2.1G FRESNEL ZONE CONSIDERATIONS FOR REFLECTION AND SCATTER FROM REFRACTIVE INDEX IRREGULARITIES

R. J. Doviak and D. S. Zrnic
National Severe Storms Laboratory Norman, OK 73069

INTRODUCTION

Several different echoing mechanisms have been proposed to explain VBF/UHF scatter from clear air. GAGE and BALSLEY (1980) suggest three: (1) anisotropic scatter; (2) Fresnel reflection, and (3) Fresnel scatter, in order to account for the spatial (angle and range) and temporal dependence of the echoes. ROTTGER (1980) proposes the term "diffuse reflection" to describe the echoing mechanism when both scatter and reflection coexist. We present a unifying formulation incorporating a statistical approach that embraces all the above mechanisms and gives conditions under which reflection or scatter dominates. Furthermore, we distinguish between Fraunhofer and Fresnel scatter and present a criterion under which Fresnel scatter is important.

Scatter from anisotropic irregularities of refractive index n has, for many years, been thought to be principally responsible for microwave echoes from the clear air. Existing formulations assume that the correlation length of n irregularities generated by turbulence, are small compared to the Fresnel length. But there is experimental evidence that the contrary may be true. This paper extends the existing formulations for the case where the Fresnel zone radius is comparable to or smaller than the correlation length. LIU and YEH (1980) recognized the limitations of the existing formulations which are based upon first-order expansion of the phase term in the integral for the scattered (or reflected) electric field intensity and WAKASUGI (1981) suggested expansion to second order.

THE FRESNEL TERM IN THE INTEGRAL FOR ECHO POWER

TATARSKI (1961, sect. 4.2) derived a formula for the field scattered from a volume V_{S} with dimensions that implied the size of ∇_{S} cannot be determined by the radar's resolution volume V_{6} (DOVIAK and ZRNIC', 1983). (The subscript 6 is used to denote a resolution volume circumscribed by the surface giving a weight, to the scatterers, 6 dB less than the peak at the volume origin; DOVIAK et al., 1979.) In a later publication, TATARSKII (1971, sect. 2.8) extended his earlier formulation so that V_{S} could equal ∇_{6}. It can be shown that for backscatter the condition assumed in this extension is

$$
\begin{equation*}
\rho_{t} \ll \sqrt{\lambda r_{s} / 2 \pi}=f / \sqrt{\pi} \tag{1}
\end{equation*}
$$

where r_{s} is the range to an element of the scatter volume λ, the radar wavelength, f the first Fresnel zone radius, and ρ_{t} is the correlation length of refractive index irregularities for lags transverse to r_{s}. Inequality (1) imposes the condition that constant phase surfaces of the incident wave are planes over the distance ρ_{t}, and the receiver is in the far field of this correlation length (i.e., $r_{s}>2 \rho_{t} / \lambda$).

We now develop the scatter equations which allow correlation length to be larger than that specified by (1). Assuming the Born approximation (i.e., single scatter theory), the field intensity E_{1}, backscattered by refractive index irregularities Δn in the antenna far field is

$$
\begin{equation*}
E_{1}\left(\vec{r}_{o}, t\right)=k_{o} \sqrt[2]{\frac{P_{t} \eta_{0} g}{(2 \pi)^{3}}} \int_{V_{s}} \frac{f_{\theta}(\vec{r}) \Delta n(\vec{r}, t)}{r_{s}^{2}} \exp \left\{-j 2 k_{o} r s_{j} d V\right. \tag{2}
\end{equation*}
$$

where r_{s} is the range to Δn at \vec{r} (see Figure 1), $f_{\theta}(\vec{r})$ is the angular pattern of the incident electric field intensity assumed to be circularly symmetric about the beam axis, n_{0} is the free space wave impedance, $k_{o}=2 \pi / \lambda, P_{t}$ is the transmitted peak power, g the antenna gain, and \vec{r} the distance from the origin of ∇_{6} to the scattering element. ∇_{s} is a spherical shell of thickness ct/2 where τ is the transmitted pulse width and therefore $E_{1}\left(r_{0}, t\right)$ is the intensity of echoes sampled at a range-time delay ($2 r_{0} / c$) $+\tau$ after the transmitted pulse. Assume Δn to be a zero mean random variable. In a matched filter receiver having an internal resistance R, the increment of current magnitude $\mid d I$ | produced by the scattering element is

$$
\begin{equation*}
|\mathrm{dr}|=\left|\mathrm{dE}_{1}\right| \lambda W(\overrightarrow{\mathrm{r}}) \sqrt{\frac{\mathrm{gf}_{\theta}^{2}(\mathrm{r})}{4 \pi n_{0} \mathrm{R}}} \tag{3}
\end{equation*}
$$

where $W(\vec{r})$ is the range weighting function (ZRNIC' and DOVIAK, 1978; DOVIAK and ZRNIC', 1979). The integration now extends over all \vec{f} for which $W f_{\theta} \Delta n$ has significant value. For a receiver filter matched to a rectangular transmitted pulse, the range weighting function is

$$
\begin{array}{rlrl}
W(\vec{r}) & =1-\frac{2\left|\vec{r}_{r} \cdot \vec{a}_{0}\right|}{c \tau} & ;\left|\vec{r} \cdot \vec{a}_{0}\right| \leq c \tau / 2 \tag{4}\\
& =0 & & ; \text { otherwise }
\end{array}
$$

where \vec{a}_{0} is the unit vector from the origin of ∇_{6} to the radar.
The received power, time averaged over a cycle of the transmitted frequency, is:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{r}}=\frac{1}{2} \mathrm{II} *_{\mathrm{R}} \tag{5}
\end{equation*}
$$

where * denotes the conjugate.
From the integral of (3)

$$
\begin{equation*}
I=\frac{\lambda k_{o}^{2} g}{(2 \pi)^{2}} \sqrt{\frac{P_{t}}{2 R}} \int \frac{W(\vec{r}) f_{\theta}^{2}(\vec{r}) \Delta n(\vec{r}, t) e^{-j 2 k_{o} r_{s}}}{r_{s}^{2}} d V \tag{6}
\end{equation*}
$$

For the condition $c_{\tau} \ll r_{o}, r_{s}$ does not change significantly where $W(\vec{r})$ is appreciable so r_{s} in the denominator of (6) can be replaced with r_{0}. Upon substituting (6) into (5) and taking the ensemble average, the expected received power becomes:

$$
\begin{align*}
& \left\langle P_{r}\right\rangle=\frac{P_{t} g^{2}}{4 \lambda^{2} r_{0}^{4}} \iint R\left(\vec{r}, \vec{r}^{\prime}\right) W(\vec{r}) W\left(\vec{r}^{\prime}\right) f_{\theta}^{2}(\vec{r}) f_{\theta}^{2}\left(\vec{r}^{\prime}\right) e^{-j 2 k_{o}\left(r_{s}-r_{s}^{\prime}\right) d V d V^{\prime}} \tag{7}\\
& R\left(\vec{r}, \vec{r}^{\prime}\right)=\left\langle\Delta n(\vec{r}) \Delta n\left(\vec{r}^{\prime}\right)\right\rangle \tag{8}
\end{align*}
$$

Let's assume that the irregularities have homogeneous statistical properties so that $R\left(\vec{r}, \overrightarrow{r^{\prime}}\right) \approx R\left(\vec{r}-\vec{r}^{\prime}\right)$ and that the two-way pattern function $f_{\theta}^{2}(\vec{r})$ is given by

$$
\begin{equation*}
f_{\theta}^{2}(\vec{F})=\exp \left\{-\theta^{2} / 4 \sigma_{\theta}{ }^{2}\right\} \tag{9}
\end{equation*}
$$

where σ_{θ}^{2} is the second central moment of the two-way power pattern and θ is the angular ${ }^{\theta}$ displacement, measured at the radar site, of \vec{r} from the origin of V_{6}. In terms of the 6 dB angular width θ_{6} for the two way pattern $f_{\theta}{ }^{4}, \theta_{6}=3.33 \sigma_{\theta}^{6}$. For the assumption of narrow beams (9) can be approximated

$$
\begin{equation*}
\frac{\mathbf{f}_{\theta}^{2} \simeq \exp }{2}\left\{-t^{2} / 4 \mathbf{r}_{0}{ }^{2} \sigma_{\theta}^{2}\right\} \tag{10}
\end{equation*}
$$

$\quad f_{\theta} \simeq \exp \left\{-t^{2} / 4 r_{o}{ }^{2} \sigma_{\theta}{ }^{2}\right\}$
where $t=\sqrt{t^{2}}{ }^{2}+t_{2}{ }^{2}$ is the projection of \vec{r} onto the plane transverse to the beam
The Gaussian matched filter provides the best resolution of all the receivers having the same bandwidth (ZRNIC' and DOVIAK, 1978). Because of this and because practical "matched filters" used in Doppler weather radars are Gaussian we assume that $W(\vec{r})$ is well approximated by

$$
\begin{equation*}
W(\vec{r}) \simeq \mathrm{e}^{-\left(\vec{a}_{\mathrm{o}} \cdot \vec{r}\right)^{2} / 4 \sigma_{r}^{2}} \tag{11}
\end{equation*}
$$

where σ_{r}^{2} is the second central moment of the weighting function $W^{2}(\vec{r})$ and

$$
\begin{equation*}
\sigma_{r}=0.35 \mathrm{c} \mathrm{\tau} / 2=0.30 \mathrm{r}_{6} \tag{12}
\end{equation*}
$$

for a Gaussian filter "matched" to a rectangular pulse of width τ. The 6 dB range resolution is r_{6}.

Use the Taylor expansion for r_{s}

$$
\begin{equation*}
r_{s} \equiv\left|\vec{r}_{0}-\vec{r}\right| \simeq r_{0}-\vec{a}_{0} \cdot \vec{r}+\frac{1}{2 r_{0}}\left\{r^{2}-\left(\vec{a}_{0} \cdot \vec{r}^{2}\right)^{2}\right\} \tag{13}
\end{equation*}
$$

for terms up to second order in r^{2}. We note that the second term of this expansion is the projection of \vec{r} onto the \vec{a} direction and the third term contains the projection on the transverse plane. Thus, in terms of the ℓ, t coordinates centered in ∇_{6},

$$
\begin{equation*}
r_{s}=r_{0}+\ell+t^{2} / 2 r_{0} \tag{14}
\end{equation*}
$$

This quadratic expansion is valid (i.e., third order terms in \mathbf{r} are negligible) provided that the scatter volume ∇_{s} size is by limited by

$$
\begin{equation*}
\mathrm{d}_{\mathrm{t}}^{2}<2{r_{0}}\left|\sqrt{\mathrm{f}^{2} / \pi+\mathrm{d}_{\ell}^{2}}-\left|\mathrm{d}_{\ell}\right|\right\} \tag{15}
\end{equation*}
$$

where 2 d , and 2 d , are the dimensions of V_{s} transverse and parallel to r_{0}. The condition (15) assumes $\mathrm{d}_{\ell} \ll \mathrm{r}_{0}$. As can be deduced, the farther the integration variable is displaced from the plane $\ell=0$, the smaller must be the scatter volume size perpendicular to the beam axis. However, d_{ℓ} in (15) need not be larger than the smaller of $r_{6} / 2$ or the longitudinal projection ($\mathrm{d}_{2} / \cos \psi+r_{Q} \theta_{6} \tan \psi / 2$ of the scattering layer within ∇_{6} (Figure 1). Substituting (14), the integral in (7) becomes
$I_{7} \equiv \iint R\left(\vec{r}-\vec{r}^{\prime}\right) W(\ell) W\left(\ell^{\prime}\right) \exp \left\{-\frac{\left(t^{2}+t^{\prime 2}\right)}{2 \sigma_{t}^{2}}-j 2 k_{0}\left(\ell-\ell^{\prime}+\frac{t^{2}-t^{\prime 2}}{2 r_{0}}\right)\right\} d V d V^{\prime}$
where $\sigma=\sigma r_{0} \sqrt{2}$ is proportional to the arc length of v_{6}. We now still find it convenient to define new coordinates:

$$
\begin{equation*}
t_{1}-t_{1}^{\prime} \equiv \delta_{1} ; \quad t_{2}-t_{2}^{\prime} \equiv \delta_{2} ; \quad l-l^{\prime} \equiv \delta_{3} \tag{17a}
\end{equation*}
$$

Figure 1. Geometry for backscatter. The distances ℓ and t are measured from the origin 0 of the resolution volume in directions parallel (longitudinal) and perpendicular (transverse) to the bean axis $\vec{r}_{0} . \quad t_{1}$ is parallel to the χ axis and perpendicular to t_{2}.

$$
\begin{equation*}
\frac{\mathrm{t}_{1}+\mathrm{t}_{1}^{\prime}}{2} \equiv \sigma_{1} ; \frac{\mathrm{t}_{2}+\mathrm{t}_{2}^{\prime}}{2} \equiv \sigma_{2} ; \frac{\ell+\ell^{\prime}}{2} \equiv \sigma_{3} \tag{17b}
\end{equation*}
$$

so that the t_{1}, t_{1}^{\prime} component of (16) can be written as

$$
\begin{equation*}
I_{7}\left(t_{1}\right)=\iint R(\vec{\delta}) \exp \left\{-\frac{\sigma_{1}^{2}+\delta_{1}^{2} / 4}{\sigma_{t}^{2}}-j 2 k_{0} \sigma_{1} \delta_{1} / r_{0}\right\} d \sigma_{1} d \delta_{1} \tag{18}
\end{equation*}
$$

where $\vec{\delta}=\vec{a}_{1} \delta_{1}+\vec{a}_{2} \delta_{2}+\vec{a}_{3} \delta_{3}$ is the lag vector (note $\vec{a}_{3}=\vec{a}_{0}$). The transformation from (16) to (18) is valid if, as is assumed here, the limits of integration cover the entire volume where the integrand has significant value. Thus executing the integration over σ_{1}

$$
\begin{equation*}
\left.I_{7}\left(t_{1}\right)=\sigma_{t} \sqrt{\pi} \int R(\delta) \exp \left\{-k_{0} \delta_{1} \sigma_{t} / r_{0}\right)^{2}-\delta_{1}^{2} / 4 \sigma_{t}^{2}\right\} d \delta_{1} \tag{19}
\end{equation*}
$$

Applying similar procedures to the t_{2} and ℓ coordinate integrations we obtain

$$
\begin{equation*}
I_{7}=\sigma_{r} \sigma_{t}^{2} \pi^{3 / 2} \sqrt{2} \int R(\vec{\delta}) e^{-(\underbrace{\left.\delta_{t}^{2} / 4 \sigma_{t}^{2}+\delta_{z}^{2} / 8 \sigma_{r}^{2}\right)}_{\text {Resolution Volume }}-\underbrace{2}_{\text {Weight }} \delta_{t}^{2} \sigma_{t}^{2} / f^{4}}-j 2 k_{0} \delta_{3} d \mathrm{dV} \mathrm{\delta} \tag{20}
\end{equation*}
$$

where $\delta^{2}=\delta_{1}^{2}+\delta_{2}^{2}$. The solution (20) is acceptable if the 2 nd order expansion of r_{s} in (14) is valid. Inequality (15) is the condition on V_{s} for this expansion to be applicable. However, when the transverse dimengion ℓ_{t} of V_{s} is large such that (15) is not obeyed, we can still use (20) if $R(\vec{\delta})$ is small when
$\stackrel{+}{\delta}$ has a magnitude comparable to or larger than the right side of (15). In other words the correlation length ρ_{t} perpendicular to the beam axis must be

$$
\begin{equation*}
\rho_{t}^{2}<2 r_{o}\left\{\sqrt{x^{2} / \pi+d_{l}^{2}}-\left|d_{\ell}\right|\right\} \tag{21}
\end{equation*}
$$

If condition (15) is satisfied, then there is no condition on ρt^{*} By comparing (21) with (1), it becomes evident that the second order expansion relaxes the limits placed on the scatter volume size and correlation length $\rho_{t^{*}}$ Now these limits are increased by the factor $(8 \pi r d \lambda)^{1 / 4}$. For example, if $t_{0}=10 \mathrm{~km}$ and $\lambda=6 \mathrm{~m}, \rho_{t}$ would have to be less than 1.4 km in order for (20) to be applicable whereas ρ_{t} would have to be less than 100 m for a lst order theory.

In the integral (20) the correlation is multiplied by two exponential weighting functions: (1) the resolution volume weight which depends solely upon the width σ_{t} and range resolution σ_{r} of V_{6} and (2) the Fresnel terms which gives a weight in the t direction that depends upon the ratio $f / \sigma_{t^{\circ}}$ Only when the radius of the Fresnel zone is large compared to $\sqrt{\pi \sigma_{t}}{ }^{\rho}$ can the Fresnel term in (20) be ignored. Therefore, both beam width and correlation length enter into the comparison with f. But because σ_{t} is a function of f, that is

$$
\begin{equation*}
\sigma_{t}=\frac{0.45 r_{0}}{D \sqrt{\ell n 2}}=\frac{0.9 \mathrm{f}^{2}}{\mathrm{D} \sqrt{\ell \mathrm{n} 2}} \tag{22}
\end{equation*}
$$

where D is the antenna diameter, we can simplify the conditions so that the Fresnel term can only be ignored if ρ_{t} satisfies

$$
\begin{equation*}
\rho_{t}<\frac{D \sqrt{\ln 2}}{0.9 \pi} \tag{23}
\end{equation*}
$$

On the other hand, because f is always smaller than σ_{t} in the antenna's far field, the Fresnel term in (20) will have more weight than the beam width part of the resolution volume term. Thus situations that allow us to neglect the Fresnel term will also permit us to ignore beam width influence. If (23) is satisfied, we can use (20) (without the beam width and Fresnel terms) to obtain the scattered field, even though ∇_{S} is larger than V_{6}; then we need to sum incoherent echo power from elemental volumes large compared to $p_{t}{ }^{3}$ but small compared to ∇_{6} (DOVIAR and ZRNIC', 1983): We call this case incotherent Fraunhofer scatter. But HODARA (1966) shows that within the lower troposphere, the correlation length has the following height dependence

$$
\begin{equation*}
\rho \simeq 0.4 \mathrm{~h} /(1+0.01 \mathrm{~h}) \quad(\mathrm{m}) \tag{24}
\end{equation*}
$$

where h is in meters. Furthermore, VHF backscatter data analyzed later in this paper suggest that $\rho_{t} \approx 20 \mathrm{~m}$ for irregularities in the lower stratosphere. Thus, unless the antenns diameter is of the order of 100 m or more, the Fresnel term will be important in determining the field scattered by refractive irregularities. If the scattering volume contains many subvolumes for which (20) applies, but (23) is not satisfied, we have a situation of incoherent Fresnel scatter. When $d_{t}<\sqrt{2 r_{0} f}$ (from Equation 15), then we have coherent Fresnel scatter. If d <f, then signal is coherent irrespective of the transverse reshuffling of refractive index irregularities.

THE SPECTRAL SAMPLING FUNCTION

Because it is common to describe the statistical properties of refractive index irregularities by the spectral density function the effects of the resolution volume and Fresnel terms on echo power can be examined conveniently by introducing a spectral sampling function. Equation (20) can be expressed in terms of the Fourier transform of $R(\vec{\delta})$ multiplied by the lag weighting function H($\bar{\delta})$ where

$$
\begin{equation*}
H(\vec{\delta})=\exp -\left\{\left(\frac{1}{4 \sigma_{t}{ }^{2}}\right)+\frac{\pi^{2} \sigma_{t}{ }^{2}}{f^{4}} \delta_{t}{ }^{2}+\frac{\delta_{3}{ }^{2}}{8 \sigma_{r}{ }^{2}}\right\} \tag{25}
\end{equation*}
$$

Thus

$$
\begin{equation*}
I_{7}=\Phi_{n w}\left(0,0,2 k_{0}\right) \tag{26}
\end{equation*}
$$

where $\Phi_{n W}(\vec{K})$ is the three dimensional transform of $R(\vec{\delta})$ multiplied by the lag weighting function. Now $\Phi_{n w}$ is the spectrum Φ_{n} of refractive index irregularities convolved with the spectrum Φ_{w} of $H(\bar{\delta})$:

$$
\begin{equation*}
\Phi_{\mathrm{nW}}=8{\sigma_{r} \sigma_{t}{ }^{2}{ }^{9 / 2} \sqrt{2} \Phi_{\mathrm{n}} * \Phi_{\mathrm{W}} .} \tag{27}
\end{equation*}
$$

where * denotes convolution and

$$
\begin{equation*}
\Phi_{w}=\frac{1}{8 \pi^{3}} \int H(\vec{\delta}) \exp (-j \vec{k} \cdot \vec{\delta}) d V \tag{28}
\end{equation*}
$$

is the normalized spectral sampling function. Substituting (25) into (28) and evaluating:

$$
\begin{equation*}
\Phi_{W}=\frac{\pi^{-3 / 2} \sigma_{t}^{2} \sigma_{r} \sqrt{2}}{\left(1+4 \pi^{2} \sigma_{t}^{4} / f^{4}\right)} \exp \left\{-2 \sigma_{r}^{2} K_{\ell}^{2}-\frac{\sigma_{t}^{2} K_{t}^{2}}{\left(1+4 \pi^{2} \sigma_{t}^{4} / f^{4}\right)}\right\} \tag{29}
\end{equation*}
$$

where $K_{t}=\sqrt{\mathbb{K}_{1}{ }^{2}+K_{2}{ }^{2}}$. The second order phase term has contributed the factor $4 \pi^{2} \sigma_{t} 4 / f^{4}$ in 1 the above equation. Thus the first order expansion is valid only if this factor is small relative to unity. However for V_{6} in the antenna far

$$
\begin{equation*}
4 \pi^{2} \sigma_{t}^{4} f^{-4} \gg 1 \tag{30}
\end{equation*}
$$

For remote sensing with radar it is commonn to have V_{6} in the antenna far field, thus the Fresnel term in $\Phi_{W}(\mathbb{K})$ cannot be ignored. As discussed earlier, this conclusion is a result of the fact that the Fresnel radius is always less than the beam width so that the Fresnel term always dominates the beam width weighting function. Thus $\Phi_{\mathrm{w}}(\vec{k})$ can be well approximated by

$$
\begin{equation*}
\Phi_{w}(\overrightarrow{\mathrm{k}}) \simeq \frac{0.44 \mathrm{D}^{2} \sigma_{r^{\ell n} 2}}{\pi^{7 / 2}} \exp \left\{-2 \sigma_{r}^{2} \mathrm{~K}_{\ell}^{2}-\frac{\mathrm{D}^{2} \mathrm{~K}_{t}^{2} \ln 2}{3.24 \pi^{2}}\right\} \tag{31}
\end{equation*}
$$

in which we have substituted (22) for σ_{t}. Equation (31) shows that the larger is the antenna diameter, the narrower is the spectral sampling function. It is surprising that the sampling function shape and size is independent of r_{0} and, for a given antenna diameter, the spectrum $\Phi_{n}(\vec{K})$ of irregularities is weighted equally for all resolution volumes in space. This result differs from that derived by TATARSKII (1971) who only considered first-order phase expansion in which case Φ_{W} is a function of r_{O}. By combining (7), (26) and (27) the backscattered power is given by

$$
\begin{equation*}
\left\langle P_{r}\right\rangle=\frac{2 \sqrt{2}(0.45)^{2} \pi^{9 / 2} \sigma_{r} P_{t} g^{2}}{r_{0}^{2} D^{2} \ell n 2} \int \Phi_{n}(\vec{k}) \Phi_{W}\left(\vec{a}_{3} 2 k_{o}-\vec{K}\right) d V_{k} \tag{32}
\end{equation*}
$$

In the atmosphere it is usual for the horizontal correlation length ρ_{n} to be larger than the vertical one ρ_{z} so $\Phi_{n}(\vec{k})$ will be more sharply peaked along the $\mathrm{K}_{\mathrm{x}}, \mathrm{K}_{\mathrm{y}}$ directions and less so along the R_{z} axis. If the irregularities have
shapes that are roughly described as oblate spheroids, then the correlation $R(\vec{\delta})$ would also have a similar form but $\Phi_{n}(\vec{k})$ would be prolate spheriodal in shape (Figure 2a). Equation (31) reveals ${ }^{\text {n }}$ that whenever range resolution $r_{6}=3.33 \sigma_{r}$ is larger than 0.34 D , as is usual, the sampling function (Figure $2 b$) along K_{l} will be narrower than along K_{t}. If the beam axis is rotated by ψ degrees from the vertical, $\Phi_{w}(\vec{k})$ will also be rotated by ψ from the K_{z} axis.

If echo power decreases significantly as ψ is increased, then we have specular type reflection. The sharpness of the angular dependence is a function both of ρ_{h} and D. Referring to Figures $2 a, b$ and Equation (31), we see that a necessary condition to observe a specular type echoing mechanism is for $0.54 \lambda / D \ll 1$. That is, narrow beams are required which is consistent with simple physical arguments. Assuming space is filled with Δn, specular type echoes will then be observed only if $\rho_{h} \gg \rho_{z^{*}}$. However, we must be cautious in applying these criteria because we have used a specific model (i.e., Gaussian) to

Figure 2. (a) Contour surface of constant spectra intensity $\Phi_{\mathfrak{n}}(\overrightarrow{\mathbb{K}})$ for irregularities having symmetric correlation lengths along x and y that are longer than the correlation length along z. (b) Contour surface of the spectral sampling function $\Phi_{W}(\mathbb{K})$ for beam axes at elevation angle $\theta_{\mathrm{e}}=\pi / 2-\psi$. (c) Contours of constant $\Phi_{n}(\vec{K})$ for which the small-scale irregularities produce isotropic scatter.
describe the statistical properties of n and because ρ_{h}, ρ_{z} only characterize the most intense irregularities of refractive index. Thus, if the contours of constant $\Phi_{n}(\vec{k})$ have the dependence sketched in Figure $2 c$, scatter could be independent of ψ (i.e., isotropic scatter) if $2 k_{o} \gg_{\rho_{z}}{ }^{-1}$ and $2 k_{0} \gg \sqrt{2 r} r_{6}{ }^{-1}$. The $\Phi_{n}(\vec{k})$ depicted in Figure $2 c$ can be represented by a sum of isotropic $\phi_{\dot{j}}$ and anisotropic Φ_{a} parts where K_{i} is the wave number beyond which $\Phi_{i} \geq \Phi_{a}$ (independent of direction of K). $\Phi_{i}(K)$ could have the $-11 / 3$ power law dependence on K deduced from turbulence theories.

backscattering from anisotropic irregularities

As an example, let us consider the angular dependence of echo power when the scattering medium can be decomposed into isotropic and anisotropic components (i.e., $R(\delta)=R_{i}+R_{a}$). We further assume that R is isotropic in the horizontal plane. To obtain an order of magnitude estimate, we take R_{a} of the form:

$$
R_{a}=\left\langle\Delta n^{2}\right\rangle_{a} \exp \left\{-\frac{\delta_{h}^{2}}{2 \rho_{h}{ }^{2}}-\frac{\delta_{z}^{2}}{2 \rho_{z}^{2}}\right\}
$$

where

$$
\begin{equation*}
\delta_{h}=\sqrt{\delta_{x}^{2}+\delta_{y}^{2}} \tag{33}
\end{equation*}
$$

The resolution volume coordinates are related to the natural coordinates x, y, z via:

$$
\begin{equation*}
\delta_{x}=\delta_{1} ; \delta_{y}=\delta_{2} \cos \psi-\delta_{3} \sin \psi ; \delta_{z}=\delta_{2} \sin \psi+\delta_{3} \cos \psi \tag{34}
\end{equation*}
$$

After introducing (34) into (33) and the result into (20), integration is performed giving the formula for echo power from anisotropic irregularities as being proportional to

$$
\begin{equation*}
I_{a}(\psi)=\frac{2 \sqrt{2} \sigma_{r} \sigma_{t}^{2} \pi^{3}\left\langle\Delta n^{2}\right\rangle}{a \sqrt{4 b^{2} d^{2}-c^{4}}} \exp \left\{-4 k{ }_{o}^{2} b^{2} /\left(4 b^{2} d^{2}-c^{4}\right)\right\} \tag{35}
\end{equation*}
$$

where for V_{6} in the antenna far field:

$$
\begin{align*}
& a^{2} \simeq \frac{1}{2 \rho_{h}^{2}}+\frac{\pi^{2} \sigma_{t}^{2}}{f^{4}} \tag{36a}\\
& b^{2} \simeq \frac{\sin ^{2} \psi}{2 \rho_{z}}+\frac{\cos ^{2} \psi}{2 \rho_{h}^{2}}+\frac{\pi^{2} \sigma_{t}^{2}}{f^{4}} \tag{36b}\\
& c^{2}=\left(\frac{1}{\rho_{h}^{2}}-\frac{1}{\rho_{z}^{2}}\right) \sin \psi \cos \psi \tag{36c}\\
& d^{2}=\frac{\cos ^{2} \psi}{2 \rho_{z}}+\frac{\sin ^{2} \psi}{2 \rho_{h}^{2}}+\frac{1}{8 \sigma_{r}^{2}} \tag{36d}
\end{align*}
$$

Now for laminae of Δn such that ρ_{z} is smaller than the smallest of :

$$
\begin{equation*}
\frac{2 \sqrt{2} \pi \sigma_{t} \sigma_{r} \rho_{h}}{f^{2}}, \text { or } \frac{\rho_{h} f^{2}}{2 \sqrt{2} \pi \sigma_{t} \sigma_{r}} \text {, or } \frac{\sqrt{2} \sigma_{r} f^{2}}{\pi \rho_{h} \sigma_{t}} \tag{37}
\end{equation*}
$$

we can simplify (35)

$$
\begin{equation*}
I_{a}(\psi)=\frac{4\left\langle\Delta n^{2}\right\rangle_{a} \rho_{z} \rho_{h}{ }^{2} \sigma_{r} \sigma_{t}{ }^{2} \pi^{3}}{\sqrt{T Q}} \exp \left\{-2 k_{o}{ }^{2} \rho_{z}{ }^{2} \frac{s}{Q}\right\} \tag{38}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{S}(\psi)=\frac{\rho_{h}{ }^{2}}{\rho_{\mathrm{z}}{ }^{2}} \sin ^{2} \psi+\cos ^{2} \psi+2 \pi^{2} \sigma_{t}{ }^{2} \rho_{h}{ }^{2} / \mathrm{f}^{4} \tag{39a}\\
& \mathrm{~T}=1+2 \pi^{2} \sigma_{t}{ }^{2} \rho_{\mathrm{h}}{ }^{2} / \mathrm{f}^{4} \tag{39b}\\
& Q(\psi)=1+\left(2 \pi^{2} \sigma_{t}{ }^{2} \rho_{h}{ }^{2} \cos ^{2} \psi / \mathrm{f}^{4}\right)+\rho_{h}{ }^{2} \sin ^{2} \psi / 4 \sigma_{r}{ }^{2} \tag{39c}
\end{align*}
$$

When height of ∇_{6} is constant and laminae are infinitesimally thin, the ratio for echo powers G_{6} angle ψ and zenith $(\psi=0)$ is:

$$
\begin{equation*}
\frac{\left\langle P_{a}(\psi)\right\rangle}{\left\langle P_{a}(0)\right\rangle}=\sqrt{\frac{Q(0)}{Q(\psi)}} \cos ^{2} \psi \exp \left\{-2 k_{o}{ }^{2} \frac{\rho_{h}^{2} \sin ^{2} \psi}{Q(\psi)}\right\} \tag{40}
\end{equation*}
$$

The term $\cos ^{2} \psi$ accounts for the decrease in power due to the range and σ_{t} increase with tilt away from the vertical because V_{6} remains at constant ${ }^{L}$ height. To $\left\langle P_{a}(\psi)\right\rangle$ we add the power $P_{i}(\psi)$ due to isotropic irregularities to
obtain:

$$
\begin{equation*}
\left\{\frac{\left\langle P_{a}(\psi)\right\rangle}{\left\langle P_{a}(0)\right\rangle}+A \cos ^{2} \psi\right\} \div\{1+A\}=\frac{\langle P(\psi)\rangle}{\langle P(o)\rangle} \tag{41}
\end{equation*}
$$

where $A=P_{i}(0) / P_{a}(0)$. Equation (41) was fitted to data (Figure 3) from ROTTGER et al. (1981). Pertinent parameters for the Rottger et al. data are: $\lambda=6.4 \mathrm{~m}$; $\mathrm{D} \cong 260 \mathrm{~m}$; heights $\mathrm{h}=16.9 \rightarrow 18.1 \mathrm{~km}$ near the tropopause; beam width $\theta_{1}=1.7^{\circ}$; and range resolution $=300 \mathrm{~m}$. We find $\rho_{h}=20 \mathrm{~m}$ for the horizontal correlation lengths, and $A=0.04$ fits well these data. Comparing terms in (39) it is seen that the Fresnel term (i.e., the 2nd term in $Q(\psi)$) does not contribute significantly. Although we have not distinguished any one of the mechanisms discussed in the introduction as being responsible for the echo power, we see that scattering from anisotropic irregularities can account for the observed angular dependence which is sufficiently peaked that one might believe a reflection mechanism is acting.

For sake of simplicity, it is preferable to label the echoing mechanism as scatter whenever there are several or more scattering irregularities for which only a statistical description of their properties (e.g., size, intensity, etc.) is practical. Thus, we do not need to invoke a ref lective process to explain observations in this case; the scatter formulation presented here can explain all the features of the received field if indeed the medium is comprised of many irregularities of refractive index for which only statistical properties are known.

Equation (2) is the starting point for our formation for scatter from refractive irregularities. Although we refer to (2) as the scatter integral, it can be used as well in situations (i.e., $\rho_{\mathrm{t}} \gg f$) which might be interpreted as reflective. In order to determine echo power when irregularities have horizontal dimensions large compared to the Fresnel radius, GAGE et a1. (1981) have used the general formula

Figure 3. Angular dependence of observed mean backscatter power (open circles) from anisotropic irregularities as the radar beam axis is tilted away from the vertical (ROTTGER, 1981). Fitted to the data is a model that consists of anisotropic turbulence with a two-dimensional (horizontal isotropy) correlation function in an isotropic background.

$$
\begin{equation*}
|\mathfrak{R}|^{2}=\frac{1}{4}\left|\int_{-\ell / 2}^{\ell / 2} \frac{1}{n} \frac{\mathrm{dn}}{\mathrm{~d} z} \exp \left\{-j 2 \mathrm{k}_{\mathrm{o}} \mathrm{z}\right\} \mathrm{d} z\right|^{2} \tag{42}
\end{equation*}
$$

for the power reflection coefficient where ℓ is the thickness of the partially reflecting layer. In this form variations of n along the horizontal are ignored and, if the scattering layer is in the antenna far field, the echo power P_{r} is easily found by considering an image source which gives

$$
\begin{equation*}
P_{r}=P_{t} A_{e}^{2}|\mathbf{R}|^{2 / 4 \lambda^{2} r_{o}}{ }^{2} \tag{43}
\end{equation*}
$$

where A_{e} is the effective area of the antenna ($A_{e}=g \lambda^{2} / 4$). For exactly the same assumptions on n, the solution of (2) should produce an identical echo power. In Appendix A we prove this contention by simply using the second-order phase terms; this shows the wide applicability of the solution presented earlier.

Figure 4 illustrates the type of scatter that would be effective versus the location of the sampling wave number $2 k_{\text {o }}$ for the case $\rho_{h} \gg \rho_{z}$. The location of boundaries are functions of the parameters ρ_{h}, D, r_{o} and the relative strengths of Φ_{a} and Φ_{i}, and thus there could be a different order than presented on Figure 4. For example, if $\mathrm{K}_{\mathrm{i}}<2 \mathrm{r}_{\mathrm{o}} / \rho_{\mathrm{h}}{ }^{2}$, then Fraunhofer scatter could be either

Figure 4. Types of echo mechanisms versus the location of the sampling wave number $2 \mathrm{k}_{0}$ for a particular ordering of boundaries. $\rho_{h} \gg \rho_{z}$, and V_{6} is uniformly filled with irregularities.
anisotropic or isotropic depending upon the value of $2 \mathrm{k}_{\mathrm{\rho}}$. Because we had assumed infinitesimally thin laminae ($K_{i} \rightarrow \infty$ in that case $)^{\circ}$, scatter will be anisotropic no matter how large is $2 \mathrm{k}_{\mathrm{o}}{ }^{1}$ However, it is more likely that $\mathrm{K}_{\mathrm{i}}<2 \pi r_{\mathrm{o}} / \rho_{\mathrm{h}}$ so that if $2 \mathrm{k}_{\mathrm{o}}$ was larger than $2 \mathrm{~m}^{-1}$ we could pass into a region of
 radar) could establish the correlation length ρ_{2} and a value for K_{1}. At UHF wavelengths $2 k_{o}$ is so large that the peak of $\Phi_{w}(\vec{K})$ is expected to fall most of the time in the tail of $\Phi_{n}(\vec{K})$ at wave numbers where turbulence is mostly isotropic and Φ_{7} is expected to have the same $11 / 3 \mathrm{rds}$ dependence on K as does the velocity fluctuations. However, at the longer wavelengths in the VHF band, $2 k_{o}$ is much smaller so it can place the $\Phi_{\mathrm{w}}(\vec{k})$ peak in a region where Φ_{a} may sometimes be larger than Φ_{i} or smaller than it.
echo power dependence on range and range resolution
GAGE et a1. (1981) propose a model for which echo intensity varies as the inverse square power of range but has a range resolution dependence that can vary from zero to a square law. BALSLEY and GAGE (1981) introduce the concept of a scatter volume defined, transverse to the antenna beam, by a correlation radius to derive an echo intensity that depends on the fourth power of range. It is improper to form such a condition because the scatter volume ∇_{S} is defined by either the spatial distribution of intensity of $\Delta \mathfrak{n}$ fluctuations or by the resolution volume V_{6}, whichever is smaller. We shall use the solutions derived here to determine the conditions under which various dependences can occur. Recently HOCRING and ROTTGER (1983) have critically reviewed the interpretations of Balsley and Gage.

Assume vertical incidence and use (31) and (32) to obtain

$$
\begin{equation*}
\left\langle\mathrm{P}_{\mathrm{r}}\right\rangle=\frac{\mathrm{C}}{\mathrm{r}} \mathrm{r}_{\mathrm{o}}^{2} \Phi_{\mathrm{n}}(\overrightarrow{\mathrm{~K}}) * \Phi_{\mathrm{W}}(\overrightarrow{\mathrm{~K}}) \tag{44}
\end{equation*}
$$

where C is a constant independent of σ_{r} and r_{o}, and $\Phi_{W}(\vec{k})$ can be expressed as:

$$
\begin{equation*}
\Phi_{w}(\vec{k})-\sigma_{r} \Phi_{w}\left(K_{t}\right) \exp \left\{-2 \sigma_{r}{ }^{2} K_{z}{ }^{2}\right\} \tag{45}
\end{equation*}
$$

where now $K_{t}{ }^{2}=K_{x}{ }^{2}+K_{y}{ }^{2}$. Consider two cases: (1) $\Phi_{n}(\vec{k})$ broad and (2) narrow compared to $\Phi_{w}(\vec{K})$ along the wave number \vec{k}_{z} coordinate (Figure 5).
(a) Φ_{n} Broad

Integration along K_{z} gives a $\left\langle P_{r}>\right.$ approximated by

$$
\begin{equation*}
\left\langle P_{r}\right\rangle=\frac{C \sigma_{r}}{r_{0}^{2}} \iint \Phi_{w}\left(K_{t}\right) \Phi_{n}\left(K_{x}, K_{y}, 2 k_{0}\right) d K_{x} d K_{y} \tag{46}
\end{equation*}
$$

which illustrates that the expected echo power is proportional to range resolution (assuming a uniformly filled ∇_{6}) and inversely proportional to the square of range r_{0}. This is the usual dependence expeçted when scatter is from irregularities produced by turbulence. The r^{-2} dependence occurs irrespective of whether ρ_{h} is large or small compared to f.
(b) $\Phi_{n}(\vec{k})$ Narrow

In this case (44) can be reduced to

$$
\begin{equation*}
\left\langle P_{r}\right\rangle \simeq \frac{C \sigma_{r}^{2}}{r_{0}^{2}} e^{-2 \sigma_{r}^{2}\left(K_{s z}-2 k_{o}\right)^{2}} \int \Phi_{w}\left(K_{t}\right) \Phi_{n}(\vec{K}) d V_{K} \tag{47}
\end{equation*}
$$

Again $\left\langle\mathrm{P}_{\mathrm{r}}\right\rangle$ depends upon the inverse square of r_{0}, a result which is independent of ρ_{h}. If $\Phi_{w}\left(\vec{K}_{t}\right)$ is al so broad compared to $\Phi_{n}\left(\dot{k}^{k}\right)$ along K_{t} then (47) reduces to

$$
\begin{equation*}
\left\langle P_{r}\right\rangle \simeq \frac{C \sigma_{r}{ }^{2}}{r_{o}^{2}}-\Phi_{w}(0) e^{-2 \sigma_{r}^{2}\left(K_{s z}-2 k_{o}\right)^{2}} \int \Phi_{n}(\vec{K}) d V_{K} \tag{48}
\end{equation*}
$$

in which $\Phi_{n}(\vec{K})$ is assumed to have a peak at $k_{t}=0$. This case occurs when refractive index irregularities have $\rho_{h}>f$ and strong Fourier components clustered about $2 \mathrm{k}_{\mathrm{o}}$. Only if $2 \mathrm{k}_{\mathrm{o}}=\mathrm{k}_{\mathrm{sz}}$ will $\left\langle\mathrm{P}_{\mathrm{r}}\right\rangle$ be proportional to σ_{r}^{2}; otherwise, we could have other range resolution dependencies. The integral in (48) is the variance $\left\langle\Delta{ }^{2}\right\rangle$.
(a)

(b)

Figure 5. Cases in which Φ_{n} is broad (a) and narrow (b) compared to Φ_{W}.

If the irregularities are contained in a thin layer having a vertical dimension small compared to σ_{r}, then echo power would be independent of σ_{r}, when the resolution volume is centered on the layer. For resolution volumes displaced from the layer height, echo power would have a strong dependence on σ_{r} even exceeding the square law one! If the scattering irregularities are confined to horizontal dimensions small compared to beam width, then a fourth power range dependence would be obtained. However, the correlation length does not determine the scatter volume dimension as stated by BALSLEY and GAGE (1981). In the cases discussed in (a) and (b) the echo power depends on the inverse square of range because we have assumed uniformly filled ∇_{6}.

CONCLUSIONS

When scattering layers are in the far field of an antenna, the Fresnel term is a more important weighting function than the antenna pattern because the width of the antenna pattern is always larger than the Fresnel radius f. Only in the case where the correlation length ρ_{t} of refractive index irregularities In perpendicular to the beam is much smaller than f will the first-order truncation of the Taylor series expansion for phase be valid. Then Fraunhofer scatter is considered to be effective. However, when retention of second-order phase terms is necessary a Fresnel term (see Equation 20) is introduced. The criterion for keeping the second-order phase term depends both upon beam width and the Fresnel radius. Thus, the condition under which incoherent Fraunhofer scatter is effective becomes solely a function of antenna diameter D (i.e., $\rho_{t}<0.29 \mathrm{D}$). When the Fresnel term needs to be included in the solution we have the situation of Fresnel scatter or reflection. It is suggested that unless the antenna diameter is of the order of 100 m or more, the Fresnel term is important in determining the field scattered by refractive irregularities.

The formulas derived here establish the conditions under which a scatter or reflection mechanism can be distinguished. However it is important to have the proper statistical description of the irregularities in order to obtain the spatial and temporal dependence of echo intensity. A multiple wavelength radar, in which its beam position can be scanned, could supply invaluable data to characterize the spectrum of refractive index irregularities and help to explain the properties of the echoes. Only when irregularities have a spatial spectrum form that concentrates variance $\left\langle\Delta n^{2}\right\rangle$ at wave numbersnear $2 k_{o}$ does echo power depend upon the square of range resolution. Echo power depends upon the inverse square of range r_{o} independent of whether ρ_{t} is less than or greater than f. However the resolution volume must be uniformly filled with $\Delta \mathrm{n}$.

REFERENCES

Balsley, B. B. and K. S. Gage (1981), On the vertical-incidence VHF backscattered power profile from the stratosphere, Geophys. Res, Lett., 8, 1173-1175.

Doviak, R. J. and D. S. Zrnic' (1979), Receiver bandwidth effect on reflectivity and Doppler velocity estimates, J. Appl. Meteor., 18, 69-76.

Doviak, R. J., D. S. Zrnic' (1983), Doppler Radar and Weather Observations, Academic Press, New York, NY (in press).

Doviak, R. J., D. S. Zrnic' and D. S. Sirmans (1979), Doppler weather radar, Proc. IEEE, 67, 1522-1553.

Gage, K. S. and B. B. Balsley (1980), On the scattering and reflection mechanisms contributing to clear air radar echoes from the troposphere, stratosphere and mesosphere, Radio Sci., 15, 243-257.

Gage, K. S., B. B. Balsley and J. L. Green (1981), Fresnel scattering model for the specular echos observed by VHF radar, Radio Sci., 16, 1447-1453.

Hocking, W. K. and J. Rottger (1983), Pulse length dependence on radar signal strengths for Fresnel backscatter. Personal communication.

Hodara, H. (1966), Laser wave propagation through the atmosphere, Proc. IEEE, 54, 368-375.

Liu, C. H. and K. C. Yeh (1980), Scattering of VHF and UHF radar signals from the turbulent air, Radio Sci., 15, 277-282.

Rottger, J. (1980), Reflection and scattering VHF radar signals from atmosphert refractivity structures, Radio Sci., 15, 259-276.

Rottger, J., P. Czechowsky and G. Schmidt (1981), First low-power VHF radar observations of tropospheric, stratospheric and mesospheric winds and turbulence at the Arecibo Observatory, J. Atmos. Terr. Phys., 43, 789-800.

Tatarski, V, I. (1961), Wave Propagation in a Turbulent Medium, McGraw-Hill Book Co., Inc., New York, NY. Trans. by R, A. Silverman.

Tatarskii, V. I. (1971), The effects of the turbulent atmosphere on wave propagation. Trans. by Israel Program for Sci. Transl. Jerusalem. IPST Cat. No. 5319 UDC 551.510, ISBN 0-7065-0680-4, 471 pp .

Wakasugi, K. (1981), MST radar technique for remote sensing of the middle atmosphere, Kyoto Institute of Technology, Kyoto, Japan

Zraic', D. S. and R. J. Doviak (1978), Matched filter criteria and range weighting for weather radar. IEEE Trans. Aero. and Elec. Sys., AES-14, 925-930.

APPENDIX A

In this appendix we shall demonstrate that (42) and (2) and identical formulations for the situation considered in this paper (i.e., a scattering layer in the far field of an antenna, and range resolution sufficiently narrow so that the $1 / x^{2}$ term can be brought out of the integral (2)).

For pulsed transmissions the height interval that contributes to the echo sample is determined by the pulse shape if refractive index irregularities are distributed throughout the vertical. Therefore, in this case ($\mathrm{dn} / \mathrm{dz}$)/n in (42) must be multiplied by the range weighting function (e.g., (11)) and then, for pulse widths small compared to r_{0}, the limits on z in (42) can be increased to infinity without significant error. Thus the reflection coefficient takes the form:

$$
\begin{equation*}
R=\frac{1}{2} \int_{-\infty}^{+\infty} e^{-z^{2} / 4 \sigma_{r}^{2}} \frac{d}{d z}(\ell n n) \exp \left\{-j 2 k_{o} z\right\} d z \tag{A1}
\end{equation*}
$$

Using integration by parts and noting that $n=1+\Delta n$ where $\Delta n \ll 1$, (Al) can be reduced to

$$
\begin{equation*}
R=\int_{-\infty}^{+\infty}\left(\frac{z}{4 \sigma_{r}^{2}}+j k_{o}\right) \Delta n \exp \left\{-\frac{z^{2}}{4 \sigma_{r}^{2}}-j 2 k_{o} z\right\} d z \tag{A2}
\end{equation*}
$$

Now for range resolution many wavelengths long (i.e., $k{ }_{0} \sigma_{r}>1$) the term $z / 4 \sigma_{r}{ }^{2}$ can be ignored in the integral without adding appreciable ${ }^{r}$ error to ρ. Then ${ }^{r}$

$$
\begin{equation*}
R=j k_{0} \int_{-\infty}^{\infty} W(z) \Delta n(z) \exp \left\{-j 2 k_{0} z\right\} d z \tag{A3}
\end{equation*}
$$

We note here that $W(z)$, as defined in this paper, also contains the weight associated with the frequency transfer function of the receiver's filter. Although this function does not rigorously belong in the integral for ρ, we are primarily interested in the received echo power which is dependent upon the filter function. For a linear system we could, if we ignore receiver noise, just as well consider the filter at the transmitted output thus modifying the pulse shape to give the equivalent weight $W(z)$ considered herein. With similar consideration we can also express (2) in the form

$$
\begin{equation*}
E_{1}=\frac{k_{o}^{2}}{r_{o}^{2}} \sqrt{\frac{P_{t} g \eta_{o}}{(2 \pi)^{3}}} \int W(z) f_{\theta}^{2}(r) \Delta n \exp \left\{-j 2 k_{o}^{r}{ }_{s}\right\} d V \tag{A4}
\end{equation*}
$$

We now consider Δn to depend upon z as in the reflection formula and using (10) for $f^{2}(r)$, the second-order expansion (14) for r_{s}, and integrating over the horizontal we obtain

$$
E_{1}=\frac{\pi k_{o}^{2}}{r_{0}^{2}} \sqrt{\frac{P_{t} g \eta_{o}}{(2 \pi)^{3}}} e^{-j 2 k_{o} r_{0}}\left(\frac{1}{2 \sigma_{t}^{2}}+j \frac{k_{0}}{r_{0}}\right)^{-1} \int W \Delta n \exp \left\{-j 2 k_{o} z\right\} d z(A 5)
$$

Now for r_{o} in the antenna far field the tera $j k d_{o}$ has a magnitude larger than $1 / 2 \sigma_{t}{ }^{2}$. The echo power P_{r}, in terms of E_{1}, is:

$$
\begin{equation*}
P_{r}=A_{e}\left|E_{1}\right|^{2} / 2 n_{0} \tag{A6}
\end{equation*}
$$

substitution of (A5) and (A3) into (A6) reveals

$$
P_{r}=\frac{P_{t} A_{e}^{2}|R|^{2}}{4 \lambda^{2} r_{o}{ }^{2}}
$$

which is identical to (42) derived from the reflection formula.

