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AN ADAPTIVE FINITE ELEMENT METHOD FOR HIGH SPEED COMPRESS{BLE FLOW
R. Lohner, K. Morgan ard 0.C. Zienkiewicz

Institute for Numerical Methods in Engineering, University College of Swansca,
Singleton Park, Swansea SA2 8PP, U.K.

Qur aim is to solve large 2/3-D compressible fluid flow problems emplrying
finite elements. Other numerical techniques, like finite differerce or finite
volume methods have reached a high degree of sophistication [1,2], but it is ex-
pecte, that the finite element method will make significant contributions due to its
geometrical flexibility, a factor that is of importance for industrial applications.

The devzlopment has so far gone through the following stages:
(a) Definition of the basic algorithm: in order to be competitive, znd at the same
time to model correctly the physical properries of hyperboi « equations, it was
decided to employ explicit time-marching schemes. As the straightforward Galerkin
method is suboptimal [3], a-nodified or 'upwinded' Taylor Galerkin-type [4] pro-
cedure was implemented. The complete description may be found in [5], together
with numerical examples. This one-step algorithm has now been superseded by an
equivclent two-step method, the description of which inay be found in [6]. This
two-step scheme is 2-3 times faster than the one-step scheme on scalar machincs
(for two-dimensional problems) and has been vectorized in order to realise the full
power of mudern supercomputers.
{b) Lomain splitting: it is well known that solutions of high speed compressible
flow probiems exhibit narrow regions of rapid change (e.g. shocks) which are em-
bedded in larger regiors where the solution is smooth. Accordingly, large vari-
ations in element 53z are expected in typical discretizations. However, the
small elements migh” then require that a correspondingly small global timestep
co1d be employed in larger elements. The remedy adopted here, and described in
det. il in [7), is to split the domain into regions in which different timestep-
sizes can be used. The domain subdivision is performed completely automatically
by the computer code at prescribed time.intervals, and allows a time-accurate dev-
elopment of the unsteady solution.

(c) Adaptive mesh refinement: 1in general, an analyst will have no a priori know-

ledge of the location of those areas of the domain where more (i.e. smaller) el-
ements should be employed. Therefore, usually, much more elements than necessary
will be employed, leading to an inefficient overall procedure. An ideal comput-
ational algorithm would require the abiliiy to refine the mesh where necessary as
the solution proceeds. The geometric flexibility of the linear triangular el-
ement makes it ideally suited for refinement processes of this type. We adopted a
posteriori methods [8), as they seem at present more economical, and for th. ame

rcason also did not implement hierarchical techniques [9), but the more classic
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enrichment of adding more elements. At present we are only considering steady
state problems, the generalization to transient problems being an obvious extension.
This means, that the timestepping scheme is utilized as a relaxation procedure.
After a given number of timesteps the solution domain is analysed, and more el-
ements are added vhere necessary. Generally speaking, there exist three poss-

ibilities for approximately determining the error

e=u-u (1)
h < :
where u denotes the exact and u the discrete solution:

i) Comparison with higher order schemes: The significant derivatives of the

partial differential equation (PDE) under consideration are evaluated twice, using
in each case dif“zrence schemes of different order [10,11,12]. By determining

the discrepancy of both approximations an estimation of the error can then be ob-
tained. The problem with this kind of approach is that it fails near boundaries
and at singularities or bounuary layers (which are commcn in fluid dynamic prob-
lems). At the same time it is not extendable to FEMs, which operate on an element
level.

ii) Determination of the relativ~ importance of further degrees of freedom:

Further degrees of freedom are introduced on an element by element oasis, and the
relative importance of these further degrees gives an error estimate [13,14,15).
The problem with this kind of approach is that it is relatively expensive in CPU-
time requirements, so that for transient nroblems a considerable percentage of run-
time vill be spent on error estimat.on.

1ii) Use of error norms: Here *the classic theoretical error estimates are employed

locally [16,17]). Thus, no further degrees of freedom are introduced and only
first or second derivatives need to be evaiuated. Our experience indicates that
this type of error indicator works satisfactorily, and, as it is very economiéal,
it is regarded as a good algorithm for transient problems as well. For elliptic
problems the appropriate error norms appear naturally whereas for hyperbclic prob-

lems the theory is far from complete. Nevertheless one can assume

h -k
lu - v Ik <ch Iull, (2)
where h is a representative element length. Using the L,-norm (k=0) yields
h 2
- <
Ju-wu |° ch |u|l. 3)

The aim of any refinement is to obtain a reduction of errors according to some
criterion, e.g. at a certain point, surface or evenly throughout the field. Par-
ticularly for hyperbolic problems the error at one point may influence the accuracy
cf the solution in the whole field (e.g. the root of an expansion fan), so that an

even distribution of errors seems to be the only possible practical choice.

. . - R D S SEeh et it i d -- ——

\ -y,



L 4]

-t —

“h

Therefore, at eazh refinement level all elements satisfying

hliul >a maxht lu] (@)
L L

e=1 nelem
are refined. Since the exact soluticn wuw is unknown, the practical requirement

becomes

L (5)
e=1,nelem

Only the cases £=1 or =2 appear to te of practical interest, and both have been
studied (ses examples). For the case £=2 the first derivatives of u are evaluited
inside the elements, and hereafter the nodal values for the second darivatives are
recovered variationally as follows:

Jn‘n’dvﬁ} --]n‘n“dv?.',‘ . (6)

xx x

vhere Hk is constant and ;:; is defined on an element basis. It has been found

that a-values of the order

a=0.6-0.9 (¢))
yield the most effective refinement strategy. This is in contrast to [13), where
tne factor a = V.1 was reported as optimal. A possible explanation for the dis-
crepancy of these values may be found in the nature of the PDEs treated in both
cases: whereas here the PDEs are hyperbolic - and this means th-t small disturb-
ances propagate far into the field - , in [12] the effective solution of elliptic

PDEs was pursued - and this means that sma2ll disturbances decay rapidly.

Results

(a) Supersonic flow past a wedge: the successive stages of the domain discretiz-

ation as well as the solution obtained are shown in figure 1 . In this case the
mesh was enriched according to equation (5) with %=1 znd a<0.6.

(b) Prandtl-Meyer expansion fan: the problem statement, as well as the successive

stages of the domain discretization and the corresponding solutions arz depicted
in figure 2. The improvement in solution quality is readily seen. 1In this

case the mesh was enriched according to equation (5) wi.'. £=2 and a=0.8.

Acknowledgement

The authors would like to thank the Aerothermal Loads Branch of the NASA
Langley Research Center for supporting this research under Grant Nr.NAGW-478,
and especially A.R. Wieting and K.S. Bey for their continued interest and en-

couragement .

e - = q1*

AR



B A

- ”

R
‘

ORIGINAL PAGE
References QF POOR QUAL'"

1. P. Woodward and P. Cclella, J. Comp. Phys. 54, 115173 (1984).
2. A. Jamesor, J. Appl. Mech. 50, 1052-1070 (1983). \
3. K.W. Morton and A.K. Parrott, J. Cowp. Phys. 36, 269-270 (1980).
&. J. Donea, Int. J. Num. Meth. Eng. 20, 101-120 (1984).
5. R. Lohner, K. Morgan and 0.C. Zienkiewicz, Int. J. Num. Meth. Fluids (1984)
(to appear).
6. 0.C. Zienkiewicz, R. Lohner and K. Morgan, Proc. MAFELAP-V Conf., May 1984

Rl Y

(to appear).

7. R. Lohner, I.. Morgan and 0.C. Zienkiewicz, Comp. Meth. Appl. Mech. Eng.
1984 (to appear).

8. J.T. Oden, TICOM Rep. 1983.

9. 0.C. Zienkiewicz, J.P. de S.R. Gago and D.W. Kelly, J. Comp. Struct. 16,
53-65 (1983).

10. W. Schonaver, K. Raith and K. Glotz, Comp. Meth. Appl. Mech. Eng. 28, 327-359
(1981).

11. 1. Babuska, personal communication.

12. A. Brandt, ICASE-Rep. 79-19 (1979).

13. A. Peano, M. Fanelli, R. Riccioni and L. Sardella, in Proc. Conf. Num. Meth.
Fract. Mech., Swansea (1979).

14. 0.C. Zienkiewicz and A.W. Craig, in Adaptive Comp. Methods for PDE's
(I.- Babuska et al. eds.), SIAM (1983).

15. A.4. Craig, J.Z. Zhu and 0.C. Zienkiewicz, Proc. MAFELAP-V Conf., May 1984
* (to appear).

16. A.R. Diaz, N. Kikuchi and J.E. Taylor, Comp. Meth. Appl. Mech. Eng. 1584
(to appear).

17. R. Lohner, Ph.D. Thesis, Univ. of Wales, 1984.

B o aP ‘
P v
=
7

%




L

47 1’77"57-7 | 77 /’V]

STER 1w SIS

» s wmewese e
¥ 3432323

»TER 1 STERS

> o seeees =
2 s Ryazx3z 3

14
IS

AFTER 175 STEPS METER 175 STEPS
QmE ™ {3

.
e e
T
Sy
AFTER 198 STEPS AFTER 190 STEPS
PRESSURT

e
8
pfl 4
My St 7
g
ATTEG 298 §1FS VIR 208 STEPS
PR TR

S ORIGINAL PAGE i
LSHVC.
g OF POOR QUALITY

N
N

i dn 2o el %
i ‘.‘ ~“$‘) TE TGS W
B ks 2
L3 Eat
=y s
i B
S



	GeneralDisclaimer.pdf
	0075A02.pdf
	0075A03.pdf
	0075A04.pdf
	0075A05.pdf
	0075A06.pdf
	0075A07.pdf
	0075A08.pdf

