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ABSTRACT

The paper deals with the minimax problem min max fi(x). We work
x E ]Rn i=l,''', m

with its equivalent representation mint s.t. fi(x) t < 0 for all i.

For this problem we design a new active set strategy in which there are three

types of functions: active, seml-active, and non-active. This technique will

help in preventing zigzagging which often occurs when an active set strategy

is used. Some of the inequality constraints are handled with slack variables.

Also a trust region strategy is used in which at each iteration there is a

sphere around the current point in which the local approximation of the

function is trusted. The algorithm suggested in the paper was implemented

into a successful computer program. Numerical results are provided.

*This research was supported by the National Aeronautics and Space
Administration under NASA Contract No. NASI-15810 while the author was in

residence at the Institute for Computer Applications in Science and

Engineering, NASA Langley Research Center, Hampton, VA 23665.
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INTRODUCTION

This paper deals with the minimax problem mln max fi(x)
x _ _n i=l,''',m

where fi' i=l,''',m are real valued functions defined on _n. We begin by

transforming the problem into an equivalent inequality constrained

minimization problem mint s.t. fi(x) - t _ 0 for all i, i=l,''',m. For

this problem we suggest a new active set strategy in which there are three

types of functions: nonactive, seml-actlve and active and these sets play a

different role in our algorithm. The active ones are treated as equality

constraints; the seml-active ones are assigned slack variables so that they

can be treated as equalities too. The introduction of semi-active functions

may help prevent the possibility of zigzagging that sometimes occurs in

algorithms that use active set strategy.

At the end we solve an equality constrained minimization problem for

which we design a trust region algorithm that takes into advantage the special

structure of the problem. In this algorithm we have at every iteration a

sphere of radius r, in which the local model that is used to approximate the

functions is trusted.

Section 2 contains the basic model with all the necessary notation as

well as the introduction of the new active set strategy. In Section 3 we give

a description of the trust region strategy in unconstrained minimization and

in constrained minimization. We suggest the use of the trust region for the

minimax problem in Section 4. In Section 5 we discuss our numerical

implementation of the algorithm and in Section 6 we give the numerical results

of six problems taken from the literature with various starting points.



2. THE BASIC MDDEL

Consider m real valued functions fl,''',fm defined on _ n. We are

interestedin solvingthe problem

(PI) min max fi(x)
x g _n i=l,''',m

(PI) is equivalentto (P2):

(P2) rain t

x,t

subject to fi(x) - t < O, i=l,''',m.

By introducing m slack variables Wl,...,wm we obtain another equivalent

problem:

(P3) min t
X_t_W

1 2
subjectto fi(x) - t + _w i = 0, i=l,'",m.

We have thus transformed our original problem into a problem of equality

constrained minimizationfor which successfulalgorithms are available. We

use a trust region approach to solve (P3), while taking advantage of the

structure of the problem. We demonstratethat the additionof m variables

in (P3) does not result in additionalwork and provides a good way of dealing

with the inequalityconstraintsin (P2).

The followingnotationwill be used:



_fl 8fm

F =(ill VF =_fli7 "'" 71_ i _fm/_i .-_-x "'"_-7-"
n n

Associated with each index j we have a Lagrange multiplier vj. Thus

we obtain the Lagrangian function

L(x,t,v,w) = t + _ vi (fi(x) - t +1/2w2i).

The gradient of L is

7Fv

VL = V t,w, L = , i=l,...,mx, (viwi ) '

(fi(x) - t +I/2w_) , i=1,..',m!

and the Hessian matrix of L is

(!00 1
0 0 -eT

V2L =

0 diag(vi) diag(w: )

FT -e diag (wi) 0 ± /

T EviV2fiwhere e = (I,-.-,i), B = (x).

We now state the necessary conditions for a solution to (P2).

* /VF(x*)_

Theorem2.1. Let x g _ and assume that _ -eT / is of full

rank. Necessaryconditionsfor a local minimumat x (with

* (x*)) *
t = max fj are: there exists v _ _m such that



+ \ -eT v = O,

viIfi(x ) - t*) = 0 for all i,

vi ) 0 for all i,

fi(x ) - t _ 0 for all i,

,)TTIB0)and for all z E ]Em such that /VF(x ) z --0, z z > 0.

-eT 0 0

(The last condition in the theoremwill always be satisfiedin our algorithm

because we use a BFGS matrix update to obtain a symmetricposltlve-deflnlte

approximationto EvlV2fi(x). For an appropriatediscussionsee Powell [5].)

At the solution (x*,v*), some components of v are zero, and the

correspondingfunctionsdo not influencethe directlonof convergence. This

leads to a naturaldivision of the functionsinto active and non-actlveones,

and to an actlve-setstrategyto determinethe active set at each iteration.

We suggest here a division of the functions into three sets: active

functions, seml-actlve functions and non-actlve functions. These sets are

denoted by (I), (II), and (III) respectively. A function fl becomes active

at a certain iteration if fi(x) = max fj(x), or if it was seml-actlveandJ
preventedus from takinga longer step in the previousiteration(i.e.,

fi(x + _) was greaterthan max f (x + Ax) for lIAxll> llAxll.)It will stayj J
active as long as its Lagrangemultiplierremainspositive. Set (I) will not



contain more than (n+l) functions at any iteration (since at most (n+l) can be

active at the solution).

A function fl becomes seml-actlve if it has just been dropped from set

(I) (in which case its multiplier is relnltlallzed with a positive value), or

if it was non-actlve and prevented us from taking a longer step in the

previous iteration. It will stay seml-actlve as long as its associated

multiplier remains positive. In a neighborhood of the solution we expect to

have no seml-actlve functions.

We now consider the problem

mln t
x,t,w

fi(x) - t = 0 , i activefi(x) t +I/2wi2= O, i semi-active.

Let FI, F2 denote the function vector for sets (I), (II) respectively and

VFI, VF 2 their gradients (in columns). Each active function fl will be

associated with Lagrange multiplier vi and each seml-actlve function fj

will be associated with multiplier uj. Now the Lagranglan becomes

g

t) y
f

L(x,t,w,u,v) = t + vi[fi(x) - + ui[fi(x) - t +q2wiJ.
i € (1) i € (If)

(2.1)



-Vflv + Vf2u

1 - Ev. - Eu.
i i

VL = (uiwi) , i E (II) (2.2)

(fi(x) -t) , i _ (I)

_(fi(x) - t +1/2w_) , i _ (II) _

c

B 0 0 VF1 VF2

0 0 0 -eT eT

V2L = 0 0 diag(u i) 0 diag(wi) (2.3)

VF_ -e 0 0 0

VF_ -e diag(w i) 0 0

Assume we have in a certain iteration x,t,w,v,u. A Newton-type step would

then be determined by

At

Aw = _ (V2L) -i VL.
(2.4)

Av

Au

When we multiply by V2L from the left and consider the resulting

equation by components we obtain:



(B0 ivF11ivF21+ v+ + u+ = 0, (2.5)
0 0 At \-e T/ \-e T/

uiAwi + u+iwi = O, for all i E (II), (2.6)

-e At

where

v+ = v + Av, u+ = u + Au.

I 2
In (2.8) we assumed that for all i E (II) fi(x) - t + /2wl = 0 because in

each iteration we will take t = m_x3 fj(x) and 1/2Iwi )2 = t - fi(x)"

We can now eliminate the slack variables from our system:

from (2.6)
W.
l

AWi = - ui+ ui

from (2.8)

VF2 2

- dlag(wl/ui)u + = O.

-eT- At

Since

2
wi = 2(max fj(x) - fi(x)),

3



u+ = diag(ui/2(max fj(x) - fi(x)) (2.9)

J t-eV A

We can now replace u+ in (2.5). Define

C - + |_eT I diag(ui/2(max fj(x) - fi(x)) • (2.10)
_e T

Then the linear system (2.5) - (2.8) becomes

\-eTI[VFIi -(7) (-V_e)'il -
c + 1 v

= - . (2.11)

_eTl 0 FI - tl

In this last representation of the system (2.4) the semi-active functions

affect only the matrix C.

An iterative algorithm that is based on (2.4) will converge to a solution

(x0,t 0 0 0 0only if ,w ,v ,u ) is close enough to the solution. In order to

obtain convergence from bad starting points we suggest the use of the trust

region strategy applied to problem (P4).

3. THE TRUST REGION STRATEGY

We first describe the trust region in the unconstrained case. The

problem is min f(x) where f : I_n + ]p_ For a step Ax with llAxU
x_ _n

small enough we have



9

f(x + Ax) _ q(x + Ax) - f(x) + Vf(x)TAx+ I/2AxTBAx, (3.1)

where Vf(x) is the gradientof f at the point x and B is a symmetric

positive definitematrix approximatingthe Hessianof f at the point x. If

we try to minimize the quadraticfunction q over Ax we will obtain

Ax = -B-IVf(x), the quasi-Newtonstep. The quadraticapproximationin (3.1)

is only valid for gAxfl small enough. Ax = - B-IVf(x) may not always be a

good step to take. In a trust region algorithm we assume that at each

iterationwe have a radius r that was determinedat the end of the previous

iterationas an estimate on the radius of the ball with a center at x in

which the approximation(3.1) can be trusted. Thus we obtain the problem

min q(x + Ax) = f(x) + Vf(x)TAx +i/2nx-Bnx'T
Ax

s.t. llAxfl _ r.

The solutionto this problem is Ax = Ax(k) = -(B + k I)-iVf(x) where

k = 0 if flAx(O)fl_ ri > 0 is s.t. UAx(X)H= r otherwise•

When the radius is large enough, X = 0 and the full quasi-Newton step is

taken. We can prove that in the neighborhood of the solution, when a BFGS

matrix update is used to obtain B, X = 0 in each iteration resulting in

Q-super-llnear convergence. When r is very small, X >> 0, Ax = - _ Vf(x),

and we obtain a short step in the negative gradient direction. More details

on this algorithm including numerical results can be found in Vardi [8].



I0

Consider next the problem

min f(x)

x _ _ subject to hi(x ) = 0 i=l,...m

where f,hl,...,h m : _ . _ m < n. When we assign a Lagrange multilplier

vi to each of the constraints we can form the Lagrangian function

L(x,v) = f(x) + h(x)Tv.

VL(x,v) = =

\WL(x,v)/ h(x)

V2f(x) + EVlV2hi(x) Vh(x))

V2L(x,v) =

Vh(x) T 0

Let

B _ V2f(x) + EviV2hi(x)

be a symmetric positive definite matrix

_ ( B Vh(x) )

B =

Vh(x)T 0

Then the quasi-Newton step for this problem becomes



II

or

= - . (3.2)

(x)T 0 Av \h(x) /

The following quadratic programming problem is equivalent to (3.2):

(Vh(x) is assumed to be of full rank; B positive definite.)

rain L(x,v) + VxL(X,v)TAx + I/2AxTBAx (3.3a)
ix

subject to h(x) + Vh(x)TAx = 0. (3.3b)

To this problem we now add the contraint nAx_2 • r, i.e., we impose a

trust region of radius r. Since it is possible that

{ix:h(x)+Vh(x)T_x--O}n{Ax:flax,•r}--€,

we have to make the followingcorrection: solve at each iteration

min L(x,v)TAx + I/2AxTBAx
x

s.t. ah(x) + Vh(x)TAx-- 0

11Axl[• r

where 1 ) = > 0 depends on r and is determined so that

{Ax : oh(x) + Vh(x)TAx = 0} n {Ax : ltAxll• r} * €,
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and that the norm of the resulting step Ax is a monotonically increasing

function of r (so that for each r there will be a unique solut$on Ax).

Given r we determine k as follows

Ik = 0 if llAx(k)ll< rk > 0 such that llAx(k)ll= r otherwise.

The solution just presented can be written, similarly to (3.2) as

When the radius is large enough, k = 0 and the full quasi-Newton step is

taken. We can prove that in the neighborhood of the solution k = 0 in each

iteration, resulting in two-step superllnear convergence. When r is very

small, k >> 0, v+ = v+ _ -[Vh(x)TVh(x)]-iVh(x)Tvf(x) and Ax = k VxL(X'_+)"

This algorithm was introduced in Vardi [7]. Proofs of global and local

convergence are provided there together with numerical results for several

test problems.

4. THE TRUST REGIONMDDEL FOR THE MINIMAX PROBLEM

We will apply the trust region strategy on the system (2.10). Let mm 1

be the number of active functions in a given iteration. We assume in this

[VFl IvFI\
sectlon that \_eTJ is of full rank. (The case where [ T) is rank

deficient will be discussed in section 5.) Let Q( T _ H = represent
\-e !

a Q-R decomposition of \_eT J where Q is an orthogonal matrix, H a

permutation matrix and T upper triangular. Let Q = [QI] where QI hasQ2
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mm I rows. The new system becomes then

Vl (0i iv1_(X) (FI- te)
-e

where

_(X) = min{l , max{l'z}IX2
where

,,Q2cQTIT-THT(FI - te)H ,,Q2(_),,
Z =

IIT-THT(FI - te)112

(When mm I = n+l we always have Q2[_ ) = 0; see remark at Theorem 4.2.)
In

(4.1), X = 0 if the radius is large enough so that the norm of At

(computed for _ = 0) is less than r; otherwise _ > 0 is determined so

that U II= r. The next theorem summarizes the characteristics of \At(h) '

Av(_) as a function of _.

Theorem 4.1. Consider

(Ax(X)), Av(X)nt(x)

as defined in (4.1). Then

lAx(X)nt(x)'

is monotonically decreasing to zero as a function of h. When h . =,
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v++v+- \-eU \-e_ e,
and

Also when

Q2 10)_= 0 and X . =%

( ) ,v,,_rtv,,_,fv,,_l-,
X2 AtAx +max{l'z}[-eT)l [-eT) \-eTJ] IF1- t e).

nx(X)
Proof. The proof of monotonfelty of HAt(X)ll is simple but long and is

omitted here. For a proof see Vardf [7].

From (4.1) we have

t; (IT')(:)(C + XI) + v+ + = 0, (4.2)
\At/

+ _(X)IFI - te) = 0. (4.3)

From (4.2) we have

At = - (C + k I)-I [\-eT] v+ + , (4.4)

and from (4.3)
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r v.1 ,iv.11]1[ '(i)]v+ [\_eTl (C + X I)-I (X)(F I - te) - \_eT/ (C + X I) -= x-eT

(4.5)

When X + _,

VF T VFI max{_,z} (F1- t e)-C:T 1) + v+ •v++ L\-eI \-eIj

From (4.2)

\Atl _eT/V+- + -\_eTIv+- I "

Note that when

(o)Q2 =0 ,
i

(using the definition of Q2 )

thus

(o)Le_# 0
0

Further, careful analysis reveals that when Q2 ( ) = 0 and X +
i

(VF I_T -IX(v+- v+) + max{l,z} (FI - t e)

L\-eT/

and thus (using (4.2)

I:> >"12 + max{l,z} (F I- t e) •

t e -e
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Theorem 4.1 points out a nice feature of the algorithm: on the limit,
Ax

when k . _, [At) and Av depend solely on information that,comes from

active functionswhile seml-actlvefunctionsand the matrix B are ignored.

In the course of the algorithmwe often check whether for a given r the

resulting step, Ax ,satisfies max f (x+Ax)< max f.(x). If not, we try a
j J j J

shorter radius. The next theorem confirms that there always exists r > 0

Ax(_)
small enough (or equivalently, because At(k)ll is monotonically decreasing,

> 0 large enough) such that the step is accepted.

Theorem4.2. Let

At(X)J'Av(X)

be computed as in (4.1) and assume

VFII

Also assume that if

Q2 (0I) = 0 then (v+)i > 0

for all i E I such that fi(x) < max. fj(x). Then there exists k > 0 large
3

enough such that

max fj(x + Ax(k)) < max fj(x) .
J 3
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_VFI_ =

Remark. When rank \-eTJ n + i, Q2 does not exist. However from now on we

will assume that the case where Q2 (0) = 0 includes the case where

_VFI_ __

rank \_er J n + i.

Proof. From Taylor's theorem we have

_fi(x + Ax) - _fi(x) = _Vfi(x)TAx + _AxTV2fi(_)Ax for all i £ (I).

when k . _,

+ Ax) - kFl(X ) . - VFI(x)TVFI(X)_..+_F1(x

If Q2 (0) _ 0

VFl(X) T VFI(X)_ + = [VFI(X) T VFI(X) . eeT][VFl(X) T VFI(X) + eeT] -I e

= (I- eT[vFI(X) T VFl(x) + eeT] -I e) > 0.

Thus for k large enough, for all i E I, fi(x + Ax) < fi(x).

I°)Q2 ±-(?) = 0 implies (see Theorem 4.1) that \-e T/_ + I = 0. In this

case we assumed that (FI - t e) # 0 and (_+)i > 0 for all i such that

fi(x) < max fj(x).J
In Theorem 4.1 we have shown that

T -I

ivF111k2At -max{ i,z}eT _T
. - = }v+(F I -te) < 0.

L\-eT!\-eVJ(F1re) ax(1,z
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Thus for % large enough At < 0.

[fl(X+Ax) - (t+At)] = [fi(x)-t] + \-eV At 2_AtJ 0 At '

for all i _ (II). When % +

12{[FI(X+AX)- (t+At)e]- [Fl(X) - t e]}

-I

max{l,z} (F1 - t e) ( 0.
->

Thus for _ large enough

Fl(x + Ax) _ Fl(x) + Ate < Fl(x).

This completes the proof.

We can now present the algorithm:

Step I Start with xO, (II) = @ , (I = {i: fi(x0) = max fj(x0)}, r0, B0,

k = -i. J

Step 2 Let k = k+l, RADINC = 0.

Step 3 Take a Q-R decomposition of and check whether

Q2(1) = 0. If so, compute v+. If for all i E I such that fi(x)

< max fj(x)(v+) i > 0 (or if Q2 (0) # 0) continue to Step 4.J
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Otherwise remove from set I the function i0 such that fi0(x) <

max fj(x) and with the minimal (v+)i, and insert it in set II.

Restart step 3.

Step 4 Compute Ck as in (2.10).

lAxk , Avk that solve the system (4.1) with theXk ,

Step 5 Find tAtk 7 Axk / Axk .\

II kll • rk Xk > 0, Xk_l kll - rK_ = 0. (Seerequirements: k !At At

Section 5 for computational details.)

fj(xk + Axk) < max. fj(xk). If so continue to StepStep 6 Check if max

j J

7. If not, if RADINC • 0 half rk, RADINC = RADINC-I and go to

Step 5. (If RADINC > 0 the step corresponding to the smaller

radius has been computed already. Retrieve it and continue to Step

7.)

Step 7 If no new active functions are introduced by the last step and if

RADINC > 0 and if lk > 0 let RADINC = RADINC + I, store the

current step_ double rk and go to Step 4. Otherwise continue to

step 8.

Step 8 Check for convergence.

Step 9 Compute uk+l by (2.9) and vk+l by (4.5) and according to the

signs update (I) and (II). (See Section 2). Compute Bk+l

(details in section 5).
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Step I0 xk+l = xk + Axk . Return to Step 2.

Theorem 4.2 guarantees that in every iteration there will be rk small

fj(x k+l) < max fj(xk). We have to justify here the
enough for which max

J j

removal of an active constraint as described in Step 3 when (v+)i < 0 and

Q2(10) = 0 (i.e. mm I = n+l. For a discussion on the possiblility of

Q2(_) = 0 when is rank deficient see Section 5.)
\_eT

The necessary conditions at the solution x require that

+ v* = 0 and v* _ 0.
_e I" /

Since mm I = n+l

\ eT :\

(because Fl(X*) = t*). Thus Q2(_ ) = 0 and (v+) i < 0 implies that we are

converging to a point with a negative multiplier and we therefore need to

remove that function from the active list.

5. IMPLEMENTATION

A scaling problem In order to prevent a scaling problem that may be

created in __eT / when IIVFIH is much greater or much less than one, it is

important to actually replace (P2) by

(P2") rain c t

subject to fi(x) - c t € 0 i = l,''',m
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IVFl_

Now instead of working with the matrix \/'-eT. we work with the matrix

VFITI • In order for this matrix to be well scaled, we update c to-ce /

c = llVFl(X)li frequently. This modification can be accomplished without

difficulties. (We will continue to assume c = i in the rest of the paper

for clarity.)

Initlallzation of (I) and (II). As "Step i" in the algorithm indicates, at

the first iteration usually only one function is active and all the rest are

nonactive. We have tried other options where more of the functions were

active and seml-actlve in the first iterations but observed that this strategy

does not result in a decrease in the number of iterations. Since these other

options required in total more gradient evaluations we decided to use

initially one active function.

Solvlng System (4.1). Using the Q-R decomposition of the matrix /VFI_

-e

we can obtain the following expressions:

From (4.3)

Q1 = -a(1)T-TH T (F1 - t e) . (5.1)
At

From (4.2)

Ax -_Q2CQ T + I I)-IQ2 +
Q2 At = (5.2)
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= + Q2 2 " (5.3)
At Q1 Q1 At At

A _olesky decomposition of C is performed, C = LLT. (When mm 2 = 0

and C = , L = where B = LILI. ) Define M = Q2L and let
0 0 0

PMrE = [_] represent a Q-R decomposition of MT, (e orthogonal, E

where PI
permutation, R upper triangular). Partition P into P = P2

has n+l-mm I rows. We now have (Q2CQ_ + I I) = E(RTR + I I)£ r and Q2(_ )

can be obtained by solving

T R R T

where

b = + P1 L Q1 1

In order to solve this linear least squares problem, a Q-R decomposition of

I ]/2 is obtained with the use of Givens transformation.I

Define #(1) = R(_t)l;- r. For a given l we can use the above

decomposition to compute #(1) and _'(1). A i iterative scheme is used to

obtain l such that @(1) = 0. In this l-iterative process we usually have

a good guess for l and we take ij+l = Ij _ (lj) + r #(l j) • Known upper
r _" (lj)

and lower bounds on the solution are used to help the convergence• It takes

an average of less than two l-iterations to obtain an acceptable solution,

(i.e. l such that _(1) < 0.i * r) • For more details on this part of the

algorithm see Vardi [7].
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Updating B. When moving from the kth iteration to the (k+l) th iteration,

k V2 fi(x k) + _ k V2 fi(x k)
Bk = _ kVi xx kUi xx

i el i g II

has to be updated into

Define

k [7F (xk+l) - VFl(xk)]vk+l + [VF2(xk+l) - VF2(xk)]uk+lY = I

IAxkIf \Ark is small, it is reasonable to require that Bk+iAx k = yk Other

requirements on Bk+l are that it is symmetric, positive definite, close to

Bk in some norm and easy to compute. The B.F.G.S. update is often used in

which

Bk+l = BFGs(Bk Axk uk ) = Bk + yk ykT _ Bk Axk AxkT Bk •
kT Axk AxkT Bk AxkY

If Bk is positive definite and ykT Axk > 0, Bk+l is positive definite. In

our algorithm we use a modification of the BFGS that was suggested by Powell

(see Powell [5]):

Bk+l = BFGsIBk,Axk,_ k)

where

k 0yky = + (l-e)Bk Axk

and
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k Axk AkT BkI if y > 0.2 Axk

e =

0.8 AxkT Bk Ak
otherwise

kT
AxkT Bk Axk _ y Axk

Powell proved that when this update is used in an algorithm for constrained

minimization, local two-step superlinear convergence results.

IV)FI is rank deficient
When

e

When the Q-R decomposition is performed to obtain Q(V_) (:)
= , we

check at each step whether any of the remainingcolumnshave norm larger than

(machine ps) x TII. If not, we stop. If % steps were performed, and T is

VF 1
an % x mmI upper triangularmatrix, we considerrank [_eT) = %. Partition

Q = (QI) H = HI,H2 and • = [T,S] where QI has % rows, H1 and TQ2 '
A--

QI(_ ) =- _(k)T-TH_(F1- -t e) and all
have g columns. (5.1)becomes

other expressions remain the same. The effect of this is that the active

functions that correspond to the remaining columns in (VF_) are ignored.

VFI 0
e_

When ( T) is rank deficientit is possible that Q2(I) = 0 and as the-e
N

algorithm indicates v+ is checked and active functionswith negative (_+)i

may become semiactive.

6. NUMERICALTESTS

A computer program based on the algorithm was written and tested on 6

test problems from the optimization literature as well as one large practical

problem.

The complete informationon these problemsis given in this section. In

order to check global convergence we added starting points that are much
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further from the known solution than the suggested starting points. In all

problems global convergence was achieved and fast local convergence was

observed.

For all problems we used r0 = I, B0 = I. The stopping criteria were

i. nAxH < lO-10(llxll+ i),

i0)I -eT/

and

max fi(x) - rain if(x) < 10-6 max{l max fi(x) l' I rain fi(x) l}"
i _I i_l i_l "icl

In each of the problems we tried 3 starting points. We recorded the

number of function evaluations and the number of individual gradient

evaluations (i.e., gradients of functions in (I) and (II); if, for example,

thre are in a certain iterations mm I active functions and mm 2 semi-active

functions , we count mm I + mm2 gradient evaluations.)

We display the count for all iterations at the end of which a change in

(I) or (II) occurred.
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Test Problem I

n = 2, m = 3 Fl(X) = x21+ x_

F2(x ) = (2 - Xl )2 + (2 - x2 )2

F3(x ) = 2 exp(-x I + x2)

solution x = (1.139037652, .8995599384)

fl = F2 = 1.952224494

Starting Iteration No of. Fun. No. of max fj(x) Semi- Active
Point No. Evaluation Ind. Grad. Active Functions

Evaluation Functions

(1,-.1) 0 1 1 5.41 - 2

2 6 3 2.170849382 - 2

7 12 13 1.952224494 - 1,2

(i0,-I) 0 i i I01 - I

I 6 2 2.335229368 - i

7 12 14 1.952224494 - 1,2

(i00,-i0) 0 i i 20000. - i

3 14 4 40.68514215 - i

5 17 8 2.501544410 3 i

7 19 12 2.010184030 - 1,3

8 20 15 1.964914927 3 1,2

12 24 23 1.952224494 - 1,2



27

Test Problem 2

4 2

n = 2, m = 3 F1 = xI + x2

F2,F 3, as in example i

FI = F2 --F3 = 2

solution x = (i,i)

No. of Semi

Starting Iteration No. of Fun. Ind. Grad. max fj(x) Active Active
Point No. Evaluation Evaluation Functions Functions

(i,-.i) 0 i I 5.41 - 2

i 2 2 3.181388755 - 2

2 4 4 2.417247765 - 1,2

4 6 i0 2.004795643 3 1,2

6 9 16 2.000000000 - 1,2,3

(i0,-i) 0 i i i0001. - i

i 6 2 19.74943380 - i

2 8 4 19.36287258 - 1,2

6 14 16 2.808076541 I 2,3

i0 18 28 2.000000000 - 1,2,3

(i00,-i0) 0 I i I00000100. - i

I0 20 Ii 4.436401306 - I

13 26 17 2.076370586 - 1,2

15 31 23 2.000020450 3 1,2

17 33 29 2.000000000 - 1,2,3
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Test Problem 3

n=4, m=4

_(_)ox_.x_._x_.x__x__x__x_._

_<x)_(x)_0Cx__x_x__x_.x_.x_._0)

_(x)o_<x)_01_x_x__ _x_.x_.x_._i
solution x = (0,i,2,-I) FI ffiF2 = F4 = -44.

No. of Semi

Starting Iteration No. of Fun. Ind. Grad. max f (x) Active Active
Point No. Evaluation Evaluation Functions Functions

(0,0,0,0) 0 I i 0 - i

2 6 3 -39.35982740 - i

3 8 5 -41.13057951 - 1,4

5 ii ii -41.67511609 2 1,4

i0 16 26 -44.00000000 - 1,2,4

(i0,i0,I0,i0) 0 i i 5960 - 3

i 6 2 973.8877654 - 3

2 8 4 91.01083219 - 2,3

4 12 8 -13.00041510 2 3

7 20 20 -41.13646654 1,2,3 4

9 24 26 -43.41889604 2 1,4

15 31 44 -44.00000000 - 1,2,4

(i00,i00,I00,i00)

0 i i 645500. - 3

4 18 5 344.6890778 - 3

8 23 13 -22.66648305 - 3,4

9 24 16 -27.19599155 - 1,3,4

I0 25 20 -39.22987562 3 1,2,4

18 34 44 -44.00000000 - 1,2,4
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Test Problem 4

n --2, m = 3 Fl(X) = x21 + x22 + XlX 2

F2(x ) = sin(xl)

F3(x ) = cos(x2)

Solution x = _(.4532962370, -.9065924741)

F1 = f3 = .6164324356

No. of Semi

Starting Iteration No. of Fun. Ind. Grad. max f (x) Active Active
Point No. Evaluation Evaluation Functions Functions

(3,1) 0 i i 13. - i

I 4 2 .8682565665 - I

2 5 4 .8053242777 - 1,3

4 8 i0 .7272455047 3 1,2

5 i0 13 .6428900754 - 1,2,3

I0 15 28 .6164324356 2 1,3

(30,10) 0 1 1 1300 - 1
3 11 4 .9923360793 - 1

12 23 22 .6164324356 - 1,3

(300,100) 0 1 1 130000 - 1

4 15 5 .9995701115 - 1

11 24 19 .6164324356 - 1,3
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Test Problem 5

n = 3, m = 6 Fl(X) = x_ + x_ + x_ - i F4(x) = xI + x2 - x3 + I

F2(x) = x21 + x22 + (x3-2) 2 F5(x) = 2x_ + 6x2 + 2(5x3-Xl+l) 2

= x I + x2 + x3 - i F6(x) = x_ -F3(x) 9x3

Solution x-- (.32825995, O, .1313200636)

F2 = F5 = 3.599719300

No. of Semi

Starting Iteration No. of Fun. Ind. Grad. max f (x) Active Active

Point No. Evaluation Evaluation Functions Functions

(1,1,1) 0 1 1 58. - 5

2 4 3 5.028346958 - 5

13 26 25 3.599719300 - 2,5

(I0,I0,I0) 0 i i 5962. - 5

5 14 6 4.448679576 - 5

18 43 32 3.599719300 - 2,5

(i00,I00,i00) 0 i I 2381602. - 5

i i0 2 21172.51683 - 5

2 12 4 13296.67178 - 1,5

3 13 6 7506.056041 5 i

4 14 7 1785.905159 - i

5 15 9 848.2530772 - 1,2

6 16 ii 324.5466404 I 2

7 17 12 213.7819513 - 2

15 25 28 3.599719300 - 2,5
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Test Problem 6

U°

n = 3, m = 30 Fj(x) = -yj + xI + J j = 1,''',15
v.x 2 + wjx 33

Fj(x) = -F(j_15)(x) j = 16,''" ,30

where

u. = J, vj = 16 - j and wj = min{uj,vj},3

y = (.14,.18,.22,.25,.32,.39,.37,.58,.73,.96,1.34,2.1,4.39)

Solutions:

x = _(.05346938776, t, 3.5 - t) .5 < t _ 1.5

F9 = F23 = F30 = .05081632653 (or F24 = F8 = FIS)

x = ±(.2831587485, -4.8412419079, 9.323361111)

F6 = F20 = F30 = .7602099910 (or F21 = F5 = FI5)

x = _(.02033344564, .100795522614, 3.3992044739)

F 1 = F2 = F23 = F30 = .08395226864 (or FI6 = FIT = F8 = FI5)
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Test Problem 6 (continued)

No. of Semi

Starting Iteration No. of Fun. Ind. Grad. max f (x) Active Active

Point No. Evaluation Evaluation Functions Functions

(i,I,I) 0 i I 4.11 - 15

I 3 2 0.7422952056 - 15

2 4 4 0.3286634371 - 9,15

3 5 7 0.2339086843 15 9,18

5 7 15 0.05443554245 15 9,18,30

7 ii 21 0.05115868122 - 9,18,30

8 12 25 0.05081633724 - 9,18,23,30

9 13 29 0.05081632653 18 9,23,30

(i0,i0,I0) 0 i I 9.86625 - i

3 8 4 2.417983420 - I

9 21 16 1.207116039 - 1,30

i0 23 19 0.8923142963 15 1,30

ii 24 22 0.1098360412 - 1,15,30

12 27 26 0.08548202468 - 1,9,15,30

13 29 30 0-07228591795 1,15 9,30

16 34 39 0.05081632653 - 9,23,30

(100,100,100)

0 I i 99.860625 - i

5 13 6 11.35666692 - i

16 42 28 1.779837231 - 1,30

17 43 31 0.6808764481 - 1,9,30

18 44 34 0.3756488583 i 9,30

19 47 36 0.1292719191 - 9,30

20 49 39 0.07580649840 15 9,30

23 55 48 0.05392409950 - 9,18,30

24 56 52 0.05081719777 - 9,18,23,30

25 57 56 0.05081632653 18 9,23,30
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The algorithm has also undergone limited testing on the problem of

designing an aircraft lateral stability augmentation system found in [9]

identified as the deterministic problem at Mach 2.5. By using different

starting points it both found the minimum reported in Schy et al. [1981] and

located another local minimum. Execution times correspond favorably with

those of the algorithm used in Schy et al. [1981]. In the only case where

problems formulations (starting points, convergence criteria, etc.) were

similar enough to make comparisons valid, the present algorithm executed in

less than i/4of the time (Giesy [1982]). In these testings convergence to a

local minimum and fast local convergence were always achieved.
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