DESIGN OF A CANDIDATE FLUTTER SUPPRESSION CONTROL LAW FOR DAST ARW-2

William M. Adams, Jr. and Sherwood H. Tiffany

July 1984
DESIGN OF A CANDIDATE FLUTTER SUPPRESSION CONTROL LAW
FOR DAST ARW-2

William M. Adams, Jr. and Sherwood H. Tiffany
NASA Langley Research Center
Hampton, Virginia

ABSTRACT

A control law is developed to suppress symmetric flutter for a mathematical model of an aeroelastic research vehicle. An implementable control law is attained by including modified LQG (Linear Quadratic Gaussian) design techniques, controller order reduction, and gain scheduling. An alternate (complementary) design approach is illustrated for one flight condition wherein nongradient-based constrained optimization techniques are applied to maximize controller robustness.

NOMENCLATURE

\(a_i, a'_i \)

\(a_{u'_i}, a'_{l'_i} \)

\((a'')^* \)

\((A, B_u, B_w) \)

\((A_c, B_c) \)

\(A_0, A_1, \ldots, A_{n+2} \)

\(b \)

\(b_k \)

\(c \)

\(^{\text{th}} \) element of vector of design variables used in design of robust reduced order controller and its related transformation (see Eq. (21))

upper and lower bound on \(i \)th design variable

value of \(a' \) vector which maximizes minimum singular value for a specific weighting matrix

state, control and noise distribution matrices in plant state equation

controller state and input distribution matrices

real coefficient matrices in unsteady aerodynamic force approximation

reference length

\(^{k} \)th constant in denominator of expression for \(\dot{Q} \) (See Eq. (4))

vector of inequality constraints entering into constrained optimization
\(c_u, c_\lambda\) upper and lower limits on constraint variable vector
\(\bar{c}\) vector of inequality constraint violations
\((C, D_u, D_w)\) state, control and noise distribution matrices in plant output equations
\(D\) matrix of viscous damping force coefficients
\(F\) regulator gain
\(\bar{F}\) reduced order controller gain magnitude, degrees/g
\(F_o\) gain magnitude of initial, unscheduled, reduced order controller, degrees/g
\(P_m\) gain margin
\(G\) plant transfer function \((y/u_R)\), FS-off
\(g\) acceleration due to gravity
\(h\) altitude
\(H\) controller transfer function \((u_{FS}/y)\)
\(J, J_E\) regulator and estimator performance indices
\(K\) generalized stiffness matrix
\(k\) reduced frequency
\(L\) Kalman estimator gain
\(M\) generalized mass matrix
\(\bar{M}\) Mach number
\(N_c\) number of counterclockwise encirclements of the \(-1\) point by the open loop transfer function as \(\omega\) varies from 0 to \(\infty\)
\(n_{\xi}, n_q, n_g, n_o, n_\lambda\) number of generalized coordinates, controls, gusts, outputs, and unsteady aerodynamic lag coefficients
\(P\) steady-state covariance of state estimate
\(Q, \bar{Q}\) matrix of generalized aerodynamic force coefficients and its s-plane approximation, respectively
\(q\) dynamic pressure
\(R_u, R_g, R_m\) intensities of control, gust and measurement noises
\(R_1, R_2\) state and control weighting matrices in regulator design
\(S\) closed loop, steady-state covariance matrix
\(s\) Laplace variable
\(T(s)\) fixed portion of reduced order controller
\(t\) time
\(U\) airspeed
\(u\) commanded control input
\(u_{FS}\) negative of commanded control input from FS control law
\(u_r\) reference input command
This paper describes the design of a control law for suppression of symmetric flutter for a mathematical model of the DAST (Drones for Aerodynamic and Structural Testing) ARW-2 (Aeroelastic Research Wing Number 2) aircraft. An implementable control law is attained by including the following elements in the design process: development of linear, time-invariant state space evaluation and design models that include unsteady aerodynamic force effects (Refs. 1-4); use of LQG (Linear Quadratic Gaussian) methods for full order controller design including robustness recovery (Refs. 5,6); definition of a candidate reduced order controller (Refs. 7-9); and development of a gain schedule to improve off design performance.

Results are presented which indicate how the evaluation and design models of the plant are defined. The control problem is exhibited by displaying the flutter characteristics of the uncontrolled vehicle and by stipulating the design criteria. A description is given of the methodology employed in determining the full and reduced order controllers; and the performance of the scheduled reduced order controller is shown both at the design point and at off design conditions.
The DAST ARW-2 will employ what is effectively a single-input/single-output control law for suppression of flutter in the symmetric degrees of freedom. Consequently, robustness can be characterized in terms of gain margins, phase margins, minimum eigenvalue (singular value) of the return difference transfer function and high frequency characteristics of the controller. Robustness constraints were not explicitly included in the design algorithm used to define the scheduled reduced order controller. Instead, robustness characteristics were examined offline and improved by repeating the design using the robustness recovery procedure (Ref. 6).

One example is also shown where constrained optimization techniques (Refs. 10-13) are utilized to explicitly include robustness criteria within the design algorithm. The minimum singular value of the return difference matrix is maximized subject to constraints on stability, control power, gain margins, and phase margins. A similar approach, which employs a gradient-based optimizer, has been applied to improve the robustness of a lateral stability augmentation control law (Ref. 14). The nonlinear programming algorithm (Refs. 15,16), selected here to perform the optimization, requires no gradient computation and has recently been successfully applied to several design problems (Refs. 13,17,18).

DAST ARW-2 SUMMARY

The primary objective of the DAST ARW-2 research is to provide a partial assessment of the validity of applying current analysis and design techniques in the design of actively controlled aircraft. In this activity a remotely piloted drone which will incorporate several active control functions has been designed and built and will be flight tested. Correlation of experimentally measured and analytically predicted performance will be documented.

The ARW-2 wing has a supercritical airfoil, a 10.3 aspect ratio and a 25° sweep at the quarter chord. It was purposely designed to require flutter suppression (FS), maneuver load alleviations (MLA) and gust load alleviation (GLA) in some flight regimes. Furthermore, the wing was positioned on the fuselage so as to require relaxed static stability (RSS) augmentation to achieve satisfactory handling characteristics.

An early phase of research (Refs. 19,20) defined actuator requirements, identified desirable sensor locations and developed preliminary active control laws. Refinement of the modeling and control law design has resulted in the analog implementation of the control laws into hardware. This hardware has been constructed such that gain and filter constants can be changed and new compensation can be added, if necessary, as the knowledge of the aircraft becomes more precise. The undocumented structural model employed in this paper is the same as that used in obtaining the currently implemented control laws. It is similar to that of references 19 and 20.

The wings have been constructed at NASA Langley, the control hardware and actuators have been installed, and ground vibration and static loads tests with the wing cantilevered have been conducted. A more detailed structural model is under development which is being tempered by the experimental data. When the updated structural model is completed, the FS design will be repeated for the symmetric case and an antisymmetric FS law will be developed.
Figure 1 depicts the sensors and control surface that will be employed in the symmetric FS control law and defines how the sensor signals are separated into symmetric components prior to compensation.

MATHEMATICAL MODELS

Evaluation Model

Modal Characteristics. - A modal characterization of the aircraft is employed which resulted from performing a free-free vibration analysis of the ARW-2. Twelve modes are retained for the symmetric degrees of freedom which are mean-body vertical displacement and pitch and ten symmetric elastic modes. Table 1 lists the natural, in vacuum, frequencies associated with each of the elastic modes and figure 2 shows the normal components of the first six symmetric elastic mode shapes. Fore and aft motion, not shown in the plots, predominate for elastic mode 3.

Unsteady Aerodynamics Force Computation. - Unsteady aerodynamic force coefficients are computed using a doublet lattice (Refs. 21,22) module contained in the ISAC (Interaction of Structures, Aerodynamics and Controls) program (Ref. 1). The paneling of the lifting surfaces that was employed is shown in figure 3. The circles shown indicate points at which modal data are defined. Aerodynamic force coefficients are computed for a number of Mach numbers and, at each Mach number, for the following set of reduced frequencies.

\[(0.0, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0)\]

Reduced frequency satisfies the following relationship

\[k = \frac{\omega b}{U} \]

(1)

where \(b \) is a reference length (chosen here to be one half the mean aerodynamic chord of the wing), \(U \) is airspeed and \(\omega \) is frequency of oscillation in rad/sec.

Frequency Domain Equations. - Given the modal characteristics and associated aerodynamic force coefficients, a frequency domain form of the equations of motion can be written.

\[
[-M_\delta^2+D_\delta^2+K_\delta]\{\xi\} + [-M_\delta D_\delta + K_\delta q_\delta^{-1} \mathbf{g}] \{\delta\} = \{0\}
\]

(2)

where

\[
\{\xi\} \quad \text{is a vector of generalized coordinates} \\
\{\delta\} \quad \text{is a vector of control rotations} \\
\{W_g\} \quad \text{is a vector of gust velocity components} \\
M, D, K \quad \text{are generalized masses, dampings and stiffnesses, respectively} \\
M_\delta \quad \text{(damping ratios of 0.005 were assumed for each elastic mode)} \\
M_\delta \quad \text{is control mass coupling matrix}
\[Q(k,M) = \begin{bmatrix} Q_x & Q_\delta & Q_g \end{bmatrix} \] is a matrix of unsteady aerodynamic force coefficients which is complex and frequency and Mach number dependent.

and

\[q \]

is dynamic pressure.

In this form of the equations of motion, the assumption is made that control surface actuators are sufficiently powerful that aerodynamic hinge moments and inertial cross coupling hinge moments do not affect control position (rotation).

The following transfer function representation of the actuator with aileron attached is employed in both the evaluation model and the design model to relate control deflection to commanded control deflection:

\[\delta_a = \frac{180}{s + 180} \frac{314^2}{s^2 + 251s + 314^2} \delta_a^c \] (3)

This representation fits the experimentally determined frequency response up to 300 rad/sec.

S-plane Aerodynamic Force Approximation. An approximation to the unsteady aerodynamic force coefficients is made in order to convert equation (2) into a set of first order, time-invariant state equations more amenable to linear systems analysis and design techniques. A least squares curve fit is made, for a specific Mach number, of the matrix of frequency dependent coefficients using a matrix function of the form (Refs. 3, 23-26).

\[Q(k) = A_0 + A_1 i k + A_2 (i k)^2 + \sum_{\xi=1}^{n_\xi} \frac{i k A_{\xi+2}}{(b_\xi + i k)} + \] (4)

In the evaluation model, \(n_\xi = 4 \) and the \(b_\xi \) are 0.0939, 0.1878, 0.2817, 0.3756. Linear constraints are imposed upon the rigid body columns of the \(A_\xi \) matrices which require that the curve fit match the tabular data and its slope at \(k = 0 \) (Ref. 27). In addition, the \(A_2 \) column corresponding to the gust mode is constrained to be zero.

State Space Equations of Motion. Under the assumption that the curve fit in equation (4) for \(s = i U/b \) \(k \) is valid for points off the imaginary axis, linear, time-invariant equations of motion can be written of the form

\[\dot{x} = Ax + Bu + Bw \]

with outputs

\[y = Cx + Du + Dw \] (5)

where
\[

t = (\xi^T, \xi_1^T, \xi_2^T, \ldots, x_A^T, x_g^T)
\]

\(x_1, \ldots, x_n\) are \(n \times n_x\) states associated with the unsteady aerodynamic force representation (Refs. 2,3)

\(x_A\) are states representing actuator transfer functions

\(x_g\) are gust states—the Dryden spectrum is assumed (Ref. 28)

\(u\) are commanded control inputs

\(w^T = (w_u^T, w_g^T, w_m^T)\) are uncorrelated zero mean, white noise processes with intensities \(R_u, R_g, R_m\), respectively

\(B_w = [B_u : B_g : 0]\)

\(D_w = [D_u : D_g : I]\)

The evaluation model plant state vector is 77 by 1.

Design Model

A reduced order model of the plant was developed in order to lower the cost of the design of the control law. Only two lag terms were retained in the s-plane approximation of the unsteady aerodynamic forces, equation (4). The values selected for the denominator coefficients, \((b_1 = 0.31, b_2 = 0.71)\) yield a good fit to the computed aerodynamic data.

A subset of the modes in equation (2) was selected for retention. Modes with natural frequencies below or near the open loop flutter frequency (116 rad/sec for \(M = 0.86\)) which were observed to have little effect upon the flutter characteristics were truncated. Vertical translation pitch, and the second elastic mode, (see Fig. 2), were truncated. Modal residualization (Refs. 4,8,13,29) was employed to retain the static effects of the four highest frequency modes. Thus, five modes were retained in the design model. The resulting state space representation of the design model of the plant has 25 state variables (10 vehicle, 10 aerodynamic, 3 actuator, 2 gust).

Figure 4 is a Bode plot comparison of the amplitude of the symmetric signal to be sent to the controller per unit commanded control input for the design and evaluation models. This figure shows that the reduced order design model is in good agreement with the full order evaluation model (phase angle comparisons, not shown, also exhibit excellent agreement at frequencies below 500 rad/sec).
DESIGN OF CONTROL LAWS

Design Criteria

Flutter Boundaries.— Figure 5 shows three boundaries. The predicted flutter boundary (FS-off) is shown as the solid line. Flutter occurs, for the uncontrolled aircraft, to the right of this line. The dashed line, which will be referred to as the nominal stability margin boundary, is a boundary to the left of which the FS control law should provide stability with ±6dB gain margins and ±45° phase margins. The third curve, denoted as the desired closed loop flutter boundary, defines a boundary to the left of which the FS control should provide stability with no constraints on stability margins.

Control Law Design and Evaluation Points.— The control law design point in this study is at an altitude of 15,000 feet and a Mach number of 0.86. This point is indicated on figure 5. Off design performance of the control law is evaluated at selected points which are also shown on figure 5.

Control Constraints.— The peak deflection and rate capabilities for the outboard ailerons are ±15° and ±740°/sec, respectively. The control law is to be designed such that saturation does not occur, in the root mean square (rms) sense, for an input gust spectrum having an rms of 12 feet/sec. The control saturation constraints are to be satisfied at all points to the left of the nominal stability margin boundary of figure 5. The Dryden spectrum is assumed for the design phase and the von Karman spectrum is used for controller evaluation.

Altitude Root Loci.— Figure 6 shows the characteristic roots as a function of altitude (FS-off, M = 0.86) for the symmetric evaluation model. Flutter is predicted to occur at 18,750 feet (q = 531 lb/ft²). The design point dynamic pressure is 16.5 percent higher than the dynamic pressure at the flutter point.

Full Order Controller Design

The ISAC (Ref. 1) program was used to generate the reduced order design model of the plant. The resulting linear, time-invariant equations are

\[
\dot{x} = A\dot{x} + Bu + \dot{B}w \\
\dot{y} = C\dot{x} + Dw
\]

(6)

where \((A, B_u)\) is stabilizable and \((A^T, C^T)\) is reconstructible.

LQG algorithms in the ORACL (Ref. 5) program were then employed to obtain full order controllers, with respect to the design model. Figure 7 depicts the block diagram representation of the closed loop system and defines the inputs and outputs that will be examined to evaluate the performance of candidate controllers.

Regulator Design.— Steady-state regulator gains were determined which minimized a performance index of the form
where \(E \) is the expected value operator. \(R_1 \) is null and \(R_2 \) is the identity. This choice of weighting matrices, plus the constraint that the closed loop system be stable, results in a solution which reflects unstable poles about the imaginary axis, leaving stable poles fixed. This is also the minimum control effort solution which stabilizes the system (Ref. 7). Nevertheless, by reflecting the unstable poles, it provides a finite margin of stability.

Estimator Design. Steady-state Kalman filter gains were determined which minimize the performance index

\[
J_E = \lim_{t \to \infty} \frac{1}{t_1} E \left\{ \int_0^t (x(t)R_1 x(t) + u_{FS}(t)R_2 u_{FS}(t)) dt \right\}
\]

(7)

for the system defined in (6) where

\[
e(t) = \tilde{x}(t) - \hat{x}(t)
\]

(9)

and \(\hat{x}(t) \) satisfies (The reference to \(t \) is dropped for compactness.),

\[
\dot{\hat{x}} = \tilde{A}\hat{x} + \tilde{B}u + L [y - \tilde{C}\hat{x}]
\]

(10)

Here,

\[
E \begin{bmatrix}
\tilde{B} \\
\tilde{D}
\end{bmatrix} w_w T \begin{bmatrix}
\tilde{B}^T & \tilde{D}^T \\
\tilde{D} & \tilde{D}
\end{bmatrix} = \begin{bmatrix}
\tilde{B} R \tilde{B}^T + \tilde{B} \tilde{R} \tilde{D}^T & \tilde{B} \tilde{R} \tilde{D}^T + \tilde{B} \tilde{R} \tilde{D}^T \\
\tilde{D} R \tilde{D}^T + \tilde{D} \tilde{D} \tilde{D}^T + \tilde{R} \tilde{D}^T
\end{bmatrix} = \begin{bmatrix}
V_1 & V_{12} \\
V_{12} & V_2
\end{bmatrix}
\]

(11)

so that the state excitation and observation noises are correlated. The correlation is a result of the modeling of aerodynamic forces due to gust inputs (Eq. (4)). The coupling term has a minor impact on the resulting control law designs. The solution for the steady-state Kalman filter gain is given by (Ref. 30)

\[
L = [PC^T + V_{12}] V_2^{-1}
\]

(12)

where \(P \), the steady-state covariance of the estimate, satisfies the algebraic Riccati equation

\[
[A - V_{12} V_2^{-1} C] P + P [A - V_{12} V_2^{-1} C]^T + P C^T V_2^{-1} C P + V_1 - V_{12} V_2^{-1} V_{12} = 0
\]

(13)

The estimator equation may be rewritten as
\[\dot{x} = [A - B_u F - LC]\dot{x} + Ly \quad (14) \]

where \(u_{FS} = Fx \) and \(-F\) is the solution to equation (7).

Robustness Recovery.—Full state feedback control laws designed using LQG methodology are known to possess good robustness properties (Refs. 31,32). LQG designs, however, may exhibit unsatisfactory robustness characteristics. The introduction of fictitious process noise at the control input has been shown to provide robustness recovery in LQG designs (Ref. 6). Consequently, several estimator designs were performed in which the process noise intensity, \(R_u \), was varied to obtain an acceptable tradeoff between stability margins, control law bandwidth, and available control power. Results for two of the designs are summarized in figures 8 and 9. The loop transfer function Nyquist plots of figure 8 show how the stability margins improve with increasing process noise at the actuator input (the full order evaluation model of the plant was employed in constructing Fig. 8). The Bode plots of figure 9, however, reveal the undesirable feature that the commanded control input at high frequencies becomes larger with increasing input process noise. The controller corresponding to \(R_u = (0.79 \, \text{deg})^2 \) was selected as a basis for initiating the search for a reduced order controller. Note that this controller meets the specified stability margin criteria. Its control requirements, not shown, are also well within the \(\pm 15^\circ, \pm 740^\circ/\text{sec} \) capabilities of the actuator.

Reduced Order Controller Selection

The 25th order controller developed using LQG techniques was reduced to obtain an implementable control law. Figure 10 shows the closed loop block diagram of plant and controller where the controller state space representation is given by

\[\dot{x}_c = A_c x_c + B_c y \quad (15) \]

and

\[u_{FS} = C_c x_c \quad (16) \]

For the case of a full order controller, \(A_c \) and \(B_c \) are defined by equations (13) and (14) and \(C_c = F \).

Order reduction was initiated by transforming (15) to block diagonal form and examining the poles, zeros and residues of the full order \(u_{FS}/y \) transfer function. Modal truncation was then performed in the transformed domain to obtain the following candidate reduced order controller.

\[
\begin{align*}
\frac{u_{FS}}{y} &= \frac{692.3}{s+692.3} \frac{(s+98.59)(s+213.5)}{s^2+118.8s+66.29^2} \frac{s^2+214.9s+164.5^2}{s^2+214.9s+164.5^2} \frac{s^2+1.030s+136.4^2}{s^2+1.030s+136.4^2} \\
&\quad \frac{s^2+251.1s+314.1^2}{s^2+251.1s+314.1^2} \frac{s^2+58.48s+94.42^2}{s^2+58.48s+94.42^2} \frac{s^2+2.411s+136.9^2}{s^2+2.411s+136.9^2} \\
&\quad \frac{s^2+406.1s+567.9^2}{s^2+406.1s+567.9^2}
\end{align*}
\quad (17)
\]
where \(F_0 = 0.5064 \) deg/g was selected so that the static gain of the full order and reduced order controllers were the same.

The sharp notch at 136 rad/sec essentially cancels the peak in the \((y/u)\) transfer function due to the lowly damped fore and aft wing mode. In some cases, e.g. if the flutter mode frequency were nearly coincident with the notch, failure of the notch to correspond to the frequency of the lowly damped mode might lead to instability. For the case under study, the flutter mode remains separated from the notch at dynamic pressures near the design point. Furthermore, ground vibration tests indicate that the frequency of this mode is actually much higher (220 rad/sec) and that a substantial amount of structural damping is present. Thus, when the design is repeated with the updated structural model, the notch will be widened and occur at a frequency much higher than the frequency of flutter.

Figure 11 presents the Nyquist plot of the system loop transfer function obtained by use of the reduced order controller and the evaluation model of the plant. It is seen, by comparing with figure 8b, that the reduced order controller provides essentially the same stability margins as the full order controller. Figure 12 depicts the frequency response of the reduced order controller which is essentially the same as that of the full order controller shown in figure 9b. Figures 11 and 12 indicate that the order reduction has resulted in little degradation in controller performance.

A high pass filter to remove low frequency signals and additional high frequency attenuation will be incorporated in the actual FS implementation. The impact of phase changes due to such elements will be considered in future design studies.

Scheduling Law for Improved Off Design Performance

The closed loop system is unstable at the evaluation points on the desired flutter boundary (FS-on) with the controller defined in equation (17). Furthermore, \(F_0 \) is higher than required at dynamic pressures below that of the design point. Performance at off-design points is improved by scheduling the gain as a function of dynamic pressure. The schedule is defined in equation (18).

\[
\begin{align*}
\tilde{F} &= 0.50 \bar{F}_0 \quad \text{for} \quad q < 400 \text{ lb/ft}^2 \\
\tilde{F} &= [0.50 + 0.00232(q - 400)]\bar{F}_0 \quad \text{for} \quad 400 \leq q \leq 940 \text{ lb/ft}^2 \\
\tilde{F} &= 1.75 \bar{F}_0 \quad \text{for} \quad q > 940 \text{ lb/ft}^2
\end{align*}
\]

(18)

Table 2 shows the performance of the scheduled controller at each of the points indicated in figure 5. The rms control deflection and rate requirements were computed using the frequency domain form (Eq. (2)) of the evaluation model of the plant, the scheduled reduced order controller, and a von Karman input gust spectrum having a 12 fps rms. It was assumed that the measurement noise and fictitious process noise were zero. Good phase and gain margins are achieved near the design point. The system is stable for cases 7 and 8 which are on the desired flutter boundary (FS-on) of figure 5. The control power violations at these two high q cases are not of particular concern since flight tests will not be made at these extreme conditions.
Optimization of the Robustness of Reduced Order Controllers

An alternate design approach will now be employed which allows explicit consideration of design criteria. The approach requires that the form of the control law be specified. Consequently, it is particularly applicable in modifying an existing control law when small changes occur in the plant or in satisfying design criteria not fully considered in the previous design. In the discussion to follow, robustness design criteria will be emphasized.

Constrained minimization techniques (Refs. 10-13) can be employed to determine the benefits of maximizing the minimum singular value of the return difference transfer function subject to explicit constraints on gain margins, phase margins, control power and controller frequency rolloff characteristics. The nonlinear programming algorithm (Refs. 15,16) selected to carry out this optimization requires no gradient computations. Some initial results illustrating the procedure follow.

A reduced order controller of the form of equation (17) was found which maximized the minimum singular value of the return difference transfer function for a flight condition at h = 15,000 feet, M = 0.91 (See Fig. 5). Nine of the controller coefficients of equation (17) were allowed to vary as indicated in equation (19)

\[u_{FS} = \frac{a_1 (s + a_2) (s + a_3)}{s^2 + a_4 s + a_5} \frac{s^2 + a_6 s + a_7}{s^2 + a_8 s + a_9} T(s) \]

(19)

where

\[T(s) = \frac{692.3}{s + 692.3} \frac{s^2 + 1.031 s + 136.4^2}{s^2 + 2.411 s + 136.9^2} \frac{s^2 + 251.1 s + 314.1^2}{s^2 + 406.1 s + 567.9^2} \]

(20)

was fixed. The following constraints were imposed

\[
\begin{align*}
0.25 & < a_1 < 2.25 \\
40 & < a_2 < 120 \\
150 & < a_3 < 300 \\
50 & < a_4 < 175 \\
2000 & < a_5 < 5000 \\
125 & < a_6 < 325 \\
20,000 & < a_7 < 35,000 \\
30 & < a_8 < 90 \\
6,000 & < a_9 < 12,000
\end{align*}
\]
\[
\begin{align*}
| \phi_m | & > 40^\circ \\
| F_m | & > 6 \text{dB} \\
N_C & = 1 \\
(\delta a)_{\text{rms}} & < 15^\circ \\
(\delta a)_{\text{rms}} & < 740^\circ/\text{sec}
\end{align*}
\]

The direct constraints upon the design variables were satisfied by making the transformation (Ref. 33)

\[
a_i = \frac{1}{2} \left[(a_{u_i} - a_{l_i}) \sin \frac{\pi}{2} a_{u_i} + a_{u_i} + a_{l_i} \right]
\]

(21)

Here \(N_C\) is the number of counterclockwise encirclements of the \(-1\) point as \(\omega\) varies from 0 to \(\infty\), \(\phi_m\) is phase margin and \(F_m\) is gain margin. The stability of the closed loop system is determined by evaluating \(N_C\). A constrained optimization is carried out as follows:

1. Let \(c\) be the vector of inequality constraint functions and define -

\[
\tilde{c}_i = \max(0, c_i - c_{u_i}, c_{l_i} - c).
\]

2. Define a positive definite diagonal weighting matrix \(W\).

3. Form the augmented function

\[
\phi_W(a') = \frac{1}{2} \frac{1}{\sigma_{\text{min}}^2} + \frac{1}{2} c^T \widetilde{W} c + 10^{50} \left| N_C - 1 \right|.
\]

(22)

4. Find \((a'_W)^*\) which minimizes \(\phi_W\).

5. Increase the magnitude of \(W\) and repeat steps 3 and 4.

In the limit as \(W \rightarrow \infty\), the solution, if it exists, of (22) will maximize the minimum singular value subject to the imposed constraints (Ref. 34). If no solution exists, one would have to change the form of the control law or relax the constraints.

The results obtained in applying this procedure are presented in figure 13 and in table 3 for a finite weighting matrix \(W\). The system is stable. The minimum singular value is increased 26 percent and gain and phase margin constraints are satisfied to within a 2.5 percent tolerance.
CONCLUDING REMARKS

An implementable control law has been designed for suppression of flutter in the symmetric degrees of freedom for a mathematical model of the DAST ARW-2. Stability margin criteria of ±6dB gain margins and ±45° phase margins are exceeded at the design point which is at a dynamic pressure 16.5 percent above the corresponding FS-off flutter value. A gain schedule was defined which provided at least ±6dB gain and ±45° phase margins at off design points examined which had dynamic pressures lower than the design point dynamic pressure. The FS law, with gain scheduling, resulted in a stable system at points examined on the desired (FS-on) flutter boundary having dynamic pressures up to 82 percent above the corresponding open loop flutter values.

Coupling the ISAC program for definition of plant design and evaluation models with the ORACLS LQG methodology provided an effective tool for design of full order controllers. Addition of process noise at the input allowed stability margin criteria to be met. Reduction of the order of the controller from 25th to 9th was achieved with minimal sacrifice in controller performance.

Constrained optimization techniques were successfully applied to maximize the robustness characteristics of the reduced order controller at one flight condition. The nonlinear programming algorithm used required no gradient computations. Stability of the candidate control law at each iteration was determined by computing the number of counterclockwise encirclements of the -1 point made by the open loop transfer function as ω varied from 0 to ω.

New control laws will be designed for both symmetric and antisymmetric degrees of freedom as the mathematical model of the ARW-2 is improved. At that time, control power and robustness constraints will again be explicitly included in the constrained optimization solution for reduced order controllers.

REFERENCES

Table 1. Natural Frequencies of Free-Free Symmetric Elastic Nodes

<table>
<thead>
<tr>
<th>elastic mode number</th>
<th>frequency, Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.067</td>
</tr>
<tr>
<td>2</td>
<td>14.21</td>
</tr>
<tr>
<td>3</td>
<td>21.72</td>
</tr>
<tr>
<td>4</td>
<td>30.27</td>
</tr>
<tr>
<td>5</td>
<td>33.28</td>
</tr>
<tr>
<td>6</td>
<td>41.10</td>
</tr>
<tr>
<td>7</td>
<td>47.01</td>
</tr>
<tr>
<td>8</td>
<td>63.06</td>
</tr>
<tr>
<td>9</td>
<td>67.22</td>
</tr>
<tr>
<td>10</td>
<td>78.24</td>
</tr>
</tbody>
</table>

Table 2.- Performance of scheduled, reduced-order controller.

<table>
<thead>
<tr>
<th>case number</th>
<th>g, lb/ft²</th>
<th>h, feet</th>
<th>M</th>
<th>(δα)α, deg</th>
<th>(δα)rms, deg/sec</th>
<th>Gain Margin at w rad/sec</th>
<th>Phase margin at w deg</th>
<th>phase margin at w rad/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>547</td>
<td>28,000</td>
<td>0.86</td>
<td>4.08</td>
<td>444</td>
<td>-15.3 at 116</td>
<td>12.5 at 444</td>
<td>68.1 at 159</td>
</tr>
<tr>
<td>2</td>
<td>576</td>
<td>15,000</td>
<td>0.83</td>
<td>4.03</td>
<td>465</td>
<td>-13.9 at 121</td>
<td>12.0 at 444</td>
<td>72.5 at 165</td>
</tr>
<tr>
<td>3</td>
<td>614</td>
<td>13,400</td>
<td>0.83</td>
<td>4.44</td>
<td>523</td>
<td>-9.92 at 125</td>
<td>10.6 at 444</td>
<td>66.3 at 166</td>
</tr>
<tr>
<td>4</td>
<td>619</td>
<td>15,000</td>
<td>0.86</td>
<td>4.94</td>
<td>563</td>
<td>-7.31 at 122</td>
<td>10.8 at 444</td>
<td>53.8 at 162</td>
</tr>
<tr>
<td>5</td>
<td>670</td>
<td>13,000</td>
<td>0.86</td>
<td>5.41</td>
<td>629</td>
<td>-5.56 at 127</td>
<td>9.15 at 442</td>
<td>35.6 at 165</td>
</tr>
<tr>
<td>6</td>
<td>692</td>
<td>15,000</td>
<td>0.91</td>
<td>5.76</td>
<td>599</td>
<td>-6.08 at 122</td>
<td>7.33 at 437</td>
<td>41.8 at 174</td>
</tr>
<tr>
<td>7</td>
<td>912</td>
<td>8,000</td>
<td>0.91</td>
<td>14.2</td>
<td>1143</td>
<td>3.26 at 136</td>
<td>2.13 at 38.2</td>
<td>32.9 at 203</td>
</tr>
<tr>
<td>8</td>
<td>938</td>
<td>4,250</td>
<td>0.86</td>
<td>7.90</td>
<td>837</td>
<td>-1.69 at 150</td>
<td>3.47 at 445</td>
<td>22.9 at 190</td>
</tr>
</tbody>
</table>

Table 3.- Comparison of controller optimized for robustness with nominal controller (h=15,000 feet, M=0.51)

<table>
<thead>
<tr>
<th>Optimal Controller</th>
<th>Nominal Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>singular value (δα)α, deg</td>
<td>0.587 at 434 rad/sec 5.23</td>
</tr>
<tr>
<td>(δα)rms, deg/sec, gain margin, dB</td>
<td>561</td>
</tr>
<tr>
<td>phase margin, deg</td>
<td>-9.92 at 123 rad/sec 7.69 at 433 rad/sec 39.8 at 377 rad/sec 0.543</td>
</tr>
<tr>
<td>a₁, deg/k</td>
<td>106</td>
</tr>
<tr>
<td>a₂, sec⁻¹</td>
<td>234</td>
</tr>
<tr>
<td>a₃, sec⁻¹</td>
<td>116</td>
</tr>
<tr>
<td>a₄, sec⁻¹</td>
<td>116</td>
</tr>
<tr>
<td>a₅, sec⁻¹</td>
<td>4529</td>
</tr>
<tr>
<td>a₆, sec⁻¹</td>
<td>242</td>
</tr>
<tr>
<td>a₇, sec⁻¹</td>
<td>28429</td>
</tr>
<tr>
<td>a₈, sec⁻¹</td>
<td>65.1</td>
</tr>
<tr>
<td>a₉, sec⁻¹</td>
<td>2087</td>
</tr>
<tr>
<td>a₁₀, sec⁻¹</td>
<td>8915</td>
</tr>
<tr>
<td>0.465 at 93.4 rad/sec 5.48</td>
<td>612</td>
</tr>
<tr>
<td>-4.66 at 122 rad/sec 8.77 at 437 rad/sec 27.1 at 94.6 rad/sec 40.5 at 146 rad/sec 0.506</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Sensor signal inputs to symmetric flutter suppression control law.

Figure 2. Normal components of six lowest frequency symmetric free-free mode shapes
Figure 3. Paneling of lifting surfaces for unsteady aerodynamic force computations

Figure 4. Amplitude of symmetric component of y/w_k, FS-off
($H = 0.86$, $h = 15000$ ft).
Figure 5. - Flutter boundary, FS-off; nominal stability margin boundary and flutter boundary, FS-on.

Figure 6. - Variation of symmetric characteristic roots with altitude for a Mach number of 0.86 (evaluation model).
Figure 7.- Closed loop block diagram.
a) \(R_u = 0 \).

b) \(R_u = 0.79^2\text{deg}^2 \).

Figure 8.- Nyquist plots of HG transfer function at the design point using full order controller.

- 22 -
Figure 9.- Bode plots of full order controller, $u_	ext{FS}/y$.

a) $R_u = 0$.

b) $R_u = 0.79^2 \text{deg}^2$.
Figure 10.- Closed loop system.
Figure 11. Nyquist plot of HG transfer function for reduced order controller at the design point.

Figure 12. Bode plot of reduced order controller transfer function (H), deg/g, at the design point.
a) nominal, reduced order controller.

b) optimized reduced order controller.

Figure 13.- Nyquist plot of HG transfer function
(M = 0.91, h = 15000 ft).

- 26 -
A control law is developed to suppress symmetric flutter for a mathematical model of an aeroelastic research vehicle. An implementable control law is attained by including modified LQG (Linear Quadratic Gaussian) design techniques, controller order reduction, and gain scheduling. An alternate (complementary) design approach is illustrated for one flight condition wherein nongradient-based constrained optimization techniques are applied to maximize controller robustness.
<table>
<thead>
<tr>
<th>NAME</th>
<th>DATE</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Bartets</td>
<td>1/99</td>
<td>340</td>
</tr>
</tbody>
</table>

DO NOT REMOVE SLIP FROM MATERIAL

Delete your name from this slip when returning material to the library.