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1. Imroductfon, In a Bénard-type convect fon problem one sccks,
v, Lo dotermine the stationary flows of an infinite laver of {luid
Iving hetween two ripld horizontal walls and heated uniformly from below,
Such a problem possesses a unique, motionless conduction solution when
the parameters of the problem lie within a certain range but, as the
temperature difference across the layuzr incrcases bevond a cevtiain value,
other, conveetive, motions appear. These motions are often cellular in
charaeter In that thefr streamlines arve confined to certain well-defined
"eolls" having, e.g., the shape of rolls or hexagons. The purpose of
this paper is to formulate a "selection principle” that explains why
hesaponal cells seem to be "preferred" for certain ranges of the parameters,

Bénard-type problems and their generalizations play an important role
In fluid dynamics and have been investigated in recent years by a number
of authors., Convection problems have been studied, e.g., by Schiiter,
lortz and Busse [19] and Fife and Joseph [4] using expansion methods, by
Busse [1] using variational methods, by Kirchgissner [9,10] using the
Lvapunov-Schmidt method, by Sattinger {17,18] and Golubitsky, Swift and
Knobloch [5] using group-theoretic methods, and by Buzano and Golubitsky
1.2 using group~theoretic methods and singularity theory. The reader
is referred to the above papers and to the book of Joseph [7] for a com-
prehensive introduction to Bénard-type problems.

An important aspect of the work of Busse [1] is that the "extremum
principle” and the stability results there are independent of the number
of eritical wave vectors corresponding to a given critical wave number.

In the same spirit an important aspect of this work is the formulation
and verification of a selection principle in a setting that is independent

ol any fixed number of critical wave vectors. Although our study is
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resiricted to feactions doubly periodic in the horizontal plane, the
(Hinfte) number of critical wave vectors pan be tuken arbitrarily larme
by propoer cholee of the period rectangle. Moreover, in the case of the
hexagona 1 latdice this choice can be made 1n such a wav that the eritfcal
wave number and the "size'" of the resulting hexagonal cells are Kept
tised,  Thus, whereas other methods of fer a complete hifureation analvsis
on the hexavonal lottice in the usual six-dimensional setting, the methods
ol this paper prove useful for a stability analysis on the hexagonal
Lattice in the general case of an arbitrarily large number of critical
wive vectors (sce also the discussion in Section 7).

To obtain a physical interpretation of the extremum principle i+
[1], Palm [15] derived in the time-dependent problem a minimum princip’e
tor a type of generalized dissipation, V, namelv that, as time increases,
Voodeeroases and attains a minimam value on » 1y state solutions (sco
F15, p. 2414]). To treat the generalized Bénard problem studied here,
we introduce an analagous sort of functional, V, called the generalized
dissipation (see (3.23) in Section 3 below). It can be shown for time-
dependent problems  in a formal way as in [15] that the associated time-
dependent Vo decreoses as time increases and assumes a minimum on steadv
state solutions. Since V = 0 for the motionless conduction solution
and since V  initially increases in the steady state problem along a
suberitical branch of convective solutions bifurcating from the conduction
solution at the critical Rayleigh number, Rc, it is natural to conjecture
that what we shall call a "selection principle" is related to the existence
of 2 convective solution for which V = 0, Presumably, such a solution

would correspond to a point on an "upper' branch because V > 0 on "lower"
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suberitical branches. Using such an interpretation, one could replace
the formal "geometrical” condition for upper branches used in [1, p.633]
by the exact analytical condition V = 0. This would be an important
Phrst step inos gtabi ity analysis sinee suberftieal solut fons Iving

on upper branches are the ones most likely to be stable.

The basic idea of the paper can now be stated as follows (see also
the retated but somewhat easier approach used in [12] to solve a class
ol variational problems arising in nonlinear shell theory--the parameter

in (2.3) plays the role of the "structure" parameter « in [12]).
Instead of solving only the Boussinesgq-type equations given in (2.1) as
is usuatly done, we solve the equations in (2.1) together with the con-
straint that, tor fised v near v =0, V=0 1is a local minimum of
U, One anticipates here that the condition V = 0 will lead to a solu-
tion on an upper branch and that the minimization condition will lead
to a stable solution. In this paper we show that such an approach does,
in fact, yield stable, suberitical solutions of the generalized Bénard
problem, when Y is sufficiently small. Such solutinns may even be
vonsldered as "large' solutions because they are both suheritical and
stiable whereas "small" suberitical solutions bifurcating from the con-
duction solution at RC are always unstable. In this sense our method
miv be regarded as a "selection principle" for obtaining "large'", stable,
suberitical solutions because the method selects certain solutions of
equations (2.1) while excluding certain others, By "stability" here and
Lhroughout the remainder of the paper we mean *'linearized stability"
relative to some appropriate Hilbert space.

The outTine of the paper is as follows. I'n Section 2 we give an

aperator-theoretic formulation of a certain tvpe of generalized Bénard
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problem and in Sections 3 o W 4 we reduce the given infinite~dimensional
problem to one of solving a finfte~dimengional svstem of equations, the
so-called selection equations  The selection equitions are derived

by means of splitting techniques such as those used in the Lyapunov-

sehmidt method in bifdrcarion theory but the equations obtained are not
the usual bifureation equations assoeiated with the problem. The works
of Kirchgissner [10] and Sattinger [17] plav an important role in thesc
preliminary sections. Sections 5 and 6 contain cthe mein results of the

=

paper,  In Seetion 5 we solve the selection equations in a general

setting by the use of variatlonal methods and present a linearized stabilitw

mmalvsis of the resultant statlonary flows. 1In Section 6 we show for
the hexagonal lattice that the classiecal hexagonal cellular solutions
are generated from the absolute minimum of anp oppropriate selection
funet fonal and that such a minimization property is independent of the
dimension of the basic underlying finite-dimensional problem. Thus,
since the celassical hexagonal cellular solutions are alse stable, they

are in some sense the preferrved suberitical convection solutions.

e
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2. Tormulation of the problem. In this section we formulate a
sencerallze ] Bénard problem for certain temperature-dependent luids and
int roduce a Hilhert space setting for its study,  The particular problem
deseribed below is chosen malnly For convenilence,  The methods of the paper
apply also to a much wider class of convection problems (e.uz., see [1]),

The generalized Bénard problem studied here is to determine the
slatfonary flows of an infinite layer of fluid between two rigid, horizontal
witl s and heated uniformly from below, The [lnid density, ¢, 1s assuncd
to be constant, say = o except In the gravity term where it is taken

Lo be quadratice in the temperature, T, i.e.,

) 2
o= un[l - a(Tl - TO) - b(T - TO) 1,
where T” Ls the average ol the (constant) temperatures T2 on the upper wall

amd T] on the lower wall. Under this assumption on , one is led, arter

sealing the variables suitably, to the system of Doussinesqg-type equations

civen in (2.1) below. The equations relate, at cach poiny of the st

o -

’ . 1
o= (X k=] (x’y’z):—tn < X‘y “. :n’ - N g o« ’). },

the I'luid velocity vector, u = (ul,uz,u3), scalar pressure, p, and the so lar
variable, O, measuring the change in temperature from its value for the pur:
conduction state (see, e.g., [9] where u, p, 0 are related by a factor
ta those used here ):
o) () ~fu = AKE () + Tp = =(usP)u + kE,(0)

()  =(P)TIAR = Auy = -u + 90

((‘) V.E:O
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In (2.1), & = (0,0,1), V = (ﬁ; ' f;, éi), and A Is the Laplace operator; the
Pramdt ] number, Pr, cquals the ratio of kinematic viscosfty, -, to thermail
comluct ivity and is reparded ag a fixed constant throuphout the paper;  the Gros-
holt number Gr = agd(T1-—T2)/w2 (g = gravitational constant, d = thicknese
ol the unsealed layer); 2 = Vir  and
(2,2)  (a) fl(') s (1 - 2vz)

(b) fz(“) = 1“2 ’
where I8 a "structure' parameter given by
(2.3) o b(T] - Tz)ﬁu
The Ravleigh number, Ra, is related to A by Ra = PriGr = Pr)ﬂ.

We shall seck solutions having a doubly periodic cellular structure.,  Thus,

aiven posttive numbers o, and o (to be specified below), we set

L
21 27 1 L1
= x = (xy,2)i0 < x5 0y 5y < Eh,
e ‘1 2 Ed [

We next introdvee the (complex) Hilbert space, H, defined as the closure of the
. . 2 .
sof v o= (u1,u2,u3,h) ¢ v smooth, periodic in % with period T perfodic
1
. N 2 1 . ,
in v with period , v = 0 In a neighborbood of izl = o, and o Tew o 0 in
"1) »

assoclated with the inner product

the norm H’

3

= o ooy W0

(v,w) = j [.X YVj ywj + e 1»4 ywa].
woj=1

Hore and throughout the paper a bar over a quantity denotes complex conjugation

and the symbol V= [ﬁ%,—@?, %%,0) when used with elements of H. Thus

Ju Ju du,,
e Vo= -] o+ »—»\'-_--.-2 -+ ﬁ_:}.'. .
X Jy ?)z

11 we toke the scalar product of (2.1a,b) with w ¢ H, wuse (2.1c,d) and

intepration by parts, then for v = (u,H) we ohtain

(2.%) (v,w) - A(LYv,w) = (Fy(v),w).
llore the tinear aperator LY:” > H  and quadratic operator FyzH > H are given by

2.9) L, =L =~ ¥yM, I"Y =¥ + 3G
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Jand the operaters 1., M, F. 6 are defined by

(’.0) (Lv,w) = [v(w3 + v w,]

(.8 (F(v) ,w) == (V'vV)‘W

(2.7 (Mv,w) = f 7

(2.9) (G(v),u) = I (v,) %5,

s 1

ror all vyw in M. Since in (2.4) w 1is an arbitrary element of H we see
that a smooth solution v = (u,0) of (2.1) in H satisfies the operator equation
(%) 0=v - ALyv - Fy(v), v H, AR,
In fact, one can apply standard regularity methods (e.g., see [11,13,14]) to
show that problems (2.1) and (%) are equivalent,

In order to study solutions of (¥) we snall require properties of the
linearized version of (%) when Yy = 0,

(2.10) )= v = ALv, v Hy Ao Rl.

The Tinear elgenvalue problem (2.10) ns equivalent to the classical problerm, tor

2n 20,
smooth  u, p, § periodic with periods =~ 4in % and “~ in vy, obtained by
l l p o ¥ '

1
omitting the nonlinear terms in (2.1), This linear problem is wall studicd (see,e.p,,

13.6,10,111). The eigenfunctions are complete in H and are obtained from the

i

relations k (k1,k2,0), g = (ki + k )1/2 i = VT and

2.11) (@) u, = KXy (@, 37 1,2,3,

]
DR
ey p-~= olkex c_2n2¢é,
(@ ¢ = 107k 0Y, G = 1,2)
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flere D R prime denotes dn? and 9 and h satisfy
dz ’ ’

: =t 2,

(LA @) 0 sy - BT
1.2
() 0 =m0, o+ My,

() ¢3 = @; * ¢4 = () at y = ’; .

One can chow (e.g., see [6]) for o > 0 that the eigenvalue problem (2,12)
has a countable sequence of positive, simple eigenvalues, 0 < Hl(’) <0 o,

+
depending continuously on 9, Moreover, WU, (3) = o g 3 > () oY 7 or o, (pye
r ? '1

sequent Ly, U](ﬁ) assumes an absolute minimum at some *0 2 0 depending  only

on the Prandel number,  Pr. We assume through the paper that w5y Is unique s
that Jl(”) - ul(ﬂﬁ) ir a4 Iy (This property is suegested by numerical cal-
culatfons [3] and is usually assumed For Bénard-typo problems.)  TFor soiven in-

Lepers Ny, Ny we now choose Ys such that

-

5 L2 22 2
(..- l }) 0 = + mou N

2
L

9N

In Seetion 6 we conslder some special cases, of the form o= V3., dmportant

For the study ol both "elassical"” and "exotic" hexagonial-cellular solutions (see

Remark 6,1),

Since the vectors k din (2.11) are constrained by the requirement that

vik-x have periods 21:/&l in x and 21r/u2 in v, it follows that n = kl’:]

and m = k,,/«z2 are integers and k must have the form k = (nwl,mnq,O). Thus,

the only wave numbers, ¢, corresponding to eigenfunctions having the required

periods are those for which

. n 9 3
(2.14) rg = nfmi + m%xz

2 2.2
for some integers m, n, i.e., such that the ellipse g = xzui + yTin

passes
through at least one latrice point (n,m) # (0,0)., (Note that there is no non-

trivial solution of (2.12) if = 0.) There are countably many such wave nusbers
(VI oo 4 eess cach of which corresponds to a finite, even number of lattice

points (tn,*m).
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where the Indices are chosen go that Moty = Mot Mue-n By then w t

{2, 15) k , % (npjwl,m

“pi 'i2’0)s J o= 1"1,"'2““)*5]): p*1,2,,.4,

pi

and abserve that
(1,10 I oK,
I ,) :[)(“‘i) l\])']

For each 5 - Hp the reduced eigenvalue problem (2,12) has an {nfinite seaucnee

ob real, ponteivial solutions
(210 (:":3’:{;> = (“[)q"b}’;q,’:’zq)' q = 11,*2,..,,

Since (~‘,L3,-$a) satisfies (2,12) whenever (A,$3,14) gatdisiivs (2.12), -
v oprder the indices so that

T - W Lupa o p ) g
(7. 11) H])(_‘l) “l"l’ 'y 3o Yy A 0 1"

pl pz' o
, 1 ,pl

The “P] are simple elgenvalues and the corresponding 42 ,ﬁ2 may be caken to

be positive on (-1/2,1/2) . Moreover, since 7, in (2.13)

fsequal to o in (2.14) for some unique, positive Intoger Pys
P()

(2.19) M, U = min H
Pol p=1,2,... PI

fs also a simple eigenvalue of (2.12) and, for q > 1, qu > 1y if p # P
One now sees from (2.11) that the full eigenvalue problem ¢2.10) has the

solut ions

(2.20) A VS P ) = oMy X 4PU (), g o= w102, ceeats

for p=1,2,3,..., q = #1,%+2,%3,..., where

Loy it
- PAic,y - |t d o.pq T2 A 4pa 4pa ,pa
(2.71) P () = 2 npj T ¢3 . > mpj P ¢3 ,¢3 ':4

p p

‘1



ORIGINAL, Frane v
OF POOR QUALITY .

Mot Lhat Lthe :Pqi depend on 3 only in the [irst twe ermponents., Acvordin
Lo C10), (2,20), (2,21) and the fact that mﬁq,wﬁq are roal, W have

(o) ﬁpq(“}) - $NQI,

It is shown in the Appendix that the efgentfunctlions ! bats g, (2. 20) ¢
be ansumed orthonormal in M, after scaling with constants depending on poand

¢ but not on §,  Thus we suppose that

() ahad ) vety ooy

I'\. ‘i
pr qs it
vhere &it f4 the wsual Kroneeker delta symbol,
The next lemma summarizes some of the properties just discussed, The

compaaetness properties are essentially well known (e.p., see [11]), while

(2,24) 1s vasily derived from (2.7).

Lemma 2.1, (L) The operator TL:fl » H is bounded, linear, selfadjvint
amd compact s Its characteristic values and eigenfunctions are given by (2,20)
amd satisty (2.22) and (2.23).  The ceigenfunctions are complete in H.

{113} The operator Ml - H 1s bounded, lipear and compact, Its adjoint,

is characterizoed by

,

RIS (M*v,w) = 2[ AR

Pas
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.0 The selection equatfons,  We show next that the seneralised foerd

grabber ean be reduced to g Sinltesdinonsional one,  Phis roductieas {6 0 arri

vt by pes ol sphitting wethods ustog the "straecare’ parametoer o fe o, 2%

i Marplitwde! parameter,

Hinee iy siven by (2,19) is a simple elgenvalue of (2, 12) .mdd = 7

tor (pae) # (Pn~1), [t Is also a characteristic value of L of multinlicity

R} Jﬂp + The associated nullspace M of 1 - ulL Ty spanned by
0

(i W 6’_[’013' o= b1,42,,.,, 4N,

caben dealing with quantftics on M it will often be convenient to suppress
LRS! ;
the fndives po=opg, g o= 1, Thus we write k_, = k,, o
* '/P()l 1

: 1 d ) :
Ve arthosonal complement, 25, of M0 dn {1 15 spanned by “H:!p,q) Fliny it

Iy vl v)

e shall ook for selutions of (%) having the form v s 0 4 - yith ‘n
o i - '
Hoand v dn MY, Tn order to study the way L. and T oact on v it wil?
H H

Il
b setul to Introduce some rolated operators.  Let Wi - 7 denote the op-

. L 1 €
theeonal projection of H oonto MT and let Kilf5» M denote the Inverse of

the restriction of 1 = u. L to Hl. In addition, we define bilinear operators

1
0 and e = > H by

1

(8,03 CoQu,vd,w) -j (u-ﬁv) W, u,v,w  H

H

(3. 0 (oo, v ,w) [‘uévhﬁj, u,v,w H,

One sees casily from (2.8) and (2.9) that

(3.9 F(v) = #(v,v) and Gv) = T(v,v), v H.

It will [requently be convenient to represent v « H by its Fourier sceries

(3.%) v o=y Pl
Pay

where the sum is oxtended over the set of integer triples (p,q,j) with

! P oNGE e p e g e When v o= 0 My (3.5) becomes
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Ch,r) L K,' i 4,'
li =3
N -l qu(w”, it tollows that v In (3,%)  (or n th,nd i 1!

Pt ad only it

ot T ipgepy GOF By )

The tollowing lemma, proved in the Arpendlx, enables us In sore sitaatione

te voalvulate with the operators Introduced above, llere and throuwstamt the po oot

¢ Y is zero whenever the (sealar or vector) parameter £ is not zere, and ) -

Lemma 3.1, (1) LY - H, then Lv, Mv and K Pv can be obtained e

L0 by tormal esleulation. Bog,,

. 1 opad o { pq' pai
. U= KPy =~
¢ Y g ' 0 pad 1; ‘
vhie g '“ denotes summation over tne same set of integper triples as 1, envet

that  (pyq,1) # (po,i,j). In particular, K 1is bounded, positive and s ifasiolnt

Iy

01 .

rrey met oMY Lees, Tor oo M, T =0, 11l = 1,2,

(iti) For u,vy,w - Hy  (0Qu,v), W) = =(4(u,w),¥) and (u,v) = “(v,u),
Givy sell = M MY T particular, F:M - dt and (:(?pqr,ij),fn) = ()
tor ol pagyry fanwith 1< p w1 ¢ [qf - and el 040, 'nl = 1,2,,.. 8,

(v) If has the torm (3.6), then there are real constants by sh 1, ,.

depending on Py but not on n, such that b3 » 0,

] ot | L
(3.8) (MM, ) = byl
( Bk - (
(5.0 MEF() ,07) = b TooRB Ak, ko kD)oo
! m,lrz A
(3,10) (i, kM), T = b, kg koK)
lil,s Irl 1 g v
and
_ N
(3.11) @y ,im = 1)3 o l?’.l ('1"1‘5“‘ + kr + kn).
ilyiri=1



(v1)  There are nonnegablve constants a sueh that

]>()1xl

(2 - * )s‘ . I »

) ol el T o
f;,c ) (t(ﬁ,l\l(¢))y- ) 2 a i” 1',! =1

’J!-l pojn

the constant a depends only on Po and *p = !k1 + kni so that

ppin
N % -, -, . 'J-‘ 2 »(‘ L] . [ Yasos ) s ! Al * s
’p”gn lP“ﬂl 'Pn(~n)(~j) he exceptional cases {n whiech the constant
S i cero are deseribed o (AV25) and (AV37) of the Appendia, (See alae
T
i

ek oo,

We sl l peed to o relate the speetral analvsis of the linear uperator |
to that ot the lnear operator LY = |, = YM.,  For small values of v is well
Enown (e, , see [8]) that the characteristic values of LY are perturbations
ol thoge ot [, ., In Faet, the characteristlic values ol LY are determiied by

the nroblem obtadned from (2.12) upon replacing (2.12a) with

2

. 4 . Y.
(3.13) 0 =D g = di™ (1 - 3{4)b4 .

«
I}

e Ylads, in particular, that the eritical characteristic value, }v = k_('y),
i.uv., the characteristic value of ]'.,Y of Teast magnitude, is real and simple
an o efgenvalue of toe problem (2.12) with (2.12a) replaced by (3.13) and -

Soet equal too (rhe relationship between )c and the critfcal Ravlei:h number

0n*
{4 the usual one described in [13437].) The next lemma specifics the exparsion
in .« af Xp and may be proved along the Tines of the development for the non-

Finear problem leading to equations (3.17) and (3.18).

femma 3.2,  The critical characteristic value, Ac’ of L, has the cxpansicn
ma J.e l

oy _ 203 .
(3.11%) }c = “1 -y ulbo 4 AC({)

where 1 is given by (2.19), b, 1is as in 2.8) and AC(Y) is real and

satisfiles l&c(y)! = O(YJ) as y > 0.
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Pfor small  ; we seck o solution of equation (*) In the form

9 "
(3.1) v (4 ), A o= by - ;'vl(u;ho -,
Here o M, v Yoand B! are to be determined, T[ @ o= g F 0,
then Y - ;y x ,3“110 + 0({3) and a solution of the form (3.19), for suall ,
{nosuberitteal {F ™ ) or gupereritical if " 0,

We sabstitute (3,19) In equation (%), use P and 8 =1 - P to pyrofoect

onte MY and Heooand use (LL) and (dv) of Lemma 2 to obtain the follawines

, '
caguat fons on M0 and M

(3,in) () 0 (] - ulL)i + u1M = () O+ ,P[u1M¥ SR D B SIS B H G R
» 2 2 ey el
+ oy I’["u](ulbo - )M+ u](ulho - LY - F(Y) 270, )]
R 2 . r
+ ."[-—[ll(I‘.IbO - MY~ G( ],
"
(h)y O = (y‘l’h” - i)+ S[nlM‘%’ - () = GO S P - 2 (L,

)
e

4]
+ Y“S[—ul(nlbo - LIMY =~ ()],

. . - . L . .
Sface K= (I - “IL) l is bounded on M°, given Lo ™ 0 there is a

. 1 , RTINS
0 soch that 15 (,0) « 4 x® with Jr] + {0 ty then ene ean solve

1)

(3.10a), by suecessive approximations, For ¥ = /(,}) whenever 51 - 0
In tact © satisfies

(3.14) Yo —-1!11(M!:f + KEP(h) + ","i’] R

whoere e ?1(,,:,}) - M* is bounded depending only on tye We next use (3.17)

to eliminate %Y Trom (3.16b), taking (3.8) into account Lo get

(3.18) 0=-1, + S[ulMKF(W) + u1¢(#,KM¢) - $ChKRF@ED) - GCYT + RCG, 0.

Nere, for |yl = Yo and |T] + HW|‘< ty» the remainder term

2
(3.19) RO, T,7) = YS{”1MW1 = QP+ ) - 200+ Y[ (b - A

- 6]
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sal faries, for some vy 0 depending only on t

0’
(3.20) El[{(ii"!l’l)ij; Yro'

~1

Ve Ltake the fnner product of B with equation (3.18), waking use of the

expinsion (3.06) and various formulas in Lemma 3.1 to obtain

N
(3,211 0=F CIRI I -1 + b ~(k, + k. +1\)
n n lil:Ij!_' i 'j 1 J
N
o 2 SECIY (it IR PO N
¥ l]l!'=1‘ll’o.in(2 A AU b= T
Ja

Here b = ul(b1 + b2) - b3 and, according to (3.20),
(3'22 rl)(“)lal) = (R(w’rsﬁi)9¢‘n)5

satisl les ;rn(t...,“r)! Loy

For the reasons discussed in the introduction (see also the discussion
in [17]) we must augment the system (3.21) by an equation, V(&,1) =+,
Involving the sv~called peneralized dissipation V, where + s a

real parameter and

1 N 1 N
T . - _ 2 : 2 . o en o (k, S
(3.23) V(iyt) 5 le‘f%lpjuj *5b (ll+1§J+ N

N
1 " ,

+ - & a (2 - ‘S .)F e P S
FapslerotsT T

Thus, we consider the system of selection equations

(3.24) (a) O
(h)

F(v“{l y‘Y) ’
2N

Vi 0, 1 €Nty B,

where F = ({’n‘)lnl=l,...,N and f = (‘S_N’v.o)ﬁ_l"f‘l,-otnbN)o
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The functional V Is essentially the functional E in [1, p.631)
with « =y, 1In fact, setting € =7y din the analysis in [1], une obtains
tormally o number of expansions, equations, ete,, that are closely related
to various quantlties used in the analysis here.

Perhaps one would hope to solve (3.24) by solviug the equations,e.g,, when
(v, ) = (0,0) and then using the implicit function theorem to extend such
a4 solution to a small (y,&) neighborhood of (0,0). One anticipates, however,
Jitficulty here in implementing the implicit-function theorem arsument
(eopte, see [17]) because the equations are invariant under translations
ol the  (x,v)=plane. Consequently, the solutions will not be Lwnlated
and the relevant Jacobians will be zero. Thus, it is natural to seek
solutfons in a subspace of H, where one may hope that solutions will
be Isolated. This is conveniently done in the next section in terms of

aroup representations as in [17].
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G The reduced seleetion equations.  The basfe subspace, 8, used

throughout the remainder of the paper fs introduced in this seetion to-

pether with some technical lemmas regarding real solutlons of zquation (%),
et r be the 2 = 2 matrix of a plane rotation or reflection and 1.t

Qo= (Jl,aa) be a translation vector. For k = 3,4% let " denote the

k = k matrix obtalned from the identity by inserting r in place of the

2 2 identity matrix in the upper left-hand corner. Set ay = (a],ul,O)

and lot o = fr3

apace that keeps 2 [ixed: ax = 4% + a.,. Then a representation, - » [,
»

,33} represent an arbicrary plane rigid motion of % = (,v,2)

ol this group, G, of risid motions is detfined by

1) (T V() =1, )

. 3
tor smooth tour-dimensional vector fields v defined for x . R”.

When v =0 it is well known (e.g., see [11, 17]) that the Boussinesq

equations in(2,1) are invariant uader T for © - G. The next lemma

[
-~

shows that a corresponding invariance property holds for equation (%) when v = 0

and that the invariance also extends to the case 1y # 0. Such an In-
variance statement makes sense, of course, only for =, v for which

both v and T v lie in H.

Lemma 4.1. Let o G and suppose that wu, v, T u, T v all lie in
. Then each of the operators 1., M, ¥, 1 is invariant in the sense that

L(TFV) = Td(Lv), §(T”u,Tnv) = TUT(u,v), etc. Consequently,

~

(4.2 LY(TQV) = TO(LYV), FY(TQV) = TQ(FV(V))

-~

su that equation (%) is invariant under TQ.

A

Proof. Hach of the operators L, M, ¢, I' is defined ((2.6),(2.7),(3.2),

(3.3)) by an integral of the form J Aw, where A is a linear, A(v), or
i}

sl
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Litinear, ACu,v), term in the Boussinesq cquations. It A s invariont undor
T, then 1t 1s ecasy to see that the corresponding operator {s invariant under
T o Eupe, tor ' as defined in (3.3) note that Alu,v) (O,U,uavé,ﬂ).

Since (r4)13 = ‘i3’ A(u,v) is invariant under T, because

LA = (0,00, 670, (7H0,00 = (0,0,00 . () ¢ v, 60,0,

The invariance of  Au = (O,O,QZUA,O), corresponding to the operator M, ollows
in a similar way; the Invariance of the A's corresponding to 1, and fe

proved in [9],

Remark 4.1,  Because of Lemma 4.1, we may study problem (%) on any of the

vloned linear subspaces, Sn = 4y s H:Tqv = v}, without the use of projections,

by werely restricting the operators fn (¥) to S, Under such a restriciion

the equation (%) is denoted (*)q and retains its Formy similarly the new selee=
Llor equations, (3.24) ., are obtained from (3.24) merely by restrictinge the co-
ol ficionts +  in a well-defined manner determined by 7. by the restriction

to 8§, we shall avoid the problem of zero Jacoblans mentioned above. O course

a solution of (*’;‘T in S(j is also a solution of (%) 1in H. Onthe other hand,

o

a stability preol In S although cncouraging, is a weaker statement than one

v?

on M but instability in S does fwmply instability in .

Throughout the remainder of the paper we shall largely restrict our atten-
tion to Sn and its subspaces, where S, = Sn when @ denotes rotation by
0 radians about the z-axis. Thus, (%,y) = (-x,-v) under 7 and
(h. (Tﬂv)(x,y,z) = (-v1,~v2,v3,v4)(—x,—y,z).

Tt follows frem (2.20)-(2.22) and (4.3) that

(4. 4) T“¢qu = mpq(—j) = mqu
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. o D , X \ . )
Consequent lv, v = ”Lvﬂl”‘]‘ in (3.9 lles in h“ 11 and only 41 vach ot 1he

vacl i leloents satisl leg » In oaddition, {t follows directlv fron

e
pq o Upg=i

(4.4) that Tﬂ gat Islles

(4.0) (TTu,v) = (u,T"v}, u,v ¢« H,

e

While H is a complex Hilbert space, we arc of course interested only in

real solutions of (),  Siuce the basis elements satisfv (2.22), the coefriciints

-

in the cepmsion (3,9%) saristy whenever v ds real,  In jartica-

i T pg-i

Lory dor veal v e 8 equation (4.5) fmplics Turther that the e

g
teaty Morcover, the following Temma shows that the oporatoers i, cquatien (%9 g1

real aperators.

Lemma, 4.2, (1) The operators L, M, &, ' are real in the sense thet
Ry Ly, wlu,v) = dCu,v), ote.
1

(tiy IfF o M is real und v,1 - B satisfy ‘T[

and ot such that (3.17)=(3.20) hold, then = (. ,:,) in (3,17

with 0

)

md R RO LT, in (3.19) are real,

Mrool. Part (1) Follows casily Trom the detfinitions, sinee the cotrespondin:

-

divierential operators have real coefficlents, e.g., (?(u,v),w) = ("(u,v),W) =
f_ﬁxvqﬁg = ('(a,v),w). For part (ii), mnote that if +,7 and 3 are rcal then

upon taking the complex conjugate of (3.16a) and nsing part (i) we see that
is a solution of (3.16a) whenever Y is a solution. But the successive-approxi-
mat fons solution of (3.16a) is unique in a small neighborhood of —U]KHY + KF(.),
which is real. Hence T =Y 1is real and by (3.17) ?1 is real, TFrom (i)
and (3.19), RQOb,1,Y) is real.

$ince, according to Lemma 4.2, Y(@),T,Y) is real whenever <Y,T and

¢ . M are real, the problem of finding real solutions of (*) is reduced to that

of finding, for sufficiently small (y,e) ¢ Rz, solutions (f,T) of the



ORIGINAL PAL.. 7 20,
OF POOR QUALITY

N
soleetlon equations (3.24) with T and )= 5 wj real, i.e., with
[3=1
(ha0) im, b= Ty 3= 12,0000,

In the remainder of this section we consider problem (*), obtained by

restricting (%) to S . The nullspace of I - Wl restricted to S, is

M. Mo S+ From (4.5) we see that Lf ¢ « A% then 2, = 3., 5= 1,,,.,,8 and

-5
N . N _
4. 7) e n o pad = uj(uﬂ + 7y
Pi]=1 3=1

Thus, M is  N-dimensional and we shall henceforth take the Tiberty of sup-
proessing ”-[""’f—N In the notation, f.e. we write o = (ﬁ]”"’“V) instead
ol = (ﬁu....,n],ﬂ],.--,vN) and we regard $n and ¥V as functions of
I3}
N

(., ,1) n € f‘BZ. Morcover, in the context of & we have the following

lomea (soe also the related results an [17]1).

Lemma 4.3, IF o« A% and vy,T - BR' are sufficiently small then

T”( SIS F~“(8,T,Y), n=1,2,...,N. 1f, in addition, ! is real then

T, rn(p,t,y) in (3.21) is veal, n =.1,2,...,,N,
N .
Proof. Since H_i = Bi whenever W = | ? HiQJ belongs to ! , and
. . i ;._._.] . i

sinee

lponj i ap0(~n)(-j) in (3.21), to show that F_=F_ it suffices to

show that roEr_ in (3.22), Using the fact that TWW = for . Y,

one sees from the invariance of (3.16a) under 'L‘,n and the uniqueness of ¢ that

T 0 =% also holds. Te follows that TﬂWl = Wl and TﬂR = R, where and

i

1
Roare given by (3.17) and (3.19), Thus, one sees from (4.4) and (4.9%) that

~ “

oy (R,bn) = (R,vaﬁn) = (R,w‘n) =T If, in addition,  is real then (2,22)

{ > I3 N T = ~n = n = = T
and Lemma 4,2 imply r_ (R, ) = (R,7) r_ sothat r =71,
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Beeause of Lemma 4.3, the selection equations (3.24) in the settin: of
S. mav be replaced by an equivalent system of N+ 1 equations in the N

(possibly complex) variables §3 = (ﬂl,...,BN), the real variable 1, and the

raal parameters ¢ oand v

N
. " " 4 ” -10 ® o i
(h.8) (@) 0= F (¢,1,7) i b 2 Aijn{i.j
L,j=1
N )
+ R Ain‘;gn + ru(ﬁ’T’Y)’ n=1,2,...,N,
i=1
N . , N , N n
IR UCR IS R T S A ulia ym + LY A1.;?;f :
T w1 j “ g
where (5, ,7,n) ¢+ ﬁ:N v 133,
i = § Q: - l"‘, - iy - R, =K
(4.9) Aijm 6(k1405j4'5m) + ‘(Fi*'kj Bm) + ’(Fi kj4‘km) + (ki ki Ln)’
4.10 A,, = (2 - 8..) + 2
(4.10) 1] ]DOiJ( 15 Tpol(-1) .

Morvover, since Lemma 4.3 shows also that F = (Fl""’FN) may be regarded
as a mapping of a neighborhood of  (0,0,0) in MN i Mz into MN, it is

natural to scek solutions of the selection equatlons in (4.8) of the form

(), TRGY,E)) RV

by use of the implicit function theorem near
== 00 TF (%, r%) ¢ RN+1 is such a solution of (4.8) near 7=, = 0,
then (ﬁﬁ,...,ﬁ?,ﬁ?,...,ﬁz,T*) is a solution of (3.24) satisfying (4.6) with

s, i.e., a solution of (3.24),lr satisfying (4.6). Thus, the above
vonstruction leads to real 1 in Mﬂ and, hence, real solutions of (*),‘,T in
S“. To actually carry out the above construction, we seek first the real

solutions of the reduced selection equations obtained by setting v =& = 0

in (4.8):

~
I~
-
~
~
pui}
A
~
~
|

= F ([)‘q‘l 90)) n-= ].,2,...,N

V(B,T) 6,1 c BV,

~
i*2
~
o
il
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Remark 4.2, It is easy to check that Fn(H,T,O) = %h-ﬂggﬁzl», nom= 1,2,,.,,8

n
so that (4.11a) 18 a gradient system. Since (4.11a) s not the reduced bifur-
cat b system assoclated with (%),  this gradient strocture {8 not fdentieal
to that used extensively in [1, 10, 17], although it is clogely related, We
note that the reduced system obtained from (3.24) by setting ¢ = |, = 0 has
a similar structure, with Fn(ﬁ,1,0) = $2~ V(Bs,")3 the factor % appears in

i

n

1,

the & case because of the identification of wj and nmi.

In developing o solection principle for stable subertitical hexaponal
cells one needs to constder only the reduced selection equations in (4.11).
uther chofees of the reduced selection equations are also appropriate In
conveetion problems, e.g., in the study of supercritical solutions and the
exchange ol stability between rolls and hexagonal cells, and will bhe con-

sfdered in a subsequent paper,
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5. lxistenee and stability of real solutions in S . Tn this seetion

we dolve the seleetion equations In a general setting by means of variatfenal
methods,

The tollewiag preliminary result vields real solutions of (%) in X,

i

Theorem 5.1, Lot (B%,1%) BN+1, with % ¢ 0, gatlsfy the redaced

seleetion equations (4,11) and suppose the Jacobian  det {é{] is not sere at

1
Gy yryt ) = (%, r%,0,0). Then there 48 a & 0 sueh that for (,, ) - B
with 1)+ |-1 & the seleetion equatfons (4.8) have a solution

GGy dyiCrge D) IRN+1 satisTying

(5. 1) lim (B, ), 1 Cyar)) = (% ik),
(40 ) 2(0,0)
Ffurtbuermore problem (%) has a real solution of the form (3.15) with
N L
(5.2) N N ICE D PRI R SR
=1
and % obtained from #,T by means of (3.17).
The result follows from the implicit—function theorem applicd to F,V =

A (F .
near  (%,1,v,:) = (% 1%,0,0), provided that det %%%*g% is not zuro when
[ S |

P : ) ) ...!
evaluated at  (A%,1%,0,0). But === 2f is zero at this point and JY SR R R
3 y

Thus,

RGN, _ Z AR
det Bzzi¥7*(ﬁ*,l*,0,0) = —]B*] det 3}}(u*,f*,0,0) #0

and the rest of the theorem follows easily.
To utilize Theorem 5.1 we seek solutions of the reduced selection equations
with [* # 0. We next show how this may be accomplished by exploiting the varla-

t tonal structure of the reduced problem (4.11).

Note that

T i
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LT 9
o e« = ]2 4 qe) + e(e),
where
(5.4)  (a) qi) & b N A B
R PR L
N
oy e ] . 2.2
(b) e(in) © NOA, L PERS
4 1,j=1 i3 1]

In order to determine suberitical solutions of (*)?

hvpetheses on q  and ¢
oy N
(Hq) qG) 20 on R

) ¢() 0 forall B0 fn B,

Remark 5.1, lHypothesis (“q) fails, in general, since S(Kii-gji-km) is

zero unless the vectors k,, k.,
~17 %5 tm i

This latter condition is possible for hexagonal lattices, = V3., o, o= o,

J’Yl
when o satisfies (2.13) for integers Ny, My of the same parity. In such

Cases (Hq) is satisfied if b % 0. Concerning (He)‘ the condition Aii =)

., in (vi) of Lemma 3.1, So
Polj
hypothesis (HU) is satisfted, e.g., if np 11>0 foreach 1 = 1,2,,..,N, The
; 0~

latter condition is fulfillled 1if at least one term in the sum delining ap

Follows from (4.10) and the nonnegativity of the a

oii
is different from zero,

In the following discusgsion of the finite-dimensicnal problem (4.11), a
prime denotes the gradient with respect to [. Thus

o ron AN 2 N
o' () = {3%%ﬁl} s £ (B) = {%EQ%%Z} y ete.
Py =1 177471, j=1

Iy view of Remark 4.2, the system (4.11) becomcs

(5.5) (a) 0= -1f+q"(B) +c"(B) ,

]

®) 0 == F8* + a3 + B .

i

k_ form an equilateral triangle: 314-k &-km =

24,

we shall impose the followin

(.
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We detine selection functionals [ and g by

IR N (ORI f‘)}
Caby () LG el -
[ 0 , if =0 }

M) wG) 47 G o)) .

Lewest 5,1, Lot the Tunetfonals g and o be pidven by (5.4) and suppoea:

RN+1 with § # 0 and set ; 2 /LY, Then

¢ osatdstfes (). Let (1)
the tallowing are equivalent,
(1)  (i,1) Is a solution of (5.5),
(i1) + is a ceritical point of [ with eritical value f(r) = é ,

(1{1) © 1is a eritical point of g on Pel = 1 with eritical value

p() = - | and the magnitude of 0 satislles

(5.7) L= [=qG)/2e(D)].

Proatf,  The eritical polnts of f£(¥) are determined by

(5.8) 0= ') = lﬁl'zi—rﬁ +q' () + ' (9],
where
(5.9) Lo 20qQ) + e 18] = 20k,

Sinece ¢ # 0, equations (5.8), (5.9) are just (5.5). Thus (i) and ({i) are
equivalent. The condition that # be a critical point of g(f) on [kl =1
with eritical value -~ % is

~ A A A . A P ” ”
(5.10) —tf = gt () = q(® 217 2e@B " ) - q(Pre' B .

If we uge the homogeneity of q, q', ¢, ¢', g' and the Euler identities

freq' (1) = 3q(B), fiee'(B) = 4e(B), Rog'(B) = 2g(R), then from (5.10) we get

L
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(5.11) - g () = 280G,

(2. 1) il a0 = gt () = q(ﬁ)[2v(f}]"2[2¢(ﬁ)q'(ﬁ) - qGle' )],
1 (,1) satisfies (5.5) with © # 0, thea upon multiplying (5.5a) by +,

using the Buler identities and subtracting twice (5.5b) we obtain
(.11 () = q() o 2‘.“,‘)’

which Lmpltes (5.7), VYtrom 1+ # 0, (5.13) and ("c) we have q(1) = =2¢() 0,
For cueh 7, equatlons (5,12) and (5.5a) are the same, Similarly, (5.5b) and

(h,13) Imply

. x 2 2 Al .
ydaamw>+mmﬂ—ﬁﬁﬂ=~%%}-m«)-4ﬂ%w>,

ao that (5.5b) and (5.11) are the same. Thus (i) implies ({41). Finally, Tet
{,‘ and il satisCy the conditions in (iii). Since o # 0 by assumption,
(5.7) is equivalent to (5.13) so that again (5.5) is the same as (5.11), (5.12),
Thus, (111) implies (1).

1t is clear from Lemma 5.1 that solutions (*,T*) of the reduced selec-
tion equations with (% # 0 are obtained from those eritlcal points S of
g () on lul = 1 for which g(@*) # 0. Turchermore, it follows from
(Hc), (5.6a), (5.13) and (ii) of Lemma 5.1, that for such critical points

(5.14) ™ = 20(3%) = ~2 (k) 0.
| 13% ]

Thus, on the basis of (3,15ff.), a solution of (*)m generated from  (#%,1%)
will be suberitical, at least for small values of Yy and £, According to
Theorem 5.1, to extend such a solution of (5.5) to a solution of (4.8) we must
show that det %% 40 at (B,T,Y,c) = (p*,7%,0,0), i.e. det E# 0, where E

is the symmetric matrix
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(h. 1) Bo= k] 4 " (%) 4 " (B%)

5

af
Thus, det +£
B

the following vesult.

is zero if and only 4f E is singular. We have established

Theorem 5,2. Suppose q and c satisfy hypotheses (Hq) and (Hc)'
Lut  (p%, %), % # 0, be a solution of the reduced sclection vquations (5.5)
sweh that the matedx E in (5.15) is nonsingular. Then there exist N 0
and i 0 sueh that, when IYI Y, and lai T equation (*)n has a
real, subceritical solution  (v*(y,r),2%(y,e)) of the form (3.15) with

T = 1(¥,t) < 0 and generalized dissipation V = ¢, In fact,

N
(5.16)  (a)  vk(y,e) =y =& sgcwj + 7y + vy,
j=1 ]

2 2 2 Y
(b) MY ) = Hy = YU Gigbg = X)) ACY,e) = X+ YT TE 4+ (),

"
where 1% satisfies (5.14) and, as v =+ 0, V(y,e) = O(Yz),A(Y,E) = o(y”),
v iy
A(f{) = OK'Y )'
According to Theorem 5.2 and (i) and (ii) of Lemma 5.1 we can generate a

N

solution of (*)w by finding a global minimum of f on R . If { = ;%

with Iﬁl = 1, note that
(5.17) r@ = el +-41£§—:1 - g(®.

2¢(B)
We minimize f£(R) on RN by choesing p = —q(B)/[Zc(ﬁ)] and maximizing
g(g) on Iﬁl = 1. If 4g(B) # 0 then we generate in this way at least one
nontrivial solution of (5.5), say (B*,T*), with 1% satisfying (5.14).

If we differentiate (5.8) and make use of (5.8) and (5.9), then we find that

.18 P = (] TE TR 4 Qe+ et ] = [RE] T

Sipnce f has a minimum at B*, we know that £"(B*), hence E, is at least

positive semi-definite,
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(5.19) 0 < BER,

Thus, 1f £ 1is nongingular at a wminimum of £, it must he positive definite;

we shall see that the solution of (*)ﬂ generated (as in Theorem 5,2) from

(%, 1%)  {s then stable in S
The relationship of the critical points of f to the generalized dissipation

V is given in the following remark.

Remark 5.2, From (5.3), (5.5) and Lemma 5.1 one sees that if % is a
eritical point of () and Ty = 2E(GO), then GO is also a ceritical polnt of
V(io,h) and V(*O,fo) =0, If o is also the absolute minimum of 21(s)

then V= 0 1is the absolute minimum of V(TO,B).

We turn, then, to the question of stability of a solution (v¥,}%) =
(v (y,y ), 2% (y,0)) of (%) having the form (5.16). For small y and =, the de-
rived operator, D, of (*¥) at (v*,2%) 1is a linear Fredholm operator of index
zero, the perturbation by a small bounded linear operator of the self-adjoint
operitor T - “1L' As observed in [17], because of the invariance of the cquations
under translations of the (x,y)-plane, the stability of solutions of (%) in I is
always indeterminate., In the case of Sw’ however, we have the following result.

(The notion of stability here is "linearized stability" as in [163;17].)

Theorem 5.3. For Yy,e sufficiently small, a solution v(Y,£) of (*)_ obtained
from Theorem 5.2 is stable in STT at A = A(y,e) if all eigenvalues of the matrix
E In (5.15) are positive, and unstable if some eigenvalue of E is negative. In
particular, if v(y,E) is generated from (B*,1%) corresponding to a minimum o, f

and such that E is nonsingular, then v(Y,£) is stable in Svr at A = 1(y,%).

To prove Theorem 5.3, one proceeds as in [16] to determine a subspace of

S” invariant under D and corresponding to the N critical eigenvalues of

D for sufficiently small Y and €. This subspace has a basis of the form
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(5.20) 2 e ey vt 2t ME L L= 1,20.000N
sat Islying
N
(5.21) ozt = oyt 2d, 1 =1,2,...8.
NIARY

To establish the existence of the basis {zl,...,zN} in (5.20) one needs to

i

show, in particular, that TWZi = Z so that zi belongs to ST. The proof

that T”Zi = 7.i makes use of the fact that (wi + ﬁ”i) belongs to MT and
follows along the lines of the derivation of (3.17) and the proof of Lemma 4.3,
Sioce we assume in Theorem 5.2 that B s nonsingular, (5.19) implics that atll

cigenvalues of E are positive LI £% minimizes f. Tn this case v(;,")

is stable in S at 3 = 2(y,v) for (y,e) sufficiently small.

o
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6, Suberitical hexagonal cellular solutions. We now restrict the

problem to the hexagonal lattice and prove a general result about stable
suberit feal solutions whieh yields a selection prineiple for hexagonal
cellular solutions. To fix the ideas we treat also the speeial case
of dim M= 12 1in Remarks 6.1, 6.2 and 6.4; this case 1is the
setting in which "exotic" solutions of the Bénard problem were originally
studfed in [10].

We begin by showing, for an unbounded sequence of integers N,
that one can determine N sextuples of critical wave vectors corresponding
to the eritical wave number, T These 6N vectors generate a nullspace,
M, with dim M = 6N, Take "y o= V3o, Uy = and choose @ so that
(2.13) has exactly N distinet solutions (no,mo) = (nj,mj)?=l, where
n.l and mj are nonnegative Integers of like parity for which the critical
wive voector ki 3«%/§nj,mj,0) makes an angle ”j’ 0 < 'fj<ﬂ73’ with
(1,0,0). 1I.e., take u = Go/vﬁb where the integer My is chosen so that
the equation 3n2 + m2 =b%) has exactly N solutions setisfving the

above conditions. (Tt is well-known that such pairs (N,MO) exist for

an unbounded sequence of integers N (e.g., see [20, p.345,ex.5]).)

N

We suppose the N vectors, Fj’ are ordered so that 0 < 8, < f, < ... < 8 < /3,

Delfine the N triples, 13 z (k ) where, for j = 1,2,...,N,

koK iamKean

] (resp., kj+2N) is obtained by rotating kj counterclockwise

N
through n/3 (resp., 27/3) radians. Note that the 3N wvectors, kj’

ave 3 - i : C 1 i < £ L we <,
have lengths 9, and direction angles Oj satisfying 0 £ Bl < f, < 3N

Each of the N triples, ?j’ can now be extended to a sextuple, (Tj’ - T1),
if we define k—j = -Ej (j =1,...,3N) in accordance with (2.16). In the

above context there are »2finitely many possible period rectangles

corresponding to values of o = OO/JE), however, the critical wave number,

“ -
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9y sand the "size" of the basic hexagonal cell remain fixed throughout

the following discussion.

Remark 6.1, TIf in the above (N,Mo)= (1,6) then n, =1 and

m, =1 din (2.13) and dim M = 6, 1In this case we have one triple

0
(k],kz,k3) and one sextuple (31,52;53;*51."k2,-k3), where 51 = a(v/3,1,00,

k, = (0,2,0), and kq = w(~v3,1,0), If (¥,Mg = (2,28) then

ny = 3 and my = 1 4n (2.13) and dim M = 12, 1In this case we have

two triples (31,53,55) and (52’54’56)’ where

k, = (3/3,1,0) ko = r(2/3,4,0)
(6.1) ky = 0(¥3,5,0) k, = a(-/3,5,0)
ke = w(-2/3,4,0) ke = 0(=3¥3,1,0).

The first of these special cases, dim M = 6, was studied in [2; 5; 9; 17]
in the context of classical hexagonal solutions. The second case,

Jim M = 12, was studied in [10] in the context of "exotic" solutions.
6N
}

j i=1

and proceed as in Sections 3 through 5. To make use of Theorem 5.2 in

We now define a basis { for M din accordance with (3.1)

3N
the present setting, one needs to minimize f on B, where f is
dofined as in (5.6). Thus,we require, in particular, the coefficients
in the functionals q and ¢ defined by (5.4) with N replaced by 3N.

The coefficients of q are given by

fl, if (@,j,m) is a permutation of (n,n+N, n+2N) for

(6.2) A, . some n ¢ {1,2,...,N}

ijm
0, otherwise.

Thus, setting B = 2b with b defined as in (3.21), we find
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N
(6.3) q(f) = szlﬁjﬁj+NBi+2N'

Note that if b # 0 then q(B) # 0 since, e.g., Ej - §j+N + kj+2N = ()

for j = 1,2,...,N.

We next discuss the coefficients aij and Aii required to determine

(i) (see (4.10),(5.4) and (A.37)). For our purposes it suffices to
vvaluate aij and ai(-j) when 51 and Ej 1ie in the same triple rn,

n=1,2,,..,N. Recall that a depends only on [ki + Fjl’ i.e.,

1]

only on the angle between k, and k

i 3
lfe in the same triple and k, # kj this angle is either w/3 or 2-/3.

(see (A.37) & ff.). When Bi’bi

We denote the corresponding valu.s of a5 by a(7/3) and a(27/3),
respectively. It is now easily seen that if a5 = a(m/3) then B (1) = a(27/3)
i N : ¢ = . Si .= 2(a,, . >
md if 4 a(21/3) then a4 (=1) a(m/3). Since A1J (813 + ai<_3)) when
{ #j, and since ap(_q) = 34 (.9) when 35q = 3449 it follows that

the Aij have a commoa value, A = 2(a(w/3) + a(27/3)), when i # *j

2

and ki‘kj lie in the same scxtuple. Similarly, when 1 = j, ]ki + kj! = 27,

so that the Aii have a common value, C, i = 1,2,...,3N, Thus

J c, if 1= j
(6.4) A, =

+ l Ay if i F 3 and kkgoc T,ons 12,0001,

n’
Tt follows from (4.10) and (A.37) that all Aij > 0, hence A > 0; further-
more, hypothesis (Hc) is equivalent to C > O,

It is also possible to determine other relationships among the Aiﬁ when
ki’kj lie in different triples. 3Such relationships are not required to study

the classical hexagonal cells but are given in (6.6b) below when N = 2,

Remark 6.2. In the context of (N,M;)= (2,28) in Remark 6.1 there are nine

distinct positive values of lkinfkjl for i,j e {#1,%2,...,%6}, Therefore, there arc at
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past nine dlstinet positive aii o npoij' One findsg that Aii =a, = ¢,

i= 1,2,.0..,0, and

Ay T g = lgey 3y @ T Agg = Aygy A, % dgg ® Ay 5o

G_p T g X dg oy d1g T 897 By gy By 0% B 4T 35 460
{h,h)

=

My = g™ dgs T 8oy T A6 T 894

1, Mog® g ® Ay 4 T g F Ay g and “»i—j = aij
frotoliows that the A” satisfy
)Ry Ay By ® g ® Ay = A A
M) Ay = dyy = Bggr Ay = A5 = Aggr By = Aoy T fys

The relationships (6,6b) are needed for a complete analysis of "exotic"
solutions when N o= 2,
From (5.4b) and (6.4) we get  c(8) = c(in) + d(R), where

3N N

- . S TP S 2.2 2,2 2 a2
fh.7) cG) o= AN * z‘xizl(“i“i+n + ¥Ryt PPy

9 o
and  d()  denotes the contribution to the sum in (5.4b) of terms Aijoifj

for which 51 and Kj 1ie in different triples. Note that d(¥#) > O,
c kY, since Aij > 0. Thus, £(B) Z_E(B), where {(B) is defined

in (5.6) and

- o l2
J(q(ﬁ) + 2(BN/|BIY, 4f B #0
(6.8) () =
l 0 , if B =0 .
The functional F and its critical points play a key role in the determina-
tion of stable, subcritical hexagonal solutions. Since (Hc) is equivalent

to ¢ >0 in (6.4), the functional ¢ also satisfies (Hc), so that

tomma 5.1 is applicable to both f and £,

Lol 3
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Lemma 6,1,  The nontrivial critical points, 3, of [ satisfy
2 y “
2 2 2 7

by “n+N = Hn+2N’ n=1,2,.,.,N., Moreover, assumes 1its absolute
minimum,

9 . 2 ae e r
(0.9) fo D=-B /)L1 with Cy - C+ 24,

[A)

n
at those critical points for which all nonzero Bn satisfy ri = 4B2/90{.

Proof., At a nontrivial critical point we have (see (5.8), (5.9))

(6.10) 0= |12 2ay = —2F@), + 29 43S 4 212, 0.
Bics i 1 "["1 ""i

Lot Tn = (kn’kn+N’kn+2N) be any triple and let 1i,j,m be the indices
(nyn + Nyn + 2N) written in any order. Multiply the i£h~ equation in

(6.10) by Hi’ the jgh equation by ﬁj and subtract to get
_ .2 2 - .2 2 )2
6.11) 0= (bi Bj)[—Zf(ﬁ) + C(s;i + Bj) + Aﬁm] .

By making use of the equivalence of (i) and (ii) of Lemma 5.1 applied to

T, one gees as in (5.14) that %(B) < 0. Hence (6.11) and (Hc) imply

y .
that H; = ﬁj. Since n  and the ovder of 1i,j,m are arbjitrary, we

2 02 2 ~ . . , e
have Ln = bn+N = bn+2N’ n=1,2,...,N. Observe that if ki © T the
(L ton 1 . . |
i equation in (6,10) involves only Bn’ Bn+N and (n+2N' Since we

may change the signs of any pair of these three Bj's without changing

~

the igh equation, we may suppose at a critical point of f that

) n=1,2,...,N. Then the three equations in (6.10)

nkaN T UndN T Bn’

corresponding to each Ty become identical and (6.10) reduces to N
equations for Bn, n=1,2,...,N. We suppose that exactly bb of the
n

Fn are nonzero and reorder the indices so that Bn #0 if = l,2,...,bb, and
hy = 0 if n = M0+ 1,...,N. Then (6.10) may be replaced by
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(6.12) 0 = -2£(K) + BB, + GBS, 4= 1,...,Mp

where C] = ( + 2A. When q)= 1 one solves (6.8) and (6.12) to obtain

9 ) ' .
“I = 45“/9Cf, F(e) = £5 % ~B2/9cl. When My - 2 one subtracts the equation

for pj from that for bi to get the Mo(tb— 1)/2 equations

(6.13) 0 = (ﬁi— ﬁj)[Bﬁ'Cl(Bii'ﬁj)], j=1+ l,...,Mo;i = l,...,bb.

It is easy to deduce from (6.13) that the Gj's either are all equal or
assume exactly two distinct values. When the wj's are all equal, the system
(6.8), (6.12) becomes a pair of equations for Bl’ f(ﬁ) and one finds

D) ] - .
that pz = 452/90;, £(B) = £5. In the case of exactly two distinct ¢

»* j ]
_— 261 . 3 14 ] "‘ : . :
we suppose 5y # By with Py of the By s equal to vy ind Py of
the bj's equal to 32, Py + p, = MO' Then the system (6.8), (6.12) reduces to

‘ - 3 3 3, 4 2 2
(6.14) (a) £(p) = {B(Pliﬁl + 92‘5532) + ‘2(#1(9181 + pz?gﬂ/?’(plfil + Pz’fz)
DE N - . 2 . _ 1 9
(b) 2f(p) = Bhi + Llﬁi, i=1,2,

Since ﬁ],ﬁz are different and nonzero we seek a solution in the form

v B 8, 8 # 0,1, Using (6.14) to express £(g) and in terms of
2 1

?
1
s, one finds that Hl = —B/Cl(l + 8), f(ﬁ) = B7s 2C1(1 + s)2 and the

soLutions are determined by the roots, s, of

0= -pzsa + 2pzs3 + Zpls - Py -

The latter equation has exactly two real roots 81> So» which satisfy

0 5 % %, 2 < 8,0 1f fi is the value of f corresponding to

5 i = 1,2, then one shows that fi > fo so that these solutions do

not give the absolute minimum of f.

Recall that f£(B) > E(B) for all B ¢ RBN and, in addition, observe

11

that f(B) = E(B) = fO -B2/9Cl at points, B, of the form
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[i’xi=0 If 1 #N, n+N, n+ 2N

(b, 19)
o mog = | x ' y D uN o,
[ "o T P T Pogon Z8/3(']’ N 1,200

Since fo 1s the absolute mindmum of ?, it is also the absolute minimun

of f, 1.e.

(6.16) fo = g}xij(ﬂ) .

it follows from (6.16) that cach point of the form (6.15) 1ls a critical

polnt of £, Morevver, since Gy > 0, one can show that the matrix E In (5.15)
Is nonsingular at these points; in fact, det E > (8?01/2)N. Thus, according

to Theorem 5.3 cach of the points (6.15) generates a suberitical solution,

v = v(n,N), of (*)ﬂ stable in § Note that because of (6,16) and Lemma 5.1,

e

there are no other solutions in Sﬂ generated by solutions (£,1) of (5.5)

. N T
with lO zro.

Remark 6.3. One can, of course, also consider the solutions v(n,N)
as solutions of (%) in _H. The stability of the v(n,N) in H is de-
termined to lowest order by the eigenvalues of the 643 » 6N .Jacobian
matrix of the full selection equations (3.24) at Yy =+ = 0. One

finds as in [T, pp. 642~643] that all bdt two of these critical eigenvalues
are positive and, because of the invariance of the equations (2.1) under

translations of the (x,y)~plane, the remaining two are 0. Thus, the

stability arguments in [1] apply also to the hexagonal solution vy(n,N).

We shall call a solution, v, of (%) a hexagonal cellular solution

If the leading term in v has zero component across the vertical faces of
a right hexagonal cylinder Z and also across the vertical faces of cells

obtained from Z by repeated teflection across the vertical faces (the
y
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axis of 2 Is parallel to the g-axis and the cross seetions 2 = 2

!

0’

-

PO

Py Ay L are regular hexagons)., For example, the solution v(n,N)

sonerated by (6.195) is a hexagonal solution (note the zhape of the

strecml fnes in [10, Fig. 1]3 sec also [3, 316])., One can show (e.g.,

N kN
I’r

N ‘
+ 4 hes zoro component aeross the

see |3, #16])  that g = o
vertical taces of 2 whose eross section 2z = /) is the hexagon with
center at  (x,y) = (0,0) and vertices at y(év/3»§)ki, ki' 1?n. Clearly,
the same is true of §, corresponding to ki ‘ Jrn, henve of =% = , 5,
Furthermore, the flow 7 has the positive z~direction along the z-axis.

Ihus, we see that the leading term in v(n,N) has this hexagonal structure

and, since ;3‘3 O, » 0, the flow is upward along the z-axis when

e

- 0 and downward when v < 0.

one may also investipate the existence of exotic solutions in §
for peneral N by the methods of the present section. To determine the
stability of exotie solutions, however, requires the verification of cer-
taln inequalities among the coefficients of the functional f in (5.6a).

This is illustrated in the following remark for the case N = 2,

Remark 6.4. Besides the simple hexagonal solutions determined above,

L)

one obtains In the case N = 2 additional solutions corrvespending to
v2 4 * Al
(6.17) (a) ' = =28 /9(@1 + Al),Bi = —ZB/B(Cl + Al), L=1,...,6
. , 2 =2'J—‘=v.=__ . N
(b) 1t = [-alcl + (1 + 8y + sl)Al]bl,pl =g = g B/(l+sl)((,l Al),

‘jz = 64 = BG = slBl!

where A] Ay, + A, + A

12 14 16 {(see (6.6)). Here s., 0 <« s < 1, is a root of

1

2

(6.18) 0 = 2(c; - Al)(53 +sP48) - (0 + 2A1)(s2 + 1)2,

One finds that Lhe existence of Sl’ hence of (6.17b), as well as the

stability of both solutions in (6.17) depends on the sign of (2l - 7A].
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The solution (6.17a) corresponds to the irst exotle solutlon (ease Ja)
in [10].

Obgerve that in each of the solutions (6.15), all ﬁi’s corros=
ponding to a piven triple, Tn’ are equal, The funetional [, however,
does not change 1f we change the signs of any two ﬁi's correspondingy, to
the same triple. Thus, cach of the hexagonal solutiong penerzated
by (6.15) yilelds three additional hexagonal solutions. Unce can show that
the tour solutions obtalned this way arve translations of one another,
Moreover, all of the solutions, v(n,N), generated by (6.15) (for
o= 10,000, N; N dn a suitable, unbounded sequence) are,at least to
First order, rotations of v(l1,1).

our main results for classical hexagonal cellular solutions are som=
murized in the next paragraph and hold under the hypotheses ¢ 0, B # 0
(sve Remark 5.1). These hypotheses are independent of N and are analogous

to the minimum hypotheses required for a bifurcation analysis at tc when N = 1.

Hexagonal cellular solutions. For each N in a suitable unbounded

sequence there are 4N solutions of (%) generated by absolute mindma of
the selection  functional, f£. These solutions are suberitical and stable
in S“ = S“(N). Each of these solutions exhibits the classical hexagonal
cellular form with size independent of N. The stability of, e.g., v(1,N)
in S”(N) shows that the hexagonal cellular solutions are, in particular,
stable to perturbations in "directions” corresponding to N eritical wave
vectors, Thus, letting N range over the unbounded sequence, we obtain,
in a sense, the stability of the classical hexagonal cells in infinitely

many such eritical directions.
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£ Goneluding remarks. There 18 no attempt In the present paper
to obtain "all of the local solutions near i = nl” of the Behard
problem  with symmetrie boundary conditions even in the simplust ol cases,
The motIvation has been rather to provide a fivst step toward showing that
the hexagonal cellular solutions are the "preferred” subcritival solutions
ol the Benard problem in physical situations with temperature dependent
material propertles. In [aect, the recent results of Buzano and Golubitskw
(2] and Golubltsky, Swift and Knobloch [5] indicate how difficenlt it would
be to obtain "all of the local solutions near * = “1” even in the vase
In seetlon O when dim M= 12, In [2], [5] those authors consider siftua-
tions corresponding here to the case in Section 6 of one triple of eritical
wave vectorsy L.e., dim M= 6 and, by an application of group theory
and, in [2], also singularity theory, they obtain "all of the local solu-
tions" of a six~dimensional problem P. (One assumes that P corresponds
to the finite-dimensional problem generated from the Bénard problem by
means of the Lyapunov-Schmidt method relative to the first eigenvalue of
the linearized prublem.) The detailed results in 2] are of particular
interest because they show for the Bénard problem that the mathematical
possibility exists of having stable suberitical hexagonal-type solutions,
stable supereritical roll-type solutions, and a third type of solution
that provides a transition between rolls and hexagons, There are, of
vourse, some difffculties encountered in carrying over the finlte-dimen~
slonal results in [2], [5]) to an infinite~dimensional mathematical model
and many such difficulties and their interpretations for the Bénard
problem are discussed in [2, 811]. The most pertinent suchk difficulty

relative tothe method presented here is the fact that the detailed nature
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of the results In [2], [5] are highly dependent upon the velatively low
dimension of the problem T whereas the basic results of Busse [1] are
essentially independent of the dimension of any underlying finite-dimen-
slonal problem,  une of the main goals of our study of the Bénard problem was
to develop o rigorous stability method useful in a setting that also is
independent of the dimension of any underlying finite-dimensional problem.
Ihe results of Seetion 6 show that this goal has been achieved and that

In our approach the seleetion of gtable suberitical bexagonal cellular
solutions i closely related to o mindmizat fon condition on the generalized
dissipation, A4 in earlier work on the Bénard problem (e.g., see [1;
1h]),there remains in the case of temperature-dependent material proper-
ties the problems of finding a strict physical interpretation of the
aenvralized dissipation and a deseription of the actual selection meshanism,
Finally, we note that the methods introduced here can be modified to

vield also the doseription of stable superceritical states and the stability

rolatlonships between roll-type solutions and hexagonal cellular solutions,
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Appendix.  Here we justify equation (2.23) and prove Lemma 3.1.
First we show that the cigenfunvtions {qnqj} in (2,20) ecan be scaled

with constants independent of § so that (2,23) holds., 1In fact, we mav

assume that cach ¢4 has been scaled by a congtant depunding only on p
amd g such that
1/2 1 td
i
(A.1) ~'=q f (D ¢P‘*] dz = »1--53 ,
7 d=1/2 3 4t
P
d2 2
wvhere D e Jp . (The integrand on the left in (A.1) is not zero, by
dz

9
unlqueness of the initial-value probiem D% = 0, ¢(%0 = ¢’(%) = 0 (see (2.12¢)).)

From (2,3) and (2.21) we get

ik k ) X

e N pj vdvdx

. 2mfen, p2 i
(A.2) (d'pq:] "['rSt) =7 (]7 N ;r,s,t)[ ! ( 2

0 0
2

= U
= ordse 1 Ip,q535m8,8)

Here, sinee ',*'!;q‘j = (:»gq

and ¢zq3 = ¢zq are real and independent of |,

1/2 3 pqizrst
A 3 e = . ~ *
(1\. J) J(P,q’.] ,T,S,t) - J (kpj ..krt) d)m 1m
-1/2
; 1
d  pqi srst, 1 pQ: d.pq d,
t o agth 3z el kedd 0t Tt W ]+

From (A.2) we see that J 1is needed only when t = p and = j, Then we may

integrate by parts in (A.3) making use of (2.12) to show that
1/2 Pq,ps Pq,Ps
(A 4) J(P q,35P,8 ,J) Pq J.l/z ({b4 ¢’3 + ¢3q(b[;)dz

Since both ¢pq and ¢ps satisfy (2.12) we have, after integrating by parts,

, 2 (1/2
(A.5) () = (ups - upq)up J

/2 ((biqrf)gs + (pqu)zs)dz .
-1
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L=
9

rhus (A.5) shows that if “ps # - (i.e., if s # q) then :qu and
s are orthoponal in the sense that

(. 6) b M (PGPS VDS,

e Lyptas TR

In particular,

(A7) JPsr3ipsss ) = 00 TPy Tipads 1)

But trom (2.12a), integration by parts and (A.l) we get

o (172
(A, 8) J(psqydspsqgsj) = 20 j
Pl

Pay4.pq .,
\,,3 D .,;3 L]lo

Combining (A.2), (A7) and (A.8), we obtain (2.23).

Next we give a proof of Lemma 3.1; some aspccts of the work is closely
related to corresponding steps in [1] or in [L0}. According to Lemma 2.1
the operators |, and M are bounded on H., Since I, is also compact, it
ls easy to sec that K is bounded on Mt If v « H has the form (3.2)
and A is any bounded linear operator on H, then Av may be computed
term by term in the sum so that the formulas (3.7) lollow easily. The
positivity and self-adjointness of K are simple consequences of (2.23),
(3.7) and the fact that the hpq are real,

Part (ii) of Lemma 3.1 follows easily from the definition of M if

we show that

(A.9) 0= ™5,  for |ml.[i] =1,2,...,N .

pal Pg 1
Since ¢4 &a and ¢ = ¢ are even functions of 2z (see [10]), (A.9)

follows from

81 2 1/2
I z¢4¢3dz =0 .

— Sk + k)
A&y m ~3T g

") = f e =

The assertions (iii) of the lemma are obtained from (3.2), (3.3) and

the identity
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J (ueVv) oy = J {Vefu(vew)] = (ueVw)ev} = ~J (uVuw) v .

) . . . e

This last identity is casily verified for smooth u,v,we H and is proved
In peneral by a standard limiting argument using the boundedness, in u,v,w,

of the functional (i(u,v),w):

(A.10) | (¢(u,v),w)| < const |[ul[{|v]| |}l '

(The inequality (A.10) follows from (3.2) by application of the Schwarz and
Poingare inequalities.) In addition, one may use (A,10) to show that all
assertions in part (iv) of Lemma 3.1 are consequences of (A.11) and (A.13),
pelow.

On substituting (2.20) and (2.21) into (3.2) we are led to (recall that

) and p.l are suppressed: o =g¢g, k . =k,, etc.
lu 10 P Po N ~I’03 ~,3’ )
pqm j, =n 4w2
el ) P 1 - .
(A.11) (H 7T, U),80) T Slkom * Ky + kDI, qam3pg, 3,m)
whure

I

(A.12) L(Ps‘lsm;po’j’n) 1/2 P ~pm ]

%6, b, db, do
Pl b . 3 3+ 4
+ 03 [" (kyrky) 2 @& 20y + 5t "’] dz .

1/2 mpq
-2 jon
J {-o (ko) —o— (079"

The right hand side of (A.11) is zero because of the ¢ term, except when
k 4+ k, +k =0. In this exceptional case the vectors k,, k_and Kk
pm IS ~j* ~n -~ pm
lorm an isosceles triangle so that k °kj = kpm.kn' Consequently m and

j may be interchanged in (A.12) without changing I. In this case then,

from (A.1ll), and part (iii) of Lemma 3.1 we have

4.13)  @PTe) 0N = @@P™ ™, i) = PN =0 .
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To prove the formulas of part (v) of the lemma we take ' = | ? Fiij
jl=1

and caleulate the various terms, Now

(A 14) el P9y = 2[ zmjmgqmdz = §

8
o 4 PP, in"0q

Horoe

(A, 15) P 2, 9q dz, lq] = 1,2,...

g2 Jl/z Pol Pg
0 "t Ly

is real and bo1 = b0(~l) = 0 since ¢3 and ¢4 are even, Then

lq]=2

Similarly, from (2.24) we are led to

‘ ' N , 0 poq',
(A.16) My = 7 Bj % boqw
lil=1"

_ © _Paqn
(A.17) M = § bgq o
lq|=2
where
) 2 (1/2  pyq pyl
*  _ 81 0 Q
(A.18) by 3 J 20, 4. dz lqa] = 1,2,...
Oq fll(lz _1/2 4 3 ’ ’ '

iw real. Since M» ¢ MY, KMy may be obtained from (A.16) and (3.7):

(A.19) KMy B B ; b qpoqj
A MYy = A . 8 )
lil=1 3 Jqf=2 O ’

where BOq = upoq(ppoq - ul)-lboq. From (A.17) and (A.19) we have

-n N by ~ %  Po™ _Ppn
(A.20) o, i) = 3 B, I boubog (0 )J~=b06_n

|3]=1 4 {Im],q]=2
Here
m Y.
(a.21) b,= % b b,
0 0q 0
lq=2 9™

is real. This proves (3.8).
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We shall require

;- 4 my span , N
(A.22) (T, TR = 8y oy K )Ty (g amapaan)

wvhere, by (2.21),

2 (1/2 { di m )
A \ =~ 4m -2 "I.m ,pqn f4: nqn]

(A, 2] = ramcomre s . r,--ud] .':‘ - f‘j' . -"Js . : AN
A23) Tz(l‘()’ jsmyp,q,n) "1“’2 L]/z l‘5 (ki km) d7 "5 d | }d?
We are interested in I, only when the vectors ki' Koo kpn form an isosceles
triangle, otherwise the &-factor in (A.22) is zero, From this trianvle we
et . =k N A e o= 42 L 2 : {6 case
see Phat kj kpn = km kp" ) ‘p and Bj km =5 5p » In this case,

(A.23) leads Lo 12(p0,j,m,p,q,n) = Is(po,p,q), where

2 — )
2 ,1/2 ( 5] db dg, d+b4
4 1 311 3773 Pa Nt
(A.24) I (I) D ({) T me e f / 1 - < 0 U8 R A RO S AU + A L
3 oo b gk _]/Ql 2 2| dz |, 2 dz dz 373 b4

I I PR Pl & Sl

2 pq ; 1

d ddi 1 d4.

+ (1! *_1‘.,.. .,..(.{’.2 - 13 v e “1’3 )pq S . ‘ppq l}dz
3 2007 dz lj

iv real and depends on j and m only through cp = ij + kml. On the

basis of (A.22) and (A.24) we have
A25) o TP = G + g+ ke DT (g0p,a)

From (3.6), (3.7) and (A.17) we hazve

_ - © _Pgan
(A.26) MREQ) T = (F@) ,KkMTM) = | ? bgq(F(w),w 0 )5
qj=2
where ﬁgq > upoq(upoq - “1)—1b3q is real. Furthermore, from (A.25) with
b =D, we get
_Ppan N
(A.27) (F),p ~ ) = L BB SCk, + kK )T4(pgapg,a)

MBLIS!
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Combining (A.26) with (A.27) we obtain (3.9) with real b1 aiven by

s
e

" . b W
(A.28) bl i b()qi-,(l’().l)(),q) s

lg|-»
In a similar manner we may utilize (A.19), (A.25) and part (iil) of

Lemma 3.1 to establish (3.10) with real constant b, given by

(A 207 1)2 = I :‘:=' 170(1130)0’])0,‘]) .

q]=2

Lgquation (3.11) follows casily from the observation that

\ a1 my =n .
{AL30) (f ('; l,,‘f ).‘1' ) = ok, + lel + kn)b'S 3

whoro

() hqdz > 0 .

(An’}l) b. ==
“Uyty a2

‘l,ni_ 1/2
3

Next we consider part (vi) of the lemma. From (1ii) of Lemma 3.1

and the bllinearity of ¢ we have

(A.32) (P Op,KEQ)) ,\T)n) —-(\D(q»,q/n) ,T(WTY

N B o —

. i .n i m
Giﬁj”m(*<*J'” Y Kt ™)

B -

z
[1], 1515 Imf=1
We may obtain the last inner product by means of Parseval's equation as
Follows. From (A.25) the coefficient of wpqh in the Fourier expansion

. Jjon . N o d :
of 4G, N s ok, + Kk + Eph)IB(po,p,q), while the coefficient of

}pqh in the Fourier expansion of K@(wl,wm) is
-1 .
g + Ty =k i Gy = 1) T Tegep,a), 00 (pya) # (pg, 1)
(A.33)
o, if (p’Q> = (pO’}) .

lonsequently,
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e vare Hﬂg}%(po,p,q)
Bl 2 Cuy™ iy - - . e ]
(A.l}(’) (*(d‘ yi )'M(‘P [ )) Zoé(lsj +}Sn+!§ph)6(ki+km kph) (“P'l - “1)

where XO denotes summation over (p,q,h) in the same set of integer triples
as in (3.7).
Given J and n, the only way a term in the sum on the right in (A.34)

can he nonzero is for

(A.35) kph ke -k » Ky * Ky -

These relations determine p and h completely, in terms of po,j and n
(or in terms of po,i and m) so that only q need be summed in (A.34).

The relations (A.35) also require that either k, = -gj and Em = —Bn (i.ev,
i =~y and m = -n) or Ki = —ku and Em = 'Ej (t.e., 1 =-n and

n=s =j)., It follows that

= 8L+ ()8(n+m) + SE+n)(m+ )

(A.36) 6<Ej +.‘fn+}fph)§(!§i+5m— kph)

- 81+ )S(E+n)S(1-m)

1f we combine (A.32), (A.34) and (A.36), then we abtain (3.12) with non-

negative constants a_ given by
Ppin

fs 4]
= 5 ou_(n —ul)’1I§<pO.p,q>, l1l,In] = 1,2,...,8, 1 # -n

a N
3!
Pod? a=q, Pq " pq

(A.37)

where qq = 1, if p # Pq and qq = 2 4if p = Py Note that apojn
depends on j and n only through p, i.e., through Up = ij + Bnl'

In particular we have

A8 { o = 4 = 4 R .
¢ ) '71)0:]“ dponj qpo ('J) ("n)

'urthermore, when j = -n we may, for convenience, define
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(A.39) = (),

avo.i -1
(Ihe sum in (A.37) is meaningless in this case, since (2,12) has no non-
trivial solutions when o =0 (= lki 4 k(-j){) so that 0 # Jp for
any p).  Beeause  (p,q) #(po,l) in (A.37), we see when n # -j that

JPQiD = () if and only 1if T3(p0,p,q) =0 for all intepers q with ¢ = by
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