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OF POOR QUALITY

I.	 Tnti-udut-i Ion.	 In a 13(inard - t.ype ronvt, ct Lon problem ont- svvk,t,

to dotorfllln(' tht° t,VaLionary flows of an intinitt , Iavt-r (if Iluld

Iviiis, bot;ween two r1giri horizontal walls and heated uniformly from below.

!;twh a problem possesses a unique, motionless conduction solution when

OR! parameters of the problem lie within a certain range but, as thc^

tt't(perattlre difference across the Iaysr increases beyond tl C(IrLtllt) V.11ti',

Other, convective, motions appear. These motions are often ccllular iii

choraoter in that their streamlines Lire confined to certain well-dt,fined

"(tilal" hdvinl;, e.g., the shape of rolls or hexagons. The purpose of

this paper is to formulate a "selea ction pritt,Jple" Lhat explains why

hwxap,onal ccl.ls sorm to be "preferred" for certain ranges of the I,aram(=ter5.

136nard-type problems and their generalizations play an important role

1n fluid dynamics and have been investigated in ret-ent year.,; by a number

of Authors. Convection problems have been studied, e.g., by Sdhltter,

Lort •r. and Busse [191 and Fife and Joseph [41 using, axpansion methods, by

Bmgso [ I 1 using variational methods, by Kirchkiissnor [9,101 using the

I.vapl(nov-Schmidt method, by Sattinger [17,181 and Golubitsky, Swift and

hnobloch [51 using, group-theoretic methods, and by Buzano and Golubitsky

(' J using group-theoretic methods and singularity theory. The reader

Is refOrred to the above papers and to the book of Joseph [71 for a com-

tll•efionsive introduction to Be'nard-type problems.

An important aspect of the work of Busse [11 is that the "extremum

principle" and the stability results there are independent of the number

of cricic:al wave vectors corresponding to a given critical wave number.

in the same spirit an important aspect of this work is the formulation

and verification of a selection principle in a setting that is independent

,)l' anv fixed number of critical wave vectors. Although our study is
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rostrit-Lod to fu,tetions doubly periodic in tbw horizontal plane, the

tfinito) numbv.r of critical wave vectors G,an be triken arbitrarily large

by proper cholco of the period rectangle. Moreover, in the case of tho

litxut an y l lrtt'wicc^ t1lis choice can be made In such a wav that thv cri t i cal I
VJ%1V number and the "size" of the resulting hexagon.tl calls art- Itc-pt

i I vd. Thus, whrroas othor methods offer a complt-to bifurc,ition uial.';D;

will the hkcX,11;01,a1 lattiee in the usual six-dluu-n.sionirl betting, thc r.vthocls

of this paper prove useful for a stability analysis on the hexagonal

lailivo in the general case of an arbitrarily large number of critical

utavr vectors (see also the discussion in Section 7).

TO obtain a physical interpretation of the extretnum principle i,

Ill, Palm [151 derived in the time-dependent problem a minimum princip e

for a type cif generalized dissipation, V, namely that, as time increases,

V dvoi—onscs and attains n mininuim voluc, on ., 	 ly st ato Solutions (,;eta	 r

I I r), p. '2414] ) . To treat the generalized 134nard problem studied here,

%-:o introduce an analogous sort of functional, V, called the generalized

dissipation (see (3.23) in Section 3 below). It can be shown for time-

dcprndetA problems in a formal way as in [151 that the associated tirte-

dependent V decieoses as time increases and assumes a minimum on stcadv

>;r,,Uc solutions. Since V = 0 for the motionless conduction solution

.ind since V initially increases in the steady state problem along a

siibc:rLtical branch of convective solutions bifurcating from the conduction

solution at the critical Rayleigh number, R c , it is natural to conjecture

that what we shall cal-1 a "selection principle" is related to the existence

of n convective solution for which V	 0. Presumably, such a solution

would correspond to a point on an "upper" branch because V l 0 on "lower"
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subcritical branches. Using such an interprkAtatiota, one could replace

tbc- formal '"geometrical" condition for upper branches used in (1, p.6331

I)v the exact .analytical condition V - U. This would be ;in important

I Ir.;t : ► I v1) in a Aid)[ 	 auaolysls since suborlt I0.11 soNt Inia:; IV Ill,-,

";, upper branches are the ones most :likely to bo Stable.

The basic, idea of the paper can now be stated as follows (see also

tho roiaLod but somewhat easier approach used in [121 to solve a class

tai varhiLional problems ..arising in nonlinear shell theory-- the parameter

in (;?.3) platys tho role, of' t}ae "structure" paromctc , r	 t in	 (1'*2.

Instead of so]-rini, only the 13oussinesq-type equations given in (2.1) as

i:s u;su+illy cloaat" wo soIVv the cgaaaations .in O.1) tt)l'.Othc a r with the ccm-

:t r.; Inl t hot , ; or f ixod 'a 	 tivar '{ = 0,	 V = 0	 ins a local mininunu of

On, , .anticipates here that the condition V = 0 will lead to a solo-
,
t

tion on an tapper branch and that the minimization condition will lead

Lo ;I 	 Solution. Tn this paper we show that such an approach does,

in faact, yield stable, subcritical solutions of the generalized 13enard

problem, when 'f is sufficiently small. Such solutions may even be

conskivred as "large" solutions because they are both subcritical and

stable whereas "small" subcritical solutions bifurcating from the cov-

ducti.on solution at Rc are always unstable. In this sense our method

m,iv be regarded as a "selection principle" for obtaining "large", stable,

:;ubcritical solutions because the method selects contain solutions of

egUati.ons (2.1) while excluding certain others,	 By "stability" here and

Llaroughout tine remainder of the paper we mean "linearized stability"

relative to some appropriate Hilbert space.

T110 Outlin(I of tho paper is as fol lows.	 In Svotion 9 we );ivc on

Operator-theoretic formulation. of to certain tvI)e of generalized 136nard

I
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1)1coblem and in SQc.tions i ., .d G we reduce the given infinite-dimensitinail

prubletni to onv of solving a finite-dimensional. System of equatfons, the

! M- c.iliod selovtlon equation.. 	 The selection ecinaations nre derived

by meains of splitting; techniques such as these used in the 1.yapclnov-
f

N

:i"hnilcit method in bifurcation theory but the equations obtained arc s not

thc , ii-q ual bi.furvation equations associated wlth the problem. The wor' ,,

,4 Kirclig'isinor [101 and Satt'inger [7.7] play an important role in these•

preliminary sections. Sections 5 and 6 contain chi , main results of thv

paiper. Tn Section 5 we solver the selection equations in a general

rwtt.ing; by the use of vnriaational methods and present a linearized stability,

.tnaalvsls of the resultant stntionar y flows. In Section 6 we show for	 f

thehexagonal lattice that the classical hexagonal cellular solutions

;ire generated Crom the absolute minimum of an opproprinto selection

i tinct fonal and that such a m3.n1mizaition property is independent of the

kllmension of the basic underly ing finite- dimensional problem. 'thus,

:.111ce the cln.gglcaal hexagonal cellular solutions acre	 5ta11)lO, they

,src In some sense the preferred suberitical convection solutions.
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Formulation of thlc jambjoni. In this vocti+na wu formulate a

gonvr:aI I	 i Bona rd probIom f or curLaIn tompercaturv-dc•hc•ndont 1'1uI(k '11141

int rodurt' n llilhort space sattlnl, for its study. '('lit' particular prohit,n

clt e ^,rT'jisecl ho 'low Is t'11osen mainly for convenient-v,	 ` b y Iliothod.,; of tho palit,r

apply also Lo a much wider class of convection problems (e.g., st'e [lj),

Tho goneralized 136nard problem studied here• is to duterminu tho

-tm tonary flows t) ►' an infinite layer of fluid between two rigid, horl.;,.int:al

wal k; and huat-od uniformly from below. The fluid density, :•, is rassu,-iod

to ho vollAant, sny I = p () , except in thv gravity term where it i5 takt•n

l,rb v quadratic in the Lemperaturv, T, i.e.,

a = ► t 0 [ 1 - a (T - TO ) - b (T - TO)

wht•re 'I' ll is tho average of tho (constant) temperatures T 2 on the upper wall

anti T I on Llac' lower wall. Under this assumption on r, one is led, after

:,('.Inns the variables suitably, to the system of 13oussinesq - type t'quatic,ns

„ivon 1n (?.1) hoIow. The equations relate, at each point of the Bot

-	 ( ,Y:):	 ,y	 2	 2	 ,

the fluid velocity vector, u = (ul , u29 u3 ), scalar pressure, p, and the st l:ir

v,jrin])Ie, U, measuring the change in temperature from its value for the pur,

c • nrldt ► c-t inn state	 (see, e.g., [9] where u, p, 0 are related by a factor

Lo those used here ):

U. t) (r ► )	 -(,u - ^kf 1 (0) + vp = -(U • V)u + kf2(0)

(h)	 (Pr)-'AO - },u 3 _ -u • VO

(r)	 V•u=0

(cl)	 ca =0, 0=0 for z =
i2 .
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	is 	 ( ,0,1), "' 	 ` 2	 and A Is O p LVIa vv opt:naor; th0

I t r •au)dtI number, 11 r, equals the win of icinvmntic v1svomity, 	 to Wrmil

t undut:L ]Vity «111(] is regarded as a fixed constant throw-diout tilt' papt , r;	 tli0 (;r.i^;-

hot i number Gr - agd(T I T2 )/V 2 (g - gravitational constant, d	 thi.cknoz,

ul We unsenled Inyvr); A = vG1	 and

(A W	 ( a l)	 f 1 ( )	 1 (1 .. L`i'z)

(b) f2QQ

wbt • rt'	 is a "strUCture" parnmeter given by

I'ht 	 Ita^ltit;h 110111b0r,	 lea,	 Is 1-01nt,0d to 1	 by Ita	 PrGr = PO

A shall seek solutions having a doubly poriodi0 0ellular st ructure, 'h"s,

"I+011 positive numbers u 	 and a2 (to be specifi ed below), we set

l) _ fx = (X,Y,Z):0 < x P ^!,	 0 " y f 2r. 	.; 7 ..v	
0

A next Introdvvu the (complex) Hilbert space, H,, ciuftned as the closure of tla-
1)-

star 'v = (u 1 ,t1 2 ,UN)	 v smooth, periodic in x with period	 t	 I)Orfodic
),	 1

IIIV	 w ith per i nd 	 v = 0	 in a 1101t,llbar1100d cif 	 j ^ _ :
I
	 alnd	 •^,	 11'. in

tho 11orm	 ars^;oriut0d with the 1111101' prudurt

3
(v,w) _	 [ F Vv. • 9w. + Pr ^7v;•ti'w4].

f^ j=i-- J	 J i

Her0 and throughout the paper a bar over a quantity denotes complex conjugation

and the symbol
	

F	 . ̂ ,0 when used with elemuots of. H. Thus

lu 1 	'iu2	 ^u3	
1

;1X -I	 ,ty , 
+ I z

Il we ta?Ice the scalar product of (2.1.a,b) with w	 H, use (2.1c,d) and

intograltion by parts, then for v = (11, 11 ) we obtain

(? .'i)	 (v,w) - X(L^v,w) _ (F. I, (v) ,w)

Ilerr the linear operator L 
y 
A > H and quadratic operator 11y :11 -> H nrr t;ivtm M,

(2. 11 )	 L,y	 1, - 1'M,	 ]^y = F + fit,

I
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' 111d Clio oporatrrs l., M, F. t; are defined by

i:.o)	 (I.v,w)	 (v4ig3 + v3w41
5

U.7) 	 (blv,w) _	 2zv4w3

f(v) ,w) . -
	

(v • ',v) •w

(:' ,'1)	 lC (v) ,w)	
f x (v4 ) 2w3

!„t' a I I v,w in If.	 Since in (2.4) w is an arbltrnry elumom of If t•Jk^ -;,,

that a smool.h solution v = (u,O) of (2.1) in 11 satlsfias the operator f-qu;a i,,n

c =<)	 0 = v - XLv - F(v), v	 If,	 IR

In I'art, ono ran apply standard regularity methods (e.g., see (11,13,141) t,,

Mlior_ that problems (2.1) and (*) are equivalent.

In order to study solutions of (*) we shall rGquLro propurtlos of the

l in^ariird vor5loo of (^) when ', = 0,

(?.IU)	 0 = v - af.v,	 v	 I1,	 A . E .

I'hr 1 inonlr ( 1 ll,Vnvul. W problem (2.10) :.s ocluiva.1unt to the classic ol probler!, for

2•<<
amooth u, p, 0 periodic with Periods

ix^ i.n x and	 -" in y, obtaltivd by

	

1	 2

ow i t t 1 rt}, Ole ntnilinu r terms in (2.1). This linear problem is w•111 stud it,l

13,1),10,111). The elgenEunctlons are complete in H and are obtained from the

trro I at 1 otis k = ( k 1 ,k2 ,0) , Cr = (k1 + k2) 1 ^ 2 , i =•	 1 and

(2.11)	 (a)	 uj = ei- x 
(P (z) , j = 1,2,3,

I(z),

( d.)	 p = e L .. x	 2 1) 2 ,1) ,

(dl)	
tP.7 = 

i(7 
2k73,	

(j	 1,2)

6

1
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I'C,.

t kt .
2

iic I r k	 l)°^	
cl	

-	 )p ,	 :I	 prime	 denotes	
d..,
	 and	

,.'In 
d	

14
	 at	 ^ifv

cl r.

(b)	 0	 11r 4 + 4,3'

(I } )	 Iii ,^	 :7k:	 d l's{	 iG	 I t . ^^	 7r	
l/

	

it	 f	 ^^	 . F

On( , 	c y an	 :how	 (e.g.,	 see	 (61)	 for	 0	 ti)at	 div eigonvalue probls•:n	 0,

li 1v, :I	 countable sequence of positive, 	 simple	 eigenvalues,	 0 P	
t; l (	 )	 f	 `,(°.)	 .. , ,

lik pk I1^I Inl', vontinuously	 on	 tl.	 Moreover,	 l•t l 0)	 as	 .l " 'r U+	 or	 ` '^	 f.krll^ 4

;;s,clitrnt IY,	 It l (''')	 assumes -in absolute minimum at some^I3
	

0	 dependfiv	 if
1

on Ilie Prandll number,	 Pr.	 We assume throu gh 	 the paper that	 r1	 is Iln{	 l,vsip•

¢	 0	 (This	 property	 is	 su	 r,x	 tc cl by tlllmc•rit°.Il
J

VIII It lons	 1 3 j	 ;Ind	 is	 11slial ly	 assumed	 Iur	 13enard-• ty )e	 p roblems.	 I'or	 in- 1

•	 ' t k ?^l I°s	 n0 ,	 1110 	we	 now	 choose	 E .1 1	 such	 that

[if 	 6 we eons der some special	 cases,	 of	 Life	 form	 1	 = v3 	 important-

101°	 H10 st:udY of both "c;ialssical" and "exotic" hexagonal—cellular solutions (see

`}inve the vectors	 k	 in	 (2.11)	 are constrained by thc;. requirement 	 Lh.It
M

i^

ilc•^,c 	 hawk periods	 2`tt /cx
1
	 iai	 x	 and	 21t/(x2 	in	 y,	 it	 follows	 that	 n = i. I ! :l

.•a and	 in = k
2
/z2	 are integers and	 k	 must have the form	 k, =	 (n<:l,m,^,0).	 Thus,

the only wave numbers, 	 a,	 corresponding to eigenfunctions having; the required
I^'

periods arc those for which

ig 2	 2 2	 2(2. lG)	 r	 = n. o	 + m	 x2
i

for some integers m, n, i.e., such that the 	 2 = X
2 , 2
	

2ellipse c	 x1 + y2 	 2 
x2 pas5x s

tllrotigh at :Least one 'lattice point (n,m) ¢ (0,0). 	 (Note that there Is no non—

trivial volution of (2.12) jr 	 0.) There are countably many such gave numbers

O R 1 l	 1	 ..., each of which corresponds to a finite, even number of lattice+

points	 (In,tm).
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l l	 ^	 t'Ul'I Nfi(ltllllllti I t1 I lit`	
lt	

I.II t 1	 1) 1 1111 tit

(ll h ^,ml ^ y i	 -SI, x i	 s p ,	 9 i {)1

4:11 ' . 1 v Lhr Indives ilre chot;vIl 80 that	 n	 —n	 ,	 lIt	 -C'.	 , tii. `l 1.`1	 t

U. l>)	 kPi x (lt1) 
e1	 p.jc2',	 j	 *1,,•••,4-s	 p  	 1,2,...

.111A ob^lvrvv that

( 1, If))	 1,p(- j) w _.1,1d,

I'ol- v.1"ll	 tll 
t	 rill, rl ducted vigenvalue problew (2. 12) ha:, all infillit y Eivglirnl'1°

s1^	 I . 1>.11 , n11nt rIvi.0 so] tic toil.,

l:'.!r)	 (3,^.3,^,r)	 (I l pq , th!) cl , ,d'p q ),	 rI u 11,'2,a,.

sat isf yvs (2.12) whentwer ( a : '*
3

, '
4 ) sati.sfIwi (2.12),

vlov ordel• t he indic a es so that

C .I3)1lp(^tl)	 — la l^tl'	 ',p(—q) _ ' , 'I,q + 't'(t(^tI) :^ ..^i1 ^1 , O	 lth1	 t h ,	 ,,.

Tho o	 .l re simpler o1 onvalues and tho 4orrespondinl^, ,.p']1)1 m.1v be cah'Il t o	1) 1	 3	 !{

beposIttVv on	 (-1/2,1/2). 1,11oreovor, sinrh r711 in ('2.13)

It. c(III'l I t t ,	 ^1 y	 ill (2. 111) i L)r Solltlr cnl,icluh, I)Osit iVV 111tt1^t1•1'	 11 11'I {)

(:'.11)	 It	 gw 1l1)01 _	 min	 li
l	 _ P= 1, in	

P1

I,, olso rt simplc ,rigenv.11u,r of (2.12) and, for q 	 1, 11Pq ? t^ 1	if p J pb,

one now sees from (2.11) that the full eigenvalue problem 12.10) h .ls the,

so I ti i ons

(2.20)	 A = 11 Pq , v _ 1 ,I,pq .j (X ) = e ikp j 8X ^ pqa (
2 ), :j	 *1 ,^" 2 , • • , I-s

p

for p = 1,2,3,...,	 q = i.1,*2,^3,..., wheru

itr.

('? .:' I)	 p^1:1 ( ) —
	

t^2n pi •̂	 3`I 9	
2 nl ^	

cl 
q,I^r1'03t1.4I+q

t^'	 i :l
h	 h

t
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p,
(11:31 tht'	 ^"	 t	 tfPprld t1t1	 only In the fT"f3t rwK^ ti'r'^i[)t^nE'C{ ii•	 itz'^'+rtti:t

' ftt)	 (?2tI)	 (2.`'1) :urd the fact thatC ^^ f,,	 ,	 , 	 a:k°' ro",	 wk dart

It Is shown In t he Appvitdix that , Ow c I goiftina Itnis ^ .1 ^ "	 it, u- 2 t))

he n ,u;:wvwd ort- honormal in II, after scaling with Vattstant.s CIVIlvudiilr, Gtr p	 111,1

'I	 kill ittt (Ili	 j ,	 Thtis wv supposv Clam

pr '`gs j 

Olt	 1,; the usual KronaL-ker delta symbol.
it

The next lemma summarizes some of the properties :just di.,wussed. Thv

+1t«pat• tnw:a:r prope ftivs are essential ly well_ known (c, );. , sce [II I) , whi le

(2..' !0 IS 0.a19i1v derived from (2, 7) .

I.vnnna 2.1.	 (L) The operator 7.:11 - H is bounded, linear, selfadjoint

Atill ttUl p pact,	 Its Chalracte'ristia' Vi11.1105 and eige?nfunctions are given by (2—N))

nnri pmt i:tt v (1.22) and (2.23), The uigenfunctIons are complete itr If.

(II) The uporiltitr M:II -> H is bounded, linear and compact. 	 Its adjoitit,

Dt ` ',	 it. c'Ii^ICat'tt1'I'/.vcl I)Y

^c
c ' ..''+)	 (ht v,w) _ 2 z w • w	 v,w C H,
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i.	 '11ir r;t'It c`tjon I-gjtt it Jt) ,t,.	 Wt- allow nvxt that tllt- d-ent-nisi: t d	 I'll

oaii bt' rt'dilt'vil Lo .t ". lilttt'®d	 ► Ili#1 t't tltivt i..-I Ili	 t1.1,N

. r1	 h	 1% . lnt'c tat	 w.p I I t I ill y ; H ►t't l)i)tr'; it!, 111p I lit , It :.t 1 , 11vt a1 I' ll t1.11 1101 1 t E' ► °	 It 	 t o	 l

tll It . i;'^r^ I it lldc ." parallit'tt'r.

1l)t't'	 ;l I 	gIvoll 1)v (`.),19) iH a silnplt> t'1g1vilval	 U.1.') .11111	 I /
t1.	 (I^,tI)	 (1)1) 11),	 It is also a rharacteristit , vallit' tai	 1,	 of rlultil>1f^ itu

h":	 ^':; I .	 Tilt' ,14soclatt'tl nullspace 11 of	 I -° ;1 1 1,	 is :;p.iniit'(1 I'v
r t1

t ", I1	 .l	 "t)0li ,	 „j - '.1,'Q,...,-+N.

r.Il! =l dt: ► Ilul=, wItIi quantftic., on h	 it will often Ile vonvvniL'nt to rlul)I^rc',;,=

	

I	
I.j

tIgl	 ^zalil,..;	 I, ^. I'.1, '1 _ 1.	 Thu g wv write	 k^	 ^ k1^	 1O 
i i)1
	 -

I I.	 ^1°I rltr. ,^iiti I	 I1,1!wut ,	 ^ ^ 1 ,	 of M	 in	 II	 i r. :,1r.lulod by	 rvq : rlt atI) ¢{ I; ►► .

;ha II look for .olutIonti of (*) having tilt' foria v	 +	 with

'I old	 in 11 1 .	 Iti order to study the way I,_ and F	 avt oil v it wi 1?
► 	 r

I+t It ;01 It 	 t 0 int rt)tlut't' s0llh l related opuraVars.	 IXt	 P.Of `' t {^	 delltltt* tilt- itr°-

t ll!! ".11:ll I7rolvotioll of	 If	 onto lM	 and Itlt	 I<:	 dvnott, flit' invvrso n:

t III , t'o.A 1 1 irt Ifni of	 1 - 11 1 1,	 t u	 "1 t .	 In addition, we tlt'f 1tio bi IItioor opt , r::tor,^

If	 ' If	 ,Intl	 1 ! : ff - fl - it	 by r.

t t..'t	 t

	

(it,V) ,w)	 ^^ (u • :v) - w,	 11,v,w	 f1	 ^`
(	

0

( I, r)	 ( 1 , ( it,v ) ,w) =	

f 114V1Iw3)	

u,V,W	 Il.

1 ) 111 , .>,es vasil:y ti-om (2.8) and (2, 9) that

"I)	 F(v) = TOM and G(v) - r(v,V), v H.

it wi ll. frequentl y be convenient to represent v t M by its Fourier st'ris: s

v - X("	 t;,pqi
I)q.j

wit,1'!' tilt+ sum Is vxtt+mie(1 over flu.' ste t or integer triple,';	 (p,q,_l)	 with

I	 ,y I	 I >	 I '" q	 Whorl	 v	 111, (3,5) bovolix.."

k
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>iitr +^	
~[)[ti	 ,pq( D,	 It I01lowm Lb"t	 v	 itl 0 ,S)	 G i r	 ill + i,b0 1y I',..,1

it	 aid rill iv it7 
p(l

I " ",I1)(1(".9	
(or7 1 , ,
	

),

'the y tollowing lumma, proved to the At ivendlx, enables us in sCev xii0"Aline,

EIVII1atr with the opuratorm Introduced above, Here and throtlsl=)ltt Lb— pap,l"

E

t i is worn Whenever the (scalar or vector) paraf)vLvr 7 is nut moo, .nlci

Qurwrl,l	 'i,1, (I)	 If H,	 then	 No My	 and It Pv van b y obtainind	 r r-i!

t WO A l on'01 ealvulutl an. h. g. ,

)
1

t ^ I,v	 ^- Pq I	 i)tt
i 'I ]	 ,	 ^,	 i,iv	 ^tf	

j f	
,

pq	 t , i'C, - F. l

'Jit-I •	 tl	 done)wn trUilimatinn over tna sane' set of intvlwr
i

triples as	 ^ ,	 tnaq ; t

I hat f )	 ii	 ^ L,I)	 ^ ^(i)tf,),.j).	 In parti,etllaf-^`,	 ^	 Is	 hr)ulldt,d, „)s	
f

i	 it:ive	 Lind	 ^=ii'.)^;rt^^tt^t

fit ,	Mal i t ,	 i,e°,, for	 V	 M,	 (M",11)
f

(HO	 For u,v,w Mu,v),w) - -K(u,w),v) and F(ua) _ -Q,u).

(IV)	 1:11 j1	 : ' f I .	 In particular,	 1 M	 , MI and (•(:,pqr,	 .l)0) 	o

I t,t 111	 1 1 ,(1) 1",Iin with	 1 qI	 and !r n!	 1,2,,.,,a. 	 ^

CV)	 If ham the form (3.6),	 then thury are Pe'.11 t't 1nA.anN	 i) tl ,h l ,h, lh3

on	 p N but not on no	 suimh that	 b3 > Q,

tJ
On

	

I i 1, Ir1=1 I r	 . r	 n

N
0, M)	 (.(^=,1CM'') ^ ,n) ° b2 I:I

	 ( r1=
1Pi!?x' Qt + ic

l, + kn)

; Bi
d

N
b	 60c + is + k ).

	

r `:i	 r	 n

iw

L



F A

y

(i,• t)	 Cherc are nonnegaathve constants 
all^^ such that

t)

e 3.	 ')	 (^^(': ,l;t'(';')), tt) :..	 1 ap0j11 (» — c X11) .^,.^ t.
-n

Iht° von.1 tilt apt) ^ aa depends only can p0 ,Incl	 p U Ik e * kn j so that

The oxcopt"ionn1 00SO-; In W111011 tlaQ t-011s int
'11111	 ; 11 ta 	 pit(—II ("°j)

r	 i:;	 Ewti .wk , tlk- • rlbotl 11. 0.21 4) and (A,.3Y) of thc	 .01 o
1t 1 i ; t1

1t.	 .. , 1ry1^	 '^. 1 1 .

.'c° -.11.111 n^d tt, ridAt.° t11ci spcu^ta'a11 an111ysir; of the linear t,per.at^}r 1,

it,	 t i1Jt	 of t h4°	 l ltlt°ar	 opt-ratt +r	 1..Y	=	 1.	 --	 rM.	 FOr	 8111.11 l va111t.t S	 Of 1 t	 1 1,	 ::(-1 l

I11-i:n	 (1°.;t., sve	 f81)	 that the chtaracteristto values of 1, purLurhatlow;

tit	 1 11mw	 tt1 1,	
111 	 fat-t , the	 charalcLorisL it,	 vii l ueE9	 t=t I, , ,	 arcs

1
dvt v	 mlitt•d	 h,.°

thw iwoblom obt;linod from (2.1 2) 	 upon replacing (2.12x) with

( 3. 1 3)	 0 - 1) `̂ $ 3 .. ? r5 2 (1 — 21,x).,h14

lint° ^Ind4, to particular, shalt the critical characteristic v,lxuta,	
t°	 t

_ : (',),.

l.t°. 	 tho .°h;lractoristtt' v01114' of L,	 of least magnit title , is real mid ,Amplo

ar> ..n t°l<;rnvaful , of r n o problem (2.12) with (2. 12,1) replacatl b y (3.1'3) :1nd

.t t "'11,13 (ta	 W (Tliv rolaatlonship between 	 c and tho critical Raylel^°h number

1 ^i Hit , 11:,Njal l 011V dusc'ribed in f 1; 4; 7 J .) 	 The noxt d comma specifics t,ht. c°;;1ta1t ,inn

i11	 . t,f a t mid mnv bet proved along the 1ln+s of the devolopmant For thr nttn—

I !if, :11 I, rob i tim l	 I nl, to t.iquotions (3. 17) and (3.18) .

Lemma 3.2.	 The critical, characteristic value, a c , of L.	 has the expansion

(3. 1 '0	 "c = 11 1 - ^,r,2 11 3b 0 + A (Y)

Where It  is given by	 (2.19), b 0	is as in ('.8) and A c (Y) is ream, and

silt- i r;f ies 1	
('Y) Ie = 0 ('y 3 )	 as y ., 0.
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l 'ur stia;all	 , wt, s(-(-k a solution t,f egII-Rion M in the forr,

tit re	 ;	 ^`,,	 'lt	 aaarl	 t	 13 1	are to be dvtormirrvd,	 Tt	 _	 q + 0(.),

t ti,•-n
a ^l

i 0 + 0(i )	 aatcl tt solution tai tlav form (3.15), fur r^r:^,il1 	 Y	 ,

i;; ;I11writ toaI If	 1	 0 oa tuivrvi-itiral if	 `O	
r^,	

r

tv. t :.ubstitutt^ ('l	 n wduativn (''°), use	 I'	 ;ind	 S ^ l ^ I'	 to i,,,,^k^rt

"l t ;111rl "', and usO (ii) anti (iV) of lemma ? to obtain tho followilw,

s ^ta^ ti ism:; on	 'i	 ;rnrl	 ".l:	 J

l
t 1, R ^^)	 ia)	 u - (! - pa 1 'l)'i + tt l ?l ^.- VC:) + ,I'^'; IM1 

},	 `^1^ [•^^,1 ( ^^1 1a r) -	 )M;' + lr 1 (ulb tl -	 )l	 - r(^) - :^' C	 )

+ r l "[-1 a l (1'^ la i1 — r )hYi' -^ taC.)),

(b)	 ^^	 (tti'tl — +)	 + 5[l^ 1 Pi'. — ^!^(^, ) — W j] + °r•sfr(.) _ 2 ( ,.,,

+ Y2S [ — l a l 01 2 b^ — 1,)K:

0

!tlart>	 1^	 (l .. ;: l i,)	 is btnu^ded on	 ;pi t .	 ^;ivc^n	 r: tr	 Q	 there• is n

a
U	 ^;Ilvh that 117	 (, , +)	 1	 Ili	 with	 r	 4-	 tt1	 the= n otiv tan sulvt

l l.Ii,;r), b y stivccssivo approxinmtions, for 	 !`	 wl1 11L,vVr	 ,W

III I .JOL	 s;al IS  ius

C3. Ei 1	_1E1DEp + KF(j,)) + °rYl'

t• 1 , , ; , ^) • ^t(	 is bounded depending only on t
0

.
 

We next u:su (3.17)

to climinato IF from (3.16b), taking (3.8) into account to got

(1.1 8) 	 o = -1, + S [It 1 MKF(ij) + ltZ4°(^p,x1~;) - <<^(^.^,xr(^^)) 	 c(,)] + R(. , ,,	 >

Here, for	 I 1 `' Yi) and	 I., I + 11 1 1 , 11 < t o ,	 the remainder term

'YS{lt I M9`.l	(1'('I',411) + F(4 1 ) - 2F( g1j,`V) + Y[-li.1 0 bo -	 )M'^ - t= ( )

III

M
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It,fies,	 fol' swami	 r 1	 0	 dQpunding only oil	 to(	 J

rt	 {

I	 '.
IA . 	L.'ai ,,v	 Lhe	 Inner produOt of	 yr^ al	with equation	 (3.18),	 i: xaking use of	 Lhv

w

eximnsion	 (3.6)	 all([ various formulas in Lemma 3.1 	 to s,tsLain

N	 a

i	 ( J, 211	 0	 =	 bn ^ t, r)	 ^	
-T^-al + ba 

	 - (k	 + k
.1	
+ kaa) 

{il^^l=1i'.j	 i 

+a>	 (2-	 ) Lg	 i	 t ?	 +r	 (^'^, t	 r): ► ,	 1,:?,..	 ,:,	 j
i	 I.1	 =1	 1)0 

11 1 	 .j a1	 1	 - j 	 ^n	 ►^	
j

Heap , 	b — ► f R ( b 1 + b 2 )	 - b 3	 rand,	 accordin g 	to	 (3.20),
d

r .n
1
1

yq aL h,I Lu5	 y a°n (i.,	 r . .Y) 1
	 jr 0,

l'or the reasons dirsoussed in Lhe introduct wn	 (see also the discussion
r	 j

in	 [1'j)	 we	 nauhL	 ,lugment	 Lite	 Systvm	 (3.21)	 by	 an	 equation,	 Vfi^,r) 

1atVOMII,; the 60-Called J;0neralizod dissipaLlon	 V,	 whore	 1s	 a

a	 ro,al	 paroluvLor	 Land

s	 1	 L	 1	
N

(3.23)	 t)	 72	 T	 +	 b	
i`^.j`m' (ki +k^ + 1'm)

^.j^ =1 	 a	 ,ij!"m;=1

N
+ k

1 i ,',@ =1
  ap0i^(2 -	 ^ij)`^ii^^-i"a`^-j

'rims, we consider Lhe system of selection equations

2N	 3
IR

whe re	 _	 (F	 and	 l? _	 (!3	 t3	 ) .

t
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16.

The functional V is essentially the functional 1. in [ I , p. 631)

wit11 i : 'Y. In fact, setting t _ y in the analysis in [1], one obtain:

formally a number of expansions, caquati.ons, etc„ that are closely rolatud

Lo various quantities u,ed in the analysis here.

Perhaps one would hope to solve (3.24) by solving the equat:ions,o.p., when

(Y,,) = (0,0) and then using the :implicit function theorem to extend Such

.1 solution to a smal?. ('y, v) neighborhood of (0,0). One anticipates, however,

ditfictilty hure in implementing the impliciL-function theorem argument

(v. g. , sev [ 17)) beettusci the equations are invariant under transl ations

tul tl^r	 (x,y?-plllnc^.	 ConSuclucnt'ly, the solutions will not be Ic,olatod

And thu relevant .Jacobians will be zero. Thus, it is natural to seek

:;ijIutions in a subspace of 14, where one may hope that solutions will

be isolated. This is conveniently done in the next section in terms of

.;rout, reprusentatiuns as in [17].
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► . 11 iv ro d urcd f4olocLion Cowl ti oil S. 'i'llo basIL. subapare, Jn, wwd
►

tl ► rsni :InouL Lhe rcn ►ainder of Lhe paper is introduced in this section to-	 +^

rJeLhcr with sow technical lemmas regarding real solutions of  quation

LC  r be thC 2 K 2 matrix of a plane rotation or ref Ivction and 1,-t

a	 0 1 ,4c 2 ) be a translation vector. For k = 3,4 let r ic denoLc, the	 ^!

is	 k maLrix ubLained from the idwatity by inserting r in plaeo of thr,

idenLity maLrix in the upper left-hand corner. Set a 3 - (411,a„tl)

zinc] Ivt	 to = {r 3 ,41 3 ) represent an arbitrary plane rigid niotioii of }.	 (":,'.',LJ	 1

;;pa ro this L W01SH	 I IXVd:	 ^x = r x _}, '.".	 I'lien a represen La L ion,	 ] ,
a

,,f thin group, G, of ri;jd motions is defined by

(4. 1)	 ('i ,v) (X) = r^tv(kT—IX)

for smooth lour-dimensional VueLor fields v defined for x . IR

When	 = 0 it is well known (e.g., see [11, 17]) that the Boussinc•sq

ocluations in (2. 1) are invariant under T ,, for o	 G. The next lerrtr ►a

• show y that a corresponding invariance property holds for equation (*) When	 = ` ►

and that Lhe invariance also extends to the case y	 0. Such an in-

variance staLemenL makes sense, of course, only for 	 v for which

both v and T v l ie in H.
g

ko mma 4. 1 . LvL Cl	 G and suppose that u, v, T u, T v all l iu in

11. 'flan each of Lhe operators L, bl, i , ] is invarianL in the sense thne

1,('f V) ='f^(l.v)	 (T(ru,T^.v) = To ll'(u,v), etc.	 Consequently,

(4.2)	 Ll(T ►^v) _ Ta (L
Y
v), F ,Y (Tn,v) _ T0(1,^M

su chat equation (%) is invariant under Ta.

Proof. I.ach of the operators 
(
L, M, ^h, I' is defined ((2.6) , (2. 7) , (3. 2) ,

(3.3)) by an integral of the form I Aw, where A is a 11iiezir, A(v), or
t1
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I t I Inear, A(u,v), Lvrm in c14.1 13oussinesq equations. 	 If A is invariant und, r

f . 	t hen it Is easy to see that the corresponding operator is i.nv.iriant undar

l or	 as defined in ( 3.3)	 note that A(u,v)	 (O,U,u,v, so),

k ill ce (r4) 
9'3	

' [ ,3 , A(u,v) is invariant undar T, because

	

v) ) (x) ._ (0,0,u 4 (o-l x)v 4 	x) >0) - (0,0, 0 ,1 0 . (x) 0 v) , W

Tho fnvorI:nlcc of Ali = (0,0,'2%u 41 0),	 corresponding, LO tho Opc'ratOr ti', `t,llcjt;

Ill ;c s imi l rtr wa y ; the invar tance of the A's corresponding, to 1, ;uld	 I ^;

prcfl, • d In [clj.

Romark 4.1.	 lleceluse of Lemma 4.1, we may study problem M on and of the

clmwd llr car subspaces, S^ = iv r 11: T , v	 0, Without the use of pro1Lwtinns,

I)% , :vrcly restricting 01V operators iu	 to S^	 Under such a restriction

L1 1( .	 is (Jenote(j	 (.^_). and retains its form; similarly the riew svl,•c-

tloc oilli=lLtons, (3.24) , .,,	 are obtained from (3.24) nivrely IrY rutiLrictin.. thc' rr,-

cicnts	 in a well-defined manner dcstvrmined by	 Iay the restrf"tio11 k

tc, S,, we shall avoid the problem of zero Jacobians mentioned above. (If course

a solution of 	 in S^ is also a solution of Min H. On thc• other hand;
t•

.i tit nbf 11t y proof, in 5,19 although encouraging, is a weaker statement Chan c,nc»

M]	 It	 bnt inst.il .iI ytty Ill	 S,	 clods imply 111staht11t y in	 H.

Throughout the remainder of the papur we shall largely restrict our attv n-

t i oil to Sn and its subspace-s, where SO	 SF) 
when it denotes rotationon by

t	 _

11 i-ndinns about the z-axis- Thus, (x,v) -> (-x,-v) under n and

(^^.'3)	 (i'.tty) (X ' Y ' z ) _ (-v l ,-V2' v39 v4 ) (-x , — Y, I ) .

Tt follows from (2.20)-(2.22) and (4.3) that

^t
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))^ ^'^ I.K.. r Y Y

(^011`xt°IIIlt t itt Iv,	 V - > ' I'`1)fl ill q	 in	 0. ,))	 lion III	 1 r	 i I aad otl1V i I t t at'l t): t tltt

) • Y)ctl 110ittnts ,';IL 1.41 It-s	 r'. t 	F5	 1'n addiClon, it follows dlrvot Iv froT

( 11. x'1) that	 TTi	 sat I s I Iett=

Ul.	 t ) (`1',Iu,v)	 r	 (u,T,I V),	 U,v	 t	 I7.

Whi lit	 H is a complex Hilbert space, we arcs of , o urso intetrestud onl% , 	1ii

1. 1•:11 solutions of O'r ),	 siucct	 the basis eloment ,, silLisfv	 (2,22), tale	 ont-ftit • i, -it s

i n	 I hr t•:.it- Ins ioil 0. `))	 :,at is, l v	 ' I) q ^i	 l° I) rl` 1	
,ahttiiovvr	 v	 is rota; ,	 111	 I	 i	 , ,I-

.11	 Icd	 V 111	 ofIllot	 loll	 (4. ))	 1 fill) IIt—,	 (llrtlll'1'	 t}lilt flit , 	11'•

rv:l f . MOI_vnvvl', thtt 11)11OWIn ) t I 0111111 :,ht)w:, that Ihv YIf)vrntor:; lia[	 i1 ,7 1	 (-.,)	 1t'•

I'va 1 operators.

l.f Illllta 4.'lF.	 (i)	 f lit' operator ,.i	 L, M, '1, It are rl-Lll III (lif t sonsc tll',t

II,V) — `i'(II,v), L'tl'.

(ii)	 if	 ,tit is real ;;nd	 y,t	 »l,	 satisftt 	 101	 1 +'

lJit11	
't)	

atld	 t t)	 surh th;lt (3.17) - (1.20) hold. then	 (:, „)	 in (i.l 't

uul	 G	 I. ('. ,'f , r 1 111 ('1. 19) ;Iry rea I

PI1)( 1 l.	 1 1 ;Irt	 (I) I'OIIows oos11V ll'011l tilt dt'1111it1on:i, F,111C1' till' t'11't11dIif,

(I I 1 f oi,vlltial operators have real coeffIc:ionts, e'.1;. , 	 U(u,v) ,w) _ C l (ll,v) ,t^)

x
f 11 ,I V,fw =	 (u v) ,w) . For part (ii) , note that if y, ^ and ,i, are real then

upon faking the complex conjugate of (3.16a) and )!sing part (i.) we see that

is a Solution of (3.16x) whenever T is a solution. But the successivt'-approxi-

mitt ions solution of (3. 16a) is unique in a small neighborhood of -::. I K IN, + KI'(.),

which is re.il. Ilenc:e 71 1	 T is -real and by (3.17)	 '1' l is refill. From (1)

alld (3 .19) ,	 R(iJl,'t ,y)	 is real.

Since, according to Lemma 4.2, Y(I¢,T,y) is real whenever ^(,T and

11 are real, the problem of finding real solutions of (*) is reduced to tilat

of l'inding, for sufficiently small:. (y,e) r $ 2 , so:l.utions (^,T) of the

I
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N
-it-vtion equation: (3.24) with r and rp

	

	 r I d t! ,	real, i.e., with
i^! ¢1

i fk . t,,	 't	 >1^ 1 , i'—.1	
i,a ,	 :) _ 1 2	 .. N .

In the remainder of this section we consider problem 	 (*)^ obtained by

rk, HtrleLing; (*) to Sir . The nullspace of T - 1r 1 1, restricted to S

ti	 M n S . from (4.5) we see that if	 i (_ ,b1r'	 f	 ^	 7t	
t.1tl n	

^.^	
1 .^ ^ .^	 ^ , .. . ,^	 Gild

0.7)
.i II J	

i

`PlIL " ,41	 is N-dimensiona.1 and we shall henceforth tame the Ilbvrty of sup-

,r'	 in th,., notation, i..v. we writs	 _ (, ,.. ,;	 insk-sil
-1	 _h	 1	 N

" ► 	 -	 i,... N ) and we regard ) n 4100 V ;ts funCt10ns of

	

In T e I3 2 . Moreovor, in tlio context of S	 we have the following

1011trur NOv also tho related results 'an [171).

Lemma 4.3.	 Tf ,r ,- 
hi'tr 

and y,'C	 RI are sufficiently small than

1 tt ( , r ,r) -	 r,1"):	 n = 1,2,...,N.	 Tf, in addition,	 <' is real than

V 	 (, , t ,'y)	 in (3.21) is real,	 n = 1 ,2, ... ,N.

N
Proof. Since ^;-^ - ( j whenever t _	 '" 1;^?;"J belongs to ^f'	 and

inrL" it	 = a	 in (3.21), to show that F = 	 it suffices to

tshtn. Lhat	 r' n - r_ n in 0.22).	 Usi:ng the fact that 1' t ,l = ;,	 for

ontr	 ;vos 1't-om tho invmHanev of (3.1.6a) under 'i it and the, till iquenoss of	 that

also holds. Tt: follows that T tr % Y 1 = 41 1 :and 'r R = R, where : 1 ;Ind

z	 1. ,rr'c+ 1,M41 by (3.17) and (3.19). Thus, one sees from (4.4) and (4.5) that

r-tt = (R, jr1 ) 	 (R,Tit t tl ) = (R,4) n )	 rn .	 If, in addition,	 ;) is real then (2,22)

and 1,emma 4.2	 imply r = (R,tp n)	 (R,tpn) = r	 so that r = r
1	 n	 -n	 n	 n

20.

r

i
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.t

Because of lemma 4.3, the selection equations 0.24) in Hit- sett in, of

IS 	 m.av be replaa • ed by an equivalent s ystem of N + l equations i ►a thv N

(pnc islbly complex) variables 6 ^ (i'1,...,t^), the real vnri;abl y 1  and thv

real Ia aramc • ers	 r" and r.:

N
(', .8)	 (4a)	 0	 Fa,► (1^ , t ,1')	 —t (',n + b	 F.	

Ai :jni ' iI' ji, j=l
N

	

i 1 in i n	 V

a
(b)	 l'(I`, ► ) .. -'a	 i{i +a

	
N	

At.jm{'11 j „ ►» +	
Ai.l' l 3 '

(111.9)	 A1.7m = tS(ki +k^+kna) + ^^(ki+ "i
	

till) 
+ `'(ki-k

i+km) + I',(kl—kj—k ►),

(4.10)	
Ai.j = aPOiJ(2 — 

5
ij

) + 21 Poi (—i)

MorOover, since Lemma 4.3 shows also that F = (F 1 , ... ,FN ) may be rep..yarded

^a i n m.apl^laa^; of , ► neighborhood of	 (0,0,0)	 iaa AaN 	102 	 into RN ,	 it Iq

anturril. to seek solutions of the selection equations in (4.8) of the Corm

r* (Y'0) IR	 by use of the implicit function theorem near

t --	 0. Tf (i"'°, C %c ) c_ RN+l is such a solution of (4.8) near °r = , = 0,

t	 ({',N, ... , i>1 , l3 , ... , (,*,T) 	 is a solution of (3.24) satisfying (4.6) with

j	 I' ) , i.e., a solution of (3.24) 7r
 satisfying (4.6). Thus, the above

construction  leads to real. q) in h4,» and, hence, real solutions of (' ).,, in

S,11 * 
To actually carry out the above construction, we seek first the real

so lutions of the reduced selection equations_ obtained by setting ',' = t = 0

in (4.8):

(4.I1)	 (a)	 0 = F11((.,a,0),	 n = 1.,2,...,N

(b) 0 = V01T) ,	 (a,r) e IR

a
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r
itc'mark G..2'. 	 Tt is e^nny to check that Fn (^, :t,0) . 2 a ^^^	 , as = 1,2,...,.'	 i

n

!;u that (4. 11a)	 is a gradient, system. Si,nov (4.11a) Is not LIie reduced bi t'ur-
i

c.att.an :ayst.om a8sociaLed wltia (*),	 this gradient Mr ► acturc- In not ldenticai

Lo that. used exCennively in 11, 10, 171, nlChough it is elosely relnted, A
a

n it v that Che reduced system obtained from (3.24) by qutting v _	 0 has
a

as NOWW structure, with Fn (0, ► ,0) ^ ^`^-^- V({ ,") ; the faftor 	 appears in
n

thv 8 , case bccaune of the identification of 0 	 and

In dvucloping as seduction principle for ntablo suberitical hnxngnnal i
4

ccll4 on,- novds to consider My the reducod sulection e ua ► tions in (4,11).	 +

other choices of the reduced selection equations are also appropriate: in
l

conuccti.on problems, e,g., in the study of supercritical solutions and they	1

vxch:ango of stability between rolls and hexagonal cells, and will be can-

sldvrvd in a subsequent paper.

t

w

,....,„.,..,^..-.„T..^^-•ar- fir-,,: .y.^-r..^.... ,_....^...._. ^.-^....... ^	 _..^	 .. y.	 .. ..
 r
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OF 13001;► 
QUALIT y	 a f .

"i. lixi U-nle and stabilit y of real salut_lonH in 	 Tn this svvt loo

wr ` .1 1 1vv the soIvetI(in c+ ►IliatIonR in a goiwrtll nrttitip, liv Inerans 0r .,riationaI

mtthods.

The tollcawta p , preliminalry Result ylelds real solntlons of (*)	 In	 s,

'I'llivorom a. I. LeL 6 *,I*) , RN+l, with 	 * v U, sat Lsfy the rodilovii

.mvI oct. I on oqualtions (Ia.11) an d suppoov Cht, .J avohian (IvV ^ ^ 	 is not , vro :it

0,0) . ` lien there is a	 i	 0 Fst ► t`h tha t for	 R

with	 , } a•	 the selvetion equations (4.8) have .a solution

(i ( • ,+ ) , t ( 11 : ))	 IR
N+1	 sat I ^i rying

C_),I	 lin► 	 (t^('f,`), ► (Y+'))	 0*o*}.

i'tirthermore problem (*)_. has a real solution of d iv corm 0.15) with

N

and T obtained from Jij by means of (3.17).

The result follows from thc implAcit —function theorem applied to F,V

110;11" ({',9 ,y, t.)	 ^T*,0,0), provided that det ^^ r̂'^"^^` is not zero WhOn
^(t ,T.

l^v,tlu;lts^(l at	 ((;*, ► <,0,0).	 I3t1t	 j = 2" is vvro at this point a ►1d

Thils ,

de l
3A(1'>i)

 (19s^,t. *^Q^o) 	 _Il?*l	 dVL 
	
(j!;s's^C^e^n^^) # ()

and the rest of the theorem follows easily.

To utilize Theorem 5.1 we seek solutions of the reduced selection equations

with (.,9s ^- 0. We next show how this may be accomplished by exploiting, the vaarl ;l—

ltonal struc ture or tho reduced problem ( fit. l).

Note that

w

1w

..	 -
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h

Where

N
0.4)	 (a)	 C1(i')	

j ,}	
.1	 A^tii l^ l+m

7 ^^, j Mal

N
(b)	 c() r, ^ i % lAIiP.Ir2

,„^

In ordvr Lo dotormine suberitteal solutions of M1. we shall impose t1a , fol lows?! -

hvjwt hooe y on 4I and c :

(if )	 cl (;')	 0	 on NN

4i

(11 4 )	 c U)	 0	 for . .111	 I, ^ 0	 f ti RN.

lWmnrk 5.1.3 Hypothesis (11 	 in general, since i(k i
+k^+k

it) is

vero unless the vectors ki , ki , km farm an equilateral triangle: ki +k j +k^	 ll.

This latter condition is passible for hexagonal lattices, -Y1

when	 satisfies (2.13) for integers n ll , m0 of the same parity. In such	 1

V; 1.1 ; 	 (llcl )	 IS sati;afic:d if b ^ 0. Concerning (H C ),	 the condition A i 	O
s

follows from (6.10) find the noanegativity of the a
p0i.3 

in (vi) of Leimim 3.1. `'+o

hvpothv.-;is (ll c: ) i,: sVrtlsflOci, e.g., if c1 ^a i?0 for each -11,2,.,.,N. The
1aLLL1 V condition i5 fulfilled if at least l one term in the sum do.fining n

is dffFereu1 from zero.

In the following discussion of the finite—dimensional problem (4.11), a

primo denotes the gradient with respect to 	 Thus

1 N	 2	 N
{•^ (,;.) -	

(l.)^•^1	
g^4(() _	

)^i	 -1. '	
etc.

J	 J	 ,J

In view of Remark 4.2, the system (4.11) becomes

(5. 5) 	 (a) 0 _ — A P, + q' (^) + c' (^) ,

(h) 0 = - z JriJ 2 + q(fi) + e(R)



.

Wo th-t in ► , st'loc Lion nutlet iontrls h and t; by

o

n	 ,	 i f I'"_01

	

(h)	 6	 d'( ► ) /(4r(I??

I.tumt.i 5.I.	 I-vt OW funrtlonals	 q	 and +i ht- s^ivvr ► by (5.1i) r ► nd

	

N+1
x° sa ^tst It-14	 (11 . ) .	 I,Vt	 (I', t) . ii	 with	 0 Ond HVL	 'I hen

tho 4oIIowin^; arc, equ-1vaIent.

	

(l)	 (I ,t)	 is a .4olution of (5.5),

	

(ii)	 is n critical point: o f f wIVh cri t icul value f(I-)

	

(itl)	 t'= Is rc critical point' of	 t; c:nI'^	 1	 witb eritical vG ► 1110

and t ho magnlLn dO 01* F 81V Is! icy O

r,

	

Proof.	 Tha c-riCiCill points of f(V) arcs deteniiJned by

whore

(5,O)	 ► = 2(q(1) + c'(I >>^
 It, 1

-2 = 2ft(^ >^

aIIloo;^:	 0,	 co q ►► ations (5.Z3), (5.5`) are just (5. .5).	 Thu. (1) rind (Li) ,ire

equivalent. The condition that I4 be a critical point of g(C,) on Ir. ! ^ 1

with critical value - 2 is

g' ( ii )	 q(I4) (2c(f?) ]-2(zc(^)q' (f') - q( 'PI )c' 61,)1

if we use the homogeneity of q, q', c, c', g' and the Euler identities

I'?•q'(t;) - 3(1(()), f^-c'((',) - 4c(N), P,- g 1 0) = 2g(f)),	 then from (5.10) we yet
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{ °i. t.'.)	 ..c1F ^ ^, ^t^'{s•;) ^ 1;' (,^) ^ g ^iF) C ►•(') ] -2[2c(^)s1' (^^) - q(: )^'' ( ) 1.

it , (v,`t) sntisf1eq (5.5) with Fix j 0, tltcti upon multiplying (5.5a) by

usin g the l:uler Identities «and subtr>"aaing twice (5.5b) we obtain

(5.1 1)	 0 - q(') + 2t-(`),

whit-h	 imp l i is (5.7) .	 From	 t	 0, (5.13) and (Il c )	 wo have	 q (t) -2t-(	 )	 tl.

bolt	 , equations (5.12) and (5.5n) are the name. Similarly, (5.5b)	 and

(5.11) [nip IV

( .) •+ 4^(^J l	 2r(I^)  	 4a(6)	 _	 ^,(I )

•t ►) that ( 1).5b) and (5.11) are the ,same. Thus (1) implies (iii). Finally, 71-+t

, s and	 ^^^ satisfy the conditions in (iii.) . Sinc • ^	 0 by assumption,

('^. 1) is c+quiva lvnt. to (5.13) tics thrtb it},itin (5.5) is ow gatnGr as ( 95.11) , (5,12).

Thus, (IU) implies (i).

It is cloar from Lemma 5.1 that solutions (f *, T*) of, the reduced s ►:lec-

tion equations with 1'* 0 0 are obtained from those critical points 	 of

on	 for which g(6*) # 0. Vuichermore, it follows from

(it , (5.6a), (5.13) and (ii) of 'Lemma 5.1, that for such critical points

(. 14)	 r* w 2FW*) = -2 (k s )	 0

^1i*l
2

l'Itu:s, on 010 basis of* (3.15ff.), a solution of ( *) l	 goner.ated from (, s'^,t ^)

will be suberitic.al, at least for small values of y and ;'. AccordinE, to

Theorem 5.1, to extend such a solution of (5.5) to a solution of (4.$) we must

;showy that Met ^/ # 0 It ((J,T,y,e) = f ^ *,T*,G,0), i.e. det E ^ 0, where E

is the symmetric matrix

-twio fir► ^/ „i::r^,-++..	 .,
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('). 1))	 1", - -1*1 + (1 11 ."h) + C11W*) .

lltu:;, dot`
,)f 

is zero if and only if E is singular. We have established

the following result.

Theorem 5..2. Suppose q and c satisfy hypotheses (H 
q
)and (HC).

l.,-t- G*, 1	 0* 1 0, be a solution of the reduced selection vquationa (5.5)

such that the matrix E in (5.15) is nonsingular. Then there exist -
I
	 0

and { 1 %, 0 such that, when	 1-,(1 F Yl and	 i f. 1 - I 1 , equation (*) It has :a

roil, subcritical solution (v*('y,f),>*('y,t.)) of the form (3.15) with

I - [(;, ,t) ° 0 and generalized dissipation V = P. In fact,

N
(5.16)	 (n)	 v*(^f,t	 f3*0IJ -t-,;^) + V(Y,t),

(b)	 1*(Y,T)	 P- Y2111(111b0 - 't*)	 lt(Y,t) = a c + Y21;^^* + '' (.^., )

where i * satisfies (5.14) and, as Y -I- 4, V(y ,c) = 0(Y 2 ) ',(Y,e) = a('i `)

According to Theorem 5.2 and (i) and (ii) of Lemma 5.1 we can generate a

solution of (*) T , by finding a global minimum of f on R'^. If

with	 1, note that

F) + 
- a(f3) 2

(5.17)	 f(G) = c(3)I	 - g(R)•

L.	 2c(0

We minimize f(P) on SN by choosing 0 _ -q((3)/[2c(_R)1 and maximizing;

11,6) on 101 = 1. If q M 1 0 then we generate in this way at least one

nontrivial solution of (5.5), say (( *,T*), with T* satisfying (5.14).

If we differentiate (5.8) and make use of (5.8) and (5.9), then we find that

0.18)	 f,r(139s) = Il.;*1r2[-T*:C + (l"O*) + c"(f3*) J = jr*j -21: .

'z ince f has a minimum at (3*, we know that f"({3*), hence E, is at least

,

27,

t

positive semi-definite,
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4	 ^I

2d.	 ,

( `i. I9) 	 0	 f^W.

Thus, If 8 is nonsingular at a minimum of f, it must be positiv4? dvflnitp;

we shall see that the solution of (*), Tr generated (as in Theorem 5.2) from

(l'*, *) is then stable in S1.
It

Thv relationship of the critical points of f to the generalized dissipation

V Is given in the following remark.

Remark 5 .2. From (5.3), (5.5) and Lemma 5.1 one sees that if 	 0 is .a

a'ritical rwint of f((%) and ' r
0 

= 2fW0), then 
RO 

is also a critical point of

V(1 i a 1
1 •0 and V(^ 01 1 ,0) = 0.	 Tf TD is also thv alsolute minimum of 2f(,^.)

thvra V = 0 is the absolute minimum of V(`t' o ,(^) .

We turn, then, to the quostion of stability of a solution (v*,^,*) =

(V*((,`)s?*(Y,1')) of (*) n having the form (5.16). For small ,t, and =, the de-

rived operator, D, of (*) at (v*,?*) is a linear Fredholm operator of index

zwru, tlu, porturb,ition by a small bounded linear operator of the self-adjoint

opei-iiIor T. — la l l.. As obsorved in [17], because of thv invru-lanco of the equations

under translations of Ole (x,y)—plane, the stability of solutions of (*) in H is

.always indeterminate. In the case of S 7T , however, we have the following result.

(7110 notion of stability herd is "linearized stability" as in [16;171.)

Theorem 5.3. For y,e sufficiently

from Theorem 5.2 is stable in SIT at A

L in (5.1.5) are positive, and unstable if

particular, if v(Y,F:) is generated from

and such that E is nonsingular, then v("

small, a solution v(y,c) of (*)_ obtained

X(y,c) if all eigenvalues of the matrix

some eigenvalue of E is nef,ative. In

(5*,1*) corresponding to a minimum r; f

(,e.) is stable in S^ at X	 1(' 7 ,F) .

To prove Theorem 5.3, one proceeds as in [16] to determine a subspace of

S i invariant under. D and corresponding to the N critical eigenvalues of

D for sufficiently small Y and E. This subspace has a basis of the form

f
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( 1).F;tI)	 zi	 ('i'}`4'a^i) + fzi,	
z	

It1 ir 	 i	 1,2,...,N

gat t:;fyirif:

N 2	 '
'Dz i	 slY 1)i'jZJ	 i = 1,2,...,N.
.l 

'ray vscab 1 ish tho existence of the basis (z i , ... ,Z N) in (5.20) one needs to

show, in partteular, that T,Z z Z 	 so that z 	 belongs to S_. . The proof

that '1' ia 7. i = 7. i makes use of the tacit that	 (Fi + ^ i ) belongs t,o ;.I^	 and

foIIows along the lines of the derivation of (3.17) and the proof of Lemma ,3.	 }

Shwo we .assumr III '111vorem :) . 2 that	 X	 is nonsingulai • , (5.19) implies that all 	 ^
A	 ^

elp,vnvaalues of i are positive if (=* minimizos f. In this fuse v(r, )	 '

Is stdblo in S, at a - a(,) ,a) for (y, r-) sufficiently small.

ri x

k
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6. Subrritical hexrt onq.Lee1lu1ar solutions. We now restrict the

pt•ob°leM to the hexagonal lattice and prove a general result about stable

subcrit ical solutions which yields a s(doction principle for howagonal

cellular Holulions. To fix the y ideas; w4a treat also tho Spacial cago

oI' d Lm I•I = 12 in Remarks 6.1, 6.2 and 6.4, this case is the

sc-LLing in which "exotic" solutions of the Be'nard problem were originally 	 I

studied in [10].	 j

Wo begin by showing, for an unbounded sequence of integers N,
i

that one can determine N sehLUples of critical wave vectors corresponding

to the critical wave number, X3 0 . These 6N vectors generate a nullspacu,

with dim ,11 = 6N. Take q  = F,x, r t2 = 'x and choose C^ so that

(j.13) has exactly N distinct solutions (n ,m) _ (n,,m.)N_	 where
0 0	 J 7 J-1

n.nonne.	 arand mc'	 ,ative inte gers of like	 l^	
7	

g	 1,	 parity for which the critica.

wave voctor k^ ='(x(/nj,m1,0)	 makes an angle r 1 , 0 < ^<°"/3, with

(1,0,0). I.e., take cx = a0 /f10 where the integer 1'10 is chosen so that
[

tho equation 3n 2 + m2 = M0 has exactly N solutions satisfying the

above conditions. (Tt is well-known that such pairs (N,M 0 ) exist for

rrrn unbounded sequence of integers N (e.g., see [20, p.345,ex.51).)

t

Ulo suppose the N vectors, kj , are ordered so that 0 < O l < 6 2 < ...	 AN

hc• ►'ine the N triples,	 T. a (k.,k . +N'k' +2N) where, for j = 1,2 .... ,Ns
J	 _J J	 J

kj+N (resp., kj+ 2N ) is obtained by rotating kj counterclockwise

through it/3 (resp., 27r/3) radians. Note that the 3N vectors, kj,

have lengths c10 and direction angles 0.
J 

satisfying 0 < 
0 1 < A 2 `-	 ' < 3N < T'

Each of the N triples, ., can now be extended to a sextuple, 	 T. - Tj),

if we define k 	 -kj (j	 1,...,3N) in accordance with (2.16). In the

above context there are	 z',finitely many possible period rectangles

corresponding to values of a = aO/V%, however, the critical wave number,

J7̂_J
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')0 ,and the "size" of the basic hexagonal cell remain fixed throughout

vile following discussion.

Remark 6.1. If in the above (N,Mo) = (1,6) then no = 1 and

m0 	1 in (2,13) and d 'wm Al = 6. In this case we have one triple

(I< 1 ,k 2 ,k,3 ) :ind one sextu^^ Le (k l ,k2,k3,-kl,-k2,-k3), where k 1	 (r 3,] ,o)

k2 3 ((0,2,0) , and k3 = z c(-vJ,1,0) . If (N,M^ = (2,28) then

no = 3 and m0 = 1 in (2.13) and dim M = 12. In this case we have

two triples (k	 andand (k2 ,1c 4 ,k6), where

It = CY.(3F,1,0)	 k2 = r4(2F,4,0)

(6.1)	 It = a(r,5,0)	 k4 = (X(-r,5,0)

k5 = ^.r(-2 33,4,0)	 It = r^(-3v3,1,0) .

Tho first of these special cases, dim M = 6, was studied in [2; 5; 9; 171

In the context of classical hexagonal solutions. The second case,

slim	 = 12, was studied in [1.0] in the context of "exotic" solutions.

WO now dufine a basis {,p j } 6Nl for Min accordance with (3.1)

sand proceed as in Sections 3 through 5. To make use of Theorem 5.2 in

the present setting, one needs to minimize f on 1R 3N , where f is

doFfned as in (5.6). Thus,we require, in particular, the coefficients

in the functionals q and c defined by (5.4) with N replaced by 3N.

The coefficients

(

 of q are given by

I1, if (i,j,m) is a permutation of (n,n+N, n+2N) for
(6.2)	 Aijm	 )	 some n c {1,2,...,N)

l0, otherwise.

Thus, setting P, = 2b with b defined as in (3.21), we find

6.

lk
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N
(6.3)	 q	 8

j 
F 01(ij

+ N^j+2N'	 +
=h 	 ,l

Note that if b ^ 0 then q(() 1 0 since, e.g., k j - k
j+N + kj +2N
	

0

1 - or j = 1,2,...,N.

Wo next discuss the coefficients aij and 
Ail 

required to determine

o(I') (see (4.10),(5.4) and (A.37)). For our purposes it suffices to

ovaluato	 aij and a i(_j) wlien ki and k3 lie in the same triple T11,
H

n = l,'3,...,N.	 Recall that aij depends only on 
Iki 

+ k^1, i.e.,

only on the angle between ki and kj (see (A.37) & ff. ). i,'hon ki,kj

I hi in the same triple and k i	 It  this angle is either Tr /3 or 2-/3.

We denote the corresponding vale-s of aij by a(-T/3) and a(2r,/3),

respectively. It is now easily seen that if aij = a0r/3) then a i(_j) = a(2-/3)

sand I fi i j = a (21r /'3	 then a i (_ j ) = a(Tr/3) . Since Aij = 2(a ij  + a i (-j) ) when

i ii.i, and since 
ap(-q)	

ai(_j) when apq = aij , it follows that

the A 	 a commo,i value, A = 2(a(Tr/3) + a(2?r/3)), when i 	 :`j

and k i ,k^ iLe in the same sextuple. Similarly, when i = ,j, Iki + kj 1 = 2'0

do that the A., have a common value., C, i = 1,2,...,3N. Thus
x^

C,	 if i = j
(6.4)	

Aij
A,	 if i # j and ki ,kj c Tn , n = 1,2,...,N.

Tt follows .froth (4.10) and (A.37) that all A ij > 0, hence A > 0; further-

more, hypothesis (H c) is equivalent to C > 0.

It is also possible to determine other relationships among the Aii 
when

k i .k. lie in different triples. Such relationships are not required to study

the classical hexagonal cells but are given in (6.6b) below when N = 2.

Remark 6.2. In the context of (N,M0)= (2,28) in Remark 6.1 there are nine

distinct positive values of 1ki +kj 1 for i,j e {il,±2,...,t61. Therefore, there are at

t

r

t
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tm.st nine gust Lnvt positive a id °tap i^. One finds that Aii ^ a ii 	 (;,
0

1	 1,	 ,...,6,	 :nld

aai	 :n	
a.34 

_	 a56'	
a l-6 = a23 ' a45'	

a14 ' 
`136 ^ 

112
-5'

`125 ' 
a
3-6'	 a16

= 
a 2--3 - a4-5 ' 

,
'1-2 - '3-4 - a5-61

al 
3	

=	 il.	 `i35	 a24	 1146	 -	 c12-6
i 1 . +	 . al- .3 =	 a,, 6 	=	 1a,^_ 1{ =	 n.^ 5 	-	 i1,+-6	 and	 cl_ I_;)	 "	 •ai.l

st	 t,;l €,	 th:iL	 I lit , 	A
l
 i
	

satisfy

A.26(++.h)	 (:+)	 A 1 . 1	 Al,)
I'll,

A 15 = A46	
A

lb)	 X12	
t°34 =
	 X56'	 A14 - A25 - A36'	 Alf = A23 = A45

The	 ionships	 (6,61))	 are needed far a complete analysis of "exotic"

soliit ioil:;	 wilvil	 N	 --	 2.

1'rom	 0.410	 and	 (6.4)	 wc' t;et c(t=' )	 c(i:)	 + d((^),	 where

.
.,	 ;4	 1

1 6. 7)	 4 (, 1	 i C	 ^.	 +	 A	 £.	
_	

al 22	 22Wlai .	 + ,
+'i ii+2N + lf' 3.+N('i+2N)22	 i=1^}	 i^ '1 i i+>^

.+nd	 cl(. )	 (1vootes	 the	 contribution
7	 h

to the sum ill 	 (5.4b)	 of terms	 A i —i r 1

for which	 ki	 and	 k.	 lit, in different triples.	 Note that	 d((^) ? 0,

[l 3N ,	 5inc. e	 A.. ? 0.	 Thus,	 fM ? f W) ,	 where	 f (r, )	 is defined

iu 0.6) and

y f (q((3) + c(i ))/^(3i 2 , if R	 0

(6.8)	 f U,I
!	 0	 , if R = 0

The t:unCLional f and its critical points play a key role in the determina-

Linn of stcablo, suberitical hexagonal solutions. Since (H c) is equivalent

t.o t; ? 0 in (6.4), the functional c also satisfies (H c), so that

;.cxanma i.l is applicable to both f and f.

x
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Lemma 6.1_.	 The nontrivial critical points, i3, of f satisfy

n	 ^+N	 n+2N' n 	
1 , 2 ,... ,N. Moreover, f assumes its absolute

III 1111

(o.9)f0 	-V/9(' 1 with	 C1 `e C + 2A,

im those critical points for which all nonzero fjsatisfy "'2 a 44 2 /9CV

Proof.	 At a nontrivial critical point we have (see (5.8), (5.9))

(6.11)	 0 = l^'I Z 1f?j
	 + ^ + ^ ,	 i	 1 ,2, .....3N.

(.cat `L n (k ,kn+N'kn+2N)
 

be any triple and let i, j ,m be the indices

(n,n + N,n + 2N) written in any order. Multiply the i h equation in

(6.J0) by l"i , the jth equation by V'i and subtract to get

i

(^i..l 1)	 0 = (1;2	 (i^) [-2f (f^) + C((2 + ^s7) + A('m]

By making use of the equivalence of (i) and (ii) of Lemma 5,1 applied to

one :;;es as in (5.14) that	 0. Hence (6.11) and (H c ) imply

lhnL I'. _ [^' 2 .	 Since n and the order. of i , ,j ,m arcs rarbi trary, we
	i 	 j

have ("2 = P,2	 2

	

n	 n+N	 ^'n+2N' n = 1,2, ... ,N. Observe that if ki s T n	 l,c^

L 11
i . - equation in (6.10) involves only 1n, In+N and I n+2N . Since we

may change the signs of any pair of these three hj 's without clianging

the in equation, we may suppose at a critical point of f that

'n+2N - (jn+N - fin' n - 1,2,••.,N. Then the three equations in (6.10

corresponding to each T 11 become identical. and (6.10) reduces to N

equations for Vin , n = 1,2,...,N. We suppose that exactly MO of the

I+n are nonzero and reorder the indices so that I1n 	 0 if n = 1,2,...,1.10 , and

;'. n = 0 if n = M0+ 1, ... ,N. Then (6.10) ma y be reel .'iced by



M

('9C'llAw Rr ♦ 	

>^Fyy.I^¢±Y tl x^*

f

(6.12)	 0 - -2f(fi) + BO + C1 a , i - 1,.. . ,t10,

where C l	 C + 2A. When lb . lone solves (6.8) and (6.12) to obtain

4B`/9c: ]  , f (f;) s f 0	 -13 2 /9C 1 . When M0	 2 one subtracts the equation

Cor ' "1	 G r0111 th,aL For 	 -'i Lo t;et. the M0 (tip- 1)/2 equations

(6.13)	 0 - (ji i -  0
1
)(B+Cl ((ii +13i )l, a = i + 1,... ' M0 ;i M 1,...'mo.

It is t+asy to ds:duce from (6.13) that the ( s eithex are all equal or

;assume oxactly two distinct values. When the tea 's are al.l equal., the system

(0.3), (6.12) become

Lh at h,2 = 4i3 /9C ,

wL' suppose

tlae ,-, a 's equal to

s a pair of equations for (? l , f((.) and one finds

f 0 . In the case of exactly two distinct	 a,

with pl of the pa 's equal to 
r^	

auicl 1)2 of

'v pi + P 2 = M,. When the system (6.8), (6.12) reduces to

(6.14) (a) f ((1) = [ B ( p l u1 + P 2 wZ) +	 l (P 1 $1 + p 2 ,' 2) 7/3 (p l l + p2i'2)

(b) 2f(,,,) = B(;i + C l ^ ' i = 1,2.

Since ('1,"'2 are different and nonzero we seek a solution in the form

s 0 0,1. Using (6.14) to express f((3) and 	 l in terms of

s, one finds that t;l = -B/C 1 (1 + s), f(a) = B's/2C 1, (1 + s) 2 and the

solutions are determined by the roots, s, of

0 = -p 2 s4 + 2p 2s 3 + 2p ls - pl .

The batter equation has exactly two real roots s l , s 2 , which satisfy

1
0	 2 < s	 if f is the value of f corresponding to5 l	 Z,	 2	 i

h i , 1 = 1,2, than one shows that f  > f. 0 so that these solutions do

not give the absolute minimum of T.

Recall that f(a) ? f(a) for all a E R 3 and, in addition, observe

that f(() = f(a) = f 0 = -B2 /9C 1 at points, a, of the form

Mw
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3t^ .

E 1' i 	O 1  I i N, n + N, n + 2N	 '*

''n	 1't1FN	 n+2N 	 213/301,
r

Since f 	 is the absolute minimum of f, it is nlso the absolute minimum

of	 f, i.e.

(0, 10) 	 f0 . min 3N f (o)

IL follows from (6.16) that each poitiL of the farm (6.15) is a critical	 }^

puinL of C. Moreover, since C  > 0, one can show that the matrix F. in (5.15)

Is nonsingular at these points; in fact, der E `, (f3 C /2) 1` . Thus, .ac( urd)nl;

to Theorem 5.3 each of the points (6.15) generates a subcritic;al solution, 	 t
l

v = v(n,N) , of (*),h stable in S,tt . Note that because of (6,16) and Lemma 3.1

t bare are no other sol,ut tons in Sit generated by solutions	 of (5,5)
{

with 1 rr0 M 2f 0 .	 1

	

r	 -

Re mark 0.3. one can, of course, also consider the solutions v(n,"^)

as soluLicrns of (*) in , ^H, The sLability of the v(n„^) in , H is de-
4

LcrminGd to lowest order by the eigenvalues of the 6.1 n. 6.N .lacobian	 r

matrix of Lhe full selection equations (3.24) at Y = r = 0. One

finds as in [1', pp. 642-643] that all but two of these critical eigonvalues

:Yrr, positive 'and, because of the invariance of Lhe equations (2. l) under

0%ioslations of the (x,y)-plane, the remaining; two are 0. Thus, the
r

stnbi.lity arguments in [1] apply also to the hexagonal solution v(n,N).

We shall call a solution, v, of (*) a hexagonal cellular solution

IS the leading term in v has zero component across the vertical faces of 	 j

a ri.g;lit hexagonal cylinder Z and al.so across the vertical faces of cells

obtolned from Z by repeated reflection across the vertical faces (the



axis of	 Is parallel to the 4-axis and Lill-, Oret:as HQCLiL)tl.i x N xt1,

'. z0	? are regular 1iexagr)11s) . For example, the solution v (11 N)

,uneraLud by (6. i )) is a hexagonal solution (note the %4,ape of the

stro^mlines in [10, Fig. 11; su(a also [3, :+1_6]). one can Shaw

S GS 4' ^ 1, :"^^)^)	 Gli.it	 i^ t at. ^x 
n 

+tit
n+N ^{'}^' °

n+'N	 has 2t'rt) CU:11O(Fnhnl,, i14.'l"C1sh ti[e

verLleilI eat OS of Z who,io vroos sectiom z � l) IS the hexagoil with

center Itt (x,y) _ (0,0) and vertices at -(4-/3 ;0
2 	 ki T n . Clearly,

the= :iiltlle i5 Lrue' Uf ,, Corresponding to k  . -T TI, henv(' of	
. 106 w `}.

Furthermore, the, flow r has the positive v.-direction along the z-axis.

rhos, we see that the leading term in v(n I N) has this hexagonal structure:

.aid, since *3	 0, r)	 0, th( flow mis;)ward .Il(Ln the z-axis when

0 tend dowiiw,ird- wlylen	 ,	 0.

otne may also investigate the exl.atenee of exOLie solutions in S,

for goncral N by the methods of" the I ► re+3einL SOCtion. TO determine the

.}tabiliLy cal` VXoLic solutions, however, requires the veri.fi,catiun of ce =-

Win inequalities amonf; the CoeffizieTILS of the functional f in (5.6a) .

This is illustrated in the following remark for the case ti = 2.

Itamark 6.4.	 Besides the simple: hexagonal solutions determined above,

one obLain.> in Ole case N = 2 additional solutions corretipendlop to

(6. 17)	 (n)	 1 = -28 2 /9Ct: l + A1 ) ,(?i = -2B/3(C1 + A 1 ) ,	 i	 1, ... ,6

(b)	 L = [-slrl + (l + s 1 + s2)A I Ji,I'1 	 ti 3	 ;,^ _ -li/(l+s l ) ((%1-A1)

f3 2 	 04 = ( 6 = s1R1,

where A l = Al2 + A14 + A16 (see (6.6)). Here s l , 0 < s1 < 1, is a root of

(6.18)	 0 = 2(C 1 - A 1) ( s 3 + s 2 + s) - ( C1 + 2A 1) ( s 2 + 1) 2 .

t)ne rinds that the existence of .; 1 , hence of (6.17b), as well as the

sLnbil.:',ty of both solutions in (6.17) depends on Lhe sign of C 1 - 7A 

--1	 ,^,.
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1110 Hotttllcitt (6,17a) correspondti to the first eXotle Soltitloll tcali .'a)	 {

In [10]

observe Lhat in cinch of the solutions (6.15) , 	 al] ! i Is corres-
i

pondin l, to d given tripl y , Tn , are eclunl. The functional f, however,
t

dues not ahanl;t, if we change Lhe sighs of any Lwrt	 i I s eorrespondin,,, to

thQ same triple, Thus,	 each of tiro hexagonal solutions l,cveratc,d

by (6.15) yields Lhroe additional hexagonal solutions. Ong: c+an show thhl

Lilt , lour solutions oblai ►led this way are translations of one another.
[

Mom-ovor, all of the solutions, v(n,N), generated by (6.15) (for
1

<< - ? ,-',... ,N, N in a suitable, unbounded sequence) are, at l.easl to

f Irst order, rotations of v(1,1) .

our main results for classical hexagonal ce l li ► lar solutions are ,ium-

marlv.ud in the next paragraph and Mild under the hypotheses G ' 0, I3 # 0

(soc; Remark `i.l). These hypotheses are independent of X and are analogous

Lo the minimum hypotheses required for a bifurcation analysis at ' c when N ^ I.

Hexagonal cellular solutions. For each N In a suitable unbounded

sequence there are 4N solutions of (*) generated by absolute minima of

Lilt- ScIvOtian	 functional, E. These solutions are subcsritical and SLable

In Sr 
^',

S71 (N). Each of these solutions exhibits the classical hexagonal

cellular form with size independent of N. The stability of, e.g., v(l,.N)

i,n S
'; 
(N) shows that the hexagonal cellular solutions are, in particular,

5tablc to perturbations in "directions" corresponding to N critical wave

vectors. Thus, letting N range over the unbounded sequence, we obtain,

In a sense, the stability of the classical hexagonal cells in infinitely

manly such critical directions.



1. Concluding remarks.	 There is ntz aLLetnlat 'itx tilt, JINS01t. patpvV

Lo obLain "all of tilt' local silluLions near	 i,1" of the Blitiald

problen ► with SyMmeLrir boundary CondiLionh, evc,u ill thti simplua;t of rat.tT.

!ht' motiv,tLlotl II'v; I)Vuta rather Lo provide a first tcLep towarl showing; thot

the hexagonal cellular solutions are the "preferred" subc:°,ritienl xolutii,ns

of tine Benard problum ill physical situations with kemperature depundunt

INILerial propertiVS, Ill fact, tine recent rvSUILS of Burtano and t:olui► itsh:

1-I and c,ol.ubltsicy, SWUL and Knobloch [ 5] indicate hoc. , difficult. it would

by tit obLaiaa "all of Lho local solutions near ' - q'° evun in Lhe eaSu

i ► a :WeLlon t, wlit-n di ►a Dl - ] ,a.	 fn [2], [5] Lhosv authors considor :,itua-

t ions corresponding; hert, to the ease in Section b of one triple of critical

wuvt+ vuctc ► r5, i. u. , clan hi - 6 and, by an application of group theory

,and, in [ 2] , also singularity theory, they obtain "rill of the local solu-

Lions" of a six-dimensional problem P. (Once assumes Lhat f' corrv,,ponds

to the finite-dimunsional pi,.)blem gmies rated from tine BLhiard problem by

moans of the Lyapunov-Schmidt method relative to the f irst eig;envalue of

LlaQ linearized problem.) The detailed results in 1 2] are of particular

itlLerust because Llacy show for the Bcnard problt;m Lhal the tnaLhe ►nntiVill

possibility t,xisLs of having :;table suberitical hexaf;canal-type '; Iulican:a,

SLable saperc:.ritic;al roll-type solutions, and a third type of soluLion

Lhat provides it transition between rolls and hexagons. There are, of

course, Sn ►na cliffir.ulties encountered in carrying; over the finite-dimen-

sional results in [2], ['a] to an infinite-dimensional mathematical model

and many such	 diffic ultier and their interpretations for the Binard

problem are discussed in [2, 911]. The most pertinent such, difficulty

rulaLive tuthe method presented here is the fact that the detailed nature,

f

i

5.. —jr, '/: , L? ter+, .' —	 .
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Of tlac , results In [21, [5] are highly dependent upon th ,-, relatively law

(Hitivnsion of thv problem 1' whereas thce basic resailLs of BUsse [ 1) are	
}

vs.acatltiall.y independent of the dimension of any underlying finite-dimen-

tilonal problem, One of the mein goals of our study of the B %nard proble , was

to devvlop a rigorous stabilit y method useful in a € vtti.nr, that s118n Is

indopendent of rho dimension of any underlying finite dimensional problem.

Me rc>sult.s Of SCeLion G show that this goal has been achieved and that

In .cur approach the 800et iron of sl:abl(I suberi,tical hexagonal c of lular

-.- IucioMS i , * tlosvIv reiatod Lo a minimization condition can the gener +al1„t-%I

di«sipatioua. 1-, in earlier work can the Bdnard problem (e.g., scso [l;

1 ") ]) , there rvmalnK in the case of temperature-dependent material propor-

t le:a L11U problems of finding :a strict physical interpretation of the

;;enerilized dissipation and a description of the actual selection mo-hanism.

Finally, we note that the methods introduced here can be modified to

y irld also the dosc:ription of stable sups-rcritical states and the stability

rlratlooahiia; betwc.-On roll-type sca:lutions and hexagonal collul.ar sglutlens.



ORIGINAL P„ :.
	

41.

OF POOR OVA

Alapriidii . 	 Here we ;justify equation (2.21) and prove Lemma 3.1.

Pirr,t We sfioW U11A thi s t+;(l enrunt , vions ( . nqj } In (2.20) can be st%ilod

with rranstants Independent of j so that (2,23) holds. In fact, wa y m;iy

,assumr that 4ach r{,pcl has been scaled by a constant dep :,,ding only on p

aild q such that

2 fl/1	
(x1142(A.1)	 y JI 	 Cnz pl q ) '̀dz =	 .Z

1/2	 4,- r
p

2
where 1)	 ^•2  - ,.32 . (The integrand on the left in (A.1) is not zero, by

d a.	 1

utii(1nrn .S.1i of 010 iniL 1.11--v.1111C problem 1)
2
qh = p 	

2
) 	 0	 (sov (2.12c)).)

From (2.3) and (2.21) we get

>	 rst	 21r/c4I  27t /('42 i(k	 - k ) x(A...)	 (^I,pgj 	 T(p,gtj;r )spt)f
o
	^	 c' ^ pi	 ^rt ';.dvdx
 o

2

pr t ;^ 2 J (p , q , j ;r „s,t) .

il( 1-o si n^:^^ ,^,!)q j = ^!,pq	 and ^^pqj = q)pq are real and independent of'	 ,3	 -3	 `4	 4

l /"
(A.',}	 J(p,cl,j;r,s,t) - f

-l./2

2(k'krt^gt^se

 pj	 m-1

3 
dpgj _d rs t 1	 pq , rs _d py d rs 1

+ m7l ^m dz ^m +Pr[(kpj krt4 ` '4 + dz`4 ;, .4 7 dz
l

From (A.2) we see that J is needed only when r = p and r; = j 	 Then we may

intogratu by parts in (A.3) making use of (2.12) to show that

f- 1/2

1/2
(A.4)	 J(p,q)j;p)s,j) - ^P

q	((ppq 3	
4s +(ppq^s)dz

Since both (1)pg and fps 
satisfy ( 2.12) we have, after integrating by parts,

(A.' 	 Q	 (la ps - 14 p9 ) .J2 J 1/2 (Opg q)3 s + cppgcj)4s)(;z
1/2
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i'hus (A.5) show.,; that if p	 ^ lipq (i.e.,   if s # q) then	 Pq'3
 anti

are orchog,01411 ill ehC sense that

o
{^? J2

In particular,

(A.7)	 •](P ► q.j;Pj'S+.]) 	 gs'J(pjgqj;P+q,j).

But from (2.14x), integration by ptxrtS and (A.1) we get

(A,8(1) 	
= 2^p2 

f-1/2 '
1/y3al)",,3gdz	

-l't 2

 4

Combining (A.2), (A.7) and (A.8), we obtain (2.23).

,,Next we give a proof of Lemma 3.1; some aspects cif the work is closely

rvlaLvd to corresponding st^;p;; in [1] or in [10]. Accordin,; to 1.emrla 2.1

thv operators 1. and M are hounded oil 	 Since 1.. Is also compact, it

is easy to see that K is bounded on M 1 . If v • If has Ulu form (3.')

and A is any bounded linear operator on H, then Av may be computed

teem by terrl iu the sum so that the formulas (3.7) follow easily. The

positivity and self-adjointness of K are simple consequences of (2.23),

(3.7) and tho fact that the 1:pq are real.

fart (ii) of Lemma 3.1 follows easily from the definition of ;,, if

we show that

(A. 9)	 0 = (1u1,m,V^J)^	 for	 ,mj , jJ 

P0 1	 P0l
Sinc:e ^,4	X14	and 1r 3	 i^3	 are even functions of z (see [10 1) ,  (A.9)

follows from

(	 2	 l/2(r1 tn'^j)	
2If 4 3 __
	

tz	
m	

J
6(k 

+ k^)	
zc^44)3dz = 0 .

1	 1 2	 1/2

Thu assertions (iii) of the lemma are obtained from (3.2), (3.3) and

the identity

.

i

^1
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(u•Vv) . w 	fiv . ru(v . w)) - (u • Vw) • v) _ `^ ^(u . Vw) - v ..

This last idontity is easily verified for smooth u,v,w e H and is proved

In general by .1 o-,.andard limiting argument using the boundedness, in u,v,w,

Of the functional (`: (u,v),w) :

(A.10) ( (1'(u,v) rw) I < const H u ll 11 v II 11W11•

(The: Inequality (A.10) follows from (3.2) by Application of the Schwarz and

Paine ar'e inequalities.) In addition, one may use (A.10) to show that all

,16sertions in part (iv) of Lemma 3.1 are consequences of (A.11) and (A.13),

uelow.

on substituting (2.20) and (2.21) into (3.2) we are led to (recall that

1)0 and 1)01 are suppressed: Qp 
0 

= c7, Itp 
0

J = k^, etc.)
^ 

(A.11) ( '}'(W,^d),wn) _ - ^w ni S(k 	 + k^ + kn)I(p,q,ni;p0,J,n)
l 2

p ill

whare

( A
f-1/2

. 12)	 1(p,q..m;p0'3,n) = 1/2	 - -a2(kpm• k^) dd3
Pg 

(¢^• 1^)

	

d 2Qr d^	 d^	 d^
+ 4 pq o-4(k. • k )	 3
	

3+	 3 ¢a +	 4	 ^dz
3	 tid tin dz2 dz	 dz 3	 dz 4] l

6 term, except when

tors k^, kn and kpm

Consequently m and

In this case then,

The right hand side of (A.11) is zero because of the

kpni + k. + kn 0. In this exceptional case the vec

Iorm an isosceles triangle so that k pm • k^ - k^^m•kn.

,j may be interchanged in (A.12) without changing I.

from (A.11), and part (iii) of Lemma 3.1 we have

(A. 13)	 (g)(^pgm,^J)'^n) = (,'(,pgm,,n),^j) = -(,'(,pgm,,J),^n)	 0 .
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N

To prove the formulas of part (v) of the lemma we take
la I =1

Mid (, l c• ul nte the various terms, Now

(A.14) (MI;,.'1 ^q)pgm) 
= 2'

^S2 714T13gmdz	 SPP0s,3°1b0g

IIL , rc,

^,^2	 ( 1 /2	 p0 1 pOq
tA.l ^)

bOc

ti_
^ ^3-
	 J

z^43 	dz,	 (nl	 =	 1,2,...
] 1 2 1/2

Is	 i-oa l	 anci b01 = 1) 0(-1) = 0	 since	
^3	

and	
^4	

are even.	 Then

N `11	 P0g1

I.il =1 	' I q l=2	
g

Similarly, from (2.24) we are led to

(A.17) M*,ifn =	 E
_p qn

b^ ^V 0
IqI =2

q

where'

(A.15)
2

bnq =	 8r 1/2	 p g p ^
f-1/2 

#p0 dz 	 Iql3 C =	 1,2,...

is	 real. Since	 M?; c h1 1 , KMt	 may be obtained from (A.16)	 and	 (3.7)

N °O	 p0g7
(A.19) KKI) -	 ;, R .	 F	 b	 q)

IJI=^ °g
where	

bOq

= +gy p q ( up q -
0	 0

lil ) -lb0q .	 From (A.17) and (A.19) we have
:.-

h
(A.20) n

(M MC I)	 )
>ti

E R3 	F.	 bOmb0q
p 0mj -p 0gn )

(111 > ^ 	)	 =b 0 (-n
f lal

- 1
	1m 1,141

- 2

Here

00

0.21)	 b0 = E bO bO
Ig1=2	 g g

is real. This proves (3.8).
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tae shall requt re

(A.22)	 ('+'(ai^j, +' m ) ,^jygn )	 tS(k^ + k^^ + kpn )1` 2 (p 0 ,.7 ) m , p , q , n ) ,

whc^rc, by (2.21),

1
(A.11)	 X ) (P ,l,m,h,q ► n)	 ^4 2

	 1/2 fij
- 2 (k • k ), t3 ,m •^ pgn - ^ ^4:1.M . p`n) ^dr .()	 (%Iit2 f 1/2 (	 j	 m dr	 i 1 dz	 ) I

We ar%.) [IlLorc , stod in 1 2 only when the vectors k 
1

, km , k,),1 form an i 5«tic^4 . 1 cs

trian^;lt, c^th^rwiss; the c,- factor in (A.22) is zero. From this tri,am , lca w4:

^, ,00 that	 k. • k 	 = k • k 	 - l` ,v2 and k • k	 1 12 _ .,z	 Tn this; rase,
1	 P11	 m	 1)11	 2'	 p	 .i . m	 2	 p

(A.)3) leads to 1 2 (1) 0 ,J,m,1) cl,n) = 1 3 ( p o, p , q ), where

47T2	 1/2 ^	 1 ` ^2 d`^3	 1	 c1^3 d:a^q(A.24) I. (p , p , q ) _ -	 Yw f	 1 _	 ^P	 +	 ,,pn +	 (,q
3 U	 'x1. 2 J 1/2 1	 2 s2 ^dz [2,Ll	 dz az	 X 3 3	 4 a _^

	

+ ^^	
12`x'	

z 3	 dz 4
3 d 3

pq
 

+ d ^,3, q,pq + d^ G ^ppq _l3 2^s 2 clz2	 dz	 c
	 dz

_J

Is rral and depends on .1 and m only through r,, p 	 (k^ + km 1. On the

b., isis of (A.22) and (A.24) we have

(A.25) (^t(,J,j,1,1)	 ' ,^, pg") = S(k
i
 + km + kpn)I3(po,p)q)

From (3.6), (3.7) and (A.17) we have

00	 p^qn
(A. 26)	 (MKF(ij)) ,'!,n ) _ (F(ip) ,KM*F,,n ) =	 E	 b0 q (F(!i^)

^q^=2

t..he re b 0q	 l.i p q 0p 
Q 
q - ui)-lbp g is real. Furthermore, from (A.25) with

n	 ^ 

p = 1) 0 we gyet

ppgn	 N
(A. 27)	 (FO,'j'	 )	 E II	 ,.Rmfi(k

i
 + km + kn)I3(PO)Po,q)

I I m-1

C

ii
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Combining (A.26) with (A.27) we obtain (3.9) with real 1) 1 'given by
sx.

(A.28)	 1)1	 i	
b 0(1 1. (1)0' Po' q)

In a Similar manner wv may utilize (A.19), (A.25) and part (iii) of

Lemma 3.1 to establish (3.10) with real constant b,) given by

(,^. 2 ct '	 b2 	 bOc T3(p0'1)0'q)
1,1 =2 	t

l;(I1jati0n (3.11) follows easily from the obsurvat°Lori that

1.1. 1O)	 (1'( i
, ; m i^n ) = , ` (lc^ + km + kt1)1).1

t'Jwro

4rr2	 1/2	 2(A.'31)	 1)3	 UIT	 ^	 ( '"l► ) 'P 3 dz	 0 .
1 2	 1/2

Nvxt we consider part (vi) of the lemma. From (iii.) of Lemma 3.1

.)ncl Lhe bilinearlty of ev we have

(A.32) ((,',Q,,KFQ,)), ►(^n) _ -(^I)( ^,rpn ),KV ('))

N
F	 P,-rj2 ^ flt(''^0"'I,',ill)^Ki(i^f^")))

lil^lj ,I II I I =1

Wo may obtain Lho last inner product by means of Parseval's equation as

1'oI lows. From (11.25) the coefficient of ►))pqh in the Fourier expansion

,•1 ,' ^n ) is (1,(k J  + k  + kph)1 3 (p o ,p,q), while the coefficient of

p(Ih in the Fourier expansion of Kl)(ip' ,q)m) is

6(k l + k ►►► -kph)l^pq(lapq - 111)-1T3(p09p)q), 	 if	 (1),q) 1 (p0,l)
(A.33)

0,	 if	 ( p , q ) _ (p0,1)

i

!, 6,	 r

Consequently,
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j	 n	 i m	 a I23'(p0,p,(I)
(A. 34)	 (°_ ( 1la ,, ) rh`1'(V1' xj, )) " E 6(kj +k

n +kph ) ^ (ki +km -- kph) _. (
	 i j =

whom 
)'0 

denotes summation over (p,q,h) in the same set of integer triples

its in (3.7) .

Given l and n, the only way a term in the sum on the right in (A. 34)

( 1 :111 b1 , nonzero is for

(A.'35)	 kpll	 -kj - kn = ki + knt

Thrso relations determine p and h completely, in terms of p001 and n

(or to terms of po ,i and m) so that only q need be summed in (A.34).

Tho relations (A.35) also require that either k = -k 	 and k = -k	 (i.e.,ai	 ^-.j	 m	 ^n

I 	 an d in 	 -n) or ki = -kty and km = -kj (I.e., i = -n .nnd

r.	 -j), It follows that

(A.36)	 6(kj+kn+kpii)6(ki^+-km- kph ) _ `^(i+j)6(n+m) + 6(i^+n)'(m+')

IF wo combine (A.32), (A.34) and (A.36), then we obtain (3.12) with non-

negative constants ap 0jn given by

(A.37)I
^pq (I1pq - 1^l ) -I12 ( p0 p p 9 q ) 9	 j j , jnj = 1,2,... ,N. i # -np

0

j 

n q=q1

where q l = 1, if p # p0 and q1 = 2 if p = p0 . Note that ap 0in

depends on j and n only through p, i.e., through (7 p = Ikj + kn^.

X.n particular we have

(A.'38)	 ap0jn = apon.j	ap0(-j)(-n) .

I'1irthermore, when j = -n we may, for convenience, define

4
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(A,39)	
"'t)oa (-- i) " 0.

(Tho snm -In (A.'i7) is monning3e ss In this case, sinov (2.12) has tic) non-

t I l ial soi.utions WWII	 0	 (^ I kj ..i. 
k (-.3) 1)	 sn Ghat Q	 ,^ 	 For

011V p) . Becaust- (p ,q) 0(poll) in (A.37) , we sec when n	 —'j that

tqj
n - 0 if and only if T3(pp, ),r1) = Q for all integers q with 'q'	 q

,N cknon0L, clgumoat. The authors wish to thank Professor R. A. Connors for

.ct , quahl(ing, them with the number- thooretic results nsead at the bvp,'1nfi1n,,r

or Soot fun G.
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