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ABSTRACT
The decomposition of solar oscillations into their constituent normal
modes requires a knowledge of both the spatial and temporal variation of
the perturbation to the Sun's surface. The task can be especially
difficult when only limited spatial information is available.
Observations of the limb-darkening function, for example, are probably
sensitive to too large a number of modes to permit most of the modes to
be identified in a power spectrum of measurements at only a few points
on the limb, unless the results are combined with other data. In this
paper we consider a procedure by which the contributions from quite
small groups of modes to spatially well resolved data obtained at any
instant can be extracted from the remaining modes. Combining these
results with frequency information then permits the modes to be
identified, at least if their frequencies are low enough to ensure that
modes of high degree do not contribute substantially to the signal.
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J INTRODUCTION

Observations of the solar limb-darkening profile have been used in

investigations of dynamical oscillations and solar diameter variations.

Several instruments have been developed for sampling the time evolution

of a measurable property of the limb-darkening function (Bos & Hill,

1983; Rosch & Yerle, 1983; Stebbins, 1984). We report here on a

procedure applicable to observations of this kind that might lead to

the identification of normal modes of oscillation of low and
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intermediate degree. Mode identification is a necessary step in the

process of extracting from the observations useful diagnostics of the

solar interior. Then more stringent bounds on the internal density

distribution and the internal motion might be found.

Identification of the modes is likely to be easier in regions of

the temporal frequency spectrum where the modes are sparsely

distributed. This is the region of the longer-period p modes, which

have low order and low degree (see Figure 1). Of the p modes, these are

the most sensitive to the structure of the deep solar interior. At

present there is little information about these modes, but there is hope

that future limb-darkening observations will be successful in measuring
them.

Departures from spherical symmetry aside, the spatial structure

of a normal mode is separable into a spherical-harmonic dependence on

the horizontal coordinates and a function of radius. We choose a

spherical polar coordinate system about The rotation axis, and make the

simplifying assumption that the axis is perpendicular to the line of

sight. Moreover we ignore any deviation from axisymmetry in the

equilibrium state, such as might be produced by an intense magnetic

field and which would produce complicated fine structure in the
frequency spectrum.

Spherical harmonics form a complete orthogonal basis on the

sphere with respect to which one can make a unique decompositon of

any well-behaved function. From the orthogonality of this basis on the

entire sphere, it follows that we cannot uniquely determine the

expansion coefficients if we know the function on only a fraction of the

sphere. Such limited spatial information is unavoidable when observing

the Sun from Earth, or any other single location, and the

limitations are especially severe when information is available only

from the solar limb. Therefore from data obtained at only one instant

in time there is bound to be some ambiguity in identifying modes.

However, to a considerable extent we* can compensate the lack of

geometrial information with temporal information, by analysing the

distribution of the frequencies of the modes.
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Figure 1. Cyclic frequencies v of normal modes of oscillation of
Christensen-Dalsgaard's (1982) Model 1 of the present Sun. Each set of
modes of like order n is plotted against degree I and joined by a
continuous line; the centres of the lines pass through the frequencies
of the axisymnietric modes, and the thickness of the lines (except that
for g^) represents the extent of rotational splitting under the
assumption that~the"Sun is'rotating rigidly at the surface"equatorial
rats. Only a few g modes are included, to avoid cluttering the diagram.
The g^ line marks the upper frequency limit of any axisymmetric g mode
at the appropriate value of £.

In this paper we develop an optimal mode separation procedure

that combines data obtained from observations around the solar limb at

any instant in such a way as to minimize the influence of modes other

than that under investigation. We are not always able to obtain a

combination that is expected to be dominated by only a single mode.

However, it is possible to reduce the number of contributing modes

severely. Provided the degrees £ of the modes that can be detected is

adequately limited, either by virtue of the frequency range being

studied or as a result of a decline in instrumental sensitivity at high
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Figure 2. A selection of associated Legendre functions, normalized to a
maximum magnitude of unity and plotted against 6. The values of I and m
are stated in each box; the individual curves can be identified by the
number of zeros in (a) and (b) or by the degree of equatorial
concentration in (c) and (d).

£,, the temporal information can then be used to identify the modes. An

extension of this study to two-dimensional observations of the solar

disk will be. presented by Christensen-Dalsgaard (1984).

II GEOMETRICAL STRUCTURE OF ASSOCIATED LEGENDRE FUNCTIONS

The latitudinal dependence of spherical harmonics is given by the

associated Legendre function P..(cos6), where e is colatitude and £ and

m are respectively the degree and azimuthal order of the mode. With our
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assumption that the observer is in the equatorial plane, the amplitude

of the perturbation to the limb-darkening function associated with a

normal mode is proportional to Pj. Therefore it is convenient first to

point out a few simple geometrical properties of the Legendre functions

that will help in understanding the results. In Figure 2 we display

several examples of these functions, scaled so that they each have a

maximum magnitude of unity.
When m = 0 (Figure 2a) P* is a Legendre polynomial, whose

magnitude is larger near the poles than the equator. The latitudinal

variation increases with i , so that at large £. the mode would be

most easily visible near the poles. With low m and «. » m (Figure 2b),

functions P™ with the same I, corresponding to modes with almost the

same frequency, have essentially the same spatial structure everywhere

but near the poles, and separating them by observation would be

extremely difficult unless one can obtain very high spatial resolution

close to the poles.
When I = m (Figure 2c) a very different situation occurs: then

the functional form of P™ reduces to sinm6, yielding, when m is large,

a substantial amplitude only very close to the equator. Equatorial

concentration occurs also when 0 ̂  I - m « S,, as is evident in Figure

2d, the half-width of the region of substantial amplitude being

approximately

6Q = c o s ~ 1 { m [ £ (£+1)] "*} . <1)

Figure 2d shows quite clearly that the differences between modes with

£-m « i having the same value of A-m are hardly discernable, since

their nodes and antinodes are in similar locations. Thus we foresee the

kind of limitations any identification procedure must suffer.

Ill THE LIMB SIGNAL
The signal extracted from the limb-darkening function at a given point

on the periphery defined by v^ - cos Q^ can be written:
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sCv^t) » Z Aj^ Qk(y i) cos(u>kt - pm<}> - £k) + noise, (2)
K

where k stands for the set of integers (p,n,£,m) identifying each mode

of oscillation, $ is the azimuthal angle and e^ are constants. The

integer n is the order of the mode and p can take the values ± 1 . Our

convention is to regard m > 0. Thus p r +1 signifies prograde modes

and p = -1 signifies retrograde modes. We suppose that we know, at a

given instant t, 4(N-1 ) measurements of s distributed around the entire

limb of the Sun. In the specific examples we study, we always take the

data to be distributed uniformly in 6.

The functions QV are proportional to associated Legendre

functions. We take Qk = °£m
I>£ , choosing the scaling factors a£mto

make the spherical harmonics S°(6,<j>) = Q. (cos 9 )"" m$ have, unit rrtis
Jo tH COS

over the sphere. Thus

[ [Qk (cose)]
2 sine de = -1— , (3)

J o mO '

where 5.. is the Kronecker delta.

The quantities A, are the products of the physical amplitudes of

the modes and the instrumental sensitivity to the associated spherical

harmonics. The latter depends on the precise way in which the

measurements are performed; it declines with increasing £ and m, at

least when i and m are large. According to Hill (1978), for example,

the efficiency of some of his measurements is greater than 50 per cent

only when SL < 50, and for convenience we assume uniform sensitivity for

all modes with I $ im . for some *m, and ignore modes with £ > SL̂ . If

temporal filtering is performed one also encounters an upper bound to I

at frequencies above the g-mode limit, as is evident in Figure 1. Thus

the series (2) contains a finite number of terms, and the factors A may

be considered to represent the physical amplitudes of the modes. Most

of our computations have been performed with £m = 40, since the details

in the illustrations would be difficult to discern if £ were greater.m

.. L
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Our normalization (3) implies that p modes with different low

or intermediate degrees and azimuthal orders but with similar

frequencies and the same amplitudes Ak have similar kinetic energies,

as has been pointed out for the case of five-minute oscillations L___.

(Christensen-Dalsgaard and Gough, 1982). Thus for the p modes under

consideration here we anticipate the statistical expectation of Ak to be

independent of I and m, as it appears to be for the five-minute modes.

This is what one would expect if the modes are excited stochastically by

convection.
Symmetry considerations permit us to separate modes with odd and

even values of m by adding or subtracting signals on the east and west

sides of the limb(<l> = ±V2) at the same latitude. Modes with even and

odd i - m can be similarly separated, by adding or subtracting

signals from the north and south. We can thus reduce by a factor of

four the number of modes that need be considered simultaneously. The

problem that remains is equivalent to separating a given component kc

from a set of N signals

with m and £ even (say), where <?£ is the noise at U£ and 0 $ n^ 1.

The sum in Equation (4) contains K = (£m+2)(im̂ )/B terms.

\

IV PROJECTIONS ONTO ASSOCIATED LEGENDRE FUNCTIONS

In an attempt to separate the mode designated by some particular value

k of k, we first ignore the noise and seek a set of coefficients a^k^

such that in the linear combination

S. = I a, 00 s (y ) - I { I m. (kc> Qfc (v£) > \ * I \ (k.)
K i c i *

(5)
,c x u x k i""1 *~c' "k '^' K - * - c *

the quantity Wk is large when k = kc and small otherwise. If we were

to succeed, then

\

t==
rrzi'

and we would have achieved our goal.
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Before embarking on our optimal separation procedure we first

investigate the extent to which a mode is isolated when the signal is

projected onto the associated Legendre function corresponding to the

mode in question. This, of course, is the procedure one would certainly
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Bar chart representing w£(kc). In this and subsequent
figures, Wk is plotted against 4(Jl+2)/8 + m on a linear scale. The
ticks on the abscissa are drawn where m = 0, and the labels refer to the
values of Si . Thus each diagram is somewhat like a power spectrum of the

of data, plotted on a distorted frequency scale, and
including only the prograde modes (p = +1) of like order n, all having
the same amplitude. [In most cases the distortion of the frequency scale
can be thought of as simply removing part of the frequency axis, but for
low-order modes of high degree it can also entail separating the fine
structure due to rotational splitting of modes with consecutive even
values of A.] In all the examples illustrated, the combinations include
only modes with even degree *- and azimuthal order m. The degree *c and
azimuthal order me (corresponding to k~ ) of the mode that it is hoped to
isolate, and the number N of observation points in a complete quadrant,
are indicated in each box using the notation (i c, mc)/N. The position
of that mode on the abscissa is shown by the arrow. In this figure the
factors Wfc were computed by projecting the signal onto the appropriate
associated Legendre function, as described in the text.
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have adopted were the functions Q^ to have been orthogonal. Thus we set

a.(k ) = Q, (v-) and evaluate Wk from Equation (5). We report in Section
1. C Ĉ

V that in many cases this simple operation is essentially as good as our

optimization procedure.
A selection of results is illustrated in Figure 3. In this and

the subsequent figures, Wk is plotted in a bar chart as a function of

£(£+2)/8 + m. Thus each chart resembles a power spectrum, of a set of

only prograde modes of like order, plotted on a distorted frequency [pEE
IT*"""""

scale. (Note that any real spectrum would also contain the retrograde

modes, and would be a superposition of the spectra of modes of all

orders.)
In the three examples with N = 40, which represent combinations

of data taken from 156 equally spaced points around the solar limb, W^

is no smaller than the other values of Wk, though only in case (c) is it

more than twice as great as any other. As one might have anticipated

from Figure 2b, the greatest contamination in Figure 3c comes from modes

with the same degree and neighbouring azimuthal orders. In Figure 3a,

where £ is not so large, contamination comes mainly from the other modes

with the same value of m. Recall that when £-m « £ the associated

Legendre functions with like £-m are quite similar (see Figures 2c and

2d); consequently in Figure 3e one sees substantial contributions from

nearly all the modes with like £-m.
Figures 3b, 3d and 3f have the same values of !<<, as Figures 3a,

3c and 3e, but result from only 36 data points. Now the sampling is

insufficient to resolve the structures of the modes adequately. In no

case does the largest value of V^ correspond to the mode onto which the

signal was projected.
We have so far confined our discussion to the extremes m « £ jEr.

and £-m « £ . An intermediate case U = 10, m = 4) is illustrated in

Figure 4. This mode does not have very fine structure, and appears to '----=

be adequately resolved when N = 15; the corresponding diagram for N = 40

is not shown, but it is almost indistinguishable from Figure 5c. There

has been some success in producing a relatively high value of Wfc for

this mode, though the values for (£ = 8, m r 2) and (£ = 12, m = 6), are
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Figure 4. An example illustrating how isolation procedures fail when
spatial resolution is inadequate.

high too. When only 16 data points are used, however, the situation is

quite different, as is evident in figure 4b. That is hardly surprising,

since a mode with £-m = 6 has 12 nodes around the limb, and cannot

possibly be resolved by sampling at only 16 points.

V AN OPTIMAL MODE ISOLATION PROCEDURE

One might expect to improve the degree of isolation of a mode by

choosing the coefficients ai such as to optimize the extent to which
2 2
Wk exceeds the other values of Wk . The problem resembles that posed

by Backus and Gilbert (1970) in their discussion of the resolving power

of geophysical data. The following analysis, which takes cognisance of

the inevitable errors in the data, is derived from that work.

We choose the coefficients a^ by minimizing for some value of

X the quantity

D C k ) H

subject to the constraint

(7)
1 J

1 • (8)

where E-. is the covariance matrix of the errors o .. The function J is

chosen to be zero when k = kc, and large for k 4 kc. From numerical

experiments we have found that the outcome of the mode separation

procedure is insensitive to details of the shape of J. All the results

we present here were obtained with
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j = 0, if k=kc (9)

1, if kf«kc.

The presence of the double sum in the expression (7) for D reduces the

influence of o^ on Su at the expense of increasing the contamination

with undesired modes.
The problem of minimizing 0 under the constraint (8) is

equivalent to the unconstrained minimization of

The Euler equations are

|(F.. -4Gij)a. -0. (11).

where

The desired coefficients a . are the components of the eigenvector

associated with the minimum eigenvalue A(k ) of equation (11). From

them we can compute the vector w
k(

k
c)»

 and see whether it has the

property we sought.

VI RESULTS
The method we have just outlined can be applied to any part of the

freqency spectrum, but the success in isolating a small number of modes

is bound to be the greatest in the range of the low-order p modes, where

the upper bound i to £ is relatively small (see Figure 1). From

the (£ +2) (i +4)/8 possible choices of k in this range we have
m ni c

extracted a few typical results. These are illustrated in Figures 5

and 6. They are all computed with E£J = 6jj and X = 1.

!.t=̂



20 D. O. GOUGH and J. LATOUR

(») (20. 201/40

iJ

1 i i 1 1 t 1 1

(b) (tO. 40>/U>

kf j j ^i i 1 i i i i »

(c)

u

(10. 41/40

1 11 Jl il L in lu Ll AH ul iil AJ| Ail J L J !

(d) (30. 141/40

. . . i tai l i i J I 1 11 d
(tl (40.41/40 (f)

,jl,

(30.26J/40
\

0 8 12 16 20 24 26 32 36 40 0 8 tt 16 20 24 28 j 32 40

2
Figure 5. A selection of charts indicating W£ computed by the optimal
procedure described in section V of the text, using 40 observation
points in a complete quadrant.

Results for sectoral modes (m = £) with £c = 20 and £c = 40 are

shown in Figures 5a and 5b. They were obtained assuming measurements to

have been made at 156 points around the limb and combined to yield 40

data points equally spaced in 6 between 0 and ir/2 containing signal from

only those modes with even £ and m. The diagrams are quite similar, and

reflect the fact that we cannot distinguish between the sectoral modes.

However, we can extract the entire set of sectoral modes from the

total signal, and efficiently suppress all other modes. This is because

only the sectoral modes have a large amplitude very near the equator

(Figure 2c). It is somewhat harder to isolate modes with small

nonzero £ - m (see Figure 5f). Only at iarge i are the shapes of the

functions P£ very similar (Figure 2d) when i - m is fixed. Thus there

is a tendency to have contamination particularly from low-degree modes.

For intermediate £ - m (e.g. Figures 5c and 5d) the results are more

complicated.
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Figure 6. A selection of charts computed by the optimal procedure of
section V, which, together with Figures 5c and 5f, indicate the
importance of spatial resolution when trying to isolate different kinds
of modes.

The case of low m and large £, especially I - i , is peculiar.• --T.-- m
Since a- m is now close to £m, the number of zeros of P™ is quite

rare in the whole set of modes. Therefore high spatial resolution will

ensure a very good selection of such a mode (Figure 5e), limited only by

the close similarity in shape for two successive values of m (see Figure

2b). When £ = £m ( r 40), the isolation procedure is therefore very

efficient, keeping essentially only three or four modes out of 1681.

The values of the coefficients â (k ), considered as a function

of the angular coordinate 6^, are often quite similar to the particular

associated Legendre function PA (cos6̂ ) one tries to isolate.

Consequently the results of the optimal isolation procedure do not

differ markedly from the more straightforward projection onto the

Legendre functions. Indeed, for high-degree sectoral modes the

differences are barely discernible (cf. Figures 3e and 5a). In that

particular case the coefficients a- have large values only near the
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equator, and it would be more efficient to perform the

observations with a variable spatial resolution, having a finer

distribution of observation points close to the equator. It does not

matter that modes with moderate and large £-m would then be less

effectively removed in this case, because they have lesser amplitudes in

the equatorial regions where the major contribution to the combination

S^ is provided.

Experiments have also been performed with low resolution (N

= 10) and the same values of kc. On the whole there is some

deterioration in the results (Figure 6), though in some cases\
contamination is not as severe as was found when ai(k~) was set to

Qkc(yj). Generally the deterioration is most pronounced for modes that

cease to be adequately resolved at the lower value of N. In view of

these results, it seems desirable that future -observations of the

limb-darkening function be made with a spatial resolution high enough to

53 resolve most of the modes to which the measurements are sensitive.

|| V CONCLUSION

^ The result of our investigation offers hope that high-resolution

==j observations of oscillations of the solar limb might provide valuable

s==j information about low-order p modes of low and intermediate degree. In

3 particular, groups of relatively few modes with £-m « I can be
===]
s=: separated from the signal, and the group of sectoral modes (£ = m) can

== be extracted quite cleanly. Modes with low m, but degree Si close or

S equal to the natural or instrumental cutoff i^ can also be isolated

1=3 from the others.

r3 Our method is also suitable for identifying internal gravity

•== modes. High-degree g modes trapped in the radiative interior are

==| unlikely to confuse the signal, because their amplitudes should be

~ negligible. Indeed, for g modes we expect a natural cutoff in I due to

:= the high impedance of the convection zone to high-degree modes

H (Dziembowski and Pamjatnykh 1978, Christensen-Dalsgaard et al.

S 1980). Atmospheric g modes are distinguishable by their different

jp dispersion relation, and in any case it is unlikely that they enjoy the

E? high coherence of the other modes. Consequently they could be filtered

=2 out in a temporal power spectrum.. Therefore the method we prcpose



.ill
IDENTIFICATION OF SOLAR OSCILLATIONS 23

should certainly be useful for identifying all observable coherent modes

with frequencies below about 1 mHz.

We have not made a careful study of the effect of noise in the

data. It would be instructive to create artificial data with noise and

then try to recover the modes from which the data were constructed.

Though individual modes cannot be completely isolated in a set

of measurements at a single instant of time, the temporal information

can often be used to permit unambiguous identification. For example, if

we assume a constant rotational splitting of 0.45 PHz, only the

retrograde Pj(£ = 20) and the prograde f( £ = 50) sectoral modes of even

degree (computed from Model 1 of Christensen-Dalsgaard 1982) have

frequencies within 5 uHz of 0.750 mHz. Therefore in principle there can

be no ambiguity in identifying PI(£ = 20) using the combination of data

that produced Figure 5 a. Moreover, the prograde p1 ( £ = 30, m = 14) is '.;Ff

the only mode in Figure 5d with W^ greater than 20 per cent of W^ and !==••

whose frequency is within 5 uHz of 0.900 mHz. These examples typify the

situation for low-order p modes, and show that spatial and temporal limb

information can be combined to identify p modes of low order.
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