positive charge deficit causes the clay platelets

to have a net negative charge on their basal planes (or faces),

7
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neutralized in nature by the presence of exchangeable cations

that ionize when the clay is placed into water thus forming

the counterion cloud for the fa.csae of the clay particle.

The edges of clay platelets may be positive under acid con-

ditions, neutral in tie, region of pH 7.0, and negative at

higher pH levels (13) .	 'With an excess of H+ (low pH) the

edges are positively-charged. 	 Where OH	 and H+ are in

balance the edges are neutral and at high pH, OH 	 is adsorbed

and the clay particle is fully negatively-charged.	 Metal

' oxides, on the other hand, adsorb H+ or OH- , whichever is in

w excess, and so become either positively or negatively charged,
t	 '

depending on PH (6) Surfaces that are already charged, as,
r

for example, clay platelet edges or calcined alumina particles

at a moderate acidity (say pH 6.0), show a preferential ten-

dency to adsorb surfactant ions, which in turn may form hemi-

micell.es (34) with other surfactant ions so that a surface

charge reversal may occur with little or no change in pH. Or

counterions having a high charge number may be adsorbed and 7

reverse the existing surface charge (6) The mechanism of
k

deflocculation has been shown to be an exchange reaction in

which cations low in the series H + y A13+, Ba2+, Mg	 CaCa2+,

11H4+, K+, Na+ replace those higher in the series while at

..	 the same time hydroxyl ions are made available to charge

-'	 the surface of colloidal particles(15).

The interaction of the clay particles with the ions

of the bulk is dyrnamic # in that ions pass from the liquid

to the solid and in the reverse direction. This process is

r
8
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4	 termed "ion exchange".

Various mechanisms have been .suggested as the basis

of ion exchange. Brindley (16) is of the opinion that no

single mechanism is involved; rather several mechanisms are

involved but to different degrees for the different clays.

It is necessary to consider ion exchar.,e in light of the

nature of clays and the liquid medium.

r Two main causes are assigned to exchange of cations

by clays. One is related to the presence of dissociable

a	 ions on the surfaces of the particle; this is the so-called

"broken bond" hypothesis. Unsaturated bonds on the clay

surface are thought to take up H+ or OH ions from the water

phase to satisfy these valences. Then, if the H's are

dissociable they can be displaced by cations in an exchange

reaction.

The other hypothesis relates to the effect of isomor-

phous replacements of higher valence cations by lower valence

cations in the crystal lattice. Cations are adsorbed from

solution to balance the charge deficit. The adsorbed cations

may be displaced by other cations in an exchange reaction.

Although anion exchange by c3ay minerals is certainly

possible, much less attention has been paid to this than to
i

cation exchange. Various mechanisms can be visualized by

which anions can be adsorbed and exchanged by clays. Anions

forming part of the crystal structure and anions in water

solution can exchange; these would be easily accessible surface

9
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ions.	 Oaf the exchange may involve all anions of a clay

lattice by means of solid-state diffusion.	 Or, as is more

likely, anion exchange may occur at the boundaries of the

silicate layers.

An exchange of F	 for O%1	 is a likely reaction in view

of the similarity of size, charge, and polarizability. 	 F-

frequently occupies OH	 positions in natural minerals,

such as mica.	 Dickman and Bray (17) and Samson (18) used

NH4F as a source of F` ions, while Roma and Roy (19) employed
sl

NaF.	 In all cases there was an attack on the clay with

formation of (NH4 ) 3A1F6 or Na
3
A1 6 , respectively.	 The work

c of Romo and Roy (19) left doubt as to whether any F ` for OH

t (18)
exchange had occurred.	 Samson	 concluded that for kaolinite

surfaces OH^ was dis placed by F - , but Al ions were dissolved

from near edge€;, thus exposing more OH	 for replacement, by F

i
EFFECT OF TEMPERATURE

4 rt

Weber (20) referred to the effect of temperature on

F slip consistency and later McDouga1 (21) showed that variable

slip temperatax-es led to variable casting performance. 	 Hall (22)
s

and Schramm and Hall (23) noted that the lowered viscosity of

F slips due to increased temperature was out of proportion to

purely viscous considerations, suggesting a possible modi-

fication of the state of aggregation as being responsible.

Russell and Mohr (24) found the rate of . cast of kaolin

slips to be relatively stable over the 15-27°C range, rising

10



sharply at 35°C, and dropping; again at 39 0C. Rolke (25) re-

ported that heating slip to 3$-40c increased the rate of

clay dispersion about four-fold over cooler slip, and that
a

heating to 30-70 0C reduced the viscosity 40 percent, rtO sed

the casting rate 40 percent, and increased the green strength

ft	 by 45 percent. Van Wunnik, et al. (26) showed that skip and

mold temperatures were important factors in governing the

quality and rate of casting. As slip temperature increased,

viscosity decreased and the range of deflocculation widened.

Even though the viscosity of a warm slip was appreciably

lower than that of a comparable colder slip, the warm slip

still cast more rapidly, sometimes by as much as 25 percent.

Where a slip was warm (e.g., 40 0C) and molds were cold (e.g.,

20 0C), draining was poor and casts remained soft for long

periods after draining. When molds were held in the 25-400C

range even cool slip cast well.

Herron and Cutler (27) studied casting kinetics and re-

ported that the rate of diffusion of water through the ac-

cumulated cast adjacent to the wall of the mold governed the

casting process, and that the rate of cast was inversely

proportional'to viscosity of slip water at all temperatures.
k	 (28)Roy	 established experimentally that the rate of cast

was a direct function of the water temperature of the mold

and of the slip. Faster movement of water through porous

structures, such as a cast and the plaster mold, is expected

because of lowered water viscosity at higher temperature.
i

'^	 11
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Cold plaster cools warmer water coming from the slip and

the rate of cast is reduced. Lower slip viscosity at higher

temperature was attributed to freer movement of the water.

SLID' RHEOLOGY AND CAST PROPERTIES

One of the more difficult aspects of slip casting is

insuring constant cast properties such as rate, amount of

water retained by the moist cast, and dry strength; all of

which are some way related to the consistency of the slip

and its tendency to thicken upon standing (i.e., its thix-

otropy). It is nommon practice in the industry to attempt

control of casting qualities by maintaining a constant

solids content and adjusting the viscosity and thixotropy

by varying the amounts and kinds of deflocculating agents

and the kinds and amounts of colloid modifiers (i.e., organic`

substances that enhance deflocculation and various inorganic

cations anjanions that retard or inhibit deflocculation).
Cons y,stency measurements and thixotropic tendencies of slips,

are commonly measured with rotational viscometers, such as

the Brookfield RVT ( 29) viscometer or the Gallenkamp Technico(30)

y	 viscometer. Less frequently used are flow tubes.

WATER-CARRIED SOLUBLE STS	 3
i

Slip rheology and response to deflocculating agents

will vary significantly as the kinds and amount of colloid

modifiers change. Two very common ways in which this can

a
12
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happen are (a) changes in the soluble constituents of pro-

cess water and (b) development of soluble sulfates in ball

clays. Assurance of potability and softness in municipal

water supplies must presuppose content of natural variation

in the amount of dissolved substances, while soluble con-

tent of natural water sources may vary with seasonal floods

or droughts or contamination by industrial wastes. Some

idea of changes from source to source and season to season

for various city water supplies can be gained from the

analyses in Table I. Ball clays contain sulfides which

oxidize in the presence of air and water to form soluble

sulfates in storage. From these data it may appear that

a wide variation can be tolerated in body forming but it

must be remembered that chloride and sulfate salts are some-

times quite soluble and rapidly dried ware can develop large

surface concentrations that might be detrimental to glazes.

In one such instance soluble sulfates in a municipal

water supply were so high that the filterpressed body con-

tained several times as much sulfate ion as had the original

raw clays. Casting slips made from this filterpressed body

developed so much sodium sulfate from interaction of de-

flocculant and sulfate ion that the dried ware had a heavy

surface concentration on the upper areas of the dried ware.

The result was badly scrambled engobe and glaze.

The possibility of wide, rapid changes in the kinds

and amount of water soluble salts in process water (or clays)

13
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a
can lead to marked differences in performance of ceramic

s	 formulations; in particular casting slips and glaze slips.

Treatment of municipal water supplies to insure pota-

bility can mean variation in the amount and kind of ions,

R	 especially when the raw water changes with seasonal floods,

droughts, or industrial waste contamination. The major water-

borne ions affecting the degree of deflocculation of clay-

based slips are Ca2+, Mg2+, Fe 2+ , C1 - , and SO4= . Hardness

is expressed in terms of CaCO
3
 although this figure covers 	 f

the sum of Ca2+ , Mg2+, and Fe 2+ present, regardless of its

original form. Very soft water contains as little as 15 ppm

of hardness while a hard water carries 100-200 ppm. The

alkalinity of water usually consists of calcium or magnesium

bicarbonate. Softening of water with lime and soda ash in-

troduces carbonate and hydroxyl ions. Sulfate may enter as

alum used in clarifying water or from industrial sources while

chloride may come from chlorine-treating or naturally occurring

salts.?

The presence of calcium hardness in whatever form is

reflected in increased deflocculant requirement of casting

slips and reduced fluidity, even at maximum deflocculation.

r Non-deflocculating- chloride and sulfate ions also increase

deflocculant requirement and further reduce fluidity. Rate

of cast and percent retained water are increased by the

presence of alkaline earth chlorides and/or sulfates. The

sulfate ion reduces the production of hydroxyl ion from

14
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sodium carbonate and lessens neutralization of acidic

groups of clay-associated organic matter.

WATER AS A RAW MATERIAL

It is not difficult to appreciate why the inter-rela-

tionships between clay, especially, and water should be so

hard to understand. Water itself is a highly complex entity.

Clays and related minerals also have complicated structures,

possessing many unusal groupings and configurations that

could affect their relationships with polar water molecules.

Three features of crystal surfaces can influence water

molecules that come into contact with them:

(a) distorted ionic groups on the solid surface,

(b) broken bonds at fractures or on cleavage planes,

and (c) isomorphous replacement lattice charge deficits.

Further complications occur where minerals have lattice holes

large enough to accommodate water molecules (e.g.# the zealites).

A detailed survey of available literature led Drost-

Hansen(31) to conclude that (a) the ordering of water mole-

cules near most solid interfaces differs significantly from

that of the bulk water and (b) the interfacial structure ex-

tends in a gradually modified form over some,distance from

the surface. The character of the solid surface was thought

to govern the kind and extent of structuring of viciiiai•:.

water, but this relationship could be modified by the kind

and amounts of ions present in the water solution(32).

.;

15
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It is not possible to explain the plastic behavior

of clay-water masses without assuming some form of adsorption

V	 of water by the clay particles. The inherent negative

charges, which can be demonstrated for clay particles(33)0

(34)and the unsatisfied valences at broken edges 	 lead to

intense electrical fields near the particle surface. Some

authorities postulate simple adsorption of polar water mole-

cules held in an oriented structure by hydrogen bonds(35).

Others believe the water dipoles are attracted by reason

of the good geometric fit between hexagonal network of ice

and the clay lattices and are thus held by hydrogen bonds

in an ice configuration.

Almost certainly the Frank-W'en (36) concept of im-

mobilization of water in compact A-region hulls near ions,

and the development of zones of highly mobile water dipoles

in "broken structure" B-region layers can be used (in pos-

sibly modified form) in considering development of water

hulls on clays. Clay lattices fracture in such a way as to

expose unsaturated ionic bonds at the edges of the plate-

lets. Exposed Al a+, Si4+, 0 -P and OH each will provide
I

active sites for attraction of water molecules (34) . It is

probable that the OH-layer of the kaolinite layer unit and

the 0-layer of the three-layer units can adsorb H 2O by

hydrogen bonding.

There is a large volume of literature dealing with

(31)the general problem of water/clay interactions 	 Some

16
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investigators favor the idea of long-range ordering(37).

On the other hand,we find van Olphen (38) arguing that long-

range ordering of water•..at clay-mineral surfaces is not

needed to explain the rheological properties of clay-water

systems.

It is difficult to separate structural phenomena from

geometric effects because of such things as packing of clay

platelets or the action of exchangeable cations on water

structure. In general, Drost-Hansen (31) thought that the

necessarily high concentration of ions near the clay sur-

face resulted in concentrated "local solutions" that made

experimental work difficult.

In the course of an X-ray study of water in frozen

clay-water paste , it was found that ice crystals had formed

with their c-axis perpendicular to the c-axis of the clay

lattice (31) . Apparently the ice was not formed by direct

epitaxis upon the solid. Two alternative explanations of

the nucleating power of clays were considered:

(a) there was possible nucleation at "favorable"

sites on the clay with the ice nucleus grow-

ing parallel along the platelet surface,

all the while being separated from the clay

(except for occasional pbihts_of'.attaehment)

by unfrozen structured water containing ex-

changeable cations, hydrated oxides, and any

electrolyte that might be pres^nt,

0
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or (b) nucleation occurred at some distance from

the clay surface and as ice formed any ions

---'"	 present	 were excluded, so that salts

concentrated in a layer between ice and clay.

It would appear that the nucleation may occur in a disordered

zone between vicinal ordered water and bulk water.

Drost-Hansen(31) made reference to interesting studies

of clay-water bonding by Wu, who used a nuclear magnetic

resonance method. Spin-spin and spin-lattice relaxation

times were determined with water and heavy water adsorbed
4-

onto kaolinite and montmorillonite. It was concluded that

below 0 0 the water near the clay surface had a structure

different from that of ice. For sodium-montmorillonite at

100% water a viscosity of 110 poises was found for the

layer water: but at 40% water an apparent vicinal water

viscosity of 330 poises was found. By assuming the energy

of activation for viscous flow as approximately the 8 kilo-

calories/g-mol found for ion movement in the two molecule
Y

layers of water in bentonite, this would correspond to a
Y

water layer viscosity of 700 times that of ordinary water.
0

Mestik and Aidanoda(31) measured heat conductivity of

	

water between layers of mica. Thermal conductivity of water 	 i

lying between mica sheets was found to be at least 10 times

greater than that of the bulk water. The thermal con-

ductivity of ice was only 3.5 times that of bulk water. So

this study appears to indicate substantial structural changes

18
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of water near a mica surface, and that the structure is

not that of ice.

The thickness of the adsorbed water film seems to vary
(39)with the degree of deflocculation	 . Negatively charged clay

particles suspended in water attract cations to their surfaces.

A simple picture shows a layer of positive ions at or near the

negatively charged surface neutralizing the negative charge.

Beyond this is a distribution of anions and cations similar

to that of the bulk solution. This is the Helmholtz electri-

cal double layer concept. However, the orginal Helmholtz

double-layer was unsatisfactory in many respects and has been

modified over the years. The more realistic Gouy-Chapman-

Stern concept is given by Figure 1. As proposed by Stern (4o)

the double-layer is divided into two parts separated by the

Stern plane, which is located at a distance from the charged

plane equivalent to the radius of a hydrated ion. Specifically

adsorbed ions are those that are temporarily attached to the

charged surface by electrostatic and/or van der Waals forces. 	 F

These ions are in dynamic equilibrium with the ions of the
E

diffuse-layer. Ions with centers located beyond the Stern 	
i

plane form the diffuse portion of the counterion double-layer.

r

	

	 The potential drops sharply from 00 at the charged clay
surface toy0  (the Stern potential) in the Stern layer, then
decays e7tponentially from Oa to zero beyond the diffuse double-

layer. The potential at the plane of shear between bound

water and bulk water is termed the zeta potential and is a	 Y

:G
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measure of the repelling force between two similarly charged

clay particles. The "thickness" of the double-layer is taken

as the reciprocal of the Debye parameter kappa. Kappa is an

index of the concentration of ions in the bulk solution.

k^rru	
The larger k is the more attraction there is for counter-

ions and the more rapidly 0 decays. The smaller the counter-
ions and the greater their charge the closer they are drawn

toward the charged surface, so that the double-layer thick-

k^pF	 ness, 1/k, is reduced.

The Frank-Wen(36) concept of an immobilized hull of

water around ions of small size and high charge allows one

to consider a mechanism of formation of a solvated hull a-

round clay platelets. The surface of clay has positive and

negative ionic sites owing to exposure of A1 3+, Sid+, 0- , and

OH- , especially at broken edges. Since free ions have been

shown to attract water molecules into ordered structures it

is logical to assume that unsaturated valencies of the clay

lattice must also attract and order water dipoles, or other
	

k

ions dissolved in the water, to satisfy charge deficits.

Just how thick a layer of water can build up must,

therefore, depend to a large extent upon those types of

ions found in.the water. It can be shown that structure-

promoting free ions such as Ca t+, Mg2+, and A13+ tend to

immobilize tightly held, organized layers (A-region) of

water molecules. Since cations are attached to the clay

surface it is reasonable to assume that the thickness of
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the solvated layer around the particle would depend to r,ome

extent upon the character of exchangeable cations.

Various means have been used to determine the thick-

ness of the adsorbed water on clay particles. Most measure-

ments have been derived from adsorption of water vapor on

clays under controlled humidity conditions. For kaolinites,

measurements of this kind indicated film thicknesses of

around 15Rt however, calculations from particle -particle

distances near the lower plastic limit gave th. 2:knesses up

to 1000. East (41) calculated water thickness from shrinkage

measurements and water volume loss. For a hydrogen -kaolin

he found a hull thickness of 80K, for caYcium -kaolin 106[x,

and for sodium-kaolin 1868.

Davis and Worrall used an interesting technique in=

volving adsorption of water from a glucose solution. For

various mono-ionic ball clays and kaolins Davis and Worrall (42)

reported values of clay film thickness as shown in Table II.

In discussing their results, Davis and Worrall were of the

opinion that there was no correlation between water adsorption

and zeta potential. The cation-exchange capacities of their

clays (around 5.0 megf100g for china clay and 1.5.0 meq/100g

for ball clay) were too low for any primary hydration of ions

to be much of a factor in the relatively high amounts of

water found to be adsorbed. Reference is made to the Frank

Wen(36) concept of "structure-breaking" ( by a particular

kind of ion that randomizes the water dipoles by preventing
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the "flickering cluster" structuring occurring in ion-free

wate-) and "structure-,promoters" (those ions that tend to

attract compact, ordered Layers of water dipoles). The

B-region lying between structurally normal bulk water and

the ordered # immob3..lized A-region water is the zone of "structure

breaking".

Lawrence (43) indicated that increases of ordered structure

involved entropy losses, while decreases of structure involved

entropy gains. He used the entropy of solution 0 S (the en-
tropy change in calories per degree-mol occurring as the hy-

pothetical mol fraction of unity is passed in solution) as a

basis for correlatirg structure effects of ions. From as
he calculated ASst (the contribution to entropy change due

to effect of ions on water structure). Table III gives As

and ASst values for a number of different ions. The asst

value for Li+ vAs indicative of some ordering whereas those

for Na+ and K+ indicated an increase in disorder of bulk

water structure. The F' - ion promoted some ordering while

Cl had a AS st that meant an increased disorder. The nag-

ative ASst for Mgt+' Ca2+, and A1 3+ware indicative of pro-

motion of long-range order in ionic water hull strucuure.

Figures 2 and 3 are plots of the ionic field strength,

Z/a2 , (where Z= valence and a= ionic radius) against asst

and ionic elevations of fluidity by a number of ions. In

the case of Z/a2 vs ASst there is an excellent correlation

for cations and anions considered separately. Naturally,

22
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one would expect a difference between anions and cations be-

cause of the difference in bonding for M+-H20 and A_-H.0.

'

	

	 Hydrogen bonding (44) has to be taken into account for
C 

-H2O. The data for Z/a4 vs fluidity do not quite show

the good correlation seen in Figure 2; the data of Figure 3
indicates the Na+ to be a structure promoter where entropy

data shows it to be a structure breaker. Structure promotion

is a function of field strength of the ion: the smaller the

ion and the larger its charge, the greater the field strength.

In an assessment of their data Davis and Worrall(42)

noted some qualitative agreement between structure-promotion

theory and their rec"Its. The rather low Li + values were

possibly due to hydrolysis of the clays, which results in a

partial conversion to H-clay. Note that H-clay water layers

were thin for both ball and china clay. Their china clay

was 95% kaolinite; whereas the ball clay approximated 54%

disordered kaolinite, 32& mica, and 14% fine quartz.

DE-WATERING

Most of the water in a ceramic formulation never actually

makes it into the kiln but is removed in forming and drying,

steps. The peculiar nature of water makes these de-watering

steps rather interesting.

The degree of deflocculation of a given casting slip,

for example, governs the rate at which water is removed by

the mold. A casting operation is basically a concentrating

process by means of which the colloid density is raised and
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coagulation increased. For a given slip viscosity and thix-

otropy index, Ryan(45) found that clays containing Ca t+ and

Mg 2+ as exchangeable cations cast more rapidly than clays

containing Na+ . The water retention of the alkaline-earth

clay casts was in all instances higher than in the sodium-

clay casts, although cast quality was acceptable in all cases.

In similar fashion the filtering rate of non-deflncculated

slips is increased by introduction of polyvalent cations.

The temperature of casting slips and filtering slips

has a profound effect upon slip viscosities and the rate of

cast and filtration rate. It has been shown th&t as slip

temperature is increased its viscosity drops and rate of

dc-watering increases (46). Roy(4b) has demonstrated that

rate of cast is a direct function of the changes in viscosity

and surface tension of the water phase of slips with temperature.

Once the cast, plastic-formed or dry-pressed Item has

been made the manufacturer is faced with the necessity of

removing residual moisture as quickly and safely as. possible.
s

A mistake ceramists often make is to consider water content

as a basic parameter for movement of water. This is not the

case; soil scientists long ago showed that water only moves

in response to a gradient of potential energy of the water (47)9

-^	 This gradient was termed moisture stress. The ability of a

moist system to retain its water ranges from approximately

zero (zero moisture stress) in dilute clay suspensions to

<14
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about 1010 ergs/g for nearly dry clay. A soft plastic clay

body has a moisture stress around 4x105 ergs/g, the leather-

hard state 5x107 ergs/g,and an air-dried mass about 10 9 ergs/g.

By plotting moisture content versus log of moisture stress it

is seen that reduction cif moisture in drying requires little

expenditure of energy in the early stages of dryingo At an

inflection point in the curve the shrinkage will have ceased

and the slope of the curve become; much less steep over a

moisture content ranging; from around 18 percent down to around

5 percent where a second inflection paint shows up. From this

point down to zero moisture content the moisture stress in-

creases sharply.

Roy(4b) has demonstrated that the mechanism of transfer

of moisture from the moistware is an evaporative process from

a free water surface. Rate of drying thus depends upon

temperature, relative humidity, and volume of air movement

across the free water surface.

During the early stages of drying, especially of large
x

items, it is desirable to maintain a blanket of moist air

over the piece to lessen moisture movement from its surface

to prevent differential shrinkage, while the interior water

is being warmed up to - approximately the dryer temperature.

Humidity may thet be dropped moderately during the inter-

media te.drying period and once the "5 percent" level is

reached temperature can be raised and humidity dropped.
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TABLE I

City Water Analyses

4I

Locality

Atlanta, Ga.
Mansfield, Oh.
Trenton, NJ.
New Castle, Pa.
S.W. Illinois
S.E. Ohio
S. Central Texas

Hardness, ppm CaCO3

10 -	 16
122 - 387
21 -	 68
57 - 18o

315 - 560
312 - 484

0 -	 12

Alkalinity

8 -	 15
94

36o-
18 -	 72

105 - 232
65 - 110

40o - 494

Sulfate

5-- ..20
50 - 175

20 - 65
250 - 505
110 - 215
0 - 10
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TABLE II

Adsorption of Water on Mono-Ionic Clays

Clay Type

China Clay
of N
Of of

to

•• N

f^ N

to N

Ball Clay
» of

.. N

M of

.. I.

» .:

» of

Exchangeable Cation

H+
Li+
N^

K 2+
M92+Ca
Sr

H+

Nl+

K 2+
M92+
Sr

Calculated Thickness, R

68
117
106

138183

4r0
loo

143
82
87

i
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TABLE III

Entrow of Solution of Monatomic Ions in Water

Ion OS A&Sst

F- -4o.9 - 3.5
C1- -26.6 +10.2

x+ -38.6
Li+
N 3 4.0^ -3.9 + 
K 2+ -25.3 +12.0

Mg2+ -84.2 -27.6
Ca

3+
-65.5 -lo.6

Al -133.0 -42.0

r

M

i

k

f

t

s	 ^
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(0 = ELECTROLYTE CONCENTRATION FUNCTION

Figure 1. Diagram (a) shows two charged surfaces with their
attendant diffuse double-layers approaching one
another. The Greek letter kappa is an index of
ion concentration in the bulk solution beyond the
double-layers. Diagram (b) shows that the potential
drops abruptly across the Stern Layer then more
slowly through the diffuse counterion cloud. The
reciprocal of the Debye parameter K is arbitrarily
taken as the measure of double-layer thickness.
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