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	 institute for Numerical Methods it, Engineering, University College of Swansea,

Singleton Park, Swansea SA2 OPP, U.K.

Our aim is to solve large 2/3-D compressible fluid flow problems employing

finite e;ements.	 Other num«rical techniques, like finite differerce or finite

volume methods have reached a high degree of sophistication 11,21, but it is ex-

pecrej that the finite element method will make significant contributions due to its

ge,metrical flexibility, a factor that is of importance for industrial applications.

The development has so far gone through the following stages:

(a) Definition of the basic algorithm: in order to be competitive, end at the same

time to nodel correctly the physical properties of hyperboi'c equations, it was

decided to employ explicit time-marching schemes. 	 As the straightforward Galerkin

method is suboptimal [31, a modified or 'upwinded' Taylor Galerkin-type (41 pro-

cedure was implemented.	 The complete description may be found in [51, together

with numerica l examples.	 This one-step algorithm has now been superseded by an

equiv,.lent two-step methoc, the description of which ,a °y be found in i61.	 This

two-step scheme is 2-3 times faster than the one-step scheme on scalar machin,s

(for two-dimensional problems) and has been vectovized in order to realise the full

power of modern supercomputers.

;b) Domain splitting: it is well known that solutions of high speed compressible

flow problems exhibit narrow regions of rapid change (e.g. shocks) which are em-

bedded in larger regit,r^ where the solution is smooth. 	 Accordingly, large vari-

ations in element siz.- are expected in typical discretizations. 	 However, the

small elements migh t. then require that a correspondingly small global timestep

co Id be employed in larger elements.	 The remedy adopted here, and described in

det.il in 17j, is to split the domain into regions in which different timestep-

sizes can be used. The domain subdivision is performed completely automatically

by the computer coie at prescribed time.intervals, and allows a time-accurate dev-

elopment of the unsteady solution.

(c) Adaptive mesh refinement: in general, an analyst will have no a priori know-

ledge of the location of those areas of the domain where more (i.e. smaller) el-

Pments should be employed.	 Therefore, usually, much more elements than necessary

will be employed, leading to an inefficient overall procedure. 	 An ideal comput-

ational algorithm would require the ability to refine the mesh where necessary as

the solution proceeds.	 The geormtric flexibility of the linear triangular el-

ement makes it ideally suited for refinement processes of this type. We adopted a

posteriori methods [8), as they seem at present more economical, and for th, dine

reason also did not implement hierarchical techniques 191, but the more classic
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enrichment	 of adding more elements.	 At present we are only consieerina steady

state problems.	 the generalization to transient problems being an obvious extensior.

this means,	 that	 the timestepping scheme is utilized as a relaxation procedure.

After a given number of tirsesteps the solution domain is analysed, 	 and tame el-

ements are added where necessary. 	 Centrally speaking,	 there exist three puss-

' ibilities for approximately determining the error

e	 - u - u 	 (1)

where u Oenotes the exat •	and uh the discrete solution:

i) Comparison with higher or0cr 	 schemes:	 The significant derivatives of the

partial	 differential	 equation	 ( PDE)	 under consideration are evaluated twice. using

in each case dif`>rrnce schemes of 	 different order	 ] 10,11,12].	 By determining

the discrepancv of both approximations an estimation of 	 the error can then be ob-

tained _ 	The proble :^_ with this kind of approach is that	 it	 fails near boundaries

-' and at	 singularities or boun.. y la yers (which are commcn in fluid dynamic prob-

lems).	 At	 the same	 time	 it	 is not	 extendable to FE s, which operate on an element

level.

Determination of	 the	 relat.iv•,	 importance of	 further degrees of	 freedom:

Further degrees of freedom are	 introduced on an element by element oasis, at.d the

relative	 importance of	 these further degrees gives an error estimate 	 113,14,151.

The problem with this kind of apprcach is that 	 it is relatively expensive in CPU-

time requirements,	 so that	 for transient p roblems a considerable percentage of run-

time ! w ill be	 spent on error estimation.

iii)	 Use of error norms:	 Here the C assic	 theoretical error estimates are employed

locally	 116,17).	 Thus,	 no	 further degrees of	 freedom are	 introduced and only

first or second derivatives need to be evaluated.	 Our experience indicates	 chat

this type of error	 indicator works	 sati s factorily,	 and,	 as	 it	 is very economical,

it	 is regarded as a good algorithm for	 transient	 problems as well.	 For elliptic

problems the appropriate error norms appear naturally whereas for hyperbolic prob-

lems the theory is far	 from complete.	 Nevertheless one can assume

I1 u 	-
	

u 
h 

I < c 
hR-kWE.	

(2)
k

where h	 is a	 representative element	 length.	 Using the L 2 -norm	 (k=0)	 yields

lu	 -	 u h l o <	
c h'I.1V	

(3)

The aim of any refinement	 is to obtain a reduction of errors according to some

criterion,	 e.g.	 at a certain point,	 surface or evenly	 throughout	 the field.	 Par-

Ì titularly for hyperbolic problems	 the error at one point may 	 influence the accuracy

et	 the	 solution	 in the whole	 field	 (e.g.	 the	 root	 of	 an expansion	 fan),	 so	 that	 an

even distribution of errors	 seems	 to be	 the only possible	 practical	 choice.
t
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Therefore, at	 each refinement level	 all elements satisfyingt

h t M	 i a	 max h ! Iul	 (^)

1	 1e- I,nelen

are refined.	 Sinre the e y act	 solution	 u	 is unknuvn,	 the practical	 requirement

becooes

h E juh i	 > a	 max	 h t	 luh I	 .	 (5)

e-l,nelem	 1

Only	 the cases	 1-1	 or 1-2 appear	 to to of practical	 interest,	 and bot'a have been

studied	 (sea examples).	 For the case 1-2 the	 first derivatives of a are ev;llulted

inside the elements, and hereafter the nodal vnl.les for the >econd d>rivatives are

recovered variationally as

(

 follows:

j N 	 Nj dV u;	 - -	 Ni Mk dV uk	 (6)
xx	 x

J

where Mk is constant and u;`	 is defined on an element basis. 	 It has been found
x

that	 a-values of	 the order

a	 - 0.6 - 0.9	 (7)

yield	 the most	 effective refinement strategy. 	 This	 is in contrast to	 1131, where

the factor a - 0.1 was reported as optimal. 	 A. possible explanation for the dis-

crepancy of these values may be found	 in the nature of the PDEs created in both

cases:	 whereas here the PDEs are hyperbolic - and this means th-t small disturb-

ances	 propagate	 far	 into	 the	 field -	 ,	 in	 (12)	 the effective	 solution of	 elliptic

PDEs was pursued - and this means that 	 small disturbances decay rapidly.

Results

(a)	 Supersonic	 flow past a wedge: 	 the	 successive stages of	 the domain discretiz-

atiun as well	 as	 the	 solution obtained are	 shown in	 figr . re	 1	 I	 In this case the

mesh was enriched according to equation 	 (5)	 with 1-1	 snd a-0.6.

(b)	 Prandtl-Mever expansion fan:	 the problera statement, 	 as well as	 the	 successive

stages of	 the domain discretization and 	 the corresponding solutrons ar? depicted

in	 figure	 2.	 The	 improvement	 in solution quality	 is readily seen.	 In this

case	 the mesh was enriched according to equation	 ( 5)	 wit', 1-2	 and a-0.8.
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