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ABSTRACT

The paper deals with the minimax problem min max  f;(x). We work
x € B i=1,eee.m

with its equivalent representation min t s.t. f;(x) =t < 0 for all i.
For this problem we design a new active set strategy in which there are three
types of functions: active, semi-active, and non-active. This technique will
help in preventing zigzagging which often occurs when an active set strategy
is used. Some of the inequality constraints are handled with slack variables.
Also a trust region strategy is used in which at each iteration there is a
sphere around the current point in which the local approximation of the
function is trusted. The algorithm suggested in the paper was implemented

into a successful computer program. Numerical results are provided.

*This research was supported by the National Aeronautics and Space
Administration under NASA Contract No. NAS1-15810 while the author was in
residence at the Institute for Computer Applications 1in Science and
Engineering, NASA Langley Research Center, Hampton, VA 23665.
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INTRODUCTION

This paper deals with the minimax problem min max fi(x)
X € ]I{l i=1,..o,m

where £ i=l,***,m are real valued functions defined on . We begin by

i?
transforming the problem into an equivalent inequality constrained
minimization problem min t s.te. fi(x) -t <0 for all i, i=1l,*°*°*,m. For
this problem we suggest a new active set strategy in which there are three
types of functions: nonactive, semi-active and active and these sets play a
different role in our algorithm. The active ones are treated as equality
constraints; the semi-active ones are assigned slack variables so that they
can be treated as equalities too. The introduction of semi-active functions
may help prevent the possibility of =zigzagging that sometimes occurs in
algorithms that use active set strategy.

At the end we solve an equality constrained minimization problem for
which we design a trust region algorithm that takes into advantage the spgcial
structure of the problem. In this algorithm we have at every iteration a
sphere of radius r, in which the local model that is used to approximate the
functions is trusted.

Section 2 contains the basic model with all the necessary notation as
well as the introduction of the new active set strategy. In Section 3 we give
a description of the trust region strategy in unconstrained minimization and
in constrained minimization. We suggest the use of the trust region for the
minimax problem in Section 4. In Section 5 we discuss our numerical
implementation of the algorithm and in Section 6 we give the numerical results

of six problems taken from the literature with various starting points.




2. THE BASIC MODEL
Consider m real valued functions fi,'°',fm defined on R ™. We are

interested in solving the problem

(P1) min max fi(x)
x € B i=l,°*°**,m

(P1) is equivalent to (P2):

(P2) min t
X,t
subject to £ (x) - t € 0, i=1,***,m.

By introducing m slack variables Wisttt,wW e obtain another equivalent

problem:

(P3) min t
Xy,t,w 2
subject to £ (x) -t +-Ubwi = 0, i=1,***,m.

We have thus transformed our original problem into a problem of equality
constrained minimization for which successful algorithms are available. We
use a trust region approach to solve (P3), while taking advantage of the
structure of the problem. We demonstrate that the addition of . m variables
in (P3) does not result in additional work and provides a good way of dealing
with the inequality constraints in (P2).

The following notation will be used:
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F =¢: VF = :
fm af1

9x
n

Associated with each index j we have a Lagrange multiplier v.. Thus
we obtain the Lagrangian function
L(x,t,v,w) =t + ) vi(fi(x) -t +-y§wi).
The gradient of L 1is
VFv
_ L - 1 - Zvi
Xyt W,V (viwi) , i=l,e¢e.m |J°
(f.(x) -t +-U2wg), i=1l,**°,m
. 1 1 :
and the Hessian matrix of L is
0 VF
2 0 -eT
VL = ,
0 0 diag(v,) diag(w,)
T i i
VF -e diag(wi) 0
T 2
where e = (l,°°**,1), B = ZviV fi(x).
We now state the necessary conditions for a solution to (P2).
. VF(x")
Theorem 2.1. Let x € B and assume that —eT is of full

rank. Necessary conditions for a local minimum at x” (with

* * *
t” = max £,(x )) are: there exists v € F such that
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0 VF(x*) *
() ()
1 -e

* * *
vi(f;x) -t ) =0 for all i,
*
v, >0 for all i,
*
fi(x )-t<O0 for all i,

* T
and for all z ¢ T such that (VF(; )> z =0, zT<B 0)z > 0.
-e 0O 0

(The last condition in the theorem will always be satisfied in our algorithm
because we use a BFGS matrix update to obtain a symmetric positive—-definite

approximation to ZIv szi(x). For an appropriate discussion see Powell [5].)

i
At the solution (x*,v*), some components of v are zero, and the
corresponding functions do not influence the direction of convergence. This
leads to a natural division of the functions into active and non-active ones,
and to an active-set strategy to determine the active set at each iteration.
We suggest here a division of the functions into three sets: active
functions, semi-active functions and non-active functions. These sets are
denoted by (I), (II), and (III) respectively. A function £y becomes active
at a certain iteration if fi(x) = max fj(x), or if it was semi-active and
prevented us from taking a longer stepjin the previous iteration'(i.e.,
fi(x + Ax) was greater than max fj(x + Ax) for IAxI > HAxH.) It will stay

|
active as long as its Lagrange multiplier remains positive. Set (I) will not




contain more than (n+l) functions at any iteration (since at most (n+l) can be
active at the solution).

A function f; becomes semi-active if it has just been dropped from set
(I) (in which case its multiplier is reinitialized with a positive value), or
if it was non-active and prevented us from taking a longer step in the
previous 1iteration. It will stay semi-active as long as its associated
multiplier remains positive. In a neighborhood of the solution we expect to
have no semi-active functions.

We now consider the problem

min t
X,t,w
fi(x) -t=20 ’ i active

fi(x) -t +-Uéw§ = 0, i semi-active.

Let F;, Fy denote the function vector for sets (I), (II) respectively and

VF,, VF their gradients (in columns). Each active function £; will be

1’ 2
associated with Lagrange multiplier vy and each semi-active function fj

will be associated with multiplier uge Now the Lagrangian becomes

L{x,t,w,u,v) = t + 2 v (f (x) - t) + z u (f (x) - t +-yéw2).
i e (I) iv1 i e (II) i 1
(2.1)




~ VE.v + Vf, u

1l - Zv, = Iu,
i i

VL = (uiwi) , 1 e (II) (2.2)

(£, ) - t) , 1€ (1)

L (£, - ¢ +-H§w§), i€ (IT) _

B 0 0 VF v, |
0 0 0 —eT el
VL = 0 0 diag(ug) 0 diag(w; ) (2.3)
vE] —e 0 0 0
VFz -e diag(wy) 0 0

Assume we have in a certain iteration x,t,w,v,u. A Newton-type step would

then be determined by

Ax
At
tw | = - (V°L) 7T VL.
Av
Au

(2.4)

When we multiply by V2L from the left and consider the resulting

equation by components we obtain:




1 2

L W A7 O LR (2.5)
0 0 At -e -e
uiAwi + u v,y s 0, for all 1 € (1II), (2.6)
VF1 T /Ax

+ (F1 - te) = 0, (2.7)
-eT At
VF2 T Vx

+ diag(wiAwi) = 0, (2.8)
-eT vt

where

v, =V + Av, u =u + Au.
In (2.8) we assumed that for all 1 e (II) fi(x) -t + Héwi = 0 because in
each iteration we will take ¢t = m%x fj(x) and jyé(wi)z =t - fi(x).

We can now eliminate the slack variables from our system:

from (2.6)
Vi
Mw, = - u —
i i+ u,
from (2.8)
VF \T /Ax
2 2
. - diag(wi/ui)u+ = 0.
-e At
Since

w, = 2(m§x fj(x) - fi(x)),




VF2 T /ix
u, = diag(ui/Z(méx fj(x) - fi(x)) . (2.9)
j T
-e At
We can now replace u, in (2.5). Define
B 0 VF2 VF2 T
C = + T diag(ui/Z(max fj(x) - fi(x)) . (2.10)
—e T
0 0 -e
Then the linear system (2.5) - (2.8) becomes
[ VE ] pax VF
C T) < ) ) + v
-e At -e
= - . (2.11)
VF1 T
( T) 0 Av F1 - tl
[ \-e i | N

In this last representation of the system (2.4) the semi-active functions

affect only the matrix C.

An iterative algorithm that is based on (2.4) will converge to a solution

(XO 0

.t ,wo,vo,uo) is close enough to the solution.

only 1if In order to

obtain convergence from bad starting points we suggest the use of the trust

region strategy applied to problem (P4).

3. THE TRUST REGION STRATEGY

We first describe the trust region in the unconstrained case. The

n

min f(x) where f : R IAxl

X € KP

problem is + R For a step 4x with

small enough we have




£(x + bx) ~ q(x + Ax) = £(x) + VE(x)Ax +1/, Ax"Bax, (3-1)

where VE(x) 1is the gradient of f at the point x and B 1is a symmetric
positive definite matrix approximating the Hessian of f at the point x. If
we try to minimize the quadratic function q over Ax we will obtain

Ax = —B_lVf(x) , the quasi-Newton step. The quadratic approximation in (3.1)
is only valid for UAxl  small enough. &x = = B_IVf(x) may not always be a
good step to take. In a trust region algorithm we assume that at each
iteration we have a radius r that was determined at the end of the previous
iteration as an estimate on the radius of the ball with a center at x in

which the approximation (3.1) can be trusted. Thus we obtain the problem

min q(x + Ax) = £(x) + Vf(x)TAx +-U§AXTBAX
Ax

Set o "Ax“ < Yo

1

The solution to this problem is &x = Ax(A) = =(B + A I) "Vf(x) where

A=0 if 18x(0)! < r

A>0 1s s.t. lAX(A)I = r otherwise .

When the radius 1s large enough, A = 0 and the full quasi-Newton step is
taken. We can prove that in the neighborhood of the solution, when a BFGS
matrix update is used to obtain B, A = 0 in each iteration resulting in
Q-super-linear convergence. When r 1s very small, A >> 0, Ax =~ - %-Vf(x),
and we obtain a short step in the negative gradient direction. More details

on this algorithm including numerical results can be found in Vardi [8].
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Consider next the problem

min f(x)
xe R subject to hi(x) =0 i=l,...m

where f,hl,...,hm

v; to each of the constraints we can form the Lagrangian function

L(x,v) = f(x) + h(x)Tv.

VxL(x,v) VE(x) + Vh(x)v
VL(X,V) = =
VVL(x,v) h(x)
vt 2
(x) + 2v1v hi(x) Vh(x)
VZL(x,v) = .
Vh(x)T 0

Let

B =~ sz(x) + Zvivzhi(x)

be a symmetric positive definite matrix
_ B Vh(x)
B = .
(Vh(x)T 0
Then the quasi-Newton step for this problem becomes

Ax
- i"IVL(x,v).

Av

K >R m<n. When we assign a Lagrange multilplier



or

B Vh (x) Ax VL
= - . (3-2)
Vh(x)T 0 Av h(x)

The following quadratic programming problem is equivalent to (3.2):

(Vh(x) 1is assumed to be of full rank; B positive definite.)

min L(x,v) + VxL(x,v)TAx +-U2AxTBAx (3.3a)
Ax

subject to h(x) + Vh(x)'Ax = O. (3.3b)

To this problem we now add the contraint ﬂAxll2 <r, i.e., we impose a

trust region of radius r. Since it is possible that
T
{Ax : h(x) + Vh(x) dx = 0} N {ax : 1axh < r} = ¢,
we have to make the following correction: solve at each iteration

min L(x,v)TAx +'yéAXTBAX
X T
sete 0h(x) + Vh(x) Ax = 0

taxl < r

where 1 > ¢ > 0 depends on r and is determined so that

{Ax : oh(x) + Vh(x)Tax = 0} N {Ax : 1axl <z} # ¢,

11
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and that the norm of the resulting step Ax 1is a monotonically increasing
function of r (so that for each r there will be a unique solution Ax).

Given r we determine A as follows

{X =0 if 1AW <r

A > 0 such that 1AX(A)I = r otherwise.

The solution just presented can be written, similarly to (3.2) as

B + AI Vh(x) Ax VxL
: ( .- ( ) 3.4)
(Vh(x) 0 ) Av a(AMh(x)

When the radius is large enough, A = 0 and the full quasi-Newton step is
taken. We can prove that .in the neighborhood of the solution A = 0 in each
iteration, resulting in two-step superlinear convergence. When r is very

~ T -1 T L o1 ~
small, A > 0, v, ~ v = [Vh(x) Vh(x)] "Vh(x) VE(x) and Ax ¥ T L(x,V)).

This algorithm was introduced in Vardi [7]. Proofs of global and local
convergence are provided there together with numerical results for several

test problems.

4. THE TRUST REGION MODEL FOR THE MINIMAX PROBLEM
We will apply the trust region strategy on the system (2.10). Let mmy

be the number of active functions in a given iteration. We assume in this
VF VF

T

section that (
-e

is of full rank. (The case where ( ;) is rank

e

VF T
deficient will be discussed in section 5.) Let Q( é)]l = ( ) represent
VF -e 0
a QR decomposition of ( é) where Q 1s an orthogonal matrix, II a
-e

permutation matrix and T upper triangular. Let Q = [Q ] where Qq has
Q 1

1
2
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mm; rows. The new system becomes then

VF VF
1 Ax 0 1
cear (T\ (&) 0 (Y-
-e -e
VF1 T = - s (4.1)

(_eT) 0 Av a(A) (Fl- te)

where
a()\)=min{1’ _ma_X{_;_,_Z_}_}
A
where
HQZCQ$T—THT(F1 - te)l nqz(?)u
z = .

uT‘TnT(Fl - te)n?

(When mm; = nt+l we always have Qz(g) = 0; see remark at Theorem 4.2.) In
(4.1), A =0 if the radius 1is large enough so that the norm of (2?)

(computed for A = 0) is less than r; otherwise A > O is determined so

Ax(k))

that HA I = r. The next theorem summarizes the characteristics of (At(k)

X
At
Av(A) as a function of A.

Theorem 4.1. Consider

(AX(K)

At()\)), Av(\)

as defined in (4.1). Then

“AX(K)“
At (M)

is monotonically decreasing to zero as a function of A. When A » =,
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and

Also when

QZ(O) =0 and A > o
bx VF VF.\T /VF,\]-1
2 1 1 1
A (A )+ max{l,z}( T)( T) ( T) (Fl -t e).
t -e ~e -e

Proof . The proof of monotonicity of "ﬁigiiﬂ is simple but long and is

omitted here. For a proof see Vardi [7].

From (4.1) we have

Ax VF1 0
(C + AI)( ) + ( T) v, + ( ) = 0, (4.2)
At -e 1

VF1 Ax
( ‘T) ( )+ a(M)(F, - te) = o. (4.3)
-e At

From (4.2) we have

Ax -1 (VF1> (O
== (C + A I) v, + > 4.4
(At) T/t 1) (4.0

and from (4.3)




VE,\T ERANRYR VF\T A
v, = ( T) (C + 2 1) T a(A)(F, - te) - T (C+ A1) (1 .

(4.5)

From (4.2)

Ax VF 0 VF 0
A T '11?v+' oo %;+" :
At -e 1 -e 1
Note that when

(using the definition of Q,)

VF ve\T/vE |/ vE\T] /0 0
1 1 1 1 T
- = Q0 |= O
—eT -eT —eT —eT 1 1
thus . vF 0
1 ~
-— T V+ - = Q.
-e 1
0
Further, careful analysis reveals that when QZ( ) =0 and A+ @

—

1 1
K(v+ - v+) + max{1,z} (Fl -te)
T T
-e -e
and thus (using (4.2)
T N

) Ax VF1 VF1 VF1

A + max{1,z} (F -t e) .
T T T

At -e -e -e
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Theorem 4.1 points out a nice feature of the algorithm: on the limit,
Ax
at)

active functions while semi-active functions and the matrix B are ignored.

when A » o ( and Av depend solely on information that - comes from

In the course of the algorithm we often check whether for a given r the

resulting step, Ax ,satisfies max fj(x+Ax) < max fj(x). If not, we try a

shorter radius. The next theorem confirms that there always exists r > 0

Ax(A)
At (N)

A > 0 large enough) such that the step is accepted.

small enough (or equivalently, because | I is monotonically decreasing,

Theorem 4.2. Let

(Ax(K)

At0\)), Av(r)

be computed as in (4.1) and assume

Also assume that if
o, (") =0 then (5.).5>0
2'1 +/1

for all i € I such that fi(x) < max fj(x). Then there exists A > 0 large
h|

enough such that

max f (x + Ax(k)) < max f,(x) .




VF

é) =n+1, Q2 does not exist. However from now on we
-e
will assume that the case where QZ(?) = 0 1ncludes the case where

VF1
rank —eT =n+ 1.

Proof. From Taylor”s theorem we have

Remark. When rank <

M (x + 8x) = Af, (x) = AVE, (0 "ax + AMTVPE (m)Ax for all 1 € ().

when A »+ o,

NP (x + Ax) - AF (x) » - VFl(x)TVFl(x)$+.

If QZ(?) 0

VFl(x)T VFl(x);+ = [VFl(x)T VFl(x) + eeT][VFl(x)T VFl(x) + eeT]_1 e

<1 - eT[VFl(x)T VFl(x) + eeT]“1 e)

H v

Thus for A 1large enough, for all i ¢ I, fi(x + Ax) < fi(x).

VF 0
Qz(g) = 0 implies (see Theorem 4.1) that ( ;)3; 4-(’ ) = 0. In this
-e 1

case we assumed that (F1 - te)#0 and (;+)i > 0 for all i such that
fi(x) < m§x fj(x).

In Theorem 4.1 we have shown that

T -1

szt > -max{l,z}eT (F1 - te) = —max{l,z};Z(F1 -te) < 0.

17
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Thus for A large enough At < 0.

T T /2
ve Ax (Ax VEE () 0\ [Ax
[fi(X+AX) - (t+At)] = [fi(x)-t] +< ;) ( ) +; ) ( i ) ( )’
-e At At 0 0 At

for all 1 € (II). When X » o,

AZ{[F1<x+Ax) - (t+de)e] - [F () -t e]]

T T -1

VF VF VF VF

1 1 1 1
> max{l,z} (Fl -t e) < 0.

T T T T
-e -e -e -e

Thus for A large enough
Fl(x + Ax) < Fl(x) + Ate < Fl(x).

This completes the proof.

We can now present the algorithm:

Step 1 Start with xo, (I1) = ¢ , (I = {4i: fi(xo) = max fj(xo)}, ro, BO,
J

k = -1.

Step 2 Let k = k+l, RADINC = O.
VFl(xk)
Step 3 Take a Q-R decomposition of T and check whether
-e
Qz(g) = 0. If so, compute V- If for all 1 € T such that fi(x)

< max fj(x) (;+)i >0 (or if QZ(S) # 0) continue to Step 4.
h|




Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Otherwise remove from set I the function 10 such that fi x) <
0

max fj(x) and with the minimal (;+)i’ and insert it in set II.

Restart step 3.

Compute Ck as in (2.10).
k B k
Find A, k] Av that solve the system (4.1) with the
At A k k
X Kk .k Kf, 2% K
requirements: 1 <, AV >0, A7 (1 I =} = 0. (See
k k
At At

Section 5 for computational details.)

Check if max £ (xk + Axk) < max f (xk). If so continue to Step

jj Jj

7. If not, if RADINC < O half rK, RADINC = RADINC-1 and go to
Step 5. (If RADINC > O the step corresponding to the smaller

radius has been computed already. Retrieve it and continue to Step

7.)

If no new active functions are introduced by the last step and if

RADINC » 0 and if Xk > 0 1let RADINC = RADINC + 1, store the

current step, double rk and go to Step 4. Otherwise continue to

step 8.

Check for convergence.

Compute uk+1 by (2.9) and yitl by (4.5) and according to the

signs update (I) and (11). (See Section 2). Compute Bk+1

(details in section 5).
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Step 10 xk+1 = xk + Axk « Return to Step 2.

Theorem 4.2 guarantees that in every iteration there will be X small

enough for which max fj(xk+l) < max fj(xk). We have to justify here the

J J
removal of an active constraint as described in Step 3 when (V+)i < 0 and

o,(%)

q,(?)

0 (di.e. mm; = n+l. For a discussion on the possiblility of
VF

L]

0 when ( %) is rank deficient see Section 5.)
-e

* .
The necessary conditions at the solution x require that

0 VFl(x*)

( ) + vk =0 and v* > 0,
T

1 -e

(VF1<x*>>‘1 <0> -
T +
-e 1

~

.(because Fl(x*) = t*). Thus Qz(?) =0 and (v+)i < 0 implies that we are

Since mm; = n+l

converging to a point with a negative multiplier and we therefore need to

remove that function from the active list.

5. IMPLEMENTATION

A scaling problem In order to prevent a scaling problem that may be

-e
important to actually replace (P2) by

VF
created in ( T) when "VF1" is much greater or much less than one, it is

(P27) min ¢ t
subject to fi(x) -ct<O0 i1 =1,°**m
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VF1
Now instead of working with the matrix T we work with the matrix
VF -e
( IT . In order for this matrix to be well scaled, we update c to
-ce
c = HVFl(x)" frequently. This modification can be accomplished without

difficulties. (We will continue to assume c¢ = 1 1in the rest of the paper

for clarity.)

Initialization of (I) and (II). As “Step 1 in the algorithm indicates, at

the first iteration usually only one function is active and all the rest are
nonactive. We have tried other options where more of the functions were
active and semi-active in the first iterations but observed that this strategy
does not result in a decrease in the number of iterations. Since these other
options required in total more gradient evaluations we decided to use

initially one active function.

VF

. 1
Solving System (4.1). Using the Q-R decomposition of the matrix s
VF1 T
Q T H = b
-e 0
we can obtain the following expressions:
From (4.3)
Ax
Q ( )= ~a(MT T (F, -t e) . (5.1)
1 1
At
From (4.2)

()t [0t )
Q = -Q,CQ, + A I) Q + CQ;1Q (5.2)
2 At 2772 2 1 1171 At
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Ax T Ax T Ax
=Q, Q +Q, Q . (5.3)
At 17 At 2 72 At)

A Cholesky decomposition of C is performed, C = Lr. (When mmy, = 0

B O L, 0 T
and C = , L = where B = L,L..) Define M = Q,L and let
0 o0 0 0 1l 2
M = [g] represent a Q-R decomposition of MT, (P orthogonal, %

P
1
permutation, R upper triangular). Partition P into P = [P ] where P1
2

o)

has n+l-mm; rows. We now have (QZCQg + X I) = Z(RTR + A I)ZT and Q2(At

can be obtained by solving

T

] Lok e Lo [

0 Ax
b =R TETQ2 + PlﬁTQf Ql .
1 At

where

In order to solve this linear least squares problem, a Q-R decomposition of
R
%Q is obtained with the use of Givens transformation.
ALl

Ax

Define ¢(A) = H(At)“ - r. For a givemn A we can use the above

decomposition to compute ¢(A) and ¢°(A). A A iterative scheme is used to

obtain A such that ¢(A) = 0. In this A-iterative process we usually have
W _ad _ e + r o0

r ¢ (M)
and lower bounds on the solution are used to help the convergence. It takes

a good guess for A and we take + Known upper
an average of less than two A-iterations to obtain an acceptable solutionm,
(i.e. X such that ¢(A) < 0.1 * r) « For more details on this part of the

algorithm see Vardi [7].
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Updating B. When moving from the kth iteration to the (k+1)th iteration,

k k o2 k k o2 k
B E kvi Vxx fi(X )+ Z kui Vxx fi(x )
iel i€ Il

has to be updated into

ket K+l o2 K K+l o2 Ktly
B ~ kv:L Vxx fi(x ) + E k+1ui Vxx fi(x ).
el i€ II
Define
y© = [, 5 - vr I e, - v 9 [l

k+l, k k

k
Ax
1f ( ) is small, it i1s reasonable to require that B Ax™ =y~ . Other

Atk
requirements on

k

pktl are that it is symmetric, positive definite, close to

B in some norm and easy to compute. The B.F.G.S. update is often used in

which

k+1 ko k ky ko ySy5T 8K axk ax®T Bk
B = BFGS(B ,Ax ,u") = B® + - .
kT , k kT .k , k
y = Ax Ax™" BT Ax
If Bk is positive definite and ykT Axk > 0, Bk+1 is positive definite. 1In

our algorithm we use a modification of the BFGS that was suggested by Powell

(see Powell [5]):

B**! = Bros(8",ax",y

“)
where

k

7 = oy" + (1-0)B% ax¥

and
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k

1 1 yF a® > 0.2 aKT BX axK

Ax

0.8 AxST K Ak

AT K agk - KT LK

otherwise

Powell proved that when this update is used in an algorithm for constrained

minimization, local two-step superlinear convergence results.

VFy
When ( T) is rank deficient
-e
VF, T
When the Q-R decomposition is performed to obtain Q( T)H = (0), we
-e

check at each step whether any of the remaining columns have norm larger than
(machine ps) x Ty;. If not, we stop. If A steps were performed, and T is
VF
an R X mm, upper triangular matrix, we consider rank ( %) = L. Partition
-e
= (9 - T =
Q = (Q;)’ I= 0,0, and T =([T,S] where Q; has | % rows, I, and T
Ax ~T_T
have & columns, (5.1) becomes Ql(At) = - a(\)T HZ(FI - te) and all
other expressions remain the same. The effect of this is that the active

VF
functions that correspond to the remaining columns in ( %) are 1gnored.
-e

VF)
When ( T) is rank deficient it is possible that QZ(S) = 0 and as the
-e
algorithm indicates v, is checked and active functions with negative (v+)i

may become semiactive.

6. NUMERICAL TESTS

A computer program based on the élgorithm was written and tested on 6
test problems from the optimization literature as well as one large practical
problem.

The complete information on these problems is given in this section. In

order to check global convergence we added starting points that are much
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further from the known solution than the suggested starting points. In all

problems global convergence was achieved and fast local convergence was

observed.
For all problems we used ro = 1, B0 = I. The stopping criteria were
1. 1axt < 10 00xn + 1),

N

and

max fi(x) - min fi(x) < 10-6 max{| max fi(x)l, | min fi(x)l}.
iel iel iel ‘iel

In each of the problems we tried 3 starting points. We recorded the
number of function evaluations and the number of individual gradient
evaluations (i.e., gradients of functions in (I) and (II); if, for example,
thre are in a certain iterations mm; active functions and mm, semi-active
functions, we count mm; + mmy, gradient evaluations.)

We display the count for all iterations at the end of which a change in

(1) or (II) occurred.
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solution x
£,

2 exp(—x1 + XZ)

= (2 - xl)2 + (2 - x

Test Problem 1

Fl(x) = xi + xg

2
9)

(1.139037652, .8995599384)

Fy = 1.952224494

Starting Iteration No of. Fun. No. of max fj(x) Semi- Active
Point No. Evaluation Ind. Grad. Active  Functions
Evaluation Functions
(1,-.1) 0 1 1 5.41 - 2
2 6 3 2.170849382 - 2
7 12 13 1.952224494 - 1,2
(10,-1) 0 1 1 101 - 1
1 6 2 2.335229368 - 1
7 12 14 1.952224494 - 1,2
(100,-10) 0 1 20000. - 1
3 14 40.68514215 - 1
5 17 2.501544410 3 1
7 19 12 2.010184030 - 1,3
8 20 15 1.964914927 3 1,2
12 24 23 1.952224494 - 1,2
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Test Problem 2

n=2,m= 3 F1 = xi + xg
FZ’F3’ as in example 1
F1 = F2 = F3 = 2
solution x = (1,1)
No. of Semi
Starting Iteration No. of Fun. Ind. Grad. max fj(x) Active Active
Point No. Evaluation Evaluation Functions Functions
(1,-.1) 0 1 1 5.41 - 2
1 2 2 3.181388755 - 2
2 4 4 2.417247765 - 1,2
4 6 10 2.004795643 3 1,2
6 9 16 2.000000000 - 1,2,3
(10,-1) 0 1 10001. - 1
1 6 19.74943380 - 1
2 8 4 19.36287258 - 1,2
6 14 16 2.808076541 1 2,3
10 18 28 2.000000000 - 1,2,3
(100,-10) 0 1 1 100000100. - 1
10 20 11 4.436401306 - 1
13 26 17 2.076370586 - 1,2
15 31 23 2.000020450 3 1,2

17 33 29 2.000000000 - 1,2,3
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Test Problem 3

2 2 2 2
Fl(x) 3 + 3 + 2x3 + X, = le - sz - 21x3 + 7x

4
FZ(X) = Fl(x) - 10(-x§ - x% =Xy T xZ - x + Xy, =~ Xg +x, + 8)
Fy(x) = Fy(x) = 10(-x] - 2x5 - x5 - 2x. + x| + x, + 10)
F4(x) = Fl(x) - 10(-2x% - x§ - xg - 2x1 +x, + x, + 5)
solution x = (0,1,2,-1) Fi = F) = F, = -44.
No. of ' Semi
Starting Iteration No. of Fun. Ind. Grad. max f (x) Active Active
Point No. Evaluation Evaluation Functions Functions
(0,0,0,0) 0 1 1 0 - 1
2 6 3 ~39.35982740 - 1
3 8 5 -41.13057951 - 1,4
5 11 11 -41.67511609 2 1,4
10 16 26 -44.00000000 - 1,2,4
(10,10,10,10) O 1 1 5960 - 3
1 973.8877654 - 3
2 8 4 91.01083219 - 2,3
4 12 8 -13.00041510 3
7 20 20 -41.13646654 1,2,3
9 24 26 -43.41889604 1,4
15 31 44 -44.00000000 - 1,2,4
(100,100,100,100)
0 1 1 645500. B
4 18 5 344.6890778 -
8 23 13 -22.66648305 - 3,4
9 24 16 =27.19599155 - 1,3,4
10 25 20 ~39.22987562 3 1,2,4
18 34 44 -44.00000000 - 1,2,4




Solution X
Fy

Test Problem 4

+(.4532962370, -.9065924741)
£5 = 6164324356

F,(x)

X

2 2
1T %,

Fz(x) = sin(xl)
F3(x) = cos(xz)

29

No. of Semi
Starting Iteration No. of Fun. Ind. Grad. max f (x) Active Active
Point No. Evaluation Evaluation Functions Functions
(3,1) 0 1 1 13. - 1
1 4 2 .8682565665 - 1
2 5 4 .8053242777 - 1,3
4 8 10 .7272455047 3 1,2
5 10 13 .6428900754 - 1,2,3
10 15 28 .6164324356 2 1,3
(30,10) 0 1 1300 - 1
11 4 .9923360793 - 1
12 23 22 .6164324356 - 1,3
(300,100) 0 1 1 130000 - 1
15 5 .9995701115 - 1
11 24 19 .6164324356 - 1,3
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Test Problem 5

n=3 m=6 Fl(x) = xf + x§ + x§ -1 F4(x) =x + X, = Xy +1
R0 = %) + %o + (x,-2) Fy(x) = 255 + 6x5 + 2(5xymx +1)°
F3(x) =X + X, + Xg = 1 F6(x) = xi - 9X3
Solution x = (.32825995, 0, .1313200636)
Fy = F5 = 3.599719300
No. of Semi
Starting Iteration No. of Fun. Ind. Grad. max f (x) Active Active
Point No. Evaluation Evaluation Functions Functions
(1,1,1) 0 1 1 58. - 5
4 3 5.028346958 - 5
13 26 25 3.599719300 - 2,5
(10,10,10) 0 1 1 5962. - 5
14 6 4.448679576 - 5
18 43 32 3.599719300 - 2,5
(100,100,100) O 1 1 2381602. - 5
1 10 2 21172.51683 -
2 12 4 13296.67178 - 1,5
3 13 6 7506.056041 5 1
4 14 7 1785.905159 - 1
5 15 9 848.2530772 - 1,2
6 16 11 324.5466404 1 2
7 17 12 213.7819513 - 2
15 25 28 3.599719300 - "2,5




Test Problem 6

n =3, m= 30 Fi() = =y + %) + —1 1,00+,15

(2%
n

Fy(x) = =F(4_ 16,30

~
(SN
—
w
~r
~
»
~
(&S
0

where
u, = j, vj =16 - j and wj = min{uj,vj},

; = (.14,.18,.22,.25,.32,.39,.37,.58,.73,.96,1.34,2.1,4.39)

Solutions:

x = +(.05346938776, t, 3.5 - t) 5< t < 1.5
F9 = F23 = F30 = .05081632653 (or F24 = F8 = FlS)
x = $+(.2831587485, -4.8412419079, 9.323361111)

F6 = on = F30 = .7602099910 (or F21 = F5 = FlS)
x = +(.02033344564, .100795522614, 3.3992044739)
F1 = F2 = F23 = F30 = .08395226864 (or F16 = F17 = F8 =

31
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Test Problem 6 (continued)

No. of Semi
Starting Iteration No. of Fun. Ind. Grad. max f (x) Active Active
Point No. Evaluation Evaluation Functions Functions
(1,1,1) 0 1 1 4.11 - 15
1 3 2 0.7422952056 - 15
2 4 4 0.3286634371 - 9,15
3 5 7 0.2339086843 15 9,18
5 7 15 0.05443554245 15 9,18,30
7 11 21 0.05115868122 - 9,18,30
8 12 25 0.05081633724 - 9,18,23,30
9 13 29 0.05081632653 18 9,23,30
(10,10,10) 0 9.86625 - 1
3 8 4 2.417983420 - 1
9 21 16 1.207116039 - 1,30
10 23 19 0.8923142963 15 1,30
11 24 22 0.1098360412 - 1,15,30
12 27 26 0.08548202468 - 1,9,15,30
13 29 30 0.07228591795 1,15 9,30
16 34 39 0.05081632653 - 9,23,30
(100,100,100)
0 1 1 99.860625 - 1
13 6 11.35666692 - 1
16 42 28 1.779837231 - 1,30
17 43 31 0.6808764481 - 1,9,30
18 44 34 0.3756488583 1 9,30
19 47 36 0.1292719191 - 9,30
20 49 39 0.07580649840 15 9,30
23 55 48 0.05392409950 - 9,18,30
24 56 52 0.05081719777 - 9,18,23,30
25 57 56 0.05081632653 18 9,23,30




The algorithﬁ has also undergone limited testing on the problem of
designing an aircraft lateral stability augmentation system found in [9]
identified as the deterministic problem at Mach 2.5. By using different
starting points it both found the minimum reported in Schy et al. [1981] and
located another 1local minimum. Execution times correspond favorably with
those of the algorithm used in Schy et al. [1981]. 1In the only case where
problems formulations (starting points, convergence criteria, etc.) were
similar enough to make comparisons valid, the present algorithm executed in
less than %@_of the time (Giesy [1982]). 1In these testings convergence to a

local minimum and fast local convergence were always achieved.
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