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2.2B THE EFFECTS OF PULSE RATE, POWER, WIDTH 
AND CODING ON SIGNAL DETECTABILITY 

U. A. Carter 

Aeronomy Laboratory 
National Oceanic and Atmospheric Administration 

Boulder, CO 80303 

When deciding upon radar and s ignal  processing parameters f o r  MST radars,  
the quant i ty  t h a t  one attempts t o  maximize within ex i s t ing  constraints  i s  the  
s ignal  de t ec t ab i l i t y .  For Doppler spectral analysis  the de t ec t ab i l i t y  can be 
defined (see BALSLEY, 1978 or  GAGE and BALSLEY, 1978) a s  the r a t i o  of the 
amplitude of the l a rges t  spectral  peak of the received s ignal  t o  the noise l e v e l  
f luctuat ion,  D = Sr/ASN (see Figure 1) .  

pulse r e p e t i t i o n  r a t e  (PRF), peak pulse power (Pp@ and pulse width ( T p ) .  
coded and uncoded pulses w i l l  be considered. 
following quan t i t i e s  w i l l  be assumed t o  be constant: 
r e f l e c t i v i t y ,  Doppler s h i f t ,  spec t r a l  width, spec t r a l  resolut ion,  e f f ec t ive  
sampling r a t e ,  and t o t a l  incoherent spectral  averaging t i m e .  The d e t e c t a b i l i t y  
w i l l  be computed fo r  two types of t a rge t s :  
echoing region smaller than the smallest pulse width). 

This paper w i l l  examine the e f f ec t s  on the d e t e c t a b i l i t y  of varying the  
Both 

During t h i s  discussion the 
antenna area, echo 

1 )  d i s c r e t e  t a rge t  ( i .e . ,  a s ing le  

F i r s t  l e t  us examine the e f f e c t s  of coded pulses.  The received s igna l  from 
a coded pulse i s  decoded by convolving the received vol tage with the code. 
phase of the received s ignal  from the echoing region w i l l  be the mirror image of 
the transmitted code. Since the autocorrelat ion function of a code of length L, 
has a peak value of L,, the  decoding process enhances the echo s ignal  power by 
a f ac to r  of Le2. 
code, the convolution w i l l  add the power incoherently and thus the noise power 
w i l l  be increased by a factor  of L,. The above i s  t rue  regardless  of the type 
of code used. 
random codes) the s ignals  from successive codes must be added coherently t o  
obtain the desired autocorrelat ion sidelobe response. However, a s  long a s  the 
number of codes used i s  less than the normal number of coherent averages, multi- 
code processing w i l l  not have any addi t ional  e f f ec t  on the s ignal  de t ec t ab i l i t y .  
Of course, the sidelobes of the code autocorrelat ion functions w i l l  a f f ec t  range 
contamination of s ignals  and influence the choice among various codes. 

The 

For white noise which i s  uncorrelated between each b i t  of the 

For multicode processing (using complementary codes o r  pseudo- 

Now we w i l l  determine the s ignal  de t ec t ab i l i t y  for  coded and uncoded pulses 
as a function of PRF, t ransmit ter  power, pulse width, and code length. Let us 
define the fundamental b i t  length or resolut ion pulse width of a coded pulse t o  
be T~ and the t o t a l  pulse length to  be T~ E L , T ~ .  The same symbols can be used 
f o r  uncoded pulses by l e t t i n g  L, = 1 and T~ = T ~ .  The returned s ignal  power, 
Ps,  i s  proportional t o  peak t ransmit ter  power for d i sc re t e  targets  and t o  peak 
power and pulse width fo r  diffuse targets .  
uncoded pulses, 

Specif ical ly ,  for  both coded and 

"s a 'pk Lc (d i sc re t e  t a rge t s )  

Ps = Ppk T ~ L , ~  (diffuse t a rge t s ) .  

The noise power can be wri t ten as  

PN a B Lc/m a L /T m 
c o  
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Figure 1. Typical Doppler spectrum ( a f t e r  BALSLEY, 1978a). 

where B a l / r o  i s  the receiver bandwidth and m i s  the number of coherent 
averages. The signal-to-noise r a t i o ,  SNR = Ps/PNa then becomes 

SNR a Ppk m r o  Lc 

SNR a P m-r 2L (diffuse)  pk o c 

(d i sc re t e )  

Following the der ivat ion of s ignal  de t ec t ab i l i t y ,  D, used by BALSLEY (1978) 
and eliminating dependencies on the f ixed quan t i t i e s  given previously, it can be 
shown tha t  

D a P (PRF) -roLc PAv (d i sc re t e )  

D a P (PRF)-ro Le = PAv T~ (diffuse) .  
Pk 

Pk 
2 

Table 1 summarizes these r e s u l t s  fo r  4 cases with varying values of PRF, 
-rea and L, for  a constant average t ransmit ter  power (PAV = Ppk (PRF) L~T,,) P 

TRek'"reference" values of each quant i ty  are PRF 5: f a  Ppk =: P, To 
L, = 1. Each quant i ty  i s  mult ipl ied i n  turn by an integer  constant N, keeping 
the  average power constant i n  each case. The receiver bandwidth, B, i s  set t o  
l / r o  and the number of coherent averages n, i s  adjusted t o  maintain a constant 
e f f e c t i v e  sampling rate, PRF/nc. The r e su l t i ng  dependencies of the signal-to- 
noise r a t i o  and de tec t ab i l i t y  are shown i n  the last two columns. 

IC, and 

Table 1 can be simplified by wri t ing the f i r s t  3 independent var iables  i n  
terms of dimensionless quan t i t i e s  PRF/f, P kip, T ~ / T  and thus showing only the 
dependency on N. This has been done i n  Tagle 2. 
can see tha t  a l l  4 cases have the same signal-to-noise r a t i o  and the same 
de tec t ab i l i t y .  For the d i f fuse  case, because of the dependence on the resolu- 
t i o n  pulse width, the long uncoded pulse has a de t ec t ab i l i t y  which i s  a factor  
of N greater  than the other 3 cases. 

For the d i sc re t e  t a rge t s  we 

In those d i f fuse  cases where high resolut ion i s  obtained, w e  note t h a t  
using coded pulses gives the same s ignal  de t ec t ab i l i t y  as using short  uncoded 
pulses with e i the r  higher PRF o r  higher peak power. 
desirable ,  then, when high resolut ion i s  needed and when the peak power cannot 
be increased due t o  t ransmit ter  l imitat ions and the PRF cannot be increased, 
perhaps because of range a l i a s ing  problms. 

Pulse coding becomes 

Note t h a t ,  given a s e t  of Doppler power spectra obtained with any of the 
high resolut ion systems (cases 5, 6 or 8 i n  Table 2)  t he  de t ec t ab i l i t y  can be 
increased by N1l2, a t  the expense of range resolut ion,  by averaging the spectra 
across  N range gates. This e f f e c t  occurs because the spectral  noise power 



102 

I n y u n  

I 

I 

PI 

I 

E E E  
2 2 2  
Y I P  

Y I ~  

PI 

i2 P I N  Z 
n n i  

d d d 2  

r r r r  
2 

P I E P I P I  

u n n n  

r r c r  

Z 2 2 2  
$ $ $ e  

r r & &  
w 
0 

g 
d 
U 
.d U 
ai 
a 
& 

m 
d 
1 
PI 

& 

g a 
2 a 
.ri 
3 

w 

r 0 

V 
cl 

II 

E rl 

a, 
rl 

a 

I 
PI 

I I  I1 II II 

9 %. O d U  a 
PI PI^ r 

n 
ai 

w w 
d 
II 

z 
v 

N 

l-? 

% 
0 c 

PI 



103 

4 
m 
C 
M 
r( 

z 

z 

z 

rl 

rl 

z 

rl 

rl 

rl 

z 

h 
N 

N z z z  

hl z z z  

z 
r l r l z  

\ 

N z z z  

r l r l r l  

z \ 
r l r l r l  

z z z  

r l z z  

r l d r l  

h h h  w I- 0 0 ,  

0 
r 

do 

9 
4 

11 

3 

I-I 

U 
0 w 
II 

a 
r 



104 

f luc tua t ions  are proportional t o  N-II2. 
processing, these high resolut ion systems can give range resolut ion improved by 
a factor  of I i n  region of good SNR and, i n  regions of low SNR, a detectabi-  

Thus by using two types of post- 

l i t y  degraded only by N k/2, compared t o  the long pulse case. 
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