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ABSTRACT 

Much can be learned about t h e  morphology of the small-scale s t ruc tu re  of 
t he  atmosphere from ana lys i s  of echoes observed by MST radars. The use of phys- 
i c a l  models enables a synthesis  of diverse observations. Each model contains an 
impl i c i t  assumption about the nature of the i r r e g u l a r i t y  s t ruc tu re  of the me- 
dium. 
e r a l  models and what i s  known about the s t ruc tu re  of the medium. 

A comparison i s  made between the i r r e g u l a r i t y  s t ruc tu re  implici t  i n  sev- 

INrnODUCTION 

Much has been wri t ten i n  the past f i v e  years about the sca t t e r ing  and re- 
f l e c t i o n  mechanisms responsible f o r  the echoes observed by MST radar (GAGE and 
BALSLEY, 1980; ROTTGER, 1980). A t  UHF it  i s  f a i r l y  widely accepted t h a t  echoes 
arise from turbulent i r r e g u l a r i t i e s  i n  the radio r e f r a c t i v e  index. 
VHF, echoes from s t a b l e  regions of the atmosphere are very anisotropic  and ap- 
pear t o  involve Fresnel s ca t t e r ing / r e f l ec t ion  as w e l l  as turbulent scat ter ing.  
While the specular nature of these echoes i s  widely recognized, there  i s  s t i l l  
no consensus as to  the de t a i l ed  mechanism responsible fo r  the echoes. 

A t  lower 

The occurrence of echoes from the c l ea r  atmosphere requires s t ruc tu re  i n  
t h e  medium a t  t h e  scale  of half  the wavelength of the probing wave. In  the case 
of turbulent s ca t t e r ing  t h i s  s t ruc tu re  i s  random and presumably associated with 
ac t ive  turbulence i n  the medium. I n  the case of Fresnel r e f l e c t i o n  or s ca t t e r -  
ing the medium possesses a coherent s t ruc tu re  a t  l e a s t  transverse t o  the probing 
beam. I n  both cases the character  of the observed echoes r evea l s  much about the 
s t ruc tu re  of the medium. 
made t o  "work backwards" and i n f e r  the s t ruc tu re  of the medium from radar 
observations. To resolve ambiguities and t o  va l ida t e  models precise,  high- 
resolut ion,  i n  s i t u  probing of the medium i s  required t o  supplanent radar obser- 
vations. 

Unfortunately, ambiguities a r i s e  when an attempt i s  

I n  t h i s  paper I consider the s t ructure  of the medium implici t  i n  diverse 
models fo r  the echoes observed by MST radars. 
s t ruc tu re  and comparing it with what i s  known about the s t ruc tu re  of the r e a l  
atmosphere and what has been learned from radar observations it i s  possible t o  
judge the r e a l i t y  of some of the proposed mechanisms. 

AN OVERVIEW OF ECHOING MECHANISMS 

By identifying the implici t  

A d ive r s i ty  of s ca t t e r ing  and r e f l e c t i o n  mechanisms appears t o  be 
responsible fo r  the echoes observed by radars operating i n  the lower VEF. 
attempt t o  understand these mechanisms as they per ta in  t o  the MST radar has 
motiviated a reexamination of the broader l i t e r a t u r e  on r ad io  propagation. 
Indeed, some of the long standing issues  i n  radio propagation a r e  brought i n t o  
sharp focus i n  the  attempt t o  understand the nature  of the echoes observed a t  
lower VHF. 
mechanisms : 

The 

I n  the following paragraphs I b r i e f l y  describe several  of the 
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(a)  I so t rop ic  Turbulent Scat ter ing 

Turbulent s ca t t e r ing  was proposed by BOOKER and GORDON (1950) to  explain 
the over-the-horizon propagation of UHF radio s ignals  i n  the lower atmosphere. 
It has a l s o  been widely accepted a s  the mechanism responsible f o r  most of the 
c l e a r  air echoes observed a t  UHF (EIARDY and KATZ, 1969) and the  oblique echoes 
observed a t  WF. 
r e f r a c t i v e  index t o  produce r e f r a c t i v i t y  turbulence a t  the sca l e  t o  which the 
radar i s  sens i t i ve  (OTTERSTEN , 1969). 

(b) Anisotropic Turbulent Scat ter  

The mechanism requires ac t ive  turbulence and gradients of 

While ac t ive  turbulence i s  supposed t o  be i so t rop ic  i n  the i n e r t i a l  range, 
a t  l a rge r  scales a c t i v e  turbulence must become anisotropic.  For r e f r a c t i v i t y  
turbulence a l l  t h a t  matters i s  t h a t  the co r re l a t ion  scales  which character ize  
the turbulence be different .  For a s t ab le  atmosphere t h i s  usually means t h a t  
the co r re l a t ion  dis tance i s  much less i n  the v e r t i c a l  than i n  the  horizontal .  
The anisotropy i n  the turbulence f i e l d  implies an angular dependence i n  the echo 
magnitude which resembles the observed va r i a t ion  (GAGE and BALSLEY, 1980; DOVIAK 
and ZRNIC', 1983). 

(c)  Fresnel Reflection 

Occasions arise, especial ly  i n  the s t a b l e  atmosphere, when coherent 
s t ruc tu re  i s  evident. This coherent s t ruc tu re  takes the form of s t a b l e  laminae 
which possess coherency over horizontal  distances comparable t o  a Fresnel zone. 
Reflections from sharp gradients of index of r e f r ac t ion  have long been thought 
t o  play a r o l e  i n  tropospheric radio propagation (DU CASTEL, 1966). Models of 
Fresnel r e f l ec t ion  are determinis t ic  and usually t r e a t  s ingle  layers  of spec i f i c  
shape. 
p a r t i a l  ref lect ion.  

(d) Diffuse Reflection 

The process of r e f l e c t i o n  from these layers  i s  o f t en  referred t o  as 

Conceptually, diffuse r e f l e c t i o n  is pert inent  to r e f l e c t i o n  from a surf ace 
which i s  rough compared t o  the probing wavelength. The mechanism is discussed 
by DU CASTEL (1966) as an important component of over-the-horizon tropospheric 
r ad io  propagation and by ROTTGER (1980) as an important mechanism for  lower W F  
radar  echoes. 

( e )  Fresnel Scat ter  

The concept of Fresnel s c a t t e r  was introduced t o  account fo r  t he  volume- 
f i l l i n g  aspect of the specular echoes observed by WF radar. 
proposed, the Fresnel s c a t t e r  model envisioned a coherent s t ruc tu re  along the  
beam (as w e l l  as across  the beam) t o  account for  the pulse-width square 
dependence apparent i n  ear ly  observations. 
typical ly  show a pulse-width dependence conf inning the volume-f i l l i n g  f ea tu re  
but not the coherency assumed along the beam. 
f ea tu res  of Fresnel r e f l e c t i o n  and can be thought t o  be comprised of the 
incoherent sum of p a r t i a l  r e f l ec t ions  from many t h i n  layers. 
i n  common with anisotropic  turbulence. 

As original ly  

Recent observations, howwer, more 

Fresnel s c a t t e r  has many of the 

It a l s o  has much 

Several of the mechanisms described above are i l l u s t r a t e d  i n  Figure 1. 
Each panel contains a schematic representat ion of the s t ruc tu re  i n  the p r o f i l e  
of radio r e f r a c t i v e  index along the radar beam. 
i l l u s t r a t e  the extent of coherency across the beau. 
i l l u s t r a t e s  a turbulent medium with much i r r e g u l a r i t y  s t ruc tu re  but no coherency 
across  the beam. 
which extend across  the beam as required f o r  Fresnel ref lect ion.  

Two pro f i l e s  are shown t o  
The left-most panel 

The  right-most panel i l l u s t r a t e s  a few d i sc re t e  t h i n  layers  
The middle 
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Figure 1. A r t i s t ' s  conception of atmospheric r e f r a c t i v i t y  
s t ruc tu re  per t inent  t o  i) i so t rop ic  turbulence s c a t t e r ,  
i i )  Fresnel s c a t t e r ,  i i i )  Fresnel r e f l ec t ion  ( a f t e r  GAGE 
and BALSLEY, 1981). 

panel shows a volume-filling i r r egu la r i ty  s t ruc tu re  which possesses coherency 
across  the bean. T h i s  s t ruc ture  i s  per t inent  t o  Fresnel sca t te r .  

THE MORPHOLOGY OF TURBULENCE I N  THE STABLY STRATIFIED ATMOSPHERE 

Turbulence has long been recognized a s  one of the most important mechanisms 
fo r  the production of the r e f r a c t i v i t y  s t ruc tu re  responsible for  over-the- 
horizon tropospheric rad io  propagation. In addi t ion,  i t  has been shown t o  
provide a reasonable model for  many of the c l ea r  a i r  echoes observed by radar  
(EARDY e t  al.,  1966; KROPFLI et a l . ,  1968; VANZANDT et al., 1978). 

The nature  of turbulence i n  the f r e e  atmosphere has only recent ly  come in to  
focus. Numerous inves t iga t ions  using a i r c r a f t ,  balloons, and radar  t o  probe the 
atmosphere have shown the r e lwance  of Kelvin-Helmholtz i n s t a b i l i t y  for  the 
produetion of c l ea r  air turbulence. Laboratory experiments (see, e.g., TfIORPE, 
1973) have c l ea r ly  shown the evolution of shear flow i n s t a b i l i t y  i n  a s tab ly  
s t r a t i f i e d  f lu id .  Theoretical invest igat ions have helped provide a common 
frmework fo r  the in t e rp re t a t ion  of diverse observational and experimental 
s tud ies  (DRAZIN and REID, 1981). 
turbulence has been c l a r i f i e d  (BRETHERTON, 1969) and the analogous problem of 
in te rmi t ten t  turbulence i n  the ocean has been invest igated by WOODS (see, fo r  
example, WOODS and WILEY, 1972). 

In addi t ion,  the r o l e  of waves i n  t r igger ing  

Perhaps the most pronounced fea ture  of radar  observations of turbulence i n  
the  f r e e  atmosphere i s  the  layered s t ruc tu re  evident i n  time-height cross  
sec t ions  of echo magnitude. Figure 2 contains  an example of such a c ross  
sec t ion  a s  observed by the Arecibo radar  (SAT0 and WOODMAN, 1982). It shows a 
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Figure 2. 8-level height-time shade p lo t  f o r  the echo power 
received by the Arecibo radar. The dynamic range is  32 dB 
( a f t e r  SATO and WOODMAN, 1982). 

pe r s i s t en t  layering on a sca l e  larger  than the 150 m range resolut ion used by 
the radar. 
Richardson number i s  small. For example, Figure 3 shows a c l e a r  associat ion of 
strong echoes with strong shear. The f a c t  t h a t  the echoes have a wide spectral  
width confirms tha t  they are due t o  ac t ive  turbulence. 

The strong echoes are confined t o  t h i n  regions i n  which the 

CRANE (1980) has summarized the conditions under which turbulence should be 
observable by a radar of given wavelength. Briefly,  t he  half-wavelength scale  
t o  which the radar i s  sens i t i ve  must be l a rge r  than the inner scale of 
turbulence and smaller han the  outer scale  of turbulence. The inner scale  i s  
proportional t o  (v3G)'j4, where v i s  kinematic v i scos i ty  and E i s  the  eddy 
d i s s ipa t ion  rate. Since kinematic v i scos i ty  increases (as density decreases) 
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Figure 3. 10-hour mean echo power, E-W component of t he  wind shear,  
and the spec t r a l  width versus height.  The number of good data  points 
used i n  the average are plot ted on the r ight .  
the  thick l i n e  i n  each p r o f i l e  indicate  the standard deviation from 
the mean ( a f t e r  SATO and WOODMAN, 1982). 

Two t h i n  l i n e s  around 
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with a l t i t u d e ,  the inner sca le  increases with a l t i tude .  A t  tropopause heights 
it i s  close t o  1 cm. outer  scale of turbulence i s  proportional t o  the 
- buoyancy sca le  &I2 N2’where N i s  the Brunt-Vaisala frequency 
N E (g/B ae/az>112. Values of the outer-scale a r e  typical ly  a few tens  of 
meters i n  t h e  f r e e  atmosphere. 
s t a b l e  regions where N iz large-pd  E is  small. 
i f  M/Az i s  .I” C/m and E i s  10 m2s-3 t h e  outer  scale  would be about 10 cm. 
- Regions of a c t i v e  turbulence, on the  contrary,  are usually associated with small 
N (see,  f o r  example, BARAT, 1982) and enhanced so tha t  the outer  scale w i l l  
be increased. The outer  scale of turbulence has been measured t o  be a few tens 
of meters (BARAT, 1982) which i s  of ten a small f r a c t i o n  of the turbulent layer  
thickne s s . 

Howev_er, t h e  outer  scale can be much less i n  
To take an extreme example, 

The c rea t ion  of layered s t r u c t u r e  by loca l  regions of Kelvin-IIelmho’.tz 
i n s t a b i l i t y  was discussed by ROTTGER (1981). 
turbulence a c t s  t o  concentrate gradients a t  the boundaries of turbulent  layers .  
Many local ized i n s t a b i l i t i e s  ac t ing  i n  concert could produce an evolving f i n e  
s t r u c t u r e  of t h i n  regions of turbulence bounded by th in  s t a b l e  layers.  It  i s  
important to  rea l ize ,  however, t h a t  t h i s  i s  not the only mechanism which can 
produce layered s t ruc ture .  A coherent layered s t r u c t u r e  can a l s o  be produced by 
large-scale buoyancy-inertia waves. For example, the layered s t ruc ture  evident 
i n  Figure 2 i s  probably associated with such waves. 

THE MORPHOLOGY OF STABLE LAYERS I N  THE FREE ATMOSPHERE AND THE SPECULAR ECHOES 
OBSERVED BY MST/ST RADARS 

A s  i l l u s t r a t e d  i n  Figure 4, 

While the echoes observed by MST/ST radars  directed more than 10 degrees or 
so off  v e r t i c a l  are associated with ac t ive  turbulence, the  echoes observed a t  
v e r t i c a l  incidence a r e  associated with s t a b l e  regions of the  atmosphere as  shown 
i n  Figure 5 (GAGE and GREEN, 1978). Another example of the c l e a r  correspondence 
between echo magnitude a t  lower VHF and s t a t i c  s t a b i l i t y  i s  contained i n  Figure 
6 (LARSEN and ROTTGER, 1982, 1983) which shows an evolutionary pat tern of strong 
s t ra tospher ic  echoes corresponding t o  a changing s t a b i l i t y  s t r u c t u r e  during t h e  
passage of a f r o n t a l  zone. 

The nature  of the mechanism responsible f o r  the specular echoes observed a t  
lower VHF has been the subject  of continuing controversy. The models which have 
been proposed t o  explain these echoes include Fresnel r e f l e c t i o n  (GAGE and 

Figure 4. Formation of ensembles of s t a b l e  layers  (sheets) by 
Kelvin-Helmholtz i n s t a b i l i t y  (adapted from PELTIER e t  al . ,  
1978, by ROTTGER, 1981). 
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Figure 5. Comparison of the normalized power profiles observed at 
vertical and oblique incidence by the Sunset radar with stability 
(after GAGE and GREEN, 1978). 
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Figure 6 .  a. Reflectivity contours observed at vertical incidence for 

Pressure-time cross section of the potential temperature measured 
a warm frontal passage by the SOUSY radar during February 1982. 
b. 
by the Hanover radiosonde during the period corresponding to 6a (after 
LARSEN and ROTTGER, 1982). 
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GREIN, 1978; ROTTGER and LIU, 19781, d i f fuse  r e f l e c t i o n  (ROTTGER, 19801, Fresnel 
scatter (GAGE e t  al.,  1981) and anisotropic  turbulent s ca t t e r ing  ( D O V I M  and 
ZRNIC', 1983). 
r e f l ec t ions  from smooth o r  rough surfaces while the last  two mechanisms involve 
volume sca t t e r ing  processes. 

A s  discussed earlier, the f i r s t  two mechanisms involve p a r t i a l  

Fresnel r e f l ec t ion  requires  a very s t a b l e  layer which i s  t h i n  compared t o  
the probing radar wavelength. 
a strong echo would be received from a s t a b l e  layer  of l-m thickness and . l 0 C  
temperature difference located a t  12 Ian. The occurrence of meter-scale micro- 
s t r u c t u r e  has been reported (METCALF, 1975; METCALF and ATLAS, 1973). Such th in  
s t a b l e  l aye r s  could be produced by the ac t ion  of turbulent mixing. Under these 
circumstances one might an t i c ipa t e  tha t  the echo magnitude would be proportional 
t o  the mean s t a b i l i t y  of the environment i n  which the t h i n  turbulent layers  are 
imbedded. Their magnitude should also depend on turbulent layer  thickness since 
(everything else being equal) the l a rges t  layers  w i l l  possess the l a rges t  
temperature differences across them. Since i n  the most s t a b l e  regions 
turbulence must be confined t o  very th in  regions, the two e f f e c t s  mentioned 
above might be expected t o  counteract each other.  

For example, GAGE and GREEN (1978) estimate t h a t  

There i s  an increasing body of evidence t h a t  the backscattered power 
received a t  v e r t i c a l  incidence a t  lower VHF increases with the pulse width of 
the probing pulse (GREW and GAGE, 1980; HOCKING and ROTTGER, 1983; GREEN, 
1983). This implies a medium f i l l e d  with r e f r a c t i v i t y  s t ruc tu re .  Consequently, 
any pa r t i a l - r e f l ec t ion  mechanism must be generalized t o  include the r e f l ec t ion  
from an aggregate co l l ec t ion  of t h i n  layers.  
the layers  along the beam, random spacing can be assumed and the Ar-dependence 
recovered (HOCKING and ROTTGER, 1983). 

Barring some mechanism t o  space 

If the assumption of a coherent s t ruc tu re  along the beam i s  removed from 
the concept of Fresnel scat ter ing,  Fresnel s ca t t e r ing  becomes very s imilar  t o  a 
volume Fresnel r e f l e c t i o n  or even anisotropic  turbulent scat ter ing.  The main 
difference between volume Fresnel r e f l e c t i o n  and anisotropic  turbulence 
sca t t e r ing  i s  t h a t  the former consis ts  of gradients concentrated i n  layers  which 
a re  t h i n  compared t o  the radar wavelength while the la t ter  only requires  a 
s ign i f i can t  amount of r e f r a c t i v i t y  s t ruc tu re  a t  half  the radar wavelength. 
t h i s  point i t  should be recognized t h a t  the anisotropic  turbulence model does 
not necessarily involve ac t ive  turbulence. A l l  it requires i s  an anisotropic  
d i s t r i b u t i o n  of r e f r a c t i v i t y  s t ruc tu re ,  The i s sue  of when Fresnel s ca t t e r ing  i s  
an appropriate descr ipt ion of the sca t t e r ing  process and when anisotropic 
turbulent s ca t t e r ing  i s  an appropriate descr ipt ion has been addressed recently 
by DOVIAK and ZRNIC' (1983). 
become important u n t i l  the transverse co r re l a t ion  length P t  of the media 
exceeds .29 D w h e r e  D is the  diameter of t h e  radar antenna. However, turbulent 
s ca t t e r ing  which f i l l s  the antenna beam leads t o  an R'-2 range dependence while 
Fresnel s ca t t e r ing  with pt  less than a Fresnel zone radius leads t o  an 
dependence consis tent  with the observed range dependence a t  Poker F la t  (BALSLEY 
and GAGE, 19811, i l l u s t r a t e d  i n  Figure 7. 

A t  

These authors show t h a t  Fresnel e f f e c t s  do not 

I n  s i t u  observations of s t a b l e  atmospheric s t r u c t u r e  are very sparse. Some 

I n  such p ro f i l e s  temperatures a r e  
insight  i n t o  the s t ruc tu re  of s t a b l e  layers  can be gained from an inspection of 
routine radiosonde temperature prof i les .  
specif ied a t  mandatory (pre-selected pressures) l eve l s  and s ign i f i can t  levels .  
Significant l e v e l s  are chosen t o  optimize the agreement between the radiosonde- 
derived temperature p r o f i l e  and the actual  temperature p ro f i l e .  Clearly,  the 
more s t ruc tu re  i n  the actual  temperature p r o f i l e  the more s ign i f i can t  l eve l s  
t h a t  are required t o  resolve t h a t  s t ructure .  
the number of s t ab le  l aye r s  found i n  the Fairbanks, Alaska radiosonde soundings 
between 12 and 14 km during March 1981. 
s ign i f i can t  l e v e l s  above and below. The  number of layers  i s  shown as a function 

Figure 8 contains a histogram of 

Each layer  counted was  bounded by 
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Figure 7. Relative comparison between theo re t i ca l  and observed 
backscatter p ro f i l e s  a t  v e r t i c a l  incidence f o r  the  Poker F l a t  
MST radar i n  Alaska during October-November 1979 ( a f t e r  BALSLEY 
and GAGE, 1981). 
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of layer  thickness. Note t h a t  most layers  f a l l  i n  the range 100 to  500 m. Few 
layers th icker  than 500 m a re  counted since almost always th ick  layers  a r e  
bounded by at  least one mandatory level.  The d i s t r i b u t i o n  of po ten t i a l  tempera- 
t u r e  gradient with layer thickness i s  shown i n  Figure 9.  Note the inverse 
re la t ionship  between s t a b i l i t y  and layer  thickness. The most s t ab le  l aye r s  a r e  
very thin. 
approximated by ag/az a 474~2- 

Indeed, the  d is t r ipy5ion  of s t a b i l i t y  vs. l ayer  thickness can be . 

0 z 

AZ (meters) between 12 km and 14 km 

Figure 8. Histograms of occurrence of s t a b l e  layers  between 12 
and 1 4  km versus thickness resolved by the  Fairbanks radiosonde 
f o r  March 1981. 
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Figure 9. Dis t r ibtuion of s t a b i l i t y  versus layer  thicknesses f o r  
the s t a b l e  layers  contained i n  Figure 8. Each dot represents a 
layer .  
thicknesses. 

x's represent the average s t a b i l i t y  fo r  each bin of layer 

The observed dependence of po ten t i a l  temperature gradient upon layer  
thickness approximates what might be expected f o r  buoyancy waves (VANZANDT, 
1982; GARRETT and MNK, 1979). 
t h a t  buoyancy waves may be used t o  explain the  specular echoes observed by lower 
VHF radars. 
temperature gradient of %.3O/m which should be su f f i c i en t  t o  cause a strong 
specular echo. Note t h a t  such t h i n  s t a b l e  l aye r s  can be an t i c ipa t ed  only within 
very s t ab le  regions (of greater  v e r t i c a l  ex ten t )  fo r  only then w i l l  t he  outer 
scale  of turbulence be less than a few meters. I f  the r e f r a c t i v i t y  s t ruc tu re  
causing the ec oes i s  due t o  buoyancy waves, the proportionali ty of echo 
magnitude t o  M9 can be explained theo re t i ca l ly  (VanZandt, p r iva t e  
communication). 

Indeed, VANZANDT and VINCENT (1983) have argued 

Extrapolating the r e s u l t  of Figure 9 t o  Az = 3 m implies a 

CONCLUDING REMARKS 

In t h i s  paper I have examined the  mechanisms which have been proposed t o  
Each 

While the echoes observed a t  oblique incidence 

explain the echoes observed from the c l ea r  atmosphere by MST/ST radars. 
ha8 been considered i n  r e l a t i o n  t o  the atmospheric r e f r a c t i v i t y  s t ruc tu re  
implici t  fo r  i t s  real izat ion.  
are reasonably explained by turbulent scat ter ing,  the specular echoes can be 
explained by several  a l t e r n a t i v e  models of atmospheric r e f r a c t i v i t y  structure.  
A r e f r a c t i v i t y  s t ruc tu re  which possesses some transverse coherency but a volume 
f i l l i n g  random v e r t i c a l  s t ruc tu re  seems most l i ke ly .  
be t t e r  conceptualized as a composite many layered p a r t i a l  r e f l e c t i o n  process o r  
as a Bragg scat ter ing,  anisotropic  turbulence process i s  not y e t  clear. 
resolve t h i s  issue w i l l  probably require  i n  s i t u  probing of s t ab le  layer  
s t ructure .  

Whether the process i s  

To 



66 

REFERENCES 

Balsley, B. B. and K. S. Gage (19811, On the v e r t i c a l  incidence VHF back- 
sca t t e red  power p r o f i l e  from the stratosphere,  Geophvs. Res.  L e t t . ,  8, 
1173-117 5 .  

Barat, J. (19821, Some cha rac t e r i s t i c s  of clear-air  turbulence i n  the middle 
stratosphere,  J. Atmos. Sci.. 39, 2553-2564. 

Booker, H. G. and W. E. Gordon (1950), Theory of radio sca t t e r ing  i n  the 
troposphere, Proc. IEEE, 38, 401-412. 

Bretherton, F. P. (1969), Waves and turbulence i n  s tably s t r a t i f i e d  f l u i d s ,  
Radio Sci., 4, 1279-1287. 

Crane, R. K. (1980), A review of radar observations of turbulence i n  the lower 

Doviak, R. J. and D ,  S. Zrnic (1983), Fresnel zone considerations for  r e f l ec t ion  

stratosphere,  Radio Sci.. 15, 177-194. 

and s c a t t e r  from r e f r a c t i v e  index i r r e g u l a r i t i e s ,  (manuscript i n  
preparation). 

Drazin, P. G. and W. H. Reid (1981), Hydrodynamic S t a b i l i t y ,  Cambridge 
University Press, Cambridge, England, 525 pp. 

du Castel, F. (1966), Tropospheric Radio Wave Propagation Beyond the Horizon, 
English ed., Pergamon, Oxford, 236 pp. 

Gage, K. S. and B. B. Balsley (1980), On the sca t t e r ing  and r e f l e c t i o n  
mechanisms contributing t o  c l ea r  a i r  radar echoes from the troposphere, 
stratosphere,  and mesosphere , Radio Sci.. 15 , 243-257. 

Gage, K. S. and B. B. Balsley (1981), Recent advances i n  Doppler radar probing 
of the clear atmosphere, Atmos. Technology, 13, 321. 

Gage, K. S., B. B. Balsley and J. L. Green (1981), Fresnel s ca t t e r ing  model for  
the specular echoes observed by WF radar,  Radio Sci., 16, 1447-1453. 

Gage, K. S. and 3. L. Green (1978), Evidence f o r  specular r e f l ec t ion  from 
monostatic WF radar  observations of the stratosphere,  Radio Sci.. 13, 
991-1001. 

Garret t ,  C. and W. Munk (1979), In t e rna l  waves i n  the ocean, Ann. Rev. Fluid 
Mech., 11, 339-361. 

Green, J. L. (1983), On the range ga te  dependence of specular echoes, paper 2.1- 
D, t h i s  volume. 

Green, J. L. and K. S. Gage (1980), Observations of s t a b l e  l aye r s  i n  the tropo- 
sphere and s t ra tosphere using WF radar,  Radio Sci., 15, 395-405. 

Hardy, K. R., D. A t l a s  and K. M. Glover (19661, Multiwavelength backscatter from 
the c l ea r  atmosphere, J. Geophvs. Res.. 71 ,  1537-1552. 

Hardy, K. R. and I. Katz (19691, Probing the c l ea r  atmosphere with high power, 
high resolut ion radars,  Proc. IEEE. 57, 468-480. 

Hocking, W. K. and J. Rottger (19831, Pulse-length dependence of radar s ignal  
s t rengths  fo r  Fresnel backscatter,  submitted t o  Radio Sci. 



67 

Kropfli ,  R. A., I. Katz, T. G. Konrad and E. B. Dobson (19681, Simultaneous 
radar r e f l e c t i v i t y  measurements and r e f r a c t i v e  index spectra  i n  the clear 
atmosphere, Radio Sci.. 3,  991-994. 

Larsen, M. F. and J. Rottger (1982), VKF and UHF Doppler radars  as t o o l s  for  
synoptic research, Bull. h e r .  Meteorol. SOC.. 63, 996-1007. 

Larsen, M. F. and J. Rottger (1983), Comparison of tropopause height and f r o n t a l  
boundary locat ions based on r ada r  and radiosonde data,  Geophys. Res. L e t t . ,  
IO, 325-328. 

Metcalf, J. I. (19751, Microstructure of r ad io  echo l aye r s  i n  the clear  
atmosphere, J. Atmos. Sci.. 32, 362-370. 

Metcalf, J. I. and D. A t l a s  (1973), Microscale ordered motions and atmospheric 
s t ruc tu re  associated with t h i n  echo l aye r s  i n  s tably s t r a t i f i e d  zones, 
Boundary-Laver Meteor.. 4, 7-35. 

Ottersten,  H. (1969), Atmospheric s t ruc tu re  and radar  backscattering i n  c l ea r  
a i r ,  Radio Sci., 4, 1179-1193. 

Pel t ier ,  W. R., J. Halle and T. L. Clark (19781, The evolution of f i n i t e  
amplitude Kelvin-Helmholtz billows, Geophys. -Astrophvs. Fluid Dynamics, 
- 10, 53-87. 

Rottger, J. (1980), Reflection and sca t t e r ing  of VHF radar s ignals  from 
atmospheric r e f r a c t i v i t y  s t ructures ,  Radio Sci.. 15, 259-276. 

Rottger, J. (1981) , The dynamics of s t r a tosphe r i c  and mesospheric f i n e  s t ruc tu re  
investigated with an MST VHF radar ,  MAP Handbook, 4, 341-350. 

Rottger, J. and C. H. Liu (1978), P a r t i a l  r e f l e c t i o n  and sca t t e r ing  of VHF radar  
s ignals  from the c l ea r  atmosphere, Geophvs. Res. L e t t . ,  5, 357-360. 

Sato, T. and R. F. Woodman (1982), Fine a l t i t u d e  resolut ion observations of 
s t ra tospheric  turbulent l aye r s  by the Arecibo 430 MHz radar,  J. Atmos. 
Sci.,  39, 2546-2552. 

Thorpe, S. A. (1973), Experiments on i n s t a b i l i t y  and turbulence i n  a s t r a t i f i e d  
shear flow, J. Fluid Mech.. 61, 731-751. 

VanZandt, T. E. (1982), A universal  spectrum of buoyancy waves i n  the  
atmosphere, Geophvs. Res. L e t t . ,  9, 575-578. 

VanZandt, T. E., J. L. Green, K. S. Gage and W. L. Clark (19781, Vert ical  
Comparison of p ro f i l e s  of r e f r a c t i v i t y  turbulence s t ruc tu re  constant: 

observations by the Sunset radar  with a new t heo re t i ca l  model, Radio Sci., 
- 13, 819-829. 

VanZandt, T. E. and R. A. Vincent (1983), Is VHF Fresnel r e f l e c t i v i t y  due t o  
low frequency buoyancy waves? 
May 23-27, Urbana, IL ,  t h i s  volume, pp. 78-80. 

Workshop on Technical Aspects of MST Radar, 

Woods, J. D. and R. L. Wiley (1972), Billow turbulence and ocean microstructure,  
Deep Sea Research. 13, 87-121. 


