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Abstract

This paper describes a method for systematic
analysis and optimization of large engineering
systems, e.g., aircraft, by decomposition of.a
large task into a set of smaller, self-contalned
sUbtasks that can be solved concurrently. The
subtasks may be arranged in many hierarchical
levels with the assembled system at the top
level. Analyses are carried out in each subtask
using inputs received from other subtasks, and
are followed by optimizations carried out from
the bottom up. Each optimization at the lower
levels is augmented by analysis of its sensiti­
vity to the inputs received from other subtasks
to account for the couplings among the subtasks
in a formal manner. The analysis and optimiza­
tion operations alternate iteratively until they
converge to a system design whose performance is
maximized with all constraints satisfied. The
method, whi ch is still under development, is
tentatively validated by test cases in struc­
tural applications and an aircraft configura­
tion optimization. It is pointed out that the
method is intended to be compatible with the
typical engineering organization and the modern
technology of distributed computing.

Introduction

A modern aircraft or spacecraft is a complex
engi neeri ngsys,tem composed of many sUbsystems
that are very tightly coupled - a change in one
affects many others and the whole. While
mastery of that coupling by designers was always
important and in the past made the difference
between acceptable and excellent performance of
the vehicle, now that mastery may make the
difference between flying and not being able to
take off. An example is aircraft with forward­
swept, aeroelastically tailored wings and canard
(X-29) which could not fly without aerodynamics,
structures, and active control well tuned to
each other.

For the designer, mastery of the subsystems
couplings requires, as it always did, the
uniquely human abilities of creativity, judg­
ment, and intuition fed by numerical informa­
tion from all the contributing disciplines on
all quantifiable aspects of the design. The
volume of that information has recently grown
very rapidly with the progress in analytical
methods in engineering disciplines. In addition

to the traditional analysis answering the "what"
questions, a new type of analysis - sensitivity
analysis - became available to answer the "what
if" questions. To make the best possible use of
all that information toward the ultimate goal of
designing a vehicle that performs "best" in a
certain sense clearly requires that a systematic
methodology, at the level of sophistication
e4ual to that of the contributing disciplines,
should be built into the design process itself,
not to the exclusion of the designer's intellect
but to its enhancement.

One particular concept for such methodology,
ca 11 ed "mul til eve1 opt imi zat i on by 1i near decom­
position" now under research and development at
NASA Langley Research Center is described in
this paper. To provide the necessary contrast,
the sequential decisionmaking in the prevailing
design practice is discussed first. The
salient features of multilevel optimization with
linear decomposition are introduced next, and a
sample of references is provided for background.
Experience with the application of the method to
engineering problems is reported for initial
va1idat i on of the concept. In concl us ion, it
is pointed out that the method is inherently
compatible with the way engineers cooperate in a
design organization and with distributed comput­
ing capabilities,provided by modern computer
technology.

A Paradox in sejuential Decisionmaking
n Deslgn

In a typical design process, major decisions
are made sequentially. The example in fig. 1 is
for an aircraft design; usually the aerodynamic
shape is decided first, and SUbsequently. the
airframe is sized for strength, etc. Ananalo­
gous sequence cou 1d be 1aid out for any. other
major industrial product, for instance, a ship.
The loops in the discipline boxes symbolize
iterative design improvements carried out within
confines of a single engineering discipline or
subsystem. The loops spanning several boxes
depict multidisciplinary design improvement
iterations. Omitted for graphical simplicity is
the parallelism of the disciplinary subtasks.
That para11 eli sm is important in order to
develop a broad work front necessary to shorten
the design time.



If all the intra 'and interdiscip1 inary
iterations were carried out to convergence, the
process could yield a numerically optimal
design. However, the process is usually not
converged because of time and bUdget limita­
tions. This is especially true for the inter­
disciplinary iterations. Thus, the sequential
decisionmaking leads to a paradoxical disparity
between the volume of information about the
obj ect of the desi gn and the des i gn freedom
measured by the number of des i gn vari abl es and
options still available to the designers. As
seen in fig. 2, the former ascends with time
because of the analyses and experiments
performed while the latter declines because of
casting the decisions "in concrete."

The paradox is that the designers are gaining
information but losing freedom to act on it.

A simple example will reveal that the paradox
shown in fig. 2 leads to a suboptimal design.
For the example, we will look into an aircraft
design process at the time when the wing p1an­
form and structural sizing have alreadY been
accomplished to produce a combination of two
design variables, the aspect ratio and struc­
tural weight, that maximizes a measure of the
aircraft performance without violating the
constraints. Simplifying the example as much as
poss ibIe ,we can consider a design space formed
by the aspect ratio and the minimum structural
wing weight. In that design space, shown in
fig. 3, the aircraft performance can be depicted
by a set of contour lines, each line corre­
sponding to a constant value of the performance
measure P. Superimposed on the contour lines
are the constraint curves, Cl and C2. Each con­
straint curve divides the design space into the
feasible (constraint satisfied) and infeasible
(constraint violated) subspaces (domains). The
crosshatching marks the infeasible side. It is
not important for the purposes of this
discussion to define which particular aircraft
characteristic was chosen as a measure of
performance (objective function) and what
constraints were taken into account in plotting
the set of curves P, Cl, and C2. The aircraft
range for a given takeoff gross weight and
payload, and the wing static strength may be
thought of as respective examples for measure of
performance and constraint. Inspection of the
figure shows that the design which maximizes P
without violating Cl and C2 is at point 01.

Suppose now that when the f1 utter speed is
subsequently calculated, the design at 01 turns
out to have too Iowa flutter speed. In fig. 4,
it is shown to be on the infeasible side of the
flutter constraint plotted as C3. The design
has to be modified to increase its flutter
speed. If at this point in the design process,
the configuration - the aspect ratio - is
frozen, then the increase in the flutter speed
can be achieved by stiffening the wing structure
at the price of a weight penalty required to
move from 01 to 02 at a constant aspect ratio.
The weight penalty reduces the performance from
PI to P2. If the configuration were'not frozen,
a new optimal design could be located at 03,
whose performance P3, although smal1er,than PI,
exceeds P2 (P2 < P3 < PI). The difference
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P3 - P2 is a performance penalty due to the
sequential freeZing out of design options in'a
sequential design process. We can say that
design 02 is suboptimal relative to design 03';'
Another look at figs. 3 and 4, and a little
reflection, will help realizing that although
the magnitude of the performance penalty, P3 _
P2, depends on the shapes of the functions
involved (P, CI, C2, C3), its existence does not
and, consequently, the example reveals that
suboptimal results can be expected in a sequen­
tial design process in which each additional
stage restricts the number of design variables
while bringing in new constraints that must be
satisfied.

A System A1 ternat i ve to Sequent i a1
DecislOnmaking

To demonstrate an alternative based on a
system approach, reenter the example at the
point where the flutter deficiency of the
design, labeled 01 in fig. 4, has been found.
The essence of the system approach is decomposi­
tion of a large problem into several smaller
ones without losing the coupling. Therefore, we
recognize in this case that two engineers, or
engineering groups, must fix the flutter problem
with the least penalty to the performance, P, by
cooperating and yet each doing a separate sub­
task. In fig. 5, the individuals, or groups,
are labeled C - for configuration, inclUding
aerodynamics and performance, and S - for
structures.

The subtask of correcting the flutter problem
with a minimum weight penalty, Awmin, is
carried out by S for a particular aspect ratio,
temporari 1y held constant by C; using aero­
dynamic analysis results (e.g., pressure
distribution) and their sensitivity to aspect
ratio - all supplied by C. The results produced
by S are a flutter-free design at a minimum
weight penalty at that aspect ratio, and the
sensitivity of that design to aspect ratio.
That sensitivity is quantified in the form of
derivatives of the weight penalty and cross­
sectional dimensions with respect to the aspect
ratio.

Completion of the above task moves the design
from 01 to 02 in fig. 6,exactly as in the pre­
vious discussion. However, group C will now
recover a part of the performance penalty by
changing the aspect ratio and the weight penalty
concurrently. In this operation, the weight '
penalty is not an independent variable but is
tied to the aspect ratio variation by the
sensitivity derivative which tells how much the
weight penalty must change per unit of aspect
ratio variation to keep the flutter constraint
satisfied. Such dependence of the weight
penalty on aspect ratio is only a linear
approximation of a true nonlinear relation and
can be depicted by the tangent to C3 at 02 shown
in fig. 6. The configuration improvement
produced by C ca 11 s now for a move along that
tangent toward the increasing performance, that
is toward 03. The move should stop when the
tangent veers off too far (a matter of judgment)
from C3to let group S repeat its subtask in



order to recover from the 1i neari zat ion error by
regenerating the minimum weight penalty and its
sensitivity derivative at the new value of the
aspect rat io. Thus. by alternat ing subtasks
performed by C and S we can improve the design
by moving toward the theoretical optimum at 03'
in a staircase fashion: 02 to 02A. to 02B. to
02C. and so on. as long as we see that the
performance improvement is worth the effort.

Decomposition of a System

Having the idea ot decomposition introduced
by means of a simple example. we will now formu­
late the following broad guidelines for perform­
ing a decomposition:

1. break the overall large task into a
number of smaller. self-contained subta~ks.

along interdisciplinary lines or the physical
divisions among the subsystems.

2. preserve the coup1 i ngs between the sub­
tasks.

3. carry out concurrently as many subtasks
as possible to develop a broad workfront of
people and computers.

4. keep the volume of coupling information
small relative to the volume of information that
needs to be processed internally in each task.

The first three are self evident. The last
one deals with the disparity between the large
volume of information that is being processed
within a subtask and a relatively small volume
of information that couples the subtask (sub­
system) to other subtasks (subsystems). For
example. contrast the mass of data being mani­
pulated in a finite-element analysis of an air­
frame with the input data of loads. mechanical
properties. and geometry. and with the struc­
tural weight and critical constraint data which
is all that is fed back to the aircraft perform­
ance analysis. Generally. it can be expected
that the computational and labor cost of
performing analysis and optimization will be
reduced in a decomposition scheme in which that
disparity exists. On the other hand. lack of
such disparity will usually indicate that either
the decomposition scheme is improper or that the
problem is not decomposable.

Decomposition Methods
Several studies have been devoted to the

decomposition of large optimization problems.
Although none of these studies is truly multi­
disciplinary. their findings pertain to all
areas of engineering as well as economics and
management. The following overview describes
typical approaches borrowed from the field of
structural optimization. For the sake of the
discussion. two classes of decomposition methods
are defined: formal methods and intuitive or
heuristic. methods. Formal methods use th~
mathematical structure of the problem to derive
a decomposition scheme. Consequently. a
rigorous framework exists within which the
mathematical properties of the method may be
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assessed. In intuitive methods. however. an
understanding of the behavior of the physical
system is apparently the prime factor directing
the decomposition. These methods are SOmetimes
referred to as rational methods and their
mathematical characteristics can seldom be
studied in great detail. An intuitive method
provides. of course. the only option for
decomposing those problems which do not possess
the structure for which a formal decomposition
method exists. This division into formal and
intuitive methods is somewhat arbitrary as a
given approach may very well be shown to belong
to both classes. however. it facilitates the
discussion.

Formal decomposition methods. A veryexten­
sive bodY of work exists on decomposition in
linear programing (LP). The existence of very
large problems in the fieldS of economics and
operations research has stimulated efforts aimed
at exploiting the special structures of the con­
straint matrix. The major initial step in that
area seems to have been the introduction of the
Dantzi~-Wo1fe decomposition principle in 1960.
By 1970. developments in this active fi,e1d were
so numerous as to warrant the pub1icat ion of a
textbook by Lasdon. 1 In the area of struc- ,
tura1 design. problems involving collapse design
of trusses and frames were sol ved successfully
using the LP decomposition techniques. 2
Optimization algorithms have been devised for
separable non1 inear problems using coordination
techniques developed in the context of
multilevel decisionmaking processes. Once a
problem has been decomposed into smaller sub­
problems. the main task is to coordinate the
design of the different SUbproblems.
Essentially. the subproblems are grouped in the
lower levels of a hierarchy and an additional
lower-level subproblem is added to select the
coordinating variables so as to force the other
subproblems into choosing designs corresponding
to improved overall performance. The
coordination SUbproblem is itself cast in the
form of an opt imi zat ion problem. A study of
coordination in hierarchical systems is given in
the 1970 monograph by Mesarovic and
coauthors. 3 Kirsch and coworkers have used
both the model coordination technique and the
goal coordination technique to solve various
structural design problems ((4). chap. X).

Intuitive decomposition methods. The first
attempts at developlng intuitlve decomposition
schemes for large structural design problems
were extensions of the fully stressed design
method. In these approaches. the structure is
seen as a combination of elements (sUbstruc­
tures). Given an initial design for all the
elements. an analysis of the structure is made
to determine intere1ement forces. Then. each
element is optimized separately on the
assumption that changes in that element design
do not change intere1ement forces. Once all the
elements have been designed. the structure is
analyzed again and the process is repeated until
convergence is achieved. Gi1es5 and
Sobieski 6 performed the design of airplane
wings under constraints on stresses and element
stability using that approach. Kirsch and
coworkers7 designed frameworks using a



similar approach but reanalyzing the structure
after each substructure optimization, in order
to account better for load redistribution. When
optimizing a structure one substructure at a
time, it is difficult to handle global
constraints, that is constraints affected by
variables belonging, to more than one sub­
structure. Sobieski and Loendorf8 described a
procedure for structural sizing of airplane
fuselages under local constraints on stresses
and local instabilities and global constraints
on fuselage elastic displacements. The
optimization was first carried out with the
local' constraints, as described above. If
necessary, the resulting design was sUbsequently
modified to satisfy the displacement constraints
using a unit load method to determine the impact
that changes in element design have on the
violated displacements. A generalized, fully­
stressed design aPproach to large problems is
certainly economically appealing. However, it
presents two difficulties. Minimization of
individual component masses does not guarantee
minimization of the total mass; this situation
is caused by the inabil ity to control the load
path on the assembled structure level. As
mentioned earlier, it also makes it difficult to
handle global constraints. Schmit and
coworkers9 used a two-level approach to design
trusses and aircraft wings. At the global
level, the distributions of Stiffnesses, the
global level variables, were chosen so as to
minimize the total structural weight, while
satisfying global displacement constraints and
also some local constraints on stresses and
structural element buckling. For known stiff­
nesses, the end forces on the various structural
elements were calculated. At, the local level,
these structural elements were optimized
separately with respect to their detail design,
the local level variables, so that the changes
in element stiffnesses were minimized, while the
local constraints were still satisfied. The
process was repeated until convergence was
aChieved. In this decomposition, the intro­
duction of the global level problem was a key
factor in overcoming 'both difficulties attri­
buted to the generalized, fully-stressed design
approach. By placing the minimization of the
weight at the global level, the opportunity was
kept to trade structural mass between the
elements in order to improve the load paths
while reducing the total weight. Also, the
ability to explicitly handle global constraints
was retai ned.

The literature survey summarized above has
not revealed any general method that would be
capable of accounting for the couplings among
the system and subsystems without having to
reoptimize the subsystems for every variation of
the parent system design variables anq that
would apply to general nonlinear programing
prob1ems. Si nce such repeated reopt imi zat ions
would be cost-prohibitive in most large-scale
engineering applications, a new approach that
accounts for system-subsystem couplings without
repetitive subsystem reoptimizations has been
developed at the NASA Langley Research Center
and is now at the stage of testing and
verification. The approach is called "linear
decomposition" for reasons that will become
appa rent soon.
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Linear Decomposition
For generallty, fig. 7 shows a generic system

decomposed to form a hierarchical, three-level
tree. If the system were a structure, the top
level would represent the assembled structure,
each subsystem at the middle level would
correspond to a substructure, and the bottom
level subsystems would simulate individual '
structural components, e.g., stiffened panels.
'Thus, three levels is the minimum we need to
have each level qualitatively different for
generality of the discussion. We assume that
the system has been i ni t iali zed so that phys ica1
characteristics are completely defined at each
level. It is not necessary for the initialized
system to be feasible.

Analysis. For simplicity of the presenta­
tion, it is convenient to assume that the
analysis proceeds from top to bottom so that
output from the analysis of a parent subsystem
becomes input for the analysis of the subordi­
nated subsystems. For an example, consider a
structure assembled of substructures and loaded
by forces applied at the substructure boundary
nodes. For the analysis of such substructure,
one needs an internal, local input and an exter­
nal input. An example of the former is a set of
the material properties and cross-sectional
dimensions, and an example of the latter'are the
boundary forces. The internal input has to be
initialized by the "best" trial design, the
external input comes from the parent subsystem
analysis. In substructuring, the substructure
boundary forces from the assembled structure
analysis are fed into the substructure analysis
as loads, and the output-input chain continues
by entering the internal forces from substruc­
ture analysis into the analysis of a substruc­
ture of the next lower order, or into an
individual structural component analysis.

In many engineering applications, the
decomposition must account for the fact that
inputs to the analysis of a given subsystem may
be coming not only from its parent but from any
other subsystem at the same or even a different
1eve1, i riC 1udi ng inputs from the subordi nated
subsystems to their parent. An example of the
latter can be drawn from the sUbstructuring
analysis in the case where the loads applied to
substructure interior nodes are reduced to
equivalent loads applied at the substructure
boundary nodes. This requires an analysis of
the substructure before commencing the assembled
structure analysis. In other words, a, system
decomposition may lead to a network rather than
the "top-down" graph shown in fig. 7. However,
we will limit this discussion to the case
depicted in fig. 7 in order to keep it as simple
as possible for a clear introduction of the
basic approach. Extension of the approach'
necessary to handle the network systems is
presented in reference (10).

It is important that analyses at each level
include the sensitivity analysis necessary to
produce derivatives of the output quantities
with respect to the input quantities. These
derivatives measure sensitivity of behavior
(response) to the input variations.



and measures the degree of satisfaction. or
violation, of the entire set. We formulate an
individual constraint function as

1. design variables XB: physical
quantities local to the subsystem. e.g ••
detailed cross-sectional dimensions of a panel.

2. objective function nB: the cumulative
constraint (eqs. 2 and 3) of the subsystem
constraints such as local buckling, stress,
etc.

(5a)

(4)

8
an min

aOMi

The use of a cumulative constraint as the
subsystem objective is a logical choice because
it is a nondimensional quantity and, therefore,
it is comparable among the subsystems regardless
of their physical nature which may differ from
one to another. The subsystem optimization is
followed by sensitivity analysis of the minimum
of the obj ect i ve wi th respect to the subsystem
input quantities (equal to the output from the
parent subsystem, eq. 4). This analysis which
yields sensitivity information in the form of
partial derivatives

find XB such that

is determined subject to

where subscript "i" refers to an element of the
output vector OM, is called optimum sensiti­
vity analysis to distinguish it from the
behavior sensitivity analysis and is carried out
not by finite difference but by a special
algorithm. 13 Thus, the results from each
subsystem optimization are the minimum of the
cumulative constraint and its sensitivity to the
output from the parent subsystem. These results
are' now carried upward to the parent subsystem.

If there are several SUbsystems at a given
level their optimizations can be'executed con­
currently.

h8 (XB,OM) '" ° (5b)

LB 5.. XB 5.. UB ,(5c)

4. equality constraints h8: these
constraints may be required in order to preserve
the constancy of the parameters, for example, if
a parameter is a total cross-sectional area of a
panel. an equal ity constraint on the detailed
cross-sectional dimension variables is needed.

5. inequality constraints: upper and lower
1imits on the design variables. '

Using the above definitions and eq. 4, the
optimization problem for each subsystem at the
bottom level can be expressed formally as:

3. constant parameters: inputs, 18, '
recei ved from the parent subsystem. Denot i n9
the vector of output from the middle-level
parent subsystem analysis by OM, we have

(3)

(2)

(1)

DEMAND
gi '" cAPACITV - 1 <°

n '" 1. LN 0: (e p g1) )
p i

which is the negative of the conventional margin
of safety.

lhere are Several ways to formulate the
cumulative constraint as a function of the
tndividual ~onstraints in the set, for instance,
the well known quadratic exterior penalty func­
tion is a cumulative constraint. The particular
formulation adopted here is a function

Obviously. if there are several sUbsystems at
a given level they can be analyzed concurrently.

Cumulative constraint. Fig. 8 introduces the
concept of a cumulative constraint that will be
needed in further discussion. A cumulative
constraint is a single number that is a function
of a set of the constraint functions

referred to as the Kresselmeir-Steinhauser
function. II The function is continuous and
differentiable, in contrast to the envelope of
the constraint functions which is slope­
discontinuous at the constraint function inter­
sections, and, as seen in the graph, it follows
the constraint envelope at a distance that is
user-contro11 ed by the factor p. In effect, it
approximates the minimum of the safety margins of
the set of individual constraints. Increase of
the factor p draws the funct ion closer to the
envelope. However. the factor should not be set
so large that the cumulative constraint function
loses numerical differentiability by forming
sharp "knees" at the constraint intersections.

0etimization - Having described the analysis
and lntroduced the concept of cumUlative
constraint, we can discuss the optimization
process. This introductory discussion will be
limited to one variant of the algorithm under
whi ch 'the process proceeds from the bottom up.
Another variant which allows a reversed order,
from the top down, has also been developed. 12
Each subsystem optimization at the bottom level,
shaded in fig. 9, involves:
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Now, moving up one level to the middle level,
shaded in fig. 10, we perform a subsystem
optimization for each subsystem at that level.
The optimization involves:

1. design variables XM: physical
quantities local to the subsystem, e.g.,
membrane stiffness of the wing box at several
locations over the wing.

subsystem design variables that are necessary
for control of the extrapolation error
introduced by the use of eq. 6.

Using the above definitions and eq. 7, the
optimization problem for each subsystem at the
middle level may be expressed formally as:
find XM such that

is determined, where

The solution of the above problem is
subsequently analyzed for sensitivity with
respect to parameters 0T' The minimum of the
cumulative constraint and its derivatives with
respect to the system output 0T are carri ed to
the top level.

(8b)

(8c)

(Bd)

(8a)

hM(XM'°T) = °

lM i XMi UM

with oBmin approximated as a function of
XM by means of eq. 6, subject to

Optimization at the top level, shaded in
fig. 11, invol ves:

1. design variables XT: physical
quantities that govern the entire system, for an
aircraft example: configuration geometry,
structural weight prescribed for the airframe,
etc.

using the miniwum values of cumUlative
constraints, 0 min' and their optimum
sensitivity derivatives transmitted from the
subordinated lower level subsystems. These
derivatives are taken with respect to the
middle-level subsystem output quantities which,
in turn, are governed by the subsystem design
variables. This linear extrapolation eliminates
the need to reoptimize the subordinated
bottom-level SUbsystems for each design variable
change introduced in the middle-level p~rent

subsystem and gives the method its name of
linear decomposition.

2. objective function oM: cumulative
constraint for a set of constraints that
includes two subsets. The first subset consists
of the individual constraints gM intrinsic to
the subsystem itself regarded as an entity
assembled of the subordinated subsystems, e.g.,
I imit on the tip deflection of a wing box made
up of spar beams and cover panels. The second
subset includes the minimum values of the
cumulative constraints, oBmin' These values
are approximated by the linear extrapolation
estimates (oBmin)e as functions of the
middle level design variables

2. objective function F: a measure of the
system performance, e.g., fuel consumption or
direct operating cost.

3. two sets -of inequality constraints:

(a) g : system performance limitations,
e.g., taReoff field length.

(b) the cumulative constraints oMmin from
each middle level subsystem "i" approximated as
functions of XT by means of a linear extra­
polation based on the optimum sensitivity deri­
vatives:

3. constant parameters 1M: inputs received
from the parent (top level) system.

For mathematical completeness, the quantities
oBmin and its partial derivatives that are
received from the bottom-level subordinated
subsystems and appear in eq. 6 should also be
included as parameters. However, these
quantities are omitted here in the discussion
and in the ensuing equations for simplicity of
this introductory presentation and because it
has been found that they do not always have a
numerical effect on the results. Complete
formulation that includes these parameters is
given by Barthelemy.12

Denoting the vector of output from the
analysis at the top level by 0T, we have

(7)

M

( M ) = "M. + \ aOmi n
°min e "m1n 1 ao:ri AOn

Inspection of eqs. 6 and 9 reveals
is recursively related to eq. 6.

(9)

that eq. 9

4. equality constrai nts whi ch are ana Iogous
to those defined for the bottom level.

5. inequality constraints, 9M, which
include also move limits on the middle level

6



The analysis and the optimizations constitute
one cycle of the iterative procedure which
conti nues until the extremum of the system
objective is found and all the system

4. the upper and lower limits on the design
variables, including the mOve limits to cQntro1
the linearization error introduced by eq. 9.

Using the above definitions, the optimization
problem at the top level (system level) is
formally defined as:

find XT such that

The top level optimization deals with the
system performance directly and has embedded in
it an approximation to all the subsystem
constraints in the form of the linear
extrapolations (eq. 6 and eq. 9) based on the
SUbsystem optimum sensitivity derivatives.
These derivatives quantify the design trade-offs
among the subsystems and account for their
couplings. In other words, the optimum
sensitivity derivatives carry the information
(With the accuracy of a first-order
approximation) about the effects that the
variations of the top level (system level)
design variables will have on the critical
safety margins of all the SUbsystems in the
system.

Referring to the terminology introduced in
the section on decomposition literature, we will
recognize the optimization of a particular
SUbsystem at the middle level as a coordination
problem for the cluster of SUbordinated
subsystems at the bottom level. By the same
token, the optimization of the top level is a
coordination problem for the middle level
SUbsystems directly, and for the bottom level
subsystems indirectly. Although the
presentation is limited to three levels, its
generalization to n-1eve1s is straightforward by
inserting more levels between the top and bottom
ones. In sUbstructuring, for instance, it would
call for diViding the substructures into sub­
structures of a lower rank, while placing the
individual structural components at the bottom
level.

min F(XT)
(; XT

subject to

gr 5.. 0

M
(I1min )e < 0

M is eva1 uated by 9)(where (I1 mi n)e eq.

LT < XT < UT

(loa)

(lOb)

( lOc)

(lOd)
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constraints and the subsystem cumulative
constraints are satisfied. For more algorithmic
detail, consult Sobieszczanski-Sobies~i.l0

Heuristic or formal decomposition. While the
procedure descrl bed 1n the preVlOUS five fi g~res
is generi c, the decompos iti on of the system 1s
problem dependent. It can .be done by a common
sense inspection and jUdgment,as illustrated in
the top of fig. 12. It can also be done ..
formally by inspecting the matrix relating the
design variables to the objective and constraint
functions, as shown in the lower part of
fig. 12. A dot at the row-column intersection
means that the variable corresponding to the
column appears in the equation corresponding to
the row, and a blank means that the variable
does not appear in that equation. The three
examples show typical patterns.

Adaptability to the desi~n stage. Once the
decomposition tree is estab ished,it can be
grown with respect to the number of subsystems
and the depth and detail of analysis, as
depicted in fig. 13 (see the fuselage finite­
element model changing from a "stick" model to
a stiffened shell model). This adaptability
allows the same overa 11 1ogi c of approach to be
used at various stages of design while changing
the modules in that logic - a desirable feature
from the standpoint of the process integration.

Issues under research. The multilevel
procedure described here is still being
developed toward a state of maturity required
for industrial applications. To achieve that
state, a research program conti.nues to
investigate several fundamental issues.

One of these issues is the convergence at the
bottom, middle, and top levels of optimization,
and includes the basic question whether the
procedure converges to at least a local minimum
of the nondecomposed problem. Closely related
to this issue is the econoll\Y of the method
measured by the labor cost and computational
cost. Another question is that of accuracy,
relating to both the linear extrapolations based
on the sensitivity derivatives and to the
consistency of the level of analysis applied to
different subsystems. It may not be easy to
assure the latter, especially when the
subsystems are physically dissimilar.

A particularly intriguing problem appears to
be the synchronization of the analysis and
optimization tasks being performed
concurrently. Obviously, it may not be possible
to achieve the decomposition in such a way that
each SUbsystem analysis and optimization at a
given level would take the same time (again,
especially if the subsystems are physically
dissimilar). If these times are not equal , the
optimization of the parent SUbsystem can either
wait for returns from all the subsystems; or it
may proceed with old information from the "slow"
subsystems until the new information is
available. The overall convergence will
probably be affected by the course of action
chosen in this regard.



Probably, the most important issue is that of
incorporating human judgment, control, and
creativity into the entire procedure. Deliber­
ately, the procedure is set up to facilitate
these human contributions because each subsystem
analysis and optimization is a self-contained,
black box operation and, in principle, it can be
carri e~ out by: any mi xture of human jUdgment,
an~lys~s, and even experiment. A problem may
arlse If human judgment suggests a discrete
change in the subsystem optimization. Such
discrete change, e.g., shifting to another
design concept in a subsystem, may have an as
yet unknown, 'impact on the overall conver~
gence.

The development toward maturity involves
continuation of the literature survey whose
condensation was included previously, numerous
tests of several variations of the algorithm
using very simple test cases, and a fairly large
test case of a framework structure. A
multidisciplinary test is underway for
reconfiguration of a transport aircraft wing
treated as a part of an ai rcraft system. The
latt~r tw~ case~ ~re outlined in a subsequent
sectIon; ln addltlon, the series of test cases
includes, a wing separated from the aircraft,
and,a hi~h perf?rmance sailplane wing
deslgn. 1 The Issues of computational
parallelism and synchronization among the
subtasks are being explored using a network of
"desk top" microcomputers connected to a central
hard disk. 14

Application Experience

This section provides a brief account of the
numerical experiments undertaken to validate
multilevel optimization by linear decomposition.

Structural Appl ications
A two-level structural optimization of a

framework shown in the upper 1eft of fi g. 14 has
been successfully carried out and reported.15
The ~ecomposition illustrated by the schematic
ln flg. 14 exploits the fact that the end forces
shown in fig. 14 acting on each separate beam in
the framework can be calculated using the
cross-sectional area, A, and moment of inertia,
I, for the beams without directly using the beam
design variables which are shown for the
~-sh~ped cross··section in the inset to the right
ln flg. 14. Furthermore, the constrained
quantities, e.g., stresses, in an individual
beam can be calculated using only the beam's
detailed cross-sectional dimensions and the
applied end forces. The local constraints for
each beam guard' against overstress and local
buckling. There is also a constraint at the
system IeveI to prevent an excess i ve hod zonta1
displacement of the upper right-hand corner of
the framework where the load is applied.

Thus, we have a case of a decomposition
consisting of the top level (sYstem level)
corresponding to the assembled framework and the
bottom level corresponding to the isolated
beams. In this decomposition scheme, the A's
and I's are the system design variables and the

B

detailed dimensions are the subsystem design
variables. The beam is optimized by reducing
the cumulative constraint to a minimum
(maximizing the safety margin). In the process,
the beam cross-section isreproportioned while
preserving the A and I prescribed for the beam
at the system level. This is a reverse of·ia
conventional approach of resizing structural
components to a minimum weight for the given end
forces.

Optimization at the top level manipulates the
framework stiffness di stri but ion by means of the
A and I variables moving the design toward the
minimum structural weight that can be attained
while satisfying the system level constralnt.for
displacement and the subsystem level constraints
for stress and local buckling.

A detailed report 15 indicated that this
test showed good correlation with a reference
obtained by conventional optimization without
decomposition. The minimum structural weight
values obtained for various starting points were
within 2 percent of the reference value.

The two-level framework structure has been
extended to three levels, as illustrated in
fig. IS, by replacing the I-shaped beam cross­
sect ions wi th box beams made up of stri nger­
reinforced panels (cross-section shown in Detail
H). The panels add the third, bottom level of
subsystems. This makes the test more general
because it contains now all three level catego­
ries: top, middle, and bottom. At the time of
this writing, the tests are sti 11 in progress,
and preliminary results are promising.

Multidisciplinary Application
rhe wlng Of a transportaTrcraft (Lockheed

L-1011), depicted in fig. 16, is to be
reconfigured to minimize fuel consumption for a
given mission.

To achieve this, a three-level decomposition
has been applied, as shown in fig. 17. The
procedure that has been introduced in the
generic terms in the preceding sections of this
paper acquires now a specific, physical meaning
in each of its elements.

At the top level, we consider the aircraft as
an assembled system that should have positive
safety margin (all constraints satisfied) and a
minimum fuel consumption for a given mission.
The configuration dimensions noted in fig. 16
and the wing box structural weight are design
variables at this level. The constraints are
the aircraft performance constraints such as
maximum takeoff field length, minimum range for
a given payload, etc. Analysis at the top level
is standard aircraft performance analysis16
that includes calculation of the lift and drag
data needed for performance evaluation.
Parameters passed to the middle level are the
structural weight of the wing box, the wing ,
geometry, and the data needed to calculate
aerodynamic loads at the middle level.

Since only the wing is to be reconfigured in
this particular case, the middle level consists



of only one subsystem - a wi ng structural box
built up of spar beams, ribs, and cover panels.
The panels are sheet metal reinforced by
stringers which cause the stiffness properties
to be orthotropic. Consequently, the wing cover
membrane stiffnesses in the spanwise and chord­
wise directions can be controlled by thickness
of the panel sheet material and an equivalent
thickness of the stringer ma~erial. To provide
a smooth distribution of stiffness over the
wing, the two thicknesses for each panel are
defined by an assumed distribution function
extending over several panels. One such
function used for initial testing is shown for
the sheet metal thickness in fig. 18. The
function is a quadratic polynomial in a
dimensionless spanwise coordinate, fl, and has
two, separate branches: one outboard and one
inboard, with the engine supporting rib being
the dividing line. The thickness is set
constant chordwise, and is the same for the
upper and lower covers. The middle level design
variables are the coefficients, C, in the
polynomial shown in fig. 18, one may regard this
stiffness distribution as.an example of variable
linking. By prescribing a different function,
including in it the chordwise coordinate, and
using separate functions for the upper and lower
covers, it is possible to introduce more
realistic spanwise and chordwise variability in
the thickness distribution. The constraints
local to the wing box subsystem guard against
excessive wingtip displacements and are included
in a cumulative constraint which represents also
the panel constraints (eq. 6). There is also an
equality constraint to maintain the constant
structural weight value prescribed for the wing
box as a parameter received from the top level.

Analysis at the middle level includes
aerodynamic load calculation on the wing, and a
finite-element analysis of the displacements and
internal forces. The parameters passed to the
bott~n level are geometrical dimensions for each
panel, the sheet material thickness, the
equivalent thickness of the stringer material,
and the edge loads (Nx, Ny, Nxy ) obta i ned
as internal forces from the analysis of the
finite-element model in which the panels appear
as orthotropic finite elements.

The bottom level consists of 216 wing cover
panel optimization problems. They are all
independent of each other and could be processed
concurrently, if a network of computers or a
multiprocessor computer were available. The
design variables are cross-sectional dimensions
of the stringers that are to be varied within
the equality constraints of the constant equiva­
lent stringer thickness and sheet material
thickness. The object of the optimization is to
minimize a cumulative constraint that represents
the constraints of stress and local buckling in
the panel. These constraints are evaluated by
closed form formulas commonly used in
engineering practice. In contrast to the
conventional approach, it is not the panel
weight that is minimized in the bottom level
optimization but the cumulative constraint,
while the weight is maintained constant as
prescribed by the parameters of sheet material
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thickness and stringer material equivalent
thickness set at the middle level optimization.

Optimization at all levels is performed by
means of nonlinear mathematic~l programing
techniques. The technique of usable-feasible
directions is used at the bottom and middle
levels, while a SUMT with a Davidon-Fletcher­
Powell algorithm is used at the top level.

At the time of this writing, all levels of
the decomposition shown in fig. 17 were imple­
mented on the computer and tested individually.
In addition, the middle and bottom levels
(shaded in fig. 17) were connected and tested
together. All these intermediate tests have
been satisfactory as reported in reference (17).

Reference results for judging the performance
of the new method are provided by the test
aircraft manufacturer. 18 The reference
reports on the solution of the same design
problem obtained by a conventional parametric
study method using well-established and
experimentally validated computer programs.

Concluding Remarks

A particular approach to decomposition of a
large engi neeri ng problem into a set of Small er
sUbproblems organized in several levels has been
outlined. The,approach uses linear extrapola­
tions based on.optimum sensitivity derivatives
as a means to quant ify the des i gn trade-offs.
The method is intended as an aid to human
intellect for application to large engineering
system design problems (e.g., aircraft) which
are dominated by quantitative, computable
considerations. '

In its present development, the method's
theory has been initially established.
Val idat i on tests are underway us i ng structural
and multidisciplinary test cases; the latter
includes an aircraft configuration foi-which
industry-generated data are available to gage
the method's performance. The test results to
date have been satisfactory and the development
conti nues toward the maturity necessary for
industrial applications.

Implementation of the proposed multilevel,
linear decompos it ion in des i gn wi n fi t the
existing organization of professionals and will
exploit the new technology of distributed,
parallel computing, as illustrated in fig. 19.
The approach introduces the new element of
mathematical quantification of the design
trade-offs and will establish a precise
definition for information exchange among the
specialists working on their subtasks. Under
the proposed scheme, the decisionmakers at each
level will know the consequencesofthei r
decisions on other coupled subsystems. Based on
this knowledge, it should be possible to improve
the design integration toward higher performance
and lower cost.
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