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CHAPTER I

INTRODUCTION

This report is the final volume of a multi-volume report on the

Fault-Tolerant Multiprocessor (FTMP) project sponsored by the Langley

Research Center of the National Aeronautics and Space Administration

under Contract NAS1-15336 covering the period from August 1978 to

December 1982. This volume is an executive summary of the project.

Previous reports produced under this contract are as follows:

Volume I - FTMP Principles of Operation

Volume II - FTMP Software

Volume III - FTMP Test and Evaluation

The FTMP architecture is an evolving concept which is directed

toward ultra-high reliability aerospace applications. The engineering

prototype was sized to serve as the information processing and control

system for an advanced civil transport application. Its projected

reliability, a probability of failure of 10-9 over a ten hour flight,

is suitable for full time fly-by-wire control in such an application.

The ultimate reliability and throughput of the FTMP can be varied by

addition or deletion of processing and memory modules and is also

affected by such parameters as packaging and circuit technologies. The



FTMP thus has an applicability which is broader than this single design

point, and it can be tailored to a wide range of demanding applications.

The flightworthy engineering model of the FTMP was constructed

under the present contract by the Collins Avionics Division of Rockwell

International Corporation per architectural specifications provided by

the Charles Stark Draper Laboratory (CSDL). The FTMP engineering model

was delivered by Collins to CSDL in June 1980. It was then integrated

with CSDL-developed software, MIL-STD 1553 remote terminal emulators,

special test hardware, and a real-time aircraft simulator.

About six months after delivery to Draper, hardware modifications,

which were required to correct implementation and design flaws, were

completed and an executive kernel capable of demonstrating fault toler-

ance and dynamic reconfigurability of the FTMP was operating. A display

console attached to the FTMP via the 1553 I/O interface provided system

status displays allowing convenient tracking of system reconfigurations

in response to fault insertion. In the following year, the executive and

flight control software was elaborated and the system was integrated into

a jet transport aircraft simulator with cockpit. During this phase of

the program, the fault-tolerance of the FTMP was demonstrated to hundreds

of visitors from NASA, all branches of the armed forces, the Department

of Defense, other government agencies, industry, and academia.

Once the software development was complete and the FTMP was fully

integrated into the simulation laboratory, it was subjected to over

20,000 faults as part of a test, evaluation, and validation plan. FTMP

response to each fault was recorded and were reduced to frequency histo-



grams. Fault insertion and data acquisition were done automatically

under control of a PDP-11/60, using a fault injection device designed and

built at Draper.

The FTMP engineering model and software along with the test

facility hardware and software were delivered to NASA Langley in August

1982.

Overall, the FTMP program was a notable success, demonstrating and

validating many of the underlying design concepts.

The first three volumes of this report dealt with various aspects

of the FTMP in great detail. This final volume summarizes the results of

this project. Chapter 2 highlights the FTMP architecture, hardware

implementation, and executive software. Chapter 3 summarizes reliability

modeling results. Chapter 4 is a brief discussion of performance bottle-

necks and advantages of the FTMP architecture. Results of experimental

test and evaluation are presented in Chapter 5, and Chapter 6 concludes

this report.





CHAPTER 2

THE FAULt-TOLERANT MULTIPROCESSOR CONCEPT

The two underlying philosophic assumptions of the Fault-Tolerant

Multiprocessor Concept are: I) that crucial elements of the fault-

tolerant computing system can be most economically implemented in

hardware, and 2) that the chosen architecture for a fault-tolerant system

should have performance, programmability, and useability attributes which

are as good as those of equivalent simplex or non-redundant systems.

The architectural organization which was selected for the FTMP was

that of a conventional homogeneous multiprocessor. It was felt that this

organization was particularly well adapted to the programming and

performance requirements of the projected commercial transport environ-

ment. Figure I illustrates such a system organization. The multiproces-

sot environment provides an easily expanded and general purpose computing

system which is able to handle the multiple concurrent tasks projected

for such an application. The use of a multiprocessor structure with its

shared memory also provides for the required high speed communications

and data buffering between the tasks. The multiprocessor organization

also has secondary reliability advantages. Degraded versions of such a
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system can function with reduced numbers of processors, but these advan-

tages would not have justified a multiprocessor organization had that

organization not been a natural choice for its intended application.

The second design choice was to provide redundancy and fault-

handling mechanisms which are transparent to the software organization,

both as regards to its structure and performance. This was, in fact,

critical. After matching the architecture to the application (redundancy

and fault-tolerance aside) it is essential that the additions required

for fault tolerance not compromise the rationale for the original archi-

tectural choices. The FTMP solution allows for the independent design

of applications and operating system code design, apart from the design

solutions to fault handling and fault recovery problems. The aggregate

complexity of these two problems is thus much less than if they are

handled jointly. A hardware implementation of the primary

fault-detection and fault-masking mechanisms achieved this goal with

minimal impact on system throughput. This compares to software-intensive

solutions which generally must devote over 50% of available processing

power to such functions.

Experience with the FTMP confirmed the soundness of these princi-

pal architectural decisions.

All of the software of the FTMP was developed, coded and debugged

as if it were to run on a simplex equivalent of the multiprocessor.

Code, debug and test was in fact actually conducted using a simplex

development station. Code was then routinely moved from this development

station to the redundant configuration without difficulty. The



programmability and software productivity advantages hoped for were thus

largely confirmed. Executive design was conventional and the

architecture allowed efficient control from a higher level language.

Programmer productivity exceeded 140 assembler level language statements

(or their equivalent) per programmer day, competitive with the best

practice today.

The choice of hardware mechanisms to provide primary fault

handling also proved to be sound. Performance degradation due to

fault-handling hardware was minimal and the implementation was indeed

largely transparent to the software. Despite implementation flaws (in

areas unrelated to fault-handllng hardware) which caused overall

performance to fall somewhat short of projections, comparisons with the

SIFT approach indicated the substantial advantage of this approach.

Basic fault-handling functions in the FTMP were handled by hardware and

were at least two orders of magnitude faster than the software

equivalent, in SIFT [I,2]. A basic paradox was that this specialized

voting and fault-handllng circuitry of the FTMP proved to be smaller and

less complex and much less trouble-prone than the specialized data

exchange circuitry of the SIFT machine. This can be attributed to the

efficiencies of synchronous (FTMP) versus asynchronous (SIFT) exchange

mechanizations and the trivial amount of circuitry which was in fact

required to implement the basic fault-handling mechanisms.



CHAPTER 3

SYSTEM ARCHITECTURE AND EXECUTIVE DETAIL

This chapter outlines the functional and design concepts of the

Fault-Tolerant Multiprocessor engineering model, FTMPo

3.1 Overall Architecture Or@anization

Figure I of the preceding chapter illustrates the functioning of

this system from a logical software or programmer's viewpoint. Three

processor triads function as the logical equivalent of simple processors

with shared access to a single shared system bus. Through this bus they

share access to common memory, I/O ports, a real-time clock/counter, and

control and status registers. Each processor triad can also directly

write to the communications registers of the other processor triads using

the system bus. This provides processor to processor interrupt

facilities which are required for efficient implementation of the

multiprocessor execution. The entire system is synchronized by the

equivalent of a single system-wide clock.

The actual redundancy underlying the buses, system memory triads,

processor triads, the clock quad, and the I/O system is invisible to the

programmer. This redundancy is shown conceptually in Figure 2 for the

processor and memory portion of a full up system configuration and in

more detail for the entire system in Figure 3. Any three processor

9



PROCESSOR TRIAD PROCESSOR TRIAD PROCESSOR TRIAD

" S ,,Y ,,S
o # 7

! I I

MEMORY TRIAD 1 MEMORY TRIAD 2 MEMORY TRIAD 3

ADD 0000-3FFFhe x ADD 4000-7FFFhe x ADD 8000-BFFFhe x

Figure 2. Processor and Memory Redundancy



PROCESSOR SLAVE
REGION REGION

/ /
_ _ _ LR_Ui_._ _ ,_. ..... LRU2 LRU10

'
I P/C i
L _.

....I _-'_ O0 0
i CONTROL I
=..... I

INTERFACES

BUS

1

F-J

2

3

4̧

5 = ---------
b

Figure 3. FTMP Physical Organization and Packaging



modules can be combined to form a processor triad, as can any three

memory modules.

The system is constructed of ten identical line replaceable units

(LRUs). Each LRU contains a Processor module, a Slave module (Common

System Memory and I/O), a Clock Generation module, two Bus Guardian

units, System Bus Interface circuits, and a Power subsystem. Figure 3

illustrates this physical organization and packaging.

3.2 Processor Module and System Bus Interaction

Processor modules operate in groups of three called processor

triads. Processor triads are formed by assigning the processor modules

of any three LRUs to work together in tight synchronism. In the FTMP it

is possible for up to three processor triads to be in operation simulta-

neously, utilizing processors from nine of the ten available LRUs. The

processor of the tenth LRU serves as a spare. A processor triad

functions as if it were a single processor executing a single instruction

stream. With three triads operating simultaneously, three instruction

streams are in parallel execution. The system then functions as a

conventional three-processor multiprocessor. The failure of a single

processor of a triad does not impact the correct execution of that

triad's instruction stream, because voting is used to mask the effects of

the failure. Comparison techniques also enable the failed processor to

be detected and identified. A spare processor region can then be used to

replace the failed element of the triad. If no spares are available, the

damaged triad is retired from service with the surviving functional
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elements being used to replenish the spares pool, and thus available to

repair processor failures in the other triads.

The processor triads write data to, or read data from, locations

within the system bus address space by means of the System Bus. This bus

is a quintuply redundant, fully duplex, eight megabit per second serial

bus. During a block transfer, data can be written from a processor triad

at a peak rate of one word every 5 microseconds. Data can be read by a

processor triad at a peak rate of one word every 3 microseconds. The

error correction and error detection relies upon voting and comparison of

data and addresses appearing on redundant elements of the System Bus.

At any one time three of the five redundant bus lines are active.

These active lines are called the bus triad. Each element of a processor

triad transmits data and addresses on a different one of the bus triad's

lines. Since the elements of the processor triad are all operating in

tight synchronism, it is possible for any unit receiving a processor

triad read or write request to compare the separate versions of that

request by examining the separate copy of that request arriving on each

bus of the bus triad. The receiving unit can correct any errors caused

by a single processor region failure or single bus failure by using

majority voting.

3.3 Slave Module and System Bus Interaction

The Slave Module contains a number of subsystems, all of which are

addressed, read, and written as locat_ons in the System Bus address

space. These subsystems are the shared System Memory Module, the I/O

13



Port, LRU Control/Status and Communications Registers, and a Real-Time

Clock/Counter. Certain of these modules are normally operated within

triads of three; others are operated as single units.

Shared System Memory Modules are normally operated within a

triad. The system memory modules of three LRUs are assigned to function

together servicing a block of the system bus address space. Up to three

memory triads can be formed from the system memory modules of nine of the

ten LRUs. The tenth LRU's system memory module would then serve as a

spare. In the FTMP as programmed only two memory triads were required

and they were backed up by four spares. Each memory triad is assigned to

serve a different block of the system memory address space. The failure

of a memory module within a triad does not impact the integrity of data

stored in that block, as voting is used to mask the effects of the failed

module. Comparison techniques also enable the failed module to be

detected and identified. A spare memory module can then be used to

replace the failed element of the triad.

The real-time clock/counters of each LRU are also intended to

operate together as a triad. The real-time clocks are used to maintain

the absolute time base for the system. All real-time clocks are

addressed by the same system bus address. A processor triad write to

that location sets all real-time clocks to the same value. The real-time

clocks of three LRUs can be armed to respond to read requests. Only

those three LRUs respond to any processor triad real-time clock read

requests and as such they function as the real-time clock triad. A

failure of any element of that triad is masked by voting. Comparison

14



techniques enable the faulty unit to be identified. Any one of the

unarmed real-time clocks can be used to replace the failed element of the

real-time clock triad. Note that even the unarmed real-time clocks

respond to write commands from a processor triad. Thus they will always

agree with the elements of the real-time clock triad and can therefore be

used to replace an element of the triad without reinitialization.

Unlike the processor modules, the memory modules, and the real-

time clock/counters, the I/O ports operate independently of one another.

Each I/O port responds to its own unique set of system bus addresses.

Data and command words are transferred from a processor triad to an I/O

port over the System Bus, appearing to the processor triad as routine

system bus writes. As with any processor triad writes, voting at the

receiving end serves to mask the failure of any one of the processor

triad elements. The I/O port buffers any I/O transmissions, assembling

an entire message before initiating an I/O bus transaction. The I/O port

also buffers any incoming I/O transaction, assembling an entire remote

terminal message. The entire transaction is then transferred as a block

to a processor triad in response to a read request from that processor

triad. The I/O port utilizes MI_STD-1553A data bus protocols and

signalling standards in its communications with the exterior. Two

twisted shielded pairs can be used, one for transmitting and one for

reception, creating a fully duplex data link. If these two pairs are

tied together to a single twisted pair, then they conform to all specifi-

cations of MIL-STD-1553A. A MIL-STD-1553A avionics data bus is a I MHz

serial data bus employing Manchester encoding to send both clocking and

15



data information on a single shielded twisted pair bus line. Maximum I/O

transaction length can be 32 data words, one command word, and a status

word requiring up to 700 microseconds for the transaction to be made.

During this period the I/O port can act independently, and the processor

triad may release the System Bus for regular bus traffic. Since each I/O

port can operate independently, it is possible for the FTMP to be engaged

in up to ten I/O bus transactions simultaneously, one on each of the I/O

buses dedicated to each of the ten I/O ports.

The remaining elements of the Slave Region are System Control/

Status and Communications Registers. These elements are used to control

various parts of an LRU, to read the status of the error detection

circuitry of an LRU, and to provide direct processor triad to processor

triad communications.

The control registers are all write only. They are assigned fixed

locations within the system bus address space depending upon LRU identi-

fication number. These LRU control registers control which bus lines the

LRU uses for voting, triad assignment for the processor region, memory

relocation factor for the system memory, whether the real-time clock is

armed or not, and other LRU assignments or functions.

The status registers, or error latches, can only be read by a

processor triad. They report any bus errors observed by the error detec-

tion circuits of the LRU. Like the LRU control registers, the status

registers are assigned fixed system bus addresses dependent upon their

LRU identification number.

16



The communications registers are used to implement direct proces-

sor triad to processor triad communications. Each communications

register can only be written using the system bus. The communications

register can be read by the processor region of the LRU directly, appear-

ing as a local memory location on its internal processor module data

bus. The system bus address assignment of each communication register

within the LRU is keyed to the processor region triad assignment of that

LRU. This assignment is contained in one of the control registers of the

LRU. The local processor region transfer bus address of each communica-

tions register is fixed and is the same for all LRUs.

Only one LRU responds to control register writes or status

register reads, that LRU being determined by the system bus address of

the register being accessed. All LRUs with the appropriate processor

region triad assignment will respond to communication register writes.

When multiple LRUs are responding to a communication register write, they

act in tight synchronism with one another.

Each LRU's Slave region is assigned to transmit on only one

element of the redundant system bus. These assignments are made so that

each element of a system memory triad or real-time clock/counter triad is

assigned to a different bus. Each element of a processor triad can

therefore mask a fault within a responding triad by appropriate majority

voting circuitry. When reading from a simplex source, such as the I/O

port or status register, the processor triad does not receive redundant

information, but instead must accept the data from the single system bus

line on which it appears and verify its accuracy by other means, which

are described in Chapter 5.

17



3.4 Clock GenerationModule

All elements of th_ m_itiprocessoroperate using a common time

reference. This time base is providedby the Clock GenerationModules of

four LRUs which are phase locked to one another. The Clock Generation

Regions of the remaining LRUs are then phase locked to any three of

elements of the clock quad. Each clock generatorthus provides a timing

source for its LRU which is in synchronism with all other correctly

functioninqqenerators [3]. Such a system can tolerate the failure of

any one of the clock generators. All correctly functioning clock

generatorsremain synchronizeddespite such a failure. A failurewithin

the quad is detected and identifiedand another clock generator can be

assigned to replace the failed unit. Of the ten clock generators,four

are assigned to the quad clock and the remainingsix are either spare and

in standbymode, or failed.

3.5 Bus Guardian Units

The overall integrity of the system relies upon the ability to

reliably control the access that any element of an LRU has to the system

bus. Each LRU of the system has two Bus Guardian Units, BGUs, which

function to protect the system bus from a failed or malfunctioning LRU or

other element within the LRU. Each BGU has bus enabling registers which

control the LRU access to each individual line of the system bus. In

order that the LRU be enabled to transmit on any line of the system bus,

it is necessary that the enabling bit from both BGUs within that LRU be

set. Either BGU can block the LRU's ability to transmit on a line.

18



When the configuration control program creates a processor triad,

for example, it must first assign the processor regions of three LRUs to

the same processor triad. It does this by writing into the system

control registers of the selected LRUs. It must then assign each proces-

sor region to transmit on separate lines of the system bus triad. It

does this by writing to the enabling registers of both BGUs of each

selected LRU, assigning each LRU to the appropriate processor transmit

lines of the system bus.

The register loading mechanism of each BGU responds to a unique

system bus address keyed to that BGU's LRU and location within the LRU.

This register loading mechanism allows each BGU register to be written by

a normal system bus write transaction. Because it is important that a

BGU act independently of the LRU in which it is located, each BGU

receives all the redundant copies of all processor triad transmissions

appearing on the system bus. _AII registers within the BGU are nonvola-

tile so that the bus assignments and line select codes are remembered

through a power failure.

3.6 System Bus Interface Circuits

The actual connections to the system bus are made by the System

Bus Interface Circuits within an LRU. These circuits perform several

functions.

First, and most obviously, they provide the necessary drivers and

receivers for each individual bus line. Selection of these drivers and

19
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receivers is dictated by electrical constraints such as adequate power !
}

and noise immunity.

Secondly, the interface circuits provide the means for controlling

the fault environment of the system bus. The driver circuit for each

line performs the necessary gating of LRU signals onto system bus lines

depending upon the values obtained from the BGU enabling registers. Thus

it is this driver circuit which actually functions to cut the connection

between an LRU and the system bus. The receiver circuits distribute

independent copies of the system bus data, as required to each BGU within

the LRU and to the other LRU circuitry. Each BGU and the input process-

ing circuitry of the slave region must receive independent copies of the

processor transmission lines so that they can each perform an independent

vote and act independently of one another in response to processor triad

commands. Partitioning within the interface circuitry is designed so

that a single fault can bring down no more than one element of the system

bus or pollute no more than one copy of the received data from the system

bus. The partitioning and fault containment aspects of these interface

circuits are critical to the overall fault tolerance of the FTMP.

3.7 Power System

Each LRU has its own power subsystem. This subsystem consists of

a power supply, which provides all the required voltages used within the

LRU, and a battery backup circuit, which provides low power battery power

for maintaining the CMOS system memory and the nonvolatile registers

2O



during primary power loss. This local power subsystem is overvoltage and

overcurrent protected.

The local power subsystem of each LRU draws power from four 28 VDC

power buses. Each LRU is fused at its connection point to this quad

redundant power bus so that internal shorts within an LRU can at most

only momentarily disrupt power on the primary power buses. The local

power subsystems have adequate energy storage to tolerate these interrup-

tions while the fuses blow. The local power supplies draw power evenly

from all of the power buses. Thus under most circumstances, each of the

power buses is fairly equally loaded. Any one of the power buses is

capable of fully supplying all power to operate the entire FTMP.

The four primary power buses are driven from four independent

primary power supplies. In this particular implementation, each of these

power supplies is identical and converts three phase 208 VAC, 400 Hz

input power to 28 VDC.

3.8 Executive Software

The Executive software is responsible for managing the hardware

and software resources, for maintaining system integrity and for timely

and orderly execution of applications tasks. It forms a link between the

FTMP hardware and the user programs. The FTMP hardware, along with the

Executive, project an image of a virtual machine to the user such that

the hardware redundancy and redundancy management become transparent to

the user. The user is only aware of a multiprocessing environment in

21



which several processors execute tasks in parallel and are linked togeth-

er by a single shared memory.

The part of the Executive software that is responsible for the

execution of the applications tasks is called the Dispatcher. The Dis-

patcher is at the heart of the Executive. The remaining executive or

systems tasks, that is, all systems tasks other than the Dispatcher, are

treated by the Dispatcher like applications or user tasks. These other

systems tasks include a system configuration controller, system status

displays and self-test programs. They are scheduled to run by the Dis-

patcher as user tasks.

All the user and systems tasks are repetitive in nature. They are

executed at one of three different iteration rates. The three rate

groups, called R4, R3, and RI, presently execute at 25, 12.5, and 3.125

Hertz, respectively. The highest frequency tasks, that is, those in the

R4 rate group, are given the highest priority, while the lowest frequency

tasks, that is,those in the RI rate group, are given the lowest priority

for execution. The configuration controller and display tasks are dis-

patched at the RI rate.

The Executive is a timer-interrupt driven "floating" executive.

Each iteration of the R4 rate group tasks is initiated by a hardware

timer interrupt. The Executive can run in any processor triad, no

processor triad is a master or slave triad and all triads have equal

authority. Only one triad is allowed to alter the Executive data bases

at any given time. Access to the shared data bases, such as task queues

etc., by different processor triads, is controlled by semaphores resident

22



in the shared memory. The timer interrupt initiates R4 task iteration or

frame in just one triad. The other triads follow the lead triad when

prompted to do so through an IPC (Inter-Processor Communication)

interrupt. At the completion of an R4 frame, the triad completing

execution of the last R4 task becomes responsible for initiating the next

R4 frame using its timer-interrupt. All I/O is performed in the R4

frame.

The second element of the Executive is the system configuration

controller. The configuration controller detects hardware faults by

analyzing information from the error latches associated with the bus

voting circuitry of each LRU. It is also responsible for identifying

faulty units and reconfiguring the system to replace them with spares, or

gracefully degrading the system if no spares are available. Faults are

isolated to the LRU sub-unit level such as processor, memory, clock, I/O

port, and system bus line. Weak intersections of LRU's and buses, that

is, an LRU unable to transmit or receive on a particular bus line, are

also identified. Faults that do not persist long enough to be isolated

are handled by a transient fault analysis algorithm. Demerits are

assigned to all possible sources of a transient fault. The accumulated

demerits are then analyzed for statistical significance to locate the

source(s) of transient faults. In addition to on-demand FDIR (Fault

Detection, Isolation and Recovery) the configuration controller period-

ically checks critical hardware elements using self-test programs.

Examples of such items are voters and error latches. Spare sub-units are

also constantly cycled into active state to ascertain their integrity.
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These include processors, system memory units, fault-tolerant clock

elements, I/O ports, and system bus lines.

The third element of the Executive software is the bootstrap/

restart program. This program is responsible for bootstrapping the FTMP

when the system is "cold", that is the system memory has not been ini-

tialized. In the cold start case, the system memory is initialized using

an external device such as a cassette tape on a 1553 remote terminal. The

bootstrap program itself is resident in the cache PROM of each processor

unit. The restart program is also responsible for restoring the system to

a correct operational state after a power interruption. In this case the

system memory is already loaded with all the programs, data, and the

pre-power interrupt system configuration. The FTMP is brought up to this

configuration and all the relevant data bases such as task queues for the

dispatcher are re-initialized.

The fourth element of the Executive is the cache memory manage-

ment. The cache RAM in each processor unit is only 8k words, while the

total amount of data and programs in the system memory can be much

larger. Therefore some method is necessary to page programs/data in and

out of the cache. This is accomplished by an on-demand paging algorithm

that reads the required page of data/program from the system memory into

a cache page. The cache page is chosen on a round-robin basis.

The last element of the Executive is really a hardware enhancement

function. The CAPS-6 processor does not have vectored interrupts. This

function is now provided in the software. That is, all interrupts are

vectored to their respective interrupt handling routines through the

Executive software.
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CHAPTER 4

RELIABILITYAND AVAILABILITYMODELS

The reliability and availability requirements of the FTMP are

extremely severe due to the intended life-critical application of the

multiprocessor. The desired catastrophic failure probability is less

than 10-9• The preferred maintenance interval is of the order of 200

to 300 flight hours and the likelihood of requiring unscheduled mainte-

nance during this period is to be at most a few percent.

The FTMP architecture to meet these stringent goals has evolved

over a period of time, and reliability modeling has played an important

role in it. Modeling tools were used at various stages to evaluate

alternate architectures and provide feedback in deciding upon degree of

redundancy for various components and revealing any other weaknesses in

chosen architectures from the viewpoint of meeting reliability and avail-

ability goals. An ideal arrangement of elements so arrived at was

modified slightly by the reality of packaging constraints.

The modeling effort concentrated on random hardware failures. It

did not address other classes of faults such as design faults, execution

errors and generic faults, either hardware or software.

The following two sections summarize the results of that effort.

25



4.I Survival Probability Models

The computation of survival probability of the FTMP for random

failures is divided into the following three submodels:

1) probability of failure due to the lack of perfect coverage

using a Markov process model;

2) probability of failure due to exhaustion of spares using a

combinatorial model;

3) probability of failure due to BGU failures in enable mode

using a combinatorial model.

In the FTMP some time is required to detect, isolate, and recover

from any failure. During this time a second failure may arrive in such a

place as to be catastrophic. Therefore, the coverage is imperfect. This

phenomenon is most conveniently modeled using a Markov model. The proba-

bility of failure due solely to exhaustion of equipment can be computed

independently using combinatorial methods. In addition to these, there

is a third failure mode peculiar to the FTMP architecture, which relates

to bus guardian unit (BGU) failures.

The results of the three models are shown in Figure 4. Time

taken by FTMP to recover from a fault is ass_ed to be exponentially

distributed with a mean value of 250 milliseconds. Component failures

are assumed to be of constant hazard type with the mean time between

failures for an LRU equal to 2,610 hours. This LRU MTBF is derived from

failure rates estimated for 18 LRU subunits.

The system failure probability due to near simultaneous occurrence

of multiple faults is seen to dominate the mission time of interest, that
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is, 0 to I0 hours. During this time period the likelihood that the

system will fail catastrophically Increases linearly with time. At one

hour it is found to be 2x10-I0 and at I0 hours it is 2x10-9.

4.2 Dispatch Reliability of the FTMP Computer

Availability of equipment, in general, is an important concern in

the commercial air transport industry. Availability of avionics equip-

ment, in particular, is more important for a central computer with

digital "fly-by-wlre" authority. It is imperative, therefore, that the

dispatch reliability of the FTMP computer be commensurate with its high

survival probability. A preliminary estimate of the dispatch reliability

is summarized here.

Let the "dispatch minimum complement" (DMC) denote the amount of

equipment (processors, memories, etc.) necessary to be operational before

take-off so that flight reliability will still meet goals for a ten-hour

flight. As long as the amount of operational equipment in-flight does

not fall below the "critical minimum complement" (CMC), the system is

said to be successful. The CMC is the amount of equipment necessary to

perform all the fllght-crltlcal functions. The CMC was estimated to be

two processor triads, a memory triad, a bus triad and one power supply.

In the critical minimum configuration, a triad need have only two

operating members to work correctly. The DMC was found to be as follows

[41:

28



Dispatch Minimum Critical Minimum
Complement Complement

Processors 8 5
Memories 6 2
Buses 4 2
Power Supplies 3 I

The question to be answered at this point is, how long would it

take an initially fully operational FTMP to degrade below the DMC and

thereby fail the dispatch criteria? The probability of this event at

time t, assuming no maintenance, is shown as a function of time in Figure

5. It is seen from this figure that there is a seven percent chance that

the computer will be below the dispatch minimums if the maintenance is

scheduled every 300 hours. The probability of requiring unscheduled

maintenance can be reduced to just over two percent by carrying an extra

LRU or by shortening the maintenance interval to 200 hours.
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CHAPTER 5

THROUGHPUT AND RESPONSE TIME PERFORMANCE

The real-time, life-critical applications for which FTMP is

designed not only place severe reliability requirements on the computer

but also demand quick response and adequate throughput to handle all the

critical tasks in a timely fashion. Performance of the multiprocessor

was modeled using GPSS (a general purpose modeling language) before the

computer was built. This model did not reveal any weaknesses or inade-

quacies in the expected performance of the machine. However, once the

actual hardware was programmed to run the executive and typical flight

control programs, the actual performance was somewhat short of the

desired goal. As it turned out, a critical bottleneck, unforeseen of

course, was left out from the model. The bottleneck became quite appar-

ent with the hands-on experience of programming and using the system.

Pleasantly, at the same time, a number of advantages of the FTMP archi-

tecture were also revealed. These two sides of the FTMP are briefly

discussed next.

The initial performance goal was to have enough throughput to

support execution of flight control, navigation and guidance, air data

displays, and other on-board systems management tasks. It was hoped that
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some of these tasks would be able to run at as high as 40Hz with other

tasks executing at lower frequencies such as 20, 10, and 5 Hz. The

present version of the executive supports three rate group tasks running

at 25, 12.5, and 3.125 Hz. Additionally, the current application work

load is less than the intended levels. This shortfall in the multipro-

cessor throughput performance can be traced to a single bottleneck

relating to system bus access.

Presently, to access any device attached to the system such as

shared memory, I/O port, error latches, configuration control registers

and so on, it is necessary to load four registers. This is done by an

assembly language level subroutine and takes up to 80 microseconds for

each bus access. This is just the set-up time and does not include the

data transaction time itself. Given the large number of bus transac-

tions, this set-up time alone accounts for a third of all time spent by

the highest frequency task dispatcher. This bottleneck was not ade-

quately recognized at the outset.

However, there is a way to solve this problem. It is possible to

microcode system bus access routines. Adequate storage is available in

the CAPS-6 mlcrocode memory to add these instructions. If this step were

taken, the system bus access set-up time could be reduced from 80 to

about 10 microseconds. Over 50 Hz frequencies for highest rate group

tasks and proportionately higher frequencies for lower rate group tasks

as well could be easily achieved.

On the plus side, the FTMP architecture allows one to achieve a

relatively high level of 'useful' throughput for a given amount of raw
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machine throughput. The useful throughput is defined here as the effec-

tive machine use available to the user or applications programmer. This

is the same as the total raw throughput less that used by the executive

software for managing and allocating system resources, contending with

system malfunctions, and managing system redundancy.

The real-time malfunction management in the FTMP is done extremely

efficiently in hardware. The microsecond to microsecond masking of

erroneous data is performed by hardware-implemented majority voters.

Hardware also provides immediate symptoms of faults by latching disagree-

ments between voter inputs in error registers. Correlating error symp-

toms to determine the identity of the faulty module is done in software

as are the system reconfiguration algorithms following fault identifica-

tion. This division of labor between hardware and software gives FTMP a

tremendous performance advantage over software-intensive fault-tolerant

systems. Error detection and masking must be performed on all redundant

data and this imposes a load that is proportional to the number of words

as well as frequencies at which they are read. In the FTMP, a majority

vote on three copies of a data word is taken in a few microseconds while

the same task in software would at least take many tens of microseconds.

So the load on the latter system is roughly ten to a hundred times

higher. The fault identification and system reconfiguration tasks which

are not time critical are performed in software. These tasks are tOO

complex to be implemented in hardware and since they are seldom executed,

they place a negligible load on the system. Note that hardware voting

maintains system integrity in the face of a fault and that the config-
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uration control can therefore proceed with some leisure to effect the

repair.

The bit-by-bit error detection and masking done by hardware in the

FTMP is possible due to the tight synchronization of parallel computa-

tional channels. The tightly synchronous architecture was originally

selected and pursued for its elegance and simplicity in handling fault

detection and identification. By having parallel computers perform

identical operations on identical data, one can expect them to produce

outputs which also match each other bit for bit. Any disagreements not

only indicate a fault but also reveal the identity of the faulty unit

immediately. This makes the fault detection and identification task and

the error masking task much less complex. (The parallel-hybrid redun-

dancy employed in FTMP makes fault identification slightly more compli-

cated. ) These advantages of the FTMP architecture were known at the

outset. What was not appreciated fully at the time was the performance

gain realized by hardware error correction and the transparency of these

functions to the software. This is explained in the following.

Midway through the program it became apparent that the number of

words passing through voter functions had been severely underestimated

and would increase considerably due to 'simplex source congruency '

requirements. This requirement may be defined as the identical distri-

bution of data obtained from a simplex source (internal or external to

the computer) to redundant processing or memory elements. In the absence

of source congruency even redundant systems can suffer single point

catastrophic failure. In the FTMP, source congruency is simply accom-
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plished by having the processor triad write the word to shared memory

(where each memory module receives three copies of the word, votes upon

it, and then stores it) and reading it back from the memory. Had the

voters been implemented in software and the processors only loosely

synchronized, the burden of source congruency for a reasonable I/O

loading would probably be unbearable.

Last, but not least, there are many features of the FTMP which

make it very attractive and appealing from a user's viewpoint. The

software appearance of the machine is such that the applications program-

mer is not aware of the hardware redundancy underlying each element. It

is as if one had an extremely reliable simplex multiprocessor. From a

user's viewpoint the FTMP architecture is that of a conventional multi-

processor. As a testament to this simplicity, the flight control soft-

ware running on the FTMP was written by someone totally unfamiliar with

the intricacies of the redundancy underlying the processor, memory, and

bus structure.

Complexities of the FTMP architecture are not only transparent to

the user under normal circumstances but also when there is a hardware

malfunction. Fault detection, diagnosis, and recovery is such that

applications programs do not need to be involved in this process. There

are no program rollback requirements, no checkpoints or other constraints

imposed upon the user for the sake of fault tolerance.

All of these comments apply to most of the Executive software as

well. That is, with the exception of the configuration control software
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the Executive is unaware of the hardware redundancy and is not involved

in fault handling.

This implies that applications programs and most of the executive

can be written and debugged quite early on a simplex version of the

machine. In fact, all software for the FTMP was written and debugged

using only a single simplex processor. No facility was even available to

deP_Igsoftware in triplex operation.

Since hardware costs much less than software and the gap is likely

to continue to become wider, any feature of the architecture that simpli-

fies software requirements has a proportionately positive impact on the

cost as well.

All of these advantages add up to make the FTMP a more 'usable'

computer.
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CHAPTER 6

TEST AND EVALUATION EXPERIMENTS

Reliability and availability models of the FTMP and their results

were presented in Chapter 3 of this report. Assumptions underlying these

models concerning failure and recovery rates of the FTMP were briefly

mentioned there. To verify these and other assumed characteristics of

the FTMP implicit in the modeling process, a series of test and evalua-

,0
tion experlments were undertaken. In these experiments the FTMP was

subjected to numerous artificially created faults while operating

routinely in a simulated aircraft environment, and its response in each

case was observed and recorded. Other factors that motivated FTMP test

and evaluation were expanding its validation envelope, building confi-

dence in the system, revealing any weaknesses in the architectural

concepts and/or their realization in hardware and software, and a general

stressing and shaking out of the fault detection hardware and the fault

identification and system configuration control software.

Towards this end a total of 21,055 pin level stuck-at class of

faults were injected into one LRU of the FTMP, and in each case time to

detect the fault, to isolate the fault to processor, memory, or bus, and

to remove the faulty module by reconfiguring the system were recorded.
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The FTMP executed the normal repertoire of system and applications

software while being subjected to faults. This included the operating

system, self-test programs, displays and flight control. The flight

control program operated with dummy inputs obtained from the 1553 Remote

Terminals since the actual aircraft simulation was not operational during

fault injections. Faults were injected using a Draper-designed and

built fault injection device which was controlled by a PDP-11/60 support

computer. The process of fault injection was highly automated with the

fault injection software maintaining closed loop control of the FTMP

status through 1553 based communication with the configuration control

program. The results are summarized next.

A total of 21,055 pin level faults were injected into the FTMP.

Of these, 17418, or 83 percent, were detected. Of the 3,637 undetected

faults at least 80 percent were estimated to be on unused gates and

pins. A few of the remaining undetected faults were analyzed and found

to belong to the 'don't care' class. Further analysis of undetected

faults is required to arrive at a definitive detection coverage value.

Identification and reconfiquration coverages, on the other hand, were

found to be perfect. The system identified all detected faults correctly

and successfully recovered in each case.

The total time to recover from a fault was dominated by time spent

in the detection phase. Time to identify a fault and reconfigure the

system was found to be deterministic and bounded, as expected. Average

identification and reconfiguration times were found to be 88 and 82
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milliseconds, respectively. Total recovery time averaged over all 17,418

(detected) faults was found to be 1.16 second although it would be only

549 milliseconds if BGU faults were excluded. In the absence of BGU

self-test programs, which was the case here, BGU faults were solely

uncovered by very low frequency routine system reconfigurations. BGU

diagnostics are straightforward to code but were left out due to limited

time and resources.

The FTMP reliability models described in Chapter 4 assumed an

average recovery time of 250 msec. The experimentally determined average

(assuming BGU diagnostics) is about twice as long. This would increase

the FTMP failure probability by a factor by two over the analytically

derived value.

The distribution of the total recovery time, though not exponen-

tial, was found to be favorably skewed. Over 95 percent of all faults

are recovered from in a second or less. Figures 6 and 7 show this

distribution on two different time scales. The 119 second maximum

recovery time was for BGU faults which were detected by slow system

reconfiguration. Assuming BGU diagnostic programs were coded for the

FTMP, the maximum recovery times would be of the order of several seconds

rather than a hundred seconds. This would make the tail of the distribu-

tion very short. An exponential distribution has an infinitely long

tai!. Hence, the experimentally determined fault recovery distribution

for the FTMP is thought to be more favorably skewed than an exponential

distribution.
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The test and evaluation experiments did uncover a serious omission

in the FTMP Engineering Model. The Bus Gaurdian Units were found to have

no overvoltage protection. Although an overvoltage protection mechanism

was specified for BGUs, it was not built into the hardware. This is dis-

cussed in more detail in Volume III. In any case, it is not difficult to

add such a circuit on the BGU cards.

In addition to this hard data, a number of very important though

intangible results were obtained as well. The hardware and software, in

general, and the fault detection hardware and the fault identification

and system configuration control software, in particular, performed

extremely well under the stress of thousands of faults. In a sense the

FTMP architecture, the hardware, and the software have been validated

informally.

The test and evaluation experiments, their positive results, and

the 100 percent availability of the FTMP during 13,000 hours of routine

operation at the Draper Laboratory have all substantially bolstered con-

fidence in the FTMP concept as well as its realization in hardware and

software.
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CHAPTER 7

CONCL US IONS

The FTMP project has been a multi-year technology development.

The immediate focus was the demonstration of a concept for providing

generalized fault-tolerant computing for future transport aircraft. It

became clear during the course of this project that such a concept is

feasible. It also became clear that computing technology is a very broad

and swiftly moving field and that if fault-tolerant computing is to

mature it must mature in reasonable harmony with companion developments.

Fault-tolerant computing must therefore provide the throughput, perform-

ance, operating systems, and software environment of mainstream comput-

ing. A fault-tolerant machine must be as usable as any state-of-the-art

machine. Toward this end it must emulate or duplicate virtually all of

the widely accepted and desirable features of state-of-the-art, non-

fault-tolerant, general purpose machines. To suggest that fault-tolerant

computing can grow without acceptance of the bulk of experience and

practice from other computing technologies is arrogant, naive, and

errant.

The FTMP architecture sought to provide a software environment

which was equivalent to that of a general purpose homogeneous multipro-
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cessor. The choice of a multiprocessor was dictated by throughput

requirements. In this regard the machine architecture mimics the archi-

tecture of state-of-the-art multiprocessor configurations. The use of

tightly synchronized parallel computation paths in all components of the

multiprocessor created a software environment which was identical to that

of a non-redundant multiprocessor of equivalent throughput. Hardware

synchronization and voting techniques were provided to manage all of the

moment to moment error masking and error correction independently of the

software.

The operating system of the FTMP, as a result, is quite ordinary.

The structure, coding, and organization of the operating system is almost

a textbook example of ,a 'simple' multiprocessor executive, as might be

covered in an undergraduate computer science course. The simplicity and

efficiency of the executive were dictated not by requirements related to

fault tolerance but by the time criticality and throughput requirements

of the real-time nature of the FTMP applications set. That the FTMP

executive is so ordinary was a significant achievement of this project.

The applications code of the FTMP similarly benefited from the

software environment. All applications were coded and run as if they

were being executed on a non-redundant multiprocessor. The organization

of such code is unencumbered by the fault tolerance of the machine. The

FTMP applications code organization is thought to be reasonably represen-

tative of that which might have been employed in real life, and was

adequate to demonstrate closed loop control of a simulated aircraft in

the CSDL Simulation Facility. This code probably represents a somewhat
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idealized and sophomoric view of aircraft control and its complexity, but

the significant factor is that it is structured solely to address the

designer's perception of the real-time control problem and is not back-

ward engineered to meet an artificial or unnatural environment created by

a fault-tolerant architecture. An alternate structure could have been

demonstrated with equal ease, the chosen structure being an example.

The unique piece of software, the code which is linked to this

architecture and this implementation, is the configuration control

program. The FTMP employs dynamic redundancy to achieve its high degree

of reliability. Failed components are eventually replaced with spares

and hardware voting maintains system integrity until the repair is

effected. This process of reliability renewal or repair is directed by

software, embodied in the configuration control program. The complexity

of this configuration control was modest and well within the grasp of one

programmer.

Cast in the light of a systems problem, the FTMP can be seen as

problem oriented. The machine is a multiprocessor because it was felt

the problem demanded a multiprocessor. A standard executive structure

was chosen because it met the problem needs and was fairly well under-

stood. Applications code was developed as an example. The total design

hides fault tolerance at a lower implementation level, separate and

partitioned from the system problem. The techniques and technology which

enabled this partitioning proved to be tractable and successful. Over

" 20,000 faults injected during the test phase demonstrate this success.

Newer versions of the FTMP would no doubt benefit from this experience
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base and provide even greater performance and a richer I/O environment.

Additionally, the technology is available to provide the same degree of

transparency for alternate architectures, single processor systems, or

attached processor systems, for example.

The success of the FTMP was that it shows that problem-oriented

solutions can be _%de fault tolerant and that the fault tolerance can be

hidden such that advances in operating systems, languages, instruction

sets, and applications code structures can be capitalized on and used.
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