## General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

A Seleetion Principle for Benard-Type Convereton

George II. Kniphtly*
University of Massachusetes
and
D. Sathor**

University of Colorado
*This research wars supported in part by NSF Grants No. MCS-7903555 and N(SS-8?(01539.
**
This research was supported in part by NASA Grant No. NAG 2-278 and in part by the Council on Research and Crentive Work of the University of Colorado.

## ORIGINAL PAGE IS OF POOR QUALITY

1. Introduction. In a Bénard-bpe convestion problem one socks, re:, lo dotermine tho stationary flows of an infinite liver of fluid Iving between two rigid horizontal walls and heated unformly from below. such a problem possesses a unique, motionless conduction solution when the parameters of the problem lie within a certain range but, as the tomperature difference across the layer increases beyond a cortain valut, wher, convertive, motions appear. These motions are often fellular in dhaneter in that their streamlines are confined to cortain well-derined "erolls" having, e.g., the shape of rolls or hexagons. The purpose of This paper ts to formulate a "selection prinaple" that explains why hexiponal cells seem to be "preferred" for certain ranges of the parameters, Bénard-type problems and their generalizations play an important role In fluid dynanics and have been investigated in recent yoars by a numer of allhors. Convection problems have been studied, e.g., by Schiuter, Inrt\% and Busse [19] and Fife and Joseph [4] using expansion methods, by Busse [1] using variational methods, by Kirchgassnor $[9,10]$ using the I.vapunov-Schmidt method, by Sattinger [17,18] and Golubitsky, Swift and Finobloch [5] using group-theoretic methods, and by Buzano and Golubitsky |.1 using group-theoretic methods and singularity theory. The reader Is refurred to the above papers and to the book of Joseph [7] for a comprehensive introduction to Bénard-type problems.

An important aspect of the work of Busse [1] is that the "extremum principle" and the stability results there are independent of the number of critical wave vectors corresponding to a given critical wave number. In the same spirit an important aspect of this work is the formulation and verification of a selection princiole in a setting that is independent いl any fixed number of critical wave vectors. Although our study is
pustrfeted to fustions doubly periodic in the horizontal plane, the (ilnflo) mumber of eritical wave vectors gan be tiken arbitrarily large hy propor chotee of the period rectangle, Moreover, in the case of the hexagona latile this choice can be made in such a way that the aritiond tave number and the "size" of the resulting hexagonal cells arb kept lised. Thus, whereas other methods offor a complate bifureation malysis III the bexamon lattiee in the usual six-dimentional setting, the pothots of this paper prove useful for a stability analysis on the hexagonal latliow in the general case of an arbitrarily large number of critical Wive vectors (see also the discussion in Section 7).

T'o obtain a physical interpretation of the extrenum principle i" [1], Palm [15] derived in the time-dependent problem a minimum princip"e lor a type of generalized dissipation, $V$, namelv that, as time increases, $\forall$ decronses and atains a miniman value on : fy state solutions (see (1\%, p. 2414]). To treat the generalized Bénard problem studied here, w introduce an analogous sort of functional, $V$, called the generalized dissipation (see (3.23) in Section 3 below). It can be shown for timedependent problems in a formal way as in $[15]$ that the associated timeNopendent $V$ decreases as tine increases and assumes a minimum on steady state solutions. Since $V=0$ for the motionless conduction solution and since $V$ initially increases in the steady state problem along a suberitical branch of convective solutions bifurcating from the conduction solution at the critical Rayleigh number, $R_{c}$, it is natural to conjecture that what we shall call a "selection principle" is related to the existence of a convective solution for which $V=0$. Presumably, such a solution would correspond to a point on an "upper" branch because $V>0$ on "lower"

## ORIGINAL PAGE IS OF POOR QUALITY

subcritical branches. Using such an interpretation, one could replace the formal "geometrical" condition for epper branches used in [1, 1.633$]$ bv the oxate analytical condition $V=0$. This would be an important
 wh uper branches are the ones most likely to be stable.

The basir idea of the paper can now be stated as follows (see also the retated but somewhat easier approach used in [12] to solve a class al variational problems arising in nonlinear shell theory--the parameter : in (2.3) plays the role of the "structure" parameser in [12]). Instod of solving only the Boussinesq-type equations given in (2.1) as i:; 1 inliflly done, wo solve the equations in (2.1) togother with the eontraint that, ${ }^{\prime}$ of fixad i noar $f=0, V=0$ is a losal minimum of l. On anticipates here that the condilion $V=0$ will lead to a solution on an upper branch and that the minimization condition will lead to a stable solution. In this paper we show that such an approach does, in fact, yield stable, subcritical solutions of the generalized Bénard problem, when $y$ is sufficiently small. Such solutions may even be sonsldured as "large" solutions because they are both subcritical and :atable whereas "small" subcritical solutions bifurcating from the conduction solution at $R_{c}$ are always unstable. In this sense our method muv be regirded as a "selection principle" for obtaining "large", stable, subcritical solutions because the method selects cortain solutions of oquations (2.1) while excluding certain others. By "stability" here and Lhroughout the remainder of the paper we mean "linearized stability" rolative to some appropriate Hilbert space.
'The outitine of the paper is as follows. In Section ? we give an uporator-theoretic formulation of a certain tupe of generalized Benard
problem and la sectlons 3 . at 4 we reduce the given infinftedimensfunal problem to one of solving, a finitu-dimensional sestem at equations, the so-cialled selection equation the selection equations are derived by means of spliteing techniques such as those used in the Lyapunove कohmidt method in bifureation thenry but the equations obtained are not the nusual bifurcition equations associated with the problem. The works -i Kirchgitssner [10] ard Sattinger [17] play an important role in these preliminary sections. Sections 5 and 6 contain che main results of the paper. In Section 5 we sulve the sulection equations in a general sutting by the use of variational methods and present a linearized stability analvisis of the resultant stationary flows. In section 6 we show for Whe hexagonal lattice that the classical hexagonal cellular solutions aro gonerated from the absolute minimum of an appropriate selection functional and that such a minimization property is independent of the dimension of the basic underlying finite-dimensional problem. Thus, since the elassical hexagonal erllular solutions are also stable, they Wre in some sense the preferred suberitical convection solutions.
$\therefore$ Formulation of the problem. In this section we formulate a
 Introduce a lifbert space seteing for its study. The particular problem dearribod below is chosen mainly for convendence. The methods of the papror aply also to a much wider class of convection problems (e.a., ser [1]). 'Th' generalized Bénard problem studied here is to determine the ath lonary flows of an infinite layer of fluid betwen two rigid, horipantal wall:s and heated uniformly from below, The fluid density, i, is assumed 10 b constant, say $=\rho_{0}$, except in the gravity term where it is taken (w) be quadratic in the temperature, $T$, i.e.,

$$
0=u_{0}\left[1-a\left(T-T_{0}\right)-b\left(T-T_{0}\right)^{2}\right]
$$

Whare $T_{0}$ Ls the average of the (constant) temperatures $T_{2}$ on the upper wall and $\mathrm{T}_{1}$ on the lower wall. Under this assumption on C , one is led, aiter acillar the variables sutably, to the system of Boussinesiq-type mat isns "ival in (2.1) bolow. The equations relate, at each point of the sot

$$
\dot{y}=\left\{\underset{\sim}{x}=(x, y, z):-\infty<x, y<a,-\frac{1}{2}<z<\frac{1}{2}\right\}
$$

He lilud velocity vector, $!=\left(u_{1}, u_{2}, u_{3}\right)$, scalar pressure, $p$, and the so lar variable, 0 , measuring the change in temperature from its value for the pur. conduction state (see, e.g., [9] where $\underset{\sim}{u}, p, \theta$ are related by a factor: (a those used here) :
(2.1) (a) $-\hat{u}-\lambda \hat{k} r_{1}(\theta)+\nabla p=-(\underset{\sim}{u} \cdot \nabla) \underset{\sim}{\mathbf{u}}+\hat{\underset{\sim}{k}} f_{2}(\theta)$
(b) $\quad-(\operatorname{Pr})^{-1} \Delta A-\lambda u_{3}=-\underset{\sim}{u} \cdot \nabla \theta$
(c) $\quad \underset{\sim}{V} \cdot \underset{\sim}{u}=0$
(d) $u=0,0=0$ for $z= \pm \frac{1}{2}$.

## ORIGINAL PASM: IS OF POOR QUALITY

In $(2,1), \hat{k}=(0,0,1), \eta=\left(\frac{3}{3}, \frac{2}{3}\right)$, and $A$ is the Laplace operator; the Promalt number, Pr, equals the ratio of kinematio viseosity, ', to thereal domductivity and is regarded as a fixed constint throushout tho papor; the dirashol number $\quad$ Gr $=\operatorname{agd}\left(T_{1}-T_{2}\right) / N^{2} \quad(g=$ gravitational constant, $d=$ thichese of he unscated layer) ; $\lambda=\sqrt{\text { Gr }}$ and
(?,., )
(i) $f_{1}(1)=\cdots\left(1-2{ }_{1}\right)$
(b) $f_{2}(\cdot 1)=r^{\prime 2}$,

Whar , is a "structure" parameter given by
$(\because, i) \quad r=b\left(T_{1}-T_{2}\right) / a$.

We shall seck solutions having a doubly periodic eellular strusture. That, abon posilive numbers " and ${ }^{1} x_{2}$ (to be specified below), we set

$$
\Omega=\left\{\underset{\sim}{x}=(x, y, z): 0<x<\frac{2 \pi}{i_{1}}, 0<y-\frac{2 T}{n_{2}},-\frac{1}{2}<z<\frac{1}{2}\right\} .
$$

Wh next futroduce the (complex) Hilbert space, $H$, dorined as the closure of the

 the norm $\|\cdot\|$ assabetated with the immer produrt

$$
(v, w)=\int_{\Omega}\left[\sum_{j=1}^{3} \nabla v_{j} \cdot \nabla_{w}+\frac{1}{P r} \nabla v_{4} \cdot V_{w_{4}}\right] .
$$

Hore and throughout the paper a bar over a quantity denotes complex conjugation and the symbol $\because=\left\{\frac{\partial}{x x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, 0\right)$ when used with elenients of $H$. Thus $\because v=\frac{\partial u_{1}}{x}+\frac{\partial u_{2}}{\partial y}+\frac{\partial u_{3}}{\partial z}$.

If wo toke the scalar product of (2.1a,b) with w, H, use (2.1c,d) and intseration by parts, then for $v=(1, i)$ we ontain

$$
\begin{equation*}
(v, w)-\lambda\left(I_{\gamma} v, w\right)=\left(F_{Y}(v), w\right) \tag{?.4}
\end{equation*}
$$

Here the linear operator $L_{\gamma}: \| \rightarrow H$ and quadratio operator $F_{\gamma}: H \rightarrow H$ are given by

$$
\begin{equation*}
L_{\gamma}=\mathrm{L}-\gamma \mathrm{M}, \quad \mathrm{~F}_{\gamma}=\mathrm{F}+\gamma \mathrm{C} \tag{2.5}
\end{equation*}
$$

# ORIGINAL PACi' : <br> OF POOR QUALITY 

.md the operators $h, N, F, A_{i}$ are defined by
(?. 1 )

$$
(L v, w)=\int_{S}\left[v_{4} \bar{w}_{3}+v_{3} \bar{w}_{4}\right]
$$

(2.7)

$$
(M v, w)=\int_{\Omega 6} 2 \pi v v_{4} \bar{w}_{3}
$$

( $\therefore, 8$ )

$$
(F(v), w)=-\int_{v}(v \cdot \dot{v} v) \cdot \bar{w}
$$

(:.9)

$$
(G(v), w)=\int_{0}\left(v v_{4}\right)^{2} \bar{w}_{3}
$$

for all $v, w$ in $H$. Since in (2.4) $w$ is an arbitrary element of $H$ we su. that a smonth solution $v=(11,0)$ of (2.1) in $H$ satisfies the operator mpatind

$$
\begin{equation*}
0=v-\lambda L_{\gamma} v-F_{\gamma}(v), \quad v \quad H, \lambda \cdot \mathbb{Q}^{1} \tag{*}
\end{equation*}
$$

In fiat, one can apply standard regularity methods (e.g., see $[11,13,14]$ ) th show that problums (2.1) and (*) are equivalent.

In order to study solutions of (\%) we sinall require propertios of the fimentiod verstun of (*) when $\hat{r}=0$,

$$
\begin{equation*}
0=v-\lambda \operatorname{L} v, \quad v i H, \lambda, \mathbf{R}^{1} . \tag{2.10}
\end{equation*}
$$

The linoit otgenvalue problem (2.10) ins equivalent to the chasical problem, tur smonth $u, p, 0$ periodic with periods $\frac{2 \pi}{\alpha_{1}}$ in $x$ and $\frac{2}{x_{2}}$ in $y$, obtaned $b$ omitting the nonlinear terms in (2.1). This linear problem is wall studica (shy, e.f., [3.0, 10, 11|). The efgenfunctions are complete in $H$ and are obtained from the rolations $\underset{\sim}{k}=\left(k_{1}, k_{2}, 0\right), \quad \sigma=\left(k_{1}^{2}+k_{2}^{2}\right)^{1 / 2}, \quad i=\sqrt{-1}$ and
(2.11) (i) $u_{j}=e^{i k \cdot x} \phi_{j}(z), j=1,2,3$,
(1) $0=e^{i k \cdot x} \phi_{4}(z)$,
(c) $p=e^{i k \cdot x} \sigma^{-2} D^{2} \phi_{3}^{\prime}$,
(d) $\quad \phi_{\mathbf{j}}=i \sigma^{-2} k_{j} \phi_{3}^{\prime}, \quad(j=1,2)$.

Hebr $D^{2} \quad \frac{d^{2}}{d r^{2}}-;^{2}$, a prime denotes $\frac{d}{d \%}$ and $i 3$ ind $t_{4}$ satisfv
$(\therefore 1,1) \quad(1) \quad 0=1)^{4}, 3-14^{2}$,
(b) $0=\frac{1}{\left.p^{1}\right)^{2} 4_{4}}+\lambda \phi_{3}$,
(a) $4_{3}=a_{3}=4_{4}=0$ at $2=1 \frac{1}{2}$.

One can show (e.g., see [6]) for is 0 that the eigenvalue problem (2,12)

 :arpuontly, $H_{1}(a)$ assumes an absolute minimum at some ${ }_{0}>0$ dependinar anl: on the Pramal number, Pr. We assume through the paper that of is unt que. 5

 laners $n_{0}$, mo wow ehoose $w_{0}$, 2 such that

$$
\begin{equation*}
n_{0}^{2}=n_{0}^{2}{ }_{1}^{2}+m_{0}^{2} i_{2}^{2} . \tag{2.13}
\end{equation*}
$$

In suction 6 we consider some spectal eases, of the form $n_{1}=\sqrt{3}, 2$ impurtant low the study of both "chassical" and "exotic" hexagonal-cellular solutions (sere Remark (2.1).

Since the vectors $\underset{\sim}{k}$ in (2.11) are constrained by the requirement that $w^{i k \cdot s}$ have periods $2 \pi / k_{1}$ in $x$ and $2 \pi / x_{2}$ in $y$, it follows that $n=k, 1$ and $m=k_{2} / q_{2}$ are integers and $k$ must have the form $k=\left(n_{1}, m_{2}, n\right)$. Thus, the only wave numbers, $\sigma$, corresponding to eigenfunctions having the required periods are those for which

$$
\begin{equation*}
s^{2}=n^{2} r_{1}^{2}+m^{2} x_{2}^{2} \tag{2.14}
\end{equation*}
$$

for some integers $m, n$, i.e., such that the ellipse $\sigma^{2}=x^{2} r_{1}^{2}+y^{2} a_{2}^{2}$ passos Lhromb at least one latrice point $(n, m) \neq(0,0)$. (Note that there is no nonIrivial aolution of (2.12) if $s=0$.) There are countably many such wave numbers 0. if. $\because . .$. , each of which corresponds to a finite, even number of latice points ( $\mathrm{t}, \mathrm{tm}$ ) .


1t $p$ vortwommis to the osp lattleo palnt:

$$
\left(n_{p 1}, m_{p 1}\right) \quad-3 ; \quad * 1 \neq s_{p}, \quad 1 \neq 0
$$

 $(\therefore, 1,) \quad k_{p}=\left(n_{p j} j_{1}, m_{p j} j_{2}, 0\right), \quad j=+1,+2, \ldots,+s_{p}, p=1,2, \ldots$,
ant bbsorve that
$(1,11) \quad k_{p}(-j)=-k_{p, j}$
 al real, montrivial solutions
(3.17)

$$
\left(A_{3}, 1_{4}^{\prime}\right)=\left(11 p q, p_{3}^{p q}, \psi_{4}^{p q}\right), \quad q=11,12, \ldots .
$$

 mav ordor the indices so that

$$
H_{p(-q)} \Rightarrow-H_{p q}, p_{3}^{p(-q)}=p_{3}^{p q}, \frac{p(-q)}{4}=-\frac{p q}{4}, 0 \cdot H_{p}, p, \ldots .
$$

Tha "pl are simple wigenvalues and the eorresponding ${ }^{4} \frac{p l}{3}$, $\frac{p l}{4}$ may be taton to bupitiva on $(-1 / 2,1 / 2)$. Moreover, since $\sigma_{0}$ in (2.13) isimplal to "po in (2.14) rur some mique, positive fintrerer Fo,

$$
\begin{equation*}
H_{1} \Rightarrow \mu_{\mu_{0}}=\min _{p=1,2, \ldots} H_{p 1} \tag{2.14}
\end{equation*}
$$

It ilso a simplo elgenvalus of (2.12) and, for $q \geqslant 1$, $\mu_{p q}{ }^{3}{ }^{H_{1}}$ if $p \neq P_{0}$. Onc now sees from (2.11) that the full eigenvalue problem (2.10) hat the solut ions $\operatorname{lor} p=1,2,3, \ldots, \quad q= \pm 1, \pm 2, \pm 3, \ldots$, where



 br absumed orthonormal in $H$, after scaling with constants depending on $p$ and If hut not on $f$. Imus we suppose that
(: $\because$;

$$
\left(p^{p+1}, r^{r s t}\right)=s_{p r}^{*} q s^{6}(t
$$

Wher it $f$; the usual Kronseker delta symbol.
The next leman summarizes some of the properties fust disussed. The
 (2. $\because$ ) is andly durived from $(2,7)$.
 .tal empart. Its characteristio values and eigenfunctions are given by (2.a0) ant satisiv (1.22) and (2.23). The eigenfunctions are complete in $H$.
(if) The operator $M: \| \rightarrow H$ is bounded, linear and compact. Its adfaint, $\mathrm{m}^{*}$, i:s shatacterimed by

$$
\begin{equation*}
\left(M^{*} v, w\right)=2 \int_{1} z^{v} \overline{3}_{4}, \quad v, w \in H . \tag{2,14}
\end{equation*}
$$



 an "aplitmar" parmeter.

 $\therefore \quad \therefore P_{0}$. The associated nulspace $M$ of $1-H_{1} 1$ is spanmed by (3,1)

$$
1 \quad P_{0}^{1 j}, j=1,42, \ldots,+N
$$

The in dallag with quantities on $M$ it whll often be conveniont to supprest

 W. hall look for solutions of (*) having the form $v=4+$ with in If and $\because$ in $M^{i}$. In order to study the way $I_{y}$ and $F_{i}$ ane on $v$ it will


 :H $\|$. 11 and $\mathrm{r}: \|$ : $\|$ or $H$ by (1..'3
(3.1)

$$
\begin{array}{ll}
(:(u, v), w)=-\int(u \cdot v) \cdot \bar{w}, & u, v, w
\end{array} H
$$

Gue suows casily from (2.8) and (2.9) that

$$
\begin{equation*}
F(v)=F(v, v) \text { and } G(v)=T(v, v), v, H \text {. } \tag{3,1}
\end{equation*}
$$

It will frequently be convenient to represent $v, H$ by its Fourior sories

$$
\begin{equation*}
\mathrm{v}=\mathrm{ikf}_{\mathrm{pq} \mathrm{j}^{1, \mathrm{pq}},} \tag{3.5}
\end{equation*}
$$

where the sum is extended over the set of integer triples ( $p, q, i$ ) with


# ORIGINAL PAES IS <br> OF POOR QUALITY 






() is zero whonever the (soalar or veotor) paramoter $F$ is not aror, athe: an)

Itumat 3.1, (i) $1 i^{\circ}$, $H$, then $L v$, Mv and K Py tan br obtainued itu:

(5.)

SH.1. () demotos sumation over the same set of integor triples as : veret
 an "'.

(Hii) For $u, v, w, H, \quad(u, v), \bar{w})=-(4(u, w), \bar{v})$ and $\quad Y(u, v)={ }^{\prime \prime}(v, u)$.


(v) It hat the form (3.6), then there are reat constants $b_{0,}, h_{1}, b_{3}$ duronding on $P_{0}$ but not on $n$, such that $b_{3}=0$,

$$
\begin{equation*}
\left.\left(\text { MKM }{ }^{1},,^{-n}\right)=b_{0}\right)_{-n}, \tag{3.8}
\end{equation*}
$$

$$
\begin{align*}
& \left(4\left(\psi^{\prime}, K M^{*}\right), i^{n}\right)=b_{2}|j|,|r|=1, \sum_{r}^{N} \cdot\left(k_{j}+k_{r}+k_{n}\right) \tag{3,10}
\end{align*}
$$

and

$$
\begin{equation*}
\left(G(\|), \overline{1}^{n}\right)=b_{3}|i|, \mid \stackrel{N}{r \mid=1} \rho_{j}^{N} \rho_{r} \delta\left(k_{j}+k_{r}+k_{n}\right) \tag{3.11}
\end{equation*}
$$

(vi) Thers are nonnegative constants $a_{p_{0}}$ fn such that
(3.1')


 1.4.4. 1.11.



 the froblom obtainod from (2.12) upon replacing (2.12a) with

$$
\begin{equation*}
0=1)^{4}+3-n^{2}\left(1-2 r^{2}\right) t_{4} \tag{3.13}
\end{equation*}
$$


 at: an risenvalur of the problem (2.12) with (2.12a) replaced by (3.13) and.
 L:s the nomal one duseribed in $[1 ; 4 ; 7]$.) The next leman specifios the axamoion in , af $t_{\text {a }}$ and may be proved atong the lines of the development for the monI inw problem loading to wqutions (3.17) and (3.18).

Lemma 3.2. The critical characteristic value, $\lambda_{c}$, of $L_{i}$ has the expansion (3.1i)

$$
\lambda_{c}=\mu_{1}-\mu_{1}^{3} b_{0}+\Lambda_{c}(\gamma)
$$

whore ${ }^{1 t} 1$ is given by (2.19), $b_{0}$ is as in (3.8) and $\Lambda_{c}(Y)$ is reall and saltisilies $\left|A_{c}(\gamma)\right|=O\left(\gamma^{3}\right)$ as $\gamma \rightarrow 0$.

## ORIGINAL Pr.

OF POOR QUALITY
Por small, we seck a solution of equation (*) In the form
(2.13)

$$
v=y(+x), \quad \lambda=u_{1}-i \|_{1}\left(H_{1}^{?} h_{0}-\right)
$$

 then $1-4=1^{3} 0+0\left(1^{3}\right)$ and a solution of the form (3.15), for statl,

 ante $\|^{\prime}$ and $\because$, and use (ii) and (iv) of Lemma ? to obtain the followins s.f14 in ins on $4^{\prime}$ and in:
 $+: P\left[n_{1}\left(H_{1}^{2} b_{0}-1\right) M_{1}^{n_{1}}+\mu_{1}\left(\mu_{1}^{2} b_{0}-1\right) I-F(\%)-2 ?(\cdots),\right]$ $+i^{3} P\left[-H_{1}\left(1_{1}^{2} 0-1\right) M-G(1)\right]$,
 $+\mathrm{r}^{2} \mathrm{~S}\left[-11\left(n_{1}^{2} b_{0}-1\right) M^{2}-G(4)\right]$.
sixur $K=\left(1-H 1^{1}\right)^{-1}$ is bounded on $M^{1}$, riven tio 0 there is a
 (3.|na), bs successive approximations, for $y=t(i, y)$ whenever ' $\because!$ ' $0^{\circ}$ In lint satisfiets

$$
(3,1 i) \quad \because=-1 M_{1} K M_{1}+K F(\psi)+r_{1}^{1}
$$

Where $H_{1}:(, i, i)$. $M^{\perp}$ is bouncled depending only on $t_{0}$. We next use (3.17) to (biminate $\Psi$ from (3.16b), taking (3.8) into account Lo get

Hore, for $|\gamma| \approx Y_{0}$ and $|r|+\|H\|<t_{0}$, the remainder term
sallifites, for some $r_{0}$. $O$ depending only on $t_{0}$,

$$
\begin{equation*}
\|R(4,1, r)\|-r_{0} . \tag{3.20}
\end{equation*}
$$

We tike the inner produet of $\psi^{-11}$ with equation (3.18), making usi of the expromion (3.6) and varlous formulas in lemma 3.1 to whatn
(3.21)

$$
\begin{aligned}
& 0=F_{n}(m, i, \gamma)-T \beta_{-n}+b_{|i|, j \mid=1}^{N} i_{j} j\left(k_{i}+k_{j}+k_{n}\right)
\end{aligned}
$$

Hers $b=w_{1}\left(b_{1}+b_{2}\right)-b_{3}$ and, according to (3.20),

$$
r_{n}(b, 1, r)=\left(R(\psi, r, \gamma), \psi^{-n}\right),
$$

sallitiltes $\quad r_{n}(\ldots, y)!-r_{0}$.
For the reasons discussed in the introductan (see also the discussion in (1)1) we must rugment the system (3.21) by an equation, $V(5,1)=\therefore$, fuvolving the su-called menoralized dissipation $V$, where is a real parametor and

Thus, we consider the system of selection equations

$$
\begin{aligned}
(3.21) \quad \text { (a) } 0 & =F(n, 1, \gamma), \\
\text { (b) } & =V(n, t), r \cdot \mathbb{a}^{2 N},(r, \gamma, c) \subset \mathbb{R}^{3},
\end{aligned}
$$

where $F=\left(F_{n} n^{\prime}|n|=1, \ldots, N\right.$ and $\beta=\left(\beta_{-N}, \ldots, \beta_{-1}, \beta_{1}, \ldots, \sigma_{N}\right)$.

The functional $V$ Ls essentially the functionial $\mathbb{V}$ in [1, 1.631 ] with: $=Y$. In fact, setting $E=\gamma$ in the analysis in [1], one obtain: larmally a number of expansions, equations, etc, that are elosely related Lo various quantities used in the analysis here.

Perhaps one would hope to solve (3.24) by solving the equations, e.g., when $(Y, x)=(0,0)$ and then using the implicit function theorem to extend such a solution to a smal. ( $\gamma, \varepsilon$ ) neighborhood of $(0,0)$. One anticipates, however, Wilfisulty here in implementing the implicit-function theorem argunent (u. 2 ., see [17]) because the equations are invariant under trans]ations wh the ( $x, y$-plane. Consequently, the solutions will not be hoolated mil the relevant. Jacobians will be zero. Thus, it is natural to seek :alutions in a subspace of $H$, where one may hope that solutions will bo isolated. This is conveniently done in the next section in terms of ;roup representations as in [17].
i. The redued sefection equations. the biste subspace, $s_{n}$ used throbehout the remainder of the paper is introduced in this section topether with some technical lemmas regarding real solutions of aquation (\%),

Let $r$ be the $2 \times 2$ matrix of a plane rotation or reflection and $1, t$ $a=\left(1_{1}, \pi_{2}\right)$ be a translation vector. For $k=3,4$ let $r_{k}$ denole the $k$ a $k$ matrix obtained from the dentity by inserting $r$ in place of the $2: 2$ identity matrix in the upper lefthand corner. Set $a_{3}=\left(a_{1}, a_{2}, 0\right)$ and lot $t=\left\{r_{3}, a_{3}\right\}$ represent an arbitrary plane rigid motion of $x=(\%, y, a)$ apae that keeps a fixed: $x=r_{3} x+a_{3}$. Then a representaton,,$~ I$, of this group, $G$, of risid motions is defined by

$$
\begin{equation*}
\left(r_{1} v\right)(x)=r_{4} v\left(s^{-1} \because\right) \tag{4.1}
\end{equation*}
$$

lor smooth four-dimensional vector fields $v$ defined for $x, \mathbb{R}^{3}$.
When $y=0$ it is well known (e.g., see [11, 17]) that the Boussinesq rquations in (2,1) are invariant tader $T_{\Omega}$ for 0 . G. The next lemra shows that a corresponding invariance property holds for equation (*) when $:=0$ and that the invariance also extends to the case $y \neq 0$. Such an Invariance statement makes sense, of course, unly for $r, v$ for which both $v$ and $T, v$ die in $H$.
 II. Then earh of the operators $\mathrm{L}, \mathrm{M}, \mathrm{A}, \mathrm{l}$ is invariant in the sense that L. $\left(T_{i}, v\right)=T_{i j}(L v),:\left(T_{i T}, T_{i} v\right)=T_{\sigma} \$(u, v)$, etc. Consequently,

$$
\begin{equation*}
L_{\gamma}\left(T_{V} v\right)=T_{\sigma}\left(L_{\gamma} v\right), \quad F_{\gamma}\left(T_{\sigma} v\right)=T_{\sigma}\left(F_{\gamma}(v)\right) \tag{4.2}
\end{equation*}
$$

so that equation (*) is invariant under $\mathrm{T}_{\underset{\sigma}{ }}$.
Proof. Each of the operators $L, M, W, I$ is defined ( 2.6 ),(2.7),(3.2), (3.3)) by an integral of the form $\int_{0} A \bar{w}$, where $A$ is a linear, $A(v)$, or

Whinmar, $A(u, v)$, torm in the Boussinesq equations. If $A$ is invariamt unch $r$ T. then it is dasy to see that the correspondine operator is inverlant uncer I. K. F., lor $\because$ as defined in (3.3) note that $A(u, v) \because\left(0,0,1_{4} v_{4}, 0\right)$. siner $\left(r_{4}\right)_{j 3}={ }_{j \beta}, A(u, v)$ is invariant under $T$, beriause

$$
(1, A(1, v))(x)=\left(0,0, u_{4}\left(0^{-1} x\right) v_{4}\left(0^{-1} x\right), 0\right)=\left(0,0,\left(1, u_{i}\right)(x)(1, v),(x), 0\right)
$$

The invartance of $A=\left(0,0,2 \mathrm{AH}_{4}, 0\right)$, corresponding to the operator $\because$, allow in a similar way; the Invariance of the $A$ 's corresponding to T , and In prend in [9].

Rumark 4.1. Because of lemma 4.1, we may study probiem ( $*$ ) on any of the Whated 1 Intar subspaces, $S_{0}=\{v e H: T, v=v\}$, without the use of profuctions, be furcly restricting the operators in (*) to $S$. lnder subh a restriction Lhe refation (\%) is denoted (*) and retatins its form; similarly the new selioLAm mpations, (3.24), are bbtained from (3.24) merely by restrictins the wo pllifionts $:$ in a well-defined manner determined by $T$. By the restriation to S, we shall avoid the problem of zero Jacoblans mentioned above. of arotse a sulution of (*) in $S_{\sigma}$ is also a solution of (*) in $H$. On the other hand, antablity prool in $S_{i f}$, although encouraging, is a weaker statement than one an $\|$ but instalifity in $S_{0}$ does imply instiblitity in $\|$.

Throughout the remainder of the paper we shall largely restrict our attenthon to $S_{n}$ and its subspaces, where $S_{A} S_{\theta}$ when ! denotes rotation by A) radians about the z-axis. Thus, $(x, y) \rightarrow(-x,-v)$ under $I$ and

$$
\begin{equation*}
\left(T_{\pi} v\right)(x, y, z)=\left(-v_{1},-v_{2}, v_{3}, v_{4}\right)(-x,-y, z) \tag{1,3}
\end{equation*}
$$

It follows from (2.20)-(2.22) and (4.3) that

$$
\begin{equation*}
\mathrm{T}_{\|} \psi^{\mathrm{pq} \cdot \mathrm{j}}=\psi^{\mathrm{Pq}(-i)}=\pi^{\mathrm{pq} \cdot \mathrm{j}} \tag{4.4}
\end{equation*}
$$


 (4.4) that $T_{7}$ satisties
(4. 1 )

$$
(T, u, v)=(u, T, v), \quad u, v, H
$$

White $I f$ is a complex hilbert space, we are of course interested only in



 rual sperators.

Lambal 4.2. (i) The operator: $I, M, N, P$ aro real in the sense thet Liv $\bar{i} \bar{v}, \overline{i(11, v)}=\|(\bar{u}, \bar{v})$, elc.
(ii) If $M$ is real and $r, 1 \cdot \mathbb{R}^{1}$ satisfy $|r| \cdots i_{0}, \quad!+!L_{0}$,
 and $A$ : R(, , , ) in (3.19) are real.

 $\int_{\bar{u}_{4}} \bar{v}_{4} \bar{w}_{3}=(\Gamma(\bar{u}, \bar{v}), w)$. For part (ii), note that if $\gamma, \bar{r}$ and ware ral then upon taking the complex conjugate of (3.16a) and using part (i) we see that is a solution of (3.16a) whenever $\Psi$ is a solution. But the successive-approximat ions solution of (3.16a) is unique in a small neighborhood of $-n_{1} \mathrm{KM}+\mathrm{KP}()$, which is real. Hence $\bar{Y}=\Psi$ is real and by (3.17) $Y_{1}$ is real. From (i) and (3.19), $R(W, T, \gamma)$ is real.

Since, according to Lemma 4.2, $\Psi(\psi, \tau, \gamma)$ is real whenever $\gamma, \tau$ and *, II are real, the problem of finding real solutions of ( $\%$ ) is reduced to that of rinding, for sufficiently small $(\gamma, \varepsilon) \subset \mathbf{R}^{2}$, solutions $(\beta, \tau)$ of the
soluction equations (3.24) with $T$ and $\psi=\sum_{|j|=1}^{N} \beta^{j} j^{j}$ real, i.e., with (4.6) $\quad i, \mathbb{R}^{1}, B_{-j}=\bar{B}_{j}, \quad j=1,2, \ldots, N$.

In the remainder of this section we consider problem $(*)_{\pi}$ obtatned by rostricting (*) to $S_{T}$. The nullspace of $I-H_{1} I$ restricted to $S_{T}$ is
 (1.7)

Thus:, If is N-dimensional and we shall hence:orth take the liburty of suppressims $B_{-1}, \ldots, H_{-N}$ in the notation, f.e. we write $\therefore=\left(y_{1}, \ldots, N\right.$ instwat $0=\left(, \ldots, \ldots, b_{1}, \ldots, F_{N}\right)$ and we regard $l_{n}$ and $V$ as functions of (, , , ) In $\mathbb{a}^{N} \times \mathbf{R}^{2}$. Moreover, in the context of $S$ we have the following loma (sue also the related results an [17]).

Lepmat 4.3. If $\#: M_{\|}$and $\hat{Y}, T \cdot \mathbb{R}^{1}$ are sufficiently small then $r_{n}(, 1, r) \geq r_{-n}(r, r, \gamma), n=1,2, \ldots, N$. If, in addition, is real then $r_{n} \quad r_{n}(\%, \gamma)$ in (3.21) is real, $n=1,2, \ldots, N$.

Proof. Since $\beta_{-j}=\beta_{j}$ whenever $\psi={\underset{N}{N}}_{N}^{N} \beta_{j}, j$ bolongs to $M_{q}$, and since $a_{p_{0}} n j=a_{p_{0}}(-n)(-j)$ in (3.21), to show that $F_{n}=F_{-n}$ it sufficos to
 (HIM Se: from the invariance of (3.16a) under $T_{1}$ and the uniqueness of : that
 ! are situen by (3.17) and (3.19). Thus, one sees from (4.4) and (4.5) that $r_{-11}=\left(R,,^{n}\right)=\left(R, T \pi^{-n}\right)=\left(R, \psi^{-n}\right)=r_{n}$. If, in addition, $\quad 1$ is real then (2,22) and Lemma 4.2 imply $\bar{r}_{n}=\left(R, \psi^{-n}\right)=\left(R, \psi^{n}\right)=r_{-n}$ so that $r_{n}=\bar{r}_{n}$.

Because of Lemma 4.3, the selection equations (3.24) in the settin, of $\therefore$ mav be replaced by an equivalent system of $N+1$ equations in the $A$ (possibly complex) variables $B=\left(B_{1}, \ldots, \beta_{N}\right)$, the real vartable ${ }^{7}$, and the wal parameters $i$ and $r$ :
(4.8)

$$
\begin{aligned}
& \text { (a) } 0=F_{n}\left(f^{2}, t, y\right) \quad-i h_{n}+b \sum_{i, j=1}^{N} \Lambda_{i, j n} i_{i} j \\
& +{\underset{i=1}{N} A_{i n} i_{i}^{2}}_{n}+r_{n}(\beta, T, \gamma), \quad n=1,2, \ldots, N,
\end{aligned}
$$



$$
\begin{equation*}
\Delta_{i, j m}=s\left(k_{i}+k_{j}+k_{m}\right)+8\left(k_{i}+k_{n, j}-k_{m}\right)+s\left(k_{i}-k_{j}+k_{m}\right)+s\left(k_{i}-k_{i}-k_{m}\right), \tag{4,9}
\end{equation*}
$$

$$
\begin{equation*}
A_{i, j}=a_{p_{0}, j}\left(2-\delta_{i, j}\right)+2 a_{p_{0}}(-j) \tag{4.10}
\end{equation*}
$$

Morrover, since Lemma 4.3 shows also that $F=\left(F_{1}, \ldots, F_{N}\right)$ may be regarded as a mapping of a meighborhood of $(0,0,0)$ in $\mathbb{Z}^{N} \times \mathbb{R}^{2}$ into $\mathbb{R}^{N}$, it is natural to seek solutions of the selection equations in (4.8) of the form $(\%(,),, T *(\gamma, \varepsilon)), \mathbb{R}^{N+1}$ by use of the implicit function theorem near $y:=0$. If $\left(i^{*}, r *\right)$ ( $\mathbf{1}^{N+1}$ is such a solution of (4.8) near $r=1=0$, then $\left(H_{N}^{*}, \ldots, A_{1}^{*}, \beta_{1}^{*}, \ldots, \beta_{N}^{*}, T^{*}\right)$ is a solution of (3.24) satisfying (4.6) with $Z_{-i}=f_{j}$, i.c., a solution of (3.24) $)_{T}$ satisfying (4.6). Thus, the above construction leads to real $\psi$ in $M_{\pi}$ and, hence, real solutions of ( $\%$ ) in $S_{4}$. Io actually carry out the above construction, we seek first the real solutions of the reduced selection equations obtained by setting $\because=\varepsilon=0$ in (4.8):
(4.11) (n) $0=F_{n}(1,1,0), \quad n=1,2, \ldots, N$
(b) $0=V(\beta, \tau), \quad(\beta, \tau) \subset \mathbb{E}^{N+1}$.

Remark 4.2. It is ensy to check that $F_{n}(3, T, 0)=\frac{1}{2} \frac{U\left(F_{0}, T\right)}{n}, n=1,2, \ldots, N$ :0 that (4.11a) is a gradient system. Since (4.11a) is not the reduced bifity-
 In that used extensively in $[1,10,17]$, although it is slosely related. We notw that the reduced system obtained from (3.24) by setting $f=;=0$ has a : inilar structure, with $F_{n}(\beta, T, 0)=\frac{\partial}{n n_{n}} V(B, \eta)$; the factor $\frac{1}{2}$ appears in the $S$ cise because of the identification of $b ;$ and $f-j$.

In developing a selection princtple for stable suberttical hexagonal rells one needs to conshder only the redued selection equations in (4.11). Dther choless of the reduced selection equations are also appropriate in convertion problems, e.g., in the study of supercritical solutions and the exchange of stability between rolls and hexagonal cells, and will be considured in a subsequent paper.
5. lixistoner and stability of real golutions ing. $S_{q}$. In this sot finn we colve the sulestion equations in a peneral settine by means of variat fumal mothods.

The follewton prelimitary tesult yfelds real solutions of (*) it $E$.


 with $|+|+1$ a the selection equations (4.8) have a solutism ( $(,),, i(,),) \quad \pi^{N+1}$ satisfying

Furthermare problem (*), has a real solution of the form (3.15) with

and I obtained from $h, \tau$ by means of (3.17).
The result follows from the implicit-function theorem applied to F,Vnear $(\rho, \tau, \gamma, r)=\left(f^{*}, \tau^{*}, 0,0\right)$, provided that det $\frac{a(F, V)}{G(R, T)}$ is not zuro when
 Thus,

$$
\operatorname{det} \frac{\partial(F, V)}{\partial(\beta, \tau)}\left(\beta^{*}, T^{*}, 0,0\right)=-\left|\beta^{*}\right|^{2} \operatorname{det}\left[\frac{\partial F}{\partial}\right]\left(\beta^{*}, T^{*}, 0,0\right) \neq 0
$$

and the rest of the theorem follows easily.
To utllize Theorem 5.1 we seek solutions of the reduced selection equations with $f \% 0$. We next show how this may be accomplished by exploiting the varlational structure of the reduced problem (4.i1).

Note that
(3.3)

$$
\frac{1}{2} v(0,1)=-\frac{1}{2} T|1|^{2}+q(\beta)+c(b),
$$

where

$$
\begin{aligned}
& \text { (b,4) (a) } q(b): \frac{b}{3} \sum_{1, j, m \times 1}^{N} \Lambda_{1 j m^{i n} i_{j} j_{m}}^{N}, \\
& \text { (b) } c(b): \sum_{4}^{1} \sum_{i, j=1}^{N} A_{i j} p_{1}^{2} p_{j}^{2},
\end{aligned}
$$

In order to determine suberitical solutions of $(*)$ we shall impose the followtre hyputheses on $q$ and $e$ :
(11)
$q(0) \neq 0$ on $\mathbb{R}^{N}$
( $11 .{ }_{6}$ )
(0) : O for all $B \neq 0$ in $\mathbb{R}^{N}$.

Rumark 5.1: Hypothesis ( $H_{q}$ ) fails, in general, since $s\left(k_{i}+k_{j}+k_{m}\right)$ is zero unless the vectors $k_{i}, k_{j}, k_{m}$ form an equilateral triangle: $k_{i}+k_{j}+k_{m}=0$. This latter condition is possible for hexagonal latifes, $x_{1}=\sqrt{3}, y_{2}=1$, when ir satisfies (2.13) for integers $n_{0}, m_{0}$ of the same parity. In such rabus ( $H_{l}$ ) is satiaried if $b \neq 0$. Concerning ( $H_{c}$ ), the condition $A_{i j}: 0$ follows from (4.10) and the nonnegativity of the $a_{p_{0}}{ }^{i j}$ in (vi) of Lemma 3.1. So
 later condition is falfilled if at least one term in the sum defining $a_{p_{0}}$ is different from \%ero.

In the following discussion of the finite-dimensional problem (4.11), a prime denotes the gradient with respect to 6 . Thus
$r^{\prime}(\beta)=\left\{\frac{\partial c(\beta)}{\partial \beta}\right\}_{j=1}^{N}, \quad f^{\prime \prime}(\beta)=\left\{\frac{\partial^{2} f(\beta)}{\partial \beta_{i} \partial \beta_{j}}\right\}_{i, j=1}^{N}, \quad$ etc.
In view of Remark 4.2 , the system (4.11) becomes
(a) $0=-c \rho+q^{\prime}(\beta)+c^{\prime}(\beta)$,
(b) $0=-\frac{T}{2}|\beta|^{2}+q(\beta)+c(\beta)$.

We detinue reflection functinnth $f$ and $g$ by
(i, i) (a) $i(b) \quad\left[\begin{array}{cc}L(b)+1), & \text { if } f \neq 0 \\ 1 p l^{2} \\ 0 & , \text { if } 1=0\end{array}\right\}$,
(b) $n(1): q^{2}(1) /(4 s(1))$.

 the following: ate equivalent.
(1) ( 1,1 ) Is a solution of (5.5),
(ii) is a critical point of $\{$ with critical value $f(F)=2$,
(ill) $b$ is a coition point of $t$ on $\mid=1$ with critical value


$$
\begin{equation*}
1.1=\left[-q(i) / 2 \mathrm{c}\left(\mathrm{a}^{3}\right)\right] \tag{5.7}
\end{equation*}
$$

Proof. The critical points of $f\left(B^{\prime}\right)$ are determined by

$$
\begin{equation*}
0=f^{\prime}(k)=\mid k^{-2}\left[-\left[\beta+q^{\prime}(b)+c^{\prime}(k)\right],\right. \tag{5,8}
\end{equation*}
$$

where

$$
\begin{equation*}
t=2[q(\beta)+c(\beta)]|B|^{-2}=2 f(\beta) . \tag{5.9}
\end{equation*}
$$

sine if $\neq 0$, equations (5.8), (5.9) are just (5.5). Thus (i) and (ii) are equivalent. The condition that $\hat{\beta}$ be a critical point of $g(\beta)$ on $\mid \sigma!=1$ with critical value $-\frac{T}{2}$ is

$$
\begin{equation*}
-\tau \hat{\beta}=g^{\prime}(\hat{\beta})=q(\hat{\beta})[2 c(\hat{\beta})]^{-2}\left[2 c(\hat{\beta}) q^{\prime}(\hat{\beta})-q(\hat{\beta}) c^{\prime}(\hat{\beta})\right] . \tag{5,10}
\end{equation*}
$$

If we use the homogeneity of $q, q^{\prime}, c, c^{\prime}, g^{\prime}$ and the Euler identities $\beta^{\prime} \cdot q^{\prime}(\beta)=3 q(\beta), f \cdot c^{\prime}(\beta)=4 c(\beta), \beta \cdot g^{\prime}(\beta)=2 g(\beta)$, then from (5.10) we get
( 5,11 )

$$
-1=\dot{l} \cdot g^{\prime}(\hat{b})=2 g(\hat{r}),
$$

(2.12)

 Hetm, the Euler fdentities and subtracting twice (5.5b) we obtain

$$
\begin{equation*}
0=\eta(0)+20(\pi) \tag{5,13}
\end{equation*}
$$

 For uch , equations (5.12) and (5.5a) are the same. Similarly, (5.5b) and (5.13) Iniply

$$
y 1^{2}=[q(b)+c(b)]\left(-\frac{q(b)}{2 c(b)}\right]^{2}=-\frac{q^{2}(b)}{4 c(b)}=-g(b)=-11^{2} g(b)
$$

So that (5.5b) and (5.11) are the same. Thus (i) implies (iif). Finally, let
 (5.1) is bequivatent 60 (5.13) so that agath (5.5) is the same as (5.11), (5.12). Thus, (iii) implies (1).

It is clear from Lemma 5.1 that solutions ( $6, \%, \tau *$ ) of the reduced selection equations with $\quad$ p* $\neq 0$ are obtained from those critical points of of $g\left(y^{\prime}\right)$ on $\mid \equiv 1$ for which $g(\hat{\beta} *) \neq 0$. Funchermore, it follows from $\left(H_{c}\right),(5.6 a),(5.13)$ and (ii) of Lemma 5.1 , that for such critical points

$$
\begin{equation*}
\tau^{*}=2 f(\beta *)=-2 \frac{c\left(\beta^{*}\right)}{|\beta *|^{2}}<0 . \tag{5.14}
\end{equation*}
$$

Thut, on the basis of (3.15ff.), a solution of (*) generated from ( $\%$, $7 \%$ ) witl be subcritical, at least for small values of $\gamma$ and $s$. According to Theorem 5.1, to extend such a solution of (5.5) to a solution of (4.8) we must show that det $\frac{\partial F}{\partial \beta} \neq 0$ at $(B, \tau, \gamma, \varepsilon)=(\beta *, \tau *, C, 0)$, i.e. det $E \neq 0$, where $E$ is the symmetric matrix:
(i.13)

$$
E=-l^{*} \mid+q^{\prime \prime}\left(\xi^{*}\right)+c^{\prime \prime}(\beta *) .
$$

Thu:, det $\frac{A^{\prime}}{d f}$ is zero if and only if $E$ is singular. We have established the following result.

Theorem 5.2. Suppose $q$ and $c$ satisfy hypotheses $\left(H_{q}\right)$ and $\left(H_{c}\right)$. Let ( $\mathrm{F}^{*}, ?^{*}$ ), $\mathrm{b}^{*} \neq 0$, be a solution of the reduced selection equations (5.5) suth that the matiolx $E$ in (5.15) is nonsingular. Then there exist 100 and $\gamma_{1} \div 0$ such that, when $|\gamma|<\gamma_{1}$ and $|\varepsilon|<\gamma_{1}$, equation ( $\left.*\right)_{n}$ has is reat, suberitical solution ( $\mathrm{v}^{*}(\gamma, \varepsilon), \lambda^{*}(\gamma, \mathrm{t})$ ) of the form (3.15) with $I=I(i, t)<0$ and generalized dissipation $V=\varepsilon$. In fact,

$$
\begin{equation*}
\text { (a) } \quad v^{*}(\gamma, v)=\gamma \underset{j=1}{N} \beta_{j}^{*}\left(\psi^{j}+\psi^{-j}\right)+v(\gamma, t) \text {, } \tag{5.16}
\end{equation*}
$$

$$
\text { (b) } \quad \lambda *(\gamma, \gamma)=\mu_{1}-\gamma^{2} \mu_{1}\left(\mu_{1}^{2} b_{0}-\tau *\right)+\Lambda(\gamma, t)=\lambda_{c}+\gamma^{2} \mu_{1}+*+(\gamma, v) \text {, }
$$

where $T *$ satisfies (5.14) and, as $\gamma+0, \quad V(\gamma, \varepsilon)=0\left(\gamma^{2}\right), \therefore(\gamma, \varepsilon)=0\left(i^{2}\right)$, $n(i)=,o\left(\gamma^{2}\right)$.

According to Theorem 5.2 and (i) and (ii) of Lemma 5.1 we can generate a solution of (*) $)_{T i}$ by finding a global minimum of $f$ on $\mathbb{R}^{N}$. If $E=: 3$ with $|f|=1$, note that

$$
\begin{equation*}
f(\beta)=c(\hat{\beta})\left[p+\frac{g(\hat{\beta})}{2 c(\hat{\beta})}\right]^{2}-g(\hat{\beta}) . \tag{5.17}
\end{equation*}
$$

We minimize $f(\beta)$ on $\mathbf{R}^{N}$ by choosing $\rho=-q(\hat{\beta}) /[2 c(\hat{\beta})]$ and maximizing $g(\hat{\beta})$ on $|\hat{\beta}|=1$. If $q(\beta) \neq 0$ then we generate in this way at least one nontrivial solution of (5.5), say ( $\beta \%, \tau^{*}$ ), with $\tau^{*}$ satisfying (5.14). If we differentiate (5.8) and make use of (5.8) and (5.9), then we find that

$$
\begin{equation*}
f^{\prime \prime}(\beta *)=|\beta *|^{-2}\left[-\tau * I+q^{\prime \prime}(\beta *)+\mathrm{c}^{\prime \prime}(\beta *)\right]=\left|\beta^{*}\right|^{-2} \mathrm{E} . \tag{5.18}
\end{equation*}
$$

since $f$ has a minimum at $\beta *$, we know that $f^{\prime \prime}\left(\beta^{*}\right)$, hence $E$, is at least positive semi-definite,

$$
(5.19) \quad 0 \leq \beta E \beta .
$$

Thus, if F is nonsingular at a minimum of $f$, it must be positive definite; we shall see that the solution of (*) $\pi$ generated (as in theorem 5.2) from ( $\beta^{*}, 1 *$ ) is then stable in $S_{7 \%}$.

The relationship of the critical points of $f$ to the generalized dissipation $V$ is given in the following remark.

Remark 2.2. From (5.3), (5.5) and Lemma 5.1 one sees that if $B_{0}$ is a critical point of $f(6)$ and $r_{0}=2 f\left(\beta_{0}\right)$, then $\beta_{0}$ is also a critical point of $V\left(0_{0}, b\right)$ and $V\left({ }_{0}, F_{0}\right)=0$. If $r_{0}$ is also the absolute minimum of $2 f(6)$ then $V=0$ is the absolute minimum of $V\left(T_{0}, \beta\right)$.

We turn, then, to the question of stability of a solution ( $\mathrm{v}^{*}, 1 *$ ) $=$ $(v *(1),, * *(\gamma, \varepsilon))$ of (*) ${ }_{\pi}$ having the form (5.16). For small $\gamma$ and $z$, the derived operator, $D$, of ( $*$ ) at ( $v^{*}, \lambda *$ ) is a linear Fredholm operator of index arro, the perturbation by a small bounded linear operator of the self-adjoint oporitor $\mathrm{I}-{ }^{3} \mathrm{l}$ h. As observed in [17], because of the invartance of the equathons under translations of the ( $x, y$ )-plane, the stability of solutions of ( $*$ ) in if is always indeterminate. In the case of $S_{\pi T}$, however, we have the following result. (Thu notion of stability here is "linearized stability" as in [16;17].)

Theorem 5.3. For $\gamma, \varepsilon$ sufficiently small, a solution $v(\gamma, \varepsilon)$ of ( $*$ ) obtained from theorem 5.2 is stable in $S_{\pi}$ at $\lambda=\lambda(\gamma, \varepsilon)$ if all eigenvalues of the matrix E ill (5.15) are positive, and unstable if some eigenvalue of $E$ is negative. In particular, if $v(\gamma, E)$ is generated from ( $\beta^{*}, 2^{*}$ ) corresponding to a minimum $o$. $f$ and such that $E$ is nonsingular, then $v(\gamma, \varepsilon)$ is stable in $S_{\pi}$ at $\lambda=\lambda(i, \Sigma)$.

To prove Theorem 5.3, one proceeds as in [16] to determine a subspace of $S_{i f}$ invariant under $D$ and corresponding to the $N$ critical eigenvalues of 0 for sufficiently small $\gamma$ and $\varepsilon$. This subspace has a basis of the form
(5.20)

$$
z^{1}=\left(1^{i}+4^{-1}\right)+Z^{1}, \quad Z^{i}, M_{\pi}^{1}, \quad i=1,2 \ldots, N
$$

salislying
( .21$) \quad D z^{i}=\underset{j=1}{N} \gamma^{2} b_{i j} z^{j}, \quad i=1,2, \ldots, N$.
To astablish the existence of the basis $\left\{z^{1}, \ldots, z^{N}\right\}$ in (5.20) one needs to show, in partloular, that $T_{i} Z^{i}=Z^{i}$ so that $Z^{i}$ belongs to $S_{F}$. The proof that $T_{n} \eta^{i}=\eta^{i}$ makes use of the fact that $\left(t^{i}+v^{-i}\right)$ belongs to it and fallows along the lines of the derivation of (3.77) and the proof of lemma 4.3 .
 uigenvalues of $E$ are positive if $f^{*}$ minimizes $f$. Tn this case $v(i,)^{\prime}$ is stable in $S_{m}$ at $\lambda=\lambda(\gamma, r)$ for (Y, $\quad$ sufficiently small.
6. Subcritical hexagonal cellular solutions. We now restrict the problem to the hexagonal lattice and prove a general result about stable suberitient solutions which yields a selection principle for hexagonal cellular solutions. To fix the Ldeas we treat also the special case of d im $M=1.2$ in Remarks 6.1, 6.2 and 6.4 ; this case is the solting in whth "exotic" solutions of the Benard problem were originally studied in [10].

We begin by showing, for an unbounded sequence of integers $N$, that one can determine $N$ sextuples of exitical wave vectors corresponding to the rritical wave number, ${ }_{0} 0$. These 6 N vectors generate a nullspace, M, with dim $H=6 \mathrm{~N}$. Take $\mu_{1}=\sqrt{3} x, a_{2}=\alpha$ and choose $\alpha$ so that (2.13) has exactly $N$ distinct solutions $\left(n_{0}, m_{0}\right)=\left(n_{j}, m_{j}\right)_{j=1}^{N}$, where $n_{j}$ and $m_{j}$ are nonnegative integers of like parity for which the critical wave vactor $k_{j} \because x\left(\sqrt{3} n_{j}, m_{j}, 0\right)$ makes an angle $n_{j}, 0 \leq{ }_{j}<n / 3$, with ( $1,0,0$ ). I.e., take $\alpha=\sigma_{0} / \sqrt{N_{0}}$ where the integer $M_{0}$ is chosen so that the equation $3 n^{2}+m^{2}=M_{U}$ has exactly $N$ solutions setisfying the above conditions. (Tt is well-known that such pairs ( $N, M_{0}$ ) exist for in unbounded sequence of integers $N$ (e.g., see [20, p. 345,ex.5]).)
 Doline the $N$ triples, $T_{j} \equiv\left(k_{j},{\underset{\sim}{j}}_{j+N}, k_{j+2 N}\right)$ where, for $j=1,2, \ldots, N$, $k_{i+N}$ (resp., $k_{j+2 N}$ ) is obtained by rotating $k_{j}$ counterclockwise through $\pi / 3$ (resp., $2 \pi / 3$ ) radians. Note that the $3 N$ vectors, $k_{j}$, have lengths $\pi_{0}$ and direction angles $\theta_{j}$ satisfying $0 \leq \theta_{1}<\theta_{2}<\ldots<\theta_{3 N}<\pi$. Bach of the $N$ triples, $T_{j}$, can now be extended to a sextuple, ( $T_{j},-T_{j}$ ), if we define $\underset{\sim}{k}-j=-\underset{\sim}{k}(j=1, \ldots, 3 N)$ in accordance with (2.16). In the above context there are afinitely many possible period rectangles corresponding to values of $\alpha=\sigma_{0} / \sqrt{M_{0}}$, however, the critical wave number,
" 0 , and the "size" of the basic hexagonal cell remain flxed throughout the following discussion.

Remark 6.1. If in the above $\left(N, M_{0}\right)=(1,6)$ then $n_{0}=1$ and $m_{0}=1$ in (2.13) and $d i m N=6$. In this case we have one triple $\left(k_{1}, k_{2}, k_{3}\right)$ and one sextuple $\left(k_{1}, k_{2}, k_{3},-k_{1},-k_{2},-k_{3}\right)$, where $k_{1}=(\sqrt{3}, 1,0)$, $k_{2}=(0,2,0)$, and $k_{3}=(-\sqrt{3}, 1,0)$. If $\left(N, M_{0}\right)=(2,28)$ then $n_{0}=3$ and $m_{0}=1$ in (2.13) and $\operatorname{dim} M=12$. In this case we have two triples $\left(k_{1}, k_{n}, k_{\sim}\right)$ and $\left({\underset{\sim}{2}}^{k_{2}}, \mathrm{k}_{4}, \mathrm{k}_{6}\right)$, where

$$
\begin{aligned}
\text { (6.1) }
\end{aligned} \begin{array}{ll}
\mathrm{k}_{1}=\alpha(3 \sqrt{3}, 1,0) & \mathrm{k}_{2}=a(2 \sqrt{3}, 4,0) \\
\mathrm{k}_{3}=\alpha(\sqrt{3}, 5,0) & k_{4}=\alpha(-\sqrt{3}, 5,0) \\
k_{5}=\alpha(-2 \sqrt{3}, 4,0) & k_{6}=\alpha(-3 \sqrt{3}, 1,0) .
\end{array}
$$

The first of these special cases, dim $M=6$, was studied in [2; 5; 9; 17]
in the rontext of classical hexagonal solutions. The secont case, Uim $M=12$, was studied in [10] in the context of "exotic" solutions. We now define a basis $\left\{\psi_{j}\right\}_{j=1}^{6 N}$ for $M$ in accordance with (3.1) and proceed as in Sections 3 through 5. To make use of Theorem 5.2 in the present setting, one needs to minimize $f$ on $\mathbb{M}^{3 N}$, where $f$ is defined as in (5.6). Thus, we require, in particular, the coefficients in the functionals $q$ and $c$ defined by (5.4) with $N$ replaced by $3 N$. The coefficients of $q$ are given by

$$
\Lambda_{i j m}=\left\{\begin{array}{lll}
1, & \text { if }(i, j, m) & \text { is a permutation of }(n, n+N, n+2 N) \text { for }  \tag{6.2}\\
\text { some } n \in\{1,2, \ldots, N\}
\end{array}\right.
$$

Thus, setting $B=2 b$ with $b$ defined as in (3.21), we find
(6.3) $\quad q(\beta)=\underset{j=1}{N} \sum_{j}^{N} \beta_{j+N} \beta_{j+2 N}$.

Note that if $b \neq 0$ then $q(\beta) \neq 0$ since, e.g., ${\underset{\sim}{k}}_{j}-k_{j+N}+k_{j+2 N}=0$ for $j=1,2, \ldots, N$.

We next discuss the coefficients $a_{i j}$ and $A_{i, j}$ required to determinc $\therefore($ (i) (see (4.10), (5.4) and (A.37)). For our purposes it suffices to waluate $a_{i, j}$ and $a_{i(-j)}$ when $k_{i, i}$ and $k_{j}$ lie in the same triple $T_{n}$, $n=1,2, \ldots, N . \quad$ Recall that $a_{i j}$ depends only on $\left|{\underset{\sim}{i}}+k_{\sim}^{k}\right|$, i.e., only on the angle between $k_{i}$ and ${\underset{\sim}{j}}^{j}$ (see (A.37)\&fi.). When $k_{i}, k_{j}$ lie in the same triple and ${\underset{\sim}{i}}_{i} \neq \underset{\sim}{k} k_{j}$ this angle is either $\pi / 3$ or $2-/ 3$. We denote the corresponding valu-s of $a_{i j}$ by $a(T / 3)$ and $a(2 \pi / 3)$, respectively. It is now easily seen that if $a_{i j}=a(\pi / 3)$ then $a_{i(-j)}=a\left(2^{*} / 3\right)$ and if $i_{i . j}=a(2 \pi / 3)$ then $a_{i(-j)}=a(\pi / 3)$. Since $A_{i j}=2\left(a_{i j}+a_{i(-j)}\right)$ when $i \neq \pm j$, and since $a_{p(-q)}=a_{i(-j)}$ when $a_{p q}=a_{i, j}$, it follows that the $\Lambda_{i j}$ have a common value, $A=2(a(\pi / 3)+a(2 \pi / 3))$, when $i \neq j$ and $k_{i}, k_{j}$ iie in the same soxtuple. Similarly, when $i=j,\left|k_{i}+k_{j}\right|=20$ so that the $A_{i i}$ have a common value, $C, i=1,2, \ldots, 3 N$. Thus

$$
\Lambda_{i . j}= \begin{cases}C, & \text { if } \quad i=j  \tag{6.4}\\ A, & \text { if } \quad i \neq j \text { and } \underset{\sim}{k},{ }_{\sim}^{k} \underset{n}{ } \subset T_{n}, \quad n=1,2, \ldots, N .\end{cases}
$$

It follows from (4.10) and (A.37) that all $A_{i j} \geq 0$, hence $A \geq 0$; furthermore, hypothesis ( $H_{c}$ ) is equivalent to $c>0$.

It is also possible to determine other relationships among the $A_{i j}$ when $k_{i}, k_{j}$ lie in different triples. such relationships are not required to study the classical hexagonal cells but are given in (6.6b) below when $N=2$.

Remark 6.2. In the context of $\left(N, M_{0}\right)=(2,28)$ in Remark 6.1 there are nine distinct positive values of $\left|{\underset{\sim}{i}}^{i}+{\underset{r}{r}}\right|$ for $i, j \in\{ \pm 1, \pm 2, \ldots, \pm 6\}$. Therefore, there are at
most nime distmet positive $a_{i j}=a_{p_{0}}$. One finds that $A_{i f}=n_{i i}=0$, $i=1,2, \ldots, 6$, and

$$
\begin{aligned}
& a_{1}=a_{34}=a_{56}, \quad a_{1-6}=a_{23}=a_{45}, a_{14}=a_{36}=a_{2-5}, \\
& a_{1-4}=a_{25}=a_{3-6}, a_{16}=a_{2-3}=a_{4-5}, a_{1-2}=a_{3-4}=a_{5-5},
\end{aligned}
$$

(11.5)

$$
a_{13}=a_{1-5}=a_{35}=a_{24}=a_{46}=a_{2-6}
$$

$$
a_{1}, a_{1-3}=a_{26}=a_{2-4}=a_{3-5}=a_{4-6}, \quad \text { and } a_{-i-j}=a_{i j}
$$

it fotion that the $A_{11}$ satisfy
(1, (1) (i) $A_{13}=A_{15}=A_{24}=A_{26}=\Lambda_{35}=\Lambda_{46} \quad A$
(b) $A_{12}=A_{34}=A_{36}, \quad A_{14}=A_{25}=A_{36}, \quad A_{16}=A_{23}=A_{45}$.

The elationships (6.61) are needed for a complete analysis of "exotic" solncions when $N=2$.

From (3.4人) and (6.4) we get $c(\beta)=c(6)+d(\beta)$, where

$$
\begin{equation*}
i(,)=\sum_{4}^{1} r \sum_{i=1}^{3 N} \beta_{i}^{4}+\frac{1}{2} A \sum_{i=1}^{N}\left(\beta_{i}^{2} B_{i+N}^{2}+b_{i}^{2} \beta_{i+2 N}^{2}+E_{i+N}^{2} b_{i+2 N}^{2}\right) \tag{6,7}
\end{equation*}
$$

and $d(3)$ demens the contribution to the sum in (5.4b) of terms $A_{i j} i^{2}{ }^{2}$ for which $k_{i}$ and $k_{j}$ lie in different triples. Note that $d(k) \geq 0$, $\because B^{3 N}$, since $A_{i j} \geq 0$. Thus, $f(\beta) \geq \tilde{f}(\beta)$, where $f(\beta)$ is defined in (5.6) and

$$
f(\beta)=\left\{\begin{array}{cc}
(q(\beta)+\tilde{c}(\beta)) /|\beta|^{2}, & \text { if } \beta \neq 0  \tag{6.8}\\
0 & \text { if } \beta=0
\end{array} .\right.
$$

The functional $\tilde{f}$ and its critical points play a key role in the determination of stable, subcritical hexagonal solutions. Since $\left(H_{c}\right)$ is equivalent to $\left(:>0\right.$ in ( 6.4 ), the functional $\tilde{c}$ also satisfies $\left(H_{c}\right)$, so that iemma $\mathfrak{3} .1$ is applicable to both $f$ and $\tilde{f}$.

Lemma 6.1. The nontrivial critical points, $B$, of $f$ satisfy $n_{n}^{2}=\frac{r_{n}^{2}}{n+N}=r_{n+2 N}^{2}, n=7,2, \ldots, N$. Moreover, if assumes its absolute minimum,
(0.9) $\quad f_{0}:-13^{2} / 9 C_{1}$ with $C_{1} \rightarrow C+2 A$,
it those critical points for which all nonzero $\beta_{n}$ satisfy $f_{n}^{2}=4 B^{2} / 9 C_{1}^{2}$.

Proof, At a nontrivial critical point we have (see (5.8), (5.9))

Let $T_{n}=\left(k_{n}, k_{n+N}, k_{n+2 N}\right)$ be any triple and let $i, j, m$ be the indices $(n, n+N, n+2 N)$ written in any order. Multiply the $i \frac{t h}{}$ equation in (6.10) by $F_{i}$, the $j^{t h}$ equation by $b_{j}$ and subtract to get

$$
\begin{equation*}
0=\left(B_{i}^{2}-B_{j}^{2}\right)\left[-2 f(\beta)+C\left(\beta_{i}^{2}+\beta_{j}^{2}\right)+A \beta_{m}^{2}\right] \tag{6.11}
\end{equation*}
$$

By making use of the equivalence of (i) and (ii) of Lemma 5.1 applied to $r$, one sees as in (5.14) that $f(\beta) \leq 0$. Hence (6.11) and ( $H_{c}$ ) imply Lhat $f_{i}^{2}=r_{j}^{2}$. Since $n$ and the order of $i, j, m$ are arbitrary, we have $\beta_{n}^{2}=\beta_{n+N}^{2}=\beta_{n+2 N}^{2}, n=1,2, \ldots, N$. Observe that if $k_{i} T_{n}$ the $i^{\text {th }}$ equation in (6.10) involves only $\beta_{n}, \beta_{n+N}$ and $F_{n+2 N}$. Since we may change the signs of any pair of these three $\beta_{j}$ 's without changing the $i^{t h}$ equation, we may suppose at a critical point of $\tilde{f}$ that $\sigma_{n+2 N}=\beta_{n+N}=\beta_{n}, \quad n=1,2, \ldots, N$. Then the three equations in ( 6.10 ) corresponding to each $\mathrm{T}_{\mathrm{n}}$ become identical and (6.10) reduces to N equations for $\beta_{n}, n=1,2, \ldots, N$. We suppose that exactly $M_{0}$ of the $F_{n}$ are nonzero and reorder the indices so that $\beta_{n} \neq 0$ if $n=1,2, \ldots, M_{0}$, and $i_{n}=0$ if $n=M_{0}+1, \ldots, N$. Then (6.10) may be repiaced by

$$
\begin{equation*}
0=-2 f(\beta)+B \beta_{i}+C_{1} \beta_{i}^{2}, \quad i=1, \ldots, M_{b} \tag{6.12}
\end{equation*}
$$

where $C_{1}=C+2 A$. When $M_{0}=1$ one solves (6.8) and (6.12) to obtain $\therefore \quad \therefore=4 B^{2} / 9 C_{1}^{2}, f(\beta)=f_{0} \equiv-B^{2} / 9 C_{1}$. When $M_{0} \therefore 2$ one subtracts the equation for ing from that for $\operatorname{rin}_{i}$ to get the $M_{0}\left(M_{0}-1\right) / 2$ equations (6.13)

$$
0=\left(\beta_{i}-\beta_{j}\right)\left[B+C_{1}\left(\beta_{i}+\beta_{j}\right)\right], \quad j=i+1, \ldots, M_{0} ; i=1, \ldots, M_{0}
$$

It is uasy to deduce from (6.13) that the $\beta_{j} ' s$ either are all equal or assume exactly two distinct values. When the $F_{j}$ 's are all equal, the system ( 1.8 ), ( 6.12 ) becomes a pair of equations for $\beta_{1}, f(1)$ and one finds that $\beta_{1}^{2}=4 \beta^{2} / 9 C_{1}^{2}, f(\beta)=f_{0}$. In the case of exactly two distinct ${ }^{2}$, we suppose $\beta_{1} \neq \beta_{2}$ with $p_{1}$ of the $\beta_{j}$ 's equal to $\beta_{1}$ and $p_{2}$ of the $b_{j}^{\prime}$ s equal to $\beta_{2}, p_{1}+p_{2}=M_{0}$. Then the system (6.8), (6.12) reduces to
(a) $f(\beta)=\left[B\left(p_{1} b_{1}^{3}+p_{2} \beta_{2}^{3}\right)+\frac{3}{4} c_{1}\left(p_{1} \beta_{1}^{4}+p_{2}{ }_{2}^{4}\right)\right] / 3\left(p_{1} \beta_{1}^{2}+p_{2} b_{2}^{2}\right)$
(b) $\quad 2 f(i)=B \beta_{i}+C_{1} \beta_{i}^{2}, \quad i=1,2$.
since $B_{1}$, are different and nonzero we seek a solution in the form $i_{2}=s h_{1}, s \neq 0,1$. Using ( 6.14 ) to express $f(\beta)$ and $F_{1}$ in terms of $s$, one finds that $\beta_{1}=-B / C_{1}(1+s), f(\beta)=B^{2} s / 2 C_{1}(1+s)^{2}$ and the solutions are determined by the roots, $s$, of

$$
0=-p_{2} s^{4}+2 p_{2} s^{3}+2 p_{1} s-p_{1}
$$

The latter equation has exactly two real roots $s_{1}, s_{2}$, which satisfy $0 . s_{1} \because \frac{1}{2}, \quad 2<s_{2}$. If $f_{i}$ is the value of $\tilde{f}$ corresponding to $s_{i}, i=1,2$, then one shows that $f_{i}>f_{0}$ so that these solutions do not give the absolute minimum of $\tilde{f}$.

Recall that $\mathrm{f}(\beta) \geq \hat{f}(\beta)$ for all $\beta \in \mathbf{R}^{3 N}$ and, in addition, observe that $f(\beta)=\stackrel{\sim}{f}(\beta)=f_{0} \equiv-B^{2} / 9 C_{1}$ at points, $\beta$, of the form
(b.1 \%) $\quad\left\{\begin{array}{l}P_{i}=0 \text { Lf } i \neq N, n+N, n+2 N \\ n_{n}=B_{n+N}=V_{n+2 N}=2 B / 3 C_{1}, \quad n=1,2, \ldots, N .\end{array}\right.$
since $f_{u}$ is the absolute minimum of $f$, it is also the absolute minimum of fi, i.e.

$$
\begin{equation*}
I_{0}=\min _{\beta \cdot R^{2}} 3 N^{f(n)} . \tag{6,16}
\end{equation*}
$$

It follows from ( 6.16 ) that each point of the form (6.15) is a critical point of $f$. Moreover, since $G_{1}>0$, one can show that the matrix $E$ In (5.15) is nonsingular at these points; in fact, det $E=\left(\beta_{1}^{6} C_{1} / 2\right)^{N}$. Thus, arcording to Theorem 5.3 each of the points ( 6.15 ) generates a suberitical solution, $v=v(n, N)$, of ( $*)_{n i}$ stable in $S_{\text {If }}$. Note that because of (6.16) and Lemma 3.1, there are no other solutions in $S_{1 \%}$ generated by solutions (f,7) of (5.5) with $r<T_{0} \equiv 2 \mathrm{f}_{0}$.

Remark 6.3. One can, of course, also consider the solutions $v(n, N)$ as solutions of (*) in $H$. The stability of the $v(n, N)$ in $H$ is determfed to 1 owest order by the eigenvalues of the 6is a $6 \mathrm{~N}^{\mathrm{N}}$ Jacobian matrix of the fuil selection equations (3.24) at $\gamma=f=0$. One finds as in [ $\mathrm{T}, \mathrm{pp} .642-643$ ] that all but two of these ritical eigenvalues are positive and, because of the invariance of the equations ( 2.1 ) under trimstations of the ( $x, y$ )-plane, the remaining two are 0 . Thus, the stability arguments in [1] apply also to the hexagonal solution $\mathrm{y}(\mathrm{n}, \mathrm{N})$.

We shall call a solution, $v$, of ( $\%$ ) a hexagonal cellular solution If the leading term in $v$ has zero component across the vertical faces of a right hexagonal cylinder $Z$ and also across the vertical faces of cells whtaned from $Z$ by repeated reflection across the vertical faces (the
 $-\therefore \quad \therefore 0 \therefore \frac{1}{2}$ are regular hexagons). For example, the solution $v(a, N)$ senerated by ( 6.1 ) is a hexagonal solution (note the shape of the strumplas in $[10$, Fig. 1]; sec also [3, i16]). One can show (e.g., see $\mid j$, 161 ) that $\psi^{2}=4^{n}+4^{n+N}+4^{n+2 N}$ has zoro component areross the vertheal taces of $Z$ whose broes section $z-7$ is the hexagon with center at $(x, y)=(0,0)$ and vertices at $\left.\quad(4 \pi / 3)_{n}^{2}\right) k_{i}, k_{1} \cdot T_{n}$ chearly, the same is true of $\overline{4}$, corresponding to $k_{i},-T_{n}$, hence wi $=+\cdots$ Furthermore, the flow $r$ has the positive $z$-direction along the z-asis. fhus, we see that the leading term in $v(n, N)$ has this hexagonal structure alld, since $i_{3} \therefore 0,0,0$, the flow is upward along the $z$-axis when , O and downard when ir 0 .

He may also investigate the extstence of exotic solutions in $S$, for heneral $N$ by the methods of the present section. To determinu the stability of exotic solutions, however, requires the verification of ce:tain inequalities among the coefficients of the functional $f$ in (5.6a). This is illustrated in the following remark for the case $N=2$.

Remark 6.4. Besides the simple hexagonal solutions determined above, ane obtaints in the case $N=2$ additional solutions correspending to
(b.17) (ii) $:=-2 B^{2} / 9\left(C_{1}+\Lambda_{1}\right), \beta_{i}=-2 B / 3\left(C_{1}+A_{1}\right), \quad i=1, \ldots, 0$
(b) $t=\left[-s_{1} c_{1}+\left(1+s_{1}+s_{1}^{2}\right) A_{1}\right] \beta_{1}^{2}, \beta_{1}=\beta_{3}=a_{5}=-B /\left(1+s_{1}\right)\left(C_{1}-i_{1}\right)$, $\beta_{2}=\beta_{4}=\beta_{6}=s_{1} \beta_{1}$,
where $A_{1}=A_{12}+A_{14}+A_{16}$ (see (6.6)). Here $s_{1}, 0<s_{1}<1$, is a root of

$$
\begin{equation*}
0=2\left(C_{1}-A_{1}\right)\left(s^{3}+s^{2}+s\right)-\left(C_{1}+2 A_{1}\right)\left(s^{2}+1\right)^{2} \tag{6.18}
\end{equation*}
$$

Onc finds that the existence of $s_{1}$, hence of ( 6.17 b ), as well as the stability of both solutions in (6.17) depends on the sign of $c_{1}-7 A_{1}$.

The Bolution ( $6,17 a$ ) eorresponds to the first exotle sulut fon (wase sa) $\ln$ [10].

Obgerve that in ench of the solutions (6.15),
all "i's corresm ponding to a fiventriple, $T_{n}$, are equal. The functional $T$, however, does not change if we change the slgas of any two "i's correspondin: to Whe same triple. Thus, anch of the hexagonal solutions geperated by (6.15) yiolds three additional hexagonal solutions. Une can show that tho four solutions obtalned this way are translations of one another. Morwour, all withe solutions, $v(n, N)$, generated by ( 0.15 ) (fox: " $-!\cdot x, \ldots, N ; N$ in a suitable, unbounded sequence) are, at least to flest order, rotatiuns of $v(1,1)$.

Uur main results for elassical hexagonal cellular solutions are mommari\%ed in the next paragraph and hold under the hypotheses $C$ © $0, B \neq 0$ (sue Remark 5.1). These hypotheses are independent of $i x$ and are analogous (0) Lhe minimum hypotheses required for a bifurcation analysis at : when $N=1$.

Hexagonal cellular solutions. For each $N$ in a suitable unbounded sequence there are 4 N solutions of (*) generated by absolute minima of the soleqtion functional, f. These solutions are suberitical and stable In $S_{i}=S_{n}(N)$. Wach of these solutions exhibits the classical hexagunal cellular form with size independent of $N$. The stability of, e.g., $v(1, N)$ In $S_{1 ;}(N)$ shows that the hexagonal cellular solutions are, in particular, stable to perturbations in "directions" corresponding to $N$ critical wave vectors. Thus, letting $N$ range over the unbounded sequence, we obtain, in a sense, the stability of the classical hexagonal cells in infinitely many such critical directions.
i. Comeluding remarks. There is no attompt the prosint paper to shtain "all of the local solutions near o " in " of the Benated problem with symmetric boundary conditions even in the rimplest of satan, He mativation has been rather to provide a first step towart showing that the hexagonal cellular solutions are the "prefered" suberitisal solution; of the Benard problem in physical situations with temperature dependent materlal properties. In fict, the recent results of Buzano and folubitsk: [2] and Golublesky, swift and Knobloch [5] indieate hov diffient it would be to oblain "all of the lacal solutions near " $\because=$ " even in the case In section 6 when din $M=12$. In [2], [5] those anthars consider situatons corresponding here to the case in section of one triple of critical wave vectors, lee., dim $M=6$ and, by an application of group theory and, in [2], also singularity theory, they obtain "nll of the local solu(ions" of a six-dmensional problem $P$. (One assumes that $P$ corruponds (o) the finite-dimensional pablem generated from the Benard problem by means of the Lyapunov-Schmidt method relative to the first eigenvalue of the linearized problem.) The detailed results in 22 are of particular interest because they show for the Benatd problem that the mathematical possibility exists of having stable subcritical hexagonal-type solutions, stable supercritical roll-type solutions, and a third type of solution that provides a transition between rolls and hexagons. There are, of coursic, some difficulties encountered in carrying over the finite-dimensional results in [2], [5] to an infinite-dimensional mathematical model and many such difficultiee and their interpretations for the Bénard problem are discussed in [2, §11]. The most pertinent suck difficulty relative tothe method presented here is the fact that the detailed nature
"f the results in [2], [5] are highly dependent upon the relatively low Amonsion of the problem $P$ whereas the basic results of Busse [1] are ebiantially independent of the dimension of any underlying finite-dimenshonal problem. Une of the main goals of our study of the benard problen was to devilop a rigornus stability method useful in a setting that also is independent of the dimension of any underlying finite-dimensienal problem. The results of section 6 show that this goal has been achieved and that in our apmoath the selection of stable suberitical bexabonal cellular owhations i., shosely related to a mindmization condition on the seneraliad dissfation, A:i in earlier work on the Bénard problem (e.g., see [1; 1) , there remains in the case of temperature-depentent material properthes the problems of finding a strict physical interpretation of the neneralized dissipation and a description of the actual selection meehanism. Finally, we note that the methods introduced here can be modified to Viold also the doscription of stable supureritical states and the stability folathonships between roll-type solutions and hexagonal cellular solut ions.

Appendix. Here we justify equation (2.23) and prove Lemma 3.1.
First we show that the ugenfunstions $\left\{\boldsymbol{f}^{\mathrm{pqj}}\right\}$ in (2.20) can be soated whth constants independent of $f$ so that $(2,23)$ holds. In fact, we may assumb that each $4^{\mathrm{pq}}$ has been scaled by a constant depending only on $p$ and q such that

$$
\begin{equation*}
2_{2}^{2} \int_{-1 / 2}^{1 / 2}\left[\mathrm{D}^{2} \phi_{3}^{\mathrm{pq}}\right]^{2} \mathrm{dz}=\frac{\mathrm{c}_{1}{ }^{4} 2}{4 \mathrm{t}^{2}} \tag{1.1}
\end{equation*}
$$

where $D=\frac{d^{2}}{d z^{2}} p^{2}$. (The integrand on the left in (A.1) is not zero, by untqueness of the initial-value problem $D^{2} \phi=0, \phi\left(\frac{1}{2}\right)=4\left(\frac{1}{2}\right)=0$ (ser (2.120)) ) Fron (2.3) and (2.21) we get

$$
\begin{align*}
& =5_{p r}^{\delta} j t \frac{4 \pi^{2}}{1^{4} 2}, J(p, q, j ; r, s, t) \text {. } \tag{A.2}
\end{align*}
$$

Herr, since $\psi_{3}^{\mathrm{pqj}}=\psi_{3}^{\mathrm{pq}}$ and $\psi_{4}^{\mathrm{pqj}}=\psi_{4}^{\mathrm{pq}}$ are real and independent of $f$, (a. 3)

From ( 1.2 ) we see that $J$ is needed only when $r=p$ and $i=j$, Then we may integrate by parts in (A.3) making use of (2.12) to show that

$$
J(p, q, j ; p, s, j)=\mu_{p q} \int_{-1 / 2}^{1 / 2}\left(\phi_{4}^{\mathrm{pq}} \phi_{3}^{\mathrm{ps}}+\phi_{3}^{\mathrm{pq}} \phi_{4}^{\mathrm{ps}}\right) \mathrm{dz}
$$

Since both $\phi^{\mathrm{pq}}$ and $\phi^{\mathrm{ps}}$ satisfy (2.12) we have, after integrating by parts,
(1.5)

$$
0=\left(\mu_{\mathrm{ps}}-\mu_{\mathrm{pq}}\right) s_{\mathrm{p}}^{2} \int_{-1 / 2}^{1 / 2}\left(\phi_{4}^{\mathrm{pq}} \phi_{3}^{\mathrm{ps}}+\phi_{3}^{\mathrm{pq}} \psi_{4}^{\mathrm{ps}}\right) \mathrm{dz}
$$

lhus (A.b) shows that if $\mu_{\mathrm{ps}} \neq \mu_{\mathrm{pq}}\left(1 . e .\right.$, if $s \neq q$ ) then ${ }^{\mathrm{pq}} \mathrm{jq}$ and psj are orthogonal in the sense that

$$
\begin{equation*}
\left.0=\int_{-1 / 2}^{1 / 2}{ }_{4}^{+p_{4} \psi_{4}^{p s}}+{ }_{3}^{p q}{ }_{3}^{p}{ }_{4}^{p s}\right) d z \tag{1.6}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
J(p, q, j ; p, s, j)=\sigma_{q} J(p, q, j ; p, q, j) \tag{1.7}
\end{equation*}
$$

But 1rom (2.12a), integration by parts and (A.1) we get

$$
\begin{equation*}
I(p, q, j ; p, q, j)=2 o_{p}^{-2} \int_{-1 / 2}^{1 / 2} 3^{4} p q^{4}+\frac{p q}{} d 2=\frac{1^{1}}{4} \frac{t^{2}}{4} \tag{A,8}
\end{equation*}
$$

Combining (A.2), (A.7) and (A.8), we obtain (2.23).
Next wh give a prool of Lemma 3.1 ; some aspects of the work is closely folated to corresponding steps in [1] or in [10]. Acording to lemma 2.1 Lhe operators $L$, and $M$ are bounded on $H$. Since $L$ is also compact, it Ls easy to see that $K$ is bounded on $M^{\perp}$. If $v$. H has the form (3. $)$ and $A$ is any bounded 1 inear operator on $H$, then $A v$ may be computed Lerm by term in the sum so that the formulas (3.7) follow easily. The posilivity and self-adjointness of $K$ are simple consequences of (2.23), (3.7) and the fact that the inp are real.

Part (ii) of Lemma 3.1 follows easily from the definition of $M$ if we show that

$$
\begin{equation*}
0=\left(\mu^{m}, \bar{\psi}^{j}\right), \quad \text { for } \quad|m|,|j|=1,2, \ldots, N \tag{A,y}
\end{equation*}
$$

since $\phi_{4}{ }_{\phi_{4}}^{P}$ and $\phi_{3} \cdots \phi_{3}^{1}$ are even functions of $z$ (see [10]), (A.9) Collows from

$$
\left(M \psi^{\mathrm{m}},-\psi^{j}\right)=2 \int_{\Omega} z \psi_{4}^{\mathrm{m}} \psi_{3}^{j}=\frac{8 \pi^{2}}{\alpha_{1} \alpha_{2}} \delta\left(k_{m}+k_{\sim}\right) \int_{-1 / 2}^{1 / 2} z \phi_{4} \phi_{3} \mathrm{dz}=0
$$

The assortions (iii) of the lemma are obtained from (3.2), (3.3) and the identity

$$
\int(u \cdot v v) \cdot w=\int_{0}\{V \cdot[u(v \cdot w)]-(u \cdot V w) \cdot v\}=-\int_{0}(u \cdot v w) \cdot v .
$$

This last identity is easily verified for smooth $u, v, w$ e $H$ and is proved In general by a standard limiting argument using the boundedness, in $u, v, w$, of the functional ( $(u, v), w)$ :

$$
\begin{equation*}
|(4(u, v), w)| \leq \text { const }\|u\|\|v\|\|w\| . \tag{A.10}
\end{equation*}
$$

(The inequality (A.10) fullows from (3.2) by application of the Schwarz and Poineare inequalities.) In addition, one may use (A.10) to show that all assertions in part (iv) of Lemma 3.1 are consequences of (A.11) and (A.13), delow.

On substituting (2.20) and (2.21) into (3.2) we are led to (recall that $p_{0}$ and $p_{0} 1$ are suppressed: $\sigma_{p_{0}}=\sigma, \underset{\sim}{k} p_{0} j=\underset{\sim j}{k_{j}}$, etc.)

$$
\begin{equation*}
\left(\psi^{\psi}\left(\psi^{p q m}, \psi^{j}\right), \bar{\psi}^{n}\right)=-\frac{4 \pi^{2}}{\alpha_{1} x_{2}} \delta\left(k_{p m}+{\underset{v j}{ }}_{k_{j}}^{k_{n}}\right) I\left(p, q, m ; p_{0}, j, n\right) \tag{A.11}
\end{equation*}
$$

where

$$
\begin{align*}
& L\left(p, q, m ; p_{0}, j, n\right) \equiv \int_{-1 / 2}^{1 / 2}\left(-\sigma_{p}^{-2}\left(\underset{\sim p m}{k_{n}} \cdot k_{j}\right) \frac{d \phi_{3}^{p q}}{d z}\left(\phi^{j} \cdot \phi^{n}\right)\right.  \tag{A.12}\\
& +\phi_{3}^{\mathrm{pq}}\left[\sigma^{-4}\left(\underset{\sim j}{\left.k_{j} \cdot k_{n}\right)} \frac{d^{2} \phi_{3}}{d z^{2}} \frac{d \phi_{3}}{d z}+\frac{d \phi_{3}}{d z} \phi_{3}+\frac{d \phi_{4}}{d z} \phi_{4}\right]\right\} d z .
\end{align*}
$$

The right hand side of (A.11) is zero because of the $\delta$ term, except when $k_{p m}+k_{j}+k_{n}=0$. In this exceptional case the vectors $k_{j},{\underset{\sim}{n}}^{k_{n}}$ and $k_{p m}$
 d may be interchanged in (A.12) without changing I. In this case then, from (A.11), and part (iii) of Lemma 3.1 we have

$$
\begin{equation*}
\left(\Phi\left(\psi^{\mathrm{pqm}}, \psi^{\mathrm{j}}\right), \bar{\psi}^{\mathrm{n}}\right)=\left(\Phi\left(\psi^{\mathrm{pqm}}, \psi^{\mathrm{n}}\right), \bar{\psi}^{\mathrm{j}}\right)=-\left(\Phi\left(\psi^{\mathrm{pqm}}, \psi^{\mathfrak{j}}\right), \bar{\psi}^{\mathrm{n}}\right)=0 \tag{A.13}
\end{equation*}
$$

## ORIGINAL PAGE IS OF POOR QUALITY

To prove the formulas of part (v) of the lemma we take $\because=\sum_{j \mid=1}^{N}$ and calculate the various terms. Now

$$
\left(M, \psi^{p q m}\right)=2 \int_{\Omega} z{ }_{4} \frac{1}{3}_{3}^{j} p^{p q m} d z=\delta_{p p_{0}} \delta_{j}^{b} m^{b q}
$$

Hore
(A.15)

$$
b_{0 q}=\frac{8 \pi^{2}}{q_{1} q_{2}} \int_{-1 / 2}^{1 / 2}{ }_{2, \phi_{4}^{1}}^{p_{0}^{1} p_{0} q} d z, \quad|q|=1,2, \ldots
$$

Is real and $b_{01}=b_{0(-1)}=0$ since $\phi_{3}$ and $\phi_{4}$ are even. Then

Similarly, from (2,24) we are led to

$$
\begin{equation*}
M^{*} \cdot \bar{i}^{n}=\sum_{|q|_{=2}^{\infty}}^{\infty} b_{0 q}^{*} \bar{\psi}_{0}^{p_{0} q n} \tag{A.17}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{0 q}^{*}=\frac{8 \pi^{2}}{\alpha_{1} \alpha_{2}} \int_{-1 / 2}^{1 / 2}{ }_{z \phi_{4}}^{p_{0}^{q}{ }_{\phi}^{p_{0}}}{ }^{1} d z, \quad|q|=1,2, \ldots \tag{1.18}
\end{equation*}
$$

is real. Since $M \subset M^{\perp}, K M \psi$ may be obtained from (A.16) and (3.7):

$$
K M \psi=\left.\sum_{2}^{N}\right|^{N}=1 \quad \beta_{j}|q|^{\infty}=2 \tilde{b}_{0 q} \psi^{p_{0} q j}
$$

where $\ddot{b}_{0 q}=\mu_{p_{0} q}\left(\mu_{p_{0} q}-\mu_{1}\right)^{-1} b_{0 q}$. From (A.17) and (A.19) we have
(1.20)

Here

$$
\begin{equation*}
b_{0}=\sum_{|q|^{\infty}=2}^{\infty} \tilde{b}_{0 q} b_{0 q}^{*} \tag{a.21}
\end{equation*}
$$

is real. This proves (3.8).

## OF POOR $C:$

We shall require
(A.22)

$$
\left(w_{1}\left(b^{m}\right), \overline{1}^{p q n}\right)=s\left(k_{n}+k_{m}+k_{p n}\right) r_{2}\left(p_{0}, j, m, p, q, n\right),
$$

where, by (2.21),

We are incerested in $I_{z}$ mily when the vectors $k_{j}, k_{m}$, $k_{\text {pn }}$ form an isnseedes triangle, otherwise the E-factor in (A.22) is zero. From this trianele we san that $k_{j} \cdot k_{p n}=k_{m} \cdot k_{p n}=-\frac{1}{2} r_{p}^{2}$ and $k_{j} \cdot k_{m}=\frac{1}{2} 9_{p}^{2}-p^{2}$. In this case, (...23) leads to $I_{2}\left(p_{0}, j, m, p, q, n\right)=I_{3}\left(p_{0}, p, q\right)$, where
(A.24)

$$
\begin{aligned}
& +\phi_{3}\left[\frac{1}{2 \pi^{2}} \cdot \frac{d^{2} \phi_{3}}{d z^{2}} \cdot \frac{d \phi_{3}^{p q}}{d z}+\frac{d \phi_{3}}{d z} \psi_{3}^{p q}+\frac{d_{4}}{d z} \phi_{4}^{p q}\right][d z
\end{aligned}
$$

is; roal and depends on $j$ and $m$ ony through $\sigma_{p}=\left|k_{j}+k_{m}\right|$. On the busis of (A.22) and (A.24) we have

$$
\begin{equation*}
\left(\phi\left(\psi^{j}, \psi^{m}\right), \overline{i n}^{p q n}\right)=\delta(\underset{\sim}{k}+\underset{\sim}{k}+\underset{\sim p n}{k}) I_{3}\left(p_{0}, p, q\right) \tag{1.25}
\end{equation*}
$$

From (3.6), (3.7) and (A.17) we have

$$
\begin{equation*}
\left(\operatorname{MKF}(\psi), \bar{\psi}^{\mathrm{n}}\right)=\left(\mathrm{F}(\psi), \mathrm{KM}^{*} \bar{\psi}^{\mathrm{n}}\right)=\sum_{|\mathrm{q}|=2}^{\infty} \stackrel{b}{0 q}_{*}^{0}\left(\mathrm{~F}(\psi),,_{\psi}^{\mathrm{P}_{0}^{q n}}\right), \tag{1.26}
\end{equation*}
$$

where $\hat{b}_{0 q}^{*} \because{ }^{*} \mu_{p_{0} q}\left(\mu_{p_{0} q}-\mu_{1}\right)^{-1} b_{0 q}^{*}$ is real. Furthermore, from (A.25) with $p=P_{0}$ we get

$$
\begin{equation*}
\left(F(\psi), \bar{\psi}^{p_{0} q n}\right)=|j|, \sum_{m \mid=1}^{N} \beta_{j} \beta_{m} \delta\left({\underset{\sim}{k}}_{j}+\underset{\sim}{k} m+\underset{\sim n}{k_{n}}\right) I_{3}\left(p_{0}, p_{0}, q\right) \tag{A.27}
\end{equation*}
$$

Combining ( 4.26 ) with (A.27) we obtain (3.9) with real bl given by

In a similar maner we may utilize (A.19), (A.25) and part (iil) of lama 3.1 to establish (3.10) with real constant $b_{2}$ given by
(A.2q. $b_{2}=\ddot{q}_{|q|=2}^{\ddot{q}^{\circ}} \ddot{b}_{0 q} I_{3}\left(p_{0}, p_{0}, q\right) \quad$.
lapation (3.11) follows easily from the observation that
(A. 30)

$$
\left(\Gamma^{i}\left(, i^{m}\right), \vec{r}^{n}\right)=n\left(k_{i}+k_{m}+k_{n}\right) b_{3},
$$

whore

$$
\begin{equation*}
b_{3}=\frac{4 \pi^{2}}{u_{1} t_{2}} \int_{-1 / 2}^{1 / 2}\left(\phi_{4}\right)^{2} \phi_{3} d z: 0 . \tag{1.31}
\end{equation*}
$$

Next we consider part (vi) of the lemma. From (iii) of Lemma 3.1 and the bllinearity of $\$$ we have

$$
\begin{align*}
& \left(4(\psi, \operatorname{KF}(\psi)), \psi^{\mathrm{n}}\right)=-\left(\Psi\left(\psi, \psi^{\mathrm{n}}\right), \overline{\mathrm{KF}(1))}\right. \tag{1.32}
\end{align*}
$$

We may obtain the 1ast inner product by means of Parseval's equation as follows. From ( 1.25 ) the coefficient of $\psi^{\text {pqh }}$ in the Fourier expansion of $\psi\left({ }_{f}^{j}, n^{n}\right)$ is $o\left(\underset{\sim}{k}+\underset{\sim}{k}+\underset{\sim}{k} h^{k}\right) I_{3}\left(p_{0}, p, q\right)$, while the coefficient of pgh in the Fourier expansion of $\overline{\mathrm{K} \Phi\left(\psi^{\mathrm{i}}, \psi^{\mathrm{m}}\right)}$ is

$$
\left\{\begin{array}{c}
\delta\left(k_{i}+k_{m m}-k_{p h}\right) \mu_{p q}\left(\mu_{p q}-\mu_{1}\right)^{-1} I_{3}\left(p_{0}, p, q\right), \quad \text { if }(p, q) \neq\left(p_{0}, 1\right)  \tag{4.33}\\
0, \quad \text { if } \quad(p, q)=\left(p_{0}, 1\right)
\end{array}\right.
$$


where $\Sigma_{0}$ denotes sumnation over $(p, q, h)$ in the sane set of integer triples as in (3.7).

Given 1 and $n$, the only way a term in the sum on the right in ( $\mathrm{A}, 3 \mathrm{H}$ ) an be nonzero is for

$$
\begin{equation*}
k_{p h}=-k_{j}-k_{n}=k_{i}+k_{m i} . \tag{0.35}
\end{equation*}
$$

Theso relations determine $p$ and $h$ completely, in terms of $p_{0}, j$ and $n$ (or in terms of $P_{0}, i$ and $m$ ) so that only $q$ need be summed in (A.34). The relations (A.35) also require that either ${\underset{\sim}{k}}^{k_{i}}=-k_{j}$ and $k_{m}=-k_{n}$ (i.e., $i=-i$ and $m=-n$ ) or $k_{i}=-k_{n}$ and $k_{m}=-k_{j}$ (i.e., $i=-n$ and n. $\pm=j$ ). It follows that

$$
\begin{align*}
\delta\left(\underset{\sim}{k} j+k_{n}+\underset{\sim}{k} p^{\prime}\right) \delta\left(k_{\sim}+k_{m}-k_{\sim p h}\right) & =\delta(i+j) \delta(n+m)+\delta(i+n) \delta(m+j)  \tag{0.36}\\
& -\delta(i+j) \delta(i+n) \delta(i-m)
\end{align*}
$$

If we conbine (A.32), (A.34) and (A.36), then we obtain (3.12) with nonnegative constants $a_{p_{0}}{ }^{j n}$ given by

$$
\begin{equation*}
{ }^{a} p_{0} j n=\sum_{q=q_{1}}^{\infty} \mu_{p q}\left(\mu_{p q}-\mu_{1}\right)^{-1} r_{3}^{2}\left(p_{0}, p, q\right), \quad|f|,|n|=1,2, \ldots, N, i \neq-n \tag{A.37}
\end{equation*}
$$

where $q_{1}=1$, if $p \neq p_{0}$ and $q_{1}=2$ if $p=p_{0}$. Note that $a_{p_{0}} j n$ depends on $j$ and $n$ only through $p$, i.e., through $\sigma_{p}=\left|\underset{\sim}{k_{j}}+{\underset{\sim}{n}}^{k_{n}}\right|$. In particular we have

$$
\begin{equation*}
a_{p_{0} j n}=a_{p_{0}{ }^{n j}}=a_{p_{0}(-j)(-n)} \tag{1.38}
\end{equation*}
$$

lurthermore, when $j=-n$ we may, for convenience, define
$(\mathrm{A} .39) \quad a_{p_{0}} f(-j)=0$.
(The sum in (A, 37) is memingless in this case, since (2.12) has no nonUfval solutions when $i=0 \quad\left(*\left|k_{j}+k_{(-j)}\right|\right)$ su that $0 \neq p_{p}$ for any $p$ ). Because $(p, q) \neq\left(p_{0}, 1\right)$ in ( $A, 37$ ), we see when $n \neq-j$ that ${ }^{3} p_{0}$ in $=0$ if and only if $I_{3}\left(p_{0}, p, q\right)=0$ for all integers $q$ with ' $q$ ' $\quad q_{1}$.

A knowlodgement. The authors wish to thank Professor F. A. Connors for arqualinting them with the number-theoretic results used at the bexinime al Section 6.

## References

1. Fill. Busse, "Ihe stability of finite amplitude cellular convection and L6s relation to an extremum principlo," J. Fluid Mech. 30 (1967), 625649.
2. L. Buzano \& A. Golubitsky, "Bifurcation on the hexagonal lattice and the planar Benard problem," Phil. Trans. R. Soe. London A 308 (1983), 617-667.
3. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford, 1961.
4. D. Fife \& D. D. Joseph, "Existence of eonvertive solutio; of the generalized Bénard problem which are analytic in their norm," Arch. Rational Mech. Anal. 33 (1969), 116-138.
). M. Golubitsky, J. W. Swift \& E. Knobloch, "Symmetries and pattern Selection In Rayleiph-Benard Convection," preprint, 1983.
5. V. 1. Lutovich, "On the origin ot convection," J. Appl. Math. Mech. 30 (1966), 1193-1199.
6. D. D. Juseph, Stability of Fluid Motions II, Springer Tracts in Natural Philosophy 28, Berlin-Heidelberg-New York, 1976.
7. I. Kito, Pertarbation Theory for hinear oporators, Springer, Berlin-Heidelberg-Now York, 1906 .
8. K. Kirchgässner, "Bifurcation in nonlinear hydrodynamic stability," SLAM Rev. 17. (1975), 652-683.
9. K. Kirchgässner, "Instability Phenomena in Fluid Mechanics," Numertcal Solction of Partial Differential Equations ITT (B. Hubbard, ed.), Neademic Press, New York-San Francisco-London, 1976.
10. K. Kirchgässner \& H. Kielhöfer, "Stability and bifurcation in fluid dynamics," Rocky Mountain J. Math. 3 (1.973), 275-318.
11. G. H. Knightly \& D. Sather, "Stable subcritical solutions for a class of variational problems," J. Differential Equations 46 (1982), 216-229.
12. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Second Edition, Gordon and 3reach, New York, 1969.
13. 0. A. hadyzhenskaya a N. N. Ural'tseva, Linear and Quasilinear Elliptic bifuations, Academic Press, New York, 1968.
1). E. Palm, " $\Lambda$ note on a minimum principle in Bénard convection," Int. J. Heat Mass Transfer 15 (1972), 2409-2417.
1. D. Sather, "Bifurcation and stability for a class of shells," Arch. Rational Mech. Anal. 63 (1977), 295-304.
of PaCN Qualint
" 11 ,
2. D. H. Sattinger, "Kroup representation theory, blfurcation theorv and pattern formation," J. Functional Anal. 28 (1978), 58-101.
3. D. H. Sattinger, "Bifurcation and symmetry breaking in applied mathematics," Bull. (N.S.) Amer. Math. Soc. 3 (1980), 779-819.
4. A. Schlüter, D. Lortz \& F. H. Busse, "On the stability of steady finite amplitude cellular convection," J. Fluid Mech. 23 (1965), 129-144.
5. J. V. Uspensky \& M. A. Heaslet, Elementary Number Theory, MeGraw-Hill, New York, 1939.
