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ABSTRACT

The effects of humidity (water-vapor) 1n nitrogen on the friction and

deformation behavior of magnetic tape 1n contact with a N1-Zn ferrlte spherical

pin were studied. The results Indicate that the coefficient of friction 1s

^ markedly dependent on the ambient relative humidity. In elastic contacts the
00

^ coefficient of friction Increased linearly with Increasing humidity; 1t de-
LlJ

creased linearly when humidity was lowered. This effect 1s the result of

changes 1n the chemistry and Interaction of tape materials such as degradation

of the lubricant. In plastic contacts there was no effect of humidity on fric-

tion below 40-percent relative humidity. There 1s no effect on friction asso-

ciated with the breakthrough of the adsorbed water-vapor film at the Interface

of the tape and N1-Zn ferrlte. The coefficient of friction, however, Increased

rapidly with Increasing relative humidity above 40 percent 1n plastic contacts.

The change 1n friction 1s reversible on humidifying and dehum1d1fy1ng. This

effect 1s due to softening of the tape surface and changes 1n the chemistry and

Interaction of the tape. With a mechanical activity that takes place during

sliding, water vapor adsorbed on the tape surface tends to promote chemical

degradation of the tape long before the surface may otherwise deteriorate.

INTRODUCTION

Magnetic recording has been developed to a highly refined state. The term

can be applied to any recording technique 1n which some phase of magnetics 1s

Intimately associated with either the recording or playback process. In most



magnetic recording and playback devices, recording 1s conducted with a magnetic

head (slider) 1n sliding or Intermittent contact with a magnetic media, such as

a magnetic tape or disk. A small amount of wear and high friction of magnetic

head and medium may render the recording process unreliable. The magnetic head

and medium are therefore required to have good wear resistance and low fric-

tion. The gradual change 1n the characteristics of the head and medium accom-

panying the wear process has also been the concern of manufacturers of media,

heads, and recording devices.

This Investigation examines the effects of humidity (water vapor) 1n moist

nitrogen on the friction and deformation behavior of magnetic tapes 1n contact

with a N1-Zn ferrlte hemispherical pin. Experiments were conducted with loads

to 1.0 N at a sliding velocity to 6 mm/m1n 1n single-pass and multipass slid-

ing at 23° C. Multipass sliding experiments were conducted 1n reciprocating

motion.

BACKGROUND

Much of the research conducted with media and heads 1n the magnetic

recording Industry was and Is empirical [1-17]. Investigators have concerned

themselves with such factors^as contact pressures, relative sliding velocity,

temperature, hardness, and humidity, and they have used onslte testing or other

shortcut methods. For example, Carroll and Gotham state that the friction of

magnetic tapes rises with Increasing humidity [1]. The trlbologlcal properties

and surface characteristics, however, of magnetic tapes are not clearly under-

stood. We really need to know the fundamental mechanisms Involved with such

trlbologlcal characteristics as friction and wear of the medium and head and

thus what 1s necessary to achieve low friction and high wear resistance.

M1yosh1 and Buckley conducted fundamental studies on the friction and

wear behavior of ceramic oxides such as Mn-Zn and N1-Zn ferrltes to gain an



understanding of the trlbologlcal properties of ferrltes [8-12]. N1-Zn and

Mn-Zn mixed ferrltes are ceramic semiconductors and are Important as magnetic

materials for use 1n highly developed magnetic recording devices. N1-Zn fer-

rlte has been used for computer memory systems, such as magnetic recording

disk files, while Mn-Zn ferrltes have been used for video- and audio-tape re-

corders to enhance certain desirable properties and suppress undesirable ones

1n certain applications.

The results Indicated that the coefficients of friction for ferrltes 1n

contact with various metals are related to the relative chemical activity of

the metals. The more active the metal, the higher the coefficient of friction

[9,10]. They also correlated the coefficient of friction with the free energy

of formation of the lowest metal oxide.

The Interfadal bond can be regarded as a chemical bond between the metal

atoms and oxygen anlons 1n the ferrlte surface. Mating the highest atomic

density directions and planes of ferrlte surfaces resulted 1n the lowest fric-

tion. This result suggests that crystallographlc orientation 1s Important 1n

the friction behavior of ferrlte [11].

Fracture wear of ferrltes as a result of sliding was determined to be due

to the primary cleavage of the (110) planes [11]. The study herein extends

this Investigation to trlbologlcal properties of magnetic media 1n contact

with a ceramic oxide.

Polymeric magnetic tape consists of a layer structure as shown 1n F1g. 1.

Primary components of the magnetic layer are the magnetic oxide particle, the

binder, the lubricant, the dlspersant, and other minor additives. The magnetic

tapes used 1n this Investigation contained powders coated on a polyester film

backing (film thickness, 23 ym; film width, 12.7 mm). The tapes designated 1

and 2 used 1n this Investigation were made with polyester-polyurethane binders,



which are the most widely used binders for magnetic tape applications. The

magnetic layers contain magnetic oxide particles 1n excess of 70 percent of the

layer by weight and as much as 60 percent by volume.

APPARATUS

The apparatus used 1n this Investigation 1s shown schematically 1n F1g. 2.

It was basically a pin (rider) on a flat. The magnetic tapes (12.7 mm wide,

30 mm long) were mounted on hardened steel flats and retained 1n a vice mounted

on a screw-driven platform. The platform was driven through the screw by an

electric motor with a gear box that allowed for changing the sliding velocity.

Motion was reciprocal. The pin was made to travel 10 mm on the tape surface.

A switch then reversed the direction of motion so that the pin retraced the

original track from the opposite direction. This process was repeated

continuously.

The ferrlte hemispherical pin specimen was loaded against the magnetic

tape with deadweights. The arm retaining the pin contained strain gages to

measure the tangential and normal forces. The arm containing the pin could be

moved normal to the direction of the wear tracks and thus multiple tracks could

be generated on a single surface. The entire apparatus was housed 1n a plastic

box.

When the friction and deformation of the tape were examined, the entire

plastic box was controlled with air at a relative humidity of 40 percent and

at room temperature (23° C). When the effects of water vapor on friction and

deformation were examined, the nitrogen atmosphere 1n the box was controlled

1n two ways. In the first, the entire plastic box was filled with dry or humid

nitrogen, as Indicated 1n F1g. 3(a). In the second, dry or humid nitrogen was

admitted locally through a nozzle onto the tape surfaces, 1n contact with the

pin specimens, as shown 1n F.1g. 3(b).



EXPERIMENTAL PROCEDURE

The N1-Zn ferrlte hemispherical pin specimen was polished with a diamond

powder (particle diameter, 3 ym) and an aluminum oxide (Al 0.) powder (1 ym).
t «J

The pin radius was 2 mm. The pin surface was rinsed with 200-proof ethyl alco-

hol. After the system shown 1n F1g. 3(a) was conditioned to the desired envi-

ronment and humidity, a polished N1-Zn ferrlte pin and a new as-received tape

were placed 1n the experimental apparatus.

Friction and Deformation

A tape and pin were preconditioned 1n air 1n the plastic box and main-

tained at that condition for 15 to 20 minutes. The specimen surfaces were

then brought Into contact and loaded.

To obtain consistent experimental conditions, contact was maintained for

30 seconds before sliding. The friction experiment was then begun at a load to

1.0 N. Both the load and the friction force were continuously monitored during

a friction experiment. Sliding velocity was 1.5 mm/m1n over a total sliding

distance of 10 mm.

Effects of Water Vapor

After admitting dry nitrogen gas Into the system shown 1n F1g. 3(a), a

polished N1-Zn ferrlte pin and a new as-received tape were placed 1n the exper-

imental apparatus and maintained at that condition for 15 to 20 minutes. The

specimen surfaces were then brought Into contact and loaded. Single-pass slid-

ing friction experiments were conducted with the same magnetic tape, but on

different tracks, at loads of 0.25 and 0.5 N 1n a dry nitrogen atmosphere. The

atmosphere was then humidified to the desired humidity of 78 percent by admit-

ting humid nitrogen Into the system.

After the experiments 1n nitrogen at relative humidities to 78 percent,

the system was gradually dehumidified to a dry nitrogen atmosphere. Single-



pass sliding experiments were conducted with the same tape, but on different

tracks, 1n the desired atmosphere during the dehum1d1fy1ng process. In each

experiment a new repollshed ferrlte pin was always used and 1t was held at that

condition for 15 to 20 minutes. Each value for the coefficient of friction 1s

the average of measurements obtained from three to five single-pass sliding

experiments.

Multipass sliding friction experiments were also conducted with the mag-

netic tape 1n contact with N1-Zn ferrlte pins 1n dry nitrogen and 1n humid

nitrogen at a relative humidity of 78 percent. In each experiment, the new

ferrlte pin traveled and retraced the original tracks on the tape.

To examine friction response to humidity changes, three sets of environ-

mental conditions and experiments were conducted. In the first set, a tape

was preconditioned 1n dry nitrogen 1n the plastic box shown 1n F1g. 3(b) and

maintained at that condition during the entire sliding friction experiment.

After sliding for about 40 seconds 1n dry nitrogen, the area where the tape

contacts the ferrlte pin was flooded with humid nitrogen having a relative

humidity of 61 percent; but, a dry nitrogen atmosphere was maintained 1n the
2

plastic box. The area flooded with humid nitrogen Included less than 100 mm

of tape. Multipass sliding friction experiments were also conducted 1n the

same manner as those 1n the single-pass sliding.

In the second set, a tape was preconditioned with 63-percent relative

humidity 1n the plastic box shown 1n F1g. 3(b) and maintained at that con-

dition during the entire sliding friction experiment. The vicinity surround-

ing the tape-ferrlte contact was flooded with dry nitrogen after sliding for

40 seconds 1n the humid nitrogen atmosphere. Multipass sliding friction exper-

iments were also conducted 1n the same manner as those 1n the single-pass slid-

ing experiments. In the third set, a tape was placed 1n air at a relative



humidity of 41 to 43 percent. The vicinity surrounding the tape 1n contact

with the pin had been flooded with dry nitrogen (F1g. 3(b)). At a sliding time

of approximately 30 seconds, the supply of dry nitrogen was stopped and humid

nitrogen, with a relative humidity of 61 percent, was admitted to the contact

area for about 30 seconds. After admitting humid nitrogen for 30 seconds, the

supply of humid nitrogen was stopped and dry nitrogen was again allowed to

flow Into the contact area.

The dry and humid nitrogen gases were admitted through an Inlet valve at
3

relative pressures to 3x10 Pa. To obtain consistent experimental conditions,

contact was maintained for 5 minutes before sliding. The friction experiment

was then begun. The load and friction force were monitored continuously during

the friction experiment. Sliding velocity was 0.1'mm/sec over a total sliding

distance of 10 mm.

RESULTS AND DISCUSSION

Friction and Deformation

Single-pass and multipass sliding friction experiments were conducted with

a magnetic tape (tape 1) 1n contact with a polycrystalUne N1-Zn ferrlte pin 1n

laboratory air. Traces of friction as a function of sliding time were rela-

tively smooth, with no evidence of st1ck-sl1p.

The coefficients of friction measured at various loads on the tape are

presented 1n F1g. 4(a). The coefficient of friction was not constant but de-

creased as the load Increased at loads to 0.25 N. Above 0.25 N, however, the

coefficient of friction Increased as the load Increased. Figure 4(b) presents

data for the coefficients of friction as a function of the number of passes.

When repeated passes were made, the coefficient of friction for the tape ex-

hibited generally small changes with the number of passes at any load up to



1.0 N. The data of F1g. 4 raise the question of how the Interface deforms with

sliding action.

The tracks on the tape, which the ferrlte pin was made to traverse, at

loads to 1.0 N were different when examined by optical and scanning electron

microscopy. Essentially no detectable wear track existed on the surface of the

tape at a load of 0.1 N. The surface of the track was very similar to that

shown 1n F1g. 5(a), which presents an example of the surface of the as-received

magnetic tape (tape 1). At 0.25 N and above, the sliding action produced a

visible wear track on the magnetic tape, as shown 1ri F1g. 5(b). The scanning

electron micrograph clearly reveals a degree of plastic deformation at the tips

of the asperities on the magnetic tape. Thus, although the sliding occurred at

the Interface, elastic deformation resulted 1n both the tape and the N1-Zn

ferrlte pin at loads to 0.25 N. At 0.25 N and above, plastic deformation oc-

curred 1n the tape, but the N1-Zn ferrlte primarily deformed elastlcally.

Figure 5(b) shows the blunt appearance of the asperities on the wear track

after five sliding passes. This bluntness resulted primarily from the plastic

deformation of asperities on the tape.

From the nature of deformation at the Interface between the hemispherical

pin and the flat, friction behavior can generally be divided Into two

categories - that 1s, elastic and plastic contact. In the elastic contact

region the friction decreased as the load Increased. The relation between

coefficient of friction v and load W 1s given by an expression of the form
-1/3P = KW where K 1s constant [13,14]. The exponent can be Interpreted

simply as arising from an adhesion mechanism, with the area of contact being

determined by elastic deformation.

For example, the coefficient of friction measured for the polyester back-

Ing 1n contact with the N1-Zn ferrlte pins at various loads Indicated that the



coefficient of friction decreased as the load Increased. With sliding, elastic

deformation occurs 1n the surfaces of both the polyester backing and the N1-Zn

ferrlte pin [15]. By contrast, when deformation was plastic, the coefficient

of friction for a hard, spherical solid pin 1n contact with a soft, solid tape

Increased as the load Increased. A typical example of this 1s presented 1n

F1g. 4(a) at loads of 0.25 N and above [15].

Effects of Water Vapor on Friction and Deformation

Plastic deformation. - The coefficient of friction measured for tape 2

was 0.14 1n dry nitrogen at a load of 0.5 N (shown 1n F1g. 6(a)) with open

symbols). The atmosphere was then humidified to the desired humidity (up to

78 percent) by admitting humid nitrogen Into the system.

On humidifying, the coefficient of friction remained low below 40-percent

relative humidity. It Increased rapidly with Increasing relative humidity

above 40 percent, as Indicated by the open symbols 1n F1g. 6(a). On dehum1d1-

fying, the coefficient of friction decreased rapidly between 78- and 40-percent

relative humidities. It remained low below 40-percent relative humidity. The

friction behavior of the tape as a function of relative humidity on dehumldify-

1ng 1s very similar to that on humidifying.

At the load of 0.25 N the results are consistent with those at the load of

0.5 N, as Indicated 1n F1g. 6(b). At 0.25 and 0.5 N, the sliding action pro-

duced a visible wear track on the magnetic tape. The question 1s how the

Interface deforms 1n both high humidity and dry nitrogen with sliding action -

that 1s, whether the tape can deform readily 1n a moist atmosphere. To exam-

ine the deformation behavior of the tape surface, multipass sliding friction

experiments were conducted with magnetic tape 1n contact with polycrystalUne

N1-Zn ferrlte pins 1n both dry and humid nitrogen at a 78-percent relative

humidity.



Figure 7 presents the coefficients of friction as a function of number of

repeated passes. When 50 repeated passes are made, the coefficient of friction

1n nitrogen at 78-percent relative humidity decreases slightly, but continu-

ously, as the number of passes Increases. However, the coefficient of friction

measured 1n dry nitrogen 1s constant after 10 passes. It 1s anticipated from

the results shown 1n F1g. 7 that the tape 1n contact with the N1-Zn ferrlte

pin 1n nitrogen at 78-percent relative humidity deforms plastically more than

does the tape 1n dry nitrogen.

In order to determine tape surface deformation with sliding action 1n

both dry and humid nitrogen, the wear tracks on the tape, where 50 repeated

passes were made, were examined by scanning electron microscopy. Figure 8

presents scanning electron micrographs of the as-received surface and wear

tracks generated 1n dry nitrogen and 1n humid nitrogen at 78-percent relative

humidity. The as-received surface of the tape has the coarsest structure of

the surfaces shown 1n F1gs. 8(a) to (c). The scanning electron micrographs

shown 1n F1gs. 8(b) and (c) clearly reveal a degree of plastic deformation at

the tips of the asperities on the magnetic tape. Considerable plastic flow

occurs 1n the tape, which was 1n sliding contact with N1-Zn ferrlte 1n the

humid nitrogen at 78-percent relative humidity. It 1s obvious that the degree

of plastic deformation of the tape sliding against N1-Zn ferrlte 1n the humid

nitrogen 1s much higher than that 1n the dry nitrogen. The surface softening

of the tape due to water vapor results 1n the humid nitrogen.

Elastic deformation. - At loads of 0.05 and 0.1 N both tape and N1-Zn fer-

rlte primarily deformed elastlcally and the sliding occurred at the Interface.

Figure 9 presents the coefficients of friction as a function of relative humid-

ity. On humidifying, the coefficient of friction Increased continuously with

Increases 1n relative humidity, as Indicated by the open symbols 1n F1g. 9(a).
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On dehum1d1fy1ng, the coefficient of friction decreased continuously with de-

creases 1n relative humidity. The friction behavior of the tape as a function

of relative humidity on dehum1d1fy1ng 1s very similar to that on humidifying.

At the load of 0.05 N the results are consistent with those at the load of

0.1 N, as Indicated 1n F1g. 9(b).

Fr1ct1onal response to humidity changes. - A tape was preconditioned 1n

dry nitrogen 1n the plastic box and maintained at that condition during the

entire sliding friction. After sliding for 40 seconds 1n dry nitrogen, the
2vicinity around the tape-ferrlte pin contact (less than 100 mm ) was flooded

with humid nitrogen having 61-percent relative humidity.

Figure 10(a) presents the coefficient of friction as a function of the

sliding time resulting from such environmental conditions. In the first pass,

right after admitting humid nitrogen, the coefficient of friction Increased.

The coefficients of friction measured at the area flooded with humid nitrogen

were 30 to 40 percent higher than those 1n dry nitrogen. With repeated sliding,

passes, the tape exhibited about 2 to 2 1/2 times higher friction than 1t did

In dry nitrogen, when local humidity was raised.

A tape was preconditioned at 63-percent relative humidity 1n the plastic

box and maintained at that condition during the entire sliding friction experi-

ments. The vicinity surrounding the tape-ferrlte contact was flooded with dry

nitrogen after sliding for 40 seconds 1n the humid nitrogen atmosphere.

Figure 10(b) presents a typical coefficient of friction as a function of

sliding time. Another surprising aspect of humidity dependence 1s clearly seen

1n F1g. 10(b). When the contact area was flooded with dry nitrogen, the coef-

ficient of friction decreased dramatically. The tape, with the surface flooded

with dry nitrogen, exhibited about 80 percent of the friction 1n the single
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pass of sliding and 60 percent 1n the multipass of sliding of that obtained 1n

the humid nitrogen atmosphere.

Figure 11 presents a typical coefficient of friction as a function of

sliding time for magnetic tape 1n contact with the N1-Zn ferrlte pin. The

vicinity surrounding the tape contact with the pin had been flooded with dry

nitrogen. At approximately 30 seconds of sliding time, the supply of dry

nitrogen was stopped and then the humid nitrogen, at 61-percent relative humid-

ity, was admitted to the contacting area for about 30 seconds. After admitting

humid nitrogen, the supply of humid nitrogen was stopped and dry nitrogen was

again allowed to flow Into the contact area.

Figure 11 clearly Indicates the marked Increase 1n coefficient of friction

as the humidity Increases. Only a short transient time (around 10 sec) 1s

needed for the friction to decrease or Increase 1n relation to the humidity

changes.

Mechanism of Tape Friction and Humidity Effect

The previous sections have shown that sliding occurred primarily at the

Interface, and the coefficient of friction 1s greatly Influenced by the Inter-

action of tape and N1-Zn ferrlte surfaces. When tape and N1-Zn ferrlte are

brought Into elastic contact, Interfadal adhesion can take place and shearing

of adhesive bonds at the Interface 1s responsible for friction. With respect

to F1g. 9, the coefficient of friction Increased linearly with Increasing hu-

midity, and 1t decreased when humidity was lowered. In elastic contact the

changes 1n friction on humidifying and dehum1d1fy1ng are reversible.

If a N1-Zn ferrlte pin 1s 1n sliding contact with a N1-Zn ferrlte flat,

the adsorption of water on the surface does not effect the coefficient of fric-

tion, as shown 1n F1g. 12. There was no change 1n friction with relative hu-

midity. The experiments with the ferrlte-ferrlte contact were Identical to

12



those with the tape-ferrHe contact. Therefore, the effect of humidity on

friction for tape-ferrlte contact, seen 1n F1g. 11, 1s primarily due to an

alteration of the tape surface. The most probable effect of humidity on fric-

tion behavior of a tape 1n elastic contact 1s the result of changes 1n the

chemistry and Interaction of tape, such as the degradation of the lubricant.

With respect to F1g. 6, when the tape 1s plastically deformed during slid-

ing, the coefficient of friction remained low and constant below 40-percent

relative humidity and there was no humidity effect on friction. In this region

the coefficient of friction 1s associated with a breakthrough 1n the adsorbed

water-vapor film by the N1-Zn ferrlte pin, because the load applied to the tape

surfaces 1n contact 1s sufficiently high and plastic deformation occurs. The

adhesive bonding occurring at the tape to ferrlte contacts through the water-

vapor film 1n humid nitrogen below 40-percent humidity 1s similar to that 1n

dry nitrogen.

Above 40-percent relative humidity, however, the coefficient of friction

Increased rapidly with Increasing relative humidity, as shown 1n F1g. 6. The

effect of humidity on friction of a tape under such conditions 1s due to

softening of the tape surface and changes 1n the chemistry and Interaction of

the tape such as the degradation of the lubricant and the binder's stability.

Bradshaw, et al., found that exposure to high humidity and elevated tempera-

tures for long periods (several weeks) can result 1n the hydrolytlc degradation

of the tape-binder system and that the primary mechanism relevant to magnetic

tape Involves the scission of the chalnllke structure of the polymer by the

action of water, which effectively breaks the polymer Into small fragments

having low-molecular weights [16].

The experiments reported herein were conducted at room temperature, and

the exposure time of tape to. humid nitrogen atmosphere was less than 1 hour.
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F1gs. 6 and 9 shows that there 1s reversibility of friction on humidifying and

dehum1d1fy1ng. The removal of the adsorbed water-vapor film from the surfaces

of tape and N1-Zn ferrlte reverses the coefficients of friction to those before

humidifying and results 1n low coefficients of friction. Thus, the exposure of

tape to humid nitrogen for short periods at room temperature may result 1n a

negligibly small amount of hydrolytlc degradation of the tape binder. The

scission of the chalnlike structure of the polymer by the action of water vapor

would also be negligible.

With the mechanical activity that takes place during sliding, however,

water vapor adsorbed on the tape surface tends to promote chemical degradation

of the tape long before the surface may otherwise be ready for such deteriora-

tion. The binder degradation can lead to deterioration of the mechanical

properties.

We know that the surfaces of materials 1n sliding contact are highly

strained by the mechanical activity that takes place. Under such conditions,

on a surface and 1n the surfldal layers of the tape with the adsorbed water-

vapor film, the chemistry of the binder and the lubricant can be changed mark-

edly by the strain. The higher the degree of strain, the lower the chemical

stability of the binder system and the greater the hydrolytlc degradation of

the binder.

Similar phenomena have been observed with other materials. For example,

on a crystalline surface of a metal the crystalUnlty and crystallographlc

orientation can be changed markedly by strain. The higher the degree of

strain, the lower the temperature for recrystalUzatlon. Consequently, a

highly strained crystalline surface tends to promote recrystalUzatlon of the

solid surface long before the surface may otherwise be ready for such recrys-

tal!1zat1on [17-19].
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Furthermore, on the amorphous surface of a metallic glass, sliding Is

accompanied by a high degree of strain at room temperature, even when the slid-

ing velocity 1s very low. This Induces crystallization of the metallic glass

surface long before the surface may otherwise be ready for such crystallization

[20].

CONCLUSIONS

As a result of sliding friction experiments conducted with magnetic tapes

1n contact with a N1-Zn ferrlte hemispherical pin 1n air, dry nitrogen, and

humid nitrogen, the fallowing conclusions are drawn:

(1) The friction behavior of magnetic tapes can be divided Into two cate-

gories by the nature of the deformation of the tape. In elastic contacts, the

coefficient of friction decreases as the load Increases. In plastic contacts,

the coefficient of friction Increases as the load Increases.

(2) The coefficient of friction 1s strongly dependent on the ambient

relative humidity. In elastic contacts the coefficient of friction Increased

linearly with Increasing humidity, and 1t decreased linearly when decreasing

humidity. In plastic contacts, although the coefficient of friction remained

low below 40-percent relative humidity and there was no effect of humidity on

friction, the coefficient of friction Increased rapidly with Increasing rela-

tive humidity above 40 percent. The change 1n friction 1s reversible on humid-

ifying and dehum1d1fy1ng both 1n elastic and plastic contacts.

(3) The effect of humidity on friction of a tape 1n elastic contacts 1s

due to changes 1n the chemistry and Interactions of the tape such as the degra-

dation of the lubricant. In plastic contacts, 1t 1s due to softening of the

tape surface and changes 1n the chemistry and Interaction of the tape result

when the relative humidity 1s above 40 percent. No effect of humidity on fric-

tion below 40-percent relative humidity 1s associated with the breakthrough 1n

the adsorbed water-vapor film at the Interface of tape and N1-Zn ferrlte.
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(4) With the mechanical activity that takes place during sliding, water

vapor adsorbed on the tape surface promotes chemical degradation of the tape

long before the surface 1s otherwise ready for such deterioration.
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Figure 2. - Friction and wear apparatus.
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Figure 3. - Environmental modification of friction and wear apparatus.
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Figure 4. - Coefficient of friction for Ni-Zn ferrite sliding
on magnetic tape (tape 1) in laboratory air as function of
load and number of passes.
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(a) As-received surface.

(b) Wear track after 5 sliding passes.

Figure 5. - Scanning electron micrographs of as-received surface
and wear track on magnetic tape (tape 1) after 5 passes in sliding
contact with Ni-Zn ferrite pin. Normal load, 1.0 N; sliding vel-
ocity, 1.5 mm/min; relative humidity, 40percent; temperature,
23° C; laboratory air.
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Figure 6. - Effect of humidifying and
dehumidifying on friction of magne-
tic tape (tape 2) in contact with
Ni-Zn ferrite pin. Sliding velocity,
0.1 mm/sec; temperature, 23° C;
environment, nitrogen.
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Figure 7. - Coefficient of friction as function of number
of repeated passes for magnetic tape (tape 2) sliding
against Ni-Zn ferrite pin. Normal load, 0.5 N; sliding
velocity, 0.1 mm/sec; temperature, 23° C; environment,
dry and humid nitrogen.



(a) New tape (as-received surface).

l|am

(b) Wear track obtained in dry nitrogen.

(c) Wear track obtained in humid nitrogen. Relative humi-
dity, 78 percent.

Figure 8. - Scanning electron micrographs of as-received
surface and wear tracks on magnetic tape (tape 2) after
50 passes sliding against Ni-Zn ferrite pin. Normal load,
0.5 N; sliding velocity, 0.1 mm/sec; temperature,
23° C; environment, dry and humid nitrogen.
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Figure 9. - Effect of humidifying and dehumidifying on friction
of magnetic tape (tape 2) in contact with Ni-Zn ferrite pin.
Sliding velocity, 0.1 mm/sec-, temperature, 23° C; environ-
ment, nitrogen.
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Figure 10. - Effects of humidity change on coefficient of friction
for magnetic tape (tape 2) sliding against Ni-Zn ferrite pin.
Normal load, 0.5 N; sliding velocity, 0.1 mm/sec; tempera-
ture, 23° C; environment, nitrogen.
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